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Abstract
The  ability  to  transform  facial  images  between  groups  (e.g.  from  young  to  old,  or  from  male  to  female)  has
applications in psychological research, police investigations, medicine and entertainment. Current techniques suffer
either from a lack of realism due to unrealistic or inappropriate textures in the output images, or a lack of statistical
validity, e.g. by using only a single example image for training.  This paper describes a new method for improving the
realism and effectiveness of facial transformations (e.g. ageing, feminising etc.) of individuals.  The method aims to
transform low resolution image data using the mean differences between the two groups,  but converges on more
specific texture features at the finer resolutions. We separate high and low resolution information by transforming the
image into a wavelet domain. At each point we calculate a mapping from the original set to the target set based on the
probability distributions of the input and output wavelet values.  These distributions are estimated from the example
images, using the assumption that the distribution depends on the values in a local neighbourhood of the point (the
Markov Random Field (MRF) assumption). We use a causal neighbourhood that spans multiple coarser scales of the
wavelet pyramid. The distributions are estimated by smoothing the histogram of example values. By increasing the
smoothing of the histograms at coarser resolutions we are able to maintain perceived identity across the transforms
while producing realistic fine-scale textures. We use perceptual testing to validate the new method, and the results
show that it can produce more accurate shifts in perceived age and an increase in realism.

Categories and Subject Descriptors (according to ACM CCS): I.4.7 [Image Processing and Computer Vision]
Feature Measurement (Texture), I.3.8 [Computer Graphics] Applications. 

1. Introduction

The ability to alter perceived attributes of a facial image,
such  as  age,  race  or  sex  has  found  application  in
psychological  research  for  producing  controlled
experimental  stimuli.   Other  application  areas  include
the ageing of photographs of wanted or missing persons,
predicting the outcome of medical intervention (e.g. for
skin conditions) and modifying the appearance of actors
in the film industry. Previous methods based on group
differences have suffered because of a lack of texture in
facial  blends used to define the transform. Methods to
compensate  for  this,  by  modifying  the  amplitude  of
multi-scale  edges (via  wavelets),  have produced  some
improvements,  but  the  resulting  images  still  lack
realism.  They also fail to sufficiently alter the perceived
age  when  rejuvenating  and  the  perceived  sex  when
transforming from male to female. More recent methods
based  on  single  images  have  produced  some  more
realistic results, but do not necessarily define the typical
or most likely alterations to a given face, i.e. they could
be biased by the choice of example.

In this paper we propose a new method based on locally
estimated probability distributions.  These distributions
are conditional on the points in a neighbourhood of the
point  being  synthesised.   The  estimated  conditional
distributions for the original and output pixel defines a
mapping from original to the new value.  Performing the
estimation  in  the  wavelet  domain  offers  several
advantages  over  spatial  domain  processing.   It  is
inherently  multi-scale,  improving  the  reconstruction

quality for the same size neighbourhood. The low and
high resolution information is cleanly separated, so that
processing at high resolutions does not overwrite lower
resolution information.  For this application it also has
the  advantage  that  we  can  alter  the  transformation
parameters  with  scale,  so  that  we  retain  the  low
resolution  information  (which  codes  mainly  for  face
shape)  but  can  select  more  specific  textures  (e.g.
wrinkles and stubble) at higher resolutions.

In  the  remainder  of  this  paper  we  first  review  the
relevant  literature  in  texture  synthesis,  image-fusion,
facial  image  prototyping  and  facial  image
transformation.   We then describe the new method in
detail,  followed by visual transformation examples for
facial ageing and gender change.  Finally, we present the
results of a perceptual study that demonstrates that the
new technique can accurately age and rejuvenate faces
to the age of the target group,  and offer a significant
increase in perceived realism. 

