
Modelling Recovery in Database Systems

A thesis submitted to the

UNIVERSITY OF ST ANDREWS

for the degree of

DOCTOR OF PHILOSOPHY

By

Stephan J.G. Scheuerl

School of Mathematical and Computational Sciences
University of St Andrews

August 1997

Acknowledgements

I would like to thank my supervisor Ron Morrison for all the advice and support he

has offered towards this research.

Dave Munro must also be thanked for his enthusiastic discussions on all aspects of

this work.

Thanks to Eliot Moss for his suggestions and contributions that have lead to the work

presented. Equally I thank Richard Connor for his contributions and encouragement.

Thanks also go to Graham Kirby, Malcolm Atkinson, Robin Stanton, Fred Brown,

Steve Blackburn, and Dave Hulse for their advice and motivation.

Finally to Duncan, Dominic and Dharini for their alternative views on my research and

to Shona for her encouragement when there seemed no end in sight.

Abstract

The execution of modern database applications requires the co-ordination of a number

of components such as: the application itself, the DBMS, the operating system, the

network and the platform. The interaction of these components makes understanding

the overall behaviour of the application a complex task. As a result the effectiveness of

optimisations are often difficult to predict. Three techniques commonly available to

analyse system behaviour are empirical measurement, simulation-based analysis and

analytical modelling.

The ideal technique is one that provides accurate results at low cost. This thesis

investigates the hypothesis that analytical modelling can be used to study the

behaviour of DBMSs with sufficient accuracy. In particular the work focuses on a

new model for costing recovery mechanisms called MaStA and determines if the

model can be used effectively to guide the selection of mechanisms.

To verify the effectiveness of the model a validation framework is developed.

Database workloads are executed on the flexible Flask architecture on different

platforms. Flask is designed to minimise the dependencies between DBMS

components and is used in the framework to allow the same workloads to be executed

on a various recovery mechanisms. Empirical analysis of executing the workloads is

used to validate the assumptions about CPU, I/O and workload that underly MaStA.

Once validated, the utility of the model is illustrated by using it to select the

mechanisms that provide optimum performance for given database applications.

By showing that analytical modelling can be used in the selection of recovery

mechanisms, the work presented makes a contribution towards a database architecture

in which the implementation of all components may be selected to provide optimum

performance.

Contents

1 Introduction...1

1.1 Components of DBMSs...1

1.2 Configuring DBMSs...2

1.3 Contribution..4

1.4 Thesis Structure..5

2 Background...7

2.1 Introduction...7

2.2 Recovery Management..7

2.2.1Introduction...7

2.2.2Classification of Recovery Mechanisms...........................9

2.2.3Write-ahead Logging... 11

2.2.3.1Logging with Deferred Updates........................... 12

2.2.3.2Logging with Immediate Updates......................... 13

2.2.3.3Undo/Redo Logging.. 14

2.2.3.4Optimising Logging... 15

2.2.3.5The Database Cache... 15

2.2.4Shadow Paging... 17

2.2.4.1After-Image Shadow Paging............................... 17

2.2.4.2Before-Image Shadow Paging............................. 18

2.2.4.3Optimising Shadow Paging................................ 20

2.2.5Log-Structured Databases... 20

2.2.5.1Log-Structuring Using Compaction....................... 20

2.2.5.2Log-Structuring Using Threading......................... 21

2.2.6Comments... 23

2.3 Concurrency Control.. 23

2.4 The Flask Architecture... 26

2.4.1Introduction... 26

2.4.2The Flask Framework.. 26

2.4.3Flexible Recovery in Flask.. 28

2.4.4Concurrent After-Image Shadow Paging........................ 30

2.4.5Summary.. 31

2.5 Analytical and Empirical Modelling...................................... 32

2.5.1Analytical Modelling... 32

2.5.2Empirical Analysis.. 34

2.5.3Benchmarking... 35

2.5.3.1 OO1... 35

2.5.3.2 OO7... 36

2.6 Conclusions... 36

3 Flexible Recovery.. 38

3.1 Introduction... 38

3.2 The Flexible Recovery Manager.. 39

3.3 The DataSafe Recovery Mechanism..................................... 40

3.3.1Introduction... 40

3.3.2The Safe... 42

3.3.3The Cache... 42

3.3.4Action Meld and Abort... 44

3.3.5Restart.. 44

3.3.6Safe Purge... 45

3.3.7Cache Overflow... 47

3.3.8Opportunistic Write Back.. 47

3.4 After-Image Shadow Paging.. 48

3.5 Log-Structured Database.. 48

3.6 Conclusions... 49

4 An Analytical Model for Recovery Mechanisms............................. 50

4.1 Introduction... 50

4.2 Overview of the MaStA Model... 50

4.3 Developing the MaStA Cost Model...................................... 52

4.3.1Recovery Mechanisms... 52

4.3.2Categorisation of Recovery Mechanisms........................ 53

4.3.3I/O Access Patterns... 54

4.3.4Assigning I/O Access Patterns.................................... 56

4.3.5Application Workload.. 58

4.3.6Cost Models for the Four Recovery Mechanisms.............. 59

4.4 Utilising MaStA.. 61

4.4.1I/O Access Pattern Calibration.................................... 61

4.4.2Applications of the Model... 63

4.4.2.1Application 1.. 63

4.4.2.2Application 2.. 65

4.4.2.3Application 3.. 67

4.5 Conclusions... 68

5 Validation Strategy of MaStA.. 70

5.1 Introduction... 70

5.2 Assumptions.. 70

5.2.1Recovery Mechanism Abstraction................................ 70

5.2.2Disk Performance Abstraction.................................... 71

5.2.3Workload Abstraction.. 71

5.3 Overview of the Validation Strategy..................................... 71

5.4 Validation Framework Design.. 73

5.4.1Napier88 and Workload Traces................................... 73

5.4.2Benchmarks... 74

5.4.2.1 OO1... 74

5.4.2.2OO1b.. 75

5.4.2.3 OO7... 76

5.4.2.4MaStA Object Benchmark.................................. 76

5.4.3Platforms.. 77

5.4.4I/O Trace Format.. 78

5.5 Conclusions... 79

6 Validation Procedures... 80

6.1 Introduction... 80

6.2 Avoiding Interference.. 80

6.2.1Platform Interference... 80

6.2.2Experimental Interference.. 81

6.3 Validation of the I/O Assumption.. 82

6.3.1Results... 83

6.4 Validation of the Cost Category Interaction Assumption.............. 83

6.4.1Results... 84

6.5 Validation of the Access Pattern Cost Assumption..................... 86

6.5.1Results... 87

6.6 Validation of the Workload Assumption................................ 88

6.6.1Characterising Workload.. 89

6.6.2Synthetic Workload Generator.................................... 90

6.6.3Results... 91

6.7 Accuracy of MaStA.. 91

6.7.1Results... 92

6.7.2Comparison with Uniform Cost Models......................... 93

6.7.3Conclusions... 93

6.8 Conclusions... 94

7 Worked Example of the Flexible Architecture................................ 95

7.1 Introduction... 95

7.2 Scenario... 95

7.3 Database Design.. 96

7.4 Characterising Workloads... 98

7.4.1The Building Society’s Workload................................ 98

7.4.2The Bank’s Workload...100

7.5 Utilising MaStA...101

7.6 Verification of Cost Predictions...102

7.7 Conclusions..103

8 Conclusions...105

8.1 Cost Prediction..105

8.2 Flexible Architecture..106

8.3 Validation..107

8.4 Future Work...108

8.5 Finale...109

Glossary...110

Appendix A Recovery and Benchmark Configurations...................112

A.1 Recovery Mechanism Configuration...................................112

Appendix B Calibrating MaStA I/O Patterns...............................116

Appendix C Validation Results..117

Appendix D Scenario Code...128

References..136

1

1 Introduction

The work presented makes a contribution towards realising a flexible database

architecture that may be configured to obtain the optimum performance for any

particular application. To optimise such a system effectively a technique is required

that allows the behaviours of different system configurations to be compared. This

thesis investigates the hypothesis that analytical modelling of the database system and

the application may be employed to make accurate comparisons. In particular the work

develops and validates a new cost model, called MaStA, to show that analytical

techniques can be used to guide the choice of recovery mechanisms for optimum

performance.

1.1 Components of DBMSs

To aid in the design and implementation of database management systems (DBMSs),

the major tasks dealt with by these systems can be logically partitioned into a number

of components as illustrated in Figure 1.1.

transaction manager

concurrency control

memory manager

recovery manager

transactions

Figure 1.1: Logical Components of a DBMS

• Transactions access the database through a transaction manager. The transaction

manager receives operations from transactions and forwards them to other

components of the DBMS.

• Concurrency control is responsible for the correct concurrent execution of

transactions. This is achieved by controlling the execution of operations on the

database in such a manner that ensures transactions adhere to the constraints of

the particular concurrency model employed.

• Memory management traditionally deals with caching the database in main

memory. Recently, memory management has also taken on the role of

2

controlling the movement of data between main memory and high speed caches,

and clustering strategies within the database.

• Recovery management is responsible for ensuring that the database is fault

tolerant - the data is not corrupted even in the event of software, system or

media failure.

Although there are many documented mechanisms for each of these components the

convention is that only one implementation of each component is embedded into a

particular database system. Furthermore, implementations of DBMSs often deviate

from the logical partitioning of the systems (Figure 1.1) by combining the

implementations of various components. One justification for such vertical structuring

may be the perceived performance gains obtained over layered implementations. On

the other hand integrating implementations of DBMS components may introduce

dependencies between the layers that may in turn increase the complexity of altering

the implementation of any single component. The next section proposes a flexible

architecture that reflects the logical view of DBMSs in a layered implementation.

1.2 Configuring DBMSs

In many conventional DBMSs the particular styles of memory management, recovery

mechanism and concurrency model employed are designed to provide good average

performance for applications executed on the systems. However it is no longer clear if

the analysis on which the designs of these systems are based is still valid. Current

trends in application styles, hardware configurations and operating systems weaken

many of the assumptions made by early studies. Furthermore recent research

[WJN+95, SCM+95a] suggests that the models of computation, memory

management, CPU and I/O have been too simple, thus casting doubt on their

accuracy. Due to this, it may be argued that a new approach to maximising the

performance of DBMSs must be taken - one that takes into account the current state of

technology and considers application style and workload in the configuration of each

component of the system.

The aim of this work is to provide a more flexible approach to maximising the

performance of a particular database application. The approach is unconventional by

taking the form of a flexible database architecture (Figure 1.2) that is configured

according to the application workload. The logical components are separated in the

proposed architecture to ensure that the implementation of each component is

independent of any other. This approach provides the flexibility required to make

3

changes to individual components and provides the potential to optimise performance

for an application.

Configured
DBMS

Application

memory management

analysis/
comparisons

Application

compile time or
dynamic binding

choice and configuration
of components

concurrency
implementations

machine
configuration

recovery
mechanisms

memory
manangement

strategies

concurrency

recovery

Figure 1.2: Conceptual View of the Flexible DBMS Architecture

For each component, analysis is performed to determine the elements of the workload

that contribute to the costs incurred. Workload properties relevant to memory

management for example include the volume and locality of data read and updated by

the application. The analysis also takes into account the particular machine

configuration such as the size of main memory and the characteristics of the disks

available. The costs incurred by the application on various implementations of a

component are compared and the implementation with the lowest cost is selected. This

process is repeated for each DBMS component resulting in a configuration that

provides optimum performance for the particular application. Once a configuration is

obtained the components are bound with the application. Binding may be performed at

compile time to take advantage of compile time optimisations or bound dynamically

providing opportunities to configure the system at run time.

4

To make policy decisions regarding how each component should be configured, a

technique is required that allows the different implementations of each component to

be compared. Three commonly used techniques are available. These are analytical,

simulation and empirical based analysis:

• Empirical measurement involves running applications or benchmarks on

implemented DBMSs taking measurements using hardware or software

monitoring.

• Simulation based analysis comprises of a number of programs that capture the

characteristics of a component. By running these programs the behaviour of the

component is approximated and so its performance may be studied. The

simulations are based on a number of assumptions to reduce the complexity of

each component.

• Analytical modelling allows the performance characteristics of each DBMS

component to be derived mathematically. This involves the construction of a

number of parameterised equations that approximate the attributes of the

components in terms of workload characteristics. As with simulations a number

of simplifying assumptions are made about behaviour.

In analytical modelling and simulations a number of assumptions are required to make

the analysis tractable [Leu88]. These assumptions must be sufficiently understandable

to allow the analytical model or simulations to be constructed. Generally simulations

permit more details of a system to be incorporated - details that are often difficult to

include in analytical models. A drawback of simulation models is that they tend to be

more expensive in terms of programming, debugging and validation to develop, and

more expensive to use than analytical models. The fine grained analysis that can be

performed using empirical measurement, the most expensive form of analysis,

ensures that the results obtained are normally the most accurate of the three techniques

available. Measurement of systems using empirical analysis is often performed using

synthetic application workloads produced by benchmark suites such as OO1 [CS92]

and OO7 [CDN93].

1.3 Contribution

Realising an architecture in which all DBMS components are engineered to suit the

application is a large and complex task. Hence this thesis focuses on developing an

analytical cost model called MaStA [SCM+95a] for recovery mechanisms, and shows

that the model can be used to guide the configuration of the recovery component of a

flexible architecture. MaStA analyses the workload of the application to determine the

5

number of I/O operations incurred by each recovery mechanism available and analyses

the platform to ensure that cost predictions are platform specific. Comparisons of the

resulting cost predictions can then be used to select the recovery mechanism that

incurs the lowest cost.

To promote confidence in the MaStA model a validation framework is developed. The

framework involves running workloads typical of database applications on various

recovery mechanisms on different platforms. Empirical analysis of the executing

workloads is used to validate assumptions about CPU, I/O and workload that underly

MaStA. The flexible recovery management required in the framework to execute

workloads on various mechanisms is provided by the Flask architecture [MCM+94].

Flask goes some way to realising the flexible architecture proposed. An attraction of

Flask is that the responsibility of recovery management and concurrency control are

separated thereby enabling the implementations of recovery schemes to be developed

and altered independently of concurrency control. The flexibility in the recovery

component of Flask is achieved through an interface that places few constraints on the

mechanism used.

A wide variety of recovery schemes have been documented [AS82, Gra78, Lor77,

RO91] any of which may be used in architecture. In the original instantiation of Flask,

concurrent shadow paging [Mun93] is employed. This thesis develops two other

schemes: a log-structured mechanism and a log-based mechanism called DataSafe

[SCM+96]. By providing a choice, the work provides a means to execute the same

database workloads over different recovery mechanisms in the framework used to

validate the MaStA cost model. Furthermore, incorporating different recovery

mechanisms provides opportunities to perform empirical analysis on Flask to illustrate

the necessity for the proposed flexible architecture. Once MaStA is validated the utility

of the model is illustrated by using it guide the choice of recovery mechanism in Flask

to provide optimum performance for given database applications

1.4 Thesis Structure

The need for recovery mechanisms in database systems is introduced in Chapter 2,

followed by a description of a classification used to distinguish between mechanisms.

A discussion of commonly used recovery schemes is accompanied by a summary of

existing analytical and empirical studies of recovery mechanisms. Benchmarks

frequently used in empirical studies of DBMS are reviewed. A summary of different

concurrency models is included along with a description of the Flask architecture to

provide an insight into how the logical concurrency and recovery components of a

DBMS may be separated.

6

Chapter 3 provides an overview of the flexible recovery manager used in Flask and

includes a description of two mechanisms developed to provide alternatives to the

scheme used in the first instantiation of Flask.

The new analytical model used to select the appropriate recovery mechanism for a

particular application is developed in Chapter 4. The assumptions of the model and a

validation framework are discussed in Chapter 5 and a description of the empirical

measurements and simulation experiments performed to validate the assumptions are

provided in Chapter 6. A worked example given in Chapter 7 illustrates how MaStA

can be used in Flask to select the mechanism that incurs the lowest cost for given

database applications.

7

2 Background

2.1 Introduction

The Flask architecture provides the potential to engineer recovery management

independently from other DBMS components in order to obtain the optimum

performance for a particular application. Early attempts to increase the performance of

database systems have resulted in numerous designs for recovery mechanisms. This

chapter introduces the requirement for these schemes and discusses the trade-offs

between various recovery mechanism designs, any of which may be adopted in the

Flask architecture.

Previous analysis of DBMSs develop analytical models to compare the systems

mathematically or use benchmarks to provide workloads for empirical measurement.

These studies along with summaries of commonly used benchmarks are discussed to

provide the background for a new analytical model used to drive the Flask

architecture.

2.2 Recovery Management

2 . 2 . 1 Introduction

Traditionally, recovery management is tightly coupled to the implementation of

transactions in DBMSs. Transactions [Dav73, EGL+76, Dav78] were introduced into

database systems to allow activities to execute concurrently, thus increasing database

resource utilisation. Each transaction is a unit of work consisting of reads and

possibly updates to a database. A transaction completes by either committing or

aborting as a unit. When a transaction commits, all updates performed by the

transaction are made permanent in the database and visible to other transactions. In

contrast, when a transaction aborts, all updates are discarded and the database is left in

a state it would have been in if the transaction had never executed. This is known as

the atomicity or all-or-nothing property of transactions - either all or none of a

transaction’s updates are reflected in the database. Durability is the property that a

successfully committed transaction’s updates survive failures. Recovery management

is the DBMS component responsible for providing the durability properties of

transactions in the presence of failures. The three types of failure that the recovery

manager must deal with are media failure, system failure and transaction abort.

• media failure: These failures occur from the breakdown of hardware and

potentially causes the loss of data on both volatile and non-volatile storage. In

8

such an event the data may be restored from a mirrored disk [BT85] or from an

archived version.

• system failure: These failures occur due to the loss of data from volatile storage

only and potentially cause inconsistencies in the materialised database [HR83].

The term materialised database is used to describe the state of the database only,

i.e. taking no account of additional data that may be recorded during normal

processing to recovery the database to a consistent state. The recovery manager

ensures that on restart all updates made by committed transactions are durable

and that all updates of non-committed transactions are removed. Since system

failures may also occur during restart the recovery process must be idempotent.

That is, restart may begin and fail a number of times, eventually succeeding,

resulting in the same state as if the initial restart had succeeded.

• transaction abort: A transaction is said to abort if it is terminated before it

commits. All updates made by the transaction to the materialised database must

be removed by the recovery manager. This is known as transaction rollback.

This thesis concentrates on the provision for recovery after system failure and

transaction abort. Recovery from media failure requires additional mechanisms such

as disk mirroring [BT85, SO91, OS93] or RAID [PGK88] which are beyond the

scope of this thesis, but may be included in future work as a separate DBMS

component in the flexible architecture outlined in Figure 1.1.

Figure 2.1 illustrates the principle behind all recovery mechanisms designed to deal

with soft failure. The database is held on non-volatile storage such as disk. Read

operations cause data to be faulted into a cache held in main memory where the data

may be updated. During a commit, or in some cases during the transaction, the

updated data is transferred back to non-volatile storage.

The non-volatile storage is partitioned into two logical areas: the database itself and an

extra partition traditionally known as the log to record the information necessary for

recovery. In some cases, the database and the log are two distinct areas of non-volatile

storage, such as a database file, and a log [Gra78] or difference [AS82] file. In others,

such as shadow paging [Lor77] or log-structuring [RO91] the database and the log are

intermingled on a single area of storage. In each case the recovery information is

maintained in the log so that inconsistencies may be removed from the materialised

database on restart.

9

application

database cache
in main memory

materialised database
log information to

restore consistent state
on failure

reads and writes of the database

recovery mechanism ensures a
consistent state after failure

non-volatile storage

Figure 2.1: The General Structure of a Recovery Mechanism

2 . 2 . 2 Classification of Recovery Mechanisms

To understand the trade-offs between recovery mechanisms and to provide a technique

for distinguishing between these schemes it may be helpful to develop classifications

of the properties of recovery mechanisms. Haerder and Reuter [HR83] stratify

recovery into a hierarchy of propagation, page replacement, end-of-transaction

processing and checkpointing strategies adopted by page-based recovery mechanisms

in transactional database systems. Haerder and Reuter’s classification subsumes

another classification, sometimes referred to as the undo/redo categorisation [BGH83,

HR83]. The undo/redo scheme describes mechanisms in terms of the operations

performed on restart to bring the materialised database to a consistent state after

system failure.

Propagation is the process of making committed updates visible in the materialised

database. The propagation strategy of a mechanism is atomic if a transaction’s updates

to the database are performed as a unit when the transaction commits. In other words

either all or none of a committing transaction’s updates become part of the database.

Such schemes are often called no-undo/no-redo since the database is always left in a

consistent state after a system failure and hence require no recovery operations on

restart. The propagation strategy is ¬ atomic if commit propagation to the database is

interruptable by system failures. If a system crash occurs during ¬ atomic propagation,

the materialised database may be left in an inconsistent state after a crash.

10

A recovery mechanism’s page replacement strategy is steal if cache pages updated by a

transaction may be written in place to the database before the transaction commit

completes. Mechanisms exhibiting steal strategies require that information is recorded

in the log to remove non-committed updates during transaction rollback or if a system

failure occurs before the transaction successfully commits. Such mechanisms may be

classified as requiring undo operations on restart after system failures. A mechanism

is ¬ steal if the pages updated by a transaction are held in main memory or in the log

until after the transaction commits. The materialised database therefore never contains

non-committed updates and so no undo operations are required after a crash.

A mechanism is force if updated pages are propagated to the database during a

transaction commit and ¬ force if propagation is deferred until after commit time. A

¬ force strategy must write updated pages to the log to ensure propagation can be

performed at a later time, and hence may be classified as redo. Mechanisms exhibiting

force end-of-transaction processing are no-redo since all committed updates are

present in the materialised database after a system failure.

In redo recovery mechanisms the amount of recovery information required in the log

is conceptually unbounded. Checkpointing schemes are used to limit the amount of

this information. A checkpoint involves writing to the database, updates held in the

log and writing a checkpoint record to the log to indicate the fact. The checkpointing

strategy adopted by a recovery mechanism determines the frequency of checkpoints

and the amount of work performed during each checkpoint:

• Transaction-oriented checkpoints (TOC): these occur each time a transaction

commits and are associated with a force propagation strategy.

• Transaction-consistent checkpoints (TCC): in-progress update transactions are

allowed to terminate and new update transactions are blocked. All updates are

then propagated to the database after which normal execution is resumed.

• Action-consistent checkpoints (ACC): These are generated in a similar manner

to transaction-consistent checkpoints but at an operational level instead of at the

level of transactions. All update operations are finished and new update

operations are blocked until after the checkpoint completes. Changes are then

propagated to the database.

• Fuzzy checkpointing: these checkpointing schemes reduce the amount of

propagation that takes place at checkpoint time. Instead of propagating all

updated pages on every checkpoint, only a fraction of the pages that have not

been propagated since the last checkpoint are propagated to the database. The

11

number of pages propagated and the nature of the checkpoint trigger are

determined by the particular fuzzy checkpointing scheme employed.

The classification depicted in Figure 2.2, taken from [HR83], stresses the possible

combinations of strategies that may be used by recovery mechanisms. The fact that

there are numerous strategies makes the comparison of recovery schemes a complex

task.

ATOMIC¬ATOMIC

STEAL STEAL¬STEAL ¬STEAL

FORCE FORCE FORCE FORCE¬FORCE ¬FORCE ¬FORCE ¬FORCE

TOC TCC ACC fuzzy TOC TCC fuzzy TOC TCC ACC TOC TCC

Propagation
Strategy

Page
Replacement

EOT
Processing

Check-
pointing
Scheme

Figure 2.2: Classification Scheme for Recovery Concepts

The following sections give examples of how some of these categorisations may be

realised in implementations.

2 . 2 . 3 Write-ahead Logging

Write-ahead logging mechanisms [Dav73] are the most common recovery schemes

used in database systems. These mechanisms use a log file or partition to record

information required to bring the database to a consistent state in the event of system

failure. The term write-ahead is often used to emphasise that a record of a database

update is written to the log before the update is performed.

Examples of systems that make use of logging schemes are System R [GMB+82],

ARIES [MHL+92], Ingres [Sto86], Sybase, Oracle, O2 [VDD+91], Mneme [MS88],

Argus [OLS85], Eos [GAD+92], Object Design’s ObjectStore [LLO+91], Exodus

[FZT+92] and earlier versions of Texas [SKW92]. RVM [SMK+93] provides

support for recoverable persistent virtual memory using page logging, and the Cedar

file system [Hag87] makes use of logging to increase the throughput of writes and

speed up recovery. There are two basic styles of logging: the write-ahead log with

deferred updates and the write-ahead log with immediate updates.

12

2 . 2 . 3 . 1 Logging with Deferred Updates

In deferred update logging (Figure 2.3), a transaction’s updates are written the log

and update propagation to the database is deferred until after the transaction

successfully commits.

log

non-volatile storage

cache

volatile storage

database

checkpoint and swap writes of committed data
log reads during recovery

database reads during normal processing
log writes during normal processing

Figure 2.3: Write-ahead Logging with Deferred Updates

Each database update causes a record to be written to a log buffer. A record is

composed of the updated data, the data’s location in the database and the identifier of

the transaction that performed the update. When a transaction commits, all update

records are flushed to the log. The transaction is committed by writing a commit entry

to the log. The transaction’s updates are propagated to the database any time after the

transaction commits.

If the system crashes after a transaction commits and before the transaction’s updates

are propagated to the database, the log entries are used on restart to redo the updates.

In other words, the updates are read from the log and written to the materialised

database. The recovery process is idempotent since database updates from the log may

be performed a number of times with the same result as if the updates are performed

once. If a transaction aborts or the system crashes before a transaction commits, none

of the transaction’s updates are reflected in the materialised database. Hence there is

no requirement for undo operations either on restart or during rollback.

Transaction rollback involves simply discarding the transaction’s updates from the

cache and writing an abort record to the log. On restart this record indicates that any of

the transaction’s updates found in the log must be ignored.

13

Using Haerder and Reuter’s classification logging with deferred updates is {¬ atomic,

¬ steal, ¬ force, TOC/TCC/fuzzy}. Since non-committed updates are never written to

the materialised database a deferred update log can be either steal or ¬ steal.

Checkpointing involves updating the database with committed updates buffered in the

cache and writing a checkpoint record to the log. This record indicates that committed

updates held in the log are redundant. An action-consistent checkpointing scheme

(ACC) cannot be used since it would involve updating the database with non-

committed data that would require undo information in the event of a crash.

2 . 2 . 3 . 2 Logging with Immediate Updates

In a log with immediate updates (Figure 2.4) before-images are written to the log

prior to writing updates (after-images) to the database. The before-images (the original

values) may be required after a system crash to undo non-committed updates from the

materialised database.

Before data is updated in the cache, the before-image of the data is written to the log

buffer. The before-images must be flushed to the log before updating the database.

When a transaction commits, the required before-images are flushed to the log and

then the transaction’s updates are written to the database. The transaction is committed

by logging a commit entry to signify that the transaction’s before-images should be

ignored on restart.

log

non-volatile storage

cache

volatile storage

database

database reads during normal processing

removing inconsistencies during recovery

database writes during normal processing
writing before-images during normal processing

Figure 2.4: Write-ahead Logging with Immediate Updates

After a system failure the log is read backwards to find the before-images of potential

inconsistencies in the materialised database, in other words those before-images that

are not associated with committed transactions. The appropriate before-images are

14

copied to the database to remove (undo) potential updates made by non-committed

transactions. Recovery is idempotent since undo operations to the database may be

performed any number of times with the same result. Once all undo operations are

complete, the log is marked as being empty to avoid performing the same operations

again if another system failure occurs.

Transaction abort involves performing undo operations to remove any of the

transaction’s updates from the materialised database and writing a transaction abort

record to the log. This ensures that the transaction’s before-images in the log are

ignored on restart. No redo operations are required since all committed updates are

present in the materialised database. As a consequence, no checkpoints are required in

immediate update logs. Using Haerder and Reuter’s classification logging with

immediate updates is classified as {¬ atomic, steal, force, -}.

2 . 2 . 3 . 3 Undo/Redo Logging

Under some workloads, the above logging schemes may be too restrictive. For

example, in immediate update logging, the overhead of writing before-images to the

log during a commit, in addition to writing updates to the database, may be high. In

deferred update logging, updates should ideally fit into the cache. If not, the log may

be used to hold updated data swapped out of the cache, introducing the possibility of

read operations on the log during normal processing to obtain the most recent version

of data. A drawback is that these reads may increase the cost of seeking to the end of

the log during a commit. An alternative is to use an additional area of non-volatile

storage for swapping updated data, with the overhead of performing reads during a

commit to copy these updates to the log.

A more flexible logging technique exists which encompasses the characteristics of

both mechanisms described above. This form is known as an undo/redo log. In such a

log, updates are written either to the log or to the database. Swap writes are normally

directed to the database and before-images are written to the log for recovery. During a

commit, updates are written to the log. This mechanism ensures that workloads that

fill the cache with updates may be accommodated and that commit writes (to the log)

are fast. If a crash occurs, inconsistencies in the materialised database are removed by

overwriting them with the before-images held in the log, and committed updates held

in the log are written to the database. Unlike deferred update logging undo/redo logs

may also employ ACC checkpointing schemes since the undo information required for

ACC strategies is available on restart. This mechanism is {¬ atomic, steal, ¬ force,

any} using Haerder and Reuter’s classification.

15

2 . 2 . 3 . 4 Optimising Logging

One of the distinguishing characteristics of logging mechanisms is that log writes

are performed sequentially. An optimisation is to buffer log records and to perform

fewer, larger writes to increase write throughput to the log. The buffer need only to

be flushed to the log when the cache becomes full or if it is necessary for recovery.

In deferred update logging a transaction’s updates must be present in the log when

the transaction commits. Hence it is possible to defer flushing the buffer to the log

until the transaction commits. In immediate update logging, pinning updates in the

cache enables flushing the buffer of before-images to the log to be deferred until the

transaction begins to propagate its updates to the database. By writing committed

updates to the database opportunistically, the cost of propagating to the database in

deferred logging may be reduced.

Deferred update logs may be classified according to the type of information recorded

in the log: they are either physical or logical (also called operational). The term

physical logging indicates that data values are recorded in the log. The granularity of

the data is normally pages or objects. Difference logging is an optimisation that may

be employed in either deferred or immediate update logging. It consists of recording

only the byte by byte differences between the before and after-images of data and can

reduce the amount of information written to the log when compared to writing whole

pages or objects. Logical logging is designed to further reduce the amount of

information written to the log in deferred update logging. Instead of writing data

values, high level operations performed on the database are logged. For example,

inserting a tuple into a relation may cause a number of physical changes, such as

updating the index and the reorganisation of data. In a physical log many records are

needed to reflect these changes. In contrast, logical logging needs only record that the

update takes place and to record the value of the tuple.

A further optimisation may be achieved in logging by taking advantage of the data rate

mismatch between CPU and disk to perform compression on data written to the log.

This may reduce the amount of log data written and hence may reduce I/O costs with

the penalty of a marginal increase in CPU cost.

2 . 2 . 3 . 5 The Database Cache

The DB Cache [EB84] is an example of a page-based deferred update logging

mechanism that aims to increase the throughput of small transactions by delaying the

propagation of updated pages to the database until after commit time. During a

commit, updated pages are written sequentially to a non-volatile log called the safe.

16

Figure 2.5 illustrates the layout of the DB Cache. The safe is a non-volatile storage

device that permits fast sequential access and is at least as large as the cache. Pages are

read from the database into the cache. Updated pages remain in the cache until the

transaction commits at which time they are written sequentially to the safe. Committed

pages may remain in the cache for use by other transactions, may be written

opportunistically to the database, or chosen for replacement and written on demand.

During the recovery process the only action required is to read the safe pages into the

cache (redo). Since non-committed pages are never written to the database the

mechanism is no-undo.

page faults from the database

page writes to the database of committed pages
page writes to the safe during a commit

page reads from the safe during recovery

non-volatile storage

safe database

volatile storage

cache

Figure 2.5: The DB Cache

Whenever the safe becomes full, pages in the safe required for recovery are flushed to

the database. One of the problems therefore is determining which pages are required in

the safe during normal processing and finding the pages to read into the cache during

restart. During normal processing the mechanism maintains a volatile bitmap, with one

bit for each page in the safe, to indicate which safe pages are required for recovery.

