Modelling Recovery in Database Systems

A thesis submitted to the
UNIVERSITY OF ST ANDREWS
for the degree of
DOCTOR OF PHILOSOPHY

By
Stephan J.G. Scheuerl

School of Mathematical and Computational Sciences
University of St Andrews

August 1997

Acknowledgements

| would like to thank mysupervisor Ron Morrison faall the adviceand support he
has offered towards this research.

Dave Munro must also be thankédr his enthusiastiadiscussions orall aspects of
this work.

Thanks to Eliot Moss for his suggestions and contributibashave lead to theork
presented. Equally | thank Richard Connor for his contributions and encouragement.

Thanks also go to Grahalfirby, Malcolm Atkinson, Robin Stanton, FreBrown,
Steve Blackburn, and Dave Hulse for their advice and motivation.

Finally to Duncan, Dominic and Dharini for their alternative views on my research and
to Shona for her encouragement when there seemed no end in sight.

Abstract

The execution of modern database applications requires the co-ordination of a number
of components such atkie applicationtself, the DBMS, the operatingsystem, the
network andhe platform. The interaction of these components makederstanding

the overall behaviour of the application a complex task. As a result the effectiveness of
optimisations are often difficult tpredict. Three techniques commonly available to
analyse system behavioare empiricalmeasurement, simulation-based analysis and
analytical modelling.

The ideal technique isne that provides accurateresults at low costThis thesis
investigates thehypothesisthat analytical modelling can besed to study the
behaviour of DBMSs with sufficient accuracy. In particulae work focuses on a
new model for costing recoverymechanismscalled MaStAand determines if the
model can be used effectively to guide the selection of mechanisms.

To verify the effectiveness of the model a validatipamework is developed.
Databaseworkloads are executed on the flexiblElask architecture on different
platforms. Flask is designed tminimise the dependencies betwe&BMS
components and is used in the framework to allow the same workloadexedwted
on a various recovery mechanisrasnpirical analysis of executinthe workloads is
used tovalidate theassumptions abo@PU, I/O and workloadhat underly MaStA.
Once validated, theutility of the model is illustrated bysing it to select the
mechanisms that provide optimum performance for given database applications.

By showingthat analytical modelling can besed inthe selection of recovery
mechanisms, the work presented makes a contribution towalatalzase architecture
in which the implementation of atomponents may be selected to provigéimum
performance.

Contents

1 INtrOdUCHION. ... 1
1.21Components Of DBMSSooiiiiiii e 1
1.2Configuring DBMSS ... 2
1.3 CONTDULION ... 4
1.4THESIS StUCIUE. ...t e 5

2 BACKGIOUNG ...ttt e 7
2. 11INtrOAUCHION. ..t 7
2.2Recovery Managementuueieieeie i 7

2.2.1INtrodUCHION. 7
2.2.2Classification of Recovery Mechanisms........................ 9
2.2.3Write-ahead LOgQiNgvvvviiiiiiiiiiiiiiiiiiiiiinnns 11
2.2.3.1Logging with Deferred Updates......................... 12
2.2.3.2Logging with Immediate Updates...................... 13
2.2.3.3UNdo/RedO LOGQING. .. v e iiieae e 14
2.2.3.40ptimising LOgging.......coovviiiiii 15
2.2.3.5The Database Cache...............ccooeiiiiiiniiinnnn. 15
2.2.4Shadow Paging.......coviiiiiiiiiiiiiiiiiiiiii i 17
2.2.4.1 After-lmage Shadow Paging...............coevvvnnnnn. 17
2.2.4.2Before-Image Shadow Paging................oooeennn 18
2.2.4.30ptimising Shadow Paging...............cccovvvveennnn. 20
2.2.5Lo0g-Structured Databases........ccoovviiiiiiiiiiiieean 20
2.2.5.1Log-Structuring Using Compaction.................... 20
2.2.5.2Log-Structuring Using Threading 21
2.2.6C0MMENES. ... 23
2.3Concurrency Control..........ooiiiii 23
2.4The Flask Architecture..........oooii i 26
2.4.01INtrodUCHION.e e 26
2.4.2The Flask Frameworke...........ooveiiiiii i 26
2.4.3Flexible Recoveryin Flask..............cccooiiiiiiiiiiiiiiinn, 28
2.4.4Concurrent After-Image Shadow Paging.................... 30

2.4 S SUMMIANY. . ettt et ettt et 31

2.5 Analytical and Empirical Modelling................coooiiiieanns. 32

2.5.1Analytical Modelling...........ccooeeiiiiiiiii e 32
2.5.2Empirical ANalysSIis.ooueiiiii e 34
2.5.3Benchmarking..........c.ccoooiiiiiiiiii i 35
2.5.3.1 OO0 .. 35
2.5.3.2 OO0 .. 36
2.6 CONCIUSIONS. ... 36
3 Flexible RECOVEIYve e 38
B LINtrOAUCTION. ..o 38
3.2 The Flexible Recovery Manager...........cooovvvveeeeiiiiiiinnnnnn.. 39
3.3 The DataSafe Recovery Mechanism.................c.coeeviiine.n. 40
3.3 2INrOdUCHION. .. 40
3.3.2The Safe ... 42
3.3.3TheCache. ..o 42
3.3.4Action Meld and ADOIL.ceiiiii e 44
3.3 0ReS A ... 44
3.3.6Safe PUrgeo 45
3.3.7Cache OVErfloWcoieee e 47
3.3.80pportunistic Write Back............c..oooviiiiiii i, a7
3.4 After-lImage Shadow Paging............cccooviiiiiiii i 48
3.5Log-Structured Database.cceiviiiiiii 48
BB CONCIUSIONSt 49
4 An Analytical Model for Recovery Mechanisms.......................... 50
4.1 INrOAUCTION. ... 50
4.2 Overview of the MaStAModel. ... 50
4.3 Developing the MaStA CostModel............ccooiiiiiiiiiinnn. .. 52
4.3.1Recovery Mechanisms.coeveiiiiiiiiiii e, 52
4.3.2 Categorisation of Recovery Mechanisms.................... 53
4.3.31/0O ACCESS Patterns.........uvviiiiie i 54
4.3.4Assigning I/0O Access Patterns............c.oveeviiiiiinnnnn. .. 56
4.3.5Application Workload.oooeiiiiiii i 58
4.3.6 Cost Models for the Four Recovery Mechanisms.......... 59

4. 4UtNSING MASTHA . ..o 61

4.4.11/0 Access Pattern Calibration ..o, 61

4.4.2 Applications of the Model................cooiiiiiiii 63
4.4.2.1Application L.......c.ooiiii i 63
4.4.2.2Application 2. 65
4.4.2.3Application 3...... ..o 67

4.5 CONCIUSIONS. 68
5 Validation Strategy of MaStA ... 70

S5.1INrOdUCHION. ... 70

5.2 ASSUMPLIOR. . .ttt ettt ettt e 70

5.2.1Recovery Mechanism Abstraction............................. 70

5.2.2Disk Performance Abstraction................c.oooeeviiiinn.n. 71

5.2.3Workload ADSIraction.ccoviueiiiiieiieeiieeaieennn. 71

5.3 Overview of the Validation Strategy............ccoevviiiiiiiiinnenn. 71
5.4 Validation Framework Design...........ccvvvveeiiiiiiiiiiiie e 73

5.4.1Napier88 and Workload Traces.............ccoovvvveeeiiinnn. 73

5.4.2Benchmarks.cooiiiiii 74
5.4.2.1 OOL. ... 74
5.4.2.20000. i 75
5.4.2.3 OO ...t 76
5.4.2.4MaStA Object Benchmark........................ooel e 76

5.4.3PIatforms. 77

5.4.41/0 Trace FOrmMat.........coouuiiiiiiie i 78

5.5 CONCIUSIONSt 79
6 Validation ProCedures.ooiuiiiii i 80
6.1 INtrOdUCTION. 80
6.2 Avoiding Interference. ..o 80
6.2.1Platform Interference.c.ooiiiii i 80
6.2.2 Experimental Interference...............cooiiiiii i, 81
6.3 Validation of the I/O ASSumption..............coviiiiiiiiiiiieaans 82
B.3. LRESUISttt 83
6.4 Validation of the Cost Category Interaction Assumption......... 83
B.4. LRESUIS ... 84

6.5 Validation of the Access Pattern Cost Assumption............... 86

B.5. L RESUIS . .ot 87

6.6 Validation of the Workload Assumption....................cooee... 88
6.6.1 Characterising Workload..............ccoiiiii i, 89
6.6.2 Synthetic Workload Generator................coovvveeeeainnn. 90
6.6.3RESUNS ... 91
6.7 Accuracy Of MaStA.o 91
6.7 . LRESUNS ... 92
6.7.2Comparison with Uniform Cost Models...................... 93
6.7.3CONCIUSIONS. ... 93
6.8 CONCIUSIONSttt e 94
7 Worked Example of the Flexible Architecture...................cooeee. e 95
7.1 INErOAUCHION. ...ttt et 95
T2 SCENAIO. . .. ettt et e 95
7.3Database DeSIgNovviiei i 96
7.4 Characterising Workloads. ... 98
7.4.1The Building Society’s Workload.............................. 98
7.4.2The Bank's Workload.............ccoooiiiiii i 100
T.5ULIlISING MaStA.o 101
7.6 Verification of Cost Predictions..............oooviiiii i, 102
7.7 CONCIUSIONS . . .t e aaee 103
8 CONCIUSIONS. ... e 105
8.1 COSt PrediClionuei et 105
8.2 Flexible ArChiteCture ... e 106
8.3Validation. 107
BLAFULUrE WOTK. ... 108
B O FINAlE ... 109
GlOS S aANY. . .ttt 110
Appendix A Recovery and Benchmark Configurations............... 112
A.1 Recovery Mechanism Configuration...................coeeeeennnn. 112
Appendix B Calibrating MaStA I/O Patterns................cocevveeenn. 116

Appendix C Validation ReSUltS. ... 117

Appendix D Scenario Code...........ooieiiiiiiii i 128

REIEIENCES. . ..o

1 Introduction

The work presented makes a contributidowards realising a flexible database
architecture that may beonfigured to obtain the optimum performanfoe any
particular application. To optimissich a systeneffectively a technique is required
that allows the behaviours of different system configurations to be compared. This
thesis investigates the hypothesis tuadlytical modelling of the databasgstem and

the application may be employed to make accurate comparisons. In particuarkhe
develops and validates reiew cost modelcalled MaStA, to show that analytical
techniques can besed toguide the choice of recovery mechanisfos optimum
performance.

1.1 Components of DBMSs

To aid in thedesign andmplementation of database managensgistems (DBMSS),
the major tasks dealt with by thesgstemscan be logically partitioned into a number
of components as illustrated in Figure 1.1.

transactions
R N 2N S

(transaction managey -

| (concurrency COI’ltI‘OD |

(memory manager)

| (recovery manager) |

Figure 1.1: Logical Components of a DBMS

» Transactions access the database through a transaction manager. The transaction
manager receives operations from transactions farwdards them to other
components of the DBMS.

* Concurrency control is responsibler the correct concurrent execution of
transactions. This is achieved by controllthg execution of operations on the
database in such a manner thasures transactior&lhere to theonstraints of
the particular concurrency model employed.

 Memory management traditionally deaisth cachingthe database immain
memory. Recentlymemory managementas alsotaken on the role of

1

controlling the movement of data between main memory and high spekds,
and clustering strategies within the database.

* Recovery management iesponsible for ensurinthat the database is fault
tolerant - the data isot corrupted even in the event sdftware, system or
media failure.

Although there are many documented mechaniemsach of theseomponents the
convention is thabnly oneimplementation of each component is embedded into a
particular databassystem. Furthermoramplementations of DBMSs oftedeviate
from the logical partitioning of thesystems (Figure 1.1) by combining the
implementations of various components. One justification for sadictal structuring
may be the perceived performargaans obtained oveayered implementations. On
the otherhand integrating implementations BBMS components may introduce
dependencies between the layé¥at may inturn increaseéhe complexity of altering

the implementation o&ny single componenthe next sectiorproposes dlexible
architecture that reflects the logical view of DBMSs in a layered implementation.

1.2 Configuring DBMSs

In many conventional DBMSs the particukdyles of memory management, recovery
mechanism and concurrency model employeddassgned to provide gooaverage
performance for applications executed on the systems. However it is no dteageif
the analysis on whiclthe designs ofthesesystemsare based isstill valid. Current
trends inapplicationstyles, hardwareonfigurations and operatingystemsweaken
many of theassumptionsmade by earlystudies. Furthermoreecent research
[WIN+95, SCM+95a] suggeststhat the models of computation, memory
managementCPU and I/O have been tocsimple, thuscasting doubt ortheir
accuracy.Due to this, it may be arguedhat anew approach tonaximising the
performance of DBMSs must be taken - one that takes into account the current state of
technology and considegpplication style anevorkload inthe configuration okach
component of the system.

The aim ofthis work is to provide amore flexible approach to maximising the
performance of a particular database application. The approach is unconventional by
taking theform of a flexible databasarchitecture(Figure 1.2) that is configured
according to the applicatioworkload. The logicalcomponents are separated in the
proposedarchitecture toensure that the implementation of each component is
independent of anyther. Thisapproach provideshe flexibility required tomake

changes to individual components and provitiespotential to optimise performance
for an application.

(Application)

memory
manangement implementation
strategies P
~ \ 4 b
analysis/
comparisons
recovery P machine
mechanisms o configuration

choice and configuration
of components
YVVY
compile time or
dynamic binding
|

(Application)

concurrency

memory managemepf Configured
4 9)21/ DBMS
recovery

Figure 1.2: Conceptual View of the Flexible DBMS Architecture

For each component, analysis is performed to determine the elementswvoirkhead

that contribute to thecosts incurred. Workload propertigglevant to memory
management for example include the volume landlity of data reaénd updated by

the application. Theanalysis also takes into accoutite particular machine
configuration such athe size of main memorgind the characteristics of tlagsks
available. Thecosts incurred bythe application orvarious implementations of a
component are compared and the implementation with the lowest cost is selected. This
process isrepeatedfor each DBMS componentesulting in a configuratiorthat
providesoptimum performancéor the particular applicatiorOnce aconfiguration is
obtained the components are bound with the application. Binding may be performed at
compile time to takedvantage of compiléme optimisations orbound dynamically
providing opportunities to configure the system at run time.

To make policydecisions regardinpow each componerghould be configured, a
technique is requirethat allows the different implementations of each component to
be comparedThree commonlyusedtechniques are available. These are analytical,
simulation and empirical based analysis:

» Empirical measuremeninvolves running applications or benchmarks on
implemented DBMSs taking measurementsing hardware or software
monitoring.

» Simulation based analysis comprises of a number of proghransapture the
characteristics of a component. By running these programs the behaviour of the
component is approximated and so its performance magtidied. The
simulations are based on a number of assumptioredtae the complexity of
each component.

* Analytical modellingallows the performance characteristics of eddBMS
component to be derived mathematically. This involes construction of a
number of parameterised equatiothet approximate the attributes of the
components in terms of workload characteristics. As with simulations a number
of simplifying assumptions are made about behaviour.

In analytical modelling and simulations a number of assumptions are requimeakéo

the analysis tractable [Leu88]. These assumptions must be sufficiently understandable
to allow theanalytical model osimulations to be constructed. Generally simulations
permit more details of system to be incorporateddetails that are often difficult to
include in analytical models. A drawback of simulation modethas they tend to be

more expensive in terms pfogramming, debugging andlidation todevelop, and

more expensive tasethan analyticamodels.The fine grainedanalysisthat can be
performed usingempirical measurementthe most expensive form ofnalysis,
ensures that the results obtained are normally the most accurate of the three techniques
available. Measurement sfystems usingmpiricalanalysis is often performaasing
synthetic applicationvorkloads produced blgenchmark suitesuch asOO1 [CS92]

and OO7 [CDN93].

1.3 Contribution

Realising an architecture which all DBMS components are engineeredsiait the
application is a large and complask. Hence this thesi$ocuses ordeveloping an
analytical cost model called MaStA [SCM+93af recovery mechanisms, astiows
that the model can hesed toguide the configuration of the recovery component of a
flexible architecture. MaStA analyses the workloadhef application to determine the

4

number of I/O operations incurred by each recovery mechanism available and analyses
the platform to ensurthat cost predictionsre platformspecific. Comparisons of the
resulting cost predictionsan then beused toselect the recovery mechanisimat

incurs the lowest cost.

To promote confidence in the MaStA model a validation framewodev®loped. The
framework involves running workloadgpical of database applications marious
recovery mechanisms on differeptatforms. Empirical analysis ofthe executing
workloads is used to validate assumptions about @®@Uand workloadthat underly

MaStA. The flexible recovery management required in ftaenework to execute
workloads on variousnechanisms is provided lilye Flask architecturMCM+94].

Flask goes some way tealising the flexible architectupgroposed. Arattraction of

Flask isthat theresponsibility of recoverynanagement and concurrency control are
separated thereby enabling the implementations of recovery schemes to be developed
and altered independently of concurrersmyntrol. The flexibility in the recovery
component of Flask is achieved through an interface that places few constraints on the
mechanism used.

A wide variety of recovery schemes have been documgAiB8f2, Gra78, Lor77,
RO91] any of which may be used in architecture. In the original instantiatiblask,
concurrentshadowpaging [Mun93] is employed. This thesis develops tter
schemes: a log-structured mechanism and a log-based mecleiestn DataSafe
[SCM+96]. By providing a choiceghe work provides ameans to execute the same
databasevorkloads overdifferent recovery mechanisms in tfi@mework used to
validate the MaStAcost model. Furthermore, incorporatirgjfferent recovery
mechanisms provides opportunities to perform empirical analysis on Flélsistrate
the necessity for the proposed flexible architecture. Once MaStA is validatetlitye
of the model is illustrated by using it guide the choice of recovery mechaniShasik
to provide optimum performance for given database applications

1.4 Thesis Structure

The needor recoverymechanisms in databasgstems isntroduced inChapter 2,
followed by a description of a classification used to distingbitwveen mechanisms.
A discussion ocommonlyused recovery schemesascompanied by a summary of
existing analytical and empirical studies of recovery mechanisms. Benchmarks
frequentlyused inempiricalstudies ofDBMS arereviewed. A summary different
concurrency models is included along with a descriptiothefFlask architecture to
provide an insight intdhow the logical concurrencand recovery components of a
DBMS may be separated.

Chapter 3provides an overview dhe flexible recovery managesed in Flask and
includes a description of twmechanisms developed to provide alternatives to the
scheme used in the first instantiation of Flask.

The new analytical modelused toselect the appropriate recovery mechaniesma
particular application is developed@hapter 4.The assumptions othe model and a
validationframeworkarediscussed in Chapter &1d a description of thempirical
measurements and simulation experiments performedilittate theassumptions are
provided in Chapter 6. A worked example giverCinapter 7illustrateshow MaStA
can beused in Flask teselect the mechanism thisicurs the lowest cost forgiven
database applications.

2 Background
2.1 Introduction

The Flask architectureprovides the potential to engineer recoverpanagement
independently from otheDBMS components in order to obtaithe optimum
performance for a particular application. Early attempts to increase the performance of
databasesystemshave resulted imumerous designs for recovery mechanisms. This
chapter introduces the requiremdot these schemes ardiscussegshe trade-offs
between various recoverngechanisndesigns,any of whichmay be adopted in the
Flask architecture.

Previous analysis oDBMSs developanalytical models to compare theystems
mathematically ouse benchmarks to provide workloads &onpirical measurement.
These studies along with summaries of commaislyd benchmarkare discussed to
provide the background for a newanalytical modelused to drive the Flask

architecture.

2.2 Recovery Management
2.2.1 Introduction

Traditionally, recovery management is tightly coupled to the implementation of
transactions in DBMSs. Transactions [Dav73, EGL4#J&y78] were introduceahto
databasesystems tallow activities to executeoncurrently, thusncreasing database
resource utilisationEach transaction is a unit afork consisting of reads and
possibly updates to a database.tr@nsaction completes by either committing or
aborting as aunit. When a transactiocommits, all updates performed by the
transaction are made permanent in the datakadevisible to other transactions. In
contrast, when a transaction aborts, all updates are discarded and the datefvase is
a state iwwould have been in if the transaction had neseecuted. This is known as
the atomicity orall-or-nothing property of transactionseither all or none of a
transaction’s updates are reflected in tta@abaseDurability is thepropertythat a
successfullycommittedtransaction’s updates survive failures. Recoveanagement
is the DBMS componentesponsible for providinghe durability properties of
transactions in the presence faflures. The threetypes offailure that the recovery
manager must deal with are media failure, system failure and transaction abort.

* media failure:These failures occur fronthe breakdown of hardware and
potentially causeghe loss ofdata onboth volatile and non-volatilestorage. In

such an event the data may be restored from a mirrored disk [BT85] or from an
archived version.

» system failure: These failures occur due to the logtatzfrom volatile storage
only and potentially cause inconsistencies inrtiaerialised databasgHR83].
The term materialised database is used to describe the state of the aathhase
i.e. taking no account of additional data that mayréeorded duringhormal
processing to recovery the database to a consistent Btateecovery manager
ensureghat on restarall updatesmade by committettansactions are durable
andthat allupdates of non-committed transactions r@moved.Since system
failures may also occur during restart the recovery process must be idempotent.
Thatis, restart may begin arfdil a number of timesgeventuallysucceeding,
resulting in the same state as if the initial restart had succeeded.

» transaction abort: A transaction is said to abort if itelsninated before it
commits. All updates made by the transaction to the materialised database must
be removed by the recovery manager. This is known as transautack.

This thesis concentrates dhe provision for recoveryafter system failure and
transactiorabort. Recovery frommedia failurerequires additional mechanismssch
as disk mirroring[BT85, SO91, OS93] oRAID [PGK88] which are beyond the
scope of this thesishut may be included in futurevork as aseparateDBMS
component in the flexible architecture outlined in Figure 1.1.

Figure 2.1illustrates the principle behirall recovery mechanisms designeddeal

with soft failure.The database is held on non-volatile storageh as diskRead

operations causeata to be faulted into a cache held in main memdrgrethe data
may beupdated.During a commit, or in some cases duritng transaction, the
updated data is transferred back to non-volatile storage.

The non-volatile storage is partitioned into two logical areas: the database itself and an
extra partition traditionallknown asthe log to record the informatiomecessary for
recovery. In some cases, the database and the log are two distinct areas of non-volatile
storage, such as a database file, and a log [Gra78] or difference [AS82] dilkels,

such as shadow paging [Lor77] or log-structuring [RO91] the database and the log are
intermingled on a singlarea ofstorage. Ineach case the recovery information is
maintained in the log sthat inconsistencies may be remove&dm the materialised
database on restart.

(application)
A A A

reads and writes of the database
Y Y V¥
databaseache
in main memory

AL

recovery mechanismensu_res a
consistent state after failure

L 4 YooYy

log information to
restore consistent stg
on failure

—

e materialised database

non-volatile storage

Figure 2.1: The General Structure of a Recovery Mechanism
2.2.2 Classification of Recovery Mechanisms

To understand the trade-offs between recovery mechanisms and to provide a technique
for distinguishing between these schemasaly be helpful to develop classifications

of the properties of recovergnechanisms. Haerder ariReuter [HR83] stratify
recovery into a hierarchy opropagation, page replacement, end-of-transaction
processing and checkpointing strategies adopted by page-based recovery mechanisms
in transactional databasgystems.Haerder and Reuter's classificati@ubsumes
another classification, sometimes referred to asitfigredo categorisatiofBGH83,

HR83]. The unddredo scheme describes mechanisms in termshef operations
performed on restart to brinthe materialised database to a consistent siide

system failure.

Propagation ighe process ofmaking committedupdates visible in thenaterialised
database. The propagation strategy of a mechanatonscif a transaction’s updates
to the database are performed as awh#nthe transactiomommits. In othewords
either all ornone of acommittingtransaction’s updates become part of da¢abase.
Such schemeare oftencalled no-unddno-redosince the database advaysleft in a
consistent state after systemfailure and hence require no recovery operations on
restart.The propagation strategy 4@tomicif commit propagation to the database is
interruptable by system failures. If a system crash occurs duaitagnic propagation,

the materialised database may be left in an inconsistent state after a crash.

A recovery mechanism’s page replacement strategjgadif cache pages updated by a
transaction may be written in place to the datali@dere the transactionommit
completes. Mechanisms exhibitistpal strategies require that information is recorded

in the log to remove non-committed updates during transaction rollback or if a system
failure occurs before the transactisunccessfully commits. Suehechanisms may be
classified as requiringndo operations on restart afteystem failures. Anechanism

is -stealif the pages updated by a transact@e held in main memory or in the log
until after the transaction commitBhe materialised database therefore never contains
non-committed updates and sour@looperations are required after a crash.

A mechanism isforce if updated pagesare propagated to the datababaring a

transactiorcommitand-force if propagation is deferred until afteommittime. A

-force strategy must write updated pagesthe log toensure propagatiosan be
performed at a later time, and hence may be classifieedas Mechanisms exhibiting
force end-of-transaction processirgye no-redo since all committed updates are
present in the materialised database after a system failure.

In redo recovery mechanisms the amount of recovery information required in the log
is conceptuallyjunboundedCheckpointing schemes aused tolimit the amount of

this information. A checkpoint involves writing the database, updatdgeld in the

log and writing a checkpoint record to the logrtdicate thefact. The checkpointing
strategy adopted by a recovery mechanism determines the frequency of checkpoints
and the amount of work performed during each checkpoint:

» Transaction-oriented checkpoints (TOC): these occur @aeh a transaction
commits and are associated witfoece propagation strategy.

» Transaction-consistent checkpoints (TCC): in-progngsdate transactions are
allowed to terminat@and newupdate transactions abéocked.All updates are
then propagated to the database after which normal execution is resumed.

» Action-consistent checkpoints (ACC): These are generated in a similar manner
to transaction-consistent checkpoints but at an operat®rellinstead of at the
level of transactions.All update operations arBnished and newupdate
operations are blocked until after the checkpaoimmpletes. Changesre then
propagated to the database.

* Fuzzy checkpointing: these checkpointing schemes retlueeamount of
propagationthat takesplace at checkpointime. Instead of propagating all
updated pages on every checkpoint, only a fractigdheypagesthat have not
been propagated since the last checkpoint are propagated datdifbmse. The

10

number of pages propagated athd nature of the checkpoint trigger are
determined by the particular fuzzy checkpointing scheme employed.

The classification depicted figure 2.2, taken from[HR83], stresseshe possible
combinations of strategies that may umed by recovery mechanisnidie fact that
there arenumerous strategies maki® comparison of recovery schemes a complex
task.

O

-ATOMIC ATOMIC Propagation
Strategy

Page

STEAL ~STEAL STEAL “STEAL Replacemen

oT

FORCE -FORCE FORCE-FORCE FORCE -FORCE FORCE-FOR ocessing

Check-

TOC TCC ACC fuzzy TOC TCC fuzzy TOC TCC ACC TOC chgorting
cheme

Figure 2.2: Classification Scheme for Recovery Concepts

The following sections give examples bbw some ofthese categorisations may be
realised in implementations.

2.2.3 Write-ahead Logging

Write-ahead logging mechanisms [Dav73] are rii@st common recovery schemes
used indatabasesystems.These mechanismsse a logfile or partition to record
information required to bringhe database to a consistent state in the evesystém
failure. The term write-ahead is oftersed to emphasisghat arecord of a database
update is written to the log before the update is performed.

Examples ofsystemshat makeuse of logging schemesre System R[GMB+82],
ARIES [MHL+92], Ingres [Sto86], Sybas&racle, Q [VDD+91], Mneme[MS88],
Argus [OLS85], Eos [GAD+92]0bject Design’s ObjectStor¢LLO+91], Exodus
[FZT+92] and earlier versions of Texas [SKW92]. RVM [SMK+93] provides
support forrecoverable persistent virtual memarging pagelogging, and the Cedar
file system [Hag87makesuse of logging tdncrease thehroughput of writes and
speed up recovenyhere aretwo basic styles of loggingthe write-ahead log with
deferred updates and the write-ahead log with immediate updates.

11

2.2.3.1 Logging with Deferred Updates

In deferred update loggin@rigure 2.3), aransaction’s updates are written the log
and update propagation to the database is deferred until after the transaction
successfully commits.

volatile storage
cache

,,

non-volatile storage

—>» database reads during normal processing
----- » log writes during normal processing

fffff >» checkpoint and swap writes of committed daja
—> log reads during recovery

Figure 2.3: Write-ahead Logging with Deferred Updates

Each database updatauses a record to be written to a logffer. A record is
composed of the updated datae data’s location in the database and the identifier of
the transaction thgterformed theupdate.When a transactiomommits, all update
records are flushed to the log. The transaction is committed by writtognenit entry

to the log. The transaction’s updatee propagated to the database tang after the
transaction commits.

If the system crasheafter a transaction commits and before the transaction’s updates
are propagated to the database, the log entriessarkorrestart toredo the updates.

In otherwords, the updates are redtbm the log and written to thenaterialised
database. The recovery process is idempotent since database updates from the log may
be performed a number of times witle same result as if the updates are performed
once. If a transaction aborts or the system crashes before a transaction commits, none
of the transaction’s updates are reflected in the materialestedbase. Hencthere is

no requirement foandooperations either on restart or during rollback.

Transaction rollback involves simply discarditige transaction’s updatdsom the
cache and writing an abort record to the log. On restart this record indicates that any of
the transaction’s updates found in the log must be ignored.

12

Using Haerder and Reuter’s classification logging with deferred updatesiismic
-steal -force, TOC/TCC/fuzzy}. Since non-committed updates are never written to
the materialised database a deferred update log can be sidadror -steal
Checkpointing involves updating the database wiimmittedupdates buffered in the
cache and writing a checkpoint record to ling. This record indicatethat committed
updates held in the log aredundant. Anaction-consistent checkpointing scheme
(ACC) cannot beusedsince it would involve updating the databaseith non-
committed data that would requuedoinformation in the event of a crash.

2.2.3.2 Logging with Immediate Updates

In a log withimmediateupdates(Figure 2.4) before-imagesare written to the log

prior to writing updates (after-images) to the database. The before-images (the original
values) may be required after a system crasintio non-committed updates from the
materialised database.

Before data is updated in tisache the before-image of the data is written to the log
buffer. The before-imagemust be flushed tthe log before updating théatabase.
When a transactionoommits, the required before-images diashed tothe log and
then the transaction’s updates are written to the database. The transamiiomitied

by logging acommitentry to signifythat thetransaction’s before-images should be
ignored on restart.

volatile storage
cache

non-volatile storage

—>» database reads during normal processing
----- » database writes during normal processing
fffff > writing before-images during normal procesging
—> removing inconsistencies during recovery

Figure 2.4: Write-ahead Logging with Immediate Updates

After a system failure the log is read backwards to fir@lbefore-images gjotential
inconsistencies in the materialisddtabase, in othevords thosebefore-imageghat
are not associatedith committed transactions.The appropriate before-images are

13

copied to the database to remowado potential updatesnade by non-committed
transactions. Recovery idempotent sinceindo operations to the database may be
performed any number of times withe sameresult. Once allundo operations are
complete, the log is marked as being empty to avoid performing the same operations
again if another system failure occurs.

Transaction abort involves performingndo operations to remove any of the
transaction’s updates frothe materialised database and writing a transaction abort
record to thdog. This ensuregshat thetransaction’s before-images in the log are
ignored on restart. Noedo operations are required sine# committedupdates are
present in the materialised database. As a consequence, no checkpoints are required in
immediate updatdogs. Using Haerder and Reuter's classification logging with
immediate updates is classified asafomig steal force, -}.

2.2.3.3 Undo/Redo Logging

Under someworkloads, the above logging schemes may be testrictive. For
example, inmmediate updatégging, the overhead of writing before-images to the
log during a commit, in addition to writing updatestte databasemay behigh. In
deferred update logging, updates shadg&hlly fit into thecache. If notthe log may
be used to hold updatethtaswapped out othe cache, introducinghe possibility of
read operations on the log during normal processiraptain themostrecentversion

of data. A drawback is that these reausy increase theost of seeking tthe end of
the logduring a commit. Aralternative is touse anadditional area of non-volatile
storage for swappingpdateddata, withthe overhead of performingeads during a
commit to copy these updates to the log.

A more flexible logging techniquexists which encompasséise characteristics of
both mechanisms described above. This form is known asdofredolog. In such a
log, updates are written either to the log or todhtabase. Swap writese normally
directed to the database and before-images are written to the log for recovery. During a
commit, updates are written to thegy. This mechanisnensuresthat workloadsthat

fill the cachewith updatesnay be accommodated atidht commitwrites (tothe log)
are fast. If a crash occurs, inconsistencies imthterialised database are removed by
overwriting them with the before-images held in kg, and committedupdates held

in the log are written to thdatabase. Unlike deferreghdate loggingunddredo logs
may also employ ACC checkpointing schemes sinceartdeinformation required for
ACC strategies is available aestart. Thismechanism is {atomic steal -force,
any} using Haerder and Reuter’s classification.

14

2.2.3.4 Optimising Logging

One of thedistinguishing characteristics of logging mechanismthas log writes

are performed sequentially. An optimisation is to buffer log records and to perform
fewer, larger writes to increase write throughput toltlge The buffer need only to

be flushed to the log when the cache becomes full or if it is necéssaecovery.

In deferred update logging a transaction’s updates must be preseatlagwhen

the transaction commits. Hence it is possible to defer flughmiguffer tothe log

until the transactiomommits. Inimmediate updat®dgging, pinning updates in the
cache enables flushing the buffer of before-images to the log to be deferred until the
transaction begins to propagate its updatetheéalatabase. By writingommitted
updates to the database opportunisticaiiig,cost of propagating tthe database in
deferred logging may be reduced.