2. Literature Review

2.1 Texture synthesis by analysis

The  main  problem  in  previous  facial  transformation
methods has been identified as the lack of appropriate
transformation  of  the  facial  textures.  Synthesising
patches of texture from examples has been the focus of a
considerable number of research papers.  The statistical
nature  of  textures  inspired  methods  that  used  global



properties of the images, such as the image histogram
and  the  histograms  of  wavelet  subbands  [HB95].
Starting  with  random  noise,  the  image  and  subband
histograms  are  alternately  matched  to  the  target
histograms  in  an  iterative  process.  This  method
produced excellent synthetic results for random textures,
but was not able to reproduce more structured textures,
such as hair.  Extensions to the method using additional
measures of the wavelet histograms (such as correlations
within and across subbands)  improved the results,  but
still failed on more complex textures [SP98].

An  alternative  to  global  optimisation  of  texture
parameters is to  look at  local features.  In MRF-based
texture  synthesis  [JUL62]  [HS81]  [CC85a]  [CC85b]
[CJ83]  it is assumed that the probability distribution of
a pixel's intensity is dependent  on its neighbours.  The
aim  is  to  construct  a  texture  such  that  the  local
conditional  probability  distribution  functions   of  the
synthesised image match those  of  the original  texture
sample. The original MRF methods proved to be very
slow due to the need to rebuild the histograms or select
suitable  matching  neighbourhoods  at  each  pixel  by
scanning  the  entire  image.   Several  methods  that
approximate the full MRF method have been devised,
usually  by  searching  the  example  image  for  the  best
matching  n  pixels,  and  choosing  one  of  these  using
stochastic  sampling  [EL99].  Speed  optimisations
include  using  a  multiscale  approach  [PL98]  (i.e.
building  up  a  low  resolution  approximation  to  the
texture  and then refining it  to  higher resolutions)  and
fast search algorithms  [WL00].  Performing the texture
synthesis  in  the  wavelet  domain  has  allowed  proper
separation  of  information  at  different  spatial  scales
[ZWT98],  including  the  very  efficient  approximation
using  a  neighbourhood  consisting  of  only  lower
resolution subbands [DEB97].

2.2 Facial Image Prototyping Literature

Several of the proposed facial  transformation methods
start by constructing a prototype of the source and target
sets.   The  creation  of  prototype  images  has  a  long
history dating back to  the methods  of  Francis  Galton
who created  photographic  averages  by using  multiple
exposures after aligning the eyes and mouth [GAL78].
More recently, prototypes have been created by digitally
blending faces together, after normalising the shape to
the  average  using  image  warping  [BP93].   Simple
averaging  of  the  spatially  aligned  images  does  not
produce  representative  textures  and  several
improvements  have  been  suggested.   Wavelet-
magnitude based texture prototyping [TBP01] uses the
smoothed magnitude of the wavelets as a measure of the
average  local  activity  in  different  spatial  locations,
orientations  and  scales  across  the  set.   The  wavelet
values  of  the  simple  average  are  locally  rescaled  to
approximate  these  activity  levels.   An  alternative
wavelet histogram method has been proposed in which
the histograms of the prototype image and its wavelet
subbands are modified to match the (mean) histograms
of  the  image  set  [MCV04].    These  two  methods
produce  visually similar  results,  with  random textures

being  well  represented,  but  more  structured  textures
(such as the hair) still appearing rather unrealistic and
unrepresentative of the set. 

An alternative approach is to use a local neighbourhood
surrounding each point to estimate the most likely pixel
value  for  the  prototype  [TID04].   By  comparing  the
values  in  the  neighbourhood  with  the  matching
neighbourhoods  in  the  training  set  a  probability
distribution can be estimated.  The highest probability
value is selected from this distribution,  then this pixel
forms part of the neighbourhood for succeeding pixels.
A  causal  neighbourhood,  spanning  two  neighbouring
scales,  was  used  for  efficiency  and  reconstruction
stability.  The probability distributions were estimated
by smoothing the histograms of neighbourhood values.
Certain choices of smoothing parameters caused locking
of the algorithm onto large parts of a single image in the
training  set.   To  avoid  this  behaviour  the  histogram
smoothing was increased at lower spatial scales, to give
a  more  average  global  appearance,  but  leaving  more
specific  (and  therefore  realistic)  fine  scale  textures.
Although no perceptual study was conducted, the results
appear  very  realistic,  although  there  is  a  problem of
occasional  discontinuities in  the reconstructed  images.
These discontinuities are probably caused by the overlap
in information content between neighbouring scales in a
multiresolution  (Gaussian)  pyramid.   To  improve  on
this, a wavelet domain version of the algorithm has been
proposed [TID05], with an improvement in realism.