Whenever the safe becomes full a safe-begin-pointer is advanced to indicate the bit

corresponding to the first page required for recovery. If more free pages are required,

committed pages may be flushed from the cache to the database rendering these pages

in the safe restart-free.

During recovery, page header information is used to decide which range of safe pages

hold committed pages that had potentially not been written to the database before the

failure. The pages in the range are read into the cache. If two versions of the same

database page are read, the older version is discarded. Once the safe has been read,

17

normal processing resumes. It is not necessary to write the committed pages to the

materialised database, since at any point in time the database consists of the contents

of the materialised database and the contents of the cache. If a system crash occurs

during restart the safe is simply re-read. Hence recovery is idempotent.

The DB Cache does not write pages to the safe until transaction commit to avoid the

possibility of reading pages from the safe during normal processing, and hence

minimises the costs of safe write seeks during normal processing. This imposes a

limitation on the number of pages that may be updated (limited to the size of the

cache). Elhardt and Bayer suggest swapping updated pages to an additional area of

non-volatile storage to accommodate workloads consisting of large and/or long lived

transactions. The checkpointing scheme in the DB Cache is fuzzy since checkpoints

are generated whenever the safe becomes full, and since only a fraction of the

committed pages are propagated to the database. The DB Cache is {¬ atomic, ¬ steal,

¬ force, fuzzy}.

2 . 2 . 4 Shadow Paging

Instead of using a physically separate log file, shadow paging mechanisms maintain a

logical log within the database. Page replacement algorithms are used to control the

movement of pages between the cache, the database and the logical log such that a

consistent state is always recoverable. A page map is maintained to record the disk

locations of database and log pages. The first time a database page is written to disk a

shadow copy of the page is made in the log so that a before-image is always available

after a system failure. A new consistent state is obtained during a transaction commit

using a mechanism that atomically updates the page map so that the logical log is

empty and all committed updates are visible in the materialised database. Two

variations of shadow paging are discussed.

2 . 2 . 4 . 1 After-Image Shadow Paging

After-image shadow paging [Cha78, Lor77] ensures that updated pages never

overwrite their before-images on disk - an updated page is written to a shadow copy in

the logical log. A page map on disk maintains the mappings between the database

pages and disk blocks. The mechanism maintains a mirrored root page from which the

last consistent mappings are found. Figure 2.6 illustrates a database in which two

pages are modified in the cache, one of which is shadowed in the log.

Reads operations cause pages to be faulted into the cache, where they may be updated.

The first time an updated page is written to disk it is written to a free block (its

shadow) in the log. Transaction commit involves flushing all updated pages to their

18

shadow blocks. The page map on disk is then atomically updated using a technique

such as Challis’ algorithm [Cha78] to reflect the new locations of updated database

pages. Using Challis’ algorithm the page map is described by a mirrored, timestamped

root block on non-volatile storage. During a commit the older block is updated to

record the new state of the page map. Using this technique the after-images of pages

in the log are in effect atomically propagated to the database during a commit. The

blocks holding the before-images of committed pages become redundant and may be

overwritten.

AA
AA

cache

database/log

unused page

modified pageAA
AAunmodified page

read from the database
write to the logAA

AA
A
A

AA
AA

AA
AA
AA
AA

Figure 2.6: After-Image Shadow Paging

Since propagation is performed atomically, the page map on disk constitutes the state

of the database at the last successful commit and so the materialised database is never

in an inconsistent state after a system crash. This eliminates the need for undo and

redo operations on restart, and hence by definition recovery is idempotent.

Transaction abort involves discarding the appropriate updated cache pages and

reverting any corresponding page mappings to their original values. Checkpointing in

after-image shadow paging is transaction-oriented since propagation occurs each time

a transaction commits. Using Haerder and Reuter’s classification, after-image shadow

paging is {atomic, ¬ steal, force, TOC}.

Implementations of after-image shadow paging schemes are used in Napier88

[MBC+89, Mun93], CASPER [VKD+92, Vau94] and Gemstone [BOP+89].

Shadow paging is also used along with logging in System R [GMB+82].

2 . 2 . 4 . 2 Before-Image Shadow Paging

In contrast to the previous mechanism, before-image shadow paging [Bro89, BR91]

always writes pages back to their original blocks. The mechanism ensures that before-

images of the updated pages are available for recovery in a log appended to the end of

the database. The page map on disk is used to record the locations of these shadow

pages.

Before an updated page is first written to the database, the before-image of the page is

written to the log. The page map on disk is updated to record the location of this

19

shadow. Further updates to the same page need no further shadowing. Figure 2.7

illustrates a database in which two pages are modified and shadowed. One page is

updated in the cache but has not yet been shadowed.

A
Acache

database/log

unused page

modified pageAA
unmodified page

AAshadow page

reads and writes
copying before-images
to different blocks
undo writes during
restart

AAAAAAAAAAAA

Figure 2.7: Before-Image Shadow Paging

The mechanism ensures that by the time a transaction commits, each page updated by

the transaction has been shadowed and that the page map on disk has been updated to

record the locations of these shadows. On commit, the updated pages are written to

the database. The page map on disk is atomically updated to remove the locations of

the before-images. This effectively sets the database to a new consistent state. Since

updated pages are written in place, the materialised database may contain

inconsistencies after a crash due to page swapping or an interrupted commit. If a crash

occurs, the page map contains the locations in the log of the before-images of

potentially inconsistent database pages. These pages are copied to their original

locations in the database (undo), returning the database to the state at the last

successful commit. Recovery is idempotent since before-images may be copied to the

database any number of times with the same result. The mechanism is no-redo since

all committed transactions’ updates are reflected in the materialised database.

Transaction abort involves discarding any cache pages updated by the transaction and

overwriting any updated pages written to the database with the appropriate before-

images. The page map is atomically updated to discard the transaction’s before-images

from the log.

Using Haerder and Reuter’s classification, before-image shadow paging is {¬ atomic,

steal, force, TOC}. The mechanism is ¬ atomic since propagation can be interrupted

by system failures.

20

2 . 2 . 4 . 3 Optimising Shadow Paging

In after-image shadow paging two adjacent database pages may be located on

physically distributed blocks on non-volatile storage. This may cause an increase in

seek times under workloads that access these two pages consecutively. Clustering

schemes such as preallocating shadow pages in the same cylinder as the original pages

[Lor77] may be employed to reduce these costs. On the other hand, since pages may

be relocated on disk, dynamic reclustering of pages may be employed, thus potentially

reducing read costs. For example, data may have been originally created on non-

adjacent pages. If they are subsequently updated and committed together, they may be

written to contiguous blocks on disk, thus potentially reducing the cost of reading

these pages consecutively.

Optimisations in before-image shadow paging are similar to those which may be

employed in immediate update logging. When a page is first updated a shadow copy

of the page is made in the cache. This before-image need not be written to the log until

the updated page is about to be written to the database. This provides opportunities for

optimisations, such as flushing before-images to the log in batches or

opportunistically, and reducing the frequency with which the page map is atomically

updated.

2 . 2 . 5 Log-Structured Databases

Log-structured databases (LSD’s) are based on the design of the Sprite Log-

Structured File System [RO91]. In a LSD, the log itself acts as a repository for

database pages. In other words the database is a logical collection of pages within the

log. The mapping of the database address space onto the log is recorded by writing

modified pages to the end of the log along with metadata to describe the database

addresses of those pages. An atomic commit is achieved by writing a commit record to

the log to specify that a new consistent state has been established. On restart, the last

consistent state is found by reading all the metadata up to the last commit record in the

log. These records are used to construct a transient page map in main memory to cache

the locations of database pages in the log during normal processing. Log-structured

databases employ either threading or compaction to manage free space on disk for new

updates. Like AISP, log-structured mechanisms are {atomic, ¬ steal, force, TOC}.

2 . 2 . 5 . 1 Log-Structuring Using Compaction

A compacting LSD moves live pages and metadata towards the start of the log thus

reducing fragmentation and freeing up areas of the log for other updates. The log-

structured persistent store proposed for Texas [SKW92] makes use of compaction.

21

The locations of database pages in the log are held in a tree-structured page map that is

itself recorded in the log. The location of the root of the tree is recorded on a known

location on disk. Atomicity of commits is attained through the atomic update of the

record holding the root’s location.

The locations of free blocks in the log are recorded by a bitmap generated on restart

from the page map. This is searched when free blocks are required for writing updated

pages. If the degree of fragmentation in the log becomes sufficiently high to degrade

write performance the log may be compacted. The bitmap allows the compactor to

determine which pages are live and which are free. Any one of a number of garbage

collection techniques may be employed to free contiguous areas of the log.

This recovery mechanism may be viewed as a merger of logging and after-image

shadow paging: updated pages are written to contiguous free blocks in the log in a

similar fashion to deferred update logging and, like after-image shadow paging,

metadata is used to record the locations of the latest versions of database pages.

2 . 2 . 5 . 2 Log-Structuring Using Threading

The potentially high cost of compacting the log may be reduced by performing

incremental compaction. This may be achieved by partitioning the log into threaded

fixed sized segments and performing compaction on a per segment basis. Each

segment contains a number of pages and corresponding metadata to describe the

database addresses of the pages. If segments become internally fragmented they may

be cleaned for reuse by copying live pages into new segments.

An example of a threaded log-structuring is presented by Hulse and Dearle [HD96],

and is used to provide resilient persistent processes within the Grasshopper persistent

operating system [DBF+94]. The layout of a store is illustrated in Figure 2.8. The

segments are threaded using next segment pointers and time stamps are used during

recovery to find the last segment successfully written to the log. During normal

processing, a tree-structured page map is maintained in virtual memory to record the

log segment and the offset within the segment of the latest version of each database

page.

When a page fault is performed during transaction processing, the page map is

referenced to determine which log segment contains the required page. The whole

segment is read and the page made available. When a transaction commits, the

appropriate updated pages and metadata are grouped into segments buffered in the

cache. When a segment becomes full it is written sequentially to a free segment in the

log and is referenced by the previous segment written to the log. The commit process

is completed by including a commit-complete record in the last segment written for the

22

commit. During restart these records distinguish the pages written during successful

commits from those written by interrupted ones. During a commit the page map in

main memory is updated to record the new locations of the pages in the log.

A
A
AA
AA
AA
AA
AA
AA
A
A

A
A

segment reads into the cache
new segments written to the log
threaded segments in the log

cache

AA
AA
A
A
AA
AA
AA
AA
A
A

AA
AA
AA
AA
A
A
AA
AA
AA
AA

A
A

log/database

segment

A
A

data page
A
A

metadata updated data page

Figure 2.8: Segments in a Log-Structured Database

On restart, after a crash or after an orderly shutdown, the log is scanned forwards.

The metadata in the segments are used to reconstruct the page map in main memory.

Since the log may be large, this process may be optimised by occasionally writing the

page map to the log during normal processing and on restart reading the latest page

map from the log. Since the page map may be written lazily several commits may have

occurred after the page map was last written. Therefore on restart the latest page map

in the log may not constitute the latest consistent state of the database. The page map is

brought up to date by reading the metadata in the segments following the last page

map. The address of the latest version of the map is recorded in a known location on

disk. Hulse and Dearle employ Challis’ algorithm to atomically update this record.

If the log becomes full, cleaning is performed on internally fragmented segments in

the log. This consists of reading segments into the cache and copying live pages into

new segments. The mechanism discriminates between live and obsolete pages by

consulting the page maps. The new segments are appended to the end of the log and

the old segments are freed for reuse.

Since no operations are required to remove inconsistencies during recovery, LSD’s

are no-undo, and are no-redo since no operations are required to propagate committed

updates to the materialised database.

23

2 . 2 . 6 Comments

The classification of recovery mechanisms presented by Haerder and Reuter highlights

that there are numerous strategies that DBMSs can employ to provide recovery. In

order that the strategy with the lowest cost may be chosen for a particular application it

is necessary to understand the trade-offs between each scheme and to be able to make

accurate predictions of the costs involved within each mechanism. Such comparisons

may be simplified by describing each mechanism in terms of the movement of data

between a cache, a database and a logical log used to hold recovery information. For

example, AISP can be described as logging in which the log is a collection of pages

held on free blocks in the database. By describing each mechanism as variations of

logging, the main issues concerning performance that must be addressed when

comparing difference schemes for a particular application and platform are:

• How much data is read and written to the database during normal processing

and checkpoints?

• How much data is transferred to and from the log during normal processing and

checkpoints?

• On restart, how much data is read from the log and how much is written to the

database?

• What I/O access patterns are performed?

• What are the effects on subsequent reads of the writes performed?

• Finally, what are the CPU costs incurred by the recovery manager?

This break-down of recovery costs is the basis for the new analytical cost model for

recovery schemes described in Chapter 4.

2.3 Concurrency Control

Concurrent access to databases by multiple users was introduced to increase database

resource utilisation. DBMSs employ concurrency control schemes to avoid

inconsistencies that may result from interference among multiple users.

The most common schemes used today are implementations of the atomic transaction

model [Dav73, EGL+76, Dav78]. Each read and write operation on the database is

performed within a transaction. The consistency of transactions is maintained by

ensuring that their interleaving is serialisable - the effects of executing transactions

24

concurrently are equivalent to some serial execution of the transactions. An atomic

transaction model is considered to be pessimistic if transactions are aborted as soon as

conflicts occur, or pessimistic if transactions run to completion and are only then

aborted if conflicts have occurred. Atomic transactions are often described as adhering

to the ACID properties [Gra81, HR83]: atomicity, consistency, isolation and

durability.

• Atomicity, or the all-or-nothing property, refers to the organisation of the

operations of a program into an atomic unit; either all the effects of the

operations are visible in the materialised database or none are.

• Consistency refers to the correctness property of transactions. If a transaction is

executed alone the transaction should bring the database from one consistent

state to another. The system is responsible for ensuring that when correct

transactions are executed concurrently, database consistency is preserved.

• Isolation refers to the fact that a transaction should perceive a consistent view of

the data. For example, a transaction should not commit after having read the

non-committed updates of an aborted transaction.

• Durability refers to the system’s responsibility for ensuring the permanence of

committed updates, in the presence of failures.

A number of attempts have been made to extend the atomic transaction model in order

to increase concurrent throughput. Garcia-Molina in [Gar83], for example, proposed

using semantic knowledge of operations to reduce conflicts between transactions. By

studying the semantics of operations to identify which operations commute,

concurrency may be improved by increasing the number of correct interleavings of

transactions.

Moss [Mos81] attempts to model concurrent activities through nested transactions that

structure the activities in a tree like hierarchy. A transaction hierarchy is composed of

top-level transactions operating on the database, sub-transactions and atomic

operations. Any transaction in the structure may call atomic operations, such as

database read and write operations, and may execute sub-transactions. Leaf

transactions execute only atomic operations. Transactions access copies of objects

accessed by their ancestors, or copies of objects in the database in the case of top-level

transactions. If no ancestor has a copy of an object, the sub-transaction obtains a copy

of the globally committed version of the object from the database. Within a nested

transaction, uncommitted updates may be accessed by sub-transactions. When a sub-

transaction commits, its updates are inherited by its parent. When a top-level

25

transaction commits, the updates made by the transaction and inherited from sub-

transactions are committed to the database. Consistency is maintained by ensuring a

serialisable schedule of reads and writes to the database by top-level transactions.

Open nested transactions proposed in [Wei86] are extensions to the nested transaction

model. These models permit partial results to be viewed outside the transaction

hierarchy. This is achieved by permitting a sub-transaction to commit changes to the

database. If an ancestor of a committed sub-transaction subsequently aborts, a

compensating transaction associated with the sub-transaction is executed to reverse its

effects in the database.

For some database applications the ACID properties can be too restrictive. In modern

CAD/CAM applications, for example, users may wish to co-operate to update a shared

design before coming to a mutual agreement to commit the changes. This is not

possible using an atomic transaction model due to the isolation property. Another

drawback of atomic transactions is that they may restrict potential concurrency in

systems executing long-lived transactions. These transactions involve either access to

large amounts of data or involve long delays in their execution. The serialisability

constraint of atomic transactions may cause long delays for other transactions wishing

to access the same data. Furthermore the isolation property may lead to an increase in

the probability of conflicts occurring between transactions, thus increasing the

frequency of transaction aborts.

The saga model [GS87] is an attempt to increase concurrency in systems that execute

long-lived transactions. Transactions are broken down into a number of atomic

transactions {T1, T2, …, Tn}, the first n-1 of which are associated with compensating

transactions {C1, C2, …, Cn-1}. The successful completion of a saga depends on the

success of the serial execution of each component transaction. The failure of a saga,

caused either by system crash or by the failure of a component transaction (Tk),

requires that the compensating transactions {Ck-1, Ck-2, …, C1} are executed to

reverse the globally visible effects of the committed component transactions. The

model relies on the programmer being able to break the long-lived transaction down

into a number of components for which compensating transactions must be

constructed.

Nodine et al. [NRZ92] attempt to model co-operation by allowing sharing between co-

operative activities. Activities are modelled in a nested fashion. The internal nodes are

transaction groups each of which is composed of a set of members that are either other

transaction groups or co-operative transactions. The members of a transaction group

co-operate to achieve a single task. Consistency within a group is maintained by

26

ensuring that all operations performed adhere to group-specific user-specified

constraints. These constraints are defined using a grammar to describe the sequences

of operations that must occur within a transaction group and the patterns of operations

that are forbidden. Similarly to nested transactions a member obtains copies of objects

from its parent and updated objects are inherited by the transaction group.

2.4 The Flask Architecture

2 . 4 . 1 Introduction

Traditionally database systems use one model of concurrency. This may be restrictive

since it does not permit concurrency to be designed to provide optimum performance

for a particular application. Furthermore such a system cannot accommodate

applications that require different models of concurrency. The Flask architecture

[MCM+94] uses a more flexible approach to provide the appropriate model of

concurrency for the application. This is achieved by separating out the issues of

concurrency from other DBMS components thus allowing a number of models to be

implemented.

2 . 4 . 2 The Flask Framework

The framework of the Flask architecture is shown in Figure 2.9 as a “V-shaped”

layered architecture to signify that minimal functionality is built-in at the lower layers.

No assumptions are made by the lower layers about concurrency control and hence

this leaves the implementor freedom to choose any desired concurrency scheme and

implementation. For example, a particular specification may translate into an optimistic

algorithm or alternatively a pessimistic one. Furthermore such an approach can

accommodate different models of concurrency, such as atomic transactions or sagas.

Specifications

Programs

Data Visibility

Resilience

Atomicity

Figure 2.9: V-Shaped Layered Architecture

27

The architecture defines concurrency control in terms of data visibility between

concurrent activities. This is reflected in the design of a conceptual layered architecture

(Figure 2.10) in which visibility is defined and controlled by the movement of data

between a globally visible database and conceptual stores called access sets. Each

action is associated with a local access set that isolates its view of data from all others.

Actions may also use shared access sets when the concurrency model permits co-

operative work between actions. Movement of data from a local access set or a shared

access set to the database is through an atomic meld operation provided by the

resilience layer of Flask. The term meld is used to describe the operation of making

updates permanent on non-volatile storage and visible to other actions rather than

terms like commit or stabilise since they imply specific meanings in particular models.

The semantics of a meld may differ according to the concurrency model. For example,

a shared concurrency model may require a number of access sets to be melded as an

atomic action. Since the visibility and resilience layers make no assumptions about the

higher layers the implementor is free to choose any desired scheme and

implementation for the lower layers.

concurrency models

actions

Local and Shared
access sets

database

L L LS S L

Figure 2.10: Concurrency in the Flask Architecture

The Flask architecture is designed to work with processes or actions that maintain

consistency under concurrency control schemes. In general, melded changes to data

do not conflict except where this happens under the control of a co-operative

concurrency model. Significant events defined by a particular concurrency scheme are

reported to the higher layers enabling these schemes to undertake conflict detection.

This assumption frees the lower layers from the onus of interference management.

Two systems that may be used in conjunction with Flask are Stemple and Morrison’s

CACS system [SM92] and Krablin’s CPS-algol system [Kra87]. The CACS

framework provides a technique for specifying and performing concurrency control.

28

The system does not manipulate data, but instead maintains information about its

pattern of usage and indicates if operations violate the concurrency rules. CPS-algol is

an extension to the standard PS-algol system [PS87] that includes language constructs

to support and manage concurrent processes. The concurrency model is essentially co-

operative with procedures executing as separate threads and synchronising through

conditional critical regions. Using these primitives and the higher-order functions of

PS-algol, Krablin shows that a range of concurrency models can be constructed.

2 . 4 . 3 Flexible Recovery in Flask

The Flask approach to providing flexible recovery independent of concurrency control

involves associating each action with a local access set that isolates its non-melded

updates from other actions and from the previously melded state of the database.

Actions may also use shared access sets when the concurrency model permits co-

operative work between actions. Movement of data from a local access set or a shared

access set to the database is through an atomic meld operation provided by the

recovery manager. By assuming that object conflicts are detected by the concurrency

control layer the recovery manager in Flask is free to provide these access sets using

any suitable implementation.

In page-based recovery mechanisms these access sets may be provided by associating

each action with an action page map. When an action updates a database page the

action receives a copy of the page and an entry is inserted into the action’s page map to

record the fact. If another action updates the same database page, it receives a different

copy of the most recently melded version of the page thus ensuring that the non-

melded updates of the two actions are isolated. During a meld the action’s page map is

accessed to determine which pages must be melded. A recovery mechanism is

responsible for writing these pages to non-volatile storage.

Since the meld resolution is at a page level the changes made by a melding action must

be propagated to other actions’ copies of the same page. Suppose that two actions A

and B modify different objects on the same database page. Because of the isolation

provided by per-action page copies, action A can meld without affecting B. For B to

subsequently meld it must incorporate the changes made by action A. The algorithm

that meld uses to propagate changes is dependent on the particular concurrency model

in operation and is determined at the concurrency control layer of the Flask

architecture. Under the assumption that the higher-layer performing concurrency

control can detect object-level conflicts there are a number of methods of achieving

this. In concurrency models that require isolation for example, in which the model

29

requires that two concurrent actions do not modify the same object, it is possible to

use logical operations for efficiency to propagate the changes.

In an atomic transaction model, changes may be propagated by performing page xor

operations. Suppose two transactions A and B have changed different objects on the

same page P and transaction A melds (Figure 2.11). The changes made by A to

page P can be calculated by performing an xor of transaction A’s version of page P

onto the original version of the page, i.e. as it was at the last meld. This derives a page

of changes made by A to page P. These changes are propagated onto transaction B’s

copy of P using a page xor operation. The meld propagation formula can be written

as:

PB := (PA xor PO) xor PB

xor

PA

PO

PB

PB

PA,changes xor

Figure 2.11: Change Propagation Using Page Xor Operations

where PA is transaction A’s copy of page P, PO is the original version of page P and

PB is transaction B’s copy of page P. Thus B’s version of page P now includes the

changes made by A.

Change propagation can be performed eagerly, or lazily on demand. Eager

propagation is performed immediately after each action melds based on the assumption

that all transactions eventually commit. Lazy propagation takes advantage of the fact

that propagation is not be required until a transaction accesses the melded updates of

another transaction. Lazy propagation therefore involves only performing change

propagation when required. In the case above, this means that if transaction B aborts,

the unnecessary propagation is avoided.

30

2 . 4 . 4 Concurrent After-Image Shadow Paging

The initial instantiation of Flask realises access sets through a concurrent version of

after-image shadow paging [Mun93]. Figure 2.12 illustrates the layout of a

concurrent after-image shadow paged (CAISP) database. A main page map on disk

contains the mappings between database pages and disk blocks, and on restart

constitutes the last consistent state of the database. Each action is associated with an

action page map. When an action updates a page, it receives its own copy of the page

which is mapped to a free block on disk using the action’s page map.

When an action melds, updated pages are written to their new blocks and the transient

main page map is updated with the mappings recorded in the action’s page map. The

transient main page map then atomically replaces the page map on disk using Challis’

algorithm [Cha78] thereby atomically propagating updates to the database. The

changes made by the action must then be propagated to the pages of other actions.

This is achieved using the change propagation technique described in Section 2.4.3.

An action abort involves freeing all pages updated by the action and discarding the

action’s page map. No undo operations are required to abort an action since the

original versions of the database pages are still available through the transient main

page map.

31

A
A

A
A action A

shadow pages
action B

shadow pages A
A A/B shared

shadow pages

AAAA
AAAA
AAAA
AAAAAA
AAAA
AA

4
3
2
1
0

3
2
0

transient main
page map

local & shared
page maps

root block

main
page map

blocks on disk

2
0

root page
A B A/B

non-volatile storage volatile storage

5
4

4
3
2
1
0

Figure 2.12: Concurrent After-image Shadow Paging

The CAISP mechanism may also be used to implement concurrency models in which

non-committed updates may be shared between actions. This is illustrated in

Figure 2.12 where two actions access shared copies of pages 4 and 5, although the

meld actions are not defined since they are specific to the concurrency control needed.

2 . 4 . 5 Summary

Flask goes some way to providing the flexible architecture used in this thesis. The

responsibility of recovery management and concurrency control are separated, thereby

enabling implementations of recovery schemes to be developed and altered

independently of concurrency control. The flexibility in the recovery component of

Flask is achieved through an interface that places few constraints on the recovery

manager and that makes no assumption about concurrency control. Hence any one of

a number of recovery mechanisms may be adopted. The work presented takes

advantage of this flexibility by developing two new recovery schemes to allow

experimentation with different mechanisms executing the same workloads over the

same data.

32

2.5 Analytical and Empirical Modelling

In designing and building DBMSs it is often an advantage to compare the efficiency of

various designs before implementing them. One method of comparing designs is to

build prototypes and to perform empirical measurement on their execution. Since this

is often an unrealistic option due to the high time and labour costs required to build

such prototypes, an alternative approach is to model them analytically.

2 . 5 . 1 Analytical Modelling

Analytical modelling of database systems involves developing mathematical functions

to describe the behaviour of the components of DBMSs and to derive the performance

of each system. The models are based on analysis of the components’ designs from

which a number of assumptions can be made to make the models tractable. These

simplifying assumptions are required to reduce complex interactions between the

many issues that must be considered when comparing DBMSs:

• the style and workload of the applications run on the DBMS;

• frequency of system failure and transaction abort;

• the platform configuration;

• interactions among other DBMS components.

An analytical model for comparing recovery mechanisms is presented in [Reu84]. The

model calculates the transaction throughput of each mechanism under a particular

workload based on the potential number of I/O block transfers (availability interval)

that may be performed in the mean time between failures. The model takes into

account various aspects of the workload, recovery mechanism and platform:

Workload :

• number of I/O operations performed to process each transaction;

• ratio of update transactions to read-only transactions;

• inter-transaction temporal locality, i.e. probability that an accessed page is still

in the cache after being accessed by a recent transaction;

• probability of transaction abort;

33

Recovery Mechanism:

• frequency of checkpoints required by mechanisms;

• overheads of transaction rollback and recovery;

• overheads of maintaining page tables;

Platform:

• size of the cache.

For each mechanism, mathematical models are developed to calculate the average

number of I/O operations required to process a transaction. Models are also produced

for each recovery mechanism to calculate the proportion of the availability interval

required for transaction rollback, checkpointing and recovery. The remaining I/O

operations in the availability interval are divided by the average I/O operations required

for a transaction. This results in the average transaction throughput between failures of

each mechanism. Altogether ten recovery mechanisms are analysed and compared.

The mechanisms are split into three groups with the following properties:

page-level logging

Âatomic steal Âforce TCC (only at system shutdown)

Âatomic steal Âforce ACC (at regular intervals)

Âatomic steal force TOC

object-level logging

Âatomic steal Âforce TCC (only at system shutdown)

Âatomic steal Âforce ACC (at regular intervals)

Âatomic steal force TOC

miscellaneous

Âatomic steal Âforce fuzzy

atomic steal Âforce ACC

atomic steal force TOC

Âatomic Âsteal Âforce fuzzy

From evaluations of the cost models using different transaction workloads, Reuter

concludes that page-logging is generally more costly than object-level logging, that an

increase in shared pages makes all force algorithms drastically worse than others and

that schemes that use indirect mapping, such as after-image shadow paging, impose

extra overheads unless the page-table costs can be reduced.

34

Agrawal and DeWitt [AD85] introduce an analytical model used to investigate the

relative costs of object logging, shadow paging and differential files, and their

interactions with locking, time-stamp ordering and optimistic concurrency control

schemes. Rather than produce costs based on transaction throughput their model uses

a performance metric that describes the burden imposed on a transaction by a recovery

mechanism and a concurrency control scheme. The model incorporates CPU costs and

the impact that the concurrency control schemes may have on the probability that a

transaction will run to completion. Burden ratios for the different integrated

concurrency control and recovery mechanisms are calculated and compared using

sample evaluations from varying transaction workloads and database characteristics.

The conclusions from these tests suggest that there is no overall best integrated

mechanism but that a load that comprises of a mix of transaction sizes favours logging

with a locking approach. Shadow paging performs rather poorly in their tests.

However their model takes no account of synchronous costs, such as checkpointing in

logging.

A number of assumptions are made by these models, which in light of modern

technology require a re-evaluation of analytical modelling of recovery mechanisms.

For example, Agrawal and DeWitt assume that shadow page table reads are read from

disk, whereas with modern memory sizes the entire shadow page table may

reasonably be assumed to reside in main memory. Furthermore, both [AD85] and

[Reu84] assume uniform disk I/O costs, making no allowance for the different costs

of sequential, asynchronous or synchronous unclustered I/O [OS94]. Modern

recovery mechanisms are specifically designed to take advantage of the differences

between these costs and therefore these variations should be taken into account when

modelling the costs of mechanisms.

2 . 5 . 2 Empirical Analysis

In contrast to the analytical models described above, the Predator project [KGC85]

takes an empirical approach to comparing recovery methods. Prototype databases

supporting different recovery mechanisms are constructed on stock hardware together

with a database transaction simulator used to produce experimental workloads. A suite

of transaction experiments that vary locality of update, abort frequency and I/O access

methods is carried out over databases supporting concurrent shadow paging and page-

based logging. The performance metrics are based on transaction throughput and

mean response time. The experiments are constructed from short transactions on a

small system and conclude that shadow paging works best when there is locality of

reference and where the page table cache is large, otherwise logging is the better

mechanism. An interesting observation made is that the transaction abort rate has a

35

greater effect on the performance of logging recovery schemes than on shadow

paging.

2 . 5 . 3 Benchmarking

Objective empirical comparisons of DBMSs may only be performed if the same

application workload can be executed on all of the systems. This is not always

possible since real database applications can be large and complex and hence difficult

to transfer from one system to another. A solution is to develop benchmarks that are

sufficiently simple to implement on a range of DBMSs and allow various aspects of

the systems to be measured. Benchmarks take the form of a database and a suite of

queries designed to produce workloads typical of database applications. The results

measured while running the queries allow the performance of components of different

DBMSs to be compared. Two commonly used benchmarks, OO1 and OO7, are used

to provide workloads in Chapters 4 and 5.

2 . 5 . 3 . 1 OO1

The OO1 benchmark [CS92] attempts to measure the operations expected in

engineering applications such as CAD/CAM. The benchmark executes on three sizes

of database consisting of small parts and connections between them. Each part has

eight fields: a part id, a type, an (x,y) integer pair, a build date and three out-going

connections to other parts. Each connection has a type and a length. To provide some

notion of locality the connections to other parts are chosen so that each connection has

a 90% chance of referencing a nearby part. The benchmark consists of three queries:

lookup : A set of random part identifiers is generated. The parts are fetched

from the database. For each part, a null procedure is called.

traverse : The parts connected to a randomly selected part are recursively

traversed to a specified depth. A null procedure is called for each

part traversed.

insert : A transaction inserts a number of new parts into the database,

connects each new part to three other (randomly selected) parts and

commits.

The operations are executed over the database a number of times to measure response

time and caching effects.