Deferred updatéogs may be classified according to the type of information recorded
in the log: they are either physical or logidalso called operational).The term
physical logging indicatethat datavalues are recorded in theg. The granularity of
the data is normallpages or objectdifferencelogging is an optimisatiothat may
be employed in either deferred ionmediate updatéogging. It consists ofecording
only the byte by byte differences between the before and after-imadatand can
reduce the amount of information written to the Valgen compared to writing whole
pages or objectsLogical logging is designed to further redutlee amount of
information written to the log in deferred updadtgging. Instead of writingdata
values, highlevel operations performed on the databaselagged. For example,
inserting a tuple into a relation may cause a number of phydiealges, such as
updating the index and the reorganisatiordatia. In a physical loghany records are
needed to reflect these changes. In contrast, logical logging needs onlythatdhe
update takes place and to record the value of the tuple.

A further optimisation may be achieved in logging by taking advantage of theatiata
mismatch betwee@PU and disk to perform compression data written to théog.
This may reduce the amount of Idgta writtenand hence may redud® costs with
the penalty of a marginal increase in CPU cost.

2.2.3.5 The Database Cache

The DB Cache[EB84] is an example of apage-based deferred update logging
mechanism that aims to increase thughput ofsmall transactions by delaying the
propagation of updated pages ttee database until after comntime. During a
commit, updated pages are written sequentially to a non-volatile log calleaf¢he

15

Figure 2.5illustrates the layout of the DBache.The safe is a non-volatile storage

device that permits fast sequential access and is at least as large as the cache. Pages are
read fromthe database into theache. Updated pagesmain in the cache until the
transaction commits at which time they are written sequentially teafge Committed
pagesmay remain in the cachtor use by other transactionsmay be written
opportunistically to thelatabase, or chosen faplacemenand written ondemand.

During the recovery process the only action required is to reashtégages into the
cache(redo). Since non-committed pageme never written to the database the
mechanism iso-undo

volatile storage

cache

T
, A
1
1
4
P v

&
% safe
o)

Voo

OQDDDOO

non-volatile storage

<<— page faults from the database

<~ - - - page writes to the safe during a commit

< page writes to the database of committed pages
< page reads from the safe during recovery

Figure 2.5: The DB Cache

Whenever the sateecomes full, pages in the safe required for recoamflushed to

the database. One of the problems therefore is determining which pages are required in
the safe during normal processing and findimgpages to read intthe cacheduring

restart. During normal processing the mechanism maintains a volatile bitmap, with one
bit for each page in theafe, toindicatewhich safe pageare requiredor recovery.
Whenever thesafe becomes full aafe-begin-pointers advanced to indicate the bit
corresponding to the first page required for recovery. If more free pagejuired,
committed pages may be flushed from the cache to the database renderipgglesse

in the safeestart-free

During recovery, page header information is used to decide which range of safe pages
hold committedpagesthat had potentially not been written to the database before the
failure. The pages inthe range are read into tisache. If two versions ahe same
database page aread,the olderversion is discardednce thesafe hasbeenread,

16

normal processing resumes. Itm®t necessary to writhhe committedpages to the
materialiseddatabase, since at any pointtime thedatabaseonsists otthe contents
of the materialised database and the contents ofatbiee. If a system crash occurs
during restart the safe is simply re-read. Hence recovery is idempotent.

The DB Cachealoes notwrite pages tdhe safeuntil transactiorcommit toavoid the
possibility of reading pages frorie safe during normalprocessing,and hence
minimises thecosts of safewnrite seeks duringhormal processing. This imposes a
limitation on thenumber of pagethat may be updated (limited to the size of the
cache).Elhardt and Bayesuggest swappingpdated pages to additional area of
non-volatile storage taccommodatevorkloads consisting darge and/or londived
transactionsThe checkpointing scheme in the DB Cache is fuzzy since checkpoints
are generatedvheneverthe safe becomesull, and since only a fraction of the
committedpagesare propagated to tlaatabaseThe DB Cache is{atomig -steal
-force fuzzy}.

2.2.4 Shadow Paging

Instead of using a physically separate log file, shagaging mechanismsaintain a
logical log within thedatabase. Pageplacement algorithms aresed tocontrol the
movement ofpages betweethe cache,the database and thegical log suchthat a
consistent state iglways recoverable. A pageap is maintained to record tlagsk
locations of database and log pages. The first time a database page is wdisénato
shadow copy of the page is made in the loghst a before-image @lwaysavailable
after a system failure. A new consiststdte is obtaineduring a transactionommit
using amechanism that atomicallypdates the page map 8wt the logicallog is
empty andall committed updates are visible in the materialisddtabase. Two
variations of shadow paging are discussed.

2.2.4.1 After-lmage Shadow Paging

After-image shadow paging [Cha78, Lor77] ensureshat updatedpages never
overwrite their before-images on disk - an updated page is written to a shadow copy in
the logicallog. A page map ordisk maintains themappings betweethe database
pages and disk blocks. The mechanism maintains a mirrored root page from which the
last consistent mappingse found. Figure 2.6illustrates a database in which two
pages are modified in the cache, one of which is shadowed in the log.

Reads operations cause pages to be faulted into the cache, where they may be updated.
The first time anupdated page is written sk it is written to a free block (its
shadow) inthe log. Transactiorcommitinvolves flushingall updated pages ttheir

17

shadow blocksThe page map odisk isthen atomically updatedsing atechnique
such as Challisalgorithm[Cha78] toreflect thenew locations of updated database
pages. Using Challis’ algorithm the page map is described by a mirtionedtamped
root block on non-volatilestorage.During a commit theolder block is updated to
record the new state of the pagep. Using thigechnique the after-images pages

in the log are in effecatomically propagated to the databadering a commit. The
blocks holdingthe before-images afommittedpagesbecome redundant and may be
overwritten.

cache || unused page
o unmodified page
/ o I modified page
i —> read from the database
< --- writetothelog
database/log

Figure 2.6: After-lmage Shadow Paging

Since propagation is performed atomically, the page magistnconstituteshe state

of the database at the last successfuimitand so the materialised database is never
in an inconsistent state aftersgstem crashThis eliminates the neetbr undo and
redo operations on restart, anbence by definition recovery is idempotent.
Transaction abort involves discardinbe appropriate updated caclpages and
reverting any corresponding page mappings to their origadakes.Checkpointing in
after-image shadow paging is transaction-oriented since propagation eachtisne

a transaction commits. Using Haerder and Reuter’s classificafterrimageshadow
paging is atomig -steal force, TOC}.

Implementations of after-imagshadow paging schemes aresed in Napier88
[MBC+89, Mun93], CASPER [VKD+92,Vau94] and GemstondBOP+89].
Shadow paging is also used along with logging in System R [GMB+82].

2.2.4.2 Before-lmage Shadow Paging

In contrast to th@revious mechanisnefore-imageshadowpaging[Bro89, BR91]

always writes pages back to their original blocks. The mechanism etisairesfore-

images of the updated pages are available for recovery in a log appended to the end of
the databaseThe page map odisk is used to recorthe locations of thesshadow

pages.

Before an updated page is first written to the database, the before-image of the page is
written to thelog. The page map odisk is updated to record the location of this

18

shadow.Further updates tthe same page need no furtlsradowing.Figure 2.7
illustrates a database in whitlvo pagesare modified andshadowed.One page is
updated in the cache but has not yet been shadowed.

|| unused page
cache unmodified page
I modified page

s shadow page

<> readsand writes
¥ copying before-images
\

to different blocks

undo writes during
restart

database/log

Figure 2.7: Before-lmage Shadow Paging

The mechanism ensures that by tihee atransaction commitgach page updated by

the transaction has been shadowed and that the page ndégk drasbeen updated to
record the locations of theshadows. Orommit, the updategpagesare written to

the databaseThe page map odisk isatomically updated to remove the locations of

the before-images. Thisffectively setsthe database tor@ew consistent stat&ince
updated pagesare written in place, the materialised database may contain
inconsistencies after a crash due to page swapping or an interrupted commit. If a crash
occurs, the page map contains the locations in the log of the before-images of
potentially inconsistent databagages. These pagesre copied to their original
locations in the databaseindo, returning the database to the state at the last
successful commit. Recovery is idempotent since before-images may be copied to the
database any number of times witle sameesult. The mechanism iso-redosince

all committed transactions’ updates are reflected in the materialidathbase.
Transaction abort involves discarding asachepages updated hiyre transaction and
overwriting any updated pages writtenttee databasevith the appropriate before-
images. The page map is atomically updated to discard the transaction’s before-images
from the log.

Using Haerder and Reuter’s classification, before-image shadow pagingisnfig
steal force, TOC}. The mechanism is atomicsince propagation can be interrupted
by system failures.

19

2.2.4.3 Optimising Shadow Paging

In after-imageshadow paging two adjacent databaspagesmay be located on
physically distributed blocks on non-volatséorage. Thignmay cause an increase in

seek timesunder workloadghat access thesevo pages consecutively. Clustering
schemes such as preallocating shadow pages in the same cylinder as the original pages
[Lor77] may be employed to reduce thessts. Orthe otherhand,since pages may

be relocated on disk, dynamic reclustering of pages may be employegptansally

reducing reactosts. Forexample,data may have been originally created ram-

adjacent pages. If they are subsequently updated and committed tapethenay be

written to contiguous blocks odisk, thuspotentially reducing theost of reading

these pages consecutively.

Optimisations in before-imagshadow paging are similar tdhose whichmay be
employed inmmediate updategging. When a page is first updatedshadowcopy

of the page is made in the cache. This before-image need not be written to uh#l log

the updated page is about to be written to the database. This provides opportunities for
optimisations, such as flushing before-images tt® log in batches or
opportunistically, and reducintpe frequencywith which the page map is atomically
updated.

2.2.5 Log-Structured Databases

Log-structured databases (LSD’aye based onthe design of the Sprite Log-
Structured File SysterfRO91]. In a LSD,the log itself acts as eepository for
database pages. In other words the databaskggcal collection ofpages within the

log. The mapping of the databaaddresspace ontdhe log is recorded by writing
modified pages tdhe end of the log alongith metadata talescribe the database
addresses of those pages. An atomic commit is achieved by writing a commit record to
the log to specify that aew consistenstatehasbeenestablished. On restathe last
consistent state is found by reading all the metadata up to tleenhasiit record in the

log. These records are used to construct a transient page map in main mesacing to

the locations of databagages inthe log during normalprocessinglog-structured
databases employ either threading or compaction to manage free space on disk for new
updates. Like AISP, log-structured mechanisms atenic -steal force, TOC}.

2.2.5.1 Log-Structuring Using Compaction

A compacting LSDmoveslive pages ananetadatdowardsthe start of the loghus
reducing fragmentation and freeing up areas of thefdogther updates.The log-
structured persistent store proposed Texas[SKW92] makesuse of compaction.

20

The locations of database pages in the log are held in a tree-structured pdlgat isap
itself recorded in théog. The location of theoot of the tree is recorded onkaown
location ondisk. Atomicity of commits is attainethroughthe atomic update of the
record holding the root’s location.

The locations of fredlocks inthe log are recorded by a bitmap generated on restart
from the page map. This is searched when free blocks are required for writing updated
pages. Ifthe degree of fragmentation in the log becomes sufficiéigly to degrade

write performance the log may be compacted. The bitallagvs the compactor to
determine which pagemwe liveand whicharefree. Any one of a number of garbage
collection technigues may be employed to free contiguous areas of the log.

This recovery mechanistmay be viewed as a merger of logging aftér-image
shadowpaging: updated pagese written tocontiguous free blocks ithe log in a
similar fashion to deferred update loggirad, like after-imageshadow paging,
metadata is used to record the locations of the latest versions of database pages.

2.2.5.2 Log-Structuring Using Threading

The potentiallyhigh cost of compactinghe log may be reduced by performing
incrementalcompaction. Thisnay be achieved by patrtitioning the log into threaded
fixed sized segments and performing compaction on a per sedrasist. Each
segment contains a number of pages and corresponugt@data todescribe the
database addressestbé pages. Ifsegmentdecome internally fragmented they may
be cleaned for reuse by copying live pages into new segments.

An example of a threadddg-structuring is presented by Hulse dbdarle [HD96],

and is used to provide resilient persistent processes whthi@rasshopper persistent
operating systerfDBF+94]. The layout of astore is illustrated irFigure 2.8. The
segmentsare threadedsing next segmenpointers andime stampsare used during
recovery to findthe last segmensuccessfully written tdhe log. During normal
processing, &ree-structured page map is maintained in virtual memory to record the
log segment and thaffset withinthe segment of the lategersion ofeach database

page.

When a page fault is performedlring transactiorprocessing,the page map is
referenced to determinghich log segment contairthe requiredpage. The whole
segment is read and the pagmde available. When a transactioammits, the
appropriate updated pages andtadata argrouped into segments buffered in the
cache. When a segment becomes full it is written sequentially to a free segment in the
log and is referenced by the previous segment writtehettng. The commitprocess

is completed by including a commit-complete record in the last segment Vioittére

21

commit. During restart these records distinguighpages written during successful
commits fromthose written by interruptednes. During a commit the page map in
main memory is updated to record the new locations of the pages in the log.

—> segment reads into the cache
----- > new segments written to the log

> threaded segmentsin the log segment
metadata *+7| data page updated data page

cache
AN A i
R SRR
log/database U L

Figure 2.8: Segments in a Log-Structured Database

On restartafter acrash orafter an orderlyshutdown,the log is scannetbrwards.

The metadata in theegmentsareused to reconstru¢che page map in maimemory.

Since the log may be large, this process may be optimised by occasionally writing the
page map to the loduring normalprocessing and on restart readihg latest page

map from the log. Since the page map may be written lazily several commits may have
occurred after the page majas last written. Therefore on restart the latest page map

in the log may not constitute the latest consistent state of the database. The page map is
brought up tadate by reading thenetadata in thesegments followinghe last page

map. The address of the latest versiothef map is recorded inkanown location on

disk. Hulse and Dearle employ Challis’ algorithm to atomically update this record.

If the log becomesull, cleaningis performed on internally fragmented segments in
the log. This consists akading segments intbe cacheand copyindive pagesinto
new segmentsThe mechanism discriminates between lasgd obsolete pages by
consulting the pagmaps.The new segmentare appended to the end of the log and
the old segments are freed for reuse.

Since no operations are required to remove inconsisteduai@sy recovery, LSD’s
areno-undq and areno-redosince no operatiorare required to propagatemmitted
updates to the materialised database.

22

2.2.6 Comments

The classification of recovery mechanisms presented by Haerder and Reuter highlights
that there aresumerous strategighat DBMSs can employ tprovide recovery. In

order that the strategy with the lowest cost may be chosen for a particular application it
is necessary to understand the trade-offs between each scheme aadll¢éottbanake
accurate predictions of thedsts involved withireachmechanism. Such comparisons
may be simplified by describingach mechanism in terms of the movementath
between a cache, a database alagjiaal log used to hold recovery information. For
example, AISRcan be described as loggingwiich the log is a collection gbages

held on free blocks ithe database. By describingach mechanism as variations of
logging, the mainissuesconcerning performance thamust be addressed when
comparing difference schemes for a particular application and platform are:

 How much data is readnd written to the databaskiring normalprocessing
and checkpoints?

« How much data is transferred to and from the log during normal processing and
checkpoints?

* On restart, how much data is read frtma log anchow much is written to the
database?

* What I/O access patterns are performed?
* What are the effects on subsequent reads of the writes performed?
« Finally, what are the CPU costs incurred by the recovery manager?

This break-down of recovery coststie basis forthe new analyticalcost model for
recovery schemes described in Chapter 4.

2.3 Concurrency Control

Concurrent access to databasesritiple users wasntroduced to increase database
resource utilisation. DBMSs employ concurrency control schemes to avoid
inconsistencies that may result from interference among multiple users.

The most common schemasedtoday are implementations of théomic transaction
model[Dav73, EGL+76, Dav78]Each reacand write operation on the database is
performed within a transactio.he consistency of transactions maintained by
ensuringthat their interleaving is serialisable - the effects of executegsactions

23

concurrently are equivalent sbme serial execution dhe transactions. Aratomic
transaction model is considered to be pessimistic if transactions are absteoh as
conflicts occur, orpessimistic if transactions run mmpletion and ar®nly then
aborted if conflicts have occurred. Atomic transactions are often described as adhering
to the ACID properties [Gra81, HR83]: atomicity, consistency, isolation and
durability.

» Atomicity, or the all-or-nothingproperty, refers tdhe organisation of the
operations of a program into amtomic unit; eitherall the effects of the
operations are visible in the materialised database or none are.

» Consistency refers to the correctness property of transactions. If a transaction is
executed alone the transactishould bringthe databaséom one consistent
state toanother.The system is responsible for ensurititat when correct
transactions are executed concurrently, database consistency is preserved.

» Isolation refers to the fact that a transaction should perceive a consistent view of
the data. For example, #ansactionshould notcommit afterhaving read the
non-committed updates of an aborted transaction.

» Durability refers tothe system’s responsibility for ensuririge permanence of
committed updates, in the presence of failures.

A number of attempts have been made to extendtdmictransaction model iorder

to increase concurretttroughput.Garcia-Molina in[Gar83], forexample, proposed
using semantic knowledge of operations to reduce conflicts betwaeactions. By
studying the semantics of operations to identifyhich operations commute,
concurrency may be improved by increasing the number of correct interleavings of
transactions.

Moss [Mos81] attempts to model concurrent activities through nested trans#uions
structure the activities in a tree likeerarchy. A transaction hierarchy is composed of
top-level transactions operating on tliatabase, sub-transactions awatbmic
operations.Any transaction in the structure magll atomic operations, such as
database read and writeperations, andmay executesub-transactions.Leaf
transactions executenly atomic operations. Transactions access copie®lgécts
accessed by their ancestors, or copies of objects in the database in the case of top-level
transactions. If no ancestor has a copy of an object, the sub-transaction obtains a copy
of the globally committedrersion ofthe objectfrom the databaseWithin a nested
transaction, uncommitted updates may be accesssdibyransactiondaVhen asub-
transaction commits, its updatese inherited by itsparent. When a top-level

24

transaction commitghe updatesnade by the transactioand inherited fromsub-
transactions areommitted to thelatabase. Consistency nsaintained byensuring a
serialisable schedule of reads and writes to the database by top-level transactions.

Open nested transactions proposed in [Wei86] are extensitims nested transaction
model. These models permpartial results to be viewed outsidine transaction
hierarchy. This isachieved by permitting a sub-transactiorcéonmit changes to the
database. If an ancestor of cammitted sub-transaction subsequently aborts, a
compensating transaction associated with the sub-transaction is executed to reverse its
effects in the database.

For some database applications 8&D properties can be ta@strictive. In modern
CAD/CAM applications, for example, users may wish to co-operate to update a shared
design before coming to mutual agreement to commit tlehanges. This is not
possible using amatomic transaction model due to the isolatiproperty. Another
drawback ofatomic transactions ighat they may restrict potenti@oncurrency in
systems executing long-lived transactions. These transactions imiblee access to
large amounts oflata or involvelong delays in theiexecution. The serialisability
constraint of atomic transactions may cause long delaysttier transactiong/ishing
to access the same data. Furthermore the isolation propaytyead to an increase in
the probability of conflicts occurring betweemansactions, thusncreasing the
frequency of transaction aborts.

The saga model [GS87] is attempt toincrease concurrency systemshat execute
long-lived transactions. Transactioase broken downinto a number ofatomic
transactions {1, To, ..., Tp}, the first n-1 of which are associated witbmpensating
transactions {@, Cy, ..., Gy-1}. The successfutompletion of a sagdepends on the
success ofhe serial execution of each compongansactionThe failure of asaga,
caused either bgystem crash or byhe failure of a component transactiong);T
requiresthat the compensatingansactions {&.1, Ck-2, ..., Ci} are executed to
reversethe globally visible effects of the committed compongansactions. The
model relies on the programmer being able to break the long-lived transdation
into a number of componentr which compensating transactions must be
constructed.

Nodine et al. [NRZ92] attempt to model co-operation by allowing sharing between co-
operative activities. Activities are modelled in a ne$ésthion. The internainodes are
transaction groups each of which is composed of a set of members idterether
transactiongroups orco-operativetransactionsThe members of a transactignoup
co-operate to achieve a singiesk. Consistencyithin a group ismaintained by

25

ensuring that all operations performed adhere to group-specific user-specified
constraints. These constrairie definedusing agrammar to describe thlsequences

of operations that must occur within a transaction group and the patterns of operations
that are forbidden. Similarly to nested transactions a member obtains copies of objects
from its parent and updated objects are inherited by the transaction group.

2.4 The Flask Architecture
2.4.1 Introduction

Traditionally database systems use one model of concurrencyma@iiibe restrictive
since it does not permit concurrency todasigned to provide optimum performance
for a particular application. Furthermorsuch a systemcannot accommodate
applications that require differemhodels of concurrencyThe Flask architecture
[MCM+94] uses amore flexible approach to provide the appropriate model of
concurrency forthe application.This is achieved by separating dbe issues of
concurrency from otheddDBMS components thus allowing a number of models to be
implemented.

2.4.2 The Flask Framework

The framework ofthe Flask architecture isshown inFigure 2.9 as &V-shaped”
layered architecture to signify that minimal functionality is built-in atltdveer layers.

No assumptionare made by thwer layers about concurrency control amehce

this leaveghe implementor freedom hoose any desired concurrency scheme and
implementation. For example, a particular specification may translate into an optimistic
algorithm or alternatively a pessimistane. Furthermore such an approach can
accommodate different models of concurrency, such as atomic transactions or sagas.

Specifications

:\ /:
N\ /

Data Visibility

\ Resilience /

Atomicity

Figure 2.9: V-Shaped Layered Architecture

26

The architecture defines concurrency control in termsdatf visibility between
concurrent activities. This is reflected in the design of a conceptual layered architecture
(Figure 2.10) inwhich visibility is defined and controlled bihe movement of data
between a globally visible database and concestioaés called accesssets. Each

action is associated with a local access set that isolates its véatadfom all others.
Actions mayalso use shared access sets wienconcurrency model permits co-
operative work between actions. Movement of data from a local access set or a shared
access set to the databasetheough anatomic meld operation provided by the
resilience layer oflask. The term meld isised to describthe operation of making
updates permanent on non-volatile storage and visible to other actions rather than
terms likecommitor stabilisesince they imply specific meanings in particutaodels.

The semantics of a meld may differ according to the concurrency niaitedxample,

a shared concurrency modahy require a number of accessts to benelded as an
atomic action. Since the visibility and resilience layers make no assumptions about the
higher layers the implementor is free thoose any desired scheme and
implementation for the lower layers.

C) () () concurrency models

O O O O actions

L ocal andShared
access sets

\ database \

Figure 2.10: Concurrency in the Flask Architecture

The Flask architecture isdesigned to work with processes amtions thatmaintain
consistency under concurrency consohemes. In generathelded changes tdata

do not conflict exceptwhere this happens undéne control of a co-operative
concurrency model. Significant events defined by a particular concurrency scheme are
reported to the higher layers enabling these schemes to undertake conflict detection.
This assumption frees the lower layers from the onus of interference management.

Two systems that may be used in conjunction Wwitkskare Stemple antorrison’s
CACS system [SM92] and Krablin's CPS-algol syst¢Kra87]. The CACS
framework provides #&chniquefor specifying and performing concurrency control.

27

The system does nahanipulatedata, butinstead maintains information about its
pattern of usage and indicates if operations violate the concumdesy CPS-algol is

an extension to the standard PS-algol system [PS87] that includes language constructs
to support and manage concurrent processes. The concurrency model is essentially co-
operative with procedures executing as separate threadsyaaoldronising through
conditional criticalregions. Usinghese primitives and thiigher-order functions of
PS-algol, Krablin shows that a range of concurrency models can be constructed.

2.4.3 Flexible Recovery in Flask

The Flask approach to providing flexible recovery independent of concurrency control
involves associatingach actiorwith a local access sethat isolates its non-melded
updates from other actions and frahe previously melded state of theatabase.
Actions mayalso use shared access sets wienconcurrency model permits co-
operative work between actions. Movement of data from a local access set or a shared
access set to the databasethmough anatomic meld operation provided by the
recovery manager. By assumitigat object conflicts are detected by the concurrency
control layer the recovery managerHlask isfree to provide these accessts using

any suitable implementation.

In page-based recovery mechanisms these accessagetseprovided by associating

each actionwith an action pagamap. When an action updates a database page the
action receives a copy of the page and an entry is inserted into the action’s page map to
record the fact. If another action updates the same database page, it receives a different
copy of the most recentlymeldedversion ofthe pagethus ensuringhat the non-

melded updates of the two actions are isolated. During a meld the action’s page map is
accessed to determinghich pages must be melded. A recovemgchanism is
responsible for writing these pages to non-volatile storage.

Since the meld resolution is at a page level the changes made by a melding action must
be propagated to other actions’ copies of the gaage. Supposthattwo actions A

and B modify different objects on the same datalpegge. Because of the isolation
provided by per-action page copiestion A can meldvithout affecting B. For B to
subsequentlyneld it must incorporaté¢he changesnade byaction A. The algorithm

that meld uses to propagate changes is dependent on the particular concoocicy

in operation and is determined at the concurrency control layer offidmk
architecture. Undethe assumptionthat the higher-layeiperforming concurrency
control candetect object-levetonflicts there are a number of methods of achieving
this. Inconcurrency modelthat require isolatiorfor example, in whiclthe model

28

requiresthattwo concurrent actions do not modify the saofgect, it is possible to
use logical operations for efficiency to propagate the changes.

In an atomidransactiormodel, changemay be propagated by performing page xor
operations. Suppose two transactionamdl B have changed different objects on the
samepage Pandtransaction Amelds (Figure 2.11). The changesnade by A to
page P can be calculated by performing an xdrasfsaction A’s version ghage P
onto the original version of the page, i.e. as it was at the last meld. This depags a
of changes made by A to page P. These chamgepropagatednto transaction B’s
copy of P using @agexor operation.The meldpropagation formula can be written
as:

Pg := (Pa xor Py) xor Pg

— L2
CISHSIEE AN

I:'A,Changes O >
s O O

C D ==

QO
0

<

a
o
=

Ol

Figure 2.11: Change Propagation Using Page Xor Operations

where R is transaction A’s copy of page Pg B the originalversion ofpage P and
Pg is transaction B’s copy of page P. Thus B’s versiopage Pnow includes the
changes made by A.

Change propagation can be performedgerly, or lazily on demand. Eager
propagation is performed immediately after each action melds based on the assumption
that alltransactions eventually commitazy propagation takes advantage of thet

that propagation is not be required until a transaction accésseselded updates of
another transactiorLazy propagation thereformvolves only performing change
propagation when required. In the case above, this means ttatséction B aborts,

the unnecessary propagation is avoided.

29

2.4.4 Concurrent After-lmage Shadow Paging

The initial instantiation oFlask realises access sets througtomacurrent version of
after-image shadow paging [Mun93]. Figure 2.12 illustrates the layout of a
concurrent after-imagshadowpaged(CAISP) database. Main page map odisk
contains themappings between database pages diséé blocks, and on restart
constitutes the last consistent state ofdambaseEach action is associatedth an
action page map. When an action updates a page, it receiv@mitsopy ofthe page
which is mapped to a free block on disk using the action’s page map.

When an action melds, updated pages are written to their new blockseanainsient
main page map is updated witie mappings recorded itihe action’s pagenap. The
transient main page map then atomically replaces the page nthgkamsingChallis’
algorithm [Cha78] therebyatomically propagating updates to théatabase. The
changesnade by the actiomust then be propagated ttoe pages of otheactions.
This is achievedisingthe change propagation technique describefleiation 2.4.3.
An action aborinvolves freeingall pages updated btghe action and discarding the
action’s pagemap. No undo operationsre required to abort an action since the
original versions ofthe databaspagesare still availablehroughthe transientmain
page map.

30

non-volatile storage voléatile storage
blocks on disk
main transient main
page map : : page map
root block Cl) 8 root page
b d AS
—>> % 4 < % A [B |A/B
4 > < 4
RN
0
% 2
i G
0 local & shared
X 2 page maps
< 3
< 4
< 5
action A action B . A/B shared
shadow pages & shadow pages shadow pages

Figure 2.12: Concurrent After-image Shadow Paging

The CAISP mechanism may also be usednjglementconcurrency models in which
non-committed updates may kshared betweeractions. This isillustrated in
Figure 2.12where twoactions access shared copies of pages 4 and 5, although the
meld actions are not defined since they are specific to the concurrency control needed.

2.4.5 Summary

Flask goes some way to providitige flexible architectur@ised in this thesis. The
responsibility of recovery management and concurrency contrgleaagatedthereby
enabling implementations of recovery schemes to be developed akeed
independently of concurrenayontrol. The flexibility in the recovery component of
Flask isachievedthrough aninterface that placefew constraints orthe recovery
manager and that makes no assumption about concurcentyl. Hence any one of
a number of recovery mechanisms may dsopted. The work presented takes
advantage of thiglexibility by developing two new recovery schemes tdlow
experimentation with different mechanisms executimg sameworkloads over the
same data.

31

2.5 Analytical and Empirical Modelling

In designing and building DBMSs it is often an advantage to compare the efficiency of
various designs befoliemplementingthem.One method of comparinglesigns is to

build prototypes and to perforempirical measurement on thexecution. Since this

is often an unrealistic option due to thigh time and labour costs required bwild

such prototypes, an alternative approach is to model them analytically.

2.5.1 Analytical Modelling

Analytical modelling of databasgystems involveslevelopingmathematicafunctions

to describe the behaviour of the components of DBMSs and to derive the performance
of eachsystem.The models arbased on analysis tiie components’ designs from
which a number of assumptiogan be made to make tiheodels tractable. These
simplifying assumptionsare required to reduce complex interactions between the
many issues that must be considered when comparing DBMSs:

» the style and workload of the applications run on the DBMS;
» frequency of system failure and transaction abort;

» the platform configuration;

* interactions among other DBMS components.

An analytical model for comparing recovery mechanisms is presenfB@u84]. The
model calculates the transactitiiroughput ofeach mechanisminder aparticular
workload based othe potential number dfO block transfers gvailability interva)
that may beperformed in themean timebetweenfailures. The model takes into
account various aspects of the workload, recovery mechanism and platform:

Workload:
* number of I/O operations performed to process each transaction;
 ratio of update transactions to read-only transactions;

 inter-transaction temporal localitye. probability that araccessed page sill
in the cache after being accessed by a recent transaction;

» probability of transaction abort;

32

Recovery Mechanism:
» frequency of checkpoints required by mechanisms;
» overheads of transaction rollback and recovery;
» overheads of maintaining page tables;
Platform:
* size of the cache.

For eachmechanismmathematicalmodels are developed talculate the average
number of 1/0O operations required to process a transadfiodels arealso produced

for each recovery mechanism t¢alculate theproportion ofthe availability interval
required fortransaction rollback, checkpointing amelcovery. The remaining 1/0O
operations in thavailability intervalare divided by the average 1/0 operations required

for a transaction. This results in the average transaction throughput between failures of
eachmechanismAltogether ten recovery mechanisms are analysedcantpared.

The mechanisms are split into three groups with the following properties:

page-level logging

—atomic steal —-force TCC (only at system shutdown)
—atomic steal —force ACC (at regular intervals)
—atomic steal force TOC

object-level logging

—atomic steal —-force TCC (only at system shutdown)
—atomic steal —force ACC (at regular intervals)
—atomic steal force TOC

miscellaneous

—atomic steal —force fuzzy
atomic steal —-force ACC
atomic steal force TOC

—atomic -steal —force fuzzy

From evaluations of theost models usinglifferent transactiorworkloads, Reuter
concludes that page-logging is generally more costly than objectdggehg, that an
increase in shared pages maktdorce algorithms drasticallyvorsethan others and
that schemeghat useindirect mapping, such aafter-imageshadow pagingimpose
extra overheads unless the page-table costs can be reduced.

33

Agrawal andDeWitt [AD85] introduce an analytical modelsed toinvestigate the
relative costs ofobject logging, shadowpaging and differentiafiles, and their
interactions withlocking, time-stamp ordering and optimistic concurrency control
schemes. Rather than produce costs based on transaction thrabhginpubdeluses

a performance metric that describes the burden imposed on a transaction by a recovery
mechanism and a concurrency control scheme. The model incorporates CPU costs and
the impact that theoncurrency control schemes may have on the probathibtya
transaction will run to completion. Burden ratios fathe different integrated
concurrency control and recovery mechanisms cafteulatedand comparedising

sample evaluations from varying transactwarkloads anddatabase characteristics.

The conclusions from these tesssiggestthat there is no overalbest integrated
mechanism but that a load that comprises of a mix of transactiorfasipess logging

with a locking approach. Shadowaging performs rather poorly itheir tests.
However their model takes no account of synchronous costs, such as checkpointing in

logging.

A number of assumptionare made by thesmodels, which inlight of modern
technology require a re-evaluation afalytical modelling offrecovery mechanisms.
For example, Agrawal and DeWitt assume that shadow jadtgreadsare read from
disk, whereaswith modern memory sizeshe entire shadow page table may
reasonably be assumed to resideman memory. Furthermore, botfAD85] and
[Reu84] assume uniform didkO costs,making no allowancéor the differentcosts
of sequential, asynchronous or synchronauxlusteredl/O [0S94]. Modern
recovery mechanisms are specificallgsigned tdake advantage of the differences
between these costs and therefore these varigiondd betaken into accounwhen
modelling the costs of mechanisms.