2.3 Image Fusion Literature

Image prototyping is a specialised example of multiple
image fusion. The more usual problem is that of fusing
multiple images of the same scene, taken using several
different  sensors  (e.g.  visible  and  infra-red)  or  taken
under  different  conditions  (e.g.  focused  on  different
objects or with different exposures).   Methods based on
wavelet pyramids have proved successful, with various
algorithms  for  combining  the  individual  wavelet
components  proposed.  Point-based  methods  include
selecting  the  wavelet  coefficient  with  the  largest
absolute  value  or  making  a  simple  average.  Other
methods  inspect  the  values  in  a  window  about  each
point  when  calculating  the  value.   These  methods
include  choosing  the  pixel  from  the  image  with  the
largest  absolute  value  in  the  window  [LMM95]),
making  an  average  of  the  matching  points  that  is
weighted  by  the  local  activity  levels  in  the  window
[BK93] or weighting the samples based on the contrast
sensitivity  of  the  human  visual  system  [WRM95].
Several  comparisons  of  wavelet-based image  fusion
schemes have been conducted [ZB99] [BB04] [HCB02]
and  these  indicate  that  over-complete  wavelet
decompositions  are  preferable  to  critically  sampled
decompositions  (for  reconstruction  stability  and  fewer
artefacts),  that  region-based  methods  give  improved
results  over  point-based  methods  and  shorter  filters
reduce  the  number  of  artefacts  in  the  resulting  fused
images.



2.4 Facial Transformation Literature

Early facial transformation methods used prototypes to
define  the  shape  and  colour  differences  between  two
groups (e.g. young and old).  These differences are then
added to an individual to shift their appearance between
the groups  in  a two stage process  [RP95].   First,  the
differences  between  the  outline  shapes  of  the  two
prototypes is added to the subject's shape after suitable
rigid body registration. Then the colours are altered by
warping the two prototypes and the subject's image into
the new shape and adding the colour difference to the
subject at each pixel. The lack of texture processing is
particularly  evident  when  reducing  the  age  of  older
faces  (because  the  wrinkles  are  still  present  in  the
output) and when feminising male faces (because of the
presence of stubble etc. in the output).  Perceptual tests
have  shown  that  the  reduction  in  perceived  age  is
statistically  insignificant  when  attempting  to  shift  the
perceived  age  from 55  to  35  years  old  in  Caucasian
adults [TBP01].

The  wavelet-magnitude  prototyping  method  described
above  was  extended  to  facial  transformation,  by
rescaling  the  magnitude  of  the  wavelet  values  in  the
transformed  image  to  match  those  of  the  target
prototype [TBP01].  The method suffers from the same
problems  with  unrealistic  structured  textures  as  the
wavelet-magnitude prototyping method.  In addition, it
is not really a transform, in the sense that the smoothed
wavelet  magnitude  functions  of  the  final  image  are
copied from the prototype, rather than being  shifted by
the difference between the source and target prototypes.
Even  so the perceived  age shift  was much improved,
although still falling short  of the desired age shift,  by
50%, when reducing the perceived age.

An alternative approach is to perform the ageing in a
principal component space. Lanitis et al [LTC02] learn
ageing  paths  through  a  PCA  based  face-space  from
example  images  of  the  same  individuals  at  different
ages, using the  assumption  that  the  kind of  ageing to
apply  is  dependent  on  appearance.   PCA faces  often
suffer from problems with unrealistic textures due to the
blurring  of  textural  features,  particularly  near  to  the
mean.