36

2 . 5 . 3 . 2 OO7

The OO7 benchmark [CDN93] is designed to provide performance metrics for

comparing various components of OODBMSs, in contrast to OO1 which compares the

performances of entire systems. The OO7 database consists of five types of

interconnected objects, ranging in size from small atomic parts (similar to the parts

used in OO1) to large manuals. The database characteristics are parameterised to allow

databases of various sizes to be generated.

The benchmark is composed of queries aimed to test a number of performance

characteristics including pointer traversal speed, update efficiency and the performance

of the query processor (in systems where this is applicable). The queries come in three

categories:

• traversals of the object graph: the traversals vary in the number and locality of

the objects traversed, and whether or not updates are performed.

• queries: these are read-only database queries.

• structural modifications: one program inserts a number of new parts into the

database and another deletes the parts.

Results are taken from running each query on a ‘cold and ‘hot’ system. A cold system

is one in which no data is cached, resulting in a high number of data faults. A system

is said to be hot if data is cached, and results in fewer faults.

2.6 Conclusions

The cost of recovery in DBMSs not only involves the cost of bringing the database to

a consistent state after failure, but also the overhead incurred in recording sufficient

information in the log during normal processing to ensure that data can be recovered to

some consistent state. This chapter has given background and optimisations of various

recovery mechanisms used in database and persistent systems. Traditionally, DBMSs

have a fixed notion of recovery and concurrency control, and have these components

embedded into the system thus providing few opportunities to configure the

components to a particular application. An outline of the Flask architecture was

discussed to give an insight into how recovery and concurrency may be separated in a

DBMS to provide the flexibility to configure each component individually.

This chapter also includes summaries of early analytical and empirical studies of

DBMS components that could have been used to guide in the configuration of Flask.

A consistent conclusion made from these studies is that there are significant variations

37

in the costs of recovery mechanisms and that no one mechanism provides the best

performance for all applications. Current trends in application styles, hardware

configurations and operating systems weaken many of the assumptions made by these

studies, and as a result the validity of past analysis may be questioned. The Chapter 4

introduces a new analytical model that takes into account modern platform

characteristics and application styles in costing recovery mechanisms. A strength of

the model is that it is validated by analysis of benchmarks executing over the

mechanisms modelled. This is achieved by using the flexible recovery manager of

Flask to allow the same application workloads to be executed over different recovery

mechanisms. The following chapter develops two new mechanisms used in the Flask

architecture.

38

3 Flexible Recovery

3 .1 Introduction

In the work presented, a new cost model for recovery mechanisms, called MaStA is

developed. The model is designed to predict the mechanism with the lowest cost for a

given application and platform, within a flexible database system such as Flask

[MCM+94]. To illustrate the use of the model in Flask and to verify the accuracy of

cost comparisons of recovery mechanisms, the same workloads must be executed

using a number of configurations of the architecture. At present, Flask incorporates

only one recovery scheme, namely concurrency after-image shadow paging.

This chapter extends Flask with a flexible recovery manager used. The manager is

composed of a number of components, each of which is responsible for an aspect of

recovery such as restart or page replacement. Three recovery schemes are then

developed using the flexible recovery manager:

• an after-image shadow paging mechanism (AISP);

• a log-structure mechanism (LSD);

• and a log-based mechanism called DataSafe.

A detailed description of DataSafe is provided, followed by summaries of the

implementations of AISP and the LSD. These particular mechanisms are chosen to

emphasise that MaStA can be used to predict the relative costs of mechanisms that

perform similarly (AISP and the LSD), and to provide a mechanism (DataSafe) that

has significantly different I/O characteristics to those of the other schemes. For

example, DataSafe employs a fixed placement policy whereas AISP and the LSD

perform dynamic reclustering. The variations in the characteristics of these

mechanisms are highlighted when they are compared using Haerder and Reuter’s

classification [HR83]: DataSafe is {¬atomic, ¬steal, ¬force, fuzzy} whereas AISP

and the LSD are {atomic, ¬steal, force, TOC}.

The provision of these mechanisms with Flask provides an experimental base in later

chapters on which the MaStA model may be validated, and also provides an

opportunity to illustrate the effectiveness of the model in selecting between

mechanisms for given applications.

39

3.2 The Flexible Recovery Manager

The flexible recovery manager is configured with different placement and replacement

algorithms to provide various recovery mechanisms as illustrated in Figure 3.1.

maps required for recovery

writefaultswap

data reads & writes

cache manager

cache maps

access to maps and the cache

cache

faultrestart

calls to component managers

Figure 3.1: The Flexible Recovery Manager

The cache manager has a fixed interface to which all read and write operations

performed on the database are directed. It provides a database cache and any maps

required to translate database addresses into cache addresses. Four configurable

component managers are called by the cache manager:

• The fault manager is called when data not already in the cache is accessed, and

is responsible for locating the data on disk. For example, in after-image shadow

paging this requires a page map to be indexed to obtain the disk locations of

database pages.

• The write manager takes a cache location, a database address and the length of

the data, and writes the data to disk. The disk location written to is chosen

according to the algorithm defined in the design of the recovery mechanism.

For example, in a deferred object logging mechanism updated objects are

written to the end of the log. The write manager is also responsible for

atomically updating the state of the database. In AISP, for example, this

involves atomically updating the page map on non-volatile storage.

40

• The swap manager is called whenever data in the cache is read or updated. Calls

to the swap manager enable it to collect information about the usage of cached

data so that any cache replacement algorithm may be implemented. When the

cache becomes full the swap manager is called to select data for replacement.

The swap manager is responsible for swapping updated data to disk if required.

• The restart manager is responsible for initialising any maps required by the

fault, write and swap managers. This manager is also responsible for ensuring

that the materialised database is brought to a consistent state after system

failures. To achieve this the restart manager is given access to the cache and the

cache maps. For example, in DataSafe the cache is reconstructed on restart.

A strength of the flexible recovery manager is that it provides opportunities to modify

existing mechanisms implemented in the manager, and to develop new ones, simply

by replacing component managers instead of implementing entire new mechanisms.

This is illustrated in Section 3.5 where the LSD mechanism is developed from the

implementation of AISP by simply replacing the write manager.

Three page-based recovery mechanisms are implemented to perform the validation

procedures: AISP, LSD and a new mechanism called DataSafe. The recovery

mechanisms are developed by instantiating the flexible recovery manager with the

same cache manager but with different swap, write, restart and fault managers. The

cache manager maintains a database cache held in main memory. The same-sized

database cache is used for each recovery mechanism in the framework to simplify the

analysis of the I/O behaviours of the workloads. A summary of the configurations of

the recovery mechanisms used is included in Appendix A.1.

3.3 The DataSafe Recovery Mechanism

3 . 3 . 1 Introduction

The DataSafe recovery mechanism [SCM+96] is based on the DB Cache [EB84]. The

DB Cache is chosen as a basis for an alternative mechanism since its characteristics

vary widely with those of AISP. For example, the DB Cache uses a contiguous

circular log while AISP intersperses log and database pages. Furthermore AISP

imposes a reclustering policy on database pages whereas the DB Cache does not.

The DataSafe recovery mechanism, in contrast to the DB Cache, is designed to adhere

to the interface of the Flask recovery manager so that the independence between

concurrency and recovery is maintained. This is achieved in a similar manner to the

CAISP mechanism [Mun93], through the provision of access sets.

41

DataSafe ensures the recoverability of a database by controlling the movement of

pages of data among three areas of storage: the database, a safe and a cache. The

layout of the mechanism is illustrated in Figure 3.2.

Page faults from the database into cache

Propagation writes to the database of melded pages

Page writes to the safe during a meld

Page reads from the safe during recovery

Cache

Database

Safe

safe
map

non-volatile storage

main
page map

action & group
page maps

cache map

safe-end

safe-begin

Figure 3.2: Layout of the DataSafe

Reads and writes operate on data in the cache, faulting database pages into free cache

pages as required. The pages updated by an action remain in the cache at least until the

action melds or aborts, under the assumption that the cache is sufficiently large to hold

all updated pages between melds. Updated pages are not swapped to the database to

ensure that no non-melded updates are present in the materialised database after

system failures.

A meld operation involves writing the cache pages updated by the melding action to

contiguous pages in the safe. This ensures that in the event of a system failure melded

cache pages that have not yet been written to the database are recoverable. If

insufficient free pages are available in the safe to complete a meld, safe pages that are

required for recovery are written from the cache to the database. This means that they

are no longer required for recovery in the safe and as such may be overwritten during

the meld. After a successful meld the melded pages either remain in the cache to be

reused or are propagated to the database opportunistically.

If there are no free cache pages available to fault a database page a cache page that has

been melded or is unchanged is selected for replacement. A selected cache page may

have been melded to the safe but not yet propagated to the database in which case it is

42

written to the database before being replaced. This ensures that page faults operate on

the database rather than on the safe.

During recovery the safe pages required for recovery are read from the safe into the

cache after which normal processing resumes. This strategy ensures that no read faults

operate on the safe and hence all writes to the safe may incur low sequential seek

costs.

A number of maps are maintained to record information about database, safe and

cache pages:

• A cache map in volatile storage records the state information of cache pages

(free, original, melded or updated).

• The main page map records the cache locations of faulted database pages that

have not been updated in the cache, i.e. cache pages that are duplicates of pages

in the database.

• A safe map on disk records the state information of the pages in the safe.

During normal processing only a fraction of the safe contains pages required for

recovery. The location of this area is recorded by a safe-begin-pointer and a safe-end-

pointer held on disk.

3 . 3 . 2 The Safe

The safe is designed as a circular buffer to enable writes to the safe to be performed

sequentially. The safe must be at least as large as the cache to ensure that all pages

updated in the cache may be written to the safe. Since the same page may be updated

and melded to the safe many times the safe may contain more than one version of a

database page. Only the latest version of a page in the safe is required for recovery and

then only if the corresponding cache page has not yet been propagated to the database.

Thus a safe page is free if the corresponding cache page has been written to the

database or if a more up-to-date version of the page is in the safe. The database

locations of pages in the safe are recorded in the safe map which is written atomically

to disk during each meld (see Section 3.3.4).

3 . 3 . 3 The Cache

DataSafe’s swap manager holds an action’s updated pages in the cache at least until

the action melds or aborts. This avoids the need to maintain undo information since

non-melded updates are never swapped to the database. The cache is designed to fit

43

into main memory to avoid operating system page swapping. It is composed of a

number of page sized frames that are empty or contain pages of data. Cache pages are

tagged using the cache map as free, original, melded or updated. Figure 3.3 gives the

state diagram of cache pages.

A cache page is tagged as original to signify that the page has not been updated or

melded and that it may be selected for replacement if the cache becomes full. If an

original page is updated by an action the update is performed on a copy of the page in

the cache. Updating a copy avoids performing another fault on the database to obtain

an original version of the database page should another concurrent action access the

same page.

An updated cache page may have further changes made to it, become free due to an

abort or be written to the safe during a meld operation. If an updated page is written to

the safe the page is tagged as melded to signify that it must be written to the database

before being replaced in the cache. A melded or an original page becomes free if

another copy of the same database page is melded.

lost due
to abortmeldedoriginal propagated to

the database read from the safe
during recovery

faulted from
database

free

update to an
original page

(copy the page)

changed

attempt to change
a melded page
(copy the page)

melded
to the safe

updated

candidate for
replacement

another copy of the
same page is melded

Figure 3.3: Cache Page State Diagram

If a melded page is updated by an action the update is performed on a copy of the page

in the cache. This ensures that unchanged versions of melded pages are available in

the cache, avoiding the need to perform propagation reads on the safe during a safe

purge should the safe become full (see Section 3.3.6 on safe purging). If a melded

page is propagated to the database it is tagged as original.

Cache pages read from the safe during recovery are tagged as melded to ensure that

during normal processing they are propagated to the database before being replaced in

the cache.

44

3 . 3 . 4 Action Meld and Abort

When an action melds, the cache pages updated by the action are written by the write

manager to contiguous free pages in the safe at the location given by the safe-end-

pointer. The updated pages are found using the action’s page map. As each page is

written to the safe an in-memory copy of the safe-end-pointer is advanced and an in-

memory copy of the safe map is updated to record the database location of the safe

page. Any other melded or original version of the database page present in the cache

becomes obsolete and is designated free in the cache map. The main page map is then

updated to record the cache location of the newly melded version of the database page.

Once all the required pages have been written to the safe, the safe map and the safe-

end-pointer are written atomically to disk. The safe map is updated using Challis’

algorithm [Cha78]. The root page used in this algorithm records the safe-end-pointer

(and the safe-begin-pointer). If a system failure occurs during a meld, all pages

written to the safe by the incomplete meld are ignored on restart since the safe-end-

pointer which indicates the last safe page read during restart will not yet have been

updated. Atomicity of a meld is therefore attained by the atomic update of the safe map

and the safe-end-pointer.

The safe is said to be full when there are insufficient pages between the locations

given by the safe-end-pointer and the safe-begin-pointer to complete a meld. In such a

case a safe purge (see Section 3.3.6) is performed to advance the safe-begin-pointer,

before the meld begins, by a sufficient number of pages to allow the meld to be

performed.

Once an action melds, the changes it has made must become visible to any other action

that accesses the same data. DataSafe uses Flask’s change propagation technique to

copy the changes made by a melding action to the access sets of other actions.

An action abort involves freeing the cache pages updated by the action and discarding

the action’s page map. No undo operations are required since database updates are

deferred until after a meld completes.

3 . 3 . 5 Restart

In DataSafe, updates to the database are deferred until after a meld completes. This

avoids non-melded updates in the materialised database after system failure. Once a

meld completes, propagation writes of melded pages to the database may be

performed opportunistically. Since these writes are deferred some pages may not have

been propagated to the database before a system failure. Restart involves reading into

the cache the safe pages that potentially were not propagated to the database before the

45

crash. The restart manager reads the safe-begin-pointer, the safe-end-pointer and the

safe map from disk and scans the safe map to determine which safe pages to read into

the cache. The database locations held in the safe map are used to reconstruct the main

page map as pages are read into the cache.

The DataSafe mechanism ensures that the latest version of each page is either in the

cache or in the database and thus ensures that no read faults operate on the safe during

normal processing. This strategy ensures that all writes to the safe incur low seek

costs.

3 . 3 . 6 Safe Purge

Safe purging is the process of propagating safe pages that are required for recovery to

the database. A safe purge is performed by the write manager if there are insufficient

free pages in the safe to write the pages updated by a melding action. A safe purge

advances the safe-begin-pointer by a sufficient number of pages to allow the meld to

complete. A sufficient number of free safe pages can always be obtained since the safe

is at least as large as the cache.

Since the area of the safe containing safe pages required for recovery is bounded by

the safe pointers, the safe-begin-pointer may only be advanced past safe pages no

longer required for recovery. An in-memory copy of the safe-begin-pointer is

advanced to the first safe page required for recovery. If there are still insufficient free

safe pages between the safe pointers, the page at the safe-begin-pointer is propagated

to the database and the safe-begin-pointer is advanced to the next safe page required

for recovery. This process is repeated until there are sufficient free pages between the

safe pointers. The safe-begin-pointer on disk is then atomically updated. This ensures

that the meld does not write pages to the area of the safe indicated by the safe pointers

that is read during restart should a system failure occur during the meld. The meld

may then be performed.

The safe purge mechanism only propagates sufficient safe pages to the database to

permit the meld to complete instead of propagating more safe pages. This strategy is

based on the assumption that during melds some pages in the safe become obsolete

and therefore will not require to be propagated to the database during subsequent safe

purges. If more than the required number of safe pages are propagated to the database

during each safe purge unnecessary writes may be performed since some of the safe

pages may have become obsolete during subsequent melds.

As mentioned previously, melded pages in the cache are not updated directly. This

ensures that no propagation reads are required on the safe to propagate melded pages

46

to the database, since the pages are still present in the cache. Therefore propagating a

safe page to the database involves writing a cache page to the database.

Figure 3.4 gives an illustrated example of a safe purge and meld. The locations

recorded by the safe-begin-pointer and the safe-end-pointer held on disk are shown.

In this example seven updated cache pages are to be melded. Figure 3.4.a illustrates

the state of the safe before the meld.

safe-begin-pointer

safe-end-pointer

safe pages required for recovery

safe pages not required for recovery

safe pages made obsolete during the meld

AA

c

a b

before the purge and meld after advancing the
safe-begin-pointer

after the meld

Figure 3.4: States of the Safe During a Purge and Meld

When the meld is initiated the mechanism ensures that sufficient free safe pages are

available between the safe pointers to allow the meld to complete. Since in this case

there are only three pages between the safe-end-pointer and the safe-begin-pointer

(Figure 3.4.a) a safe purge is performed to advance the safe-begin-pointer by at least

four pages to provide at least seven free pages required for the meld. Figure 3.4.b

illustrates the safe after propagating two safe pages to the database and shows the new

locations recorded by the safe-begin-pointer.

The meld can now proceed. Figure 3.4.c illustrates the state of the safe after the meld

completes and shows the new locations recorded by the safe pointers. The figure also

illustrates that some safe pages have been made obsolete (are no longer required for

recovery) due to the melding of more recent versions of those pages. This enables the

47

next safe purge to advance the safe-begin-pointer past these pages without requiring to

propagate them to the database.

3 . 3 . 7 Cache Overflow

If there are no free cache pages available to either fault a database page or to make a

copy of an original or melded cache page, a cache page is selected for replacement.

Only original and melded pages are replaced since updated pages must by design

remain in the cache. A victim selection algorithm may give originals a higher

probability of being chosen since choosing a melded page incurs the cost of

propagating it to the database before replacing the page.

A potential problem of DataSafe is that the cache may become full of updated pages in

which case no pages may be chosen for replacement. While this may not be a problem

in some applications it is clearly a limitation for others. In such cases DataSafe may

use an additional area on disk to which updated pages may be swapped.

3 . 3 . 8 Opportunistic Write Back

Since the safe ensures that melded cache pages are recoverable and they may be

propagated to the database at any time. In addition to writing them to the database

during a safe purge or when the cache becomes full, these writes may be performed

opportunistically while no other page faults or writes are being performed. They may

also be scheduled in such a way as to take advantage of the position of the disk head

to reduce the seek costs incurred when writing to the database. When a melded cache

page is propagated to the database the corresponding safe page becomes obsolete and

so no longer required for recovery. Thus opportunistic writing of melded cache pages

reduces the number of safe pages that must be written synchronously to the database

by a safe purge or due to cache page replacement.

There is a trade-off between propagating melded cache pages to the database

opportunistically and writing the pages synchronously during page replacement or

safe purges. An opportunistic propagation policy may be adopted under the

assumption that melded pages are eventually propagated to the database through page

replacement or safe purging, and by performing these writes asynchronously the

overall cost of writing to the database is reduced. On the other hand by adopting a

pessimistic propagation policy in which melded pages are only written to the database

when required, some melded cache pages may become obsolete thus avoiding some

propagation writes that would have been performed in an opportunistic policy. The

decision as to which strategy to adopt is a matter policy and may be based on the

characteristics of the workload executed on the mechanism.

48

3.4 After-Image Shadow Paging

The AISP mechanism is implemented by making use of the cache manager used in

DataSafe and providing a new swap, fault, write and a restart manager to make the

recovery manager behave in the manner described in the AISP design described in

Section 2.2.4.1.

The restart manager reads from disk the main page map used by the fault, write and

swap managers to locate database pages on disk. The restart manager initialises a disk

block bitmap used by the write manager to locate free blocks. Before a cache page is

written to disk the write manager accesses the main page map to determine if the

database page has already been shadowed. If not the page is mapped to a free disk

block (shadowed). The page is then written to its shadow block. Free blocks required

for shadowing are allocated from within the database before new blocks are allocated

at the end of the database. During a meld the page map is written atomically to disk

using Challis’ algorithm.

The swap manager is similar in design to the DataSafe swap manager with

modifications to the page replacement strategy to allow non-melded updates to be

selected for replacement. If an updated page is selected for replacement the page is

shadowed if required and written to its shadow block.

3.5 Log-Structured Database

The design of the LSD mechanism is similar to the AISP mechanism described in

Sections 2.2.4.1, with two modifications. The first is that free blocks are allocated

contiguously, at the end of the log. Once the log fills, the search for free blocks starts

at the beginning of the log. This design means that more pages are written sequentially

to the log in the LSD than in AISP. The second modification is that updated page map

pages are also written to the end of the log instead of writing them to preallocated

shadow blocks as in AISP, thus potentially reducing the cost of updating the page

map.

Due to the similarities of the designs of AISP and the LSD mechanisms, the LSD is

implemented by simply reusing the fault, swap and restart managers used in AISP and

developing a new write manager to allocate shadow pages contiguously at the end of

the log.

49

3.6 Conclusions

The Flask architecture provides the opportunity to independently configure

concurrency and recovery to suit the application. By assuming that a higher layer of

Flask is responsible for concurrency control the recovery manager has the flexibility to

select the mechanism that provides optimum performance for a given application

without the need to perform interference management.

The first instantiation of the Flask architecture made use of a concurrent version of

after-image shadow paging. The flexibility of the architecture is highlighted by

developing two alternative mechanisms, DataSafe and the LSD, either of which may

be interchanged with CAISP at link time. DataSafe is based on the design of the DB

Cache with alterations that ensure that the mechanism adheres to the Flask recovery

manager interface. In place of page header information, the DataSafe makes use of a

safe map to record the state of safe pages, and in accordance with the Flask recovery

interface, avoids page locking through the provision of access sets and the use of the

meld propagation scheme employed in CAISP. The LSD mechanism is effectively

CAISP with alterations to the shadow page allocation strategy to make log writes

behave similarly to those of a log-structured mechanism.

The next chapter introduces a new analytical model for recovery mechanisms,

designed to be used to select the mechanism that incurs the lowest cost for a particular

application and platform. The Flask architecture, together with the three recovery

mechanisms developed, provides an experimental basis in the following chapters on

which the model is validated. The validation strategy makes use of the flexible

recovery manager to execute the same workloads on different mechanisms.

50

4 An Analytical Model for Recovery Mechanisms

4.1 Introduction

This chapter presents a new analytical cost model for recovery mechanisms called

MaStA [SCM+95a, MCM+95]. The model focuses on estimating the I/O overheads of

recovery, taking into account the cost variations between different I/O access patterns.

An analytical technique is chosen since this form of modelling is believed to be less

expensive to develop than simulations or empirical measurement. The model is

designed to provide a framework for comparing the costs of recovery mechanisms

under a variety of different workloads and configurations, and may be used to guide

the choice of mechanism for a particular application in a flexible architecture such as

Flask.

The design of MaStA is based on the observation that all mechanisms may be viewed

as variants of logging differing in the patterns and the number of I/O operations

required to read and write data and recovery information. This design simplifies the

modelling and comparing of recovery mechanisms by abstracting over the details of

each mechanism and calculating their costs according to the movement of data between

a database, a cache and a log during normal processing and checkpointing.

MaStA focuses only on the I/O costs of recovery mechanisms - the CPU costs are

omitted. This omission is based on the assumption that I/O costs are the significant

factor in the difference in performance of any two recovery mechanisms. Furthermore

trends in hardware performance suggest that CPU speeds are increasing more rapidly

than disk speeds, which will further reduce the significance of CPU costs when

comparing mechanisms. An outline of the MaStA I/O cost model is provided,

followed by a detailed discussion of how models of recovery mechanisms are

constructed, and how MaStA may be applied to compare the costs of mechanisms.

4.2 Overview of the MaStA Model

MaStA categorises I/O operations performed by recovery mechanisms by the manner

in which they operate. For example, a mechanism may perform data reads on the

database and data writes to the log, both of which are categorised for that recovery

mechanism. For the purpose of analytical modelling, these categories are termed I/O

cost categories and the overall cost of a mechanism is the sum of the costs of its

constituent I/O cost categories (Figure 4.1).

Total Cost = CatCost(i)
i
∑ , (i ∈ Categories)

51

Each category is assigned one or more I/O access patterns according to the properties

of the I/O operations performed by the mechanism within the category. For example,

log writes may be assigned sequential write costs in a log-based mechanism. The

number of accesses incurred in a category of a particular access pattern is derived from

a workload function composed of workload variables such as the number of reads and

writes performed by the application and locality. The cost of an I/O cost category is a

product of the number of accesses of a given pattern and the cost of the pattern, or the

sum of a number of such products.

CatCost(i) = i, kn × kA
j,k
∑ , (j ∈ Occurrences, k ∈ Access Patterns, i ∈ Categories)

Probabilistic
measure of
occurrence

I/O access
pattern cost

Category A Category B Category C

Recovery mechanism

I/O categorisation

Total
predicted
I/O cost

I/O access behaviour
of platform

Application workload
variables

Figure 4.1: An Overview of MaStA

Remembering that this is an analytical model, the derivation of a cost estimate for a

particular combination of mechanism, configuration and workload is derived by

analysing:

• The workload: measuring and choosing values to predict the workload.

• The mechanism: attributing costs to each cost category by calculating the

number of accesses from the workload abstraction, and assigning access

patterns.

52

• The configuration: determining the cost of each access pattern for each platform

experimentally or analytically.

4.3 Developing the MaStA Cost Model

4 . 3 . 1 Recovery Mechanisms

To illustrate the MaStA model, four page-based recovery mechanisms are examined:

DataSafe; after-image shadow paging (AISP); before-image shadow paging (BISP);

and a log-structured database (LSD). Summaries of the mechanisms are provided here

with more detailed descriptions given in Sections 2.2 and 3.3.

DataSafe records changes in a log called the safe and updates to the database are

deferred until after commit. Database updates do not move database pages so the

original clustering is maintained. Updates are eventually propagated to the database

opportunistically or during normal shutdown. Propagating a committed page requires

a propagation write to update the database, though multiple changes to the same page

by a number of transactions may result in only a single write.

In AISP a page replacement algorithm controls the movement of pages between cache,

the database and the log such that recovery will always produce a consistent state. To

implement this, a page map maintains the correspondence between the virtual pages of

the database and disk blocks. AISP writes updated pages to free blocks in the log and

updates the page map to reflect the new locations. When a transaction commits, the

new mappings, in addition to updated pages, are written to the log. Since AISP

always writes pages to free blocks, the original clustering of the blocks is lost.

In BISP the first modification to a page causes the original to be written to a free block

in the log. Updates are then performed in place. The page map is used to record the

locations of the shadow pages (not the original pages, since they do not move), and

must be present in the log before the originals are overwritten in the database. The

page map can be used to recover the last consistent state of the database. On commit,

updated pages are written back to the database and the page map updated to remove

the references to the corresponding shadow pages. Since BISP uses an update-in-

place policy it maintains the original clustering of pages.

In the LSD updated pages are written sequentially to free blocks in the log and a page

map is written to the log to record the new locations. Like AISP the original clustering

of the blocks is lost. To reduce the complexity of modelling this LSD, no compaction

costs are predicted. This is based on two assumptions. The first states that the disk

holding the log may be sufficiently large to avoid high degrees of fragmentation and

53

hence avoids the need for compaction. The second states that under some workloads

the extra cost of compacting the log may outweigh any benefits gained from

performing a higher proportion of sequential writes. In this case the time spent

performing I/O operations during compaction may be better utilised performing

normal processing.

4 . 3 . 2 Categorisation of Recovery Mechanisms

In Chapter 2 each recovery mechanism is described in terms of the movement of data

between a database, a cache and a log. This abstraction of each mechanism is reflected

in the modelling strategy used by MaStA - each mechanism is analysed to assess its

I/O costs in a number of different I/O cost categories:

• Database reads: The cost of data reads from the database are included in the

model since the presence of a recovery mechanism may change the I/O access

patterns of a running system. For this reason MaStA models total I/O costs as

opposed to recovery overheads alone. For example, AISP is assumed here to

incur unclustered reads.

• Database writes: This category includes the cost of writing non-committed

data in place to the database in undo recovery mechanisms.

• Log reads: Recovery overheads such as reading page tables on restart in AISP

and the LSD are included.

• Log writes: All data and metadata written to the log, such as writing pages of

log records in a log-based system and writing updated page maps in shadow

paging are calculated.

• Propagation reads: Recovery mechanisms that defer updates to the database

may incur propagation reads. For example, an object logging mechanism must

copy updated objects from the buffer to the database page containing the object.

The database page must be read if it is not already in the cache.

• Propagation writes: These are the costs of propagating updates to the

database in mechanisms that defer updates. In deferred update logging for

example this consists of writing committed pages to the database during

checkpoints, opportunistically or during shutdown.

• Commit overhead: This category includes the I/O overhead of recording the

committed state of a transaction on disk. For example, this may include writing

54

a transaction commit record to the log in a logging system or writing the root

page in a shadow paging scheme.

In the MaStA model, the four recovery mechanisms introduced in Section 4.3.1 incur

costs within the I/O categories indicated in Table 4.1. Only BISP incurs database

writes since the other mechanisms always write uncommitted data to the log. DataSafe

incurs propagation writes to the database since it defers updates past commit time. The

AISP mechanisms and the LSD incur reads on the log to recover page maps on restart.

I/O Categories DataSaf
e

AISP LSD BISP

Data reads 4 4 4 4

writes 4

Log reads 4 4

writes 4 4 4 4

Propagation reads
writes 4

Commit writes 4 4 4 4

Table 4.1: Assigning I/O Cost Categories to Recovery Mechanisms

In the I/O cost predictions of recovery mechanisms made in this chapter, the cost of

recovery from failure is omitted. The omission of this cost is assumed not to be

significant to the overall cost of each recovery mechanism, since it is assumed that

failures are infrequent, and that the overhead of providing for recovery outweighs the

cost of recovering a materialised database to a consistent state.

To simplify the development of the model, the following assumptions are made:

• Main memory is large enough to hold all required page maps and data pages

accessed and updated by all running transactions. This may be unrealistic in

applications that execute large transactions that overflow the cache, but may be

true of database applications that perform short transactions.

• All mechanisms perform the same number of database reads. The number of

page faults incurred may vary marginally between mechanisms that use

different page replacement algorithms but are assumed to be equal to simplify

the calculation of database read costs.

4 . 3 . 3 I/O Access Patterns

The crucial contribution of the MaStA model is to distinguish various read and write

access patterns, on the assumption that they may have significantly different costs.

55

The model defines two patterns called sequential and ordered, and three patterns that

are parameterised according to the degree spatial of locality. The three patterns are

clustered, unclustered and disk. The five patterns defined are intended to reflect the

characteristics of magnetic devices, but the principle applies to any device whose

access time varies according to the sequence of locations accessed. The patterns are

defined as follows:

• Sequential reads/writes (rseq, wseq): The data is read/written in sequentially

increasing positions. This is the most efficient access pattern because hardware

and software are designed to support it well. A typical example is writing to a

contiguously structured log. The expectation that sequential I/O accesses exhibit

good performance is based on the assumption that logically adjacent blocks are

placed contiguously on physical blocks by disk controllers. Calibration

measurements described in Section 4.4.1 compare the costs of sequential and

non-sequential I/O operations, and suggest that this assumption is valid.

• Ordered reads/writes (rord, word): This pattern describes I/O operations that are

performed on sorted non-adjacent locations. For example, during a commit in

AISP the non-adjacent blocks written may be ordered so that seek costs are

minimised. The ordered access pattern may also encompass operations

performed asynchronously, in other words, I/O requests that are scheduled in a

favourable order, so if the pool of requests is sufficiently large the average cost

can approach that of sequential I/O. A typical example is keeping a pool of

committed pages requiring propagation to the database.

• Clustered reads/writes (rclu, wclu): This pattern comprises localised accesses

that are synchronous and hence cannot be freely ordered. A typical example is

localised database reads.

• Unclustered reads/writes (runcl, wuncl): These are synchronous accesses within

the database that involve moving the access position arbitrarily.

• Disk reads/writes (rdisk, wdisk): These are synchronous accesses that involve

moving the access position arbitrarily far on the device. This pattern may incur

higher costs than unclustered I/O. A typical example is forcing the log during

each commit, since the database area can be far from the log area if they are

stored on the same device.