2.5.2 Empirical Analysis

In contrast to thenalyticalmodels describedbove,the Predator projecfKGC85]

takes an empiricahpproach to comparing recovemyethods. Prototypelatabases
supporting different recovery mechanisms are constructed on stock hatogether

with a database transaction simulator used to produce experimental workloads. A suite
of transaction experiments that vary locality of update, abort frequencyCGaadcess
methods is carried out over databases supporting concurrent shadow paging and page-
based loggingThe performance metrics at®ased on transaction throughput and
meanresponse timeThe experiments are constructtdm short transactions on a
small system and concludbat shadowpagingworks best whernthere is locality of
reference and wherihne page table cache iarge, otherwise logging ithe better
mechanism. An interesting observatiorade is that the transaction abort rags a

34

greater effect on the performance of logging recovery schemes thahaglow
paging.

2.5.3 Benchmarking

Objective empiricalcomparisons of DBMSsnay only be performed ifthe same
application workload can be executed oall of the systems.This is not always
possible since real database applications can be large and complex and hence difficult
to transfer from one system to another. A solution ideteelop benchmarkibhat are
sufficiently simple to implement on a range of DBMSsl allow various aspects of

the systems to be measured. Benchmaaks theform of a database and a suite of
queries designed to produce worklodgsical of databasapplications.The results
measured while running the queries allow the performance of components of different
DBMSs to be compared. Tweommonlyused benchmark€)O1 and OO7 areused

to provide workloads in Chapters 4 and 5.

2.5.3.1 001

The OO1 benchmark[CS92] attempts to measure the operations expected in
engineering applicatiorsuch asCAD/CAM. The benchmark executes on theees

of database consisting small parts and connections betwetrem. Each part has
eight fields: a parid, a type, an (x,y)ntegerpair, abuild dateand three out-going
connections to other parts. Each connection has a type landth. To provide some
notion of locality the connections to other parts are chosémas@ach connection has

a 90% chance of referencing a nearby part. The benchmark consists of three queries:

lookup : A set of random part identifiers is generaf€de partsare fetched
from the database. For each part, a null procedure is called.

traverse : The parts connected to a randondglected part are recursively
traversed to a specifiedepth. Anull procedure iscalled for each
part traversed.

insert : A transaction inserts a number péw partsinto the database,
connects each new part to three other (randomly selquae) and
commits.

The operations are executed over the database a number of times to mespsuTEe
time and caching effects.

35

2.5.3.2 007

The OO7 benchmark [CDN93] is designed to provide performanegtrics for
comparing various components of OODBMSs, in contrast to OO1 which compares the
performances of entiresystems. The OO7 databaseconsists offive types of
interconnecteabjects, ranging irsize from smallatomic parts(similar to theparts

used in O01) to largemanuals The database characteristics are parameterised to allow
databases of various sizes to be generated.

The benchmark ixomposed of querieaimed to test anumber of performance
characteristics including pointer traversal speed, update efficiency and the performance
of the query processor (in systems where this is applicable). The queries dbree in
categories:

» traversals othe object graph: the traversaigry inthe number antbcality of
the objects traversed, and whether or not updates are performed.

* queries: these are read-only database queries.

» structural modifications: one program inserts a humbenesi partsinto the
database and another deletes the parts.

Results are taken from running each query on a ‘cold and ‘hot’ system. A cold system
is one in which no data is cached, resulting in a high numbdatafaults. A system
is said to be hot if data is cached, and results in fewer faults.

2.6 Conclusions

The cost of recovery in DBMSs not only involves ttest of bringingthe database to

a consistent state aftiilure, but alsahe overhead incurred in recording sufficient
information in the log during normal processing to ensure that data can be recovered to
some consistent state. This chapter has given background and optimisations of various
recovery mechanisms used in database and persgtpis.Traditionally, DBMSs

have a fixed notion of recovery and concurrency control,heve these components
embedded into thesystem thus providing few opportunities to configure the
components to a particular application. An outline of Fask architecture was
discussed to give an insight into how recovery and concurm@agybe separated in a
DBMS to provide the flexibility to configure each component individually.

This chapter also includes summaries of earalytical and empirical studies of
DBMS components that could have beeed toguide in the configuration dflask.
A consistent conclusion made from these studidisaisthere are significant variations

36

in the costs of recoverynechanisms anthat noone mechanisnprovidesthe best
performancefor all applications. Current trends iapplication styles, hardware
configurations and operating systems weaken many of the assump#dasby these
studies, and as a result the validity of past analysis may be quesiibeedhapter 4
introduces a newanalytical model thattakes into account modern platform
characteristics and applicatigtyles in costing recovery mechanisms. A strength of
the model is that it is validated bgnalysis of benchmarks executing over the
mechanisms modelled. This &hieved byusing the flexible recovery manager of
Flask to allowthe same applicatioworkloads to besxecuted over different recovery
mechanisms. The following chapter develops two nechanismsised inthe Flask
architecture.

37

3 Flexible Recovery
3.1 Introduction

In thework presented, a new casibdelfor recovery mechanismsalled MaStA is
developed. The model is designed to predict the mechanisnthsitbwest cost for a
given application anglatform, within aflexible databasesystem such as Flask
[MCM+94]. To illustrate theuse ofthe model inFlask and to verifithe accuracy of
cost comparisons of recovery mechanisthe, sameworkloads must besxecuted
using a number of configurations thie architecture. Apresent, Flaskncorporates
only one recovery scheme, namely concurrency after-image shadow paging.

This chapter extendBlask with aflexible recovery managarsed. The manager is
composed of a number of componemiach ofwhich is responsible for amspect of
recovery such asestart or page replacement. Three recovery schemes are then
developed using the flexible recovery manager:

* an after-image shadow paging mechanism (AISP);
* alog-structure mechanism (LSD);
* and a log-based mechanism called DataSafe.

A detailed description of DataSafe iprovided, followed bysummaries of the
implementations oAISP andthe LSD. These particular mechanisms atgsen to
emphasise¢hat MaStA can beised topredict the relativecosts ofmechanismghat
perform similarly(AISP andthe LSD), and to provide a mechanism (DataSdfejt
has significantly differentl/O characteristics to those dhe otherschemes. For
example,DataSafeemploys a fixedplacement policywhereas AISP andhe LSD
perform dynamic reclustering. The variations in the characteristics of these
mechanisms are highlighteghen they are comparedsing Haerder and Reuter’s
classification[HR83]: DataSafe is {atomic —-steal -force, fuzzy} whereas AISP
and the LSD aredtomic —steal force, TOC}.

The provision of these mechanisms witlask provides aexperimentabase inlater
chapters on whiclthe MaStA model may be validated, andlso provides an
opportunity to illustratethe effectiveness of the model in selecting between
mechanisms for given applications.

38

3.2 The Flexible Recovery Manager

The flexible recovery manager is configured with diffenglacementand replacement
algorithms to provide various recovery mechanisms as illustrated in Figure 3.1.

A
datareads & writes
A cache manager
cache maps cache

(o) () Cme)

maps required for recovery

> calsto component managers
access to maps and the cache

Figure 3.1: The Flexible Recovery Manager

The cache managdras afixed interface towhich all read and write operations
performed on the database alieected. It provides aatabase cachend any maps
required to translate databaseldressednto cacheaddresses. Fouconfigurable
component managers are called by the cache manager:

* The fault manager is called when data already in the€ache isaccessed, and
is responsible for locating the data on disk. For example, in after-istegow
paging this requires a pageap to be indexed to obtain tlksk locations of
database pages.

* The write manager takes a cadbeation, a databasseddress anthe length of
the data, and writeshe data tadisk. The disk location written to ischosen
according to the algorithm defined in thdesign ofthe recoverymechanism.
For example, in aleferred object logging mechanism updated objects are
written to the end of théog. The write manager islso responsible for
atomically updating the state of thdatabase. In AISP, foexample, this
involves atomically updating the page map on non-volatile storage.

39

» The swap manager is called whenever data in the cache is read or updated. Calls
to theswapmanager enable it to colleiciformation about theisage oftached
data so thaany cache replacement algorithm may ibgolemented. When the
cache becomes full tr@vapmanager is called to select déta replacement.
The swap manager is responsible for swapping updated data to disk if required.

* The restart manager responsible foinitialising any maps required by the
fault, write and swap managers. Thisinager is also responsilitg ensuring
that the materialised databasebi®ught to a consisterdtate aftersystem
failures. To achieve this the restart manager is given access ¢actieand the
cache maps. For example, in DataSafe the cache is reconstructed on restart.

A strength of the flexible recovery manager is tha@irdvides opportunities to modify
existing mechanisms implemented in thanager, and to develogw ones,simply
by replacing component managers instead of implementing eetivemechanisms.
This is illustrated inSection 3.5wherethe LSD mechanism is developédm the
implementation of AISP by simply replacing the write manager.

Three page-based recovery mechanismsnapiemented toperform the validation
procedures:AISP, LSD and anew mechanism calledDataSafe. The recovery
mechanisms are developed by instantiating the flexible recovery man#bethe
same cache manadeut with differentswap, write restart and faultnanagers. The
cache manager maintains a database cache held inmeanory. The same-sized
database cache is used for each recovery mechanismfrarttework to simplify the
analysis of the 1/0 behaviours of therkloads. Asummary of the configurations of
the recovery mechanisms used is included in Appendix A.1.

3.3 The DataSafe Recovery Mechanism
3.3.1 Introduction

The DataSafe recovery mechanism [SCM+96] is based on the DB {Ed&2B4]. The
DB Cache ischosen as a basis for atternative mechanism sinds characteristics
vary widely with those ofAISP. For example,the DB Cacheuses a contiguous
circular log while AISP intersperses log andatabasepages. Furthermore AISP
imposes a reclustering policy on database pages whereas the DB Cache does not.

The DataSafe recovery mechanism, in contrast to the DB Cache, is designed to adhere
to the interface of thé-lask recoverymanager so that the independence between
concurrency and recovery is maintained. This is achieved in a similar manner to the
CAISP mechanism [Mun93], through the provision of access sets.

40

DataSafeensuresthe recoverability of a database by controlling the movement of
pages ofdata among three areas sibrage: thelatabase, a safe and a cache. The
layout of the mechanism is illustrated in Figure 3.2.

Cache EEEEEEE main
‘ page map

cachemap |
cache map

action & group
[TITT]
[T PeaemaPs

Database \ s

7 Voo
safe-begin
non-volatile storage Safe

~€— Pagefaultsfrom the database into cache

<€ - - - Pagewritesto the safeduring a meld

<& - - - Propagation writesto the database of melded pages
<€— Pagereads from the safe during recovery

Figure 3.2: Layout of the DataSafe

Reads and writes operate on data inchehe, faulting database pages into tr@ehe

pages as required. The pages updated by an action remain in the cache at least until the
action melds or aborts, under the assumption that the cache is sufficiently large to hold
all updated pages betwesarelds. Updated pagese notswapped tdhe database to
ensurethat no non-meldedipdates are present in the materialised databtiee

system failures.

A meld operatiorinvolves writingthe cacheages updated kie melding action to
contiguous pages in the safe. This ensures that in the event of a f&yktemelded
cachepagesthat havenot yet been written to the database exeoverable. If
insufficient free pages are available in the safectoplete aneld, safe pagethat are
required for recovery are written from tbache to thelatabase. This meatisat they
are no longer required for recovery in the safe and asmmaghbe overwritteruring
the meld. After a successfumeld the meldegageseither remain in the cache to be
reused or are propagated to the database opportunistically.

If there are no free cache pages available to fault a database page a cache page that has
been melded or is unchanged is seletbedeplacement. A selectexhche page may
have been melded to the safe but not yet propagated to the datalasehicase it is

41

written to the database before being replaced. This enhategagefaults operate on
the database rather than on the safe.

During recovery thesafe pages required for recovamg readrom the safe into the

cache after which normal processing resumes. This strategy ensures that no read faults
operate on thesafe and hencall writes tothe safe may incurlow sequential seek

costs.

A number of mapsre maintained to record information abal#tabase, safe and
cache pages:

» A cache map in volatilstorage recordt¢he state information of cachmges
(free, original, melded or updated).

* The main page magcordsthe cache locations of faulted databasgesthat
have not been updated in the cache, i.e. cache pages that are duplicates of pages
in the database.

» A safe map on disk records the state information of the pages in the safe.

During normalprocessing only draction of thesafe contains pages required for
recovery. The location of this area is recorded by a safe-begin-pointer and a safe-end-
pointer held on disk.

3.3.2 The Safe

The safe is designed ascacular buffer to enablewrites tothe safe to be performed
sequentially.The safe must be at least as largettas cache tensurethat all pages
updated in the cache may be written to $hée.Since the same page may be updated

and melded to theafe manytimes thesafemay contain more than onersion of a
database page. Only the latest version of a page in the safe is required for recovery and
then only if the corresponding cache page has not yet been propagatedatabizse.

Thus a safgage is free if theorrespondingcache pagéhas been written to the
database or if a more up-to-date versiorthef page is in thesafe. The database
locations of pages in the safe are recorded irséfiemapwhich is writtenatomically

to disk during each meld (see Section 3.3.4).

3.3.3 The Cache

DataSafe’sswapmanageiholds an action’sipdated pages ithe cache at least until
the action melds aasborts. This avoidthe need to maintaiondo information since
non-melded updates are neggvapped tdhe databaseThe cache iglesigned to fit

42

into main memory to avoid operatirgystem pagewapping. It iscomposed of a
number of page sized frames that are empty or contain pages dCaechtapages are
tagged using the cache map as free, original, melded or upBajade 3.3gives the
state diagram of cache pages.

A cache page is tagged as originalsignify that the pagdias notbeen updated or
melded andhat it may be selectefdr replacement if the cache beconfall. If an
original page is updated by an action the update is performed on a cthy pzfge in
the cache. Updating a copy avoids performing andthét on the database to obtain
an original version othe database paghouldanother concurrent action access the
same page.

An updated cache page may h&mher changesnade toit, become free due to an
abort or be written to the safe during a meld operation. If an updated page is written to
the safe the page is tagged as meldesigoify that it must be written tdhe database
before being replaced in thmache. Amelded or an original page becomes free if
another copy of the same database page is melded.

another copy of ths
same page is melded

candidate for
replacement

faulted from

database attempt to change
update to a melded page

original page (copy the page)

(copy the page)

lost dusg
to abort
read from the safe
during recovery

propagated to
the database

N

to the safe

change

updated

Figure 3.3: Cache Page State Diagram

If a melded page is updated by an action the update is performed on a copy of the page
in the cache. This ensurdkatunchanged versions afieldedpagesare available in

the cache, avoidinghe need to perform propagatiogads orthe safe during a safe

purge shouldhe safebecome full(seeSection 3.3.6 omsafe purging). If anelded

page is propagated to the database it is tagged as original.

Cachepages read frorthe safe during recovergire tagged as melded émsurethat
during normal processing they are propagated to the database before being replaced in
the cache.

43

3.3.4 Action Meld and Abort

When an action melds, the cache pages updatdiebgction are written by the write
manager to contiguous free pagesha safe atthe location given by theafe-end-
pointer. The updategpagesarefound usingthe action’s pagenap. Aseach page is
written to the safe an in-memory copytbE safe-end-pointer is advanced and an in-
memory copy othe safemap is updated to record the database location of the safe
page. Any othemelded or originalersion ofthe database page present in ¢hehe
becomes obsolete and is designated free in the caapelhe main page map is then
updated to record the cache location of the newly melded version of the database page.

Once all therequired pages have been writterthie safe, the safemap and thesafe-
end-pointer are writtetomically todisk. The safemap is updatedising Challis’
algorithm [Cha78] The root pageused in thisalgorithmrecordsthe safe-end-pointer

(and the safe-begin-pointer). If a systefailure occurs during a meldall pages
written to thesafe bythe incomplete meld aignored on restart since tlsafe-end-
pointer which indicatethe lastsafe page read during restart will n@t have been
updated. Atomicity of a meld is therefore attained by the atomic update of the safe map
and the safe-end-pointer.

The safe is said to be fulivhen there are insufficienpages betweethe locations

given by the safe-end-pointer and the safe-begin-pointer to complete a meld. In such a
case a safe purge (sBection 3.3.6) iperformed to advance tlsafe-begin-pointer,

before themeld begins, by asufficient number of pages to allothe meld to be
performed.

Once an action melds, the changes it has made must become visible to aagtiother
thataccessethe samalata.DataSafeuses Flask’schange propagation technique to
copy the changes made by a melding action to the access sets of other actions.

An action abort involves freeing the cache pages updatéaebgction and discarding
the action’s pagenap. Noundo operations are required since database updates are
deferred until after a meld completes.

3.3.5 Restart

In DataSafe, updates to the database are deferred until aftelda@ompletes. This

avoids non-melded updatestire materialised database afsgistem failureOnce a

meld completes, propagation writes ahelded pages tothe database may be
performed opportunistically. Since these writes are deferred somerpage®ot have

been propagated to the database before a system failure. Restart involvesimaading

the cache the safe pages that potentially were not propagated to the database before the

44

crash.The restart manageeadsthe safe-begin-pointeithe safe-end-pointer and the
safe map from disk and scans the safe map to determine which safe pagesnto read
the cache. The database locations held in the safe map are used to reconstraict the
page map as pages are read into the cache.

The DataSafe mechanisemsureghat the latestversion ofeach page is either in the
cache or in the database and thus ensures that no read faults operatsat dheng
normal processing. Thistrategy ensurethat all writes tothe safe incurlow seek
costs.

3.3.6 Safe Purge

Safe purging is the process of propagating safe pagearéheequiredor recovery to

the database. A safe purge is performedhywrite manager if there are insufficient

free pages irthe safe to writethe pages updated by raelding action. A safe purge
advances the safe-begin-pointer by a sufficient number of pages totladioneld to
complete. A sufficient number of free safe pages can always be obtained since the safe
is at least as large as the cache.

Since the area of theafe containing safe pages requifedrecovery is bounded by
the safe pointersthe safe-begin-pointer magnly be advanced past safe pages no
longer required for recovery. Am-memory copy ofthe safe-begin-pointer is
advanced to the first safe page required for recovethete are still insufficient free
safe pages between the sp@nters,the page at the safe-begin-pointer is propagated
to the database and the safe-begin-pointer is advanced to theafeextage required
for recovery. This process is repeated uhtre are sufficient frepages between the
safe pointers. The safe-begin-pointer on disk is #iemicallyupdated. This ensures
that the meld does not write pages to the area of thensdated by thesafe pointers
that is readduring restarshould a systenfailure occurduring the meld. The meld
may then be performed.

The safe purge mechanism only propagates sufficient safe padbe tatabase to
permit the meld to complete insteadpybpagating more safgages.This strategy is
based orthe assumptiorthatduring melds some pages tine safe become obsolete
and therefore will not require to be propagated to the dataloasey subsequent safe
purges. If more than the required number of safe pagepropagated to the database
during eachsafe purge unnecessary writeay be performed sincgeome ofthe safe
pages may have become obsolete during subsequent melds.

As mentionedpreviously,meldedpages inthe cache ar@ot updated directly. This
ensures that no propagation reads required on theafe to propagatmeldedpages

45

to the database, since the pagesstill present in theache. Therefore propagating a
safe page to the database involves writing a cache page to the database.

Figure 3.4 gives an illustratecexample of asafe purge and meldlhe locations
recorded by the safe-begin-pointer and the safe-end-pointer helidkoare shown.
In this exampleseven updatedachepagesare to bemelded.Figure 3.4.alllustrates
the state of the safe before the meld.

. a o b
D0 LG

Qo Q xJ—)L & %Ox

o o 0

[] []

o o

<
9 <>
Vomo®
before the purge and meld after advancing the
safe-begin-pointer
c

4

eBEg

LY g dfter themeld

e
]

% <>©D hNe
Vomo®

| safe pagesrequired for recovery

| safepagesnot required for recovery

< safe pages made obsolete during the meld

D®®<>

OD

safe-begin-pointer O
safe-end-pointer @

Figure 3.4. States of the Safe During a Purge and Meld

When the meld is initiated the mechanisnsureghat sufficient freesafe pages are
available between thgafe pointers to allowhe meld tocomplete. Since in thisase
there areonly threepages betweethe safe-end-pointer and the safe-begin-pointer
(Figure 3.4.a) a safe purge is performeddoance the safe-begin-pointer byleatst
four pages to provide #&astseven free pages requiréar the meld. Figure 3.4.b
illustrates the safe after propagating two safe pages to the databaseasthe new
locations recorded by the safe-begin-pointer.

The meld can now proceed. Figure 3.4.c illustrates the stthe séfe aftethe meld
completes and shows the new locations recordeatidoyafe pointersThe figure also
illustrates thasome safe pages have besadeobsolete (are no longer required for
recovery) due to the melding of more recent versions of thages.This enables the

46

next safe purge to advance the safe-begin-pointer past these pages without requiring to
propagate them to the database.

3.3.7 Cache Overflow

If there are no free caclpagesavailable to either fault a database page or to make a
copy of an original omelded cach@age, acache page is selectéor replacement.
Only original and meldedpagesare replaced since updatpdges must by design
remain in thecache. Avictim selection algorithm may giveriginals a higher
probability of being chosen since choosingmelded pageincurs the cost of
propagating it to the database before replacing the page.

A potential problem of DataSafe is that the cache may become full of updated pages in
which case no pages may be chosen for replacement. While this may not be a problem
in some applications it islearly a limitationfor others. In such casd3ataSafe may

use an additional area on disk to which updated pages may be swapped.

3.3.8 Opportunistic Write Back

Since thesafe ensurethat melded cacheagesare recoverable and they may be
propagated to the database at &me. In addition to writingthem to the database
during a safe purge or wheine cache becomésll, these writesnay be performed
opportunistically while no other page faults or writege beingoerformed.They may
also be scheduled in such a way atak@ advantage of thgosition ofthe disk head

to reduce the seek costs incurred when writinthéalatabaseWhen a meldedache
page is propagated to the databasectreesponding safe page becomes obsolete and
so no longer required for recovery. Thus opportunistic writinghelded cach@ages
reduces the number of safe patest must be writtersynchronously tdhe database

by a safe purge or due to cache page replacement.

There is a trade-off between propagating meldadhe pages tothe database
opportunistically and writing thpages synchronously duringage replacement or
safe purges. Anopportunistic propagation policy may be adoptedder the
assumption that melded pages are eventually propagated to the ddtetagepage
replacement osafe purging,and by performing these writes asynchronously the
overall cost of writing tadhe database ieeduced. Orthe otherhand by adopting a
pessimistic propagation policy in which melded pagesahe written tothe database
when required, sommelded cach@agesmay become obsolethus avoiding some
propagation writeshatwould have been performed in an opportunigi@icy. The
decision as to which strategy to adopt isnatter policyand may bebased on the
characteristics of the workload executed on the mechanism.

47

3.4 After-lmage Shadow Paging

The AISP mechanism is implemented by makinge ofthe cache managersed in
DataSafeand providing a newswap, faultwrite and a restart manager take the
recovery manager behave in the manner described iAISi¢ design described in
Section 2.2.4.1.

The restart manageeads from diskhe main page mapsed bythe fault, write and
swap managers to locate database pages on disk. The restart manager initisises a
block bitmap used by the write managetdcate freeblocks. Before acache page is
written to disk the write manageaccesseshe main page map to determine if the
database padgeasalready beeshadowed. Ihot the page is mapped to a fréisk
block (shadowed). The page is then written to its shadow block. Free béoglsed

for shadowing are allocated from withiine database beforeew blocksare allocated

at the end of theatabaseDuring a meld the page map is written atomicallydisk
using Challis’ algorithm.

The swap manager is similar indesign tothe DataSafeswap manager with

modifications to the page replacement strategy to allow non-meigddtes to be
selectedor replacement. If an updated page is seletedeplacement the page is
shadowed if required and written to its shadow block.

3.5 Log-Structured Database

The design ofthe LSD mechanism is similar to t#dSP mechanism described in
Sections 2.2.4.1with two modifications.Thefirst is that freeblocks are allocated
contiguously, at the end of the log. Once the log filie, searctior free blocks starts

at the beginning of the log. This design means that more pages are written sequentially
to the log in the LSD than in AISP. The second modificatiaihas updated page map
pagesarealso written tothe end of the log instead of writitgpem to preallocated
shadow blocks as iAISP, thuspotentially reducing theost of updatinghe page

map.

Due to thesimilarities of thedesigns of AISP anthe LSDmechanismsthe LSD is
implemented by simply reusing the fault, swap and restart managers used in AISP and
developing a new write managerdtocateshadow pages contiguouslytae end of

the log.

48

3.6 Conclusions

The Flask architecture provides the opportunity to independently configure
concurrency and recovery to sthe application. Byassuminghat ahigher layer of
Flask is responsible for concurrency control the recovery manager has the flexibility to
select the mechanism thptovides optimum performancdor a given application
without the need to perform interference management.

Thefirst instantiation ofthe Flask architecture madeise of aconcurrent version of
after-imageshadow paging.The flexibility of the architecture is highlighted by
developingtwo alternativemechanismsDataSafeand thelL SD, either ofwhich may
be interchanged witlCAISP atlink time. DataSafe idased orthe design ofthe DB
Cache with alterationthat ensurethat the mechanisradheres to thé&lask recovery
manager interface. Iplace of page headarformation,the DataSafe makesse of a
safe map to record the state of sadges,and in accordance witthe Flaskrecovery
interface, avoids page locking throutite provision of access sets atiw use of the
meld propagation scheme employed @QAISP. The LSD mechanism is effectively
CAISP with alterations to theshadowpage allocation strategy tmake log writes
behave similarly to those of a log-structured mechanism.

The next chapter introduces reew analytical modelfor recovery mechanisms,
designed to be used to select the mechanism that incurs the lowest cqsartautar
application andplatform. The Flask architecturetogether withthe three recovery
mechanisms developed, providesexperimentabasis inthe following chapters on
which the model is validated. The validation strategy makes of the flexible
recovery manager to execute the same workloads on different mechanisms.

49

4 An Analytical Model for Recovery Mechanisms
4.1 Introduction

This chaptempresents a newanalytical cost modelfor recovery mechanismscalled
MaStA [SCM+95a, MCM+95]. The model focuses on estimating the 1/0 overheads of
recovery, taking into account the cost variations between diffé@access patterns.

An analytical technique ishosen since this form ofodelling is believed to bkess
expensive to develop than simulations empirical measurementThe model is
designed to provide a framework foomparing thecosts of recoverynechanisms
under a variety of differenworkloads and configurations, anghy beused toguide

the choice of mechanisfor a particular application in a flexible architectigech as
Flask.

The design of MaStA is based on tbigservatiorthat allmechanisms may be viewed

as variants of logging differing in the patterns and the numbdrfQooperations
required to read and wridataand recovery information. This design simplifies the
modelling and comparing of recovery mechanisms by abstractingttovetetails of

each mechanism and calculating their costs according to the movement of data between
a database, a cache and a log during normal processing and checkpointing.

MaStA focuses only orthe 1/O costs of recoverynechanisms - th€PU costs are
omitted. This omission is based the assumptiorthat 1/0 costsare the significant
factor in the difference in performance of amo recovery mechanisms. Furthermore
trends in hardware performance sugdleat CPU speedsare increasing more rapidly
than disk speeds, whichwill further reduce the significance &€PU costs when
comparing mechanisms. Aautline of the MaStA /O cost model isprovided,
followed by a detailed discussion of howmodels of recovery mechanisms are
constructed, and how MaStA may be applied to compare the costs of mechanisms.

4.2 Overview of the MaStA Model

MaStA categoriseBO operations performed by recovery mechanisms by the manner
in which theyoperate. For example, rmechanism may perforrdatareads on the
database andatawrites tothe log, both of whichare categorisedbr that recovery
mechanism. Fothe purpose ofanalyticalmodelling, these categoriese termed 1/O
cost categories antthe overallcost of a mechanism ihe sum ofthe costs of its
constituent 1/0 cost categories (Figure 4.1).

Total Cost =5 CatCost(i), (i I Categories)
|

50

Each category is assigned one or m#@eaccess patterns according to the properties

of the 1/0O operations performed by the mechanism withircéttegory. For example,

log writes may beassignedsequential writecosts in a log-based mechanism. The
number of accesses incurred in a category of a particular access pattern is derived from
a workload function composed of workload variables such as the number of reads and
writes performed by the application and locality. Tast of anl/O cost category is a
product of the number of accesses of a given pattern and the costpatttr@, or the

sum of a number of such products.

CatCost(i) :%ni,k X Ay, (j O Occurrences, Kl Access Patterns[i Categories)
Jy

| Recovery mechanism |

-

110 cateiori\sation

= P—— PR = Total
Category A Category B Category C » oredicted
1/0O cost
A T
Probabilistic
I/O access
measure of
occurrence pattern cost

Application workload I/O access behaviour
variables of platform

Figure 4.1: An Overview of MaStA

Remembering thahis is ananalyticalmodel,the derivation of acost estimatefor a
particular combination ofmechanism, configuration and workload is derived by
analysing:

» The workload: measuring and choosing values to predict the workload.

* The mechanism: attributingosts toeach cost category bycalculating the
number of accesses froitme workload abstraction, and assigning access
patterns.

51

» The configuration: determining the cost of each access pétteaach platform
experimentally or analytically.

4.3 Developing the MaStA Cost Model
4.3.1 Recovery Mechanisms

To illustrate theMaStA model, four page-based recovengchanisms are examined:
DataSafe; after-imagehadowpaging (AISP); before-imagshadowpaging (BISP);
and a log-structured database (LSD). Summaries of the mechanispre\adedhere
with more detailed descriptions given in Sections 2.2 and 3.3.

DataSaferecords changes in a lagplled thesafe and updates tihe database are
deferred until after commiDatabasaupdates do not move database pages so the
original clustering is maintained. Updatase eventually propagated to the database
opportunistically or during normahutdown.Propagating @ommitted pageequires

a propagation write to update tatabase, thoughmultiple changes to the same page
by a number of transactions may result in only a single write.

In AISP a page replacement algorithm controls the movement of pages between cache,
the database and the log such that recovery will always produce a coss&ento
implement this, a page map maintains the correspondence between theagemlof

the database and disk blocks. AISP writes updated pages to free bltlkdag and
updates the page mapreflect thenew locationsWhen a transactiocommits, the

new mappings, iraddition to updategages,are written to theog. Since AISP

always writes pages to free blocks, the original clustering of the blocks is lost.

In BISP the first modification to a page causes the original to be written to a free block
in thelog. Updatesare then performed iplace.The page map igased to record the
locations of theshadow pages (nthe originalpages,since they do natove), and

must be present ithe log before the originals are overwritten in tagabase. The

page map can be used to recover the last consistent statedafghase. On commit,
updated pageare written back to the database and the page map updated to remove
the references to theorresponding shadow pagedince BISP uses arupdate-in-

place policy it maintains the original clustering of pages.

In the LSD updated pages are written sequentially to free blodke ilog and a page
map is written to the log to record the new locations. Like AISP the original clustering
of the blocks is lost. To reduce themplexity of modelling thi$. SD, nocompaction
costsarepredicted. This is based on two assumptidree first statesthat thedisk
holding the log may be sufficiently large to avbigh degrees of fragmentation and

52

hence avoids the ned¢or compactionThe second statethatunder some workloads
the extracost of compactinghe log mayoutweigh any benefits gained from
performing a higher proportion of sequentatites. In thiscase thetime spent
performing /O operations duringcompaction may be better utilised performing
normal processing.

4.3.2 Categorisation of Recovery Mechanisms

In Chapter 2 each recovery mechanism is described in terthe ofiovement of data
between a database, a cache and a log. This abstraction of each mechaafisaters
in the modelling strategysed byMaStA - eachmechanism is analysed &ssess its
I/O costs in a number of different I/O cost categories:

» Database readsThe cost ofdatareads fronthe database are included in the
model since the presence of a recovery mechanism may chang@ tecess
patterns of a running system. For this reasastA modelstotal 1/0 costs as
opposed to recovery overheads aldfa. example, AISP is assuméeére to
incur unclustered reads.

» Database writes: This category includethe cost of writing non-committed
data in place to the databaseindorecovery mechanisms.

* Log reads Recovery overheads such as reading page tables on restart in AISP
and the LSD are included.

* Log writes: All data and metadata written to the log, suchvesng pages of
log records in a log-based system and writing updated page mapsdow
paging are calculated.

* Propagation reads Recovery mechanisnthat deferupdates to the database
may incur propagatioreads. For example, abject logging mechanism must
copy updated objects from the buffer to the database page containiigjebe
The database page must be read if it is not already in the cache.

* Propagation writes: These are theosts of propagating updates to the
database in mechanisms that dai@dates. Indeferred update logging for
example this consists of writingcommitted pages tothe databaseluring
checkpoints, opportunistically or during shutdown.

 Commit overhead This category includes th#O overhead of recording the
committed state of a transaction on disk. For examplenthisinclude writing

53

a transactiocommitrecord to the log in a loggingystem or writingthe root
page in a shadow paging scheme.

In the MaStA model, the four recovery mechanisms introducé&eation 4.3.lincur

costs withinthe 1/O categories indicated imable 4.1.Only BISP incursdatabase

writes since the other mechanisms always write uncommitted dataltgthigataSafe

incurs propagatiowrites to the database since it defers updates past commit time. The
AISP mechanisms and the LSD incur reads on the log to recover page maps on restart.

/O Categories DataSaf | AISP LSD BISP
e
Data reads v v v v
writes v
Log reads v v
writes v v v v
Propagation| reads
writes v
Commit writes v v v v

Table 4.1: Assigning I/O Cost Categories to Recovery Mechanisms

In the I/Ocost predictions of recovery mechanismade inthis chapterthe cost of
recovery from failure is omittedlhe omission of this cost is assumed not to be
significant to the overaltost of each recoverynechanism, since it is assumeut
failures are infrequent, and that the overhead of providing for recovery outweighs the
cost of recovering a materialised database to a consistent state.

