
Proceedings of the 19th ACSC Conference,
Melbourne, Australia, January 31-February 2 1996.

The DataSafe Failure Recovery Mechanism in the Flask Architecture
S.J.G. Scheuerl, R.C.H. Connor, R. Morrison & D.S. Munro

School of Mathematical and Computational Sciences
University of St Andrews

North Haugh, St Andrews, Fife, KY16 9SS, Scotland

{stephan, richard, ron, dave}@dcs.st-and.ac.uk

Abstract

A major design goal of the Flask architecture is to
separate the mechanisms of concurrency control and
recovery management in database programming
systems. This paper describes the DataSafe
component of Flask, which is the second recovery
mechanism to be implemented within the architecture
and therefore provides a proof of concept. The
DataSafe is closely based on the DB Cache
mechanism, modified to fit into the Flask
architecture. The major modification comprises the
use of a separate safe map which allows pages of
recovery data to be block aligned and affords
opportunities for efficiency gains during recovery.
The page-level locking implicit in the DB Cache is
lifted from the DataSafe, permitting concurrency
control and recovery to be independent.

Keywords concurrency, recovery, persistent stores

1 Introduction
Flask [11] is a layered architecture which has the
flexibility to support different models of concurrency
and different recovery mechanisms over the same
data. The architecture has no fixed notion of
concurrency control; instead it provides a framework
in which models can be designed and supported. The
Flask architecture is designed to work with processes
or actions that maintain global cohesion under control
of the concurrency control schemes. The significant
events defined by a particular concurrency control
scheme are generated from and reported to the higher
layers of the architecture enabling these schemes to
undertake conflict detection. This approach isolates
the memory management from the onus of
interference control and hence enables instantiations
of lower layers of the architecture to be constructed
independently of any particular concurrency model.
An important design aim of Flask is that it has the
flexibility to support different recovery mechanisms.

The importance of supporting several recovery
mechanisms within a single architecture has been
highlighted by analytical modelling using the MaStA
I/O cost model [12, 14]. The MaStA model provides
an analytical framework for comparing recovery
mechanisms under a variety of different workloads
and configurations. It has been shown that the cost of
recovery mechanisms can be critical to the overall

performance of data-intensive applications, with I/O
bandwidth being a limiting factor. Many recovery
mechanisms have been invented, each with different
performance tradeoffs [8]. Each technique's cost
involves not only the overhead of restoring data after
failures but also the time and space overhead required
to maintain sufficient recovery information during
normal operation to ensure recovery. Under different
workloads and configurations these crash recovery
mechanisms exhibit different costs.

This paper details the DataSafe recovery
mechanism which conforms to the Flask abstractions.
DataSafe is based on the DB Cache recovery
mechanism [6] but differs in two key aspects:

• It conforms to the Flask layering by using a meld
propagation strategy to allow concurrent updates
to a page and to avoid the low-level page-locking
of the DB Cache and hence false conflicts.

• It uses a map to store the locations of pages of
recovery information on disk instead of tagging
the page headers. This allows pages of recovery
information to be block aligned on non-volatile
storage and affords opportunities for efficiency
gains during recovery.

The description of the DataSafe given here does
not attempt compare the mechanism against others
since it is not the intention to design a recovery
mechanism which works best for all applications. The
goal is to provide an architecture in which the
recovery mechanism and concurrency model may be
chosen to suit the application. The DataSafe offers an
alternative to the concurrent shadow paging of the
original implementation of Flask. Thus within Flask
either mechanism may be chosen to suit the
characteristics of a particular application.

2 The Flask Architecture
Flask is a layered architecture which has the
flexibility to support different models of concurrency,
such as atomic [4, 5, 7] and nested transactions [13],
over the same data. Flask also permits the use of
different recovery mechanisms such as shadow
paging and logging over the same data. The
architecture does not have a built in notion of
concurrency control. Instead Flask provides a
framework in which concurrency models may be
designed and supported, and in which recovery

mechanism may be engineered to best suit the
persistent application.

At the top layer a concurrency control design
method, such as CACS [15], is used to specify
concurrency models. Global cohesion of the data
operated on by concurrent activities is maintained by
CACS and is expressed in terms of the visibility of
data from actions. The global cohesion is modelled in
CACS as the movement of data between a globally
visible persistent store and conceptual stores called
access sets, and the movement of data between access
sets. Figure 1 illustrates access sets and a persistent
store within a conceptual concurrent architecture.

P P P PS S

Concurrency
Models

Actions

Private and
Shared access
sets

persistent store

Figure 1: Conceptual Concurrent Architecture.