To calculate the cost of recovery mechanisms using MaStA, each I/O access pattern is

assigned an average cost, which may vary between different platforms. Given a

suitably accurate model of the device and associated software, one might derive an

56

analytical or simulation model to determine the cost of each pattern. As will be seen

later, the approach taken measures these values by experimentation. The refinement of

I/O costs to include different access patterns turns out to be significant. For example,

the ratio of the cost of the most expensive write access pattern to the least expensive is

observed to be a factor of five on a particular platform.

4 . 3 . 4 Assigning I/O Access Patterns

The assignment of I/O access patterns to I/O cost categories for a given recovery

mechanism is dependent on the characteristics of the mechanism. For example, a

mechanism that maintains the original clustering of data performs both clustered and

unclustered database reads. On the other hand mechanisms that lose the original

clustering of data are assumed to always perform unclustered or disk database reads.

It is conceivable that some of these mechanisms may be able to take advantage of

dynamic re-clustering of data for some applications in order to perform clustered

reads. To cater for such cases in MaStA requires only a reassignment of I/O access

pattern costs to the database read categories for such mechanisms. It is assumed that

application workloads have characteristics such that no effective re-clustering of pages

can take place to reduce read costs.

The I/O access patterns assigned to the I/O cost categories for the four mechanisms are

given in Table 4.2. In DataSafe, each database read is either clustered or unclustered.

Log writes consist of writing updated pages sequentially to the safe, and writing pages

of the safe map in an ordered manner to preallocated locations on disk. Committed

pages are written back to the database using propagation writes. Propagation I/O can

be delayed and may therefore be ordered. The commit I/O cost category consists of

writing the root block and is assigned a unclustered write. Writing to the safe may also

incur two disk seeks, if the same device is used to hold both the database and the safe:

one to position the device at the safe and one to move it back to the database. The

second occurs at the beginning of the next database read but is most conveniently

modelled as a commit cost. Since committed changes are retained in the cache until

propagated to the database, no propagation reads are required to read the changes back

from the safe.

57

I/O Categories DataSafe AISP LSD BISP

Database Read clustered &
unclustered unclustered disk

clustered &
unclustered

Database Write ordered

Log Read ordered ordered

Log Write sequential &
ordered ordered sequential

sequential &
ordered

Propagation Read
Propagation

Write
ordered

Commit unclustered &
disk

unclustered &
disk

unclustered &
disk

unclustered &
disk

Table 4.2: I/O Access Pattern Assignments to I/O Cost Categories

In AISP, updated pages are written to free blocks. In the variation of AISP examined

here, it is assumed that updated pages are written to free blocks within the database

before being allocated new blocks at the end of the database. This ensures that the size

of the database is minimised and so the mechanism incurs unclustered reads instead of

disk reads. An alternative strategy is to extend the database when creating shadow

pages and only reuse free blocks within the database when it reaches some predefined

size or fills the device. This strategy would alter the characteristics of AISP to more

like those of the LSD. Because the original clustering of pages is lost, database reads

always require unclustered reads. Log reads are performed to access the page map;

such reads incur ordered read costs. Log writes, to update the page map, can be

performed in an ordered fashion once the device head is moved to the required

location. The cost of this seek is charged to the commit I/O cost category. The commit

I/O cost category also consists of writing the root block and is assigned a unclustered

write. The additional seek incurred by the next I/O operation is also charged to the

commit category.

The main difference between the LSD and AISP is that the LSD performs less

expensive sequential log writes instead of ordered writes. A requirement of being able

to perform sequential writes in the LSD is that the database is dispersed over a larger

area of the device and hence database reads are assigned the more expensive disk read

costs.

Notice that database reads in the LSD and AISP are assigned unclustered and disk

read costs respectively. If the database has never been updated before and read-only

applications are executed over the database, these mechanisms may be assigned the

same database read patterns as DataSafe. Such workloads are not interesting in the

context of this work, since they incur the same read costs under each mechanism. This

thesis focuses on workloads under which there is a potential advantage in choosing

58

one mechanism over another. Hence in MaStA it is assumed that update queries have

already been executed against the database and that the original clustering of pages of

data has been lost in the LSD and in AISP.

In BISP the original clustering is maintained so database reads are either clustered or

unclustered. Database writes may be performed in block order and so incur ordered

costs. There are three costs involved in log writes. The first is writing before-images

to shadow blocks in the log. Shadow blocks may be allocated contiguously and

written sequentially. The second cost is writing the page map indicating the locations

of the shadow copies. These mappings must be written before an original block is

overwritten and consist of ordered writes. The third cost is incurred after the updated

pages have been written to the database and consists of re-writing the page map to

discard the locations of the corresponding shadow pages. The cost of seeking to and

from the page map is charged to the commit cost category. The other commit I/O costs

are as for after-image shadow paging.

4 . 3 . 5 Application Workload

The goal of the application workload abstraction is to capture the basic attributes of

workloads that affect I/O. For example, the number of updates affects the number of

log records or shadow pages written.

There is a trade-off between using a large number of variables to increase the

expressive power of the workload abstraction and hence produce accurate I/O cost

predictions, and employing fewer workload variables to ensure that the models of

recovery mechanisms are tractable. The variables used (Table 4.3), are shown later to

be sufficient to make qualitatively accurate comparisons of recovery mechanisms

while at the same time maintaining the understandability of the analytical models of the

mechanisms.

The values assigned to the workload variables may be obtained by simulation,

measurement or analysis of the real application. Note that the variables used are

designed to characterise workloads in page-based recovery mechanisms. Object based

mechanisms may require additional variables to reflect the characteristics of workloads

in terms of the objects updated and committed to the log.

59

Workload
variables

Description

read the number of read operations performed by the application

readRecent
the number of read that access data already in the cache (no
page faults incurred)

readFaultLoc
the number of page faults in which the database page
accessed is logically near the previously faulted page

update the number of database updates performed by all transactions

updateTrans
the sum of the number of update performed by each
transaction on pages already updated by the transaction

updateTemp the number of pages updated by a transaction that have been
updated by a previous transactions

updateLoc
the degree of intra-transaction update spatial locality - in the
range (0,1] (affects the number of AISP and LSD page map
pages updated)

firstUpdate the number of read operations performed before the first
write operation

commit the number of update transactions committed

propWrite
the number of update that cause propagation writes during
normal processing (in deferred update mechanisms)

propWriteFinal
the number of update that cause propagation writes during
shutdown (in deferred update mechanisms)

db the size of the virtual database in bytes
page page size in bytes

mapEntry size of a page map entry and a safe map entry in bytes

root
the number of root pages written to record a commit state in
AISP, BISP and the LSD

Table 4.3: Variables Used to Characterise Workloads

4 . 3 . 6 Cost Models for the Four Recovery Mechanisms

For each I/O cost category and mechanism, workload variables are composed into

workload functions to calculate the number of I/O access incurred. Table 4.4

describes the workload functions and includes their composition in terms of workload

variables. The symbols ∪  denote the standard mathematical function ‘ceiling’.

The workload functions and I/O access patterns assigned to the I/O cost categories for

the mechanisms are given in Table 4.5. Within each category the cost is the product

of a workload function and an I/O access pattern cost, or the sum of a number of such

products. The total cost of a mechanism is the sum of the costs of its constituent I/O

cost categories. As an example, when written out, the sum of the I/O cost categories

for DataSafe is:

PMissClu ∞ rclu + PMissUncl ∞ runcl + PDirty ∞ wseq + PsafeMap ∞ word +

(PrWriteI + PrWriteII) ∞ word + Proot ∞ wuncl + commit ∞ 2 ∞ rdisk

60

The pattern rdisk is attributed to the commit category to indicate that seek costs are

incurred by the mechanisms. Two seeks are incurred for example by DataSafe to

move to the safe area and back to the database area when writing to the safe.

Workload
Function

Description Workload Variables

PMissClu
the number of clustered database
pages faulted readFaultLoc

PMissUncl
the number of non-clustered
database pages faulted read - readRecent - readFaultLoc

PDirty
the sum of the number of pages
committed by each transaction update - updateTrans

PTMiss
the number of page map pages read
on restart in AISP and the LSD

db / page

page / mapEntry

PTDirty
the number of page map pages
updated in AISP and the LSD

commit ×  PDirty / commit

updateLoc ×
page

mapEntry



PsafeMap
the number of safe map pages
written to record the position of
database pages in the safe

commit ×  PDirty / commit
page / mapEntry



Proot
the number of root pages written in
the mechanisms commit ∞ root

PrWriteI
the number of propagation page
writes performed during normal
processing

propWrite

PrWriteII
the number of propagation page
writes performed during shutdown propWriteFinal

Table 4.4: Workload Functions

DataSafe AISP LSD BISP

I/O
Category

Number
of I/O

Access
Pattern

Number
of I/O

Access
Pattern

Number
of I/O

Access
Pattern

Number
of I/O

Access
Pattern

Database
Reads

PMissClu

PMissUncl

rclu

runcl

PMissClu

PMissUncl

runcl

runcl

PMissClu

PMissUncl

rdisk

rdisk

PMissClu

PMissUncl

rclu

runcl

Database
Writes

PDirty word

Log
Reads

PTMiss rord PTMiss rord

Log
Writes

PDirty

PsafeMap

wseq

word

PDirty

PTDirty

word

word

PDirty

PTDirty

wseq

wseq

PDirty

2xPTDirty

wseq

word

Propagation
Writes

PrWriteI

PrWriteII

word

word

Commit
I/O

Proot

commit
∞ 2

wuncl

rdisk

Proot

commit
∞ 2

wuncl

rdisk

Proot

commit
∞ 2

wuncl

rdisk

Proot

commit
∞ 4

wuncl

rdisk

Table 4.5: Workload Functions and I/O Patterns Assigned to Cost Categories

61

4.4 Utilising MaStA

The utility and flexibility of MaStA are demonstrated by describing three applications

of the model. In each, MaStA is used to predict the I/O costs of running a workload

on different recovery mechanisms and different platforms. To compare the costs of a

set of recovery mechanisms, for a given application and platform, three steps must be

performed. These are:

1. Identify workload variables that reflect the attributes of the application’s

workload that affect I/O and provide values for these variables.

2. For each recovery mechanism, identify the categories in which the mechanism

incurs costs and assign I/O access patterns to each category according to the

properties of the I/O operations performed. For each category and recovery

mechanism develop workload functions from the workload variables to

calculate the number of accesses incurred of each I/O pattern.

3. Configure the model against the platform by measuring or estimating the cost of

each I/O access pattern.

In each application of the model, the workload functions developed in Section 4.3 for

the four recovery mechanisms (step 2) are evaluated by supplying values for the

workload variables (step 1) and calibrating the I/O access patterns against two

platforms (step 3).

4 . 4 . 1 I/O Access Pattern Calibration

MaStA abstracts over the characteristics of the platform by employing various I/O

access patterns in the workload functions of recovery mechanisms. When utilising the

models, these patterns are configured against the required platform. In the applications

of MaStA described, the I/O pattern costs are obtained through measurement of the

devices available on two platforms. The configurations of the platforms are:

a Sun SPARCStation ELC:

running SunOS 4.1.3,

with 48 MB main memory,

a 500 MB CDC Wren V SCSI drive dedicated to the operating system,

and a 500 MB partition on a 2.1 GB Seagate ST32151N Fast SCSI-2 (Hawk

2XL);

62

a DEC Alpha AXP 3000/600:

running OSF/1 V3.2,

with 128 MB main memory,

a 1 GB DIGITAL RZ26 SCSI drive dedicated to the operating system

and a 500 MB partition on a 2.1 GB Seagate ST12550N SCSI drive

(Barracuda II).

The average cost of each I/O access pattern used in MaStA is measured by performing

sequences of read and write operations on raw partitions. Raw partitions are used

instead of files to avoid operating system disk cache effects. The sequences of I/O

operations are recorded using the MaStA I/O trace format [SCM+95b] summarised in

Section 5.4.4. The localities of the operations are controlled to simulate sequential,

ordered, clustered, unclustered and disk I/O patterns. Details of the synthetic I/O

traces used to measure these access patterns are included in Appendix B. Table 4.6

and Figure 4.2 give the average I/O access pattern costs measured on the

SPARCStation (Hawk disk) and the Alpha (Barracuda disk), as proportions of

sequential read costs.

It is important to note that these results do not compare the I/O access costs of the

particular configurations of the Alpha and the SPARCStation. The results abstract

over absolute costs by giving each machine’s I/O access costs as multiples of the cost

of a sequential read on that machine. ASR stands for Alpha Sequential Read and SSR

for SPARCStation Sequential Read.

I/O Access Pattern Alpha SPARCStation
Sequential reads (rseq) 1.0 ASR 1.0 SSR

Sequential writes (wseq) 1.6 ASR 1.0 SSR

Ordered reads (rord) 3.8 ASR 2.7 SSR

Ordered writes (word) 2.4 ASR 2.6 SSR

Clustered reads (rclu) 3.8 ASR 4.0 SSR

Clustered writes (wclu) 3.1 ASR 3.8 SSR

Unclustered reads (runcl) 4.3 ASR 4.6 SSR

Unclustered writes (wuncl) 3.7 ASR 4.6 SSR

Disk reads (rdisk) 4.9 ASR 4.9 SSR

Disk writes (wdisk) 4.4 ASR 5.2 SSR

Table 4.6: Average Costs of I/O Access Patterns

The results highlight two issues fundamental to the manner in which MaStA

distinguishes between I/O access patterns. The first is that the relative costs of

63

different I/O patterns vary significantly. For example, the ratio of the cost of

sequential reads to disk writes is a factor of 5 on the SPARCStation. The second is

that the relative cost of I/O access patterns may vary across different platforms. For

example, the ratios of sequential write costs to disk write costs on the given Alpha and

SPARCStation configurations are 1:2.7 and 1:5.2 respectively.

Alpha

m
u
l
t
i
p
l
e
s

o
f

s
e
q
.

r
e
a
d

c
o
s
t

0

1

2

3

4

5

seq asc clu uncl disk

reads

writes

SPARCStation

m
u
l
t
i
p
l
e
s

o
f

s
e
q
.

r
e
a
d

c
o
s
t

0

1

2

3

4

5

6

seq asc clu uncl disk

reads

writes

Figure 4.2: Average Costs of I/O Access Patterns

4 . 4 . 2 Applications of the Model

The following applications of MaStA demonstrate how the workload functions

developed for the four recovery mechanisms may be used to predict costs under

various workloads on the given SPARCStation and the Alpha configurations. Each

application defines a workload and varies one or more of the workload variables to

illustrate the sensitivity of the model to those variables. The workload functions are

evaluated using the I/O access pattern costs recorded in Table 4.6. In addition, the

functions are evaluated using a uniform I/O cost to emphasise the need to differentiate

I/O access pattern costs.

4 . 4 . 2 . 1 Application 1

Application 1 considers the relative costs of recovery mechanisms under workloads

with varying degrees of update frequency. The workload variable values are given in

Table 4.7. The value of update is varied while the number of read operations remains

constant. The value of updateTrans, propWrite and propWriteFinal are varied in

64

proportion to update to ensure that the ratio of propagation and log writes to updates

remains constant.

Workload Variables Values

read 1000000 pages
readRecent 800000 pages
readFaultLoc 100000 pages
update 0∅ 400000 pages
updateTrans 3/4 ∞ updatepages

updateLoc 20%
commit 500
propWrite 1/20 ∞ updatepages

propWriteFinal 1/100 ∞ updatepages

page 8192 bytes
mapEntry 8 bytes
root 1 page
db 120 MB

Table 4.7: Workload Variable Values in Application 1

The graphs in Figure 4.3 illustrate the results of evaluating the workload functions

developed for the four recovery mechanisms. The three graphs correspond to three

sets of values assigned to the I/O access patterns: the SPARCStation’s, the Alpha’s

and a uniform set where each pattern is given the same cost. For each set of access

pattern values, the predicted costs incurred by each recovery mechanism are shown as

multiples of the sequential read cost in the set.

update (1000's)

C
o
s
t
s

(
1
0
0
0
'
s

o
f

s
e
q
u
e
n
c
i
a
l

r
e
a
d
s
)

a. Sun

BISP AISP LSD DS

600

700

800

900

1000

1100

1200

1300

0 400

a. Sun
600

700

800

900

1000

1100

1200

1300

0 400

b. Alpha
600

700

800

900

1000

1100

1200

1300

0 400

c. Uniform

AISP
& LSD

Figure 4.3: Results from Application 1

65

Figures 4.3.a and 4.3.b show that when the update frequency is low the LSD and

AISP incur higher costs than DataSafe and BISP. This is because LSD and AISP

perform only disk and clustered database reads respectively, whereas BISP and

DataSafe incur some lower costing clustered reads as well as unclustered reads.

As expected the I/O costs of all the mechanisms increase as the frequency of updates

increases. The graphs illustrate that the cost of BISP increases more rapidly compared

to the other mechanisms. This is because committing a page causes two writes: the

first, to write the before-image of the page to the log and the second to write the

updated page to the database. In DataSafe, a page may be updated and committed to

the safe a number of times for each time it is written to the database, hence the rate of

increase of its costs is lower.

Figure 4.3.c illustrates the relative costs of the mechanisms calculated using a

uniform cost for each I/O pattern. As can be seen the relative positions of the costs of

the recovery mechanisms in Figure 4.3.a and 4.3.b vary, depending on the particular

workload, while they do not in Figure 4.3.c. This is because the cost of each

mechanism in a uniform model is based only on the number of I/O operations

performed, whereas the relative costs of mechanisms also depend on the variations in

the costs of the different access patterns performed. This is also why the costs of

AISP and the LSD are equal when their workload functions are evaluated using a

uniform I/O cost (in Applications 1, 2 and 3).

4 . 4 . 2 . 2 Application 2

Application 2 illustrates the effects on I/O costs of varying spatial locality of read

faults. The workload variable values are given in Table 4.8. The locality of read faults

is varied by changing readFaultLoc between 10000 (poor locality) and 190000 (good

locality). This means that each workload performs 200000 read faults (read-

readRecent), but the workloads vary, in that they perform between 10000 and 190000

localised read faults.

At the left hand side of each graph in Figure 4.4, workloads perform mainly

unclustered reads on the database, and the right hand side represents workloads that

perform mainly localised reads. Figure 4.4.a and 4.4.b illustrate that as read locality

increases, the costs of BISP and DataSafe reduce. This is because an increasing

proportion of database reads incur clustered costs in these mechanisms. On the other

hand AISP and the LSD incur only unclustered and disk database reads costs

respectively for all workloads and hence their costs do not vary with changes in read

locality.

66

Workload Variables Values

read 1000000 pages
readRecent 800000 pages
readFaultLoc 10000∅ 190000 pages
update 100000 pages
updateTrans 80000 pages
updateLoc 20%
commit 500
propWrite 15000 pages
propWriteFinal 2000 pages
page 8192 bytes
mapEntry 8 bytes
root 1 page
db 120 MB

Table 4.8: Workload Variable Values in Application 2

readFaultLoc (1000's)

C
o
s
t
s

(
1
0
0
0
'
s

o
f

s
e
q
u
e
n
c
i
a
l

r
e
a
d
s
)

a. Sun

BISP AISP LSD DS

700

750

800

850

900

950

1000

1050

10 190

a. Sun
700

750

800

850

900

950

1000

1050

10 190

b. Alpha
700

750

800

850

900

950

1000

1050

10 190

c. Uniform

AISP
& LSD

Figure 4.4: Results from Application 2

Notice that under workloads with poor locality the cost of AISP is lower than the cost

of DataSafe and BISP. This is because under these workloads, all mechanisms

perform non-clustered reads and because AISP incurs lower write costs since it only

performs a single write for each page committed. The LSD incurs higher costs than

AISP due to the more expensive disk read costs that the LSD performs.

No variation is seen using a uniform I/O cost (Figure 4.4.c) since these costs are

based only the number of I/O operations performed and do not take account of the

difference between the costs of clustered, unclustered and disk reads.

67

4 . 4 . 2 . 3 Application 3

Application 3 illustrates the effects on the costs of DataSafe of varying temporal

locality of updates. The degree of update temporal locality is varied by changing the

value of propWrite, i.e. by varying the proportion of updates that cause propagation

writes The other variables remain constant (Table 4.9). The poorest locality is

achieved by setting propWrite to 99800. This means that of the 100000 pages

committed (PDirty), 99800 are written to safe and propagated to the database before

being updated again. The remaining 200 propagation writes are attributed to

propWriteFinal. This scenario represents an application that performs sparse updates

on a large database using a small cache. Maximum locality is achieved by setting

propWrite to 0, i.e. no pages are propagated to the database during normal

processing). In other words, on average each transaction updates and commits the

same 200 (PDirty/commit) pages.

Workload Variables Values

read 1000000 pages
readRecent 800000 pages
readFaultLoc 190000 pages
update 200000 pages
updateTrans 100000 pages
updateLoc 20%
commit 500
propWrite 99000∅ 0 pages
propWriteFinal 200 pages
page 8192 bytes
mapEntry 8 bytes
root 1 page
db 120 MB

Table 4.9: Workload Variable Values in Application 3

The left hand side of each graph (Figure 4.5) represents workloads in which

transactions update pages that have not recently updated (low temporal locality of

updates). At the right hand side, each transaction updates the pages changed by a

recent transaction. As expected the cost of DataSafe reduces as the degree of update

locality increases, due to the reduction in the number of propagation writes. The costs

of the other mechanisms do not vary because each page that is committed causes a

fixed number of writes.

Under this workload AISP incurs higher costs than BISP on the SPARCStation

configuration (Figure 4.5.a), and vice versa on the Alpha configuration

68

(Figure 4.5.b). This is mainly because the cost of sequential writes, to record shadow

pages in BISP, are more expensive relative to other I/O patterns on the Alpha than on

the SPARCStation. This result highlights that variations in the relative costs of I/O

patterns across different platforms may be sufficient to cause the ordering of the costs

between mechanisms under a particular application to differ on the platforms.

propWrite

C
o
s
t
s

(
1
0
0
0
'
s

o
f

s
e
q
u
e
n
c
i
a
l

r
e
a
d
s
)

a. Sun

BISP AISP LSD DS

800

900

1000

1100

1200

1300

1400

99800 0

a. Sun
800

900

1000

1100

1200

1300

1400

99800 0

b. Alpha
800

900

1000

1100

1200

1300

1400

99800 0

c. Uniform

AISP
& LSD

Figure 4.5: Results from Application 3

4 .5 Conclusions

Chapter 1 introduced a flexible database architecture that may be configured to

provide optimum performance for a particular application. To effectively configure

recovery management in such an architecture, the recovery scheme that incurs the

lowest cost for the application must be selected. To meet this demand, a new analytical

I/O cost model called MaStA is introduced. The model reduces the complexity of

predicting the costs of recovery mechanisms by categorising I/O operations in terms of

the movement of data between a database, a log and a cache. The number of I/O

operations incurred in each category is estimated using a workload abstraction that

takes into account variables that affect I/O. To accurately calculate the cost of each

category, MaStA differentiates I/O access patterns, such as sequential and unclustered,

the costs of which may be calibrated against the platform being used to run the

application.

Applications of the model demonstrate the flexibility and utility of MaStA. The

applications involve calibrating the I/O patterns against two platforms and providing

values for the workload abstraction with which to evaluate the workload functions

69

developed for four recovery mechanisms. Comparisons of the resulting I/O cost

predictions highlight a number of issues:

• The variations between the costs of different I/O access patterns affect total

costs significantly. Furthermore the I/O costs of mechanisms that perform the

same number of I/O accesses can only be differentiated if different I/O patterns

are modelled.

• The relative costs of mechanisms may vary on different platforms under the

same application, hence an analytical model should allow each I/O access

pattern to be calibrated against the particular platform on which the application

is executed.

• The relative costs of recovery mechanisms are highly dependent on workload

characteristics. In particular, the results corroborate the belief that no one

mechanism incus the lowest cost for all applications.

The MaStA model is used in Chapter 7 in a worked example of the flexible Flask

architecture, to choose the appropriate recovery mechanism for a particular application

and platform.

A number of assumptions are made in the development of MaStA. These are

discussed in the next chapter, along with a framework designed to validate the

assumptions.

70

5 Validation Strategy of MaStA

5.1 Introduction

MaStA is an analytical I/O cost model that estimates performance for a particular

combination of application workload, recovery mechanism and execution platform at

relatively low cost. To recap, the main features of the model are:

• Cost is based upon a statistical estimation of disk activity, broken down into I/O

cost categories for each recovery mechanism.

• The model may be calibrated with different disk performance characteristics,

either simulated, measured by experiment or predicted by analysis.

• The model is usable over a wide variety of workloads, including those typical

of object-oriented and database programming systems.

This chapter introduces the four underlying assumptions of the MaStA model and

presents the validation framework designed to verify the assumptions. The procedures

performed to validate the assumptions, and the corresponding results are discussed in

Chapter 6.

5.2 Assumptions

Three major abstractions are made to describe MaStA, based on critical underlying

assumptions. The abstractions are:

• the recovery mechanism abstraction;

• the disk performance abstraction;

• and the workload abstraction.

5 . 2 . 1 Recovery Mechanism Abstraction

The recovery mechanism abstraction assigns I/O cost categories to each recovery

scheme. The total cost derived by the model is the sum of these categories. The

purpose of the categorisation is to reduce the complexity of comparing recovery

mechanisms and improve the analysis of the mechanisms. The success of this

abstraction depends heavily upon two assumptions:

I/O Assumption: In applications where variations in total costs of using different

recovery mechanisms are significant, the variations in the CPU costs incurred are

insignificant compared to the variations in the I/O costs.

71

Cost Category Interaction Assumption: The interaction between the different

categories of I/O accesses is not significant; that is, the cost of running the I/O stream

generated by a given recovery mechanism is not significantly different from the sum

of the costs of running the streams of each I/O cost category separately.

5 . 2 . 2 Disk Performance Abstraction

MaStA abstracts over the characteristics of the device by employing various I/O access

patterns in the models of recovery mechanisms. The average cost of each pattern may

be obtained either by simulation, experiment or by further analysis of the device in

question. This abstraction depends on the assumption:

Access Pattern Cost Assumption: To make predictions of the relative costs of

recovery mechanisms for all workloads, it is sufficient to assign a predicted average

cost to each I/O access pattern.

5 . 2 . 3 Workload Abstraction

The last abstraction in MaStA is over the workload associated with the application. As

the interest is only in I/O behaviour, this need not encompass any CPU activity of the

application, but only its data accesses. The application is characterised in terms of

workload variables such as the number of database read operations, read locality and

update frequency.

Workload Assumption: The cost of running the I/O stream generated by an

application is approximately the same as running the I/O stream generated by the

workload abstraction.

5.3 Overview of the Validation Strategy

The strategy used to validate the assumptions of MaStA [SCM+95a, MCM+95] is

outlined in Figure 5.1. A variety of workload traces produced by a synthetic

workload generator and by the OO1 and OO7 benchmarks are recorded. The OO1 and

OO7 benchmarks are widely accepted as a basis on which different object oriented

database systems may be compared and are used here (implemented in Napier88

[MBC+89]) to provide typical database workloads. Each workload trace records the

database accesses performed by a particular benchmark query and allows the same

workload to be executed multiple times on different recovery mechanisms and

platforms.

The workload traces are executed on three recovery mechanisms: AISP, DataSafe and

the LSD developed in Chapter 3, and on two platforms: a Sun SPARCStation and a

72

DEC Alpha configured with different devices and operating systems. A summary of

the configurations of the recovery mechanisms used is included in Appendix A.1.

Napier88

various
recovery

mechanisms

CPU & I/O
costs I/O access traces

001
Benchmark

007
Benchmark

Synthetic
Workloads

MaStA

cost
predictions

various platform
configurations

workload trace
analysis

AAAA
AAAA

AAAA
AAAADS

database
workloads

AAA
AAALSDAAAAAISP

Sun
Alpha

Figure 5.1: The MaStA Validation Strategy

The I/O and CPU costs of executing each workload trace are measured and traces of

the I/O accesses performed are recorded. The workload traces are characterised in

MaStA to provide I/O cost predictions of the workloads. The predicted and real I/O

costs, the I/O traces and the database workload traces are analysed in Chapter 6 to

validate the assumptions that support the abstractions of MaStA. A strength of this

strategy is that by validating each assumption for more than one platform, operating

system and device, it illustrates the independence of the MaStA assumptions from

these components. Section 5.4 provides details of the components of the validation

strategy.

Once the MaStA model has been validated there is a final assumption that is used in

estimating the cost of any combination of application, mechanism and platform. The

assumption is that there are no significant phase changes in the performance of

recovery mechanisms [ABJ+92]. In other words, small changes in workload or

platform characteristics do not cause dramatic changes in the relative costs of recovery

mechanisms.

73

5.4 Validation Framework Design

A number of components are common to the procedures performed to validate the

assumptions of MaStA. These are:

• the persistent system employed to generate database workloads traces and the

format of the workload traces;

• the benchmarks used to generate workloads typical of database applications;

• the platforms used to execute the workloads;

• and the format of the I/O traces.

5 . 4 . 1 Napier88 and Workload Traces

The Napier88 system [MBC+89] is employed to generate the traces used in the

validation strategy. The Napier88 compiler maps programs onto an interpreted abstract

machine, the Persistent Abstract Machine [CBC+89] which accesses persistent data

through a persistent heap interface. The persistent heap in turn accesses data on non-

volatile storage through a recovery manager.

The validation strategy records traces of I/O accesses and traces of database

workloads, and analyses the traces off-line to avoid potential sources of interference.

Each database workload trace records the database read, write and commit operations

performed by a particular benchmark query. Read and write trace entries record the

length of data accessed and the database addresses of the data. The I/O access traces

are obtained by modifying each recovery mechanism to record the I/O operations

performed. The format of I/O access traces is discussed in Section 5.4.4.

An advantage of using Napier88 is that the source code of the system is available

allowing the required database and I/O accesses traces to be recorded. It is not

possible to record these traces from many commercially available databases due to the

unavailability of the source code. An alternative method that could have been used to

record I/O traces would have been to use commercially available database systems

executing on an operating system such as LINUX for which the source is available.

Access to the operating system’s source code would allow the device drivers to be

augmented to record traces of the I/O accesses performed by the database systems.

An assumption of recording I/O access traces and database workload traces is that

recording traces does not significantly affect the execution of the system. This

assumption is validated by performing an experiment that compares the total elapsed

74

times of executing Napier88 applications while recording I/O and workload traces

against the elapsed times when no traces are recorded. The results of performing this

experiment indicate that recording traces has no significant effect on the results of the

validation procedures.

Ideally more than one database system should be used to generate workloads and I/O

traces in the validation framework. Using only one system may be justified by the fact

that database workload traces taken from Napier88 are executed instead of using the

system directly. Therefore interference from the Napier88 interpreter is factored out.

Future work shall investigate the inclusion of other database systems in the validation

framework.

5 . 4 . 2 Benchmarks

Validation of the MaStA assumptions for all possible workloads is approximated in

the strategy by employing four benchmarks to generate workloads typical of database

systems. The particular configurations of the benchmarks described provide fixed

workloads for which each assumption may be validated. To promote confidence that

the results are independent of the configuration of the benchmarks two configurations

of OO1 are used. This section provides a summary of the benchmarks. Details of the

configuration of each benchmark are included in Appendix A.2.

5 . 4 . 2 . 1 OO1

The OO1 benchmark [CS92] (introduced in Section 2.5.3.1) generates workloads

that are supposed to be typically found in engineering applications such as

CAD/CAM. The benchmark provides three standard queries called lookup ,

traverse and insert which execute against a database containing interconnected

parts.

lookup : A set of random part identifiers is first generated. Read-only

transactions are then executed, each of which fetches the set of parts

from the database.

traverse : A set of read-only transactions are executed. Each transaction selects a

part at random and recursively traverses the connected parts to a

specified depth. A null procedure is called for each part traversed.

insert : A set of transactions is executed, each of which inserts new parts and

commits. Each part inserted is connected to a number of other

(randomly selected) parts.