To simplify the development of the model, the following assumptions are made:

« Main memory is largeenough to holdall required page maps amthtapages
accessed and updated & running transactions. Thisiay be unrealistic in
applications that execute large transactiiiag overflow the cache, bumay be
true of database applications that perform short transactions.

e All mechanisms perform the same number of datates#s.The number of
page faults incurred mayary marginally between mechanisntisat use
different page replacement algorithimgt areassumed to bequal to simplify
the calculation of database read costs.

4.3.3 I/O Access Patterns

The crucial contribution of th&aStA model is todistinguish various read and write
access patterns, dhe assumptiorthat they may have significantly differeabsts.

54

The model defineswo patternscalled sequentialandordered and three patterrtbat

are parameterised according to the degree spatial of locality. The three patterns are
clustered unclusteredanddisk The five patterns defined are intended to reflect the
characteristics of magnetaevices, butthe principle applies to any deviesghose
accesdime varies according to the sequence of locatiaosessedThe patterns are
defined as follows:

» Sequentialreads/writes geq Wseq: The data is read/written in sequentially
increasing positions. This is the mesficient access pattern becalsedware
and softwarearedesigned to support it well. #&pical example isvriting to a
contiguously structured log. The expectation that sequential /0 acesdseis
good performance is based the assumptiorthat logically adjacenblocks are
placed contiguously on physical blocks by disk controlleiGalibration
measurements describedSection 4.4.1compare theosts ofsequentialand
non-sequential I/0O operations, and suggest that this assumption is valid.

e Orderedreads/writes @rg, Word): This pattern describd& operationghat are
performed on sorted non-adjacémtations. For example, duringcmmit in
AISP the non-adjacenblocks writtenmay be ordered sthat seek costs are
minimised. The ordered access pattern maglso encompass operations
performed asynchronously, in other words, 1/0 requestsatieascheduled in a
favourable order, so if the pool of requests is sufficiclatige the average cost
can approachhat of sequentiall/O. A typical example is keeping pool of
committed pages requiring propagation to the database.

» Clusteredreads/writes @y, Wely): This pattern comprises localised accesses

that aresynchronous antlence cannot be freetydered. Atypical example is
localised database reads.

* Unclusteredreads/writes (mcl, Wuncl): These aresynchronous accesseshin
the database that involve moving the access position arbitrarily.

« Disk reads/writes (fisk, Wgisk): These aresynchronous access#st involve
moving the access position arbitrarily far on tevice. Thispattern may incur
higher costghanunclustered/O. A typical example igorcing the logduring
eachcommit, since the databaaeea can béar from the logarea if they are
stored on the same device.

To calculate the cost of recovery mechanisms using Mai#y I/Oaccess pattern is
assigned araveragecost, whichmay vary between differenplatforms. Given a
suitably accurate model of the deviaed associatedoftware,one might derive an

55

analytical or simulation model to determine tiest ofeachpattern. Aswill be seen

later, the approach taken measures these values by experimentation. The refinement of
I/O costs to include different access pattduras out to be significanEor example,

the ratio of the cost of the most expensive write access pattern to the least expensive is
observed to be a factor of five on a particular platform.

4.3.4 Assigning /O Access Patterns

The assignment offO access patterns 480 cost categoriegor a given recovery
mechanism is dependent on the characteristics ofmehanism. For example, a
mechanism that maintains the original clustering of gatéorms bothclusteredand
unclustereddatabaseaeads. Onthe otherhand mechanismthat lose the original
clustering of data arassumed to always perforamclusteredor disk databaseeads.

It is conceivable thasome of these mechanismey be able to take advantage of
dynamic re-clustering oflata for some applications in order to perforrolustered
reads. Tacaterfor such cases iMaStA requires only a reassignment ld® access
patterncosts tothe database read categofi@ssuch mechanisms. It is assurnibat
application workloads have characteristics such that no effective re-clustering of pages
can take place to reduce read costs.

The 1/0O access patterns assigned to the 1/0O cost categories for the four mechanisms are
given in Table 4.2. In DataSafe, each database regithes clusteredor unclustered

Log writes consist of writing updated pagesjuentiallyto the safe, and writing pages

of thesafemap in anordered manner to preallocated locations disk. Committed

pages are written back to the databasieag propagatiomvrites. Propagatioi/O can

be delayed and may therefore drelered The commit 1/0Ocost categoryconsists of

writing the root block and is assignedraclusteredwvrite. Writing to the safe may also

incur twodisk seeks, if the same device is used to hold both the databates esade:

one to positiorthe device at theafe and one to move it back ttee database. The
second occurs dhe beginning of the next database read buhast conveniently
modelled as a commitost. Since committecchanges are retained in thache until
propagated to the database, no propagation reads are required to read the changes back
from the safe.

56

/O Categories DataSafe AISP LSD BISP
clustered& . clustered&
Database Read | /' 5 cieq | unclustered disk unclustered
Database Write ordered
Log Read ordered ordered
Log Write se%lrjdeer;gg& ordered sequential se%lrjdeer;gg&
Propagation Read
Propagation ordered
Write
. unclustered unclustered unclustered unclustered
Commit disk disk disk disk

Table 4.2: 1/0 Access Pattern Assignments to 1/0O Cost Categories

In AISP, updated pages are written to fldecks. Inthe variation ofAISP examined
here, it is assumeithat updateghagesare written to freeblocks withinthe database
before being allocated new blocks at the end of the database. This énautes size
of the database is minimised and so the mechanism mecitssteredreads instead of
disk reads. Analternative strategy is to extend the datababken creatingshadow
pages and only reuse free blocks within the database wheacltes some predefined
size or fills thedevice. This strategy wouldlter the characteristics &SP to more
like those of the LSD. Becausige original clustering opages is lostgdatabase reads
always requirainclusteredreads.Log readsare performed to access the pagap;
such readsncur orderedread costs. Log writes, toupdate the pagenap, can be
performed in anordered fashion oncethe device head is moved to the required
location. The cost of this seek is charged to the commit I/O cost catdgpaerzommit
I/O cost category also consists of writitige root block and is assigneduaclustered
write. The additionakeek incurred byhe nextl/O operation is also charged to the
commit category.

The main difference between the LSIhd AISP isthat the LSDperforms less
expensivesequentialog writes instead asrderedwrites. A requirement of beinaple

to performsequentialvrites in the LSD ighat the database dispersed over karger

area of the device and hence database reads are assigned the more elipkmeac
costs.

Notice that databaseads inthe LSD andAISP are assignedunclusteredand disk
readcosts respectively. ihe databashasnever been updated before and read-only
applications are executeer the database, these mechanismay beassigned the

same database read patterns as DataSafsh workloadsare not interesting in the
context of this work, since they incur the same read costs under each mechanism. This
thesis focuses on workloads under whiicére is a potential advantage ahoosing

57

one mechanism over another. HenceStA it is assumedhat updatejueries have
already been executed against the databas¢hahthe original clustering qgfages of
data has been lost in the LSD and in AISP.

In BISP theoriginal clustering is maintained so databesgdsare eitherclusteredor
unclustered Databasevrites may be performed in blookrder and so incuordered
costs. There are three costs involved inwages. Thefirst is writing before-images
to shadow blocks irthe log. Shadow blocksnay be allocateccontiguously and
written sequentially The second cost is writifhe page map indicating the locations
of theshadow copiesThese mappings must be written before an original block is
overwritten and consist arderedwrites. The thirdcost is incurred aftethe updated
pages have been written ttte database ancbnsists of re-writinghe page map to
discard the locations of theorresponding shadow pagé@se cost of seeking to and
from the page map is charged to the commit cost category. Thecothmit 1/0 costs
are as for after-image shadow paging.

4.3.5 Application Workload

The goal of the applicatioworkload abstraction is toapture the basic attributes of
workloads that affect I/CFor examplethe number of updates affects the number of
log records or shadow pages written.

There is a trade-off betweamsing alarge number of variables to increase the
expressive power ahe workload abstraction andence produceaccurate 1/Ocost
predictions, and employing fewer workload variables to enthatthe models of
recovery mechanisms are tractable. The variables used (Table 4.3), arelatbowmn

be sufficient to make qualitatively accuratemparisons of recovery mechanisms
while at the same time maintaining the understandability of the analytical models of the
mechanisms.

The valuesassigned tothe workload variablesmay be obtained bysimulation,
measurement or analysis tfe realapplication. Notethat the variablesised are
designed to characterise workloads in page-based recovery mech&®tggotbased
mechanisms may require additional variables to reflect the characteristwskbbads
in terms of the objects updated and committed to the log.

58

on

N0

ctions

N

nap

P in

Workload Description
variables
read the number of read operations performed by the applicat
dRr i the number ofeadthat access data already in the cache (
readgi~ecen page faults incurred)
dFaultL the number of page faults which the database page
réadrauliloC | 5ccessed is logically near the previously faulted page
update the number of database updates performed by all transa
dateT the sum of the number apdateperformed by each
upaatelrans | transaction on pages already updated by the transaction
the number of pages updated by a transadtianhave bee
updateTemp updated by a previous transactions
the degree of intra-transaction update spatial locality - in the
updateLoc range (0,1] (affects the number of AISP and LSD page n
pages updated)
firstUpdate the number of read operations performed before fits¢
write operation
commit the number of update transactions committed
Writ the number ofipdatethat cause propagation writes during
propvvrite normal processing (in deferred update mechanisms)
WriteFinal the number ofipdatethat cause propagation writes during
propvvrterinal | shutdown (in deferred update mechanisms)
db the size of the virtual database in bytes
page page size in bytes
mapEntry size of a page map entry and a safe map entry in bytes
i the number of root pages written to record a commit statg
roo AISP, BISP and the LSD
Table 4.3: Variables Used to Characterise Workloads

4.3.6 Cost Models for the Four Recovery Mechanisms

For each 1/Ocost category and mechanismorkload variablesare composedinto
workload functions tocalculate thenumber of I/O access incurredTable 4.4
describes the workload functions and includes their composition in terms of workload
variables. The symboisl denote the standard mathematical function ‘ceiling’.

The workload functions and I/O access patterns assigrted 160 cost categories for
the mechanisms are givenTiable 4.5.Within each category theost isthe product

of a workload function and an I/O access pattern cost, or the sum of a number of such

products. The total cost of a mechanisnthessum ofthe costs of itsconstituent 1/0
cost categories. As an example, wheaitten out, the sum ofthe 1/0 cost categories

for DataSafe is:

PM|SSC|U00 lclu + PM|SSUnC|°° runc|+ PD|rty o Wseq‘l‘ Psafel\/lapo Word +

(PrWritel + PrWritell) o Wgorg + Proot o Wyncl + commite 2 oo rgisk

59

The pattern disk is attributed to the commit category to indicate segk costs are
incurred by themechanisms. Two seelee incurredfor example by DataSafe to
move to the safe area and back to the database area when writing to the safe.

Workload

- Description Workload Variables
Function
) the number otlustereddatabase
PMissClu pages faulted readFaultLoc
PMissUncl the number of nottustered read- readRecent readFaultLoc

database pages faulted

the sum of the number of pages

PDIMy | committed by each transaction update- updateTrans

PTMi the number of page map pages read db/ page
ISS | on restart in AISP and the LSD page/ mapEntry

T the number of page map pages | commit x L4 LPDirty / committ] [
irty updated in AISP and the LSD updateLoc x %

the number of safe map pages - -
PsafeMap | written to record the position of | commit x E@:':)// CogT:t DD
database pages in the safe page /- maptntry

the number of root pages written|in

the mechanisms commiteo root

Proot

the number of propagation page
PrWritel | writes performed during normal propWrite
processing

the number of propagation page

Prwvritell | \yrites performed during shutdown

propWriteFinal

Table 4.4: Workload Functions

DataSafe AISP LSD BISP

I/0 Number | Acces§ Number | Access Number | Acces§ Number | Accesq
Category of /10 Patternn of I/O Pattern of I/O Patternn of I/O Pattern

Database | PMissClu| r¢y | PMissClu| ryncl | PMissClu| rgisk | PMissClu| rgy
Reads |PMissUnc| rype | PMissUnc| runcl | PMissUncl fdisk | PMissUncl rync

Database .
Writes PDirty Word
Rl_e%%s PTMiss lord PTMiss lord
L 0 g PDII’ty Wseq PD|rty Word PD|rty Wseq PDII’ty Wseq

Writes PsafeMap| wqrg | PTDirty | wgrg | PTDirty | wgeq | 2XPTDirty | wgrg

Writes Prwritell | wegrqg

. Proot w Proot W Proot w Proot w
Commit _ uncl . uncl _ uncl _ uncl
110 commit rdisk commit Idisk commit rdisk commit rdisk
o 2 0 2 0 2 0 4

Table 4.5: Workload Functions and I/O Pattems Assigned to Cost Categories

60

4.4 Utilising MaStA

The utility and flexibility of MaStA aredemonstrated by describing three applications
of the model. In eachylaStA isused topredict thel/O costs of running a workload
on different recovery mechanisms and diffenglatforms. Tocompare theosts of a
set of recovery mechanisms, for a given application and platfbregsteps must be
performed. These are:

1. Identify workload variableghat reflect the attributes of the application’s
workload that affect I/O and provide values for these variables.

2. Foreach recoverynechanism, identifyhe categories imhich the mechanism
incurs costs and assidf© access patterns tach category according to the
properties of thd/O operations performed. Fagach categoryand recovery
mechanism developvorkload functions fromthe workload variables to
calculate the number of accesses incurred of each I/O pattern.

3. Configure the model against the platform by measuring or estimating the cost of
each 1/0O access pattern.

In each application of the model, the workload functions develop&eadtion 4.3 for
the four recoverymechanismgstep 2) are evaluated bywupplying values for the
workload variables(step 1) and calibrating the/O access patterns against two
platforms (step 3).

4.4.1 1/O Access Pattern Calibration

MaStA abstracts ovethe characteristics of the platform by employwvayious 1/O
access patterns in the workload functions of recovery mechanignes utilising the
models, these patterns are configured against the required platfdaha.dpplications
of MaStA describedthe 1/0O patterncostsare obtainedhrough measurement of the
devices available on two platforms. The configurations of the platforms are:
a Sun SPARCStation ELC:

running SunOS 4.1.3,

with 48 MB main memory,

a 500 MB CDC Wren V SCSI drive dedicated to the operating system,

and a500 MB partition on a2.1 GB SeagateST32151N Fast SCSI-2 (Hawk
2XL);

61

a DEC Alpha AXP 3000/600:
running OSF/1 V3.2,
with 128 MB main memory,
a 1 GB DIGITAL RzZ26 SCSI drive dedicated to the operating system

and a 500 MB partition on a 2.1 GB Seagate ST12550N SCSI drive
(Barracuda Il).

The average cost of each 1/0 access pattern used in MaStA is measured by performing
sequences of read and write operationsam partitions. Rawpartitions areused

instead of files to avoid operating systelisk cacheeffects. The sequences of 1/0
operations are recorded using aStA 1/O traceformat [SCM+95b] summarised in
Section 5.4.4.The localities of theoperations are controlled to simulaequential
ordered clustered, unclusterednd disk I/O patterns.Details of thesynthetic 1/O
tracesused tomeasure these access patterns are includégpendix B. Table 4.6

and Figure 4.2 give the averagel/O access patterncosts measured on the
SPARCStation (Hawk diskand the Alpha (Barracudadisk), as proportions of
sequential read costs.

It is important to note that thesesults do notompare thd/O access costs of the
particular configurations of th&lpha and the SPARCStation.The results abstract
over absolute costs by giving each machine’s I1/0O access casisltgges of the cost
of asequentiatead on that machine. ASR stands Afpha Sequential Reaahd SSR
for SPARCStation Sequential Read.

I/O Access Pattern Alpha SPARCStation
Sequentialeads (eq 1.0 ASR 1.0 SSR
Sequentiaivrites (Wseq 1.6 ASR 1.0 SSR
Orderedreads (#q) 3.8 ASR 2.7 SSR
Orderedwrites (Worq) 2.4 ASR 2.6 SSR
Clusteredreads (#) 3.8 ASR 4.0 SSR
Clusteredwrites (Wey) 3.1 ASR 3.8 SSR
Unclusteredeads (finc) 4.3 ASR 4.6 SSR
Unclusteredwrites (Wncl) 3.7 ASR 4.6 SSR
Disk reads (#isk) 4.9 ASR 4.9 SSR
Disk writes (Wisk) 4.4 ASR 5.2 SSR

Table 4.6: Average Costs of 1/O Access Patterns

The results highlighttwo issuesfundamental to the manner iwhich MaStA
distinguishes betweellO access patterndlhe first is that the relativecosts of

62

different 1/O patterns vary significantlyFor example,the ratio of thecost of
sequentialreads tadisk writes is a factor of 5 othe SPARCStation.The second is
that the relativeeost ofl/O access patterns masry acrosdifferent platforms. For
example, the ratios sequentialvrite costs taliskwrite costs on the giveAlpha and
SPARCStation configurations are 1:2.7 and 1:5.2 respectively.

Al pha
§' 5
- 4

—
© 83 B rcads
o 5 2
B o 1 r [lwites
E 0

seq asc clu uncl di sk

SPARCSt at i on

g 6
o 5
- O 4
© 3 M r cads
n 3
i
5o 2 r [Jwites
E 0 !

seq asc clu uncl di sk

Figure 4.2: Average Costs of 1/O Access Patterns
4.4 .2 Applications of the Model

The following applications ofMaStA demonstratehow the workload functions
developedfor the four recoverymechanisms may based topredict costs under
various workloads otthe givenSPARCStation andhe Alphaconfigurations.Each
application defines workload and varies one anore of theworkload variables to
illustrate the sensitivity of the model those variablesThe workload functions are
evaluatedusingthe /O access patternosts recorded iTable 4.6. Inaddition, the
functions are evaluated using a uniform I/O cost to emphasise the need to differentiate
I/O access pattern costs.

4.4.2.1 Application 1

Application 1 considerghe relativecosts of recoverynechanisms undeworkloads
with varying degrees of updateequency.The workloadvariable values are given in
Table 4.7. The value aipdateis varied while the number of read operaticgr®ains
constant.The value ofupdateTrans propWrite and propWriteFinal are varied in

63

proportion toupdateto ensurehat the ratio ofpropagation and log writes to updates
remains constant.

Workload Variables

Values

read 1000000 pages
readRecent 800000 pages
readFaultLoc 100000 pages
update 00400000 pages
updateTrans 3/4 « update pages
updateLoc 20%
commit 500
propWrite 1/50 « update pages
propWriteFinal 1/100» update pages
page 8192 bytes
mapEntry 8 bytes
root 1 page
db 120 MB

Table 4.7: Workload Variable Values in Application 1

The graphs inFigure 4.3illustrate theresults ofevaluating theworkload functions
developedor the four recovery mechanism3he threegraphs correspond tihree
sets of values assignedttee I/Oaccess patterns: tiePARCStation’sthe Alpha’s
and a uniform set whereach pattern is given the sac®wst. Foreachset of access
pattern values, the predicted costs incurred by each recovery mechanstrovaneas
multiples of thesequentiatead cost in the set.

Bl SP Al SP LSD DS
1300 1300 1300
. —~ 1200 1200 1200
° 3
»n § 1100 1100 1100
'O —_
= — 1000 1000 1000
i
: © 900 900 900
]
g qg; 800 800 800 Al SP
n & LSD
700 700 700
a. Sun b. Al pha c. Uniform
600 600 600
0 400 0 400 0 400
updat e (1000's)

Figure 4.3: Results from Application 1

64

Figures 4.3.aand4.3.b showthatwhenthe update frequency isw the LSD and
AISP incur highercoststhan DataSafend BISP. This is becaus&SD and AISP
perform only disk and clustered database reads respectively, wher83SP and
DataSafe incur some lower costicigsteredreads as well asnclusteredeads.

As expected th&O costs ofall the mechanisms increase as the frequency of updates
increases. The graphs illustrate that the cost of BISP increases more rapidly compared
to the othemechanisms. This is becausemmitting a pageauses two writes: the

first, to write the before-image of the page to the log ands#eond to write the
updated page to thi#atabase. In DataSafepage may be updated acdmmitted to

the safe a number of times for each time it is written taldtabasehence the rate of
increase of its costs is lower.

Figure 4.3.c illustrates the relativecosts of the mechanismgalculatedusing a
uniform cost for each I/O pattern. As can be sibenrelativepositions ofthe costs of
the recovery mechanisms in Figure 4.3.a and 4.3.b dapending on the particular
workload, while they do not inFigure 4.3.c. This is becausehe cost of each
mechanism in a uniform model Izased only onthe number ofl/O operations
performed, whereas the relative costs of mechanisms also depémel \ariations in
the costs ofthe different access patterpsrformed. This is also whthe costs of
AISP andthe LSD are equalvhen their workload functionsare evaluatedising a
uniform I/O cost (in Applications 1, 2 and 3).

4.4.2.2 Application 2

Application 2 illustrates the effects ollO costs of varyingspatial locality of read
faults. The workload variable values are given in Table 4.8. The locality of read faults
is varied by changingeadFaultLocbetween10000 (poorocality) and190000 (good
locality). This meansthat eachworkload performs 20000Gead faults read
readRecent but the workloads vary, in that they perform between 10000 and 190000
localised read faults.

At the left hand side ofeach graph in Figure 4.4, workloads performmainly
unclustered reads dhe database, antthe righthand side represents workloaitisit
perform mainly localisedeads.Figure 4.4.aand4.4.b illustrate that as realdcality
increasesthe costs of BISPand DataSafereduce. This isbecause an increasing
proportion of database reads inclusteredcosts inthese mechanisms. Gme other
hand AISP andthe LSD incuronly unclusteredand disk database readsosts
respectively for all workloads and hence tlemists do not vary with changesread
locality.

65

Workload Variables

Values

read 1000000 pages
readRecent 800000 pages
readFaultLoc 1000071190000 pages
update 100000 pages
updateTrans 80000 pages
updateLoc 20%
commit 500
propWrite 15000 pages
propWriteFinal 2000 pages
page 8192 bytes
mapEntry 8 bytes
root 1 page
db 120 MB

Table 4.8: Workload Variable Values in Application 2

BI SP Al SP LSD DS
1050 1050 1050
 —~ 1000 1000 1000
° 35
w § 950 950 950
'o —
S = 900 900 900 Al SP
o © & LSD
— 2 850 850 850
)
© S 800 800 800
83
750 750 750
a. Sun b. Al pha c. Uniform
700 700 700
10 190 10 190 10 190
readFaul t Loc (1000's)

Figure 4.4: Results from Application 2

Notice that under workloads with poor locality the cost of AISP is lower tti&igost
of DataSafeand BISP. This is because under theseorkloads, all mechanisms
perform norelusteredreads and becaugdSP incurs lowemrite costssince it only
performs a single writéor each page committed. The LSBcurs higher costthan

AISP due to the more expensidiskread costs that the LSD performs.

No variation is seemsing a uniforml/O cost (Figure 4.4.c)since theseosts are
based onlythe number ot/O operations performed and do rtake account of the

difference between the costsabfistered unclusterecanddiskreads.

66

4.4.2.3 Application 3

Application 3illustrates the effects on theosts of DataSafe ofvarying temporal
locality of updates.The degree of update temporal locality is variedchgnging the
value ofpropWrite i.e. byvarying theproportion of updatethat cause propagation
writes The other variables remain constgiitable 4.9). The poorest locality is
achieved by settinggropWrite to 99800. This meansthat of the 100000 pages
committed PDirty), 99800are written tosafe and propagated tise database before
being updatedagain. The remaining200 propagation writesare attributed to
propWriteFinal This scenario represents application thaperforms sparse updates
on a large databasesing asmall cache.Maximum locality is achieved by setting
propWrite to 0, i.e. nopagesare propagated to the databadering normal
processing). Imother words, onaverage each transactiopdates and commits the
same 200”Dirty/commi} pages.

Workload Variables Values

read 1000000 pages
readRecent 800000 pages
readFaultLoc 190000 pages
update 200000 pages
updateTrans 100000 pages
updateLoc 20%
commit 500
propWrite 9900010 pages
propWriteFinal 200 pages
page 8192 hytes
mapEntry 8 bytes
root 1 page
db 120 MB

Table 4.9: Workload Variable Values in Application 3

The left hand side ofeach graph (Figure 4.5) represents workloads in which
transactions update pagtmt havenot recently updatedlow temporal locality of
updates). Athe righthandside, each transactionpdates thgages changed by a
recenttransaction. Agxpected theost of DataSafereduces as the degree of update
locality increases, due to the reduction in the number of propagatitas. The costs

of the other mechanisms do nairy becauseach page that is committeduses a
fixed number of writes.

Under this workload AISP incurs higher cositein BISP onthe SPARCStation
configuration (Figure 4.5.a), and vice versa on the Alpha configuration

67

(Figure 4.5.b). This is mainly because the costeofuentialvrites, to record shadow
pages in BISP, are more expensive relative to dt@epatterns on thélpha than on
the SPARCStation. This result highlightsat variations in the relativeosts of 1/0
patterns across different platforms may be sufficient to causerdeeing ofthe costs
between mechanisms under a particular application to differ on the platforms.

Bl SP Al SP LSD DS
1400 1400 1400
5 0
< 1300 1300 1300
» ©
_ (]
8 ~ 1200 1200 1200
S
— 5 1100 1100 1100
17 c
= 3
§ = 1000 1000 1000 op
(2]
900 900 900 & LSD
a. Sun b. Al pha c. Uniform
800 800 800
99800 0 99800 0 99800 0
propWite

Figure 4.5: Results from Application 3
4.5 Conclusions

Chapter lintroduced a flexible database architecture that maycdsdigured to
provide optimum performanci®r a particular application. To effectively configure
recovery management such an architecturgéhe recovery schemthat incurs the
lowest cost for the application must be selected. To meet this demand aaaigtical
I/O cost modelcalled MaStA isintroduced.The model reduces the complexity of
predicting the costs of recovery mechanisms by categorising I/O operations in terms of
the movement of data betweerdatabase, a log and a cachiée number of 1/O
operations incurred ieach category is estimatesing a workloadabstractionthat
takes into account variables that afféd€@. To accurately calculate theost of each
category, MaStA differentiates 1/0 access patterns, sustaentiabndunclustered
the costs of whichmay be calibrated against the platform beusgd to run the
application.

Applications of the model demonstrate the flexibility amility of MaStA. The
applications involve calibrating tHéO patterns againgivo platforms and providing
values forthe workload abstraction with which tevaluate thewvorkload functions

68

developedfor four recovery mechanisms. Comparisonstte resultingl/O cost
predictions highlight a number of issues:

» The variations between theosts ofdifferent /O access patterns affetital
costs significantly. Furthermotae 1/0 costs ofmechanisms thgperform the
same number of 1/O accesses caty be differentiated if differerifO patterns
are modelled.

* The relativecosts ofmechanisms mayary on different platforms under the
same application, hence amalytical modelshould allow eachl/O access
pattern to be calibrated against the particular platforrwioich the application
IS executed.

» The relativecosts of recoverynechanisms are highly dependentwarkload
characteristics. In particulathe results corroboratehe belief that no one
mechanism incus the lowest cost for all applications.

The MaStAmodel isused in Chapter 7 in a workexkample of the flexibld=lask
architecture, to choose the appropriate recovery mechanisnpéotiaular application
and platform.

A number of assumptionare made in the development daStA. These are
discussed inthe nextchapter, along with a framework designed viidate the
assumptions.

69

5 Validation Strategy of MaStA
5.1 Introduction

MaStA is an analytical I/Gcost modelthat estimates performander a particular
combination of applicatiomorkload, recovery mechanism and execution platform at
relatively low cost. To recap, the main features of the model are:

» Cost is based upon a statistical estimation of disk activity, broken down into 1/O
cost categories for each recovery mechanism.

* The model may be calibratedith different disk performance characteristics,
either simulated, measured by experiment or predicted by analysis.

« The model is usablever a wide variety oWorkloads,including thoseypical
of object-oriented and database programming systems.

This chapter introducethe four underlying assumptions ¢fie MaStA model and
presents the validation framework designed to verify the assumplioaprocedures
performed to validate the assumptions, #recorresponding resuli@re discussed in
Chapter 6.

5.2 Assumptions

Three major abstractions ameade todescribe MaStA, based amitical underlying
assumptions. The abstractions are:

» the recovery mechanism abstraction;
» the disk performance abstraction;
* and the workload abstraction.
5.2.1 Recovery Mechanism Abstraction

The recovery mechanism abstractiassignsl/O cost categories t@ach recovery
scheme.The totalcost derived bythe model is thesum of these categories. The
purpose ofthe categorisation is to reduce the complexity of comparing recovery
mechanisms and improve trenalysis ofthe mechanisms.The success of this
abstraction depends heavily upon two assumptions:

I/0 Assumption: In applications where variations total costs of usingdifferent
recovery mechanisms asggnificant, the variations in theCPU costsincurred are
insignificant compared to the variations in the 1/0O costs.

70

Cost Category Interaction Assumption: The interaction between the different
categories of 1/0 accesses is not significant; ithahe cost of runninghe 1/0 stream
generated by a given recovery mechanism is not significantly differenttfirsum
of the costs of running the streams of each 1/0O cost category separately.

5.2.2 Disk Performance Abstraction

MaStA abstracts over the characteristics of the device by employing vi@oascess

patterns in the models of recovery mechanishhe. averageost ofeach pattern may
be obtained either bgimulation,experiment or by further analysis tife device in

guestion. This abstraction depends on the assumption:

Access Pattern Cost Assumption: To makepredictions of therelative costs of
recovery mechanisnfer all workloads, it issufficient toassign gpredicted average
cost to each I/O access pattern.

5.2.3 Workload Abstraction

The last abstraction in MaStA is over the workload associatedtigtapplication. As
the interest is only in I/O behaviour, this need not encompas€Rbyactivity of the
application, but only itslataaccessesThe application is characterised in terms of
workload variables such dlse number of database reaperationsyead locality and
update frequency.

Workload Assumption: The cost of runningthe 1/O stream generated by an
application is approximately the same ramning the 1/O stream generated by the
workload abstraction.

5.3 Overview of the Validation Strategy

The strategyused tovalidate theassumptions oMaStA [SCM+95a, MCM+95] is
outlined in Figure 5.1. Avariety of workload traces produced by synthetic
workload generator and by the OO1 and OO7 benchmarke@eded.The OO1 and
OO7benchmarks are widelgccepted as hasis on whichdifferent object oriented
databasesystemsmay be compared and aused here (implemented in Napier88
[MBC+89]) to providetypical databasorkloads.Eachworkload tracerecords the
database accesses performed by a particular benclymark and allowghe same
workload to beexecuted multiple times on differemecovery mechanisms and
platforms.

The workload traces are executed on three recovery mechaAksRs: DataSafe and
the LSD developed i€hapter 3,and on twoplatforms: aSun SPARCStatioand a

71

DEC Alphaconfigured with different devices and operat8ygtems. Asummary of
the configurations of the recovery mechanisms used is included in Appendix A.1.

Napier88
Synthetic
Workloads
R ererere | database
.................. workloads
Y A\ _
various
MaStA Wmm recovery
mechanisms
M various platform
. _Alpha configurations
E— Sun
M Y % i
cost workload trace CPU & |/O
predictions analysis costs 1/O access traces

Figure 5.1: The MaStA Validation Strategy

The I/OandCPU costs okxecuting eaclvorkloadtrace araneasured and traces of
the 1/0 accesses performeate recorded.The workload tracesare characterised in
MaStA toprovide l/O cost predictions ofhe workloads. The predicted andeal I/O
costs,the I/Otraces and the databas@rkload tracesare analysed itChapter 6 to
validate theassumptionshat supportthe abstractions of MaStA. Atrength of this
strategy isthat by validating eachssumption fomore than onelatform, operating
system and device, it illustratéise independence of tHdaStA assumptions from
thesecomponentsSection 5.4providesdetails of the components of the validation
strategy.

Once the MaStAnodelhasbeen validated there is a firmsumptiorthat is used in

estimating thecost of any combination of application, mechanism pladform. The

assumption ighat there are no significamthase changes ithe performance of
recovery mechanismpABJ+92]. In other words, small changes inworkload or

platform characteristics do not cause dramatic changes in the relasitgeofrecovery

mechanisms.

72

5.4 Validation Framework Design

A number of components are common to phecedures performed tlidate the
assumptions of MaStA. These are:

» the persistensystem employed tgenerate databaseorkloadstraces and the
format of the workload traces;

» the benchmarks used to generate workloads typical of database applications;
» the platforms used to execute the workloads;
» and the format of the 1/O traces.

5.4.1 Napier88 and Workload Traces

The Napier88 system [MBC+89] is employed ¢mnerate the tracassed in the
validation strategy. The Napier88 compiler maps programs onto an interpreted abstract
machine the PersistentAbstract MachindCBC+89] which accesses persistelata
through a persistent heap interfatbe persistent heap tarn accessedata onnon-

volatile storage through a recovery manager.

The validation strategyrecords traces oi/O accesses and traces of database
workloads, and analyséise traces off-line to avoid potentisburces of interference.
Each database workload trace recdlasdatabasesad, write andcommit operations
performed by a particular benchmaykery. Read and writdrace entriegecord the
length of dataaccessed and the databaséresses dahe data.The I/O access traces
are obtained by modifyingach recovery mechanism tecord thel/O operations
performed. The format of I/O access traces is discussed in Section 5.4.4.

An advantage ofising Napier88 ighat thesource code othe system isavailable
allowing the required database al@® accesses traces to Ibecorded. It is not
possible to record these traces from meommercially availablelatabases due to the
unavailability of the sourceode. Analternative method that could have besed to
record /O traceswould have been tause commercially available databasystems
executing on an operating systaoch as LINUX for whichthe source is available.
Access to the operatirgystem’s sourceodewould allow the devicedrivers to be
augmented to record traces of the 1/0 accesses performed by the database systems.