Each action is associated with a private access set
which isolates its view of data from all others.
Actions may also use shared access sets when the
concurrency model permits co-operative work
between actions. Atomicity of Flask ensures that the
movement of data between access sets and the
persistent store is performed as an atomic unit. This
property is used by the recovery management layer of
Flask to effect an atomic meld, the process of making
changes made to data in access sets globally visible in
the persistent store. The semantics of a meld may
differ according to the concurrency model.

By separating out the issues concurrency control
the data management layers of Flask are relieved
from the burden of interference management, and
may therefore make use of recovery mechanisms
designed independently of the concurrency model.

The interface to the recovery layer is sufficiently
flexible to allow a number of mechanisms to be used.
The interface permits the creation, deletion, and
context switching between access sets. Reads and
writes are performed by the higher layers of Flask
with respect to the current access set. Melds may be
performed on some set of access sets. When a meld is
performed, all updates made with respect to the
access sets are atomically and consistently
propagated to the stable store. In many cases the meld
process may be performed by the recovery
mechanism without the need for call-backs to the
higher layers, using logical operations.

In concurrency models which permit actions to
share updates, data may also be accessed and updated
within shared access sets. The consistency of melding
a shared access set is the responsibility of the
concurrency control at the top layer of Flask. A
shared concurrency model may require a number of

access sets to be melded as an atomic action (e.g. a
private and a shared access set, used by some action).

In the following design the focus is not on
specifying concurrency models but on the provision
of access sets and the atomic update of a recoverable
persistent store using the DataSafe recovery
mechanism. It is assumed that a higher-layer
concurrency control is performing object-level
conflict detection with respect to access sets.

3 The DataSafe
The DataSafe is a page log recovery mechanism
based on the DB Cache [6]. The DataSafe ensures the
recoverability of a stable store by controlling the
movement of pages of data among three areas of
storage: the stable store, a safe and a cache. The
layout of the mechanism is illustrated in Figure 2.

Page faults from the stable store into cache

Page writes to the stable store of committed pages
Page writes to the safe during a commit

Page reads from the safe during recovery

Cache

Stable Store

Safe

safe
map

non-volatile storage

main page
map

action page
maps

cache map

safe-end

safe-begin

free frame map

Figure 2: Layout of the DataSafe.

The stable store is held on non-volatile storage and
only contains pages which have been melded. The
cache is held in volatile storage and contains pages
which have been read, pages which have been
updated, and pages which have been updated and
melded but not yet written to the stable store. The
safe is held on non-volatile storage and contains
copies of melded cache pages which may not yet
have been written the stable store. For the moment it
is assumed that the cache is sufficiently large to hold
all updated pages between melds.

Reads operate on data in the cache, faulting stable
store pages into free cache frames as required. Writes
are also performed on pages in the cache. Updated
pages remain in the cache at least until the user melds
or aborts. A meld operation involves writing updated
cache pages which are part of the meld to contiguous
pages in the safe. This ensures that in the event of a
crash, melded cache pages which have not yet been
written to the stable store are recoverable. In the case
of a successful meld these pages either remain in the
cache to be reused or are written to the stable store
opportunistically.

A cache map in volatile storage is used to record
the state information (original, melded or updated) of
cache frames. A free frame map is used to indicate
which cache frames are free and which are in use.

A main page map records the cache locations of
store pages which have been faulted into the cache
but not updated. Each action has its own private
access set and is associated with an access set page
map. Similarly an access set page map is created for
each shared access set required by the concurrency
model. Entries are added to these maps as cache
pages are updated by actions.

A safe map on non-volatile storage holds the state
information of the pages in the safe. A safe-begin-
pointer and a safe-end-pointer also held on non-
volatile storage designate the area of the safe which
contains pages which are required for recovery.

If there are no free cache frames available to fault
a page from the stable store a cache frame containing
a page which has been melded or only read is
selected for replacement. If the selected frame
contains a page which has not yet been written to the
stable store then it is written to the stable store before
being replaced. This ensures that all read faults
operate on the stable store rather than on the safe.

If there are insufficient free pages on the safe to
complete a meld, safe pages which are required for
recovery are written from the cache to the stable
store. This means that they are no longer required for
recovery in safe and as such may be overwritten
during the meld.

During recovery the safe pages required for
recovery are read from the safe into the cache after
which normal processing resumes.

3.1 The Safe
The safe is designed as a circular buffer to enable
writes to the safe to be performed sequentially. Being
circular, the safe also bounds the amount of data that
is maintained to ensure recovery and therefore
bounds recovery time. The safe must be at least as
large as the cache to ensure that all pages updated in
the cache may be written to the safe.