75

In the validation strategy, three additional queries are executed against the OO1

database to provide a wider range of workloads. They are:

scan : This read-only query is included to provide a workload typical of

applications that perform linear scans of data, such as a database

application that scans all customer records to gather some statistics.

insertLarge : In an attempt to highlight any effects on the validation results of

varying workload sizes, this additional query is included to generate

a larger workload to that of the standard insert query. In

particular, insertLarge executes more transactions than

insert and each transaction inserts a larger number of new parts.

update : Since the standard OO1 benchmark provides only insert or read-

only queries this query is included to provide a workload that

updates existing data in the database.

Some recovery mechanisms, such as AISP and the LSD, perform dynamic

reclustering of data in the database during update transactions. To highlight any effects

on subsequent reads of performing reclustering, an additional set of read-only queries

is executed after the update queries (insert , insertLarge and update). The

second set of read-only queries generate similar workloads to those of the first set

(lookup , scan and traverse). The read-only queries in the second set are called

lookup2 , scan2 and traverse2 to differentiate the results of executing the two

read-only sets.

5 . 4 . 2 . 2 OO1b

The second benchmark is the OO1 benchmark configured with a larger database and

larger workloads. This configuration of OO1, called OO1b in the validation strategy,

is used in an attempt to show that the validation results are independent of the

configuration of the benchmarks used. A number of alterations are made to the queries

to increase workload sizes in OO1b (see Appendix A.2 for details). These are:

lookup , lookup2 : The set of random part identifiers generated, and accessed

by each transaction, is enlarged.

insert , insertLarge : The number of new parts entered into the database by

each transaction is increased.

update : The number of parts read and updated by each transaction

is increased.

76

5 . 4 . 2 . 3 OO7

The third benchmark is OO7 [CDN93] (introduced in Section 2.5.3.2). It is designed

to provide performance metrics for comparing various components of OODBMSs. A

drawback of the OO7 benchmark with regard to the validation strategy is that through

experimentation it was found that Napier88 tended to translate the complex OO7

queries into CPU bound workloads. The validation strategy however is concerned

with validating the assumptions of MaStA - a model designed to predict costs of I/O

bound workloads. Hence, only a representative cross-section of the three categories of

OO7 queries (traversals, queries and structural modifications) are included in the

validation strategy. The queries used are:

T1: The OO7 database is traversed, visiting the unshared composite parts of each

base assembly visited. As each composite part is visited, a depth-first traversal is

carried out on its subgraph of atomic parts.

T6: Traversal T1 is repeated, visiting only the root part of each composite part.

Q2: A range of build dates which contains the last 1% of the dates found in the

database’s atomic parts is chosen and these parts are retrieved.

Q8: All pairs of documents and atomic parts with matching identifiers are found.

S2: The most recently created composite parts are removed in their entirety,

including document objects and atomic part subgraphs.

5 . 4 . 2 . 4 MaStA Object Benchmark

The OO1 and OO7 benchmarks are designed to allow both CPU and I/O costs of

database system components to be analysed. In some workloads such as those

generated by OO7 the I/O costs can be insignificant. To provide workloads that incur

high proportions of I/O costs, an I/O bound benchmark called MOB (MaStA Object

Benchmark) is also included in the validation strategy. This benchmark consists of a

database of large objects indexed by a B+tree, and a number of queries. The queries

are designed to exhibit various locality properties and vary in the number of objects

accessed and updated.

scan : All objects in the database are read once in index order.

readTrans : A set of read-only transactions are executed. Each transaction reads

objects chosen at random from a contiguous range of 10% of the

77

database. The index of the first object in each range is chosen at

random for each transaction.

randomAcc : A set of objects chosen at random are accessed.

updateTrans : A series of update transactions are executed. Each transaction reads

and updates objects chosen using the selection algorithm used in

readTrans and commits.

RWtrans : A set of update transactions are executed. Each transaction reads

objects chosen using the selection algorithm used in readTrans ,

updates the last object accessed and commits.

randRWtrans : A set of update transactions are executed. Each transaction reads

objects chosen at random, updates the last object accessed and

commits.

scan2 , readTrans2 , randomAcc2 : These queries generate similar workloads to

those of scan , readTrans and randomAcc respectively.

Similarly to the OO1 benchmarks they are included in the

benchmark to highlight any residual effects of providing recovery

during the three update queries.

5 . 4 . 3 Platforms

A strength of the validation strategy is that each assumption of MaStA is verified for a

number of different platforms, operating systems and devices, and hence the

validation results are less likely to depend on the particular attributes of any one of

these components. The platform configurations used in the framework are:

• a Sun SPARCStation ELC:

running SunOS 4.1.3,

with 48 MB main memory,

a 500 MB CDC Wren V SCSI drive dedicated to the operating system,

and a 500 MB partition on a 2.1 GB Seagate ST32151N Fast SCSI-2

(Hawk 2XL);

• a DEC Alpha AXP 3000/600:

running OSF/1 V3.2,

with 128 MB main memory,

78

a 1 GB DIGITAL RZ26 SCSI drive dedicated to the operating system

and a 500 MB partition on a 2.1 GB Seagate ST12550N SCSI drive

(Barracuda II).

• memory usage: 8 MB dedicated to the recovery mechanism’s cache and the

remainder for the process running the database workloads and the operating

system.

5 . 4 . 4 I/O Trace Format

To analyse the I/O operations performed by recovery mechanisms the operations are

recorded in traces using the MaStA I/O trace format described in [SCM+95b]. The aim

of this format is to standardise the manner in which the I/O operations performed by

database systems are recorded and to allow trace consumers to develop analysis tools

that operate on such traces. The trace format is designed to be independent of machine

architecture by defining the byte ordering of trace entries and enabling the

configuration of the platform such as the disks used, to be recorded. It is also

independent of the recovery mechanism used by allowing the configuration of

mechanisms to be recorded.

Each I/O trace is composed of a sequence of entries each of which records a read,

write or synchronisation operation performed by a recovery mechanism executing a

particular application. Reads and writes are recorded in a trace as operating on one or

more blocks. Each read or write also operates on a particular logical area of storage

such as the database or the log. Synchronisation operations operate on one or more

areas. The validation strategy requires that each I/O operation performed by database

systems can be associated with the MaStA I/O cost category (database read,

propagation write, etc.) in which it is performed. The trace format allows an I/O cost

category to be recorded with each I/O operation.

Configuration entries may be included in a trace to record additional information to be

used by trace consumers. For example, each logical area of storage used by a

mechanism is distinguished from others using a region entry. Each region entry

records which device an area is bound to and the location on the device of the

beginning of the area. Configuration entries may also record additional information

such as text describing the platform.

79

5.5 Conclusions

Three major abstractions are made to simplify the development of the MaStA cost

model: recovery mechanism, disk performance and workload. These abstractions are

based on four assumptions.

• In applications where variations in total costs of using different recovery

mechanisms are significant, the variations in the CPU costs incurred are

insignificant compared to the variations in the I/O costs.

• The interaction between the different categories of I/O accesses is not

significant; that is, the cost of running the I/O stream generated by a given

recovery mechanism is not significantly different from the sum of the costs of

running the streams of each I/O cost category separately.

• To make predictions of the relative costs of recovery mechanisms for all

workloads, it is sufficient to assign a predicted average cost to each I/O access

pattern.

• The cost of running the I/O stream generated by an application is approximately

the same as running the I/O stream generated by the workload abstraction.

This chapter has described the framework employed to validate these assumptions to

gain confidence that MaStA can be used to make accurate comparisons of recovery

mechanisms. The strategy involves executing benchmarks designed to generate

workloads typical of database applications. The workloads are executed on three

recovery mechanisms: AISP, DataSafe and a LSD, and on two platforms configured

with different devices and operating systems. During each execution the I/O and CPU

costs are measured and traces of I/O accesses are recorded. These costs, the costs

predicted using MaStA, the I/O traces and the database workload traces are analysed in

Chapter 6 to validate the MaStA assumptions. A strength of this strategy is that by

validating each assumption for multiple combinations of recovery mechanism,

platform, operating system and device, it illustrates the independence of the MaStA

assumptions from these components.

80

6 Validation Procedures

6.1 Introduction

The previous chapter introduced the assumptions that underly the MaStA I/O cost

model and discussed the design of the framework employed to validate these

assumptions. This chapter breaks the framework down into four procedures each of

which is composed of a number of experiments designed to verify one of the

assumptions. The results of the experiments performed are analysed to determine

whether the specific assumption is valid. A total of 2268 experiments were performed

in the validation strategy.

A number of strategies are used in the framework to avoid interference from the

operating system. These strategies are discussed followed by a description of each

validation procedure and the corresponding results. Having validated the four

assumptions of MaStA, the model is used to predict the I/O costs of recovery

mechanisms executing the workloads used in the validation framework. The accuracy

of these cost predictions is verified by comparing them against empirical

measurements of the workloads.

6.2 Avoiding Interference

6 . 2 . 1 Platform Interference

File systems commonly make use of optimisations such as caching, prefetching and

re-ordering of I/O operations to reduce I/O costs. The use of raw partitions instead of

file systems avoids these optimisations and increases the probability that I/O

operations are carried out at the disk level at the time and in the order they are

performed by the application - a requirement in Section 6.4. For example, it is

important that synchronous unclustered I/O operations are performed synchronously

at the disk level. If a file system had been used it may have cached and re-ordered the

I/O operations in an attempt to reduce costs and hence may have affected the validation

results.

It may be possible for MaStA to make cost predictions of recovery mechanisms

running on file systems instead of raw partitions. However, without knowledge of the

behaviour of the file system, such as the caching policy used, it may be difficult to

obtain accurate results. Experience with running recovery mechanisms on a file

system and over a raw partition has shown that optimisations incorporated into the

system can cause the I/O throughput of the file system to be lower than that of the raw

partition. For example, on a particular platform it was found that in many workloads

81

that updated a database, the operating system swapped out the virtual address space of

the application in order to cache a write-only log file. To use MaStA to accurately

compare the costs of recovery mechanisms on file systems, such interference must

first be removed.

Another potential source of interference comes from using modern disk controllers

that can re-order and cache I/O operations. To an extent, the disk abstraction of the

MaStA model takes such optimisations into account by calibrating each I/O access

pattern used in the model against the device. So, for example, if a disk controller

optimises clustered write operations, the model reflects the optimisation in I/O cost

predictions by calibrating the access pattern against the disk (see Section 4.4.1 on

calibrating I/O access patterns).

Since no operating system caches are used, each validation experiment is effectively

performed using a cold system thus avoiding the requirement to flush caches between

each experiment.

Disk performance can vary across different areas of a device, for example, due to

variations in data density. To ensure that the results of the experiments performed in

each validation procedure are comparable, the same area of disk is used for each

experiment. A more comprehensive strategy would involve performing each validation

procedure over a number of different areas of the device.

In each validation procedure, the platforms are run in single user mode to reduce

network interference, interference from other processes and the operating system.

6 . 2 . 2 Experimental Interference

To investigate whether the I/O costs measured in the validation procedures are

accurate, the costs are recorded using two methods (Figure 6.1). The first measures

the cost of individual I/O operations using the standard library functions

gettimeofday and getrusage . The function gettimeofday records the

elapsed time of each I/O function call and getrusage is used to factor out the CPU

cost incurred during each call. The second measurement calculates I/O costs by

subtracting the total CPU costs, and the I/O cost of reading database workload traces

and I/O traces, from the total elapsed time recorded using the time command

provided by SunOS and OSF. An average variation of 1.8% was observed between

the two methods of measuring I/O costs.

Each experiment in the validation procedures is performed a number of times so that

any fluctuations in the costs measured may be factored out. From the results obtained,

82

it was found that three executions of each experiment were sufficient to obtain

consistent results. In particular, the average variation in the costs of the three

executions of any given experiment was less than 1.5% of the average cost of the

experiment.

(getrusage)

elapsed CPU cost
per I/O operation

(gettimeofday)

elapsed time
per I/O operation

cost of each I/O operation

total I/O cost

(time)

total
elapsed time

(time)

total CPU-

total I/O cost

-

≈

∑

(gettimeofday
& getrusage)

I/O cost of
reading traces
-

Figure 6.1: The Two Measurements Taken in the Validation Procedures

6 .3 Validation of the I/O Assumption

The requirement of this procedure is the justification of the hypothesis (the I/O

Assumption of MaStA):

In applications where variations in total costs of using different recovery

mechanisms are significant, the variations in the CPU costs incurred are

insignificant compared to the variations in the I/O costs.

The workloads generated from OO1, OO1b, MOB and OO7 (discussed in

Section 5.4.2) are executed on AISP, the LSD and DataSafe (DS). The I/O and CPU

costs of running each workload are measured (Figure 6.2).

I/O cost
total cost

I/O cost
total cost

I/O cost
total cost

DSAISP LSD

OO1, OO1b, OO7 & MOB workloads

Figure 6.2: The Costs Measured to Validate the I/O Assumption

The hypothesis is justified if for each pair of recovery mechanisms, where the

variation in the total costs of executing a given workload is significant, the I/O costs

83

can be used to predict which mechanism incurs the lower total cost. The variation in

the total costs of two mechanisms is considered significant if the variation is greater

than 5% of the lower total cost. There are 103 such variations in the workloads

executed.

6 . 3 . 1 Results

The average I/O cost and total cost of each workload executing on each of the three

recovery mechanisms and on the two platforms are given in Appendix C.1. Analysis

indicates that in all 103 comparisons of recovery mechanisms where there is a

significant total cost variation, the I/O costs could be used to predict which mechanism

incurs the lower total cost. For example, if the I/O costs of DataSafe and the LSD

executing insert (OO1b) on the configuration of the Sun are compared (68.20 and

84.93 seconds respectively) then DataSafe is predicted to incur the lower total cost.

This is verified by comparing the total costs of the mechanisms (76.63 and 95.07

seconds respectively). Further analysis indicates that the I/O costs can also be used to

predict which of a pair recovery mechanism incurs the lower total cost for a given

workload when the total cost variation between the mechanisms is between 1% and

5%.

The results verify that for the workloads which exhibited significant total cost

variations, the differences in CPU costs are insignificant when the relative total costs

of recovery mechanisms are being compared. The justification of this hypothesis

suggests that MaStA needs only predict the I/O costs of recovery schemes to compare

their relative performances for a given application.

6.4 Validation of the Cost Category Interaction Assumption

The requirement of this procedure is the justification of the hypothesis (the Cost

Category Interaction Assumption of MaStA):

The interaction between the different categories of I/O accesses is not

significant; that is, the cost of running the I/O stream generated by a given

recovery mechanism is not significantly different from the sum of the costs of

running the streams of each I/O cost category separately.

The workloads generated from OO1, OO1b, MOB and OO7 are executed on AISP,

the LSD and DataSafe, recording traces of the I/O operations performed (Figure 6.3).

Each I/O trace is then ordered by MaStA I/O cost category (database reads, log writes,

etc.) to produce a set of ordered traces. The original traces and the ordered traces are

then run on the raw partitions to measure the I/O costs. The hypothesis is justified if

84

the relative costs of running the ordered traces generated from any two recovery

mechanisms for a given workload reflect the relative costs of running the

corresponding original I/O traces. In other words, if the cost of the original I/O trace

generated from a mechanism is less than the cost of the original I/O trace generated

from another mechanism, then this should also be true of the ordered I/O traces

generated from the two mechanisms.

ordered I/O costsoriginal I/O costs

OO1, OO1b, OO7 & MOB workloads

I/O traces

ordered I/O traces

original & ordered I/O traces

device(s)

comparisons

AISP DS LSD

Figure 6.3: Costs Measured to Validate the Cost Category Interaction

Assumption

6 . 4 . 1 Results

The average costs of running the original and the ordered I/O traces on the

configurations of the Sun and the Alpha are given in Appendix C.2. As an example,

the graphs in Figure 6.4 illustrate the costs of running the original and ordered I/O

traces of MOB on the configuration of the Sun. Analysis of all the results in

Appendix C.2 indicates that the average variation between the cost of running an

ordered I/O trace and the cost of running the corresponding original I/O trace is 2.1%.

The largest cost variation observed in all the measurements recorded, is on the

configuration of the Sun running MOB on DataSafe - the cost of running the original

trace generated by the updateTrans query is 15.3% lower than the corresponding

ordered I/O trace (DS graph in Figure 6.4). The variation may be caused by seeks

incurred in the original trace to move the device head to the end of the log when

transactions commit, in contrast to the ordered trace, where overall I/O costs are

reduced since seeks to the end of the log are avoided during the log writes.

85

LSS I/O costs (secs)

0 100 200 300 400 500 600

setup
scan

Rtrans
randomScan

updateTrans
RWtrans

randRWtrans
scan2

Rtrans2
randomScan2

DS I/O costs (secs)

0 100 200 300 400 500 600

setup
scan

Rtrans
randomScan

updateTrans
RWtrans

randRWtrans
scan2

Rtrans2
randomScan2

AISP I/O costs (secs)

0 100 200 300 400 500 600

setup
scan

Rtrans
randomScan

updateTrans
RWtrans

randRWtrans
scan2

Rtrans2
randomScan2

Original Traces Ordered Traces

Figure 6.4: Costs of the Original and Ordered I/O Traces of MOB on the Sun

Further analysis reveals that in 164 of the 192 cases, the cost of running the ordered

I/O traces generated from any two recovery mechanisms for a given workload reflect

the relative costs of running the corresponding original I/O traces. For example, the

costs of running the original I/O trace generated from AISP executing readTrans2

(MOB) on the configuration of the Alpha (135.01 seconds) is lower than the cost of

the original I/O trace generated from the LSD (155.88 seconds). This is also true of

the costs of running the corresponding ordered I/O traces (134.72 and 155.71

respectively).

86

Out of the 28 results where the costs of the two ordered I/O traces do not reflect the

relative costs of the two original I/O traces, 23 of the cases may be ignored since there

are less than 2% variation in the costs of each pair of original I/O traces. In other

words, the difference between the costs of the original I/O traces is sufficiently small

that it does not matter that the ordered traces do not reflect order of the original traces.

The 5 remaining results may be accounted for by similar reasons to why the ordered

I/O trace and the original I/O trace of updateTrans (MOB) on the Sun vary

significantly.

The results verify that for most of workloads executed, there is no significant variation

between the cost of running an original I/O trace and the corresponding original I/O

trace. The justification of this hypothesis strengthens the approach used in MaStA to

calculated I/O costs, i.e. each I/O operation performed by a recovery mechanism is

categorised and the cost of each category is calculated independently.

6.5 Validation of the Access Pattern Cost Assumption

The requirement of this procedure is the justification of the hypothesis (the Access

Pattern Cost Assumption of MaStA):

To make predictions of the relative costs of recovery mechanisms for all

workloads, it is sufficient to assign a predicted average cost to each I/O access

pattern.

Each operation in the original I/O traces recorded in Section 6.4 is assigned the

appropriate predicted I/O cost according to the predicted I/O access pattern performed

(Figure 6.5). For example, in DataSafe, log writes are believed to be performed

sequentially and so each log write recorded in a trace generated from DataSafe is

assigned the predicted cost of a sequential write. The predicted costs of the I/O access

patterns on the configurations of the Sun and the Alpha are measured as described in

Section 4.4.1 (Appendix B). Assigning a predicted cost to each operation recorded in

the I/O traces results in a predicted I/O cost for each workload running on each

recovery mechanism and platform.

The hypothesis is justified if for each pair of recovery mechanisms, where the

variation in the total costs of executing a given workload is significant, the predicted

I/O costs can be used to select the mechanism that incurs the lower total cost. Similarly

to Section 6.3, the variation in the total costs of two mechanisms is considered

significant if the variation is greater than 5% of the lower total cost. There are 103

such variations in the workloads executed.

87

total real costs

predicted costs of
I/O patterns
(Appendix B)

predicted I/O costs

X

I/O traces

predictions

Figure 6.5: The Strategy Used to Validate the Access Pattern Cost Assumption

6 . 5 . 1 Results

The predicted I/O costs and the total real costs used in this validation procedure are

given in Appendix C.3. Analysis indicates that in 100 of the 103 comparisons of

recovery mechanisms where there is a significant total cost variation, the predicted I/O

costs could be used to predict which mechanism incurs the lower total cost.

The three inaccurate total cost predictions result from comparing AISP and DS

executing both insert (OO1b) and Q8 (OO7) on the configuration of the Sun, and

from comparing DataSafe and the LSD executing T6 (OO7) on the configuration of

the Alpha. These results may be accounted for by the fact that these workloads access

data that has not been updated. For example, in OO1b on the configuration of the

Alpha the prediction that DataSafe incurs lower total costs than AISP for the insert

query is incorrect (Table 6.1). This is because in MaStA, database reads incurred by

AISP are assigned unclustered costs under the assumption that the original clustering

of pages is lost, when in fact AISP also incur clustered database reads in this

particular workload. Clustered database reads are incurred because insert is the

first update query executed against the OO1b database and hence the original

clustering of the data accessed by insert has not yet been lost. This causes the

predicted I/O costs of AISP to be higher than the predicted cost of DataSafe. If AISP

is assigned both clustered and unclustered database reads for insert the predicted

cost of the mechanism is lower than the predicted cost of DataSafe and a correct

prediction is made. Similar reasons account for the other two inaccurate cost

predictions.

88

If the results of this procedure are analysed for only those pairs of recovery

mechanisms where there is > 13% variation in total costs, then the predicted I/O costs

can be used to produce 100% accurate comparisons of total real costs.

Sun
AISP DataSafe LSD

Workloads Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

lookup (OO1b) 1309.86 1365.05 1323.71 1191.78 1316.94 1448.49

scan (OO1b) 25.14 25.68 24.93 22.45 25.08 27.23

traverse (OO1b) 80.20 84.33 80.93 73.64 80.30 89.46

insert (OO1b) 85.89 82.04 95.07 81.87 76.63 74.13

insertLarge (OO1b) 784.19 734.25 870.97 764.76 698.33 644.45

update (OO1b) 688.81 646.44 717.13 698.26 590.35 556.92

lookup2 (OO1b) 3159.59 3089.97 2893.52 2697.57 3696.46 3278.86

scan2 (OO1b) 73.64 63.33 52.45 55.29 81.64 67.19

traverse2 (OO1b) 89.81 83.02 79.70 72.50 104.66 88.07

Table 6.1: Predicted I/O Costs (secs) and Total Real Costs of OO1b on the Sun

The results verify that to make qualitatively accurate cost comparison using MaStA, of

recovery mechanisms executing workloads that exhibit significant total cost variations,

it is sufficient to assign an average cost to each I/O access pattern.

6.6 Validation of the Workload Assumption

The requirement of this procedure is the justification of the hypothesis (the Workload

Assumption of MaStA):

The cost of running the I/O stream generated by an application is approximately

the same as running the I/O stream generated by the workload abstraction.

This procedure essentially validates that workload is correctly modelled. The strategy

used to validate this hypothesis is illustrated in Figure 6.6. The workloads generated

from OO1, OO1b, OO7 and MOB are characterised by a number of workload

variables. These variables are used to drive a synthetic workload generator that

produces workloads with similar numbers of data reads and writes, and similar

locality properties to the original applications. The I/O costs of executing the synthetic

workloads (synthetic I/O costs) on each recovery mechanism are measured. These

costs are compared with the total real costs of the original workloads recorded in

Section 6.3.

The hypothesis is justified if for each pair of recovery mechanisms, where the

variation in the total costs of executing a given workload is significant (> 5%), the

89

synthetic I/O costs can be used to select the mechanism that incurs the lower total cost.

There are 103 such variations in the workloads executed.

total costs
of real workloads

I/O costs of synthetic
workloads

workload
variables

synthetic workload
generator

synthetic workloads
(database reads and writes)

workloads from OO1, OO1b, OO7 and MOB
(database reads and writes)

workload
analyser

predictions

AISP DS LSD

Figure 6.6: The Strategy Used to Validate the Workload Assumption

6 . 6 . 1 Characterising Workload

The number of variables used to characterise workloads are kept to a minimum to

ensure that the design and implementation of the synthetic workload generator are

tractable. At the same time the variables have sufficient expressive power to ensure

that the synthetic I/O costs are accurate enough to predict the relative total costs of

recovery mechanisms for a given workload. The variables used to characterise

workloads are given in Table 6.2. The workload analyser makes use of the variables

cache and the knowledge that the recovery mechanisms employ LRU page

replacement strategies, to calculate the values of read and readRecent.

In the definitions of readFaultLoc, two logical database pages are considered near to

one another if they are less than 1920 logical pages (15 MB) apart. This value is

chosen to reflect the size of the disk partition used to measured clustered I/O

(Appendix B).

90

Note that the variables used here assume that transactions are executed serially, as is

the case in the workloads used in this validation procedure. Applications exhibiting

concurrent behaviour may be accommodated by adding transaction behaviour

variables to the workload abstraction. These may be, for example, the average number

of concurrently executing transactions and the average number of concurrent

transactions that access and update the same page.

Workload Variables Description

read the number of read operations performed

readRecent the number of reads that access data already in the cache
(no page faults incurred)

readFaultLoc the number of page faults in which the database page
accessed is logically near the previously faulted page

update the number of write operations performed

firstUpdate the number of read operations performed before the first
write operation

updateTrans the sum of the number of update performed by each
transaction on pages already updated by the transaction

updateTemp the number of pages updated by a transaction that have
been updated by a previous transactions

commit the number of commit operations

db the size of the virtual database in bytes

cache the size of the cache in bytes

page page size in bytes

Table 6.2: Workload Variables Used to Characterise Workloads

6 . 6 . 2 Synthetic Workload Generator

The synthetic workload generator takes as input, values for the variables in Table 6.2

and produces workloads consisting of database access, update and commit operations.

The generator uses a probabilistic approach to determine whether each access

generated is a read or write, and to select the database page accessed by each

operation.

• An operation is a read if the number of operations generated so far in a

workload is < firstUpdate. Otherwise, an operation has a read/(read + write)

probability of being a read, otherwise it is a write.

• If a read operation is generated, the probability that the page accessed by the

operation has been read recently is readRecent/read, and hence the operation

does not cause a page fault. If a read operation is generated to cause a page

91

fault, the probability that the faulted page is near the previously faulted page is

readFaultLoc/(read - readRecent).

• If a write operation is generated, the probability that the operation changes a

page already updated by the current transaction is updateTrans/update. If so, a

page already updated by the transaction is randomly selected. If not, the

probability that the operation updates a page changed by a previous transaction

is updateTemp/(update - updateTrans).

• A commit operation is performed every ((read + update)/commit) operations.

The standard library function random was used to produce the random values

required by the synthetic workload generator.

6 . 6 . 3 Results

The average I/O costs of the synthetic database workloads and the total costs of the

original workloads executing on the three recovery mechanisms and the two platforms

are given in Appendix C.4. The costs of each pair of mechanisms executing a given

workload are analysed to determine if the relative order of the synthetically produced

I/O costs reflect the relative order of the total real costs. Analysis indicates that in 101

of the 103 comparisons of recovery mechanisms, the synthetic I/O costs could be used

to predict which mechanism incurs the lower total cost.

The two inaccurate predictions occur when AISP and DataSafe executing update

(OO1b) on the configuration of the Alpha are compared and when the same

mechanisms executing lookup2 (OO1b) on the Sun are compared. No satisfactory

explanation can be found for these two results. In future work, such results may be

corrected by incorporating more workload variables, for example, to develop a more

accurate model of workload locality.

If the results of this procedure are analysed for only those pairs of recovery

mechanisms where there is > 10% variation in total costs, then the synthetic I/O costs

can be used to produce 100% accurate comparisons of total real costs.

6.7 Accuracy of MaStA

Having validated the assumptions of MaStA, a final procedure is performed to show

that the costs produced using the model are sufficiently accurate to provide good

qualitative comparisons of the costs of recovery mechanisms. In other words this

procedure is required to verify that mechanism, application workload and platform are

accurately modelled in MaStA. The strategy used in this procedure is illustrated in

92

Figure 6.7. The workload variable values measured in Section 6.6, and the average

cost of each I/O pattern recorded in Appendix B are used to drive the MaStA cost

models of AISP, DataSafe and the LSD developed in Chapter 3. The resulting I/O

cost predictions are analysed to determine if for each workload and for each pair of

recovery mechanisms where there is > 5% variation in total costs of executing the

workload, the predicted I/O costs can be used to select the mechanism with the lower

total cost.

total real costs of workloads
predicted I/O costs of

workloads

MaStA

predictions

costs of I/O patterns
(Appendix B)

MaStA cost
models

(Chapter 3)

workload variable values

AISP DS LSD

Figure 6.7: The Strategy Used to Show the Accuracy of MaStA

6 . 7 . 1 Results

Appendix C.5 gives the average real total costs and the I/O cost predictions made

using MaStA configured for the Alpha, the Sun and with a uniform I/O cost. Analysis

indicates that in 102 of the 103 comparisons of recovery mechanisms where there is a

significant total cost variation, the predicted I/O costs could be used to predict which

mechanism incurs the lower total cost.

The failure occurs when the costs of DataSafe and the LSD executing T6 (OO7) on the

configuration of the Alpha are compared - the prediction that DataSafe incurs lower

total costs than LSD is incorrect. In MaStA, database reads incurred by the LSD are

assigned disk costs, when in fact the LSD also incurs clustered database reads in this

workload since T6 accessed data which has not yet been updated. This causes the

predicted I/O cost of the LSD to be higher than the predicted cost of DataSafe. If the

LSD is assigned clustered database reads for T6 the predicted cost of the mechanism is

lower than the predicted cost of DataSafe and a correct prediction is made.

93

Further examination of the results highlights the necessity to configure I/O access

patterns against the platform being used by the fact that the same database workload

may suit different recovery mechanisms on different platforms. For example, the best

recovery mechanism on the configuration of the Sun for the RWtrans (MOB) query

is the LSD, whereas the best mechanism for this workload on the configuration of the

Alpha is DataSafe.

The cost comparisons made using the predicted I/O costs are 100% accurate for pairs

of recovery mechanism where the total cost variation is greater than 6% of the lower

total cost.

6 . 7 . 2 Comparison with Uniform Cost Models

Early analytical models of recovery mechanisms use uniform I/O costs to predict the

costs of recovery mechanisms. The MaStA model on the other hand is designed to

make cost predictions taking into account the differences between the costs of various

I/O access patterns. The accuracy of this technique is highlighted by comparing the

results of this procedure with MaStA cost predictions made using a uniform I/O cost

(Appendix C.5). When each access pattern in MaStA is assigned a uniform cost the

accuracy of the resulting predictions are poor. In fact, for each pair of recovery

mechanisms where there is a significant total cost variation of executing a given

workload, the mechanism with the lower total cost is predicted in only 35 of the 103

comparisons. The poor results are caused by AISP and the LSD performing the same

number of I/O operations for all workloads. Assigning a uniform cost to these

operations results in equal cost predictions for the mechanisms, thus providing no

useful comparisons. Furthermore, for all update workloads used in this procedure

DataSafe performs higher numbers of I/O operations than AISP and the LSD.

Therefore in a uniform I/O cost model DataSafe is always predicted to incur the

highest I/O costs.

6 . 7 . 3 Conclusions

The requirement of this procedure is to show that the costs produced using the MaStA

I/O cost model can be used to provide good qualitative predictions of the I/O costs of

recovery mechanisms. The results indicate that this is the case for the majority of

workloads where total cost variations on different recovery mechanisms are

significant.

94

6.8 Conclusions

In this chapter the assumptions that support the abstractions of MaStA are justified by

four validation procedures. The procedures execute database workloads generated

from a number of benchmarks and synthetically generated workloads on various

recovery mechanisms and various platform configurations. The CPU and I/O costs of

the workloads are measured and traces of the database accesses and I/O operations

performed are recorded. Justification of the assumptions consists of analysing these

costs and traces for each assumption. The results of the analysis suggest that each

assumption holds for the majority of workloads where there are significant variations

in the total costs of using different mechanisms.

A distinguishing feature of the MaStA model is that it differentiates between various

patterns of I/O accesses. The necessity to distinguish between I/O access patterns is

highlighted by comparing predicted costs produced using MaStA configured for real

platforms against costs predicted using a uniform I/O cost. When the model is

configured with a uniform cost it cannot distinguish between the costs of mechanisms

that perform the same number of I/O operations. The importance of distinguishing I/O

access patterns is further highlighted by the fact that the best mechanism for a

particular workload may vary across different platforms, depending on the relative

costs of the I/O access patterns.