Several  authors  have  developed  heuristic  techniques
based on the information in a single image. Bastanfard
et  al  [BBT*04]  combined  shape  changes  based  on
anthropomorphic  measurements  with  wrinkle  “in-
painting”, in which pixels defined in a binary mask are
smoothed  by  a  local  diffusion  process.  In  a  similar
approach,  Mukaida  et  al  [MAK*02]  [MA04]
automatically segment the spots and wrinkles using blob
analysis.  These features can then be amplified to give
the  appearance  of  ageing  or  age  reduction.  These
techniques have the advantage of speed,  but make the
assumption that the de-wrinkled skin is blurred, rather
than  having  some  structure  (e.g.  pores,  fine  lines,
freckles).  It is also not clear how wrinkles or spots are
added to a face if there is no underlying wrinkle to (de)
exaggerate.  Gandhi  [GAN04]  models  wrinkles  using
image-based  surface  detail  transfer,  which  copies  the
high-frequency  components  (corresponding  mainly  to

wrinkles)  between  two  images.  The  use  of  a  single
example may  introduce an ageing or age reduction that
is not representative of either the typical or most likely
change that an individual  will  experience.  Also some
larger  wrinkles  may  have  components  at  lower
frequencies that are not copied.

Three dimensional models of ageing and wrinkles have
also  been explored  for  use in  building  and  animating
virtual humans [BKT*00] [LM99] [WM95] [WMM99].
These use a collection of generic ageing masks and 3D
models  of  skin  and  wrinkles  based  on  a  multi-layer
tissue  model  to  perform  simulated  ageing  and  allow
animation.    Blanz  et  al  [BV99]  have  used  3
dimensional  PCA face models and  have demonstrated
expression alterations.  These expression transforms can
be applied to a 2D image by estimating the best 3D face
model  and  lighting  parameters  by  a  minimisation
technique.  The  technique  described  here  could  be
combined  with  these  3D  methods,  improving  the
transformation  of  the  3D  texture-map  with  more
appropriate skin texture changes.

3. Method

The method proposed in this paper extends the wavelet-
based MRF methods for facial prototyping described in
[TID05]  to  transforming  between  two  groups.  To
transform a face image between two groups we start by
performing  the  shape  and  colour  changes  using  the
technique  of  [RP95]  (Figure  1).  We add  the  average
shape difference between the two groups to the subject's
feature points.  The subject and all the images in both
groups are warped into this new shape.  The 2 colour
channels (e.g. the U and V channels in a YUV colour
space)  are  altered  by  adding  the  average  difference
between the colours in the two groups to the colours of
the subject's face. 

Figure 1 The previous transformation process. (a) The
new face  shape  is  calculated  by  adding  the  average
shape difference. (b) The subject and average images
are warped into the new shape. (c) The average colour
difference is added to each pixel. 



Next we transform all the images' intensity components
(Y channel) into a wavelet basis.  In this work, we use a
redundant  (i.e.  over-complete)  image  decomposition,
which builds  a  pyramid of  horizontally  and  vertically
filtered  versions  of the image at  different  resolutions.
The filters we use  approximate a first derivative of the
image,  and  we use  an  exact  reconstruction  algorithm
when performing the final image synthesis. The use of
an over-complete basis with short filters has been shown
to  improve  reconstruction  stability  in  image  fusion
[BB04].   As with the filters used in [TBP01],  we can
perform  an  exact  reconstruction  by  up-sampling,
filtering and addition. The down and up-sampling of the
low-pass  filtered  image  requires  that  the  high-pass
components are convolved with different filters at odd
and  even  pixels.   Figure  2 shows  the  analysis  and
synthesis process and Table  1 gives the corresponding
filter coefficients. 