Since the same page may be updated and melded
to the safe many times, the safe may contain more
than one version of the same page. Only the latest
version of a page in the safe is required for recovery
and then only if the corresponding cache page has not
yet been written to the stable store. Thus a safe page
is free if the corresponding cache page has been
written to the stable store or if a more up-to-date
version of the page is in the safe.

The safe map contains the stable store locations of
pages in the safe. The safe map also contains a tag for
each page in the safe. These tags are used during
normal processing to indicate which safe pages are
required for recovery and which are free. The safe-
begin-pointer and the safe-end-pointer designate the
area of the safe that contains pages which are
required for recovery; although not all pages in this
area are necessarily required for recovery. The safe
pointers therefore also indicate the active part of the
safe map, a copy of which is held in main memory
for efficiency.

3.2 The Cache
For the moment the cache is designed to fit into main
memory to avoid operating system page swapping.
The cache is composed of a number of page sized
cache frames which are empty or contain cache pages
(pages of data). Cache pages are categorised as
originals, melded or updated. Originals are duplicates
of stable store pages. Melded cache pages are pages
which have been changed and melded but not yet
written to the stable store. Updated pages are copies
of original or melded cache pages and are pages
which have been updated but not melded. The cache
map is used to tag cache pages accordingly.

The DataSafe holds an action’s updated pages in
the cache at least until the action melds or aborts.
This avoids the need to maintain redundant undo
information since non-melded updates are never
swapped to the stable store. It also avoids swapping
pages to the safe which eliminates the need to read
the safe during normal processing.

lost due
to abortmelded

a copy of the original/melded
page is made

another copy of the
same page is melded

read from the
safe during
recovery

faulted
from

stable
store

candidate for
replacement obsolete

attempt to change
the melded page

melded to
the safe

updated

candidate for
replacement

written to the
stable store

attempt to
change the

original page

original

changed

Figure 3: Cache Page State Diagram.

Figure 3 gives the state diagram of cache pages.
When a page is faulted from the stable store the cache
page is tagged as original to signify that the page has
not been updated and that it may be selected for
replacement when the cache becomes full. When a
write is performed on an original cache page a copy
of the original is made in a free cache frame. The
write is performed on the copy and the copy is tagged
as updated. An updated page may have further
changes made to it, be lost due to an abort or system
crash, or be written to the safe during a meld
operation. When an updated page is written to the
safe it is tagged as melded to signify that the page
must be written to the stable store before being
replaced.

During recovery, cache pages read from the safe
are tagged as melded since it is assumed that the
corresponding melded cache pages had not been
written to the stable store before the crash. When a
melded page is written to the stable store it is tagged
as original to signify that the page may be replaced.
When an attempt is made to change a melded page
the update is performed on a copy of the page, made
in a free cache frame, in a similar manner to an
attempt to update an original. An original or melded
page becomes obsolete if a copy of the page is
melded.

3.3 Per-action Page Maps
A potential problem of concurrency which must be
addressed by the DB Cache and other page based
recovery mechanisms is that actions may make
requests to modify the same page. When an action
melds a modified page the page becomes the latest
version. This includes the changes made by any non-
melded actions, which may later abort, that modified
objects on the same page.

One common solution and one used in the DB
Cache is to use page-level locking whereby an action
obtains an exclusive lock on a page before updating
the page [1, 9]. Each action maintains its own page
map and the locking guarantees that a page is never
in more than one page map. The main drawbacks of
this solution are firstly that it introduces false
conflicts where two actions are prevented from
modifying different parts of the same page. Secondly
it employs a built-in concurrency control mechanism
at a low level, a property which Flask avoids.
Problems of deadlock must also to be addressed.

The DataSafe solution (similar to the concurrent
shadow paging solution [11]) involves keeping a page
map for each action and maintaining per-action page
copies, i.e., an access set. Object conflicts are
detected through the Flask architecture at the
concurrency control layer removing the need for such
interference management in the memory management
layer. When an action first modifies a page a copy of
the original or melded page is made in the cache and
the modification made to the copy. An original is not
updated directly to avoid re-faulting the page from
the stable store should another action accesses the
page. A melded cache page is not updated directly
because the safe purge mechanism described later
relies on melded pages which are still in the cache
remaining unchanged. If no original or melded
version of the page is present in the cache the page is
first faulted from the stable store.

The updated page’s mapping is then added to the
action’s page map. To resolve the address of a stable
store read the action’s page map is searched first and,
if still unresolved, then the main page map. This
mechanism ensures that the changes made by one
action are isolated from other actions and the
previously melded state.