By justifying the assumptions and illustrating that MaStA can produce sufficiently

accurate cost comparisons of recovery mechanisms, this chapter has shown that

MaStA is suitable for use in a flexible database architecture such as Flask to choose

the mechanism that incurs the lowest cost for a given application and platform.

95

7 Worked Example of the Flexible Architecture

7 .1 Introduction

In Chapter 4 a new analytical model for recovery mechanisms called MaStA was

described. A worked example is now provided to illustrate how MaStA may be used

to choose an appropriate recovery mechanism. The example describes the design of a

database of information and two applications that use the information. MaStA is used

to configure two instantiations of Flask on which the applications are executed. This

involves characterising the database and each application using MaStA’s workload

variables, configuring the model against the execution platforms and selecting the

mechanism with the lowest predicted I/O costs. The applications are also executed on

each mechanism and measured to verify the choices of mechanisms.

7.2 Scenario

A bank and a building society each wish to maintain a database of information about

customers indexed by account number. For each customer, the database must record a

name, a date of birth, an address, an account balance and for security purposes an

image. Each database will be maintained by a server to which multiple clients may

send transactions to be executed serially. The databases are required to record

information on 65000 customers. Figure 7.1 depicts the scenario.

FlaskFlask

Building Society

transactions:
95% read-only

5% update

Bank

transactions:
5% read-only
95% update

MaStA

Sun &
Hawk disk

Alpha &
Barracuda disk

AAA
AAAAISP

AAA
AAADS

AAA
AAALSD

recovery
mechanisms

index

Database Design

customers

MaStA

ApplicationApplication

Figure 7.1: Using MaStA in a Worked Example

96

Each company has provided a prediction of the style of transactions that will execute

over its database. The building society predicts that 95% of transactions executing

against its database will be read-only and each transaction will retrieve information

about a single customer chosen at random. The remaining 5% will update the balances

of two customers chosen at random. The bank predicts that 5% of transactions will be

read-only transactions and 95% will be update transactions. The two applications are

designed in this scenario to exhibit widely varying workloads to emphasise the

effectiveness of MaStA to choose the appropriate recovery mechanism for different

workloads.

The database servers are implemented in Napier88 and executed on the Flask

architecture to take advantage of the flexible recovery management. Flask is

configured with AISP, DataSafe or the LSD mechanism developed in Chapter 3.

MaStA is used to choose between these mechanisms for each application.

The bank has a Sun SPARCStation ELC running SunOS 4.1.3 with 48 MB main

memory, a 500 MB CDC Wren V SCSI drive dedicated to the operating system and a

500 MB partition on a 2.1 GB Seagate ST32151N Fast SCSI-2 (Hawk 2XL). The

building society has a DEC Alpha AXP 3000/600 running OSF/1 V3.2 with 128 MB

main memory, a 1 GB DIGITAL RZ26 SCSI drive dedicated to the operating system

and a 500 MB partition on a 2.1 GB Seagate ST12550N SCSI drive (Barracuda II).

These particular platforms are chosen for this scenario since the MaStA I/O access

patterns (sequential read, ordered write, etc.) have already been measured

(Appendix B). If other platforms had been used, MaStA would have been calibrated

against them by performing the I/O access pattern experiments described in

Section 4.4.1.

7.3 Database Design

The databases accessed by the bank and the building society are composed of a

number of customer records indexed using a B+tree. Each customer is represented by

a Napier88 structure instance of type:

type Customer is structure
(balance : int ;

name : string ;
address : string ;
picture : image ;
age : int)

Napier88 creates five objects to compose a structure instance of type Customer :

• customer structure instance (this includes the balance and age fields)

97

• name string

• address string

• image descriptor

• image bitmap

Knowledge that each Customer is represented by five objects is used in Section 7.4

to characterise the workloads of the company’s applications. Each node of the B+tree

used to index customers is created from an instance of the type:

rec type Node is structure
(entries : int ; !number of subtrees

leaf : bool ; !indicates a leaf node
indices : * int ; !a vector of index values
pointers: * Pointer) !a vector of pointers to

!variants of type Pointer
&
Pointer is variant
(next : Node ; !points to either another

value: Customer) !B +tree Node or to a Customer

Three objects are created in Napier88 to compose each node of the B+tree: a Node

structure instance, a vector of integers index values and a vector of Pointer variants

to point to either Node or Customer values.

The database is generated by first building a B+tree sufficiently large to index 65000

customers and then creating each customer in index order. The index is built first to

ensure that indexing information exhibits good spatial locality in the database thereby

potentially reducing read costs for the index. An order-4 B+tree is used. This means

that each node of the B+tree contains between 3 and 7 pointers to other nodes or to

customer records. Using an order-4 B+tree requires approximately 16000 nodes to

index the 65000 customer records.

The layout of the database is illustrated in Figure 7.2. The sizes of the areas of the

database required to hold the various objects are estimated from the numbers and sizes

of objects created.

index

~3 MB ~256 MB ~9 MB

customer bitmaps other customer objects

Figure 7.2: Layout of Objects in the Database

98

7.4 Characterising Workloads

To produce I/O cost predictions using MaStA for AISP, DataSafe and the LSD, the

applications are analysed to determine the values assigned to the MaStA workload

variables described in Table 4.3.

7 . 4 . 1 The Building Society’s Workload

The predicted workload of the building society is analysed using 40000 transactions.

This number of transactions is assumed to be sufficiently large to accurately represent

the characteristics of the application when it is executing continuously on the three

recovery mechanisms available. The analysis is broken down by calculating the

contribution to each workload variable made by three sets of objects: indexing

information, customer bitmap objects and the remaining objects composing customer

records. Analysis is performed in this manner to reflect the layout of these objects in

the database (Figure 7.2).

Since the B+tree index is accessed frequently, it is assumed that each page (8 Kbytes)

containing nodes of the index is faulted only once and remains in the database cache

(8 MB). Hence it is assumed that the minimum number page faults, i.e. 384 faults,

are incurred when accessing the 3 MB (384 pages) of indexing information, and that

good locality (90%) is observed of these faults. The workload values attributed to

reading indexing information are estimated to be:

read = 48000 (16000 Nodes * 3 objects)

readRecent = 47616 (read - page faults)

readFaultLoc = 346 (90% of page faults)

A total of 42000 customers are accessed (95% of 40000 transactions * 1 customer +

5% of 40000 transactions * 2 customers), requiring 42000 read to access the

corresponding bitmap objects. Since accesses to the bitmaps are sparse, readRecent is

assigned 0, i.e. each bitmap access causes a page fault.

The customer structure instance, name, address and image descriptor objects of a

customer contribute 168000 to read (42000 customers * 4 objects). The objects of a

particular customer are assumed to reside on the same page. Therefore readRecent is

assigned 126000 (3/4 * read) since three out of four read for each customer, access the

same page. Since a number of customer records reside on each database page some

degree of temporal locality (10%) is assumed in customer accesses. Therefore an

additional 4200 (10% of 42000 customers) is assigned to readRecent.

99

Due to the unclustered nature of this workload, it is assumed that the degree of spatial

locality of customers accessed is poor: only 10% of page faults are clustered. Hence

customer bitmap accesses contribute 4000 to readFaultLoc (10% of read - readRecent

for bitmaps). The value of readFaultLoc for accessing other customer objects is 3360

(10% of read - readRecent for the other customer objects).

The building society predicts that 5% of transactions update the balances of the

customer records they access. It is assumed that the objects containing the balances of

the two customers updated by each transaction are held on different pages and hence

two pages are updated by each transaction. An additional three pages are updated for

each transaction commit to record Napier88 overheads.

update = 10000 (2000 update transactions * 5 pages)

updateTrans = 0

Workload Variables Values
read 258000 pages

readRecent 177816 pages
readFaultLoc 8018 pages

update 10000 pages
updateTrans 0 pages
updateLoc 5%

commit 2000
propWrite 4488 pages

propWriteFinal 512 pages
page 8192 bytes

mapEntry 8 bytes
root 1
db 270 MB

Table 7.1: Variable Values for the Building Society’s Workload

The temporal locality of the pages updated by transactions is assumed to be high since

these pages contain customer balances that are frequently updated, and hence

infrequently chosen for replacement in the cache. Therefore it is assumed that a high

proportion of pages (50%) updated in the cache by transactions are updated again by

other transactions before being propagated to the database in the DataSafe mechanism.

propWriteFinal = 512

propWrite = 4488 ((50% of update) - propWriteFinal)

The value of propWriteFinal is estimated to be 50% of the size of the database cache

(1024 pages) used by the recovery mechanisms. Table 7.1 provides a summary of the

100

workload variable values used to characterise the predicted database workload of the

building society.

7 . 4 . 2 The Bank’s Workload

The database workload predicted by the bank is analysed using 20000 transactions, as

opposed to the 40000 transactions of the building society to make the workloads

generated from the two applications comparable. The workload variable values for

reading indexing information in the bank’s application are assumed to be similar to

those of the building society’s.

A total of 39000 customers (5% of 20000 transactions * 1 customer + 95% of 20000

transactions * 2 customers) are accessed with similar degrees of temporal and spatial

locality to the building society’s predicted workload. The workload values attributed

to reading indexing and customer information are:

read = 48000 (for index objects)

+ 39000 (for customer bitmaps)

+ 156000 (39000 customers * 4 objects)

readRecent = 47616 (for index objects)

+ 0 (for customer bitmaps)

+ 120900 (39000 customers * 4 objects * 3/4 +

10% of 39000 customers)

readFaultLoc = 346 (for index objects)

+ 7253 (10% of read-readRecent for all customer objects)

In the bank’s predicted workload 95% of transactions update the balances of the

customer records they access and similarly to the building society’s workload each

transaction updates 5 pages.

update = 95000 (19000 update transactions * 5 pages)

updateTrans = 0

101

Workload Variables Values
read 243000 pages

readRecent 168516 pages
readFaultLoc 7448 pages

update 95000 pages
updateTrans 0 pages
updateLoc 5%

commit 19000
propWrite 46732 pages

propWriteFinal 768 pages
page 8192 bytes

mapEntry 8 bytes
root 1
db 270 MB

Table 7.2: Workload Variable Values for the Bank’s Workload

Similarly to the building society’s workload 50% of pages updated in the cache by

transactions are assumed to be updated by other transactions before being propagated

to the database in the DataSafe mechanism.

propWriteFinal = 768

propWrite = 46732 ((50% of update) - propWriteFinal)

The value of propWriteFinal is estimated to be 75% of the size of the database cache

(1024 pages) - a higher percentage than the building society since a higher proportion

of the pages accessed are updated. The values assigned to the workload variables for

the bank are summarised in Table 7.2.

7.5 Utilising MaStA

In addition to providing values for the MaStA workload variables, the I/O access

patterns used in MaStA must be configured against the platforms on which the

databases are maintained. In this scenario the companies make use of the

configurations of the Sun and the Alpha employed in earlier chapters. Therefore the

I/O access patterns of MaStA are configured with the values recorded in Appendix B.

Table 7.3 and Figure 7.3 give the I/O costs obtained from evaluating MaStA for

AISP, DataSafe and the LSD using the workload variable values given in Tables 7.1

and 7.2 and the I/O access pattern costs of Appendix B. The workload functions used

are those developed in Chapter 4. The results suggest that for the bank, Flask should

be configured with the LSD to provide the best performance and that for a marginal

102

gain in performance the architecture should be configured with DataSafe for the

building society. Table 7.3 also gives the I/O costs obtained for the two applications

when MaStA is configured with a uniform I/O cost. The values in Table 7.3 highlight

that the use of a uniform I/O cost generates cost predictions that do not distinguish

between mechanisms that incur the same number of I/O operations (AISP and the

LSD).

I
/
O

C
o
s
t

P
r
e
d
i
c
t
i
o
n
s

(
s
e
c
s
)

0

1000

2000

3000

4000

Bank Building
Society

AISP DS LSS

I
/
O

C
o
s
t

P
r
e
d
i
c
t
i
o
n
s

(
s
e
c
s
)

0

4000

8000

12000

Bank
(Uniform)

Building
Society

(Uniform)

Figure 7.3: Predicted I/O Costs (seconds) Calculated Using MaStA

Application AISP DataSafe LSD
Bank 3534 3197 2752

Building Society 1020 1007 1027
Bank (Uniform) 7153 6825 7153

Building Society (Uniform) 2443 2410 2443

Table 7.3: Predicted I/O Costs (seconds) Calculated Using MaStA

7 .6 Verification of Cost Predictions

To verify the choices of mechanisms made using MaStA, the workloads were

generated and executed on each recovery mechanism available. The database and the

applications used to generate the workloads are implemented in Napier88 and executed

on instantiations of Flask configured with the different recovery mechanisms

available. The code for maintaining the B+tree index, building the database and the

103

code for the two applications that generate the workloads are included in Appendix D.

The bank’s application executes 20000 transactions and the building society’s

application executes 40000 transactions, the same numbers of transactions as analysed

in Section 7.4.

For each recovery mechanism, the database is built and each application executed six

times. The elapsed execution time of each application is averaged over the last three

executions of the application. Only the last three executions are taken into account to

ensure that any effects on I/O costs of the recovery mechanisms are shown in the

results. Elapsed execution costs are measured using the UNIX/OSF time command

and with the platforms in single user mode. Table 7.4 contains the average total

execution costs in seconds of each application executing on the three recovery

mechanisms.

Application AISP DataSafe LSD
Bank 5314 4249 3736

Building Society 1597 1499 1575

Table 7.4: Total Real Costs (seconds) of the Applications

The results concur that the LSD should be used to provide the best performance for

the bank’s application and that DataSafe should be used for the building society.

Furthermore, the results confirm that the next best mechanism for the bank is

DataSafe. On the other hand the predicted costs (Table 7.3) are not sufficiently

accurate to predict that the next best mechanism for the building society is the LSD

which incurs lower costs than the AISP mechanism. Since there is only a marginal

variation in the total costs of using these two mechanisms for this particular workload

(1.4%) there would be no significant effect on the performance of the building

society’s database of choosing the LSD over the AISP mechanism.

7.7 Conclusions

Previous chapters have introduced and validated a new analytical cost model for

recovery mechanisms called MaStA. This chapter has attempted to illustrate the utility

of the model in the flexible Flask architecture and to promote confidence that MaStA

produces sufficiently accurate cost predictions to be effective in such an architecture.

A scenario is described in which two companies predict the transaction workloads that

will be executed on their databases held on different platforms. Analysis of the

workloads is performed by studying the layout of the database and estimating the

values that should be assigned to the MaStA workload variables. MaStA is then used

to predict with which recovery mechanisms Flask should be configured to provide the

104

best performance for each application. The total cost of executing each workload on

each mechanism available is then measured. Analysis of the real and predicted costs

indicates that MaStA predicts the I/O costs of the schemes with sufficient accuracy to

choose the mechanism that incurs the lowest total cost for each application.

The use of MaStA to successfully configure recovery management to obtain good

performance goes some way towards validating the thesis that analytical techniques

may be employed to configure database management systems to increase performance.

105

8 Conclusions

The rapid expansion of electronic commerce and communications have put ever

increasing demands for performance on computer systems. How can one determine if

a system is executing efficiently? The many layers of abstraction present in modern

systems - the application, operating system, networks, platform - make understanding

the behaviour of such systems a complex task. Past studies have used empirical

measurement techniques [KGC85, CS92, CDN93] on executing systems to determine

whether optimisations enhance performance. Another technique is to develop

simulations of systems to predict behaviour. Both empirical and simulation based

analysis tend to be expensive in terms of programming, debugging and validation. A

cheaper and less time consuming alternative is to employ analytical modelling to

predict performance [Reu84, AD85].

The thesis of this work is that analytical modelling can be used to accurately configure

recovery in database management systems to provide optimum performance for any

application and platform. A new analytical model was developed to compare recovery

mechanisms. In addition, two new recovery mechanism were incorporated into an

existing flexible architecture to provide a basis on which the model could be validated.

Validation of the model involved executing synthetic database workloads over various

mechanisms and, by analysis of the results obtained, justifying the assumptions which

underly the model. The utility of the model was then illustrated by a worked example

in which MaStA was used to configure Flask to provide the best performance for

different database applications.

8.1 Cost Prediction

In order to configure recovery management in a DBMS a technique is required that

allows the costs of recovery mechanisms to be compared for any application and

platform. This work adopted an analytical approach to provide cost predictions of

recovery mechanisms. The MaStA I/O cost model presented increases the accuracy of

cost predictions over existing models by taking into account variations in the patterns

of I/O accesses performed by recovery mechanisms such as the difference between

sequential and synchronous unclustered I/O. This is in contrast to early studies of

recovery mechanisms which often used a uniform I/O cost. MaStA divides the

problem of producing cost predictions into three abstractions:

• the behaviour of recovery mechanisms;

• workload characteristics;

106

• and platform characteristics.

The behaviour of each recovery mechanism is captured in the model by categorising

the I/O operations incurred in terms of the movement of data between a database, a

cache and a log. By assigning the appropriate I/O access patterns to each category

dependent on the characteristics of the mechanism, the model ensures that the cost of

each category is configured for the mechanism. The number of I/O operations incurred

in each category is estimated using a workload model that takes into account

application characteristics that affect I/O. The accuracy of the model is attained by

calibrating the cost of each I/O pattern against the platform on which the application is

executed thereby ensuring that cost predictions are platform specific.

The modelling techniques used in MaStA are dependent on four assumptions. These

are:

• In applications where variations in total costs of using different recovery

mechanisms are significant, the variations in the CPU costs incurred are

insignificant compared to the variations in the I/O costs.

• The interaction between the different categories of I/O accesses is not

significant; that is, the cost of running the I/O stream generated by a given

recovery mechanism is not significantly different from the sum of the costs of

running the streams of each I/O cost category separately.

• To make predictions of the relative costs of recovery mechanisms for all

workloads, it is sufficient to assign a predicted average cost to each I/O access

pattern.

• The cost of running the I/O stream generated by an application is approximately

the same as running the I/O stream generated by the workload abstraction.

These assumptions were validated on a flexible architecture to ensure the accuracy of

the modelling techniques used.

8.2 Flexible Architecture

The Flask architecture was extended so that recovery management could be configured

with any one of a number of different mechanisms for a given application. This

provided a basis on which MaStA validation experiments could be performed and

provided an opportunity to illustrate the utility of MaStA in a flexible architecture.

107

Flask is an architecture that provides opportunities to independently configure

concurrency and recovery. This is achieved by separating these components in a

layered design in which concurrency is modelled in terms of the movement of data

between access sets and the database. Recovery management assumes that

concurrency control is performed at a higher layer in Flask and is responsible for

providing the access sets using any implementation.

The two new mechanisms developed for Flask in this work are DataSafe and a log-

structured mechanism, either of which can be used as an alternative to the after-image

shadow paging mechanism used in the first instantiation of Flask. DataSafe is a page-

based logging mechanism that exhibits considerable differences in behaviour from

those exhibited by the after-image shadow paging mechanism, and like shadow

paging is independent of concurrency ensuring that different models of concurrency

may be provided in Flask. The design of the log-structured mechanism differs from

the AISP in that writes to the log are performed in a sequential manner as opposed to

the shadow paging mechanism which performs writes in an ordered fashion to non-

contiguous blocks.

8.3 Validation

The validation strategy employed in this work was designed to verify that the

assumptions of MaStA are valid for a number of applications and recovery

mechanisms executing on various platform configurations. The strategy employed

Flask to execute database workloads generated from Napier88 using different

recovery mechanisms thus providing the opportunity to accurately compare the

mechanisms under identical workloads. The costs incurred by the mechanisms were

measured and traces of the I/O operations performed were recorded. These results and

traces were then analysed to validate the assumptions. The results of these analyses

suggested that the assumptions hold for the workloads, recovery mechanisms and

platforms employed. The validation analyses also highlighted the requirement to

distinguish between different patterns of I/O, by comparing results obtained from

MaStA configured for real platforms against the model configured with a uniform I/O

cost. It was found that in the latter case no accurate distinction could be made between

the recovery mechanisms employed in the validation strategy.

Having validated the assumptions of MaStA and promoted confidence that it produces

sufficiently accurate cost predictions the utility of the model within Flask was

illustrated by proof of concept. The scenario involved configuring Flask’s recovery

manager to provide the best performance for two database applications. The example

discussed how the applications were analysed to characterise their workloads. MaStA

108

was then configured against the platforms employed to execute the applications and

was used to predict the costs of each mechanism from which a choice of mechanism

was made for each application. The accuracy of the choices were verified by

configuring Flask with each mechanism available and measuring the execution of the

applications on each configuration. The results confirmed that MaStA is sufficiently

accurate to configure recovery management to provide optimum performance for a

given application and platform.

An observation that has come from validating the MaStA model is that the process of

performing experiments on real systems is both time and resource consuming. The

straightforward design of the validation strategy expanded into a test suite consisting

of more than 2000 experiments. These experiments required approximately 12 months

to design, program and to execute and were complicated by sources of interference

each of which required numerous experiment design iterations to eliminate. Having

performed the experiments an additional three months were required to analyse and

interpreter the results, and to determine how they should be portrayed understandably.

In terms of resources, the validation strategy required two the single user platforms to

execute the experiments and approximately 4 GB of disk space to hold the Napier88

system, instantiations of Flask, benchmark databases and queries, and traces.

8.4 Future Work

To reduce complexity in the initial design of MaStA the effects of concurrency were

omitted. This factor will be included in future developments in the model so that

applications exhibiting concurrent behaviour are accommodated. Modifications

required to achieve this include the development of new I/O categories and workload

variables to calculate costs such as the overheads of performing transaction aborts.

The cost of recovering a database after system failure was also omitted to reduce

complexity. The cost of providing for recovery during normal processing and the cost

of performing recovery after failure may not be easily combined into one useful value

for each application and mechanism since the relative importance of these two costs

depends largely on the style of application. These costs will therefore be calculated

separately allowing the costs to be analysed individually when making a choice of

mechanism for a particular application. Future investigation should also include

incorporating the wide range of object logging schemes used in database systems into

MaStA. This may involve the design and implementation of such schemes in Flask to

allow the validation of MaStA for object based mechanisms.

To show that the techniques developed in MaStA are applicable in commercial

environments future work will also investigate the inclusion of commercial databases

109

in the validation strategy to establish that the accuracy of the model is not dependent

on any attributes of Napier88. This may involve augmenting operating systems or

device drivers to obtain information about the resources consumed by these systems.

More challenging still will be the inclusion of architectures that make use of parallel

file systems [TW95] or RAID technology [PGK88] to increase I/O throughput.

This work has focused on choosing the best performing mechanism for a particular

application and linking the mechanism statically into a flexible architecture. It may also

be possible to use the model in a more dynamic manner. For example it may be

possible to embed the model in a recovery manager to analyse the workload of the

executing application. Results from the analysis may be used either by the user or

automatically to dynamically select the mechanism that provides the best performance

should the workload of the application change.

The analytical techniques developed here are not restricted to configuring flexible

recovery. It is conceivable that the techniques may also be used in the configuration of

many other aspects of computer systems where policy decisions must be made. These

may include:

• the selection of main memory and non-volatile storage garbage collection

techniques based on the application’s store usage;

• configuring operating system page swapping selection algorithms;

• and configuring distributed systems based on models of network message

loads.

8.5 Finale

The work presented in this thesis developed an analytical model for predicting the

costs of recovery mechanisms and through analysis and proof of concept

demonstrated that such a technique can be used to successfully configure recovery in

database management systems to provide the best performance. It is clear from this

work that no one mechanism can provide the best performance for all applications but

whether commercial organisations adopt such flexible approaches in their systems is

still to be seen. If they do it is hoped that the techniques developed here will prove

useful in configuring such systems.

110

Glossary

after-image. The after-image of an item is the value of the item once it has been

updated.

AISP. Acronym for after-image shadow paging.

availability interval. The potential number of I/O block transfers that may be

performed in the mean time between failures.

before-image. The before-image of a data item is the value of the item before it is

updated.

BISP. Acronym for before-image shadow paging.

clustered I/O. These are localised accesses that are synchronous and hence cannot

be ordered

DBMS. Acronym for database management system.

disk I/O . These are synchronous accesses that involve moving the access position

arbitrarily far on the device.

idempotent. The property of restart that a sequence of incomplete restarts followed

by a successful completion results in the same state as if the initial restart had

succeeded.

LSD. Acronym for log-structured database.

materialised database. The term describes the state of a database only, i.e. taking

no account of additional data which may be recorded during normal processing to

recovery the database to a consistent state.

no-redo. A recovery mechanism does not require redo if all a transaction’s updates

are written to the database before or when the transaction commits.

no-undo. A recovery mechanism does not require undo if it does not write

uncommitted updates in place in the database.

ordered I/O. These are I/O operations performed on sorted non-adjacent locations.

propagation. These are I/O operations required by some mechanisms to transfer

committed data to the database.

111

sequential I/O. These are I/O operations performed on contiguously increasing

positions.

redo. A mechanism is redo if it must propagate committed updates from the log to the

materialised database on restart.

transaction rollback. This involves removing from a database all updates made by

an aborting transaction.

unclustered I/O. These are synchronous accesses that involve moving the access

position arbitrarily far within the database.

redo. A mechanism is undo if it must remove uncommitted updates from the

materialised database on restart by copying before-images from the log.

112

Appendix A Recovery and Benchmark Configurations

A.1 Recovery Mechanism Configuration

Each recovery mechanism used in the validation procedures is configured with an

8 MB database cache composed of a number of cache slots. The state information of

each slot is recorded in a cache map composed of two word entries.

Each mechanism employs an LRU cache page replacement algorithm. This is

implemented by maintaining a flag in the cache map for each cache slot indicating

whether the slot has been accessed since the previous page selection, and a count of

the number of selections the slot has survived without being accessed. A cache slot’s

count is incremented during page selection if the page has not been accessed since the

previous page selection, otherwise the count is reset to zero. During page selection the

cache slot with the highest count value is chosen. Cached database pages are indexed

using an external overflow hash table.

In the experiments described in Chapters 6 and 7, AISP and the LSD make use of the

entire 500 MB raw partition available on each platform as a database. DataSafe splits

each partition available into two: a 300 MB partition for use as the database and a

200 MB partition for use as a safe.

A.2 Benchmark Configurations

The benchmarks described in Section 5.4.2 and used in the validation procedures

described in Chapter 6 have the following configurations.

OO1

A 20 MB database containing 20000 interconnected parts is used along with the

queries:

lookup : A set of 1000 random part identifiers is generated. 10 transactions

are then executed, each of which fetches the set of parts from the

database.

scan : All parts in the database are fetched once in index order.

traverse : 10 transactions are executed. Each transaction selects a part at

random and recursively traverses the connected parts, down to a

depth of 7 (total of 3280 parts, with possible duplicates). A null

procedure is called for each part traversed.

113

insert : 10 transactions are executed. Each transaction enters 100 new parts

into the database and commits. Each new part is connected to 3

other (randomly selected) parts.

insertLarge : Generates the same workload as insert, except that 100 transactions

are executed.

update : 500 update transactions are executed. Each transaction reads and

updates 10 parts chosen at random from a contiguous range of 10%

of the parts in the database. The index of the first part in each range

is chosen at random for each transaction.

lookup2 : Generates the same workload as lookup .

scan2 : All parts in the database are fetched once in index order.

traverse2 : Generates the same workload as traverse .

OO1b

A 50 MB database containing 40000 interconnected parts is used. A number of

alterations are made to the queries of the OO1 benchmark to produce the OO1b

benchmark. These are:

lookup : The number of random part identifiers generated is increased to

10000.

insert : The number of parts entered into the database by each transaction is

increased to 500.

insertLarge : The number of parts entered into the database by each transaction is

increased to 500.

update : The number of parts read and updated by each transaction is

increased to 40.

lookup2 : The number of random part identifiers generated is increased to

10000.

114

OO7

The small 20 MB OO7 database with the following configuration is used:

Parameter Value Parameter Value
numAtomicPerComp 50 numAssPerAss 3
numConnPerAtomic 3 numAssLevels 7
documentSize (bytes) 2000 numCompPerAss 3
manualSize (bytes) 100K numModules 1
numCompPerModule 500

The queries employed are:

T1: The assembly hierarchy is traversed, visiting the unshared composite parts of

each base assembly visited. As each composite part is visited, a depth-first

traversal is carried out on its subgraph of atomic parts.

T6: Traversal T1 is repeated, visiting only the root part of each composite part.

Q2: A range of build dates which contains the last 1% of the dates found in the

database’s atomic parts is chosen and these parts are retrieved.

Q8: All pairs of documents and atomic parts where the document identifier in the

atomic part matches the identifier of the document are found.

S2: The 5 most recently created composite parts are removed in their entirety,

including document objects and atomic part subgraphs.

MOB

A 75 MB database containing 18000 large parts (4096 bytes each) is used.

scan : All objects in the database are read once in index order.

readTrans : 1000 read-only transactions are executed. Each transaction reads

10 objects chosen at random from a contiguous range of

1800 objects (10% of the database). The index of the first object in

each range is chosen at random for each transaction.

randomAcc : 18000 objects chosen at random are accessed.

updateTrans : 1000 update transactions are executed. Each transaction reads and

updates 10 objects chosen using the selection algorithm used in

readTrans and commits.

115

RWtrans : 1000 update transactions are executed. Each transaction reads

10 objects, chosen using the selection algorithm used in

readTrans , updates the last object accessed and commits.

randRWtrans : 1000 update transactions are executed. Each transaction reads

10 objects chosen at random from the database, updates the last

object accessed and commits.

scan2 : Generates the same workload as scan .

readTrans2 : Generates the same workload as readTrans .

randomAcc2 : Generates the same workload as randomAcc .

116

Appendix B Calibrating MaStA I/O Patterns

The average cost of the I/O access patterns (sequential, ordered, clustered, unclustered

and disk) used in MaStA are calibrated by executing synthetic I/O traces of read and

write operations on raw disk partitions. The traces are recorded using the MaStA I/O

trace format (Section 5.4.4). The localities of the I/O operations recorded in the traces

are controlled to simulate the various access I/O patterns:

• Sequential I/O operations are simulated by performing I/O operations on

contiguous blocks on the raw partition.

• Clustered I/O operations are simulated by choosing at random 10% (1920) of

the blocks on a 15 MB partition and accessing the blocks in the random order.

• Unclustered and disk I/O operations are simulated by choosing at random 1920

blocks on a 150 MB partition and a 500 MB partition respectively and

accessing the blocks in the random orders.

• Ordered I/O operations are simulated by sorting the blocks used in unclustered

I/O traces and accessing the sorted blocks in order.

Each I/O trace is executed 5 times on a single-user system and timings are obtained

using the operating systems’ time commands. There was less < 2% variation between

the 5 runs of any synthetic I/O trace.

The average I/O access patterns are given in Table 4.6 as ratios of sequential reads.

The absolute values measured are given here as numbers of milliseconds per 8 Kbyte

block for use in Chapters 6 and 7.