The MRF algorithm is then applied to these pyramids.
First, the low-pass residual is transformed by adding the
difference between the average low-pass residuals of the
two groups to the subject. The algorithm then proceeds
from low to high resolution subbands, scanning across
each and choosing wavelet coefficients that match the
(cumulative) probability of the input values. 

-2 -1 0 1 2

H 0.25 0.5 0.25

G 1 -1

F 0.5 1 0.5

L1 -0.25 0.25

L2 -0.125  -0.375 0.375 0.125

K1 0.125 0.75 0.125

K2 0.0625 0.125 0.625 0.125 0.0625

Table 1 The wavelet filters used.

The conditional  probability  densities  are  estimated  by
sampling  from  a  fixed  location  across  the  spatially
aligned example images. A Parzen window method, i.e.
Gaussian smoothing of the histogram, is used to convert
the  example  neighbourhoods  to  a  well  formed
distribution.   We use a casual neighbourhood,  i.e.  we
assume  that  the  next  pixel  to  be  synthesised  is

dependent  only  on  a  selection  of  values  previously
synthesised.  The  neighbourhood  used  spans  multiple
resolutions and includes a 12 pixel non-symmetrical half
plane (NSHP) neighbourhood at the current resolution,
a 3 by 3 symmetrical neighbourhood at the preceding
resolution,  and  1  pixel  from  each  of  the  preceding
resolutions (Figure 3).  The use of symmetrical low-res
neighbourhoods  in  addition  to  the  NSHP  high-res
neighbourhood  helps  to  stabilise  the  reconstruction,
without the need for optimising the probabilities of all
the  pixels  simultaneously.  We  do  not  assume  total
independence  between  subbands,  but  use  all  the
information  available  from  previous  points  in  the
neighbourhood to estimate each of the two coefficients
at the current point. 

An algorithm for estimating the conditional distribution
is given below:

Algorithm 1: Calculate conditional distribution
inputs: 

input image's wavelet transform (WT) I,
array of example images' WTs J, of size M
location (x,y), subband s
neighbourhood N, 
smoothing parameter h,
histogram bin width bw
number of bins bcount

variables:
Float histogram array p of length bcount
Float array u for neighbourhood in I
Float array v for neighbourhood in S[i]

begin:
1.  Initialise p to 0 
2.  u = values in N of Is(x,y) 
3. for i = 0 to M

3.1  v = values in N of Js[i](x,y)
3.2  p[Js[i](x,y)/bw] += Gaussian(v, u, h)

4. Smooth p with 1D Gaussian of width h and
re-normalise

5. Return probability distribution p

The function  Gaussian(v,  u,  h) returns  the value of a
uniform multidimensional Gaussian of uniform standard
deviation h centred on u and evaluated at v.

The result of applying the process described above is a
probability distribution for the input pixel relative to the
original group and another for the output pixel relative
to the output  group.   The input  pixel's  distribution  is
conditioned on the values in the original image and the
output  distribution  is  conditioned  on  values  in  the
output  image. From these conditional  distributions we
calculate the cumulative distribution functions (CDF) by
replacing  the  probabilities  with  the  sum  of  all  the
preceding values. This gives a monotonically increasing
function  that  maps intensities  onto a value between 0
and 1.   We can also invert  the  function  to  create the
inverse CDF (ICDF), which maps values between 0 and
1 onto intensity.  We use the CDF of the original pixel
to  convert  the  (known)  original  pixel  value  into  a
cumulative probability  and  then  use  the  ICDF of  the
new  pixel  to  map  this  value  back  into  an  intensity
(Figure  4), giving the (new) transformed value. As the
ICDF for each wavelet pixel is required only once, the

Figure  2 The  construction  of  one  level  of  the
wavelet  pyramid.   A  pair  of  filters  in  a  box
indicates  application  to  even  and  odd  pixels
respectively. 



output  value  is  found  by simply summing the  output
PDF until the input CDF value is exceeded.