3.4 Per-action Meld and Abort
Action abort involves freeing the cache frames
containing the pages updated by the action, and
removing the action’s page map.

During a meld operation cache pages updated by
the melding action are written to contiguous free
pages in the safe at the location given by the safe-
end-pointer. As pages are written to the safe an in-
memory copy of the safe-end-pointer is advanced and
an in-memory copy of the safe map is updated to
record the stable store locations of the safe pages.
The cache pages updated by the action are found
using the action’s page map.

When a cache page is melded any melded or
original version of the same page present in the cache

becomes obsolete. The obsolete version is found by
searching the main page map. A cache frame
containing an obsolete page is designated free using
the free frame map. The main page map is then
updated to record the cache location of the newly
melded version of the page.

Once all the required meld writes to the safe have
been performed the safe map and the safe-end-pointer
are written atomically to non-volatile storage. The
safe map is atomically updated using a mirroring
technique similar to the concurrent shadow paged
store of Flask. The safe map is composed logically of
a number of safe map pages. Each page of the safe
map is preallocated two blocks on non-volatile
storage. A root block on non-volatile storage contains
a safe map page table recording the mappings
between the logical pages of the safe map and the
blocks which contain them. A safe map page is
always written to the block which contains the
obsolete version of the page. The safe map page table
in a cached version of the root page is then updated to
indicate the new locations of the safe map pages. The
safe-end-pointer also held on the root page is updated
to record the position of the last data page written to
the safe by this meld. The safe-begin-pointer is not
advanced during a meld.

Once the safe map is written to the stable store the
root page on non-volatile storage is atomically
updated, thus atomically updating the safe map page
table and the safe-end-pointer. Atomic update of the
root page is achieved by mirroring the page on non-
volatile storage. The page contains two date stamps,
one at the start of the page and another at the end.
These are incremented when the root page is written.
The page is written to the block containing the
obsolete version of the root page. The date stamps are
used during recovery to determine which version of
the root page is the most recent. They are also used to
determine whether any corruption occurred while
writing the root page. With the advent of modern disk
controllers the atomicity of these actions is only
guaranteed if the ordering of disk writes can be
inferred. If they cannot, others schemes may be used
to atomically update the root page.

If a crash occurs during a meld all pages written
to the safe by the incomplete meld are ignored by the
recovery process since the safe-end-pointer and the
safe map have not yet been atomically updated.
Atomicity of action meld is therefore attained by the
atomic update of the root page containing the latest
mappings for the safe map and the latest version of
the safe-end-pointer.

During the meld the safe page at the location
given by the safe-begin-pointer cannot be overwritten
since it may be required for recovery. Hence the safe
is said to be full when there are insufficient pages
between the locations given by the safe-end-pointer
and the safe-begin-pointer to complete a meld. In
such a case a safe purge is performed to advance the
safe-begin-pointer, before the meld begins, by a
sufficient number of pages to allow the meld to
complete.

When an action melds, the changes it has made
become globally visible to all other actions. There is
therefore a requirement to ensure that the changes
made to a page by the melding action are propagated
to any other action holding a copy of the same page.

3.5 Meld Propagation
Since the meld resolution is at a page-level the
changes made by the melding action must be
propagated to other actions’ private copies of the
same page. Suppose that two actions A and B share a
page but modify different objects on that page.
Because of the isolation provided by the DataSafe
mechanism, action A can meld without affecting B.
For B to subsequently meld it must retain the changes
made by action A. A mechanism is required for B to
ingest the changes made by action A. The algorithm
that meld uses to propagate changes is dependent on
the particular concurrency model in operation and is
determined at a higher layer of the Flask architecture
by a concurrency control design method such as
CACS. Under the assumption that the higher-layer
concurrency control can detect object-level conflicts
there are a number of methods of achieving this.

In concurrency models that require isolation,
where the concurrency control ensures that two
transactions do not modify the same object, it is
possible to use logical operations for efficiency to
propagate the changes. For example, in an atomic
transaction model, suppose two actions A and B have
changed different objects on the same page P and
action A melds. The changes made by A to page P
can be calculated by an xor of P onto the original
page, i.e., as it was at the last meld. This derives a
page of changes made by A to page P. These changes
can now be xor’d onto action B’s copy of page P. So
the meld propagation formula can be written as :-

PB = (PA xor PO) xor PB

where PA is action A’s copy of page P, PO is the
page P as it was at the last meld and PB is action B’s
copy of page P. Thus B’s version of page P now
includes the changes made by A. The propagation can
be performed eagerly or lazily on demand. Eager
propagation is performed when each action melds.
Lazy propagation involves delaying propagating
changes until an action accesses the melded updates
of another action. Using lazy propagation in the case
above means that propagation is not performed if B
aborts.