I/O Access Pattern Alpha SPARCStation

Sequential reads (rseq) 2.47 3.34

Sequential writes (wseq) 3.97 3.34

Ordered reads (rasc) 9.41 9.10

Ordered writes (wasc) 5.86 8.56

Clustered reads (rclu) 9.43 13.50

Clustered writes (wclu) 7.70 12.56

Unclustered reads (runcl) 10.53 15.47

Unclustered writes (wuncl) 9.21 16.41

Disk reads (rdisk) 12.21 15.38

Disk writes (wdisk) 10.73 17.49

117

Appendix C Validation Results

C.1 Results of Validating I/O Assumption

In Section 6.3 the workloads of OO1, OO1b, MOB and OO7 are executed on the

AISP database, the LSD and DataSafe, on the Sun and the Alpha. The average I/O

costs and total costs (seconds) measured on the Sun are:

Sun
AISP DataSafe LSD

Workload Total I/O Total I/O Total I/O
lookup (OO1) 112.32 101.21 113.73 101.79 112.95 101.64

scan (OO1) 18.37 12.64 18.68 12.74 18.25 12.51

traverse (OO1) 27.55 23.21 27.86 23.29 27.36 23.02

insert (OO1) 24.84 21.74 23.92 20.13 20.90 17.76

insertLarge (OO1) 165.99 152.73 160.09 139.31 124.66 111.16

update (OO1) 170.85 160.15 148.12 131.74 119.74 108.61

lookup2 (OO1) 205.83 188.34 192.53 173.65 230.32 212.46

scan2 (OO1) 30.73 23.7 23.52 16.23 33.40 26.38

traverse2 (OO1) 28.24 24.01 26.73 22.27 31.27 27.04

lookup (OO1b) 1309.86 1206.17 1323.71 1210.71 1316.94 1207.44

scan (OO1b) 25.14 17.02 24.93 16.50 25.08 16.97

traverse (OO1b) 80.20 71.78 80.93 71.87 80.30 71.58

insert (OO1b) 85.89 77.67 95.07 84.93 76.63 68.20

insertLarge (OO1b) 784.19 721.85 870.97 790.90 698.33 633.61

update (OO1b) 688.81 648.91 717.13 661.97 590.35 548.34

lookup2 (OO1b) 3159.59 2934.80 2893.52 2649.21 3696.46 3458.29

scan2 (OO1b) 73.64 59.48 52.45 37.66 81.64 67.33

traverse2 (OO1b) 89.81 81.49 79.70 70.74 104.66 96.02

scan (MOB) 66.66 41.91 67.32 41.63 66.43 41.56

readTrans (MOB) 193.52 170.77 194.48 170.41 193.68 170.54

randomAcc (MOB) 368.70 328.91 370.23 328.00 368.78 328.16

updateTrans (MOB) 527.17 490.63 570.66 524.09 372.71 335.00

RWtrans (MOB) 371.33 342.99 324.73 290.91 317.75 288.25

randRWtrans (MOB) 372.79 344.25 335.22 301.15 323.90 294.16

scan2 (MOB) 160.53 135.80 67.37 41.65 166.12 141.12

readTrans2 (MOB) 218.84 196.09 194.75 170.68 236.84 213.67

randomAcc2 (MOB) 394.28 354.44 370.05 327.83 427.07 386.39

T1 (OO7) 61.95 50.89 62.85 51.34 62.12 50.86

T6 (OO7) 28.82 25.35 29.81 26.11 28.89 25.34

Q2 (OO7) 6.30 3.99 6.36 3.94 6.37 4.05

Q8 (OO7) 34.14 24.01 38.29 27.84 33.99 23.80

S2 (OO7) 11.41 8.27 10.26 6.99 11.34 8.19

118

The average I/O costs and total costs (seconds) measured on the Alpha are:

Alpha
AISP DataSafe LSD

Workloads Total I/O Total I/O Total I/O
lookup (OO1) 70.63 68.59 70.90 68.67 70.20 70.20

scan (OO1) 9.74 8.85 9.62 8.80 9.81 9.81

traverse (OO1) 17.05 16.39 17.08 16.41 16.65 16.65

insert (OO1) 15.27 14.86 15.21 14.72 13.87 13.87

insertLarge (OO1) 103.87 101.44 105.18 101.88 87.96 87.96

update (OO1) 103.08 101.27 94.11 91.69 81.50 81.50

lookup2 (OO1) 128.98 125.65 128.84 125.40 148.80 148.80

scan2 (OO1) 16.77 15.61 13.89 12.80 18.79 18.79

traverse2 (OO1) 16.86 16.18 16.24 15.57 19.19 19.19

lookup (OO1b 843.05 820.60 840.70 817.98 838.20 838.20

scan (OO1b) 13.08 11.75 12.94 11.69 13.08 14.71

traverse (OO1b) 51.91 50.40 51.66 50.04 51.33 51.33

insert (OO1b) 55.58 54.07 61.94 60.20 51.74 51.74

insertLarge (OO1b) 504.78 491.43 570.07 555.16 487.08 487.08

update (OO1b) 439.72 431.64 480.86 470.66 416.02 416.02

lookup2 (OO1b) 2036.25 1989.46 1933.64 1882.62 2513.02 2513.02

scan2 (OO1b) 41.22 38.70 34.51 32.04 53.14 53.14

traverse2 (OO1b) 56.87 55.31 51.20 49.65 70.15 70.15

scan (MOB) 26.81 20.38 26.25 19.65 26.83 26.83

readTrans (MOB) 119.16 111.35 119.00 111.31 119.25 119.25

randomAcc (MOB) 217.56 203.75 216.76 202.89 217.42 217.42

updateTrans (MOB) 312.05 294.58 352.89 331.49 261.80 261.80

RWtrans (MOB) 214.95 202.31 184.12 171.23 209.78 209.78

randRWtrans (MOB) 217.11 204.44 185.13 172.32 214.55 214.55

scan2 (MOB) 95.19 88.65 26.43 19.94 105.49 105.49

readTrans2 (MOB) 135.14 127.46 118.65 110.97 154.45 154.45

randomAcc2 (MOB) 244.22 230.60 216.74 203.08 277.34 277.34

T1 (OO7) 37.99 34.95 38.99 35.63 38.00 34.73

T6 (OO7) 18.37 17.27 19.25 18.04 18.33 17.24

Q2 (OO7) 3.55 3.19 3.37 3.01 3.44 3.09

Q8 (OO7) 21.97 19.49 26.14 23.13 22.29 19.53

S2 (OO7) 6.48 5.87 6.41 5.73 6.48 5.82

119

C.2 Results of Validating Cost Category Interaction
Assumption

In Section 6.4 the workloads of benchmarks OO1, OO1b, MOB and OO7 are

executed on the AISP database, DataSafe and the LSD, recording traces of the I/O

operations performed. Each I/O trace is then ordered by MaStA I/O cost category

(database reads, log writes, etc.) to produce a second set of traces. The original traces

and the ordered traces are run on the raw disk partitions to measure the I/O costs. The

average costs (seconds) of running the original and the ordered I/O traces on the Sun

are:

Sun
AISP DataSafe LSD

Workloads Original Ordered Original Ordered Original Ordered
lookup (OO1) 99.65 98.51 99.42 98.49 99.07 98.49

scan (OO1) 13.14 13.05 13.17 13.14 13.20 13.12

traverse (OO1) 22.65 22.52 22.49 22.44 22.52 22.39

insert (OO1) 20.72 20.35 19.67 19.09 17.05 17.10

insertLarge (OO1) 144.88 142.62 135.26 130.91 106.87 108.80

update (OO1) 164.81 159.61 133.47 116.92 108.73 111.23

lookup2 (OO1) 193.21 192.97 172.72 173.09 217.12 218.16

scan2 (OO1) 24.61 24.40 16.83 16.68 26.50 26.29

traverse2 (OO1) 24.02 23.74 21.40 21.29 26.93 26.67

lookup (OO1b) 1213.92 1219.12 1212.96 1220.32 1210.07 1216.71

scan (OO1b) 19.49 19.52 19.50 19.46 19.22 19.24

traverse (OO1b) 71.21 70.64 70.81 70.64 70.71 70.20

insert (OO1b) 76.97 76.85 85.76 83.39 69.00 69.02

insertLarge (OO1b) 721.05 722.43 812.54 788.09 634.08 632.41

update (OO1b) 686.53 683.50 698.82 618.58 558.27 554.80

lookup2 (OO1b) 3200.44 3203.21 2736.09 2713.80 3493.94 3477.44

scan2 (OO1b) 66.08 65.49 41.58 41.51 68.98 68.54

traverse2 (OO1b) 86.77 86.18 69.22 68.77 95.43 95.01

scan (MOB) 38.89 39.01 38.66 38.91 38.89 38.99

readTrans (MOB) 180.09 180.23 178.10 178.54 176.23 176.79

randomAcc (MOB) 354.26 353.54 354.33 356.15 347.21 349.65

updateTrans (MOB) 517.11 507.44 570.55 483.22 342.10 338.55

RWtrans (MOB) 365.95 360.83 302.06 270.15 300.23 295.76

randRWtrans (MOB) 366.97 359.06 316.50 287.64 302.57 297.63

scan2 (MOB) 142.87 142.54 38.64 38.93 147.37 147.63

readTrans2 (MOB) 210.48 210.57 178.60 178.78 219.57 219.08

randomAcc2 (MOB) 374.36 374.84 355.25 355.27 397.28 398.32

T1 (OO7) 51.59 50.75 51.46 50.87 51.63 50.68

T6 (OO7) 26.08 25.81 26.24 25.96 26.17 25.84

Q2 (OO7) 3.90 3.88 3.86 3.87 3.92 3.94

Q8 (OO7) 23.82 23.92 27.77 27.76 23.77 23.75

S2 (OO7) 8.32 8.24 6.95 6.89 8.42 8.42

120

The average costs (seconds) of running the original and the ordered I/O traces on the

Alpha are.

Alpha
AISP DataSafe LSD

Workloads Original Ordered Original Ordered Original Ordered
lookup (OO1) 68.97 68.76 67.33 67.59 67.58 67.60

scan (OO1) 8.62 8.69 8.54 8.57 8.64 8.70

traverse (OO1) 16.01 16.07 15.08 15.06 15.07 15.09

insert (OO1) 13.42 13.71 22.32 23.77 12.34 12.62

insertLarge (OO1) 93.78 91.05 189.47 188.61 80.46 80.50

update (OO1) 99.40 92.88 185.29 181.91 79.73 75.03

lookup2 (OO1) 126.20 126.68 125.90 126.76 146.75 146.49

scan2 (OO1) 15.86 15.88 12.30 12.26 17.83 17.80

traverse2 (OO1) 16.01 16.04 14.53 14.50 17.46 17.68

lookup (OO1b) 836.25 836.52 836.17 837.06 836.35 836.75

scan (OO1b) 12.22 12.25 12.08 12.03 12.26 12.32

traverse (OO1b) 50.84 50.86 50.91 50.83 51.54 50.80

insert (OO1b) 50.46 50.04 85.15 84.92 48.38 48.29

insertLarge (OO1b) 472.65 461.93 840.75 813.81 456.39 455.94

update (OO1b) 434.86 423.93 757.20 714.27 413.38 407.03

lookup2 (OO1b) 2030.61 2029.48 1949.89 1949.78 2513.16 2513.07

scan2 (OO1b) 41.00 40.99 33.10 33.13 48.84 48.89

traverse2 (OO1b) 55.39 55.18 50.33 49.80 69.59 69.52

scan (MOB) 26.08 26.33 25.88 25.93 25.89 25.93

readTrans (MOB) 126.81 127.02 126.39 126.57 126.42 126.08

randomAcc (MOB) 230.74 230.94 230.26 230.50 230.47 230.64

updateTrans (MOB) 313.10 300.64 639.60 576.52 262.36 252.45

RWtrans (MOB) 211.49 204.90 278.82 264.64 216.56 196.44

randRWtrans (MOB) 213.15 206.53 281.53 265.63 222.39 200.70

scan2 (MOB) 94.73 95.04 25.88 25.94 106.13 105.85

readTrans2 (MOB) 135.01 134.72 126.78 126.38 155.88 155.71

randomAcc2 (MOB) 243.39 243.50 230.41 230.66 279.87 279.67

T1 (OO7) 34.84 35.93 39.60 41.40 35.43 36.12

T6 (OO7) 16.98 18.07 20.82 20.83 17.05 18.31

Q2 (OO7) 3.02 3.07 2.96 2.96 3.11 3.15

Q8 (OO7) 18.59 20.49 35.11 35.35 18.58 20.48

S2 (OO7) 5.90 6.18 5.79 5.79 5.71 6.23

121

C.3 Results of Validating Access Pattern Cost Assumption

In Section 6.5 each operation recorded in the I/O traces in Section 6.4 is assigned the
appropriate predicted I/O cost according to the predicted I/O access pattern performed.
For example, in DataSafe, log writes are predicted to be performed sequentially and so
in this procedure each log write recorded in a trace generated from DataSafe is
assigned the predicted cost of a sequential write. The predicted costs of the I/O access
patterns are taken from Appendix B. Assigning a predicted I/O cost to each operation
recorded in the traces results in a predicted I/O cost for each workload running on each
recovery mechanism. The predicted I/O costs and the total real costs of the workloads
on the Sun are:

Sun
AISP DataSafe LSD

Workloads Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

lookup (OO1) 112.32 113.24 113.73 98.87 112.95 120.13

scan (OO1) 18.37 17.19 18.68 15.04 18.25 18.22

traverse (OO1) 27.55 26.80 27.86 23.43 27.36 28.42

insert (OO1) 24.84 23.02 23.92 20.13 20.90 19.94

insertLarge (OO1) 165.99 151.42 160.09 136.80 124.66 115.22

update (OO1) 170.85 154.90 148.12 142.93 119.74 113.44

lookup2 (OO1) 205.83 201.08 192.53 175.53 230.32 213.35

scan2 (OO1) 30.73 25.68 23.52 22.45 33.40 27.23

traverse2 (OO1) 28.24 25.45 26.73 22.26 31.27 26.99

lookup (OO1b) 1309.86 1365.05 1323.71 1191.78 1316.94 1448.49

scan (OO1b) 25.14 25.68 24.93 22.45 25.08 27.23

traverse (OO1b) 80.20 84.33 80.93 73.64 80.30 89.46

insert (OO1b) 85.89 82.04 95.07 81.87 76.63 74.13

insertLarge (OO1b) 784.19 734.25 870.97 764.76 698.33 644.45

update (OO1b) 688.81 646.44 717.13 698.26 590.35 556.92

lookup2 (OO1b) 3159.59 3089.97 2893.52 2697.57 3696.46 3278.86

scan2 (OO1b) 73.64 63.33 52.45 55.29 81.64 67.19

traverse2 (OO1b) 89.81 83.02 79.70 72.50 104.66 88.07

scan (MOB) 66.66 143.55 67.32 125.21 66.43 152.30

readTrans (MOB) 193.52 203.14 194.48 177.30 193.68 215.53

randomAcc (MOB) 368.70 367.24 370.23 320.52 368.78 389.67

updateTrans (MOB) 527.17 468.94 570.66 549.89 372.71 357.96

RWtrans (MOB) 371.33 337.41 324.73 303.59 317.75 298.56

randRWtrans (MOB) 372.79 339.59 335.22 304.17 323.90 300.89

scan2 (MOB) 160.53 143.60 67.37 125.28 166.12 152.36

readTrans2 (MOB) 218.84 203.23 194.75 177.38 236.84 215.63

randomAcc2 (MOB) 394.28 367.19 370.05 320.52 427.07 389.62

T1 (OO7) 61.95 59.58 62.85 52.56 62.12 61.40

T6 (OO7) 28.82 29.62 29.81 27.18 28.89 29.74

Q2 (OO7) 6.30 5.13 6.36 4.53 6.37 5.41

Q8 (OO7) 34.14 40.05 38.29 39.15 33.99 37.08

S2 (OO7) 11.41 10.58 10.26 9.85 11.34 10.46

122

The predicted I/O costs and the total real costs of the workloads on the Alpha are:

Alpha
AISP DataSafe LSD

Workloads Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

lookup (OO1) 70.63 77.12 70.90 69.00 70.20 81.72

scan (OO1) 9.74 11.70 9.62 10.46 9.81 12.39

traverse (OO1) 17.05 18.25 17.08 16.32 16.65 19.33

insert (OO1) 15.27 15.25 15.21 14.45 13.87 14.40

insertLarge (OO1) 103.87 98.96 105.18 97.75 87.96 87.12

update (OO1) 103.08 94.80 94.11 91.08 81.50 80.49

lookup2 (OO1) 128.98 136.94 128.84 122.54 148.80 145.14

scan2 (OO1) 16.77 17.49 13.89 15.63 18.79 18.52

traverse2 (OO1) 16.86 17.34 16.24 15.50 19.19 18.36

lookup (OO1b) 843.05 929.58 840.70 832.19 838.20 985.32

scan (OO1b) 13.08 17.49 12.94 15.63 13.08 18.52

traverse (OO1b) 51.91 57.43 51.66 51.39 51.33 60.85

insert (OO1b) 55.58 55.48 61.94 58.72 51.74 53.76

insertLarge (OO1b) 504.78 496.29 570.07 545.06 487.08 473.53

update (OO1b) 439.72 429.92 480.86 483.63 416.02 405.28

lookup2 (OO1b) 2036.25 2104.26 1933.64 1883.72 2513.02 2230.48

scan2 (OO1b) 41.22 43.12 34.51 38.57 53.14 45.69

traverse2 (OO1b) 56.87 56.54 51.20 50.58 70.15 59.91

scan (MOB) 26.81 97.75 26.25 87.39 26.83 103.59

readTrans (MOB) 119.16 138.33 119.00 123.77 119.25 146.61

randomAcc (MOB) 217.56 250.08 216.76 223.78 217.42 265.06

updateTrans (MOB) 312.05 298.17 352.89 356.42 261.80 261.35

RWtrans (MOB) 214.95 208.21 184.12 183.01 209.78 197.24

randRWtrans (MOB) 217.11 209.70 185.13 183.45 214.55 198.81

scan2 (MOB) 95.19 97.78 26.43 87.44 105.49 103.63

readTrans2 (MOB) 135.14 138.39 118.65 123.83 154.45 146.67

randomAcc2 (MOB) 244.22 250.05 216.74 223.78 277.34 265.04

T1 (OO7) 37.99 40.50 38.99 37.13 38.00 42.15

T6 (OO7) 18.37 20.18 19.25 19.38 18.33 20.72

Q2 (OO7) 3.55 3.50 3.37 3.12 3.44 3.68

Q8 (OO7) 21.97 27.30 26.14 28.72 22.29 26.82

S2 (OO7) 6.48 7.21 6.41 7.03 6.48 7.34

123

C.4 Results of Validating Workload Assumption

The workloads generated by OO1, OO1b, OO7 and MOB are characterised in
Section 6.6 by a number of workload variables. These variables drive a synthetic
workload generator that produces workloads with similar numbers of data reads and
writes, and similar locality properties to the original applications. The I/O costs of
executing the synthetic workloads on each recovery mechanism are measured. The
average I/O costs of the synthetic database workloads and the total real costs of the
original workloads on the Sun are:

Sun
AISP DataSafe LSD

Workloads Total
Real

Synth.
I/O

Total
Real

Synth.
I/O

Total
Real

Synth.
I/O

lookup (OO1) 112.32 6.80 113.73 6.80 112.95 6.76

scan (OO1) 18.37 3.27 18.68 3.31 18.25 3.27

traverse (OO1) 27.55 5.27 27.86 5.05 27.36 5.24

insert (OO1) 24.84 19.38 23.92 17.97 20.90 14.90

insertLarge (OO1) 165.99 161.17 160.09 135.59 124.66 114.00

update (OO1) 170.85 172.48 148.12 139.91 119.74 127.38

lookup2 (OO1) 205.83 32.40 192.53 25.21 230.32 36.07

scan2 (OO1) 30.73 13.96 23.52 4.86 33.40 15.48

traverse2 (OO1) 28.24 14.61 26.73 5.59 31.27 16.47

lookup (OO1b) 1309.86 34.73 1323.71 36.08 1316.94 34.65

scan (OO1b) 25.14 4.17 24.93 4.12 25.08 4.12

traverse (OO1b) 80.20 5.31 80.93 5.22 80.30 5.27

insert (OO1b) 85.89 91.04 95.07 104.02 76.63 79.80

insertLarge (OO1b) 784.19 711.28 870.97 818.63 698.33 634.58

update (OO1b) 688.81 449.41 717.13 379.50 590.35 313.85

lookup2 (OO1b) 3159.59 882.90 2893.52 968.54 3696.46 1012.04

scan2 (OO1b) 73.64 17.81 52.45 7.46 81.64 19.59

traverse2 (OO1b) 89.81 17.11 79.70 6.60 104.66 19.14

scan (MOB) 66.66 8.27 67.32 8.15 66.43 8.14

readTrans (MOB) 193.52 91.24 194.48 91.22 193.68 90.80

randomAcc (MOB) 368.70 238.16 370.23 236.62 368.78 237.25

updateTrans (MOB) 527.17 714.68 570.66 787.22 372.71 560.50

RWtrans (MOB) 371.33 331.10 324.73 293.57 317.75 267.38

randRWtrans (MOB) 372.79 369.47 335.22 333.03 323.90 310.89

scan2 (MOB) 160.53 21.47 67.37 10.14 166.12 22.87

readTrans2 (MOB) 218.84 105.17 194.75 95.79 236.84 114.90

randomAcc2 (MOB) 394.28 242.47 370.05 234.30 427.07 266.09

T1 (OO7) 61.95 12.10 62.85 15.06 62.12 12.16

T6 (OO7) 28.82 14.19 29.81 13.20 28.89 12.96

Q2 (OO7) 6.30 3.04 6.36 2.19 6.37 3.03

Q8 (OO7) 34.14 24.30 38.29 25.16 33.99 22.63

S2 (OO7) 11.41 7.96 10.26 5.54 11.34 7.51

124

The average I/O costs of the synthetic database workloads and the total real costs of

the original workloads on the Alpha are:

Alpha
AISP DataSafe LSD

Workloads Total
Real

Synth.
I/O

Total
Real

Synth.
I/O

Total
Real

Synth.
I/O

lookup (OO1) 70.63 4.58 70.90 4.59 70.20 4.53

scan (OO1) 9.74 1.90 9.62 1.83 9.81 1.81

traverse (OO1) 17.05 3.54 17.08 3.36 16.65 3.50

insert (OO1) 15.27 13.91 15.21 13.76 13.87 11.87

insertLarge (OO1) 103.87 109.00 105.18 99.28 87.96 88.07

update (OO1) 103.08 110.39 94.11 95.44 81.50 93.15

lookup2 (OO1) 128.98 22.01 128.84 16.48 148.80 24.63

scan2 (OO1) 16.77 9.84 13.89 2.79 18.79 10.81

traverse2 (OO1) 16.86 10.62 16.24 3.62 19.19 11.67

lookup (OO1b) 843.05 22.24 840.70 21.10 838.20 21.75

scan (OO1b) 13.08 2.50 12.94 2.40 13.08 2.45

traverse (OO1b) 51.91 3.74 51.66 3.59 51.33 3.97

insert (OO1b) 55.58 63.23 61.94 71.52 51.74 58.03

insertLarge (OO1b) 504.78 478.23 570.07 558.64 487.08 456.29

update (OO1b) 439.72 292.14 480.86 269.26 416.02 243.77

lookup2 (OO1b) 2036.25 589.44 1933.64 551.44 2513.02 716.64

scan2 (OO1b) 41.22 11.88 34.51 4.37 53.14 13.85

traverse2 (OO1b) 56.87 11.85 51.20 4.32 70.15 13.95

scan (MOB) 26.81 5.16 26.25 5.13 26.83 5.21

readTrans (MOB) 119.16 61.34 119.00 61.57 119.25 61.56

randomAcc (MOB) 217.56 160.14 216.76 159.41 217.42 159.69

updateTrans (MOB) 312.05 453.25 352.89 516.44 261.80 407.81

RWtrans (MOB) 214.95 198.33 184.12 187.01 209.78 188.60

randRWtrans (MOB) 217.11 222.61 185.13 213.03 214.55 222.15

scan2 (MOB) 95.19 14.27 26.43 6.58 105.49 16.40

readTrans2 (MOB) 135.14 70.04 118.65 64.11 154.45 80.65

randomAcc2 (MOB) 244.22 161.02 216.74 158.38 277.34 186.73

T1 (OO7) 37.99 7.86 38.99 9.33 38.00 7.72

T6 (OO7) 18.37 10.05 19.25 9.68 18.33 9.59

Q2 (OO7) 3.55 2.47 3.37 1.45 3.44 2.47

Q8 (OO7) 21.97 18.92 26.14 19.24 22.29 18.11

S2 (OO7) 6.48 5.74 6.41 3.37 6.48 5.51

125

C.5 Results of Illustrating the Accuracy of MaStA

The workload variable values measured in Section 6.6 and the I/O pattern costs

recorded in Appendix B are used to drive the MaStA cost models of AISP, DataSafe

and the LSD developed in Chapter 4. The predicted I/O costs and the total real costs

of the workloads on the Sun are:

Sun
AISP DataSafe LSD

Workloads Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

lookup (OO1) 112.32 92.52 113.73 92.51 112.95 92.46

scan (OO1) 18.37 8.34 18.68 8.32 18.25 8.29

traverse (OO1) 27.55 22.93 27.86 22.92 27.36 22.88

insert (OO1) 24.84 21.01 23.92 19.73 20.90 16.91

insertLarge (OO1) 165.99 144.35 160.09 124.64 124.66 106.86

update (OO1) 170.85 143.80 148.12 126.92 119.74 107.92

lookup2 (OO1) 205.83 187.31 192.53 165.92 230.32 199.47

scan2 (OO1) 30.73 17.59 23.52 15.33 33.40 18.68

traverse2 (OO1) 28.24 25.51 26.73 22.23 31.27 27.11

lookup (OO1b) 1309.86 733.79 1323.71 733.79 1316.94 733.71

scan (OO1b) 25.14 9.70 24.93 9.67 25.08 9.65

traverse (OO1b) 80.20 71.50 80.93 71.47 80.30 71.45

insert (OO1b) 85.89 73.55 95.07 79.88 76.63 61.36

insertLarge (OO1b) 784.19 670.48 870.97 705.75 698.33 575.01

update (OO1b) 688.81 580.53 717.13 614.29 590.35 492.37

lookup2 (OO1b) 3159.59 2271.19 2893.52 2051.65 3696.46 2419.21

scan2 (OO1b) 73.64 42.90 52.45 37.37 81.64 45.63

traverse2 (OO1b) 89.81 81.17 79.70 70.62 104.66 86.40

scan (MOB) 66.66 60.85 67.32 60.78 66.43 60.81

readTrans (MOB) 193.52 96.41 194.48 96.34 193.68 96.36

randomAcc (MOB) 368.70 151.96 370.23 151.89 368.78 151.90

updateTrans (MOB) 527.17 294.97 570.66 304.45 372.71 220.81

RWtrans (MOB) 371.33 214.89 324.73 183.42 317.75 188.34

randRWtrans (MOB) 372.79 216.84 335.22 191.40 323.90 190.43

scan2 (MOB) 160.53 69.95 67.37 60.85 166.12 74.45

readTrans2 (MOB) 218.84 107.93 194.75 96.43 236.84 114.91

randomAcc2 (MOB) 394.28 159.94 370.05 151.88 427.07 170.31

T1 (OO7) 61.95 37.77 62.85 38.86 62.12 35.93

T6 (OO7) 28.82 27.93 29.81 25.74 28.89 27.99

Q2 (OO7) 6.30 4.93 6.36 4.33 6.37 5.18

Q8 (OO7) 34.14 26.25 38.29 26.98 33.99 22.36

S2 (OO7) 11.41 8.24 10.26 7.66 11.34 8.12

126

The predicted I/O costs and the total real costs of the workloads on the Alpha are:

Alpha
AISP DataSafe LSD

Workloads Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

Total
Real

Pred.
I/O

lookup (OO1) 70.63 64.97 70.90 64.97 70.20 64.95

scan (OO1) 9.74 5.86 9.62 5.85 9.81 5.84

traverse (OO1) 17.05 16.11 17.08 16.11 16.65 16.09

insert (OO1) 15.27 14.58 15.21 14.98 13.87 13.14

insertLarge (OO1) 103.87 98.89 105.18 96.68 87.96 90.44

update (OO1) 103.08 98.08 94.11 97.05 81.50 90.29

lookup2 (OO1) 128.98 129.48 128.84 116.30 148.80 147.51

scan2 (OO1) 16.77 12.16 13.89 10.78 18.79 13.83

traverse2 (OO1) 16.86 17.64 16.24 15.63 19.19 20.07

lookup (OO1b) 843.05 515.09 840.70 515.10 838.20 515.06

scan (OO1b) 13.08 6.81 12.94 6.80 13.08 6.80

traverse (OO1b) 51.91 50.22 51.66 50.21 51.33 50.21

insert (OO1b) 55.58 51.07 61.94 57.89 51.74 46.63

insertLarge (OO1b) 504.78 461.39 570.07 510.08 487.08 459.75

update (OO1b) 439.72 398.94 480.86 443.69 416.02 394.83

lookup2 (OO1b) 2036.25 1569.89 1933.64 1434.62 2513.02 1788.90

scan2 (OO1b) 41.22 29.67 34.51 26.25 53.14 33.77

traverse2 (OO1b) 56.87 56.12 51.20 49.62 70.15 63.92

scan (MOB) 26.81 42.76 26.25 42.70 26.83 42.75

readTrans (MOB) 119.16 67.52 119.00 67.47 119.25 67.51

randomAcc (MOB) 217.56 105.66 216.76 105.60 217.42 105.64

updateTrans (MOB) 312.05 201.23 352.89 227.01 261.80 184.99

RWtrans (MOB) 214.95 146.55 184.12 135.16 209.78 147.73

randRWtrans (MOB) 217.11 147.90 185.13 140.21 214.55 149.27

scan2 (MOB) 95.19 48.38 26.43 42.75 105.49 55.09

readTrans2 (MOB) 135.14 74.63 118.65 67.52 154.45 85.00

randomAcc2 (MOB) 244.22 110.58 216.74 105.59 277.34 125.97

T1 (OO7) 37.99 26.46 38.99 27.77 38.00 25.78

T6 (OO7) 18.37 19.29 19.25 18.49 18.33 21.14

Q2 (OO7) 3.55 3.41 3.37 3.05 3.44 3.85

Q8 (OO7) 21.97 18.08 26.14 20.29 22.29 17.94

S2 (OO7) 6.48 5.69 6.41 5.53 6.48 6.17

127

The predicted I/O costs obtained from MaStA configured with a uniform I/O cost are:

Uniform
AISP DataSafe LSD

Workloads Pred. I/O Pred. I/O Pred. I/O
lookup (OO1) 11.53 11.54 11.53

scan (OO1) 1.04 1.05 1.04

traverse (OO1) 2.87 2.88 2.87

insert (OO1) 3.06 3.60 3.06

insertLarge (OO1) 21.48 25.08 21.48

update (OO1) 21.25 24.77 21.25

lookup2 (OO1) 20.37 20.38 20.37

scan2 (OO1) 1.92 1.92 1.92

traverse2 (OO1) 2.78 2.79 2.78

lookup (OO1b) 91.18 91.19 91.18

scan (OO1b) 1.21 1.21 1.21

traverse (OO1b) 8.94 8.94 8.94

insert (OO1b) 10.28 12.60 10.28

insertLarge (OO1b) 90.01 112.15 90.01

update (OO1b) 78.65 99.91 78.65

lookup2 (OO1b) 246.88 246.89 246.88

scan2 (OO1b) 4.67 4.67 4.67

traverse2 (OO1b) 8.83 8.83 8.83

scan (MOB) 7.61 7.60 7.61

readTrans (MOB) 11.73 11.73 11.73

randomAcc (MOB) 17.40 17.40 17.40

updateTrans (MOB) 43.66 56.97 43.66

RWtrans (MOB) 28.47 30.13 28.47

randRWtrans (MOB) 28.68 30.34 28.68

scan2 (MOB) 7.62 7.61 7.62

readTrans2 (MOB) 11.74 11.74 11.74

randomAcc2 (MOB) 17.40 17.39 17.40

T1 (OO7) 4.90 5.46 4.90

T6 (OO7) 3.25 3.74 3.25

Q2 (OO7) 0.55 0.56 0.55

Q8 (OO7) 3.54 5.09 3.54

S2 (OO7) 0.98 1.15 0.98

128

Appendix D Scenario Code

D.1 Database Generator

The following code generates the database described in Chapter 7.