When constructing prototypes [TID04] [TID05] it was
discovered that the use of the “optimal” width,  h0 , for
the  Gaussian  to  smooth  the  distributions  [SIL86]
resulted in locking of the algorithm onto an individual
image at a low resolution.  Increasing the width of the
Gaussian removed the locking problem but also resulted
in  blurred  textures.  The  observation  that  texture
information  is  largely  dependent  on  the  finer  spatial
scales  indicates  that  we should  vary the width  of  the

Parzen  window  as  a  function  of  spatial  scale.  We
empirically  derived  the  scaling  parameter  h =
(1+0.5*level)h0 which gives a trade off between average
global appearance and realistic fine-scale textures.

4. Results

4.1 Transformation Results

Figure  5 shows the results  of  transforming individual
facial  images  between  different  groups.   We  have
deliberately  picked  examples  for  which  the  previous
methods were unsuccessful,  namely age reduction and
male to female transforms.  The results show that the
transformations have improved considerably in terms of
both the realism of the output and the effectiveness of
the shift in perceived group.

These  results  were  achieved  “in-group”,  i.e.  the  face
being  transformed  is  also  a  member  of  the  source
sample of images.  This is not as restrictive as it might

Figure  5 Examples  of  image  transformation.  Left
original  images,  centre  WM  and  right  WMRF
transformed.  The top two rows are age reduction by 30
years  and  the  bottom  rows  are  male  to  female
transforms.

Figure  4 The input and output conditional probability
distributions, (a) and (b), are converted to cumulative
distributions.   This  provides  a  mapping  from  the
original value to the new value.

Figure 3 A diagrammatic representation of the multi-
resolution neighbourhood,  that  includes 12 points  at
the current resolution (right), 9 in the preceding scale
and  then  1  pixel  from each  of  the  remaining  lower
resolutions.  Only one of the 2 subbands for each scale
is shown. 



sound, as the face can always be added to the example
set if it is not already present.  For out of set images, we
found it necessary to clamp the output values to within 3
standard  deviations  of  the  mean  of  the  conditional
distribution of output values. Figure 6 shows the results
of  out-of-set  transformations  with  and  without  the
additional clamping. The problem with transforming out
of  set  images is  caused when a texture  component  is
seen as highly improbable (because of the small sample
size),  so  it  can  be  mapped  onto  a  highly  improbable
output pixel.  Because of the inherent feedback in the
causal model this will then influence the next pixel and
so  on.   An alternative to  clamping is  to  increase  the
sample size when building the conditional distributions,
either  by taking several samples from around each point
in the example set or by using a larger image set. Both
of these options would have an impact on the efficiency.

4.2 Experimental Evaluation Results

In  order  to  validate  our  method  we  performed  two
perceptual experiments.  These were designed to test the
realism and  effectiveness of  the  method  for  age
transformation.   Age  transformation  was  selected
because it is a commonly required transformation and it
is easier to get an objective measure of its effectiveness,
i.e. by rating the age. 

In the first experiment subjects were asked to estimate
the  age  of  each  image.  Original  images,  images
transformed  using  [TBP01]  and  images  transformed
using  the  wavelet  MRF  method  presented  here  were
presented to the user.    The images consisted of male
and  female  faces,  divided  into  two  approximate  age
categories – 39 faces 20-45 years old (16 female) and 32
faces over 45 years old (17 female).  The older  faces
were projected  into the younger age category and  the
younger  faces  were projected  into  the older  category.
Because  of  the  large  number  of  images  to  rate,  the
images  were  divided  into  3  pools  and  users  were

assigned an initial  pool  at  random.  Testers were also
given the option of completing the other pools.   Each
pool  contained  the  same  face  in  each  of  the  three
conditions: real, wavelet-magnitude transformed (WM)
and  wavelet-MRF  transformed  (MRF).  Thus  each
participant  rated  the  age  of  69-72  images.  The  faces
were presented in a randomised order using a web-based
test.