This approach is not restricted to atomic
transactions. In co-operative models where the
actions agree to change an object to the same value
majority rules logical operations can be used.

3.6 Recovery
The meld process in the DataSafe does not write
updates to the stable store during a meld. This avoids
non-melded updates appearing in the stable store
should a system failure occur during the meld.
Instead meld writes are performed to the safe and

writes of melded pages to the stable store are
performed opportunistically after the meld completes.
Since these writes may be performed
opportunistically some pages may not have been
written to the stable store before the system failure.

Recovery involves reading into the cache the safe
pages which had potentially not been written to the
stable store before the crash. The safe-begin-pointer,
the safe-end-pointer, and the active part of the safe
map are read from non-volatile storage. Only the area
of the safe between the safe pointers contains pages
required for recovery. The safe map is scanned to
determine the safe pages required for recovery to be
read.

If the number of safe pages to be read is greater
than the number of pages that fit into the cache a
number of pages equal to the excess are read from the
safe into the cache and then written to the stable
store. The safe-begin-pointer on non-volatile storage
is atomically updated to give the location of the next
safe page to be read. This avoids re-reading the safe
pages that have been written to the stable store should
another crash now occur. The cache is then cleared of
these pages and the remaining safe pages are read
into the cache. Once all safe pages have been read
normal processing resumes.

Cache pages read from the safe which are not
written to the stable store are tagged as melded using
the cache map to ensure that these pages are written
to the stable store should they be chosen for
replacement. The stable store locations held in the
safe map are used to reconstruct the main page map
as pages are read into the cache.

By either reading safe pages required for recovery
into the cache or writing them to the stable store the
DataSafe recovery process ensures that the latest
version of every page is either in the cache or in the
stable store and thus ensures that no read faults
operate on the safe. This strategy ensures that all
writes to the safe incur low sequential costs. If the
safe were to be read during normal processing extra
seek costs would be incurred during a meld to move
the device head back to the end of the safe.

3.7 Cache Overflow
When there are no free cache frames available to
either fault a page from the stable store or to make
copies of cache pages, a cache frame containing
either an original or a melded cache page is selected
for replacement. Only originals and melded pages can
be replaced since updated pages must by definition
remain in the cache. A victim selection algorithm
takes into account how recently cache pages have
been accessed and whether these pages are originals
or melded. Originals are given a higher probability of
being chosen since choosing a melded page requires
it to be written to the stable store before being
replaced. In this implementation the victim selection
strategy uses a LRU algorithm.

The DataSafe makes use of virtual memory
techniques to accommodate workloads which
temporarily overflow the cache. When the cache

becomes full of updated pages, new update
transactions are blocked and current transaction are
allowed to complete, making use of some temporary
storage to swap updated pages as required. Once all
updated pages again fit into the cache new update
transactions may begin and the temporary storage
freed.

To reduce the probability of using virtual
memory, new update transactions are blocked before
the cache becomes full of updated pages. The
threshold used in deciding when to block these
transactions is derived dynamically based on the
average number of pages updated by each
transaction.

3.8 Safe Purge
Safe purging is the process of writing safe pages that
are required for recovery to the stable store. A safe
purge is performed automatically if there are
insufficient free pages on the safe to write the
updated cache pages which are part of a meld. Safe
purging in this case advances the safe-begin-pointer
by a sufficient number of pages to allow the meld to
complete.

Since the area of the safe containing safe pages
required for recovery is bounded by the safe pointers,
the safe-begin-pointer may only be advanced past
safe pages no longer required for recovery. An in-
memory copy of the safe-begin-pointer is advanced to
the first safe page required for recovery. If there are
still insufficient free safe pages between the safe
pointers the page at the safe-begin-pointer is written
to the stable store and the safe-begin-pointer
advanced to the next safe page required for recovery.
This process is repeated until there are sufficient free
pages between the safe pointers. The safe-begin-
pointer on non-volatile storage is then atomically
updated. This ensures that the meld does not write
updated pages to the area of the safe that is read
during recovery should a system crash occur during
the meld. The meld may then be performed.

The safe purge mechanism only writes sufficient
safe pages to the stable store to permit the meld to
complete instead of writing all safe pages required for
recovery. This is based on the assumption that
applications running over data in the stable store
exhibit some degree of locality, and that during a
meld some pages already in the safe become obsolete
before being written to the stable store due to the
melding of newer versions of the same pages. If all
safe pages were written to the stable store during a
safe purge, unnecessary writes may be performed in
flushing safe pages to the stable store which may
have become obsolete during later melds.