An assumption of recordinfO access traces and databaswkload traces ighat
recording tracesloes notsignificantly affect the execution of theystem. This
assumption ivalidated by performing an experimehtat compares theotal elapsed

73

times of executing Napier88 applications while recordit@ and workloadtraces
against the elapsed timeden notraces aregecorded.The results of performing this
experiment indicate that recording trates nosignificant effect on theesults of the
validation procedures.

Ideally more than one database systdrauld be used tgeneratevorkloads and 1/0O
traces in the validation framework. Using only one system may be justifidae gct
that databasevorkload tracesaken from Napier8&re executed instead aking the
system directly. Therefonaterference fronthe Napier88 interpreter is factoremlt.

Future work shall investigate the inclusion of other databgsems irthe validation
framework.

5.4.2 Benchmarks

Validation of the MaStAassumptions forll possible workloads ispproximated in

the strategy by employing four benchmarks to genevat&loadstypical of database
systems.The particular configurations of the benchmarks described provide fixed
workloads for whicheachassumptiormay be validated. To promote confiderbat

the results are independent of the configuration of the benchimarksonfigurations

of OO1 are used. This section provides a summatiiedbenchmarksDetails of the
configuration of each benchmark are included in Appendix A.2.

5.4.2.1 0OO1

The OO1 benchmarkfCS92] (introduced inSection 2.5.3.1)generatesvorkloads

that are supposed to bdypically found in engineering applicationsuch as
CAD/CAM. The benchmarkprovides three standard queriesalled lookup |,
traverse andinsert which execute against a database containing interconnected
parts.

lookup : A set of random part identifiers is first generated. Read-only
transactions are theexecuted,each ofwhich fetchesthe set ofparts
from the database.

traverse : A set of read-only transactions aeecutedEach transaction selects a
part at random and recursively travershe connectedparts to a
specified depth. A null procedure is called for each part traversed.

insert : A set of transactions is executedch ofwhich inserts new parts and
commits. Each part inserted is connected tonamber of other
(randomly selected) parts.

74

In the validationstrategy,three additional queries are executed against the OO1
database to provide a wider range of workloads. They are:

scan : This read-only query is included to providevarkload typical of
applications thaperform linearscans of data, such asdatabase
application that scans all customer records to gather some statistics.

insertLarge @ In an attempt tdighlight any effects on the validatiomsults of
varying workload sizes, this additional query is includedenerate
a larger workload tathat of the standardinsert query. In
particular, insertLarge executes more transactions than
insert and each transaction inserts a larger number of new parts.

update : Since thestandardOO1 benchmark provides only insert or read-
only queries this query is included to providewarkload that
updates existing data in the database.

Some recovery mechanisms, such as AISP #re LSD, perform dynamic
reclustering of data in the database during update transactions. To highlight any effects
on subsequent reads of performing reclusteringdalitional set of read-only queries

is executed after the update queriesdrt , insertLarge and update). The
second set of read-only querigenerate similaworkloads to those athe first set
(lookup , scan andtraverse). The read-only queries the second setire called
lookup2 , scan2 andtraverse2 to differentiate theesults ofexecuting the two
read-only sets.

5.4.2.2 O01b

The second benchmark the OO1 benchmark configured with a larger database and
larger workloads. This configuration of OCdglled OO1b in thealidationstrategy,

is used in amattempt toshow that the validationresults are independent of the
configuration of the benchmarks used. A number of alterations are made to the queries
to increase workload sizes in OO1b (see Appendix A.2 for details). These are:

lookup , lookup2 : The set of random part identifiers generated, and accessed
by each transaction, is enlarged.

insert ,insertLarge : The number onew partsentered into the database by
each transaction is increased.

update : The number of parts read and updatecagh transaction
Is increased.

75

5.4.2.3 007

The third benchmark is OO7 [CDN93] (introducedSaction 2.5.3.2). It islesigned

to provide performance metriésr comparing various components of OODBMSs. A
drawback of the OO7 benchmark with regard to the validation strategtitirough
experimentation iwas foundthat Napier88 tended to translatke complex OO7
queries intoCPU bound workloadsThe validation strateghowever is concerned

with validatingthe assumptions oMaStA - amodel designed to predicbsts of /O

bound workloads. Hence, only a representative cross-section of the three categories of
OQO7 queries (traversals, queries astiuctural modifications) are included in the
validation strategy. The queries used are:

T1l: TheOO7database israversed, visitinghe unshared composite parts @hch
base assembly visited. As each composite part is visited, a depth-first traversal is
carried out on its subgraph of atomic parts.

T6: Traversall'l is repeated, visiting only the root part of each composite part.

Q2 A range of build dates which contaitise last 1% of the datdsund in the
database’s atomic parts is chosen and these parts are retrieved.

Q8 All pairs of documents and atomic parts with matching identifiers are found.

S2: The most recentlycreated compositgarts are removed in theientirety,
including document objects and atomic part subgraphs.

5.4.2.4 MaStA Object Benchmark

The O0O1 and OO7 benchmarks arélesigned to allow botl€PU and I/O costs of
database system components todmalysed. In some workloads such as those
generated by OO7 the I/@stscan beinsignificant. To provide workloadhat incur
high proportions of/O costs, an/O boundbenchmarkcalled MOB (MaStA Object
Benchmark) is also included the validationstrategy. Thidsenchmarkconsists of a
database of large objects indexed by+&rd®,and a number ofueries.The queries
aredesigned to exhibiariouslocality properties and vary ithe number of objects
accessed and updated.

scan : All objects in the database are read once in index order.

readTrans : A set of read-only transactions aeecutedEach transactioneads
objects chosen at random from a contiguous range0®%s of the

76

randomAcc :

updateTrans

RWirans :

randRWtrans

databaseThe index of thdirst object in each range ishosen at
random for each transaction.

A set of objects chosen at random are accessed.

. A series of update transactioai® executedEach transactioneads

and updates objects chosesingthe selection algorithnused in
readTrans and commits.

A set of update transactions arecuted.Each transactiomeads
objects chosensingthe selection algorithmased inreadTrans
updates the last object accessed and commits.

. A set of update transactions arecuted.Each transactiomeads
objects chosen aandom, updategshe last object accessed and

commits.

scan2 ,readTrans2 , randomAcc2 : These queries generate simileorkloads to

those of scan, readTrans and randomAcc respectively.

Similarly to the OO1 benchmarks they are included in the
benchmark to highlight any residual effects of providing recovery

during the three update queries.

5.4 .3 Platforms

A strength of the validation strategy is that each assumptidMa8tA is verified for a
number of differentplatforms, operating systems and devices, arftence the

validationresultsarelesslikely to depend on the particular attributes of any one of

these components. The platform configurations used in the framework are:

¢ a Sun SPARCStation ELC:

running SunOS 4.1.3,

with 48 MB main memory,

a 500 MB CDC Wren V SCSI drive dedicated to the operating system,

and a500 MB partition on a2.1 GB SeagateST32151N FastSCSI-2
(Hawk 2XL);

» a DEC Alpha AXP 3000/600:

running OSF/1 V3.2,

with 128 MB main memory,

77

a 1 GB DIGITAL RZ26 SCSI drive dedicated to the operating system

and a500 MB partition on a2.1 GB SeagateST12550N SCSldrive
(Barracuda II).

* memory usage8 MB dedicated to the recovery mechanismésheand the
remainderfor the process runninghe databasevorkloads andhe operating
system.

5.4.4 1/0O Trace Format

To analyse th&/O operations performed by recovery mechanisms the operations are
recorded in traces using the MaStA 1/O trace format described in [SCM+95b]. The aim
of this format is to standardigke manner irwhich the 1/0O operations performed by
database systems are recorded and to dtbmeconsumers to develop analysis tools
that operate on such traces. The trace format is designed to be indepemdactingé
architecture by defining the byterdering of trace entriesand enabling the
configuration of the platfornsuch asthe disks used, to be recorded. It &so
independent of the recovery mechanisised by allowingthe configuration of
mechanisms to be recorded.

Each 1/O trace isomposed of a sequence of entegh ofwhich records aead,

write or synchronisation operation performed by a recovery mechanism executing a
particular application. Reads and writes are recordedréica as operating ame or

more blocks. Each read or writ@lso operates on a particulagical area ofstorage

such aghe database or theg. Synchronisatiomperations operate on one or more
areas.The validation strategyequiresthat each I/peration performed by database
systemscan be associatewvith the MaStA 1/O cost category (databasesad,
propagation write, etc.) in which it is performdde trace formaallows anl/O cost
category to be recorded with each I/O operation.

Configuration entries may be included in a trace to record additional information to be
used bytrace consumers. For exampleach logical area ostorage used by a
mechanism is distinguished froothers using a regioentry. Each region entry
records whichdevice an area ibound to andthe location on the device of the
beginning of thearea. Configuratiorentries mayalso record additional information
such as text describing the platform.

78

5.5 Conclusions

Three major abstractions ameade tosimplify the development of th#&aStA cost
model: recoverymechanism, diskerformance anavorkload. These abstractions are
based on four assumptions.

* In applications where variations itotal costs of usingdifferent recovery
mechanisms aresignificant, the variations in theCPU costsincurred are
insignificant compared to the variations in the 1/O costs.

* The interaction between the different categories|/@f accesses is not
significant; thatis, the cost of runningthe I/O stream generated by a given
recovery mechanism is not significantly different frdme sum ofthe costs of
running the streams of each I/O cost category separately.

* To make predictions of therelative costs of recoverymechanismsfor all
workloads, it is sufficient to assignpaedicted average cost éach I/Oaccess
pattern.

» The cost of running the 1/0 stream generated by an application is approximately
the same as running the 1/0O stream generated by the workload abstraction.

This chaptehas describethe framework employed tealidate thes@ssumptions to
gain confidence thalaStA can beused tomake accurateomparisons of recovery
mechanisms.The strategyinvolves executing benchmarks designed generate
workloads typical of databasepplications.The workloads are executed on three
recovery mechanism#lSP, DataSafeand aLSD, and on two platforms configured
with different devices and operating systems. During each executidfOtbed CPU
costsare measured and traceslffd accessesre recorded.Thesecosts,the costs
predicted using MaStA, the 1/O traces and the database workload traces are analysed in
Chapter 6 tovalidate the MaStAassumptions. A strength of thesrategy isthat by
validating eachassumption formultiple combinations ofrecovery mechanism,
platform, operating system and device, it illustrates independence of tHdaStA
assumptions from these components.

79

6 Validation Procedures
6.1 Introduction

The previouschapter introduced thassumptionghat underly theMaStA 1/O cost
model anddiscussedthe design of the framework employed tovalidate these
assumptions. Thishapterbreaksthe framework downinto four proceduregach of
which is composed of a number of experiments designed to verify one of the
assumptionsThe results ofthe experiments performed are analyseddétermine
whether the specific assumption is valid. A total of 22&Beriments were performed

in the validation strategy.

A number of strategies amgsed inthe framework to avoid interference from the
operatingsystem.These strategies adiscussed followed by a description edch
validation procedure and theorresponding results. Havingalidated thefour
assumptions of MaStAthe model isused to predict thel/O costs of recovery
mechanisms executing the workloads used in the valid&dgomework.The accuracy
of these cost predictions is verified by comparitigem againstempirical
measurements of the workloads.

6.2 Avoiding Interference
6.2.1 Platform Interference

File systemscommonly makeuse ofoptimisationssuch as cachingyrefetching and
re-ordering of I/O operations to reduce kOsts.The use of rawpartitions instead of

file systems avoidshese optimisations and increases the probabiligt /O
operations are carried out at tdesk level at the timeand in theorder they are
performed by the application - a requirementSection 6.4.For example, it is
important thassynchronousinclustered/O operations are performezynchronously

at the disk level. If a file system had been useday have cached and re-ordered the

I/O operations in an attempt to reduce costs and hence may have affected the validation
results.

It may be possible forMaStA to makecost predictions of recovery mechanisms
running on file systems instead of raw partitions. However, without knowledge of the
behaviour of thdile system, such athe caching policyused, itmay be difficult to
obtain accurateesults. Experience withrunning recovery mechanisms on fie
system and over a rapartition has shownthat optimisations incorporated into the
system can cause the I/O throughput of the file system to be loweh#iaof the raw
partition. For example, on @articular platform itwas foundthat in manyworkloads

80

that updated a database, the operating system swapped out the virtual sjuioe <5
the application inorder tocache awrite-only log file. To useMaStA to accurately
compare theosts of recoverynechanisms on filsystems, suclnterference must
first be removed.

Another potentialsource ofinterference comes fromsing modern diskcontrollers
that canre-order anctache I/Ooperations. To an extenthe disk abstraction of the
MaStA model takessuch optimisations into account by calibrating eadd® access
patternused inthe model against thdevice.So, for example, if a diskcontroller
optimisesclusteredwrite operationsthe model reflects the optimisation O cost
predictions by calibrating the access pattern againstlitie (seeSection 4.4.1 on
calibrating I/O access patterns).

Since no operating system caclaesused,each validation experiment is effectively
performed using a cold system thus avoidimg requirement tflush caches between
each experiment.

Disk performance camary acrosdifferent areas of a devicé&r example, due to
variations in datalensity. To ensuréhat theresults ofthe experiments performed in
each validatiorprocedure areomparablethe same area dlisk is used foreach
experiment. A more comprehensive strategy would involve performing each validation
procedure over a number of different areas of the device.

In each validatiorprocedure the platforms areun in single usemode to reduce
network interference, interference from other processes and the operating system.

6.2.2 Experimental Interference

To investigate whether th#O costs measured ithe validation procedures are
accurate, theostsare recordedising two method¢Figure 6.1). The first measures
the cost of individual I/O operations usingthe standard library functions
gettimeofday and getrusage . The function gettimeofday records the
elapsed time of each I/O function call agetrusage is used tdactor out the CPU
cost incurred duringeach call. The secondmeasurement calculatd®O costs by
subtracting the total CPUosts,and thel/O cost of reading databaseorkloadtraces
and I/O traces, fromthe total elapsedime recorded usingthe time command
provided by SunOS an@SF. Anaverage variation af.8% was observebetween
the two methods of measuring 1/O costs.

Each experiment in the validatigmocedures is performed a numbettiofes sothat
any fluctuations in the costs measured may be factored out.tRreoesults obtained,

81

it was foundthat three executions of each experimemre sufficient toobtain
consistentresults. In particularthe average variation in theosts of the three
executions of any given experimanas lessthan 1.5% ofthe averageost of the

experiment.
(gettimeofday) . (getrusage) (time) (gettimeofday
elapsed time elapsed CPU cost total (time) & getrusage)

per 1/O operation” per I/O operation elapsed time~ total CPU ~ 1/O cost of
reading trace$

cost of each 1/0O operation
I

2 4

otal I/O co = otal I/O cogt

Figure 6.1: The Two Measurements Taken in the Validation Procedures

6.3 Validation of the I/O Assumption

The requirement othis procedure idhe justification of thehypothesis(the /O
Assumption of MaStA):

In applications where variations itotal costs of usingdifferent recovery
mechanisms aresignificant, the variations in theCPU costsincurred are
insignificant compared to the variations in the 1/0O costs.

The workloads generated from OO1, OO1bMOB and OO7 (discussed in
Section 5.4.2) are executed on AISP, the LSD BathSafg DS). The I/Oand CPU

costs of running each workload are measured (Figure 6.2).

001, O01bh, OO7 & MOB workloads

¢
S AwANE,

total cost) (total cost) (total cost
(1/0 cosd)) | (/O cost)| | (1/O cost

Figure 6.2: The Costs Measured to Validate the I/O Assumption

The hypothesis is justified ifor each pair of recoverynechanisms, where the
variation in the totatosts ofexecuting a givemvorkload is significantthe 1/O costs

82

can beused topredictwhich mechanisnncursthe lower total cost. The variation in

the totalcosts of twomechanisms is considered significant if the variation is greater
than 5% of thdower total cost. There arel03 suchvariations in theworkloads
executed.

6.3.1 Results

The averagd/O cost andotal cost ofeachworkload executing on each of the three
recovery mechanisms and on the two platfoamesgiven inAppendix C.1.Analysis
indicates that inall 103 comparisons of recovempechanisms wheré¢here is a
significant total cost variation, the 1/0 costs could be used to predict wigchanism
incursthe lower total cost. Forexample, ifthe I/O costs ofDataSafeand the LSD
executingnsert (OO1b) on the configuration of ti&unare compare@68.20 and
84.93 secondeespectively) then DataSafe is predicted to incurldmeer total cost.
This is verified by comparinghe totalcosts ofthe mechanism§76.63 and 95.07
seconds respectively). Further analysis indicates thdQhsostscanalso be used to
predictwhich of a pair recovery mechanismcurs the lower total cost for agiven
workload wherthe totalcost variation betweethhe mechanisms is between 1% and
5%.

The results verify that for the workloads whichexhibited significant totalcost
variations, the differences @PU costsare insignificantvhenthe relative totatosts
of recovery mechanisms are beingmpared.The justification ofthis hypothesis
suggests that MaStA needs only predict theddSts of recovery schemesdompare
their relative performances for a given application.

6.4 Validation of the Cost Category Interaction Assumption

The requirement othis procedure ighe justification of thehypothesis(the Cost
Category Interaction Assumption of MaStA):

The interaction between the different categories|/6f accesses is not
significant; thatis, the cost of runningthe I/O stream generated by a given
recovery mechanism is not significantly different frdme sum ofthe costs of
running the streams of each I/O cost category separately.

The workloadsgenerated from OO1, OO1MOB and OO7 are executed oAISP,

the LSD and DataSafe, recording traces of the 1/0O operations perf@figede 6.3).
Each 1/O trace is then ordered by MaStA 1/0O cost category (datedade,log writes,
etc.) to produce a set of ordered traddse original traces and the ordered traces are
then run orthe raw partitions to measure tH# costs.The hypothesis is justified if

83

the relativecosts of runningthe ordered traces generatedm any two recovery
mechanismsfor a given workload reflect the relativecosts of running the
corresponding original 1/0O traces. dtherwords, ifthe cost ofthe originall/O trace
generated from a mechanisml@ssthan thecost ofthe originall/O trace generated
from another mechanism, then tlsbould also bdrue of the ordered/O traces
generated from the two mechanisms.

001, O01bh, O0O7 & MOB workloads

Y ACVACY,

) Mowaces ! 7
@ @ G

-] Y

| ‘ordered e, traces‘ |
original & ordered I/O traces

AN Y ¥ S
original 1/ costs< -~ - -~ YEVICE&(S} - - - - > ordered 1/0 costs

L A

comparisons

Figure 6.3: Costs Measured to Validate the Cost Category Interaction
Assumption

6.4.1 Results

The averagecosts of runningthe original and the orderedO traces on the
configurations of the Sun artde Alpha arggiven in Appendix C.2. As amxample,
the graphs inFigure 6.4 llustrate thecosts of runninghe original and ordered 1/O
traces ofMOB on the configuration of theSun. Analysis of all the results in
Appendix C.2indicates that the average variation betweencib& of running an
ordered /O trace and the cost of running the corresponding orifnaiace is2.1%.
The largestcost variationobserved inall the measurementsecorded, is on the
configuration of the Sun runningOB on DataSafe - theost of runninghe original
trace generated by thgpdateTrans query is15.3% lower thanthe corresponding
orderedl/O trace(DS graph inFigure 6.4). The variation may be caused bgeks
incurred in the originatrace to move the device head to #re of the logwhen
transactions commit, in contrast to the ordetedte, whereoverall I/O costs are
reduced since seeks to the end of the log are avoided during the log writes.

84

setup

scan

Rt rans

r andonfScan
updat eTr ans
RW r ans
randRW r ans
scan2

Rt rans2

r andonScan2

setup

scan

Rt rans

r andonfScan
updat eTr ans
RW r ans
randRW r ans
scan2

Rt rans2

r andonScan2

setup

scan

Rt rans

r andonfScan
updat eTr ans
RW r ans
randRW r ans
scan2

Rt rans2

r andonScan?2

Hoi gi nal Traces |] Oordered Traces

Al SP I/ O costs (secs)
100 200 300 400

500

DS 1/ 0O costs (secs)
100 200 300 400

LSS I/ O costs (secs)
100 200 300 400

500

500

600

600

600

Figure 6.4: Costs of the Original and Ordered I/O Traces of MOB on the Sun

85

Further analysis reveathat in 164 ofthe 192 casesthe cost of runninghe ordered
I/O traces generated from atwo recoverymechanismgor a given workloadreflect
the relativecosts of runninghe corresponding origindlO traces. For example, the
costs of runninghe originall/O tracegenerated fronAISP executingreadTrans2
(MOB) on theconfiguration of theAlpha (135.01 seconds) is lowdnan thecost of
the originall/O tracegenerated fronthe LSD(155.88 seconds)his is also true of
the costs of runningthe corresponding orderedfO traces(134.72 and 155.71
respectively).

Out of the 28results wherehe costs ofthe two ordered/O traces do not reflect the
relative costs of the two original 1/O traces, 23 of the cases may be ignorethsiaece
arelessthan 2% variation in theosts ofeach pair of original/O traces. Inother
words, the difference betwedme costs ofthe originall/O traces is sufficiently small

that it does not matter that the ordered traces do not reflect order of the original traces.

The 5 remainingesultsmay be accountefibr by similar reasons to whyhe ordered
I/O trace and the originall/O trace ofupdateTrans (MOB) on the Sun vary
significantly.

The results verify that for most of workloads executed, there is no sign¥aaation
between theost of running an origindlO traceand thecorresponding original 1/O
trace.The justification ofthis hypothesis strengthettse approachised inMaStA to
calculated I/Ccosts, i.e.each I/Ooperation performed by a recovery mechanism is
categorised and the cost of each category is calculated independently.

6.5 Validation of the Access Pattern Cost Assumption

The requirement othis procedure ighe justification of thehypothesis(the Access
Pattern Cost Assumption of MaStA):

To make predictions of therelative costs of recoverymechanismsfor all
workloads, it is sufficient to assignpaedicted average cost éach I/Oaccess
pattern.

Each operation in the origindlO traces recorded ifsection 6.4 isassigned the
appropriate predicted 1/O cost according to the predid@@ccess pattern performed
(Figure 6.5). For example, inDataSafe, log writesre believed to be performed
sequentially and seachlog write recorded in drace generatedrom DataSafe is
assigned the predicted cost afemjuentialvrite. The predictedosts ofthe 1/0 access
patterns on the configurations of t8enand theAlpha aremeasured as described in
Section 4.4.1 (Appendix B). Assigning a predicted cost to each operation recorded in
the 1/0O traces results in @redictedl/O cost for eachworkload running oneach
recovery mechanism and platform.

The hypothesis is justified ifor each pair of recoverynechanisms, where the
variation in the totatosts ofexecuting a givemvorkload is significantthe predicted

I/O costs can be used to select the mechanism that incurs the lower total cost. Similarly
to Section 6.3,the variation in the totatosts of twomechanisms is considered
significant if the variation is greater than 5% of tbever total cost. There are 103

such variations in the workloads executed.

86

I/O traces

| e =
/

predicted costs of
I/O patterns
(Appendix B)

’
’
’
7
’
’
’
’
\ ’
’
| / W
| / 7
\ / ’
/ ’
’

/
L
/

243 .
total real costs predicted I/O costs

Figure 6.5: The Strategy Used to Validate the Access Pattem Cost Assumption

6.5.1 Results

The predicted/O costs andhe total reatosts used in thigalidation procedure are
given in Appendix C.3. Analysis indicateghat in 100 of the 103 comparisons of
recovery mechanisms where there is a significant total cost varidtepredicted I/O
costs could be used to predict which mechanism incurs the lower total cost.

The three inaccurate totabst predictions result from comparil®§SP and DS
executing bothnsert (O01b) andQ8 (O07) on theconfiguration of theSun, and
from comparingDataSafeand the LSD executingié (OO7) on theconfiguration of
the Alpha. These results may be accounted for byaittethat thesevorkloadsaccess
data thathas notbeenupdated. For example, ®@O1b on theconfiguration of the
Alpha the prediction that DataSafe incurs lower totdtsthan AISP for the insert
query is incorrect (Table 6.1). Thisbgcause in MaStA, database reads incurred by
AISP are assignednclusteredcosts undethe assumptiorthat the original clustering
of pages is lost, when ifact AISP alsoincur clustered database reads in this
particularworkload. Clustereddatabase readse incurred becausasert is the
first update queryexecuted against th©O1lb database and hence the original
clustering of the dataccessed bynsert has notyet beenlost. This causes the
predicted I/O costs of AISP to be higher than the predmtstl of DataSafe. If AISP
is assigned botblusteredandunclustereddatabase readsr insert the predicted
cost ofthe mechanism itower thanthe predictedcost of DataSafeand a correct

prediction is made. Similar reasonsaccount for the othertwo inaccurate cost
predictions.

87

If the results of this procedurare analysedor only those pairs ofrecovery
mechanisms where there is > 13% variation in total costs, themeatetedl/O costs
can be used to produce 100% accurate comparisons of total real costs.

Sun
AISP DataSafe LSD
Total | Pred. [Total | Pred. | Total | Pred.

Workloads Real /O Real /O Real /O
lookup (OO1b) 1309.86 | 136505 (132371 1191.78 131694 144849
scan (OO1b) 25.14 25.68 24.93 22.45 25.08 27.23
traverse (OO1b) 80.20 84.33 80.93 73.64 80.30 89.46
insert (OO1b) 85.89 | 82.04 | 95.07 |81.87 [76.63 74.13
insertLarge (OO1b) 784.19 734.25 870.97 764.76 £98.33 644.45
update (OO1b) 68881 | 64644 | 71713 |698.26 500.35 556.92
lookup2 (OO01b) 315959 | 3089.97 |289352 269757 369646 3278.86
scan2 (OO1b) 73.64 63.33 52.45 55.29 81.64 67.19
traverse2 (OOL1b) 89.81 83.02 79.70 72.50 104.66 88.07

Table 6.1: Predicted I/O Costs (secs) and Total Real Costs of OO1b on the Sun

The results verify that to make qualitatively accurate cost compargog MaStA, of
recovery mechanisms executing workloads that exhibit significant total cost variations,
it is sufficient to assign an average cost to each I/O access pattern.

6.6 Validation of the Workload Assumption

The requirement of this procedure is the justification ofryy@othesiqthe Workload
Assumption of MaStA):

The cost of running the 1/0O stream generated by an application is approximately
the same as running the 1/0O stream generated by the workload abstraction.

This procedure essentially validateat workload iscorrectly modelledThe strategy
used to validate this hypothesisillastrated inFigure 6.6. The workloadsgenerated
from O0O1, O01b,007 and MOB are characterised by a number wbrkload

variables. These variableme used todrive a synthetic workload generattnat

produces workloads witlsimilar numbers ofdata reads andwrites, and similar

locality properties to the original applications. The ¢@sts ofexecuting the synthetic
workloads(syntheticl/O costs) oneach recovery mechanism ameasured.These

costsare comparedvith the total realcosts ofthe original workloads recorded in
Section 6.3.

The hypothesis is justified ifor each pair of recoverynechanisms, where the
variation in the totatosts ofexecuting a giverworkload is significan{> 5%), the

88

synthetic 1/O costs can be used to select the mechanism that incurs thetiaveest.
There are 103 such variations in the workloads executed.

workloads from OO1, OO1b, OO7 and MOB
(database reads and writes)

workload
analyser

workload
variables

‘ synthetic workload
generator

synthetic workloads
(database reads and writes)

\asp /\ bs /\ Lso /
v

/O costs of synthetic total costs
workloads of real workloads

predictions

Figure 6.6: The Strategy Used to Validate the Workload Assumption
6.6.1 Characterising Workload

The number of variablessed tocharacterisavorkloadsare kept to a minimum to
ensurethat thedesign andmplementation of the synthetiworkload generator are
tractable. At the samime thevariables have sufficient expressipewer to ensure
that the synthetit/O costsare accuratenough topredict the relative totatosts of

recovery mechanism$or a given workload. The variablesused tocharacterise
workloads are given in Table 6.2Zhe workload analyser makasse ofthe variables
cache and the knowledge that the recovery mechanisms employRU page

replacement strategies, to calculate the valuesaofandreadRecent

In the definitions ofreadFaultLog two logical databaseagesare considered near to
one another if they arkessthan 1920 logical pages(15 MB) apart. Thisvalue is
chosen toreflect the size of thalisk partition used to measuredlustered I/O
(Appendix B).

89

Note that the variablesisedhere assum#hattransactions are executedrially, as is

the case in thevorkloads used in thigalidation procedure Applications exhibiting
concurrent behaviour may be accommodated by adding transaction behaviour
variables to the workload abstraction. These may be, for example, the average number
of concurrently executing transactions and the average number of concurrent
transactions that access and update the same page.

Workload Variables Description
read the number of read operations performed
the number ofeadsthat accessdata already in theache
readRecent (no page faults incurred)
the number of page fault;m which the database pape
readFaultloc accessed is logically near the previously faulted page
update the number of write operations performed
firstUpdate the number of read operations performed beforefithe
write operation
the sum of the number ofupdate performed by each
updateTrans transaction on pages already updated by the transactign
the number ofpages updated by a transactibat have
updateTemp been updated by a previous transactions
commit the number of commit operations
db the size of the virtual database in bytes
cache the size of the cache in bytes
page page size in bytes

Table 6.2: Workload Variables Used to Characterise Workloads
6.6.2 Synthetic Workload Generator

The synthetic workload generator takes as input, valuethéovariables imable 6.2

and produces workloads consisting of database access, update and commit operations.
The generatoruses aprobabilistic approach to determine whethesch access
generated is a read ovrite, and to select the database page accessedably
operation.

e An operation is a read if the number of operations generated so far in a
workload is <firstUpdate Otherwise, an operatiomas aread(read + write)
probability of being a read, otherwise it is a write.

e If a read operation is generatéide probability that the pageccessed by the
operationhas been read recently ieadReceiitead and hence the operation
does nottause a pagtult. If aread operation is generated to cause a page

90

fault, the probability that the faulted page is nearpieviouslyfaulted page is
readFaultLod(read- readRecent

» If a write operation is generatethe probability that the operatiazhanges a
page already updated by the current transactiopdste Tran&ipdate If so, a
page already updated by the transaction is randmelgcted. If not, the
probability that the operation updates a page changedpbgvaustransaction
is updateTemfgupdate- updateTrang

* A commit operation is performed everyedd + updatg/commij operations.

The standard library functiomandom was used to producthe random values
required by the synthetic workload generator.

6.6.3 Results

The averagd/O costs ofthe synthetic databaseorkloads andhe totalcosts of the
original workloads executing on the three recovery mechanisms angah#gatforms

are given inAppendix C.4.The costs ofeach pair of mechanisms executing a given
workload are analysed tietermine if the relativerder ofthe synthetically produced

I/O costs reflect the relative order of the total @@dts.Analysis indicateshat in 101

of the 103 comparisons of recovery mechanisms, the synthetic I1/0O costs could be used
to predict which mechanism incurs the lower total cost.

The two inaccurate predictions occwhen AISP andDataSafe executingpdate
(OO1b) on the configuration of thdlpha are comparedand whenthe same
mechanisms executirigokup2 (OO1b) on theSunare compared. No satisfactory
explanation can b®und forthesetwo results. Infuture work, suchresultsmay be
corrected by incorporating moveorkload variables, for example, tevelop a more
accurate model of workload locality.

If the results of this procedurare analysedor only those pairs ofrecovery
mechanisms where there is > 10% variation in total costs tiieesynthetid/O costs
can be used to produce 100% accurate comparisons of total real costs.

6.7 Accuracy of MaStA

Having validated th@ssumptions of MaStA, fanal procedure is performed &how
that thecosts produced usintpe model are sufficiently accurate poovide good
gualitative comparisons othe costs of recovery mechanisms. dther words this
procedure is required to verify that mechanism, application workloagblatidrm are
accurately modelled in MaStA. The stratagged in this procedure iBustrated in

91

Figure 6.7.The workloadvariable values measured $ection 6.6,and the average
cost ofeach I/Opattern recorded ippendix B are used todrive the MaStA cost
models ofAISP, DataSafeand the LSD developed i@hapter 3.The resulting /O
cost predictiongre analysed to determinefdr eachworkload and foreach pair of
recovery mechanisms whetigere is> 5% variation in totalcosts ofexecuting the
workload, the predicted I/O costs can be usesktect the mechaniswith the lower
total cost.

costs of I/O pattern

)

workload variable values (Appendix B)
MaStA
MaStA cost - ,
models AISP) DS) LSD
(Chapter 3)

predicted I/O costs @
total real costs of workloads workloads

Figure 6.7: The Strategy Used to Show the Accuracy of MaStA

6.7.1 Results

Appendix C.5gives the average real totabsts andhe 1/0O cost predictionamade
using MaStA configured for the Alpha, the Sun and with a unifé@rcost. Analysis
indicates that in 102 of the 103 comparisons of recovery mechanismstidrerés a
significant total cost variatiorthe predicted/O costscould beused topredict which
mechanism incurs the lower total cost.

The failure occurs when the costs of DataSafe and the LSD executing T6 (OO7) on the
configuration of theAlpha are compared - the prediction that DataSaders lower

total coststhan LSD isincorrect. In MaStA, database reads incurredheyLSD are
assignedlisk costs, when in fadhe LSDalso incursclustereddatabase reads in this
workload since T6 accesseltawhich has notyet beenupdated. This causes the
predicted 1/O cost of the LSD to be higher than the predmtst of DataSafe. If the

LSD is assignedlustereddatabase reads for T6 the predicted cost of the mechanism is
lower than the predicted cost of DataSafe and a correct prediction is made.