To analyse the results the participants were first filtered
to remove any with a duplicate (random) ID number, or
any that had responded with an age less than 15 years or
greater than 95 years. This gave a minimum of 87 and a
maximum of  111  participants  estimating  age  of  each
face image. There was a high degree of concordance of
age  estimates  across  participants  (Chronbach’s  Alpha
>0.947 each set).

Transformations decreasing age:  The MRF transform
applied to rejuvenate faces produced apparent ages that
were equivalent to the target age (t test comparing mean
perceived age of 32 old faces transformed to decrease
age with 39 faces from the younger age bracket, t69=-0.5,
p=0.61). The WM transform, however, failed to achieve
full rejuvenation and produced apparent ages that were
significantly  greater  than  the  target  age  (t69=7.58,
p<0.0005). 

Transformations  increasing  age: The  WM  method
produced  an  age  increase  that  was  slightly  but  not
significantly  in  excess  of  the  target  age  population
(t69=1.8, p=0.071). The MRF ageing transform produced
images were equivalent to the target age group (t69=1.05,
p=0.265).The results are shown in Figure 7. 

In the second experiment,  subjects were asked to  rate
the same faces for realism on a 0 (very unrealistic) to 6
(very  realistic)  point  scale.   Again  the  images  were
presented in a web-based experiment and the order was
randomised.   Participants  were excluded  if  they rated

Figure  6 Examples  of  transforming  out  of  set.  The
original  East-Asian face images (left)  are rejuvenated
using European faces as examples (centre). Clamping
the  output  values  to  within  3  s.d.  of  the  conditional
mean (right) improves the stability of the synthesis.

Figure 7 Comparison of perceived age of original and
transformed  images.   The  images  are  grouped
according to the age group they should belong to after
transformation.  The WM method succeeds with ageing,
but  fails to rejuvenate sufficiently.   The MRF method
succeeds with both positive and negative ageing. 



original images lower than 2 for realism or if ratings SD
was less than 1.0.  This gave a minimum of 63 and a
maximum of  92 participants  estimating the realism of
each  face  image.  There  was  a  high  degree  of
concordance  of  realism estimates  across  participants
(Chronbach’s  Alpha > 0.957  each  set).  Therefore  the
mean  rating  of  each  image  was  computed  across
subjects. 

Realism ratings  were  higher  for  MRF  (mean  ratings:
young faces 2.6, older faces 2.5) than WM transformed
images (mean ratings: young faces 1.6, older faces 2.0)
both when increasing (t38=4.47, p<0.0005) and reducing

apparent age (t31=8.43, p<.0005) using matched pair t-
tests  (Figure  8).  Both MRF  and  wavelet  magnitude
methods  produced  images  that  were  lower  in  realism
compared  to  the  original  face  images  (mean  ratings:
young  faces  5.5,  older  faces  5.5)  for  transforms
decreasing or increasing apparent age (t>25.1, p<0.0005
each  comparisons).  Figure  9 shows  the  highest  and
lowest rated MRF transformed images.  It appears that
some of the loss  in  realism is due to  patching  of the
textures, and part is due to obvious glitches caused by
problems with the warping.

5. Conclusions

We have described a new wavelet-based MRF method
for transforming facial images.  The results demonstrate
the  effectiveness  of  the  technique  in  terms  of  both
realism and perceived age transformation. This method
is  designed  principally  to  aid  psychological  research,
where  the  ability  to  perform  quantified  shifts  in
perceived  facial  attributes  has  allowed  the  design  of
more effective experiments into facial perception.  It is
hoped that the new method will add to the range and
effectiveness  of  these  psychological  experiments.   In
addition, these methods have potential application in the
entertainment  industry  (e.g.  for  ageing  of  actors)  and
digital  ageing  of  wanted  or  missing  persons.   Future
work will  include  optimising the algorithm for speed,
and  investigating  methods  to  avoid  errors  due  to  the
warping.
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