As mentioned earlier melded pages in the cache
are not updated directly. This ensures that when safe
pages that are required for recovery are written to the
stable store the pages need not be read from the safe
since the melded pages are still present in the cache.
Therefore writing a safe page to the stable store
involves writing a cache page to the stable store.

Provided that the safe is larger than or equal to the
size of the cache, safe purging guarantees that there
are sufficient contiguous free safe pages starting at
the safe-end-pointer to hold all pages that are to be
melded. An extreme situation occurs when the cache
is full of updated pages which are to be melded to the
safe. In this case the cache contains no melded cache
pages since they have been written to the stable store
due to page replacement. Therefore no pages in the
safe are required for recovery and so if the safe is
greater than or equal to the size of the cache all
updated cache pages fit into the safe.

c

a b

SBP
SEP

safe pages required for recovery
safe pages not required for recovery

before the purge and
meld

after advancing the
safe-begin pointer

after the meld

Figure 4: States of the Safe During a Purge and Meld.

Figure 4 gives an illustrated example of a safe purge
and meld. The locations given by the safe-begin-
pointer and the safe-end-pointer held on non-volatile
storage are shown. In this example 7 updated cache
pages are to be melded. Figure 4.a shows the state of
the safe before the meld.

Before the meld begins, the mechanism ensures
that there are sufficient free safe pages between the
two safe pointers to allow the meld to complete.
Since there are only 3 free pages between the safe-
end-pointer and the safe-begin-pointer (Figure 4.a), a
safe purge is performed to advance the safe-begin-
pointer by at least 4 pages to provide at least 7
contiguous free pages. Figure 4.b illustrates the safe
after writing 2 safe pages to the stable store and
shows the new position given by the safe-begin-
pointer.

The meld can now proceed. Figure 4.c shows the
state of the safe after the meld and shows the new
locations given by the safe pointers. This figure also
illustrates that some safe pages are made no longer
required for recovery through the melding of more
recent versions of the pages. This enables the next
safe purge to advance the safe-begin-pointer past
these safe pages without writing them to the stable
store.

3.9 Opportunistic Write Back
So far melded cache pages are only written to the
stable store when the cache becomes full, or during a
safe purge. Since the safe ensures that melded cache
pages are recoverable they may be written to the
stable store at any time. These writes may be
performed opportunistically by writing melded cache
pages to the stable store while no other page faults or
writes are being performed. These writes may also be
performed in such a way as to take advantage of the
position of the head of the non-volatile storage device
to minimise the average cost of performing writes to
the stable store.

When a melded cache page is written
opportunistically to the stable store the corresponding
safe page becomes obsolete and is no longer required
for recovery. Thus opportunistic writing of melded
cache pages reduces the number of safe pages that
must be written synchronously to the stable store by a
safe purge and through page replacement.

There is a trade-off between writing melded cache
pages to the stable store opportunistically and writing
the pages synchronously only when required through
page replacement or during a safe purge. An
opportunistic write policy may be adopted on the
assumption that the pages are eventually written to
the stable store through page replacement and safe
purging, and by performing these writes
asynchronously the overall cost of writing to the
stable store is reduced. On the other hand by adopting
a pessimistic write policy by which melded cache
pages are only written to the stable store through page
replacement or during safe purging, the mechanism
allows melded cache pages to become obsolete and
therefore avoids writing some pages which would
have been written by an opportunistic policy.

In this implementation an opportunistic writing
strategy is adopted which makes use of the LRU
algorithm used for page replacement victim selection.
When a melded cache page is written to the stable
store through page replacement or safe purging the
mechanism searches the main page map for entries
corresponding to melded cached versions of adjacent
stable store pages. If such pages are found to be older
than the average age of all cache pages then the pages
are also written to the stable store. By only writing
older melded cache pages opportunistically the
mechanism allows pages which are frequently
updated and melded to become obsolete and thus
avoids writing them unnecessarily.

4 Related Work
The DataSafe is a variation of the DB Cache [6], a
recovery mechanism designed to provide high
throughput of short transactions and designed to
reduce the cost of recovery. Both the DB Cache and
the DataSafe are comparable to deferred page log
mechanisms in the manner in which they utilise a
sequential log called the safe during normal
processing to reduce the cost of melding cache pages,
and to ensure that melded pages that have not yet

been written to the stable store are recoverable after a
crash. Melded pages in the cache may be written
opportunistically to the stable store, thus potentially
reducing the cost of performing such writes.