92

Further examination of theesults highlightshe necessity to configurdO access
patterns against the platform beinged bythe fact that the same databaserkload

may suit different recovery mechanisms on diffeyg@atforms. For examplehe best
recovery mechanism on the configuration of 8w forthe RWtrans (MOB) query

is the LSD, whereas the best mechanism for this workloatieoconfiguration of the
Alpha is DataSafe.

The cost comparisons made usthg predicted/O costsare 100% accuratefor pairs
of recovery mechanism whetiee totalcost variation is greater than 6% tbé lower
total cost.

6.7.2 Comparison with Uniform Cost Models

Early analyticaimodels of recovery mechanismse uniforml/O costs topredict the
costs of recovery mechanisni$ie MaStAmodel on the othehand is designed to
make cost predictions taking into account the differences betwe@&odteof various
I/O access pattern$he accuracy othis technique is highlighted by comparing the
results of this procedure witllaStA cost predictiongnadeusing a uniform/O cost
(Appendix C.5).When eactaccess pattern iNaStA isassigned a uniform cost the
accuracy of the resulting predictions greor. In fact, foreach pair of recovery
mechanisms wheréhere is a significant totatost variation of executing a given
workload, the mechanism withe lower total cost is predicted in only 35 dfie 103
comparisons. The poor results are caused by AISRhendSD performing the same
number ofl/O operations forall workloads. Assigning auniform cost to these
operations results iequal cost predictionfor the mechanisms, thus providing no
useful comparisons. Furthermore, fal updateworkloads used in this procedure
DataSafeperforms higher numbers dfO operations thanAISP andthe LSD.
Therefore in a uniform/O cost modelDataSafe isalways predicted to incur the
highest I/O costs.

6.7.3 Conclusions

The requirement of this procedure is to show that the costs producedhedifgStA

I/O cost model can be used to provide ggodlitative predictions of thEO costs of
recovery mechanismghe resultsindicate thatthis is the casefor the majority of
workloads wheretotal cost variations on different recovery mechanisms are
significant.

93

6.8 Conclusions

In this chapter the assumptions that support the abstractioiaStA arejustified by
four validation procedures.The proceduresexecute databaseorkloads generated
from a number of benchmarks and synthetically generatattloads on various
recovery mechanisms and various platform configurations CRig and /O costs of
the workloadsare measured and traces of the databasesses antlO operations
performed areecorded.Justification of theassumptions consists of analysitgse
costs andracesfor eachassumption.The results ofthe analysis suggedhat each
assumption holds for theajority of workloads wherghere are significant variations
in the total costs of using different mechanisms.

A distinguishing feature ahe MaStAmodel is that it differentiates betwegarious
patterns of/O accessesThe necessity tdistinguish betweelO access patterns is
highlighted by comparing predictedsts produced usingaStA configured forreal
platforms againstosts predictedusing a uniforml/O cost. When the model is
configured with a uniform cost it cannot distinguish betweerctists ofmechanisms

that perform the same number of 1/0O operations. The importance of distinguishing 1/0
access patterns is further highlighted by thet that thebest mechanisnior a
particularworkload may vary acrosddifferent platforms, depending othe relative
costs of the 1/0 access patterns.

By justifying the assumptions andlustrating thatMaStA canproduce sufficiently
accuratecost comparisons of recovery mechanisms, thiapter has shownthat
MaStA is suitablefor use in dlexible database architectuseich as Flask to choose
the mechanism that incurs the lowest cost for a given application and platform.

94

7 Worked Example of the Flexible Architecture

7.1 Introduction

In Chapter 4 a nevanalytical modefor recovery mechanismscalled MaStA was
described. A worke@&xample isnow provided tdllustrate how MaStA may beused

to choose an appropriate recovery mechanidm. examplalescribeghe design of a
database of information and two applicatidimst usethe information. MaStA is used

to configure twanstantiations ofFlask on whichthe applications arexecuted. This
involves characterisinthe database anebch applicatiorusing MaStA's workload
variables, configuringhe model against the execution platforms and selecting the
mechanism with the lowest predict#@® costs.The applications aralso executed on
each mechanism and measured to verify the choices of mechanisms.

7.2 Scenario

A bank and a building sociegachwish tomaintain a database of information about
customers indexed by account number. For each customer, the database must record a
name, adate ofbirth, an address, aaccount balance anfdr security purposes an
image.Each database will be maintained bygeaver to whichmultiple clients may

send transactions to bexecutedserially. The databases are required to record
information on 65000 customers. Figure 7.1 depicts the scenario.

Database Design
Bank customers |] [] Building Society
transactions: . transactions:
5% read-only 95% read-only
95% update — — 5% update
Sun & Alpha &
Hawk disk Barracuda disk
Y Y
MaStA < > MaStA
AISP DS LSD
< P > recovery A
Application mechanisms Application
Flask Flask

Figure 7.1: Using MaStA in a Worked Example

95

Each companyas provided grediction of the style of transactiotigat will execute

over its databaselhe building society predictthat 95% of transactiongxecuting
against its database will be read-only aath transaction will retrieve information
about a single customer chosen at random. The remaining 5% will update the balances
of two customers chosen at random. The bank predicts that 5% of transactions will be
read-only transactions and 95#4| be updatetransactionsThe two applications are
designed in this scenario to exhibit widely varyimgrkloads to emphasise the
effectiveness oMaStA to choosethe appropriate recovery mechanigon different
workloads.

The databaseserversare implemented irNapier88 and executed othe Flask
architecture to take advantage of the flexilbbcovery management. Flask is
configured withAISP, DataSafe or the LSD mechanism developedChmapter 3.
MaStA is used to choose between these mechanisms for each application.

Thebank has a Sun SPARCStati&hC running SunO$4.1.3 with 48 MB main
memory, a 500 MB CDC Wren V SCSI drive dedicated to the operating system and a
500 MB partition on a2.1 GB Seagate&ST32151N Fast SCSI-2 (Hawk 2XL). The
building society has a DEC Alpha AXP 3000/600 running OSR2 with 128 MB
main memory, a 1 GB DIGITAL RZ26 SCSI dridedicated to the operatirgystem
and a 500 MB partition on2.1 GB SeagateST12550N SCSHrive (Barracudal).
These particular platforms aohosen for this scenargince theMaStA 1/0 access
patterns (sequentiakead, ordered write, etc.have already been measured
(Appendix B). If other platforms had bearsed,MaStA would have been calibrated
against them byperforming the /O access pattern experiments described in
Section 4.4.1.

7.3 Database Design

The databases accessed by blamk andthe building society areomposed of a
number of customer records indexed usingtaie®. Each customer is represented by
a Napier88 structure instance of type:

type Customer is structure

(balance : int
name . string
address : string
picture : image ;
age Doint)

Napier88 creates five objects to compose a structure instance Qiugfmener :

e customer structure instance (this includedoddance andage fields)

96

name string

address string

image descriptor

image bitmap

Knowledge that eacBustomer is represented by five objects is usedection 7.4
to characterise the workloads of t@mpany’s application€achnode ofthe Brtree
used to index customers is created from an instance of the type:

rec type Node is structure

(entries : int ; Inumber of subtrees
!ea_f : b_ooI X lindicates a_Ieaf node
indices : * int ; la vector of index values

pointers: * Pointer) !avector of pointers to
Ivariants of type Pointer

&
Pointer is variant
(next : Node ; Ipoints to either another

value: Customer) B +tree Node or to a Customer

Three objects are createdNapier88 to composeachnode ofthe Bttree: aNode
structure instance, a vector of integers index values and a ve®omtér variants
to point to eitheNode or Customer values.

The database is generatedflvgt building a Btree sufficiently large to inde&5000
customers and thesreating each customer in inderder. The index is builtfirst to
ensure that indexing information exhibgeod spatial locality in the database thereby
potentially reducing readosts forthe index. An order-4 Biree isused.This means
that eacmode ofthe Brtree contains between 3 and 7 pointers to otioeles or to
customerrecords. Using an order-4+Bee requires approximatel6000 nodes to
index the 65000 customer records.

The layout of the database is illustratedrigure 7.2.The sizes ofthe areas of the
database required to hold the various objects are estimated from the numbers and sizes
of objects created.

~3MB ~256 MB ~9MB
@ [I I I I I I I O
[I I I I Il Il | | | I
index customer bitmaps other customer objects

Figure 7.2: Layout of Objects in the Database

97

7.4 Characterising Workloads

To produce/O cost predictions usinlylaStA for AISP, DataSafeand theLSD, the
applications are analysed to determine the vahsssggned tdhe MaStA workload
variables described in Table 4.3.

7.4.1 The Building Society’s Workload

The predicted workload of the building society is analysgidg 40000 transactions.
This number of transactions is assumed to be sufficiently largectorately represent
the characteristics of the applicatiamen it isexecuting continuously othe three
recovery mechanisms available. Thealysis is broken down bgalculating the
contribution to eachworkload variable made by thresets of objects: indexing
information, customebitmap objects and the remaining objemtsnposing customer
records. Analysis is performed in thisanner to reflect the layout of these objects in
the database (Figure 7.2).

Since the Btree index is accessed frequently, it is assuthatdeach pagé8 Kbytes)

containingnodes ofthe index is faulteanly once and remains the databaseache
(8 MB). Hence it is assumetthat the minimummumber pagéaults, i.e. 384 faults,
are incurred when accessing the 3 MB (384 pages)defing information, anthat

good locality (90%) is observed dthesefaults. The workload valuesattributed to
reading indexing information are estimated to be:

read= 48000 (16000 Nodes * 3 objects)
readRecent 47616 fead- page faults)
readFaultLoc= 346 (90% of page faults)

A total of 42000 customerare accesse®5% of 40000 transactions * 1 customer +
5% of 40000 transactions * 2 customers), requiring 42(4@ to access the
corresponding bitmap objects. Since accesses to the biaragsarse readRecenis
assigned 0, i.e. each bitmap access causes a page fault.

The customer structure instance, name, address iamayedescriptor objects of a
customer contribut&@68000 toread (42000 customers * 4 object3)he objects of a
particular customer ar@ssumed to reside dhe samgyage.ThereforereadRecents
assigned 126006/4 * read) since three out of foueadfor each customer, access the
samepage.Since a number of customer records resideach database pageme
degree of temporal localitf10%) is assumed in customaccessesTherefore an
additional 4200 (10% of 42000 customers) is assigneshtRecent

98

Due to the unclustered nature of this workload, it is assuhsdhe degree of spatial
locality of customers accessed is poor: only 10%aye faults arelustered. Hence
customer bitmap accesses contribute 400@adFaultLoc(10% ofread - readRecent
for bitmaps). The value okadFaultLocfor accessingther customer objects 8360
(10% ofread- readRecentor the other customer objects).

The building society predictthat 5% of transactions update the balances of the
customer records they access. It is assumed that the objects corttenadpnces of
the two customers updated bgch transaction are held on differpages andhence
two pages are updated bgchtransaction. Aradditional thregpagesare updated for
each transaction commit to record Napier88 overheads.

update= 10000 (2000 update transactions * 5 pages)
updateTranss O
Workload Variables Values
read 258000 pages
readRecent 177816 pages
readFaultLoc 8018 pages
update 10000 pages
updateTrans 0 pages
updateLoc 5%
commit 2000
propWrite 4488 pages
propWriteFinal 512 pages
page 8192 bytes
mapEntry 8 bytes
root 1
db 270 MB

Table 7.1: Variable Values for the Building Society’s Workload

The temporal locality of the pages updated by transactions is assumed to be high since
these pagesontain customer balancebat are frequentlyupdated, andhence
infrequently choseffor replacement in theache. Therefore it is assumiet ahigh
proportion of pages (50%Jpdated in the cache lisansactions are updated again by
other transactions before being propagated to the database in the DataSafe mechanism.

propWriteFinal= 512
propWrite = 4488 ((50% of update) - propWriteFinal)

The value ofpropWriteFinalis estimated to bB0% ofthe size of the databasache
(1024 pages) used by the recovery mechanisms. Table 7.1 provides a summary of the

99

workloadvariable valuesised tocharacterise the predicted databasekload of the
building society.

7.4.2 The Bank's Workload

The database workload predicted by the bank is analysed using 20000 transactions, as
opposed tahe 40000 transactions dhe building society tanake theworkloads
generated fronthe two applications comparabld.he workload variable values for
reading indexing information in thieank’s application areassumed to bsimilar to

those of the building society’s.

A total of 39000 customers (5% of 20000 transactions * 1 customer + 95% of 20000
transactions * 2 customeraje accessewith similar degrees of temporal asgatial
locality to thebuilding society’s predicted/orkload. The workload valuesattributed

to reading indexing and customer information are:

read= 48000 (for index objects)

+ 39000 (for customer bitmaps)

+ 156000 (39000 customers * 4 objects)
readRecent 47616 (for index objects)

+ 0 (for customer bitmaps)

+ 120900 (39000 customers * 4 object s+

10% of 39000 customers)
readFaultLoc= 346 (for index objects)
+ 7253 (10% ofeadreadRecentor all customer objects)

In the bank’s predictedworkload 95% of transactiongpdate the balances of the
customer records they access aimdilarly to the buildingsociety’s workloadeach
transaction updates 5 pages.

update= 95000 (19000 update transactions * 5 pages)
updateTrans 0

100

Workload Variables Values
read 243000 pages
readRecent 168516 pages
readFaultLoc 7448 pages
update 95000 pages
updateTrans 0 pages
updateLoc 5%
commit 19000
propWrite 46732 pages
propWriteFinal 768 pages
page 8192 bytes
mapEntry 8 bytes
root 1
db 270 MB

Table 7.2: Workload Variable Values for the Bank's Workload

Similarly to the buildingsociety’s workload 50% of pagegdated in the cache by
transactions are assumed to be updated by other transactions before being propagated
to the database in the DataSafe mechanism.

propWriteFinal= 768
propWrite= 46732 ((50% otipdatg - propWriteFina)

The value ofpropWriteFinalis estimated to bé5% ofthe size of the databasache

(1024 pages) - a higher percentage than the building society since apnation

of the pages accessed apated.The valuesassigned tdhe workload variables for
the bank are summarised in Table 7.2.

7.5 Utilising MaStA

In addition to providing valuefor the MaStA workload variablesthe I/O access
patterns used iMaStA must be configured againgihe platforms onwhich the
databases are maintained. this scenariothe companies makeaise of the
configurations of thé&sunand theAlpha employed in earliechapters.Therefore the
I/O access patterns of MaStA are configured with the values recorded in Appendix B.

Table 7.3and Figure 7.3 give thel/O costs obtained from evaluatinglaStA for

AISP, DataSafe and the LSD usitige workload variable values given iffables 7.1

and 7.2 and the I/O access pattern costs of Appendix B. The workload functions used
are those developed in Chapter 4. The results sutgg$or the bank, Flask should

be configured witithe LSD to provide théest performance artfat for a marginal

101

gain in performance the architectusbould be configured witlbbataSafefor the
building society. Table 7.3 also givé®e 1/O costsobtainedfor the two applications
when MaStA is configured with a uniform 1/O cost. The value$able 7.3highlight
that theuse of a uniform/O cost generates cost predicticthgt donot distinguish
between mechanisms that incur the samamber ofl/O operations (AISP and the

LSD).

BaAase Bps [Lss

4000
3000

=
ity

ﬁj‘

2,

2000

bbbttty
S,

2,

L
b

L
L

et
o
o
o
o
o
o
o
o
o

.
b

1000

=
e
ekt

o
o
o
o
o
o
o
o
o
o
o

.
.

.
.

e

2,

5

e
5
s
5
cH

.
.
.
oy

.
.
.
.

I/ O Cost
Predi ctions (secs)

Bui | di ng
Soci ety
e ___|

(2]
c
o
s 12000
.-5 ~—~~
© » 8000
- O
o o
- < 4000
8
0
9 Bank Bui | di ng
- (Uni form Soci ety
(Uni form

Figure 7.3: Predicted /O Costs (seconds) Calculated Using MaStA

Application AISP DataSafe LSD

Bank 3534 3197 2752

Building Society 1020 1007 1027
Bank (Uniform) 7153 6825 7153
Building Society (Uniform 2443 2410 2443

Table 7.3: Predicted 1/0 Costs (seconds) Calculated Using MaStA
7.6 Verification of Cost Predictions

To verify the choices of mechanisnmade using MaStA, the workloads were
generated and executed each recovery mechanism available. The databadethe
applications used to generate the workloads are implemented in Napier88 and executed
on instantiations ofFlask configured withthe different recovery mechanisms
available. The codér maintaining the Btree index, building the database and the

102

code for the two applications that generate the workloads are includgbendix D.

The bank’s application execute20000 transactions anthe building society’s
application executes 40000 transactions, the same numbers of transactions as analysed
in Section 7.4.

For each recovery mechanisthe database is built arhch application executed six
times. The elapsed executidime of eachapplication is averaged ovére last three
executions of the applicatio@nly the last three executions are taken into account to
ensurethat any effects on/O costs ofthe recovery mechanisms ahown in the
results. Elapsedxecutioncostsare measuredsingthe UNIX/OSF time command
and withthe platforms in singlauser mode.Table 7.4 contains the averagetal
executioncosts in seconds oéach application executing on the three recovery
mechanisms.

Application AISP DataSafe LSD
Bank 5314 4249 3736
Building Society 1597 1499 1575

Table 7.4: Total Real Costs (seconds) of the Applications

Theresults concuthat the LSDshould be used to providee best performance for
the bank’s application andhat DataSafeshould be used fothe building society.
Furthermore,the results confirmthat the nextbest mechanisnfor the bank is
DataSafe. On the othdrand the predictedcosts (Table 7.3) are not sufficiently
accurate to predict that the nédst mechanisnor the building society is the LSD
which incurs lower costthan theAISP mechanismSince there is only anarginal
variation in the total costs of using these twechanismgor this particularworkload
(1.4%) there would be nosignificant effect on the performance of the building
society’s database of choosing the LSD over the AISP mechanism.

7.7 Conclusions

Previous chaptertave introduced and validated new analytical cost model for
recovery mechanisms called MaStA. This chapesattempted to illustrate the utility

of the model in the flexibl&lask architecture and to promote confidernicat MaStA
produces sufficiently accurate cost predictions to be effective in such an architecture.

A scenario is described in which two companies predict the transaatitioadsthat

will be executed on their databases held on diffeptatforms. Analysis of the
workloads is performed by studyirige layout of the database and estimating the
values that should be assignedhe MaStAworkload variablesMaStA isthenused

to predict with which recovery mechanisms Flask should be configured to provide the

103

best performancéor eachapplication. Theotal cost of executingegachworkload on
each mechanism available is theeasured. Analysis dhe realand predictectosts
indicates that MaStA predicts th'® costs ofthe schemewith sufficient accuracy to
choose the mechanism that incurs the lowest total cost for each application.

The use of MaStA to successfully configure recovemianagement to obtaigood
performancegoes some way towardalidating thethesisthat analytical techniques
may be employed to configure database management systems to increase performance.

104

8 Conclusions

The rapid expansion ofelectronic commerceand communications have put ever
increasing demands for performance on computer systems.chlowne determine if

a system is executingfficiently? The many layers of abstraction present in modern
systems - the application, operating system, networks, platfonakeunderstanding
the behaviour ofsuch systems aomplex task. Past studiebave used empirical
measurement techniques [KGC85, CS92, CDN93] on executing systeleteimine
whether optimisations enhangeerformance. Another technique is to develop
simulations of systems tpredict behaviour. Bothempirical and simulation based
analysis tend to be expensive in terms of programming, debugging and validation. A
cheaper andess time consumingalternative is to employ analytical modelling to
predict performance [Reu84, AD85].

The thesis of this work is that analytical modelling can be usaddarately configure
recovery in database managemsygtems to provideptimum performancéor any
application and platform. A new analytical mogeis developed to compare recovery
mechanisms. In addition, two new recovemgchanism were incorporated into an
existing flexible architecture to provide a basis on which the model could be validated.
Validation of the model involved executing synthetic datakas#loads over various
mechanisms and, by analysis of the results obtained, justifying the assumptions which
underly the model. The utility of the modehsthen illustrated by avorked example

in which MaStA was used taonfigure Flask to providéhe best performance for
different database applications.

8.1 Cost Prediction

In order to configure recovemanagement in a DBMS a techniqueregjuiredthat

allows the costs of recoverynechanisms to be comparéor any application and
platform. This workadopted an analyticapproach to provide cost predictions of
recovery mechanisms. The MaStA 1/O cost model presented increases the accuracy of
cost predictions over existing models by taking into account variations in the patterns
of 1/0 accesses performed by recovery mechansneh asthe difference between
sequential angynchronousunclustered 1/O. This is in contrast ¢arly studies of
recovery mechanisms which oftersed a uniforml/O cost. MaStA divides the
problem of producing cost predictions into three abstractions:

» the behaviour of recovery mechanisms;

+ workload characteristics;

105

» and platform characteristics.

The behaviour otach recovery mechanism is captured in the model by categorising
the 1/0 operations incurred in terms of the movemendata between database, a
cacheand alog. By assigninghe appropriatd/O access patterns &ach category
dependent on the characteristics of tmechanismthe modelensureghat thecost of

each category is configured for the mechanism. The number of I/O operations incurred
in each category is estimatacgsing a workloadmodel that takes into account
application characteristics that afféf®. The accuracy of the model is attained by
calibrating the cost of each 1/O pattern against the platform on wiecapplication is
executed thereby ensuring that cost predictions are platform specific.

The modelling techniquassed inMaStA aredependent ofour assumptionsThese
are:

In applications where variations itotal costs of usingdifferent recovery
mechanisms aresignificant, the variations in theCPU costsincurred are
insignificant compared to the variations in the 1/O costs.

* The interaction between the different categories|/@f accesses is not
significant; thatis, the cost of runningthe I/O stream generated by a given
recovery mechanism is not significantly different frdme sum ofthe costs of
running the streams of each I/O cost category separately.

* To makepredictions of therelative costs of recoverymechanismsfor all
workloads, it is sufficient to assignpaedicted average cost éach I/Oaccess
pattern.

» The cost of running the 1/0O stream generated by an application is approximately
the same as running the 1/0O stream generated by the workload abstraction.

These assumptions wevalidated on a flexible architecture @asurethe accuracy of
the modelling techniques used.

8.2 Flexible Architecture

The Flask architecture was extended so that recovery management could be configured
with any one of a number of different mechanisios a given application. This
provided a basis on whicklaStA validation experiments could be performed and
provided an opportunity to illustrate the utility of MaStA in a flexible architecture.

106

Flask is anarchitecture thatprovides opportunities to independently configure
concurrency and recovery. This &hieved by separating these components in a
layereddesign in which concurrency mmodelled in terms of the movement adita
between accessets andthe database. Recoverynanagementassumes that
concurrency control is performed at a higher layeFlemsk and is responsible for
providing the access sets using any implementation.

Thetwo newmechanisms developddr Flask in this workare DataSafeand a log-
structured mechanism, either of which can be used afieanative to the after-image
shadow paging mechanism used in the first instantiatidflask. DataSafe is a page-
based logging mechanisthat exhibits considerable differences in behaviour from
those exhibited bythe after-imageshadow paging mechanism, antke shadow
paging is independent of concurrency ensutirag differentmodels of concurrency
may beprovided inFlask. The design ofthe log-structured mechanisdiffers from
the AISP in that writes to the log are performed in a sequential manoppased to
the shadowpaging mechanism whigberforms writes in an ordered fashion to non-
contiguous blocks.

8.3 Validation

The validation strategy employed ihis work was designed twerify that the
assumptions ofMaStA are valid for a number of applications and recovery
mechanisms executing orarious platformconfigurations.The strategy employed
Flask to execute databaseorkloads generated from Napier88sing different
recovery mechanismghus providingthe opportunity to accurately compare the
mechanisms undedenticalworkloads.The costs incurred byhe mechanisms were
measured and traces of the 1/0O operations performed were recorded. These results and
traces were then analysedvalidate theassumptionsThe results of these analyses
suggestedhat theassumptions hold fothe workloads, recovery mechanisms and
platforms employedThe validationanalyses also highlightethe requirement to
distinguish between different patterns I6®, by comparing results obtained from
MaStA configured for real platforms against the model configuiga a uniform 1/O
cost. It was found that in the latter case no accurate distinction coolddsebetween
the recovery mechanisms employed in the validation strategy.

Having validated the assumptions of MaStA and promoted confidbat# produces
sufficiently accuratecost predictionsthe utility of the modelwithin Flask was
illustrated byproof of conceptThe scenario involvedonfiguring Flask’srecovery
manager to provide thieest performancéor two database applicationshe example
discussed how the applications were analysed to characterisevdniioads. MaStA

107

wasthen configured against the platforms employedxiecute the applications and
was used teredict thecosts ofeach mechanisiftom which achoice of mechanism
was made for each application. The accuracy of the choicegre verified by
configuring Flask witheach mechanism availald@d measuring the execution of the
applications on eactonfiguration.The results confirmedhat MaStA issufficiently
accurate taconfigure recovery management goovide optimum performancer a
given application and platform.

An observation that has come from validatthg MaStAmodel is that thg@rocess of
performing experiments oreal systems is botlime and resource consuming. The
straightforward design dhe validation strategy expanded into a test statesisting

of more than 2000 experiments. These experiments required approximately 12 months
to design,program and t@xecute andvere complicated bysources ofinterference

each ofwhich required numerousxperimentdesign iterations to eliminate. Having
performed the experiments an additional thmeenths were required to analyse and
interpreter the results, and to determine how they should be portrayed understandably.
In terms of resources, the validation strategy requiredieingleuser platforms to
execute the experiments and approximadeyB of disk space to holdhe Napier88
system, instantiations of Flask, benchmark databases and queries, and traces.

8.4 Future Work

To reduce complexity in thmmitial design ofMaStA theeffects of concurrency were
omitted. This factor will be included in future developmentsthi@ model sothat
applications exhibiting concurrent behaviour are accommodated. Modifications
required to achievéhis includethe development afiew I/O categories and workload
variables tocalculatecosts such athe overheads of performing transactiaborts.
The cost of recovering a database aftgstemfailure was alsoomitted to reduce
complexity. The cost of providing for recovery during normal processingrendost
of performing recovery after failure may not be easily combined into one wsdtdel
for each applicatiomnd mechanism since thelative importance of thessvo costs
dependdargely on the style of application. Thesestswill therefore becalculated
separately allowing theosts to be analyseaddividually when making a choice of
mechanismfor a particular application.Future investigationshould alsoinclude
incorporating the wide range of object logging schemes useatabhaseystemsnto
MaStA. This may involve the design aimdplementation oSuch schemes in Flask to
allow the validation of MaStA for object based mechanisms.

To showthat the techniques developed MaStA are applicable in commercial
environments futurevork will also investigatehe inclusion oftommercialdatabases

108

in the validation strategy to establigtat the accuracy of the modelnst dependent
on any attributes oNapier88. Thismay involve augmenting operatirgystems or
device drivers to obtain information about tiesources consumed by thesestems.
More challenging still will be thénclusion of architecturethat makeuse of parallel

file systems [TW95] or RAID technology [PGK88] to increase 1/O throughput.

This work has focused on choositige best performing mechanisfor a particular
application and linking the mechanism statically into a flexible architecture. It may also
be possible to usthe model in a more dynamimanner. Forexample it may be
possible toembed the model in a recovery manager to analysevdingoad of the
executing applicationResults fromthe analysismay beusedeither by theuser or
automatically to dynamically select the mechanism pihavidesthe best performance
should the workload of the application change.

The analyticaltechniques developed here are not restrictedotdiguring flexible
recovery. It is conceivable that the techniques may also be used in the configuration of
many other aspects of computer systems where policy decisions must b& hesee.

may include:

» the selection of main memorgnd non-volatile storage garbagellection
techniques based on the application’s store usage;

» configuring operating system page swapping selection algorithms;

* and configuring distributed systems based on models of network message
loads.

8.5 Finale

The work presented in this thesis developedamalytical modefor predicting the
costs of recoverymechanisms and through analysis apdoof of concept
demonstrated that such a technique candeel to successfully configure recovery in
database managemeystems to providéhe best performance. It islear from this
work that no one mechanism can provide the best perfornianat applications but
whethercommercialorganisations adouchflexible approaches in thegystems is
still to beseen. Ifthey do it is hopedhat the techniques developed here iibve
useful in configuring such systems.

109

Glossary

after-image. The after-image of aitem is thevalue of theitem once ithasbeen
updated.

AISP. Acronym for after-image shadow paging.

availability interval. The potential number ofO block transfersthat may be
performed in the mean time between failures.

before-image. The before-image of a datem is thevalue of theitem before it is
updated.

BISP. Acronym for before-image shadow paging.

clustered 1/0. These are localisetcessethat aresynchronous antience cannot
be ordered

DBMS. Acronym for database management system.

disk 1/0. These aresynchronous accesst®t involvemoving the access position
arbitrarily far on the device.

idempotent. The property of restarthat asequence of incompletestarts followed
by a successfutompletionresults inthe same state as if the initiséstart had
succeeded.

LSD. Acronym for log-structured database.

materialised database.The term describethe state of a databasaly, i.e. taking
no account of additional datahich may be recordeduring normalprocessing to
recovery the database to a consistent state.

no-redo. A recovery mechanismdoes notequireredo if all a transaction’s updates
are written to the database before or when the transaction commits.

no-undo. A recovery mechanisndoes notrequire undo if it does not write
uncommitted updates in place in the database.

ordered I/O. These are 1/0 operations performed on sorted non-adjacent locations.
propagation. These ard/O operations required by some mechanisms to transfer

committed data to the database.

110

sequential 1/0. These ard/O operations performed on contiguously increasing
positions.

redo. A mechanism igsedoif it must propagate committed updates from the log to the
materialised database on restart.

transaction rollback. This involves removing from databasell updatesmade by
an aborting transaction.

unclustered 1/0. These arsynchronous accessést involve moving the access
position arbitrarily far within the database.

redo. A mechanism isundo if it must removeuncommitted updatefrom the
materialised database on restart by copying before-images from the log.

111

Appendix A Recovery and Benchmark Configurations
A.1l Recovery Mechanism Configuration

Each recovery mechanisosed inthe validationprocedures is configured with an
8 MB database cache composed of a humbeadieslots. The state information of
each slot is recorded in a cache map composed of two word entries.

Each mechanisnemploys an LRUcache page replacemeatgorithm. This is
implemented by maintaining a flag in the cache rmapeach cachelot indicating
whether theslot hasbeen accessed since theviouspage selection, and a count of

the number of selections the slot has survived witheingaccessed. &Aacheslot’s

count is incremented during page selection if the pagenotbeen accessed since the
previous page selection, otherwise the count is reset to zero. During page selection the
cache slot with the highest count valuel®sen.Cached database pagee indexed

using an external overflow hash table.

In the experiments described in Chapters 6 and 7, AISP and thene&&use of the
entire 500 MB raw partition available @ach platform as databaseDataSafesplits
each partition available inttwo: a 300 MB patrtition for use ashe database and a
200 MB patrtition for use as a safe.

A.2 Benchmark Configurations

The benchmarks described $ection 5.4.2and used inthe validationprocedures
described in Chapter 6 have the following configurations.

001

A 20 MB database containing0000 interconnectedparts is usedalong with the
gueries:

lookup : A set of 1000 randomart identifiers is generated. 10 transactions
are thenexecutedgach ofwhich fetchesthe set ofparts from the
database.

scan : All parts in the database are fetched once in index order.

traverse 10 transactions arexecuted.Each transaction selects a part at

random and recursively traversé® connectegbarts, down to a
depth of 7 (total 03280 partswith possible duplicates). Aull
procedure is called for each part traversed.

112

insert

insertLarge

update :

lookup2 :
scan2 :

traverse?2

OO1b

10 transactions are executé&ch transactioenters 100 new parts
into the database armmbmmits. Eachnew part is connected to 3
other (randomly selected) parts.

. Generates the same workload as ingtept thattO0 transactions

are executed.

500 update transactions aexecuted.Each transactiomeads and
updates 10 parts chosen at random from a contiguous range of 10%
of the parts in the database. The index offifs¢ part ineach range

is chosen at random for each transaction.

Generates the same workloadaskup .
All parts in the database are fetched once in index order.

Generates the same workloadraserse

A 50 MB database containing0000 interconnectedparts isused. Anumber of
alterations are made to tlgpieries of theOO1 benchmark to produce th@O1l1b
benchmark. These are:

lookup :

insert

insertLarge

update :

lookup2 :

The number of random part identifiers generated is increased to
10000.

The number of parts entered into the databaseabi transaction is
increased to 500.

: The number of parts entered into the databaseabi transaction is

increased to 500.

The number ofparts read and updated ®ach transaction is
increased to 40.

The number of random part identifiers generated is increased to
10000.

113

OO7

The small 20 MB OO7 database with the following configuration is used:

Parameter Value Parameter Value
numAtomicPerComp 50 [numAssPerAss 3
numConnPerAtomic 3 numAssLevels 7
documentSize (bytes) 2000 numCompPerAss 3
manualSize (bytes) 100K | numModules 1
numCompPerModule 500

The queries employed are:

T1: Theassembly hierarchy isaversed, visitinghe unshared composite parts of
eachbase assembly visited. Asch composite part igisited, a depth-first
traversal is carried out on its subgraph of atomic parts.

T6: Traversall'l is repeated, visiting only the root part of each composite part.

Q2 Arange of build dates which contaittse last 1% of the datdsund in the
database’s atomic parts is chosen and these parts are retrieved.

Q8 All pairs of documents aratomic parts wherethe document identifier in the
atomic part matches the identifier of the document are found.

S2: The 5 most recentlycreated compositparts are removed in theientirety,
including document objects and atomic part subgraphs.

MOB

A 75 MB database containing 18000 large parts (4096 bytes each) is used.

scan :

readTrans

randomAcc :

updateTrans

All objects in the database are read once in index order.