!link to standard library Napier88 functions
project PS() as Root onto
env :
begin
use Root with User, Library : env in
use Library with String, System, Format : env in

use String with length : proc(string -> int) in
use Format with iformat : proc(int -> string) in
use System with stabilise : proc() in
use User with bPlusTree, databaseEnv : env in
use bPlusTree with btreePackGen : proc[t, r](int,t,r,

proc(t, t -> bool) -> singBtreePack[t, r]) in
begin

! procedure which generates a database containing N customers
let makeDB = proc(N : int)
begin

!create a dummy customer to populate the index
let failValue = Customer("",0,"",image 1 by 1 of off,0)
!create a new B+tree index
let database = btreePackGen[int, Customer](4,

-99,failValue, proc(p1, p2 : int -> bool) ; p1 > p2)

for i = 1 to N do
begin

database(insert)(i, failValue)
end

!write the index to the database
stabilise()

!insert N dummy customers with index values 1 to N
for i = 1 to N do
begin

let customerImage = image 64 by 64 of on ++ on ++ on ++
on ++ on ++ on ++ on ++ on

let customerName := "C" ++ iformat(i)

!fill the name to be 24 characters in length
let temp := length(customerName)
for i = 1 to 24 - temp do

customerName := customerName ++ "."

let customerAddress := "This is the address for "
++ "customer " ++ customerName

!fill the address to be 52 characters in length
temp := length(customerAddress)
for i = 1 to 52 - temp do

customerAddress := customerAddress ++ "."

!create the customer structure instance
let customer = Customer(customerName, i,

customerAddress, customerImage, i)

database(insert)(i, customer)
end

!write out the database and the database’s size
in databaseEnv let database := database
in databaseEnv let DBsize := N
in databaseEnv let failValue = failValue

129

stabilise()
end

makeDB(65000)
end
end
default : {}

D.2 Bank Application

The following code generates the bank’s database workload described in Chapter 7.

let NUMTRANS = 20000 !number of transaction
let UPDATE_FREQ = 95 !percentage update transactions

!link to standard library Napier88 functions and the database
project PS() as Root onto
env :
begin
use Root with Library, User : env in
use Library with Arithmetical, System : env in
use Arithmetical with random : proc(int -> int) in
use System with stabilise : proc() in
use User with databaseEnv : env in
use databaseEnv with database : singBtreePack[int, Customer] ;

failValue : Customer ;
DBsize : int in

begin
let UPDATES_PER_TRANS = 2 !number of customers per

!update transaction
let lastRandom := time()

!procedure which sets the seed of the random number generator
!used to ensure that each execution of the program obtains
!the same sequence of random numbers
let setSeed = proc(seed : int)

lastRandom := seed

!procedure which returns a random integer in the range
![lowR, upR]
let randomValue = proc(lowR,upR : int -> int)
begin

lastRandom := random(lastRandom)
lowR + (lastRandom rem (upR - lowR + 1))

end

!procedure which accesses all the information of a given
!customer
let access = proc(C : Customer)
begin

!the next four lines ensure that all customer information
!is read from the database
let temp2 := C(name)(1|1)
temp2 := C(address)(1|1)
let img = image 10 by 10 of on++on++on++on++on++on++on++on
copy limit C(picture) to 1 by 1 at 1,1 onto img

end

setSeed(10000) ;

!execute the transactions
for j = 1 to NUMTRANS do
begin

if randomValue(1, 100) <= UPDATE_FREQ
then !execute an update transaction
{

!choose two customers at random

130

let rand1 = randomValue(1, DBsize)
let rand2 = randomValue(1, DBsize)

!get pointers to the two customers from the index
let customer1 = database(lookup)(rand1)
let customer2 = database(lookup)(rand2)

!read all the customer’s information
access(customer1)
access(customer2)

!update the balances of the two customers
customer1(balance) := customer1(balance) + 1
customer2(balance) := customer2(balance) - 1

!commit the changes
stabilise() ;

}
else !execute a read-only transaction
{

!select a customer at random
let rand1 = randomValue(1, DBsize)

!get a pointer the customer from the index
let customer1 = database(lookup)(rand1)

access(customer1)
}

end
end
end
default : {}

D.3 Building Society Application

The code used to generate the workload of the building society is similar to the bank’s

(Appendix D.2) except that 40000 transactions are executed:

let NUMTRANS = 40000

and fewer update transaction are executed.

let UPDATE_FREQ = 5

D.4 B+tree Implementation

The following code implements the B+tree index used by the benchmarks in

Chapters 6, and by the database described in Chapter 7.

rec type Btree[t, r] is structure(entries : int ;
leaf : bool ;
index : *t ;
pointers : *Index[t, r])

&
Index[t, r] is variant(btree : Btree[t, r] ;

record : r)

type singBtreePack[t, r] is structure(insert : proc(t, r) ;
delete : proc(t) ;
lookup : proc(t -> r))

project PS() as Root onto

131

env :
begin
use Root with User : env in
use User with bPlusTree : env in
in bPlusTree let btreePackGen := proc[t, r](n : int ; init : t ; failval: r ;

gt : proc(t, t -> bool) ->
singBtreePack[t, r])

begin
type Tree is Btree[t, r]

let createBtree = proc(-> Tree)
Tree(0, true, vector 1 to (2 * n - 1) of init,
vector 1 to (2 * n) of Index[t, r](record : failval))

let root := createBtree()

let moveRoot = proc(temp : Tree)
if temp = root and temp(entries) = 0 do

 root := temp(pointers)(1)'btree

let elementNumber = proc(ind : t ; node : Tree -> int)
begin

let i := 1
while i <= node(entries) and gt(ind, node(index)(i)) do

i := i + 1
i

end

let containsKey = proc(ind : t ; node : Tree -> bool)
begin

let i := elementNumber(ind, node)
i <= node(entries) and node(entries) >0 and ~gt(node(index)(i), ind)

end

let removeIndex = proc(i : int ; node : Tree)
begin

if i <= node(entries) do
begin

for j = i to node(entries) - 1 do
begin

node(index)(j) := node(index)(j + 1)
node(pointers)(j) := node(pointers)(j + 1)

end
node(pointers)(node(entries)) := node(pointers)(node(entries)+ 1)

end
node(entries) := node(entries) - 1
node(index)(node(entries) + 1) := init

end

let shuffleUp = proc(i : int ; node : Tree)
begin

for j = node(entries) to i by -1 do
begin

node(index)(j + 1) := node(index)(j)
node(pointers)(j + 2) := node(pointers)(j + 1)

end
node(pointers)(i + 1) := node(pointers)(i)

end

let merge = proc(i : int ; left, right, node : Tree)
begin

if ~left(leaf) do
begin

left(index)(left(entries) + 1) := node(index)(i)
left(entries) := left(entries) + 1

end

let cSize := left(entries)
for j = 1 to right(entries) do

132

begin
left(index)(cSize + j) := right(index)(j)
left(pointers)(cSize + j) := right(pointers)(j)

end
left(pointers)(cSize + right(entries) + 1) :=

right(pointers)(right(entries) + 1)
left(entries) := left(entries) + right(entries)

if i < node(entries) do node(index)(i) := node(index)(i + 1)
removeIndex(i + 1, node)

end

let moveEntryFromRight = proc(i : int ; child, rightSib, node : Tree)
begin

let ent = child(entries)
if child(leaf)
then child(index)(ent + 1) := rightSib(index)(1)
else child(index)(ent + 1) := node(index)(i)

if child(leaf)
then
begin

child(pointers)(ent + 2) := child(pointers)(ent + 1)
child(pointers)(ent + 1) := rightSib(pointers)(1)

end
else child(pointers)(ent + 2) := rightSib(pointers)(1)

child(entries) := child(entries) + 1
node(index)(i) := rightSib(index)(1)
removeIndex(1, rightSib)

end

let del := proc(ind : t ; node : Tree) ; {}

let deleteContains = proc(ind : t ; node : Tree)
begin

let i = elementNumber(ind, node)
let child = node(pointers)(i)'btree
let rightSib = node(pointers)(i + 1)'btree

case true of
child(entries) > n - 1 :
begin

let predecessor := init
let temp := node
let tempChild := child
while ~tempChild(leaf) do
begin

temp := tempChild
tempChild := temp(pointers)(temp(entries) + 1)'btree

end

if tempChild(entries) = 1
then
begin

let leftSib = temp(pointers)(temp(entries))'btree
predecessor := leftSib(index)(leftSib(entries))

end
else predecessor := tempChild(index)(tempChild(entries) - 1)

node(index)(i) := predecessor
del(ind, child)

end

rightSib(entries) > n - 1 :
begin

moveEntryFromRight(i, child, rightSib, node)
del(ind, child)

end

133

default :
begin

merge(i, child, rightSib, node)
moveRoot(node)
del(ind, child)

end
end

let deleteNotContains := proc(ind : t ; node : Tree)
begin

let i := elementNumber(ind, node)
let child := node(pointers)(i)'btree

if child(entries) > n - 1
then del(ind, child)
else ! child node only has n - 1 entries
begin

let leftSib := child
let rightSib := leftSib
if i ~= 1 do leftSib := node(pointers)(i - 1)'btree

if i ~= node(entries) + 1 do
rightSib := node(pointers)(i + 1)'btree

case true of
i ~= 1 and leftSib(entries) > n - 1 :
begin

shuffleUp(1, child)
child(index)(1) := node(index)(i - 1)

if leftSib(leaf) then
begin

child(pointers)(1) := leftSib(pointers)(leftSib(entries))
node(index)(i - 1) := leftSib(index)(leftSib(entries) - 1)
removeIndex(leftSib(entries), leftSib)

end
else
begin

child(pointers)(1) :=
leftSib(pointers)(leftSib(entries) + 1)

node(index)(i - 1) := leftSib(index)(leftSib(entries))
leftSib(entries) := leftSib(entries) - 1

end

child(entries) := child(entries) + 1
del(ind, child)

end

i ~= node(entries) + 1 and rightSib(entries) > n - 1 :
begin

moveEntryFromRight(i, child, rightSib, node)
del(ind, child)

end

default :
begin

if i ~= 1
then
begin

merge(i - 1, leftSib, child, node)
 moveRoot(node)

del(ind, leftSib)
end
else
begin

merge(i, child, rightSib, node)
moveRoot(node)
del(ind, child)

134

end
end

end
end

del := proc(ind : t ; node : Tree)
begin

let contained = containsKey(ind, node)
if node(leaf) then

if contained do removeIndex(elementNumber(ind, node), node)
else

if contained then deleteContains(ind, node)
else deleteNotContains(ind, node)

end

let splitChild = proc(parent, child : Btree[t, r] ; i : int)
begin

let newChild := createBtree()
newChild(leaf) := child(leaf)
newChild(entries) := n - 1

for j = 1 to n - 1 do newChild(index)(j) := child(index)(j + n)
for j = 1 to n do newChild(pointers)(j) := child(pointers)(j + n)

if child(leaf) do
child(pointers)(n + 1) := Index[t, r](btree : newChild)

if child(leaf) then child(entries) := n
else child(entries) := n - 1

for j = parent(entries) + 1 to i + 1 by -1 do
parent(pointers)(j+1) := parent(pointers)(j)

parent(pointers)(i + 1) := Index[t, r](btree : newChild)

for j = parent(entries) to i by -1 do
parent(index)(j + 1) := parent(index)(j)

parent(index)(i) := child(index)(n)
parent(entries) := parent(entries) + 1

end

rec let insertNonFull = proc(ind : t ; value : r ; node : Tree)
begin

if node(leaf) then
begin

let i := elementNumber(ind, node)

if containsKey(ind, node)
then node(pointers)(i) := Index[t, r](record : value)
else
begin

shuffleUp(i, node)
node(index)(i) := ind
node(pointers)(i) := Index[t, r](record : value)
node(entries) := node(entries) + 1

end
end
else
begin

let i := elementNumber(ind, node)
let child := node(pointers)(i)'btree

if child(entries) = 2 * n - 1 and
~(child(leaf) and containsKey(ind, child)) do

begin
splitChild(node, child , i)
if gt(ind, node(index)(i)) do

child := node(pointers)(i + 1)'btree
end

135

insertNonFull(ind, value, child)
end

end

rec let search = proc(ind : t ; node : Tree -> r)
begin

let i = elementNumber(ind, node)
if node(leaf) then
begin

let val := failval
if containsKey(ind, node) do val := node(pointers)(i)'record
val

end
else
begin

let child = node(pointers)(i)'btree
search(ind, child)

end
end

let insert = proc(ind : t ; value : r)
begin

if root(entries) = 2 * n - 1 then
begin

let newRoot := createBtree()
newRoot(leaf) := false
newRoot(entries) := 0
newRoot(pointers)(1) := Index[t, r](btree : root)
splitChild(newRoot, root, 1)
root := newRoot
insertNonFull(ind, value, root)

end
else insertNonFull(ind, value, root)

end

let lookup = proc(ind : t -> r); search(ind, root)

let delete = proc(ind : t); del(ind, root)

singBtreePack[t, r](insert, delete, lookup)
end
default : {}

136

References

[ABJ+92] Atkinson, M.P., Birnie, A., Jackson, N. & Philbrow, P.C.

“Measuring Persistent Object Systems”. In Proc. 5th International

Workshop on Persistent Object Systems, San Miniato, Italy (1992). In

Persistent Object Systems (Eds. A.Albano & R.Morrison). Springer-

Verlag pp 63-85.

[AD85] Agrawal, R. & DeWitt, D. “Integrating Concurrency Control and

Recovery Mechanisms: Design and Performance Evaluation”. ACM

Transactions on Database Systems, Vol. 10, No. 4, December 1985

pp 529-564.

[AS82] Aghili, H. & Severance, D. “A Practical Guide to the Design of

Differential Files for Recovery of On-line Databases”. ACM

Transactions on Database Systems, 7,4 (1982) pp 540-565.

[BGH83] Berstein, P.A., Goodman, N. & Hadzilacos, V. “Recovery

Algorithms for Database Systems”. In Proc. IFIP 9th World Computer

Congress, North-Holland, Amsterdam, September 1983 pp 799-807.

[BOP+89] Bretl, B., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J. ,

Williams, E.H. & Williams, M.S. “The GemStone Data Management

System”. Object-Oriented Concepts, Databases and Applications,

Addison Wesley, 1989 pp 283-308.

[BR91] Brown, A.L. & Rosenberg, J. “Persistent Object Stores: An

Implementation Technique”. In Dearle, Shaw, Zdonik (eds.),

Implementing Persistent Object Bases, Principles and Practice,

Morgan Kaufmann, 1991 pp 199-212.

[Bro89] Brown, A.L. “Persistent Object Stores”. Ph.D. Thesis, University of

St Andrews (1989).

[BT85] Bates, K. & TeGrotenhuis, M. “Shadowing Boosts System

Reliability”. Computer Designs, 1985.

[CBC+89] Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison,

R. “The Persistent Abstract Machine”. 3rd International Workshop on

Persistent Object Systems, Newcastle, N.S.W., (January 1989) pp

80-95. In Persistent Object Systems (Eds. J. Rosenberg & D. Koch).

Springer-Verlag pp 353-366.

137

[CDN93] Carey, M.J., DeWitt, D.J. & Naughton, J.F. “The OO7 Benchmark”.

In SIGMOD Conference on the Management of Data, Washington,

DC, May 1993.

[Cha78] Challis, M.P. “Data Consistency and Integrity in a Multi-User

Environment”. Databases: Improving Usability and Responsiveness,

Academic Press, 1978.

[CS92] Cattell, R.G.G. & Skeen, J. “Object Operations Benchmark”. ACM

Transactions on Database Systems 17,1 (1992) pp 1-31.

[Dav73] Davies, C.T. “Recovery Semantics for a DB/DC System”. In Proc.

ACM Annual Conference (1973) pp 136-141.

[Dav78] Davies, C.T. “Data Processing Spheres of Control”. IBM Systems

Journal, 17, 2 (1978) pp 179-198.

[DBF+94] Dearle, A., di Bona, R., Farrow, J., Henskens, F., Lindström, A.,

Rosenberg, J. & Vaughan, F. “Grasshopper: An Orthogonally

Persistent Operating System”. Computer Systems, Summer 1994 pp

289-312.

[EB84] Elhardt, K. & Bayer, R. “A Database Cache for High Performance

and Fast Restart in Database Systems”. ACM Transactions on

Database Systems, Vol. 9, No. 4, December 1984 pp 503-525.

[EGL+76] Eswaran, K.P., Gray, J.N., Lorie, R.A. & Traiger, I.L. “The

Notions of Consistency and Predicate Locks in a Database System”.

CACM 19,11 (1976) pp 624-633.

[FZT+92] Franklin, M.J., Zwilling, M.J., Tan, C.K., Carey, M.J. & DeWitt,

D.J. “Crash Recovery in Client-Server EXODUS”. In Proc. ACM

SIGMOD Conference, San Diego, CA, June 1992.

[GAD+92] Gruber, O., Amsaleg, L., Daynes, L. & Valduriez, P. “Eos: An

Environment for Object-Based Systems”. In Proc. 25th Hawaii

Conference on Systems Sciences, 1, 1 (1992) pp 757-768.

[Gar83] Garcia-Molina, H. “Using Semantic Knowledge for Transaction

Processing in a Distributed Database”. ACM Transactions on Database

Systems 8, 2 (1983) pp 186-213.

138

[GMB+82] Gray, J.N., McJones, P., Blasgen, M., Lindsay, B., Lorie, R.,

Price, T., Putzolu, F. & Traiger, I.L. “The Recovery Manager of the

System R Database Manager”. ACM Computing Surveys 13, 2 (June

1982) pp 223-242.

[Gra78] Gray, J.N. “Notes on Database Operating Systems”. LNCS 60,

Springer-Verlag (1978) pp 393-481.

[Gra81] Gray, J.N. “The Transaction Concept: Virtues and limitations.”. In

Proc. 7th International Conference on Very Large Data Bases, Cannes,

France (Sept. 1981) pp 144-154.

[GS87] Garcia-Molina, H. & Salem, K. “Sagas”. In Proc. SIGMOD

International Conference on Management of Data (1987) pp 249-259.

[Hag87] Hagmann, R.B. “Reimplementing the Cedar File System Using

Logging and Group Commit”. In Proc. 11th Symposium on Operating

Systems Principles, 1987 pp 155-162.

[HD96] Hulse, D. & Dearle, A. “A Log-Structured Persistent Store”. In Proc.

19th Australasian Computer Science Conference, Melbourne,

Australia, Jan. 1996 pp 563-572.

[HHZ+92] Heiler, S., Haradhvala, S., Zdonik, S., Blaustein, B. & Rosenthal,

A. “A Flexible Framework for Transaction Management in

Engineering Environments”. In Database Transaction Models For

Advanced Applications, Elmagarmid, A.K. (ed), Morgan Kaufmann

Publishers (1992) pp 88-121.

[HR83] Haerder T. & Reuter, A. “Principles of Transaction-Oriented Database

Recovery”. Computing Surveys, Vol. 15, No. 4, Dec. 1983 pp 287-

317.

[KGC85] Kent, J., Garcia-Molina, H. & Chung, J. “An Experimental

Evaluation of Crash Recovery Mechanisms”. In Proc. 4th ACM

Symposium on Principles of Database Systems (1985) pp 113-122.

[Kra87] Krablin, G.L. “Building Flexible Multilevel Transactions in a

Distributed Persistent Environment”. 2nd International Workshop on

Persistent Object Systems, Appin, (August 1987) pp 213-234.

139

[Leu88] Leung, C.H.C. “Quantitive Analysis of Computer Systems”. John

Wiley & Sons Ltd. 1988.

[LLO+91] Lamb, C., Landis, G., Orenstein, J. & Weinreb, D. “The ObjectStore

Database Systems”. CACM 34, 10, (1991) pp 50-63.

http://www.odi.com/products/os/techovrwv.html

[Lor77] Lorie, R.A., “Physical Integrity in a Large Segmented Database”.

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977

pp 91-104.

[MBC+89] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The

Napier88 Reference Manual”. University of St Andrews Technical

Report PPRR-77-89 (1989).

[MCM+94] Munro, D.S., Connor R.C.H., Morrison, R., Scheuerl, S. &

Stemple, D.W. “Concurrent Shadow Paging in the Flask

Architecture”. 6th International Workshop on Persistent Object

Systems, Tarascon, France (September 1994). In Persistent Object

Systems (Eds. M.P.Atkinson, V.Benzaken & D.Maier). Springer-

Verlag pp 16-42.

[MCM+95] Munro, D.S., Connor, R.C.H., Morrison, R., Moss, J.E.B. &

Scheuerl, S.J.G. “Validating the MaStA I/O Cost Model for Database

Crash Recovery Mechanisms”. In Proc. OOPSLA'95 Workshop on

Object Database Behaviour, Benchmarks and Performance, Austin

Texas (October 1995).

[MHL+92] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H. & Schwarz, P.

“ARIES: A Transaction Method Supporting Fine-Granularity Locking

and Partial Rollbacks Using Write-Ahead Logging”. ACM

Transactions on Database Systems (TODS), 17 (1), 1992 pp 94-162.

[Mos81] Moss, J.E.B. “Nested Transactions: An Approach to Reliable

Distributed Computing”. Ph.D. Thesis, MIT (1981).

[NRZ92] Nodine, M.H., Ramaswamy, S. & Zdonik, S.B. “A Cooperative

Transaction Model for Design Databases”. In Database Transaction

Models For Advanced Applications, Elmagarmid, A.K. (ed), Morgan

Kaufmann Publishers (1992) pp 53-85.

140

[MS88] Moss, J.E.B. & Sinofsky, S. “Managing persistent data with Mneme:

Designing a reliable shared object interface”. In Dittrich, K.R. (ed.)

Advances in Object-Oriented Database Systems: Second International

Workshop on Object-Oriented Database Systems, LNCS 334,

Springer-Verlag, 1988 pp 298-316.

[Mun93] Munro, D.S. “On the Integration of Concurrency, Distribution and

Persistence”. Ph.D. Thesis, University of St Andrews (1993).

[OLS85] Oki, B., Liskov, B. & Scheifler, R. “Reliable Object Storage to

Support Atomic Actions”. In Proc. 10th Symposium on Operating

Systems Principles, 1985 pp 147-159.

[OS93] Orji, C.U. & Solworth, J.A. “Doubly Distorted Mirrors”. In Proc.

SIGMOD International Conference on Management of Data,

Washington, D.C., (May 1993) pp 307-316.

[OS94] O'Toole, J. & Shrira, L. “Opportunistic Log: Efficient Installation

Reads in a Reliable Object Server”. Technical Report MIT/LCS-TM-

506, March 1994. In Proc. 1st International Symposium on Operating

Systems Design and Implementation, Monterey, CA (1994).

[PGK88] Patterson, D.A., Gibson, G. & Katz, R. “A Case for Redundant

Arrays of Inexpensive Disks (RAID)”. ACM SIGMOD, May 1988 pp

109-116.

[PS87] “The PS-algol Reference Manual fourth edition”. Technical Report

PPRR-12 (1987), Universities of Glasgow and St Andrews.

[Reu84] Reuter, A. “Performance Analysis of Recovery Techniques”. ACM

Transcations on Database Systems, Vol. 9, No. 4, December 1984 pp

526-559.

[RO91] Rosenblum, M. & Ousterhout, J.K. “The Design and Implementation

of a Log-Structured File System”. In Proc. 13th Symposium on

Operating Systems Principles, 1991 pp 1-15.

[SCM+95a] Scheuerl, S.J.G., Connor, R.C.H., Morrison, R., Moss, J.E.B. &

Munro, D.S. “The MaStA I/O Cost Model and its Validation

Strategy”. In Proc. Second International Workshop on Advances in

Databases and Information Systems (ADBIS'95), Moscow, June 27-

30 1995, Volume 1 pp 165-175.

141

[SCM+95b] Scheuerl, S.J.G., Connor, R.C.H., Morrison, R., Munro, D.S. &

Moss, J.E.B. “The MaStA I/O Trace Format”. Technical Report

CS/95/4 (1995), University of St Andrews.

[SCM+96] Scheuerl, S.J.G., Connor, R.C.H., Morrison, R. & Munro, D.S.

“The DataSafe Failure Recovery Mechanism in the Flask

Architecture”. In Proc. 19th Australasian Computer Science

Conference, Melbourne, Australia, Jan. 1996 pp 573-581.

[SKW92] Singhal, V., Kakkad, S. V. & Wilson, P. R. “Texas: An Efficient,

Portable Persistent Store”. 5th International Workshop on Persistent

Object Systems, San Miniato (Pisa), Italy (September 1992). In

Persistent Object Systems (Eds. A. Albano & R. Morrison). Springer-

Verlag pp 11-33.

[SM92] Stemple, D. & Morrison, R. “Specifying Flexible Concurrency

Control Schemes: An abstract Operational Approach”. Australian

Computer Science Conference 15, Tasmania (1992) pp 873-891.

[SMK+93] Satyanarayanan, M., Mashburn, H.H., Kumar, P., Steere, D.C. &

Kistler, J.J. “Lightweight Recoverable Virtual Memory”. In Proc.

14th ACM Symposium on Operating System Principles, Asheville,

NC, December 1993 pp 146-160.

[SO91] Solworth, J.A. & Orji, C.U. “Distorted Mirrors”. ACM Parallel and

Distributed Information Systems, 1991 pp 10-17.

[Sto86] Stonebraker, M. (Editor) “The Ingres Papers”. Addison-Wesley,

Reading, MA (1986).

[TW95] Tridgell, A. & Walsh, D. “The HiDIOS file system”. In Proc. 4th

Parallel Computing Workshop, London, Sept 1995. Fujitsu

Laboratories Ltd.

[Vau94] Vaughan, F. “Implementation of Distributed Orthogonal Persistence

Using Virtual Memory”. Ph.D. Thesis, University of Adelaide (1994).

[VKD+92] Vaughan F., Koch, T., Dearle, A., Marlin, C. & Barter, C. “Casper:

A Cached Architecture Supporting Persistence”. Computing Systems

5, 3, (1992) pp 337-359.

142

[VDD+91] Velez, F., Darnis, V., DeWitt, D., Futtersack, P., Harrus, G., Maier,

D. & Raoux, M. “Implementing the O2 object manager: some

lessons”. In Dearle, Shaw, Zdonik (eds.) Implementing Persistent

Object Bases, Principles and Practices, Morgan Kaufman, 1991 pp

131-138.

[Wei86] Weikum, G. “A Theoretical Foundation of Multi-Level Concurrency

Control”. In Proc. ACM PODS (1986).

[WJN+95] Wilson, P.R., Johnstone, M.S., Neely, M. & Boles, D. “Dynamic

Storage Allocation: A Survey and Critical Review”. In Proc. 1995 Int’l

Workshop on Memory Management, Kinross, Scotland, UK, Sept

27-29, 1995, Springer Verlag LNCS.

	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1. 1 Components of DBMSs
	1. 2 Configuring DBMSs
	1 . 3 Contribution
	1. 4 Thesis Structure

	2 Background
	2 . 1 Introduction
	2. 2 Recovery Management
	2 .2 .1 Introduction
	2 .2 .2 Classification of Recovery Mechanisms
	2 .2 .3 Write-ahead Logging
	2 .2 .3 .1 Logging with Deferred Updates
	2 .2 .3 .2 Logging with Immediate Updates
	2 .2 .3 .3 Undo/Redo Logging
	2 .2 .3 .4 Optimising Logging
	2 .2 .3 .5 The Database Cache

	2 .2 .4 Shadow Paging
	2 .2 .4 .1 After-Image Shadow Paging
	2 .2 .4 .2 Before-Image Shadow Paging
	2 .2 .4 .3 Optimising Shadow Paging

	2 .2 .5 Log-Structured Databases
	2 .2 .5 .1 Log-Structuring Using Compaction
	2 .2 .5 .2 Log-Structuring Using Threading

	2 .2 .6 Comments

	2 . 3 Concurrency Control
	2 . 4 The Flask Architecture
	2 .4 .1 Introduction
	2 .4 .2 The Flask Framework
	2 .4 .3 Flexible Recovery in Flask
	2 .4 .4 Concurrent After-Image Shadow Paging
	2 .4 .5 Summary

	2. 5 Analytical and Empirical Modelling
	2 .5 .1 Analytical Modelling
	2 .5 .2 Empirical Analysis
	2 .5 .3 Benchmarking
	2 .5 .3 .1 OO1
	2 .5 .3 .2 OO7

	2 . 6 Conclusions

	3 Flexible Recovery
	3 . 1 Introduction
	3 . 2 The Flexible Recovery Manager
	3. 3 The DataSafe Recovery Mechanism
	3 .3 .1 Introduction
	3 .3 .2 The Safe
	3 .3 .3 The Cache
	3 .3 .4 Action Meld and Abort
	3 .3 .5 Restart
	3 .3 .6 Safe Purge
	3 .3 .7 Cache Overflow
	3 .3 .8 Opportunistic Write Back

	3. 4 After-Image Shadow Paging
	3 . 5 Log-Structured Database
	3 . 6 Conclusions

	4 An Analytical Model for Recovery Mechanisms
	4 . 1 Introduction
	4 . 2 Overview of the MaStA Model
	4 . 3 Developing the MaStA Cost Model
	4 .3 .1 Recovery Mechanisms
	4 .3 .2 Categorisation of Recovery Mechanisms
	4 .3 .3 I/O Access Patterns
	4 .3 .4 Assigning I/O Access Patterns
	4 .3 .5 Application Workload
	4 .3 .6 Cost Models for the Four Recovery Mechanisms

	4. 4 Utilising MaStA
	4 .4 .1 I/O Access Pattern Calibration
	4 .4 .2 Applications of the Model
	4 .4.2.1 Application 1
	4 .4 .2 .2 Application 2
	4 .4 .2 .3 Application 3

	4.5 Conclusions

	5 Validation Strategy of MaStA
	5 . 1 Introduction
	5. 2 Assumptions
	5 .2 .1 Recovery Mechanism Abstraction
	5 .2 .2 Disk Performance Abstraction
	5 .2 .3 Workload Abstraction

	5 . 3 Overview of the Validation Strategy
	5 . 4 Validation Framework Design
	5 .4 .1 Napier88 and Workload Traces
	5 .4 .2 Benchmarks
	5 .4 .2 .1 OO1
	5 .4 .2 .2 OO1b
	5 .4 .2 .3 OO7
	5 .4 .2 .4 MaStA Object Benchmark

	5 .4 .3 Platforms
	5 .4 .4 I/O Trace Format

	5 . 5 Conclusions

	6 Validation Procedures
	6 . 1 Introduction
	6 . 2 Avoiding Interference
	6 .2 .1 Platform Interference
	6 .2 .2 Experimental Interference

	6. 3 Validation of the I/O Assumption
	6 .3 .1 Results

	6. 4 Validation of the Cost Category Interaction Assumption
	6 .4 .1 Results

	6 . 5 Validation of the Access Pattern Cost Assumption
	6 .5 .1 Results

	6 . 6 Validation of the Workload Assumption
	6 .6 .1 Characterising Workload
	6 .6 .2 Synthetic Workload Generator
	6 .6 .3 Results

	6 . 7 Accuracy of MaStA
	6 .7 .1 Results
	6 .7 .2 Comparison with Uniform Cost Models
	6 .7 .3 Conclusions

	6 . 8 Conclusions

	7 Worked Example of the Flexible Architecture
	7 . 1 Introduction
	7 . 2 Scenario
	7 . 3 Database Design
	7. 4 Characterising Workloads
	7 .4 .1 The Building Society’s Workload
	7 .4 .2 The Bank’s Workload

	7. 5 Utilising MaStA
	7. 6 Verification of Cost Predictions
	7 . 7 Conclusions

	8 Conclusions
	8. 1 Cost Prediction
	8. 2 Flexible Architecture
	8 . 3 Validation
	8. 4 Future Work
	8. 5 Finale

	Glossary
	Appendix A Recovery and Benchmark Configurations
	A. 1 Recovery Mechanism Configuration
	A. 2 Benchmark Configurations
	OO1
	OO1b
	OO7
	MOB

	Appendix B Calibrating MaStA I/O Patterns
	Appendix C Validation Results
	C. 1 Results of Validating I/O Assumption
	C. 2 Results of Validating Cost Category Interaction Assumption
	C. 3 Results of Validating Access Pattern Cost Assumption
	C. 4 Results of Validating Workload Assumption
	C. 5 Results of Illustrating the Accuracy of MaStA

	Appendix D Scenario Code
	D. 1 Database Generator
	D. 2 Bank Application
	D. 3 Building Society Application
	D.4 B + tree Implementation

	References