Instead of a safe map, the DB Cache uses safe
page headers to record the stable store locations of
the safe pages. Two bits held in each page header are
used to determine which pages are associated with
successful melds and therefore which are required for
recovery. A safe-begin-pointer on non-volatile
storage indicates the first of these safe pages. Since
there is no safe map to indicate which safe pages are
required for recovery the DB Cache must read all safe
pages starting at the safe-begin-pointer during
recovery. If a page occurs more than once on the safe
the older version in the cache is overwritten with the
new version. Pages read from the safe which are
found to be part of an unsuccessful meld are
discarded.

If the cache becomes full of updated pages, the
DB Cache swaps updated pages from the cache back
to the database and makes use of a separate before
image log to ensure that inconsistencies can be
undone after a crash. Once these pages are melded to
the safe, the log is discarded. This mechanism is
unsuitable for the DataSafe since its cache may
contain multiple copies of the same logical page,
which cannot be swapped to the same physical
database page. Instead the DataSafe makes use virtual
memory as described in section 3.7.

To isolate actions from one another the DB Cache
uses page locking to ensure that only one concurrent
action can update a given page.

5 Evaluation
In contrast to the DB Cache, the DataSafe incurs the
added cost of maintaining a safe map. The cost of
reading this map during recovery is offset by the fact
that once the safe map has been scanned, only those
pages which are required for recovery are read from
the safe rather than all safe pages. Since few pages
are required to hold the active part of the safe map
(the part corresponding to safe pages between safe
pointers), the extra cost of reading the safe map at
recovery time is more than compensated for by
reading fewer safe pages.

The DataSafe incurs the added cost of updating
the safe map at meld time. In this design each safe
page requires a one word entry in the safe map. In a
system with pages of size N words, approximately
P/N safe map pages are written during each meld,
where P is the average number of pages updated by a
transaction.

Through the use of a safe the DataSafe and the
DB Cache ensure the recoverability of melded pages
which have not yet been written to the stable store.
Thus these mechanisms are free to opportunistically
write melded cache pages to the stable store. With
small transactions and by maintaining sufficient large
pool of melded pages to be written to the stable store
the cost of performing these writes can be largely
subsumed to reading and synchronous writing i.e. the

opportunistic writes are performed when the device
heads are suitably positioned due to a read or some
other write. When pages are eventually written back
to the stable store they are written in place. These
mechanisms therefore maintain the original clustering
of data within the stable store, a property often
deemed important in databases and a property lost by
recovery mechanisms such as shadow paging.

6 Conclusions
The characteristics of the DataSafe are that it
maintains the original clustering of the data, writes
recovery information sequentially and utilises
opportunistic write back of melded pages.

An assumption of the DataSafe is that the cache
can hold all pages updated by all running actions.
While this may be achievable is some systems it is
clearly unrealistic in others, particularly those with
high degrees of multi-programming. Thus the
DataSafe is only guaranteed to work efficiently where
the amount of uncommitted data can be bounded, and
uses virtual memory otherwise.

By ensuring recoverability and by having no fixed
notion of concurrency control the DataSafe offers an
alternative to the concurrent shadow paging of the
original implementation of Flask. As such the Flask
architecture is shown to be flexible in that it may be
instantiated with a number of different recovery
mechanisms.

Experiments with the MaStA I/O cost model [14]
have illustrated that the total I/O costs of recovery
mechanisms vary qualitatively between different
application workloads. This enforces the need for a
flexible architecture such as Flask in which the
recovery mechanism may be chosen to best suit the
particular application.

A further contribution of the DataSafe is in
extending the functionality of the DB Cache to allow
more than one concurrent transaction to update a
given page. This eliminates possible false conflicts
incurred by traditional page locking techniques. Thus
the frequency of transaction conflict may be reduced
and the throughput of transactions may be higher than
that of DB Cache. The meld propagation function
used to propagate the changes of one action to all
others is dependent on the particular concurrency
scheme in operation. In many concurrency models
the meld propagation function can be implemented
using logical operations increasing the potential
efficiency of the mechanism.

The DataSafe has been implemented and provides
recovery for the Napier88 [10] system.

7 Hybrid Systems
The MaStA model indicates that different recovery
mechanisms exhibit different read/write costs on the
disk which radically effect the overall performance of
the system. To use the Flask architecture effectively,
the transaction workload must be matched to the
recovery technique and indeed the flexibility of the
system is designed to achieve just that.