1000 read-only transactioreze executed.Each transactiomeads

10 objects chosen at random from a contiguous range of
1800 objects (10% of the database). Tidex of thefirst object in
each range is chosen at random for each transaction.

18000 objects chosen at random are accessed.

: 1000 updatdransactions arexecuted.Each transactiomeads and

updates 10 objects chosesing the selection algorithnused in
readTrans and commits.

114

RWtirans :

randRWtrans

scan?2 :
readTrans2

randomAcc?2 :

1000 updatetransactions areexecuted.Each transactionreads
10 objects, chosen usingthe selection algorithmused in
readTrans , updates the last object accessed and commits.

: 1000 updatetransactions areexecuted.Each transactionreads

10 objectschosen at random frorine database, updatdke last
object accessed and commits.

Generates the same workloadsaan .
Generates the same workloadesdTrans

Generates the same workloada@asdomAcc .

115

Appendix B

The average cost of the 1/0 access pattegguentialordered clustered unclustered
anddisk) used inMaStA are calibrated bgxecuting syntheti¢’O traces of read and
write operations on raw disk partitionghe traces are recordedingthe MaStA 1/0
trace format (Section 5.4.4). The localities of the 1/0 operations recordiee iraces

Calibrating MaStA I/O Patterns

are controlled to simulate the various access I/O patterns:

Each I/O trace is executed 5 times osirgle-user system and timingse obtained
using the operating systentshecommands. There was less < 2&#iation between
the 5 runs of any synthetic I/O trace.

The averagd/O access patterns are givenTiable 4.6 asatios of sequentialreads.
The absolute values measured are given here as numbers of millisecoddsbyee
block for use in Chapters 6 and 7.

Sequentiall/O operations are simulated by performitl@ operations on
contiguous blocks on the raw partition.

Clusteredl/O operations are simulated lejpoosing at random 10% (1920) of
the blocks on a 15 MB partition and accessing the blocks in the random order.

Unclusteredanddisk /O operations are simulated by choosing at random 1920
blocks on al50 MB partition and a500 MB partition respectively and
accessing the blocks in the random orders.

Orderedl/O operations are simulated bgrtingthe blocks used inunclustered
I/O traces and accessing the sorted blocks in order.

I/O Access Pattern Alpha SPARCStation
Sequentiateads (feq 2.47 3.34
Sequentialvrites (Wseq 3.97 3.34
Orderedreads (3sq 9.41 9.10
Orderedwrites (Wasg 5.86 8.56
Clusteredreads (#|u) 9.43 13.50
Clusteredwrites (Wejy) 7.70 12.56
Unclusteredreads (finc) 10.53 15.47
Unclusteredwrites (Wnc) 9.21 16.41
Disk reads (gisk) 12.21 15.38
Disk writes (Wisk) 10.73 17.49

116

Appendix C Validation Results
C.1 Results of Validating I/O Assumption

In Section 6.3the workloads of OO1, OO1WYIOB and OO7 are executed on the
AISP databasehe LSD and DataSafe, on ti$ain and theAlpha. The average /O
costs and total costs (seconds) measured on the Sun are:

Sun

AISP DataSafe LSD
Workload Total I/0 Total I/0 Total 1/0
lookup (0O01) 112.32 101.21 113.73 101.79 112.95 101.64
scan (O01) 18.37 12.64 18.68 12.74 18.25 1251
traverse (OO1) 2755 2321 27.86 23.29 27.36 23.02
insert (O01) 24.84 21.74 23.92 20.13 20.90 17.76
insertLarge (O01) 16599 | 15273 |160.09 13931 1P466 111.16
update (OO1) 170.85 160.15 148.12 131.74 119.74 108.61
lookup2 (O01) 20583 | 188.34 192.53 173.65 230.32 212.46
scan2 (0O01) 30.73 237 23.52 16.23 3340 26.38
traverse2 (OO1) 28.24 24.01 26.73 2227 31.27 27.04
lookup (OO1b) 1309.86 |1206.17 1323.71 121071 1316.94 1207.44
scan (001b) 2514 | 1702 2493 16,50 2508 16.97
traverse (OO1b) 80.20 7178 80.93 71.87 80.30 7158
insert (OOL1b) 85.89 77.67 95.07 84.93 76.63 68.20
insertLarge (OO1b) 78419 | 72185 | 87097 79090 69833 63B3.61
update (OO1b) 688.81 | 64891 717.13 661.97 590.35 548.34
lookup2 (O01b) 315959 | 293480 289352 264921 369646 3458.29
scan2 (OO1b) 73.64 59.48 52.45 37.66 81.64 67.33
traverse2 (OOL1lb) 89.81 81.49 79.70 7074 104.66 96.02
scan (MOB) 66.66 4191 67.32 41.63 66.43 41.56
readTrans (MOB) 193.52 170.77 194.48 170.41 193.68 170.54
randomAcc (MOB) 368.70 | 328.91 370.23 828.00 368.78 328.16
updateTrans (MOB) 52717 | 490.63 |570.66 52409 37271 335.00
RWtrans (MOB) 37133 | 34299 324.73 290.91 317.75 288.25
randRWtrans (MOB) 372.79 344.25 335.22 801.15 323.90 294.16
scan2 (MOB) 160.53 | 135.80 67.37 41.65 166.12 141.12
readTrans2 (MOB) 218.84 196.09 194.75 170.68 286.84 213.67
randomAcc2 (MOB) 394.28 | 35444 370.05 827.83 427.07 386.39
T1 (0O0O7) 61.95 50.89 62.85 51.34 62.12 50.86
T6 (0O07) 28.82 25.35 2981 26.11 28.89 2534
Q2 (007) 6.30 3.99 6.36 3.94 6.37 405
Q8 (007) 34.14 24.01 38.29 27.84 33.99 23.80
S2 (007) 1141 8.27 10.26 6.99 11.34 8.19

117

The average 1/O costs and total costs (seconds) measured on the Alpha are:

Alpha

AISP DataSafe LSD
Workloads Total e Total /0 Total I/0
lookup (001) 70.63 68.59 70.90 68.67 70.20 70.20
scan (O01) 9.74 8.85 9.62 8.80 9.81 9.81
traverse (OO1) 17.05 16.39 17.08 16.41 16.65 16.65
insert (O01) 15.27 14.86 1521 14.72 13.87 13.87
insertLarge (O01) 103.87 | 10144 105.18 101.88 87.96 87.96
update (OO1) 10308 | 101.27 94.11 91.69 81.50 81.50
lookup2 (001) 12898 | 12565 |12884 12540 14880 14880
scan2 (0O01) 16.77 1561 13.89 12.80 18.79 18.79
traverse2 (OO1) 16.86 16.18 16.24 1557 19.19 19.19
lookup (OO1b 843.05 | 820.60 840.70 817.98 838.20 838.20
scan (OO1b) 13.08 1175 12.94 11.69 13.08 1471
traverse (OO1b) 5191 50.40 51.66 50.04 5133 51.33
insert (OO1b) 55.58 54.07 61.94 60.20 51.74 51.74
insertLarge (OO1b) 504.78 | 49143 |570.07 B55.16 48708 48/.08
update (OO1b) 439.72 | 431.64 480.86 A70.66 416.02 416.02
lookup2 (OO01b) 2036.25 |1989.46 193364 188262 2513.02 2513.02
scan2 (OO1b) 4122 38.70 3451 32.04 5314 5314
traverse2 (OO1lb) 56.87 55.31 51.20 49.65 70.15 70.15
scan (MOB) 26.81 20.38 26.25 19.65 26.83 26.83
readTrans (MOB) 11916 | 11135 |11900 {1131 11925 11925
randomAcc (MOB) 21756 | 20375 |21676 20289 21742 21742
updateTrans (MOB) 312.05 | 294.58 352.89 831.49 261.80 261.80
RWtrans (MOB) 21495 | 20231 | 18412 17123 209.78 209.78
randRWtrans (MOB) 21711 | 20444 | 18513 (17232 21455 21455
scan2 (MOB) 95.19 88.65 2643 19.94 105.49 105.49
readTrans2 (MOB) 13514 | 12746 | 11865 (11097 15445 15445
randomAcc2 (MOB) 24422 | 23060 |21674 20308 27734 277.34
T1 (0O0O7) 37.99 34.95 38.99 35.63 38.00 34.73
T6 (OO7) 18.37 17.27 19.25 18.04 18.33 17.24
Q2 (007) 355 3.19 3.37 301 344 3.09
Q8 (007) 21.97 19.49 26.14 23.13 22.29 1953
S2 (007) 6.48 5.87 6.41 573 6.48 5.82

118

C.2 Results of Validating Cost Category Interaction

Assumption

In Section6.4 the workloads of benchmarks OO1, OO1KIOB and OO7 are
executed on thAISP databaseDataSafeand theLSD, recording traces of the 1/O
operations performedzach I/O trace ishen ordered byMaStA 1/O cost category
(database reads, log writes, etc.) to produce a second set of Titaeasiginal traces
and the ordered traces are run on the raw disk partitions to measuf@ tosts. The
average costs (seconds) of runnihg original and the orderdtD traces on the Sun

are:
Sun

AISP DataSafe LSD
Workloads Original | Ordered | Original |Ordered |Onginal |Ordered
lookup (0OO1) 99.65 98.51 99.42 98.49 99.07 98.49
scan (0O01) 13.14 13.05 13.17 13.14 13.20 13.12
traverse (OO1) 22.65 2252 2249 2244 2252 22.39
insert (O01) 20.72 20.35 19.67 19.09 17.05 17.10
insertLarge (OO1) 144.88 142.62 135.26 130.91 106.87 1p8.80
update (O01) 164.81 159.61 13347 116.92 108.73 111.23
lookup2 (OO01) 19321 | 19297 | 17272 173.09 21712 21816
scan2 (001) 24,61 24.40 16.83 16.68 26.50 26.29
traverse2 (OO1) 24.02 23.74 21.40 21.29 26.93 26.67
lookup (OO1b) 121392 | 121912 121296 122032 121007 121671
scan (OO1b) 19.49 19.52 19.50 19.46 19.22 19.24
traverse (OO1b) 7121 70.64 70.81 70.64 70.71 70.20
insert (OO1b) 76.97 76.85 85.76 83.39 69.00 69.02
insertLarge (OO1b) 721.05 72243 81254 788.09 534.08 632.41
update (OO1b) 686.53 683.50 698.82 618.58 558.27 554.80
lookup2 (OO1b) 320044 | 320321 |2736.09 271380 349394 3477.44
scan2 (OO1b) 66.08 65.49 4158 4151 68.98 68.54
traverse2 (OO1b) 86.77 86.18 69.22 68.77 95.43 95.01
scan (MOB) 38.89 39.01 38.66 3891 38.89 38.99
readTrans (MOB) 180.09 180.23 178.10 17854 176.23 1776.79
randomAcc (MOB) 354.26 35354 354.33 356.15 347.21 349.65
updateTrans (MOB) 517.11 507.44 570.55 483.22 342.10 38855
RWitrans (MOB) 365.95 360.83 302.06 270.15 300.23 205.76
randRWtrans (MOB) 366.97 359.06 316.50 287.64 302.57 207.63
scan2 (MOB) 142.87 142.54 38.64 38.93 147.37 147.63
readTrans2 (MOB) 210.48 21057 178.60 178.78 219.57 219.08
randomAcc2 (MOB) 374.36 374.84 355.25 355.27 397.28 308.32
T1 (0O07) 51.59 50.75 51.46 50.87 51.63 50.68
T6 (007) 26.08 25.81 26.24 25.96 26.17 25.84
Q2 (007) 3.90 3.88 3.86 3.87 3.92 394
Q8 (007) 23.82 23.92 27.77 27.76 23.77 23.75
S2 (007) 8.32 8.24 6.95 6.89 8.42 8.42

119

The average costs (seconds) of runritrg original and the orderefD traces on the
Alpha are.

Alpha
AISP DataSafe LSD

Workloads Orginal | Ordered | Original | Ordered |Original |Ordered
lookup (001) 68.97 68.76 67.33 67.59 67.58 67.60
scan (OO1) 8.62 8.69 8.54 857 8.64 8.70
traverse (OO1) 16.01 16.07 15.08 15.06 15.07 15.09
insert (O0O1) 13.42 1371 2232 23.77 12.34 12.62
insertLarge (OO1) 93.78 91.05 189.47 188.61 80.46 80.50
update (OO1) 99.40 92.88 185.29 18191 79.73 75.03
lookup2 (001) 12620 | 12668 | 12590 126.76 146.75 146.49
scan2 (OO01) 15.86 15.88 12.30 12.26 17.83 17.80
traverse2 (OO1) 16.01 16.04 1453 14.50 17.46 17.68
lookup (OO1b) 836.25 836.52 836.17 837.06 836.35 886.75
scan (OO1b) 12.22 12.25 12.08 12.03 12.26 12.32
traverse (OO1b) 50.84 50.86 50.91 50.83 5154 50.80
insert (OO1b) 50.46 50.04 85.15 84.92 48.38 48.29
insertLarge (OO1b) 472.65 461.93 840.75 813.81 156.39 455.94
update (OO1b) 434.86 423.93 757.20 714.27 113.38 407.03
lookup2 (OO1b) 203061 | 202948 |1949.89 194978 251316 2513.07
scan2 (OO1b) 41.00 40.99 33.10 33.13 48.84 48.89
traverse2 (OO1b) 55.39 55.18 50.33 49.80 69.59 69.52
scan (MOB) 26.08 26.33 25.88 2593 25.89 25.93
readTrans (MOB) 126.81 127.02 126.39 126.57 126.42 196.08
randomAcc (MOB) 230.74 230.94 230.26 230.50 230.47 230.64
updateTrans (MOB) 313.10 300.64 639.60 576.52 062.36 262.45
RWtrans (MOB) 211.49 204.90 278.82 264.64 216.56 196.44
randRWtrans (MOB) 21315 206.53 28153 265.63 22239 200.70
scan2 (MOB) 94.73 95.04 25.88 2594 106.13 105.85
readTrans2 (MOB) 135.01 134.72 126.78 126.38 155.88 155.71
randomAcc2 (MOB) 243.39 24350 23041 230.66 279.87 279.67
T1 (0O07) 34.84 35.93 39.60 41.40 3543 36.12
T6 (007) 16.98 18.07 20.82 20.83 17.05 18.31
Q2 (007) 3.02 3.07 2.96 2.96 311 315
Q8 (007) 1859 20.49 35.11 35.35 1858 20.48
S2 (007) 5.90 6.18 5.79 5.79 571 6.23

120

C.3 Results of Validating Access Pattern Cost Assumption

In Section 6.5 each operation recorded in the I/O traces in Section 6.4 is assigned the
appropriate predicted 1/0O cost according to the predid@adccess patterperformed.

For example, in DataSafe, log writes are predicted to be performed sequentially and so
in this procedurecachlog write recorded in drace generatedrom DataSafe is
assigned the predicted cost (fejuentialvrite. The predicte@dosts ofthe I/O access
patterns are taken from Appendix B. Assigningredictedl/O cost toeach operation
recorded in the traces results in a predicted 1/O cost for each workload runmiachon
recovery mechanism. The predicted I/O costs andbtiaérealcosts ofthe workloads

on the Sun are:

Sun
AISP DataSafe LSD
Total | Pred. | Total | Pred. | Total | Pred.

Workloads Real 1/O Real /0 Real I/0
lookup (O01) 112.32 113.24 113.73 98.87 112.95 120.13
scan (O01) 18.37 17.19 18.68 15.04 18.25 18.22
traverse (001) 2755 26.80 27.86 2343 27.36 28.42
insert (O0O1) 24.84 2302 23.92 20.13 20.90 19.94
insertLarge (OO1) 165.99 151.42 160.09 136.80 124.66 115.22
update (O01) 170.85 154.90 148.12 142.93 119.74 11344
lookup2 (O01) 205.83 201.08 192.53 17553 230.32 213.35
scan2 (001) 30.73 25.68 2352 22.45 33.40 27.23
traverse2 (OO1) 28.24 25.45 26.73 22.26 31.27 26.99
lookup (OO1b) 1309.86 | 136505 |1323.71 1191.78 1316.94 144849
scan (OO1b) 2514 25.68 24.93 22.45 25.08 27.23
traverse (OO1b) 80.20 84.33 80.93 73.64 80.30 89.46
insert (OO1b) 85.89 82.04 95.07 81.87 76.63 7413
insertLarge (OO1b) 784.19 734.25 870.97 764.76 698.33 644.45
update (OO1b) 688.81 646.44 717.13 698.26 590.35 556.92
lookup2 (OO1b) 315959 | 3089.97 |289352 269757 369646 3278.86
scan2 (OOL1b) 73.64 63.33 52.45 55.29 81.64 67.19
traverse2 (OOL1b) 89.81 83.02 79.70 7250 104.66 88.07
scan (MOB) 66.66 143.55 67.32 12521 66.43 152.30
readTrans (MOB) 193.52 203.14 194.48 177.30 193.68 215.53
randomAcc (MOB) 368.70 367.24 370.23 320.52 368.78 389.67
updateTrans (MOB) 527.17 468.94 570.66 549.89 372.71 357.96
RWitrans (MOB) 371.33 33741 324.73 303.59 817.75 298.56
randRWtrans (MOB) 372.79 339.59 335.22 304.17 823.90 300.89
scan2 (MOB) 160.53 143.60 67.37 125.28 166.12 152.36
readTrans2 (MOB) 218.84 203.23 194.75 177.38 236.84 21563
randomAcc2 (MOB) 394.28 367.19 370.05 320.52 127.07 389.62
T1 (0O07) 61.95 59.58 62.85 52.56 62.12 61.40
T6 (0O07) 28.82 29.62 29.81 27.18 28.89 29.74
Q2 (007) 6.30 513 6.36 453 6.37 541
Q8 (007) 34.14 40.05 38.29 39.15 33.99 37.08
S2 (007) 1141 1058 10.26 9.85 11.34 10.46

121

The predicted 1/O costs and the total real costs of the workloads on the Alpha are:

Alpha
AISP DataSafe LSD
Total | Pred. [Total | Pred. | Total | Pred.

Workloads Real /O Real /O Real /O
lookup (001) 70.63 77.12 70.90 69.00 70.20 81.72
scan (0O01) 9.74 11.70 9.62 10.46 9.81 12.39
traverse (001) 17.05 18.25 17.08 16.32 16.65 1933
insert (001) 15.27 15.25 15.21 14.45 13.87 14.40
insertLarge (0O01) 103.87 98.96 105.18 97.75 87.96 87.12
update (OO1) 103.08 94.80 94.11 91.08 81.50 80.49
lookup2 (001) 12898 | 13694 | 12884 [12254 14880 145.14
scan2 (001) 16.77 17.49 13.89 15.63 18.79 1852
traverse2 (OO1) 16.86 17.34 16.24 15.50 19.19 18.36
lookup (OO1b) 84305 | 92958 | 84070 |832.19 83820 985.32
scan (OO1b) 13.08 17.49 12.94 15.63 13.08 1852
traverse (OO1b) 51.91 57.43 51.66 51.39 51.33 60.85
insert (OO1b) 55.58 55.48 61.94 58.72 51.74 53.76
insertLarge (OO1b) 50478 | 49629 | 57007 |545.06 487.08 47353
update (OO1b) 43972 | 42992 | 48086 48363 416.02 405.28
lookup2 (OO1b) 203625 | 210426 |193364 188372 251302 223048
scan2 (OO01b) 4122 4312 3451 3857 53.14 45.69
traverse2 (OO1b) 56.87 56.54 51.20 50.58 70.15 59.91
scan (MOB) 26.81 97.75 26.25 87.39 2683 10359
readTrans (MOB) 11916 | 13833 | 11900 |12377 11925 146.61
randomAcc (MOB) 21756 | 25008 | 21676 |223.78 21742 26506
updateTrans (MOB) 31205 | 29817 | 35289 |356.42 261.80 261.35
RWtrans (MOB) 21495 | 20821 | 18412 |18301 209.78 197.24
randRWtrans (MOB)| 21711 | 20970 | 18513 |183.45 21455 19881
scan2 (MOB) 95.19 97.78 26.43 8744 [10549 10363
readTrans2 (MOB) 13514 | 13839 | 11865 |123.83 15445 146.67
randomAcc2 (MOB) 24422 | 25005 | 21674 |223.78 07734 26504
T1 (007) 37.99 40.50 38.99 37.13 38.00 4215
T6 (007) 18.37 20.18 19.25 19.38 18.33 20.72
Q2 (007) 355 350 337 312 344 368
Q8 (007) 21.97 27.30 26.14 28.72 22.29 26.82
S2 (007) 6.48 721 6.41 7.03 6.48 7.34

122

C.4 Results of Validating Workload Assumption

The workloads generated by OO1, OO1l)O7 and MOB are characterised in
Section 6.6 by aumber of workload variables. These variables drivey@thetic

workload generatathat produces workloads witkimilar numbers ofdatareads and
writes, and similarlocality properties to the originapplications.The 1/O costs of

executing the synthetiworkloads oneach recovery mechanism areeasured. The
averagd/O costs ofthe synthetic databaseorkloads andhe total realcosts of the

original workloads on the Sun are:

Sun
AISP DataSafe LSD
Total | Synth.| Total | Synth.| Total | Synth.

Workloads Real)I//O Real)I//O Real)I//O
lookup (OO1) 112.32 680 | 11373 6.80 112.95 6.76
scan (OO1) 18.37 327 18.68 331 18.25 327
traverse (OO1) 27.55 527 27.86 5.05 27.36 5.24
insert (O0O1) 24.84 19.38 23.92 17.97 20.90 14.90
insertLarge (OO1) 165.99 161.17 160.09 135.59 124.66 114.00
update (O01) 170.85 172.48 148.12 139.91 119.74 127.38
lookup2 (O01) 205.83 32.40 192,53 2521 230.32 86.07
scan2 (O01) 30.73 13.96 2352 4.86 33.40 15.48
traverse2 (OO1) 2824 1461 26.73 5.59 3127 16.47
lookup (OO1b) 1309.86 3473 | 132371 36.08 1316.94 34.65
scan (OO1b) 25.14 417 24.93 412 25.08 412
traverse (OO1b) 80.20 531 80.93 5.22 80.30 527
insert (OO1b) 85.89 91.04 95.07 104.02 76.63 79.80
insertLarge (OO1b) 784.19 711.28 870.97 818.63 698.33 634.58
update (OO1b) 688.81 44941 717.13 379.50 590.35 313.85
lookup2 (OO01b) 3159.59 882.90 |2893.52 96854 369646 1012.04
scan2 (OO1b) 7364 17.81 5245 7.46 81.64 1959
traverse2 (OO1b) 89.81 17.11 79.70 6.60 104.66 19.14
scan (MOB) 66.66 8.27 67.32 8.15 66.43 8.14
readTrans (MOB) 19352 91.24 194.48 91.22 193.68 90.80
randomAcc (MOB) 368.70 238.16 370.23 236.62 368.78 237.25
updateTrans (MOB) 527.17 714.68 570.66 787.22 372.71 560.50
RWitrans (MOB) 37133 33110 324.73 293.57 817.75 267.38
randRWtrans (MOB) 372.79 369.47 335.22 333.03 823.90 310.89
scan2 (MOB) 160.53 2147 67.37 10.14 166.12 22.87
readTrans2 (MOB) 218.84 105.17 194.75 95.79 236.84 114.90
randomAcc2 (MOB) 394.28 24247 370.05 234.30 427.07 266.09
T1 (OQ7) 61.95 12.10 62.85 15.06 62.12 12.16
T6 (0O07) 28.82 14.19 2981 13.20 28.89 12.96
Q2 (007) 6.30 3.04 6.36 219 6.37 3.03
Q8 (007) 34.14 24.30 38.29 25.16 33.99 22.63
S2 (007) 1141 7.96 10.26 554 11.34 751

123

The averagd/O costs ofthe synthetic databaseorkloads andhe total realcosts of
the original workloads on the Alpha are:

Alpha
AISP DataSafe LSD
Total | Synth.| Total | Synth.| Total | Synth.
Workloads Real }I//O Real 3I//O Real 3I//O
lookup (001) 70.63 458 70.90 459 70.20 453
scan (OO1) 9.74 1.90 9.62 183 9.81 181
traverse (OO1) 17.05 3.54 17.08 3.36 16.65 350
insert (O0O1) 15.27 1391 1521 13.76 13.87 11.87
insertLarge (0O01) 103.87 109.00 105.18 99.28 87.96 88.07
update (O01) 103.08 110.39 94.11 95.44 81.50 93.15
lookup2 (O01) 128.98 2201 | 12884 16.48 148.80 P4.63
scan2 (0O01) 16.77 9.84 13.89 2.79 18.79 10.81
traverse2 (OO1) 16.86 10.62 16.24 3.62 19.19 11.67
lookup (OO1b) 843.05 22.24 840.70 21.10 838.20 P1.75
scan (0OO1b) 13.08 250 12.94 240 13.08 245
traverse (OO1b) 51.91 374 51.66 359 51.33 397
insert (OO1b) 55.58 63.23 61.94 7152 51.74 58.03
insertLarge (OO1b) 504.78 478.23 570.07 558.64 187.08 456.29
update (OOL1b) 439.72 292.14 480.86 269.26 416.02 243.77
lookup2 (OO1b) 2036.25 589.44 |1933.64 55144 2%13.02 716.64
scan2 (OOL1b) 4122 11.88 3451 437 53.14 13.85
traverse2 (OO1b) 56.87 11.85 51.20 4.32 70.15 13.95
scan (MOB) 26.81 5.16 26.25 5.13 26.83 521
readTrans (MOB) 119.16 61.34 119.00 61.57 119.25 61.56
randomAcc (MOB) 217.56 160.14 216.76 159.41 217.42 159.69
updateTrans (MOB) 312.05 453.25 352.89 516.44 061.80 407.81
RWitrans (MOB) 214.95 198.33 184.12 187.01 209.78 188.60
randRWtrans (MOB)| 217.11 22261 185.13 213.03 D14.55 22215
scan2 (MOB) 95.19 14.27 26.43 6.58 105.49 16.40
readTrans2 (MOB) 135.14 70.04 118.65 64.11 154.45 80.65
randomAcc2 (MOB) 244.22 161.02 216.74 158.38 P77.34 186.73
T1 (0Q7) 37.99 7.86 38.99 9.33 38.00 7.72
T6 (007) 18.37 10.05 19.25 9.68 18.33 9.59
Q2 (007) 355 247 337 145 344 247
Q8 (007) 21.97 18.92 26.14 19.24 22.29 18.11
S2 (007) 6.48 574 6.41 337 6.48 551

124

C.5 Results of lllustrating the Accuracy of MaStA

The workload variable values measured $ection 6.6and thel/O pattern costs
recorded in Appendix B are used to drihe MaStAcost models oAISP, DataSafe
and the LSD developed @hapter 4.The predicted/O costs andhe total reatosts

of the workloads on the Sun are:

Sun
AISP DataSafe LSD
Total Pred. | Total | Pred. | Total | Pred.

Workloads Real | /O | Real | 1/0 | Real 1O
lookup (OO1) 112.32 9252 113.73 92,51 112.95 02.46
scan (O01) 18.37 8.34 18.68 8.32 18.25 829
traverse (O0O1) 27.55 2293 27.86 2292 27.36 22.88
insert (O01) 24.84 2101 23.92 19.73 20.90 16.91
insertLarge (OO1) 165.99 144.35 160.09 124.64 124.66 106.86
update (O0O1) 170.85 143.80 148.12 126.92 119.74 107.92
lookup2 (O01) 205.83 187.31 192,53 165.92 230.32 199.47
scan2 (001) 30.73 17.59 2352 15.33 3340 18.68
traverse2 (OO1) 28.24 2551 26.73 2223 31.27 27.11
lookup (OO1b) 1309.86 73379 132371 733.79 1316.94 733.71
scan (OO1b) 25.14 9.70 24.93 9.67 25.08 9.65
traverse (OO1b) 80.20 7150 80.93 7147 80.30 71.45
insert (OO1b) 85.89 73.55 95.07 79.88 76.63 61.36
insertLarge (OO1b) 784.19 670.48 870.97 705.75 £98.33 575.01
update (OO1b) 688.81 580.53 717.13 614.29 590.35 492.37
lookup2 (O0O1b) 3159.59 227119 |289352 2051.65 3696.46 2419.21
scan2 (OO1b) 73.64 42.90 52.45 37.37 81.64 45.63
traverse2 (OOL1b) 89.81 8117 79.70 70.62 104.66 86.40
scan (MOB) 66.66 60.85 67.32 60.78 66.43 60.81
readTrans (MOB) 193.52 96.41 194.48 96.34 193.68 96.36
randomAcc (MOB) 368.70 151.96 370.23 151.89 368.78 151.90
updateTrans (MOB) 527.17 294.97 570.66 304.45 372.71 220.81
RWtrans (MOB) 37133 214.89 324.73 183.42 317.75 188.34
randRWtrans (MOB) 372.79 216.84 335.22 191.40 323.90 190.43
scan2 (MOB) 160.53 69.95 67.37 60.85 166.12 74.45
readTrans2 (MOB) 218.84 107.93 194.75 96.43 036.84 114.91
randomAcc2 (MOB) 394.28 159.94 370.05 151.88 127.07 170.31
T1 (007) 61.95 37.77 62.85 38.86 62.12 35.93
T6 (007) 28.82 27.93 29.81 25.74 28.89 27.99
Q2 (007) 6.30 493 6.36 433 6.37 5.18
Q8 (007) 34.14 26.25 38.29 26.98 33.99 22.36
S2 (007) 1141 8.24 10.26 7.66 11.34 812

125

The predicted 1/O costs and the total real costs of the workloads on the Alpha are:

Alpha
AISP DataSafe LSD
Total | Pred. [Total | Pred. | Total | Pred.

Workloads Real 1/0 Real 110 Real I/O0
lookup (001) 70.63 64.97 70.90 64.97 70.20 64.95
scan (OO1) 9.74 5.86 9.62 5.85 9.81 5.84
traverse (OO1) 17.05 16.11 17.08 16.11 16.65 16.09
insert (OO1) 15.27 1458 1521 14.98 13.87 13.14
insertLarge (0O01) 103.87 98.89 105.18 96.68 87.96 90.44
update (O01) 103.08 98.08 94.11 97.05 81.50 90.29
lookup2 (O01) 128.98 129.48 128.84 116.30 148.80 147.51
scan2 (O01) 16.77 12.16 13.89 10.78 18.79 13.83
traverse2 (OO1) 16.86 1764 16.24 15.63 19.19 20.07
lookup (OO1b) 843.05 515.09 840.70 515.10 838.20 515.06
scan (OO1b) 13.08 6.81 12.94 6.80 13.08 6.80
traverse (OO1b) 5191 50.22 51.66 50.21 51.33 50.21
insert (OO1b) 55.58 51.07 61.94 57.89 51.74 46.63
insertLarge (OO1b) 504.78 461.39 570.07 510.08 187.08 459.75
update (OO1b) 439.72 398.94 480.86 443.69 416.02 394.83
lookup2 (OO1b) 2036.25 | 1569.89 |1933.64 143462 251302 1788.90
scan2 (OO1b) 4122 29.67 3451 26.25 5314 33.77
traverse2 (OO1b) 56.87 56.12 51.20 49.62 70.15 63.92
scan (MOB) 26.81 4276 26.25 4270 26.83 42.75
readTrans (MOB) 119.16 67.52 119.00 67.47 119.25 67.51
randomAcc (MOB) 217.56 105.66 216.76 105.60 217.42 105.64
updateTrans (MOB) 312.05 201.23 352.89 227.01 061.80 184.99
RWtrans (MOB) 214.95 146.55 184.12 135.16 209.78 147.73
randRWtrans (MOB)| 217.11 147.90 185.13 140.21 D14.55 149.27
scan2 (MOB) 95.19 48.38 26.43 42.75 105.49 55.09
readTrans2 (MOB) 135.14 74.63 118.65 67.52 154.45 85.00
randomAcc2 (MOB) 244.22 110.58 216.74 105.59 D77.34 125,97
T1 (0O07) 37.99 26.46 38.99 27.77 38.00 25.78
T6 (0O07) 18.37 19.29 19.25 18.49 18.33 21.14
Q2 (007) 355 341 337 3.05 344 3.85
Q8 (007) 21.97 18.08 26.14 20.29 22.29 17.94
S2 (007) 6.48 5.69 6.41 553 6.48 6.17

126

The predicted I/O costs obtained from MaStA configured with a uniform 1/O cost are:

Uniform

AISP DataSafe LSD
Workloads Pred. I/O | Pred. I/O | Pred. I/O
lookup (001) 11.53 11.54 1153
scan (O01) 1.04 1.05 1.04
traverse (OO1) 2.87 2.88 2.87
insert (OO1) 3.06 3.60 3.06
insertLarge (0O01) 21.48 25.08 21.48
update (OO1) 21.25 24.77 21.25
lookup2 (O01) 20.37 20.38 20.37
scan2 (OO01) 192 192 192
traverse2 (OO1) 2.78 279 2.78
lookup (OO1b) 91.18 91.19 91.18
scan (OO1b) 121 121 121
traverse (OO1b) 8.94 8.94 8.94
insert (OO1b) 10.28 12.60 10.28
insertLarge (OO1b) 90.01 112.15 90.01
update (OO1b) 78.65 99.91 78.65
lookup2 (OO1b) 246.88 246.89 246.88
scan2 (OO1b) 467 467 467
traverse2 (OO1b) 8.83 8.83 8.83
scan (MOB) 7.61 7.60 7.61
readTrans (MOB) 11.73 11.73 11.73
randomAcc (MOB) 17.40 17.40 17.40
updateTrans (MOB) 43.66 56.97 43.66
RWtrans (MOB) 28.47 3013 28.47
randRWtrans (MOB) 28.68 3034 28.68
scan2 (MOB) 7.62 761 7.62
readTrans2 (MOB) 11.74 11.74 11.74
randomAcc2 (MOB) 17.40 17.39 17.40
T1 (OO7) 4.90 5.46 4.90
T6 (O07) 325 374 325
Q2 (007) 055 056 055
Q8 (007) 354 5.09 354
S2 (007) 0.98 115 0.98

127

Appendix D Scenario Code

D.1 Database Generator

The following code generates the database described in Chapter 7.

llink to standard library Napier88 functions
project PS() as Root onto
env:
begin
use Root with User, Library : env in
use Library with String, System, Format : env in
use String with length : proc(string -> int) in
use Format with iformat : proc(int -> string) in
use System with stabilise : proc() in
use User with bPlusTree, databaseEnv : env in
use bPlusTree with btreePackGen : proc[t, r](intt,r,
proc(t, t->bool) -> singBtreePack(t,r]) in
begin
I procedure which generates a database containing N customers
let makeDB = proc(N : int)
begin
Icreate a dummy customer to populate the index
let failVValue = Customer(™,0,",image 1 by 1 of off,0)
Icreate a new B+tree index
let database = btreePackGen([int, Customer](4,
-99 failValue, proc(pl, p2 : int->bool) ; p1 >p2)

fori=1toNdo
begin

database(insert)(i, failValue)
end

lwrite the index to the database
stabilise()

linsert N dummy customers with index values 1 to N
fori=1to Ndo
begin
let customerimage = image 64 by 64 of on ++ on ++ on ++
on ++ 0N ++ on ++on ++ on
let customerName :="C" ++ iformat(i)

ffill the name to be 24 characters in length
let temp := length(customerName)
fori=1to024-temp do

customerName := customerName ++ "."

let customerAddress = "This is the address for "
++ "customer " ++ customerName

fill the address to be 52 characters in length
temp := length(customerAddress)
fori=1to52 - temp do
customerAddress := customerAddress ++"."