One possibility is to use the DataSafe as part of a
hybrid system. For example, before-image shadow
paging [2, 3] maintains the original clustering of data
and writes the recovery data sequentially. Since the
data is paged there is no restriction in the amount of
uncommitted data. However, analysis of before-
image shadow paging, by the MaStA model, indicates
a high cost for writing the page maps. But the page
maps are effectively bounded and therefore it is
possible to think of a system where the before-image
shadow paging is used to ensure recoverability of the
persistent data and the DataSafe for the recoverability
of the page maps. This overcomes the need to hold all
uncommitted data pages in the cache and the high
cost of writing page maps.

It is a matter for further research to postulate other
hybrid systems.

References

[1] Agrawal, R. & DeWitt, D. “Integrated
Concurrency Control and Recovery Mechanisms:
Design and Performance Evaluation”. ACM
Transactions on Database Systems, 10,4 (1985)
pp 529-564.

[2] Brown, A.L. & Rosenberg, J. “Persistent
Object Stores: An Implementation Technique”.
In Dearle, Shaw, Zdonik (eds.), Implementing
Persistent Object Bases, Principles and Practice,
Morgan Kaufmann, 1991 pp 199-212.

[3] Brown, A.L. “Persistent Object Stores”.
Ph.D. Thesis, University of St Andrews (1989).

[4] Davies, C.T. “Recovery Semantics for a
DB/DC System”. In Proc. ACM Annual
Conference (1973) pp 136-141.

[5] Davies, C.T. “Data Processing Spheres of
Control”. IBM Systems Journal, 17, 2 (1978) pp
179-198.

[6] Elhardt, K. & Bayer, R. "A Database
Cache for High Performance and Fast Restart in
Database Systems". ACM Transactions on
Database Systems, Vol. 9, No. 4, December
1984, pp 503-525.

[7] Eswaran, K.P., Gray, J.N., Lorie, R.A. &
Traiger, I.L. “The Notions of Consistency and
Predicate Locks in a Database System”. CACM
19,11 (1976) pp 624-633.

[8] Haerder T. & Reuter, A. "Principles of
Transaction-Oriented Database Recovery".
Computing Surveys, Vol. 15, No. 4, Dec. 1983,
Pages 287-317.

[9] Lorie, R.A., "Physical Integrity in a Large
Segmented Database". ACM Transactions on
Database Systems, Vol. 2, No. 1, March 1977, pp
91-104.

[10] Morrison, R., Brown, A.L., Connor,
R.C.H. & Dearle, A. “The Napier88 Reference

Manual”. University of St Andrews Technical
Report PPRR-77-89 (1989).

[11] Munro, D.S., Connor, R.C.H., Morrison,
R., Scheuerl, S. & Stemple, D.W. "Flask - A
Flexible Layered Architecture for Supporting
Concurrency Control Schemes". 6th International
Workshop on Persistent Object Systems,
Tarascon, France (September 1994). In Persistent
Object Systems (Eds. M.P.Atkinson,
V.Benzaken & D.Maier). Springer-Verlag, pp
16-42.

[12] Munro, D.S., Connor, R.C.H., Morrison,
R., Moss, J.E.B & Scheuerl, S.J.G. "Validating
the MaStA I/O Cost Model for Database Crash
Recovery Mechanisms". In the Proceedings of
the OOPSLA'95 Workshop on Object Database
Behaviour, Benchmarks and Performance,
Austin Texas (October 1995).

[13] Moss, J.E.B. “Nested Transactions: An
Approach to Reliable Distributed Computing”.
University of MIT (1981).

[14] Scheuerl, S.J.G., Connor, R.C.H.,
Morrison, R., Moss, J.E.B. & Munro, D.S. "The
MaStA I/O Cost Model and its Validation
Strategy". In the Proceedings of the Second
International Workshop on Advances in
Databases and Information Systems (ADBIS'95),
Moscow, June 27-30 1995, Volume 1, pp 165-
175.

[15] Stemple, D. & Morrison, R. "Specifying
Flexible Concurrency Control Schemes: An
abstract Operational Approach". Australian
Computer Science Conference 15, Tasmania
(1992) pp 873-891.

	Title
	Abstract
	1 Introduction
	2 The Flask Architecture
	3 The DataSafe
	3.1 The Safe
	3.2 The Cache
	3.3 Per-action Page Maps
	3.4 Per-action Meld and Abort
	3.5 Meld Propagation
	3.6 Recovery
	3.7 Cache Overflow
	3.8 Safe Purge
	3.9 Opportunistic Write Back

	4 Related Work
	5 Evaluation
	6 Conclusions
	7 Hybrid Systems
	References