Icreate the customer structure instance
let customer = Customer(customerName, i,
customerAddress, customerimage, i)

database(insert)(i, customer)
end

lwrite out the database and the database’s size
in databaseEnv let database := database

in databaseEnv let DBsize .= N

in databaseEnv let failValue = failValue

128

stabilise()

end

makeDB(65000)
end
end
default : {}

D.2Bank Application

The following code generates the bank’s database workload described in Chapter 7.

let NUMTRANS = 20000 Inumber of transaction

let UPDATE_FREQ =95 Ipercentage update transactions
llink to standard library Napier88 functions and the database

project PS() as Root onto

env:

begin

use Root with Library, User : env in
use Library with Arithmetical, System : env in
use Arithmetical with random : proc(int->int) in
use System with stabilise : proc() in
use User with databaseEnv : env in
use databaseEnv with database : singBtreePack] int, Customer] ;
failValue : Customer ;
DBsize : intin
begin
let UPDATES_PER_TRANS =2 Inumber of customers per
lupdate transaction
let lastRandom := time()

Iprocedure which sets the seed of the random number generator
lused to ensure that each execution of the program obtains
Ithe same sequence of random numbers
let setSeed = proc(seed : int)
lastRandom := seed

Iprocedure which returns a random integer in the range
NMowR, upR]
let randomValue = proc(lowR,upR : int ->int)
begin
lastRandom := random(lastRandom)
lowR + (lastRandom rem (upR -lowR + 1))
end

Iprocedure which accesses all the information of a given
lcustomer
let access = proc(C : Customer)
begin
Ithe next four lines ensure that all customer information
lis read from the database
let temp2 := C(name)(1/1)
temp2 := C(address)(1|1)
letimg = image 10 by 10 of on++on++on++on++on++on++on++on
copy limit C(picture)to 1 by 1 at 1,1 onto img
end

setSeed(10000) ;

lexecute the transactions

for j = 1to NUMTRANS do

begin
if randomValue(1, 100) <= UPDATE_FREQ
then lexecute an update transaction

Ichoose two customers at random

129

let rand1 = randomValue(1, DBsize)
let rand2 = randomValue(1, DBsize)

Iget pointers to the two customers from the index
let customerl = database(lookup)(randl)
let customer2 = database(lookup)(rand2)

Iread all the customer’s information
access(customerl)
access(customer2)

lupdate the balances of the two customers
customerl(balance) := customerl(balance) + 1
customer2(balance) := customer2(balance) - 1

lcommit the changes

stabilise() ;
}
else lexecute a read-only transaction
{
Iselect a customer at random
let rand1 = randomValue(1, DBsize)
Iget a pointer the customer from the index
let customerl = database(lookup)(randl)
access(customerl)
}
end
end
end
default : {}

D.3Building Society Application

The code used to generate the workload of the building society is similarhartk's
(Appendix D.2) except that 40000 transactions are executed:

let NUMTRANS = 40000

and fewer update transaction are executed.

let UPDATE_FREQ =5

D.4 Bt*tree Implementation

The following code implements the Bree index used bythe benchmarks in
Chapters 6, and by the database described in Chapter 7.

rec type Btreel[t, 1] is structure(entries : int ;
leaf :bool;
index :*;
pointers : *Index]t,])
&
Index(t, r] is variant(btree : Btreel[t,] ;
record : r)

type singBtreePack{t, r] is structure(insert : proc(t, r) ;
delete : proc(t) ;
lookup : proc(t ->r))

project PS() as Root onto

130

env:
begin

use Root with User : env in
use User with bPlusTree : env in
in bPlusTree let btreePackGen := procft, rj(n : int ; init : t ; failval: r ;

begin

gt : proc(t, t -> bool) ->
singBtreePack[t, r])

type Tree is Btreelt, 1]

let createBtree = proc(-> Tree)
Tree(0, true, vector 1to (2 * n - 1) of init,
vector 1 to (2 * n) of Index(t, r](record : failval))

let root := createBtree()

let moveRoot = proc(temp : Tree)
if temp = root and temp(entries) = 0 do
root := temp(pointers)(1)btree

let elementNumber = proc(ind : t ; node : Tree -> int)
begin
leti=1
while i <= node(entries) and gt(ind, node(index)(i)) do
=i+l
i
end

let containsKey = proc(ind : t ; node : Tree -> bool)
begin

let i := elementNumber(ind, node)

i <= node(entries) and node(entries) >0 and ~gt(node(index)(i), ind)
end

let removelndex = proc(i : int ; node : Tree)
begin
if i <= node(entries) do
begin
for j = i to node(entries) - 1 do
begin
node(index)(j) := node(index)(j + 1)
node(pointers)(j) := node(pointers)(j + 1)
end

node(pointers)(node(entries)) := node(pointers)(node(entries)+ 1)

end

node(entries) := node(entries) - 1

node(index)(node(entries) + 1) := init
end

let shuffleUp = proc(i : int ; node : Tree)
begin
for j = node(entries) to i by -1 do
begin
node(index)(j + 1) := node(index)(j)
node(pointers)(j + 2) := node(pointers)(j + 1)
end
node(pointers)(i + 1) := node(pointers)(i)
end

let merge = proc(i : int ; left, right, node : Tree)

begin
if ~left(leaf) do
begin
left(index)(left(entries) + 1) := node(index)(i)
left(entries) := left(entries) + 1
end

let cSize := left(entries)
for j = 1 to right(entries) do

131

begin
left(index)(cSize + j) := right(index)(j)
left(pointers)(cSize + j) := right(pointers)(j)
end
left(pointers)(cSize + right(entries) + 1) :=
right(pointers)(right(entries) + 1)
left(entries) := left(entries) + right(entries)

if i < node(entries) do node(index)(i) := node(index)(i + 1)
removelndex(i + 1, node)
end

let moveEntryFromRight = proc(i : int ; child, rightSib, node : Tree)
begin

let ent = child(entries)

if child(leaf)

then child(index)(ent + 1) := rightSib(index)(1)

else child(index)(ent + 1) := node(index)(i)

if child(leaf)
then
begin
child(pointers)(ent + 2) := child(pointers)(ent + 1)
child(pointers)(ent + 1) := rightSib(pointers)(1)
end
else child(pointers)(ent + 2) := rightSib(pointers)(1)

child(entries) := child(entries) + 1
node(index)(i) := rightSib(index)(1)
removelndex(1, rightSib)

end

let del := proc(ind : t ; node : Tree) ; {

let deleteContains = proc(ind : t; node : Tree)
begin

let i = elementNumber(ind, node)

let child = node(pointers)(i)btree

let rightSib = node(pointers)(i + 1)'btree

case true of
child(entries) >n-1:
begin
let predecessor := init
let temp := node
let tempChild := child
while ~tempChild(leaf) do
begin
temp := tempChild
tempChild := temp(pointers)(temp(entries) + 1)'btree
end

if tempChild(entries) = 1

then

begin
let leftSib = temp(pointers)(temp(entries))'btree
predecessor = leftSib(index)(leftSib(entries))

end

else predecessor := tempChild(index)(tempChild(entries) - 1)

node(index)(i) := predecessor
del(ind, child)
end

rightSib(entries) >n-1:

begin
moveEntryFromRight(i, child, rightSib, node)
del(ind, child)

end

132

default :
begin
merge(i, child, rightSib, node)
moveRoot(node)
del(ind, child)
end
end

let deleteNotContains := proc(ind : t ; node : Tree)
begin

let i := elementNumber(ind, node)

let child := node(pointers)(i)btree

if child(entries) >n - 1
then del(ind, child)
else ! child node only has n - 1 entries
begin
let leftSib := child
let rightSib := leftSib
if i ~= 1 do leftSib := node(pointers)(i - 1)'btree

if i ~= node(entries) + 1 do
rightSib := node(pointers)(i + 1)btree

case true of
i ~=1 and leftSib(entries) >n - 1:
begin
shuffleUp(1, child)
child(index)(1) := node(index)(i - 1)

if leftSib(leaf) then

begin
child(pointers)(1) := leftSib(pointers)(leftSib(entries))
node(index)(i - 1) := leftSib(index)(leftSib(entries) - 1)
removelndex(leftSib(entries), leftSib)

end

else

begin
child(pointers)(1) :=

leftSib(pointers)(leftSib(entries) + 1)

node(index)(i - 1) := leftSib(index)(leftSib(entries))
leftSib(entries) := leftSib(entries) - 1

end

child(entries) := child(entries) + 1
del(ind, child)
end

i ~= node(entries) + 1 and rightSib(entries) >n -1 :
begin
moveEntryFromRight(i, child, rightSib, node)
del(ind, child)
end

default :
begin
ifi~=1
then
begin
merge(i - 1, leftSib, child, node)
moveRoot(node)
del(ind, leftSib)
end
else
begin
merge(i, child, rightSib, node)
moveRoot(node)
del(ind, child)

133

end
end
end
end

del :=proc(ind : t; node : Tree)
begin
let contained = containsKey(ind, node)
if node(leaf) then
if contained do removelndex(elementNumber(ind, node), node)
else
if contained then deleteContains(ind, node)
else deleteNotContains(ind, node)
end

let splitChild = proc(parent, child : Btree[t, 1] ; i : int)
begin
let newChild := createBtree()
newChild(leaf) := child(leaf)
newChild(entries) :=n-1

for j = 1to n - 1 do newChild(index)(j) := child(index)(j + n)
for j = 1 to n do newChild(pointers)(j) := child(pointers)(j + n)

if child(leaf) do
child(pointers)(n + 1) := Index[t, r](btree : newChild)

if child(leaf) then child(entries) := n
else child(entries) :=n-1

for j = parent(entries) + 1 to i + 1 by -1 do
parent(pointers)(j+1) := parent(pointers)(j)
parent(pointers)(i + 1) := Index{t, r](btree : newChild)

for j = parent(entries) to i by -1 do
parent(index)(j + 1) := parent(index)(j)
parent(index)(i) := child(index)(n)
parent(entries) := parent(entries) + 1
end

rec letinsertNonFull = proc(ind : t ; value : r ; node : Tree)
begin
if node(leaf) then
begin
let i := elementNumber(ind, node)

if containsKey(ind, node)
then node(pointers)(i) := Index(t, rl(record : value)
else
begin
shuffleUp(i, node)
node(index)(j) := ind
node(pointers)(i) := Index[t, r](record : value)
node(entries) := node(entries) + 1
end
end
else
begin
let i := elementNumber(ind, node)
let child := node(pointers)(i)'btree

if child(entries) =2*n -1 and
~(child(leaf) and containsKey(ind, child)) do
begin
splitChild(node, child , i)
if gt(ind, node(index)(i)) do
child := node(pointers)(i + 1)'btree
end

134

insertNonFull(ind, value, child)
end
end

rec let search = proc(ind : t ; node : Tree ->r)
begin
let i = elementNumber(ind, node)
if node(leaf) then
begin
let val := failval
if containsKey(ind, node) do val := node(pointers)(i)'record
val
end
else
begin
let child = node(pointers)(i)btree
search(ind, child)
end
end

letinsert = proc(ind : t ; value : r)
begin
if root(entries) =2 * n - 1 then
begin
let newRoot := createBtree()
newRoot(leaf) := false
newRoot(entries) := 0
newRoot(pointers)(1) := Index[t, r](btree : root)
splitChild(newRoot, root, 1)
root := newRoot
insertNonFull(ind, value, root)
end
else insertNonFull(ind, value, root)
end

let lookup = proc(ind : t ->r); search(ind, root)
let delete = proc(ind : t); del(ind, root)
singBtreePackt, r](insert, delete, lookup)

end
default : {

135

References

[ABJ+92]

[AD85]

[AS82]

[BGH83]

[BOP+89]

[BRO1]

[Bro89]

[BT85]

[CBC+89]

Atkinson, M.P., Birnie, A., Jackson, N. & Philbrow,P.C.
“Measuring PersistenObject Systems”. In Proc.5th International
Workshop on Persistent Object Systems, San Miniato, Italy (1992). In
PersistenDbjectSystems (EdsA.Albano & R.Morrison). Springer-
Verlag pp 63-85.

Agrawal, R. & DeWitt, D. “Integrating Concurrency Control and
Recovery Mechanisms: Design and Performance Evaluation”. ACM
Transactions oatabasesystems, Vol. 10, No. 4Decemberl985

pp 529-564.

Aghili, H. & Severance, D. “APractical Guide to the Design of
Differential Files for Recovery of On-line Databases”. ACM
Transactions on Database Systems, 7,4 (1982) pp 540-565.

Berstein, P.A., Goodman, N. & Hadzilacos, V.“Recovery
Algorithms for Database Systems”. In Proc. IFIP 9th World Computer
Congress, North-Holland, Amsterdam, September 1983 pp 799-807.

Bretl, B., Maier, D., Otis, A., Penney,, SchuchardtB., Stein, J.,
Williams, E.H. & Williams, M.S. “The GemStoneData Management
System”. Object-Oriented Concepts, Databases and Applications,
Addison Wesley, 1989 pp 283-308.

Brown, A.L. & Rosenberg, J."Persistent Object Stores: An
Implementation Technique”. In Dearle, Shaw, Zdonik (eds.),
Implementing Persistent Object Bases, Principles and Practice,
Morgan Kaufmann, 1991 pp 199-212.

Brown, A.L. “PersistentObjectStores”. Ph.D. Thesid)niversity of
St Andrews (1989).

Bates, K. & TeGrotenhuis, M. “Shadowing Boosts System
Reliability”. Computer Designs, 1985.

Connor, R.C.H., Brown, A.LCarrick,R., Dearle, A. &Morrison,
R. “The Persisten@bstract Machine”3rd InternationalWorkshop on
PersistentObject Systems, Newcastld\.S.W., (January 1989) pp
80-95. In Persistent Object Syste(gsls. J. Rosenberg & Xoch).
Springer-Verlag pp 353-366.

136

[CDN93]

[Cha78]

[CS92]

[Dav73]

[Dav78]

[DBF+94]

[EB84]

[EGL+76]

[FZT+92]

[GAD+92]

[Gar83]

Carey, M.J., DeWitt, D.J. & Naughtod,F. “The OO7 Benchmark”.
In SIGMOD Conference on th#anagement ofData, Washington,
DC, May 1993.

Challis, M.P. “Data Consistency and Integrity in a Multi-User
Environment”. Databases: Improving Usability aRésponsiveness,
Academic Press, 1978.

Cattell,R.G.G. & Skeen, J.“Object Operations Benchmark”. ACM
Transactions on Database Systems 17,1 (1992) pp 1-31.

Davies,C.T. “Recovery Semanticfor a DB/DC System”. InProc.
ACM Annual Conference (1973) pp 136-141.

Davies,C.T. “Data Processing Spheres of ControlBM Systems
Journal, 17, 2 (1978) pp 179-198.

Dearle,A., di Bona, R., Farrow,]., Henskens, F.Lindstrom, A.,
Rosenberg, J. & Vaughan, F. “Grasshopper: @nthogonally
PersistenDperatingSystem”. ComputerSystems,Summer 1994 pp
289-312.

Elhardt, K. & Bayer, R. “ADatabase Cachi®r High Performance
and FastRestart in Database&Systems”. ACM Transactions on
Database Systems, Vol. 9, No. 4, December 1984 pp 503-525.

Eswaran,K.P., Gray, J.N., Lorie, R.A. & Traiger, I.L. “The
Notions of Consistency arféredicate Locks in ®atabaseSystem”.
CACM 19,11 (1976) pp 624-633.

Franklin,M.J., Zwilling, M.J., Tan, C.K., Carey, M.J. &DeWitt,
D.J. “Crash Recovery in Client-Server EXODUS”. FProc. ACM
SIGMOD Conference, San Diego, CA, June 1992.

Gruber, O.,Amsaleg,L., Daynes, L. &Valduriez, P. “Eos: An
Environment for Object-BasedSystems”. In Proc.25th Hawaii
Conference on Systems Sciences, 1, 1 (1992) pp 757-768.

Garcia-Molina, H. “UsingSemantic Knowledge for Transaction
Processing in a Distributed Database”. ACM TransactionBaiabase
Systems 8, 2 (1983) pp 186-213.

137

[GMB+82] Gray, J.N., McJones,P., Blasgen, M., LindsayB., Lorie, R.,
Price, T., Putzolu, F. & Traigel,L. “The Recovery Manager of the
System RDatabaséManager”.ACM ComputingSurveys 13, 2 (June
1982) pp 223-242.

[Gra78] Gray, J.N. “Notes on Database Operatingystems”. LNCS 60,
Springer-Verlag (1978) pp 393-481.

[Gra81] Gray,J.N. “The Transaction Concept: Virtuesnd limitations.”. In
Proc. 7th International Conference on Very Large Data B&swes,
France (Sept. 1981) pp 144-154.

[GS87] Garcia-Molina, H. & Salem, K.“Sagas”. In Proc. SIGMOD
International Conference on Management of Data (1987) pp 249-259.

[Hag87] Hagmann,R.B. “Reimplementing the Cedar Fil&ystem Using
Logging and Group Commit”. In Proc. 11th SymposiumQperating
Systems Principles, 1987 pp 155-162.

[HD96] Hulse, D. & Dearle, A. “A Log-Structured Persistent Store”Phoc.
19th Australasian Computer Scienc€onference, Melbourne,
Australia, Jan. 1996 pp 563-572.

[HHZ+92] Heiler, S., HaradhvalaS., Zdonik, S., Blaustein, B. & Rosenthal,
A. “A Flexible Framework for Transaction Management in
Engineering Environments”. IDatabase Transaction Models For
Advanced Applications, EImagarmid.K. (ed), Morgan Kaufmann
Publishers (1992) pp 88-121.

[HR83] Haerder T. & Reuter, APrinciples of Transaction-Orientddatabase
Recovery”. Computingurveys, Vol. 15, No. 4Dec. 1983 pp 287-
317.

[KGC85] Kent, J., Garcia-Molina, H. & Chung, J. “An Experimental
Evaluation of Crash Recovery Mechanisms”. Iaroc. 4th ACM
Symposium on Principles of Database Systems (1985) pp 113-122.

[Kra87] Krablin, G.L. “Building Flexible Multilevel Transactions in a
Distributed Persistent Environmen@nd InternationalWorkshop on
Persistent Object Systems, Appin, (August 1987) pp 213-234.

138

[Leu88] Leung, C.H.C. “Quantitive Analysis of ComputelSystems”. John
Wiley & Sons Ltd. 1988.

[LLO+91] Lamb, C., Landis, G., Orenstein, J. & Weinreb, Dhe ObjectStore
Database Systems”. CACM 34, 10, (1991) pp 50-63.
http://www.odi.com/products/os/techovrwv.html

[Lor77] Lorie, R.A., “Physical Integrity in a Large Segmented Database”.
ACM Transactions on DatabaSgstems, Vol. 2, No. 1IMarch 1977
pp 91-104.

[MBC+89] Morrison, R., Brown, A.L., Connor,R.C.H. & Dearle, A.“The
Napier88 Reference Manual”. University of Bnhdrews Technical
Report PPRR-77-89 (1989).

[MCM+94] Munro, D.S., Connor R.C.H., Morrison, R., Scheuerl, S. &
Stemple, D.W. “Concurrent Shadow Paging inthe Flask
Architecture”. 6th InternationalWorkshop on PersistenObject
Systems, Tarascorkrance (Septembet994). In PersistenObject
Systems (Eds. M.P.AtkinsorV.Benzaken & D.Maier). Springer-
Verlag pp 16-42.

[MCM+95] Munro, D.S., Connor,R.C.H., Morrison, R., Moss, J.EB. &
Scheuerl, S.J.GValidating the MaStA I/OCostModel for Database
Crash Recovery Mechanisms”. Rroc. OOPSLA'95 Workshop on
Object Databas@®ehaviour, Benchmarks and Performanéeistin
Texas (October 1995).

[MHL+92] Mohan, C., Haderle, D., LindsayB., Pirahesh, H. & Schwarz, P.
“ARIES: A Transaction Metho&upporting Fine-Granularitizocking
and Partial Rollbacks Using Write-Ahead Logging”. ACM
Transactions on Database Systems (TODS), 17 (1), 1992 pp 94-162.

[Mos81] Moss, J.E.B. “Nested Transactions: An Approach tReliable
Distributed Computing”. Ph.D. Thesis, MIT (1981).

[NRZ92] Nodine, M.H., Ramaswamy, S. & ZdonikS.B. “A Cooperative
Transaction Modefor Design Databases”. IDbatabase Transaction
Models For Advanced Applications, EImagarmid,.K. (ed), Morgan
Kaufmann Publishers (1992) pp 53-85.

139

[MS88]

[Mun93]

[OLS85]

[0S93]

[0S94]

[PGK88]

[PS87]

[Reu84]

[ROO1]

[SCM+95a]

Moss, J.E.B. & Sinofsky, SManaging persistentlatawith Mneme:
Designing a reliablesharedobject interface”. In DittrichK.R. (ed.)
Advances in Object-Oriented Datab&aSgstems: Seconthternational
Workshop on Object-Oriented Databas&ystems, LNCS 334,
Springer-Verlag, 1988 pp 298-316.

Munro, D.S.“On the Integration of Concurrency,Distribution and
Persistence”. Ph.D. Thesis, University of St Andrews (1993).

Oki, B., Liskov, B. & Scheifler, R. “Reliable Object Storage to
SupportAtomic Actions”. In Proc. 10th Symposium orOperating
Systems Principles, 1985 pp 147-159.

Orji, C.U. & Solworth, J.A.“Doubly DistortedMirrors”. In Proc.
SIGMOD International Conference orManagement of Data,
Washington, D.C., (May 1993) pp 307-316.

O'Toole, J. & Shrira, L.“Opportunistic Log: Efficient Installation
Reads in &Reliable ObjectServer”. TechnicalReport MIT/LCS-TM-
506, March 1994. In Proc. 1ktternationalSymposium orOperating
Systems Design and Implementation, Monterey, CA (1994).

Patterson, D.A., Gibson, G. & Katz, R. “Base for Redundant
Arrays of Inexpensive Disks (RAID)’ACM SIGMOD, May 1988 pp
109-116.

“The PS-algol Reference Manualourth edition”. Technical Report
PPRR-12 (1987), Universities of Glasgow and St Andrews.

Reuter, AfPerformance Analysis of Recovery Techniques”. ACM
Transcations on Database Systems, VON@®, 4, Decemberl984 pp
526-559.

Rosenblum, M. & Ousterhoud,.K. “The Designand Implementation
of a Log-Structured FileSystem”. In Proc.13th Symposium on
Operating Systems Principles, 1991 pp 1-15.

ScheuerlS.J.G., Connor, R.C.H., Morrison, R., Moss, J.E.B. &
Munro, D.S. “The MaStA /O Cost Model and its Validation
Strategy”. In Proc. SeconkhternationalWorkshop onAdvances in
Databases and Informati@ystems (ADBIS'95), Moscow, June 27-
30 1995, Volume 1 pp 165-175.

140

[SCM+95b]

[SCM+96]

[SKW92]

[SM92]

[SMK+93]

[SO91]

[Sto86]

[TWO5]

[Vau94]

[VKD+92]

Scheuerls.J.G., Connor,R.C.H., Morrison, R., Munro, D.S. &
Moss, J.E.B.“The MaStA 1/0O TraceFormat”. Technical Report
CS/95/4 (1995), University of St Andrews.

ScheuerlS.J.G., Connor,R.C.H., Morrison, R. & Munro,D.S.
“The DataSafe Failure Recovery Mechanism in thdask
Architecture”. In Proc. 19th Australasian ComputerScience
Conference, Melbourne, Australia, Jan. 1996 pp 573-581.

Singhal, V., Kakkad, S. V. & Wilson, P. RTexas: An Efficient,
Portable Persister§tore”. 5th InternationaMWorkshop on Persistent
Object Systems, SarMiniato (Pisa), Italy (September1992). In
Persistent Object Systems (Eds. A. Albano & R. Morrison). Springer-
Verlag pp 11-33.

Stemple, D. & Morrison, R.“Specifying Flexible Concurrency
Control Schemes: An abstra€@perational Approach”. Australian
Computer Science Conference 15, Tasmania (1992) pp 873-891.

SatyanarayanarM., Mashburn,H.H., Kumar, P., Steere, D.C. &
Kistler, J.J. “Lightweight Recoverable VirtuaMemory”. In Proc.

14th ACM Symposium onOperating System Principles, Asheville,
NC, December 1993 pp 146-160.

Solworth,J.A. & Orji, C.U. “Distorted Mirrors”. ACM Parallel and
Distributed Information Systems, 1991 pp 10-17.

Stonebraker, M. (EditorJThe Ingres Papers”. Addison-Wesley,
Reading, MA (1986).

Tridgell, A. & Walsh, D.“The HIiDIOS file system”. In Proc. 4th
Parallel Computing Workshop, London, Sept 1995. Fujitsu
Laboratories Ltd.

Vaughan, F.“Implementation of Distributed Orthogonal Persistence
Using Virtual Memory”. Ph.D. Thesis, University of Adelaide (1994).

Vaughan F., Koch, T.Dearle,A., Marlin, C. & Barter, C.“Casper:
A Cached Architectur&upporting Persistence”. Computing Systems
5, 3, (1992) pp 337-359.

141

[VDD+91]

[Wei86]

[WJIN+95]

Velez, F., Darnis, V., DeWitt, D., Futtersadk,, Harrus, G.Maier,

D. & Raoux, M. “Implementing the O2 object manager. some
lessons”. InDearle, Shaw, Zdonik (eds.) Implementing Persistent
Object Bases,Principles and Practice$Jorgan Kaufman, 1991 pp
131-138.

Weikum, G. “ATheoreticalFoundation ofMulti-Level Concurrency
Control”. In Proc. ACM PODS (1986).

Wilson, P.R., JohnstoneM.S., Neely, M. & Boles, D.“Dynamic
Storage Allocation: A Survey and Critical Review”. In Proc. 1995 Int!l
Workshop onMemory ManagementKinross, ScotlandUK, Sept
27-29, 1995, Springer Verlag LNCS.

142

	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1. 1 Components of DBMSs
	1. 2 Configuring DBMSs
	1 . 3 Contribution
	1. 4 Thesis Structure

	2 Background
	2 . 1 Introduction
	2. 2 Recovery Management
	2 .2 .1 Introduction
	2 .2 .2 Classification of Recovery Mechanisms
	2 .2 .3 Write-ahead Logging
	2 .2 .3 .1 Logging with Deferred Updates
	2 .2 .3 .2 Logging with Immediate Updates
	2 .2 .3 .3 Undo/Redo Logging
	2 .2 .3 .4 Optimising Logging
	2 .2 .3 .5 The Database Cache

	2 .2 .4 Shadow Paging
	2 .2 .4 .1 After-Image Shadow Paging
	2 .2 .4 .2 Before-Image Shadow Paging
	2 .2 .4 .3 Optimising Shadow Paging

	2 .2 .5 Log-Structured Databases
	2 .2 .5 .1 Log-Structuring Using Compaction
	2 .2 .5 .2 Log-Structuring Using Threading

	2 .2 .6 Comments

	2 . 3 Concurrency Control
	2 . 4 The Flask Architecture
	2 .4 .1 Introduction
	2 .4 .2 The Flask Framework
	2 .4 .3 Flexible Recovery in Flask
	2 .4 .4 Concurrent After-Image Shadow Paging
	2 .4 .5 Summary

	2. 5 Analytical and Empirical Modelling
	2 .5 .1 Analytical Modelling
	2 .5 .2 Empirical Analysis
	2 .5 .3 Benchmarking
	2 .5 .3 .1 OO1
	2 .5 .3 .2 OO7

	2 . 6 Conclusions

	3 Flexible Recovery
	3 . 1 Introduction
	3 . 2 The Flexible Recovery Manager
	3. 3 The DataSafe Recovery Mechanism
	3 .3 .1 Introduction
	3 .3 .2 The Safe
	3 .3 .3 The Cache
	3 .3 .4 Action Meld and Abort
	3 .3 .5 Restart
	3 .3 .6 Safe Purge
	3 .3 .7 Cache Overflow
	3 .3 .8 Opportunistic Write Back

	3. 4 After-Image Shadow Paging
	3 . 5 Log-Structured Database
	3 . 6 Conclusions

	4 An Analytical Model for Recovery Mechanisms
	4 . 1 Introduction
	4 . 2 Overview of the MaStA Model
	4 . 3 Developing the MaStA Cost Model
	4 .3 .1 Recovery Mechanisms
	4 .3 .2 Categorisation of Recovery Mechanisms
	4 .3 .3 I/O Access Patterns
	4 .3 .4 Assigning I/O Access Patterns
	4 .3 .5 Application Workload
	4 .3 .6 Cost Models for the Four Recovery Mechanisms

	4. 4 Utilising MaStA
	4 .4 .1 I/O Access Pattern Calibration
	4 .4 .2 Applications of the Model
	4 .4.2.1 Application 1
	4 .4 .2 .2 Application 2
	4 .4 .2 .3 Application 3

	4.5 Conclusions

	5 Validation Strategy of MaStA
	5 . 1 Introduction
	5. 2 Assumptions
	5 .2 .1 Recovery Mechanism Abstraction
	5 .2 .2 Disk Performance Abstraction
	5 .2 .3 Workload Abstraction

	5 . 3 Overview of the Validation Strategy
	5 . 4 Validation Framework Design
	5 .4 .1 Napier88 and Workload Traces
	5 .4 .2 Benchmarks
	5 .4 .2 .1 OO1
	5 .4 .2 .2 OO1b
	5 .4 .2 .3 OO7
	5 .4 .2 .4 MaStA Object Benchmark

	5 .4 .3 Platforms
	5 .4 .4 I/O Trace Format

	5 . 5 Conclusions

	6 Validation Procedures
	6 . 1 Introduction
	6 . 2 Avoiding Interference
	6 .2 .1 Platform Interference
	6 .2 .2 Experimental Interference

	6. 3 Validation of the I/O Assumption
	6 .3 .1 Results

	6. 4 Validation of the Cost Category Interaction Assumption
	6 .4 .1 Results

	6 . 5 Validation of the Access Pattern Cost Assumption
	6 .5 .1 Results

	6 . 6 Validation of the Workload Assumption
	6 .6 .1 Characterising Workload
	6 .6 .2 Synthetic Workload Generator
	6 .6 .3 Results

	6 . 7 Accuracy of MaStA
	6 .7 .1 Results
	6 .7 .2 Comparison with Uniform Cost Models
	6 .7 .3 Conclusions

	6 . 8 Conclusions

	7 Worked Example of the Flexible Architecture
	7 . 1 Introduction
	7 . 2 Scenario
	7 . 3 Database Design
	7. 4 Characterising Workloads
	7 .4 .1 The Building Society’s Workload
	7 .4 .2 The Bank’s Workload

	7. 5 Utilising MaStA
	7. 6 Verification of Cost Predictions
	7 . 7 Conclusions

	8 Conclusions
	8. 1 Cost Prediction
	8. 2 Flexible Architecture
	8 . 3 Validation
	8. 4 Future Work
	8. 5 Finale

	Glossary
	Appendix A Recovery and Benchmark Configurations
	A. 1 Recovery Mechanism Configuration
	A. 2 Benchmark Configurations
	OO1
	OO1b
	OO7
	MOB

	Appendix B Calibrating MaStA I/O Patterns
	Appendix C Validation Results
	C. 1 Results of Validating I/O Assumption
	C. 2 Results of Validating Cost Category Interaction Assumption
	C. 3 Results of Validating Access Pattern Cost Assumption
	C. 4 Results of Validating Workload Assumption
	C. 5 Results of Illustrating the Accuracy of MaStA

	Appendix D Scenario Code
	D. 1 Database Generator
	D. 2 Bank Application
	D. 3 Building Society Application
	D.4 B + tree Implementation

	References

