
The MaStA I/O Cost Model and its Validation Strategy
S. Scheuerl†, R.C.H. Connor†, R. Morrison†, J.E.B. Moss¥ & D.S. Munro†

†School of Mathematical and Computational Sciences,
University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, Scotland

Email: {stephan, richard, ron, dave}@dcs.st-and.ac.uk

¥Department of Computer Science, University of Massachusetts,
Amherst, Massachusetts, MA 01003, U.S.A.

Email: moss@cs.umass.edu

Abstract

Crash recovery in database systems aims to provide
an acceptable level of protection from failure at a
given engineering cost. A large number of recovery
mechanisms are known, and have been compared
both analytically and empirically. However, recent
trends in computer hardware present different
engineering tradeoffs in the design of recovery
mechanisms. In particular, the comparative
improvement in the speed of processors over disks
suggests that disk I/O activity is the dominant
expense. Furthermore, the improvement of disk
transfer time relative to seek time has made patterns
of disk access more significant. The contribution of
the MaStA (Massachusetts St Andrews) cost model
is that it is structured independently of machine
architectures and application workloads. It
determines costs in terms of I/O categories, access
patterns and application workload parameters. The
main features of the model are:

• Cost is based upon a probabilistic estimation of
disk activity, broken down into sequential,
asynchronous, clustered synchronous, and
unclustered synchronous disk accesses for each
recovery scheme.

• The model may be calibrated by different disk
performance characteristics, either simulated,
measured by experiment or predicted by
analysis.

• The model may be used over a wide variety of
workloads, including those typical of object-
oriented and database programming systems.

The paper contains a description of the model and
illustrates its utility by analysing four recovery
mechanisms, delivering performance predictions for
these mechanisms when used for some specific
workloads and execution platforms. The refinement
of I/O cost into the various access patterns is shown
to give qualitative predictions differing from those of
uniform access time models. Further the results are
shown to vary qualitatively between two
commercially available configurations. The paper
concludes by proposing a validation strategy for the
model.

1 Introduction

Recovery management in database systems provides
engineering solutions to failure, offering a required
degree of reliability by automatically restoring a
system to a coherent and acceptable state.
Conceptually the user manipulates data through reads
and writes to a database implemented on non-volatile
storage, with volatile storage being used as a cache.
Recovery is required because by definition volatile

cache contents are lost when the system crashes.
When failure occurs the user should not be left with
an inconsistent state in the non-volatile store.
Recovery mechanisms prevent this by controlling the
writes to non-volatile storage so that some high level
abstraction of atomicity is maintained. Examples of
such an abstraction include: an atomic “save”
operation in a text editor; a database atomic
transaction; or the commitment of a mutually agreed
design in a co-operative working session. We do not
specifically address failures of non-volatile storage.

Application

Database cache on volatile
store

Database on non-volatile store
Information to
restore consistent
state on failure

Conceptual reads and writes of database

Recovery mechanism ensures cache-consistent
state may be achieved after failure

Figure 1: The General Structure of a Recovery
Mechanism

Figure 1 shows the general principle behind all
recovery mechanisms. The application, although
conceptually communicating directly with the
database, communicates instead with a database
cache implemented on volatile storage. Reads are
fetched from, and writes eventually propagated to,
non-volatile storage. Non-volatile storage is
partitioned into two logical areas: the database itself,
and a recovery partition used to record whatever
information is necessary in a given recovery
mechanism. Examples of such information are: a log
[11]; a shadow page table [16]; and a differential file
[25]. In every case the recovery data is maintained so
that restart can restore a state consistent with the
system's atomicity abstraction.

The cost of recovery mechanisms can be critical to
the overall performance of data-intensive applications
with I/O bandwidth being a limiting factor. Hence
many recovery mechanisms have been invented, each
with different performance tradeoffs [12]. Each
technique's costs involves not only the overhead of
restoring data after failures but also the time and
space overhead required to maintain sufficient
recovery information during normal operation to
ensure recovery. Under different workloads and

configurations these crash recovery mechanisms
exhibit different costs.

Modern trends in hardware design have given a
disproportionate improvement in processor speed
compared to disk access time, and within disks
themselves a disproportionate improvement in
transfer rates compared to seek times. These factors
change the engineering tradeoffs upon which
recovery mechanisms are based, and recently
designed mechanisms tend to favour extra processor
activity to reduce disk I/O, and more asynchronous
I/O as opposed to random access [10, 21]. The advent
of Object-Oriented Database Systems, Persistent and
Database Programming languages has also changed
the demands made upon recovery mechanisms. The
purpose of the model described here is to provide an
analytical framework for comparing recovery
mechanisms under a variety of different workloads
and configurations.

I/O categorisation

I/O access
pattern cost

Probabilistic
measure of
occurrence *

Category A Category B Category C+ + ++

Recovery mechanism

Configuration access behaviourApplication workload
parameters

TOTAL

Figure 2: An overview of MaStA

Figure 2 shows a simplified view of the MaStA
model. Each recovery mechanism's cost is broken
down into constituent independent I/O cost
categories, such as data reads or commit writes. The
overall cost of a mechanism is the sum of the costs of
each category:

Total Cost = ∑ CatCost (i), (i ∈ Categories)

Each category's cost is derived from the number of
accesses it incurs of each access pattern:

CatCost(i) = ∑ n ij * Ak , (j ∈ Occurrences, k ∈
Access Patterns)

For any given medium a set of access patterns is
developed such that each pattern is believed to have
significantly different costs, such as sequential versus
unclustered synchronous writes. The number of
accesses of each pattern is derived from workload
parameters, such as page and object size, and the
density of objects within pages.

The derivation of a cost estimate for a particular
combination of mechanism, configuration and
workload is therefore derived by analysing:

• The mechanism: identifying the cost categories,
and for each category the access pattern and
number of accesses.

• The configuration: determining the average cost
of each access pattern experimentally or
analytically.

• The workload: measuring and choosing values
for the workload parameter.

The identification of these three categories allows the
MaStA model to encompass the patterns of usage in
both traditional and modern database systems.

2 Recovery Mechanisms

Some systems have sophisticated recovery methods
built in as an initial design decision. For example, the
Monads [23] architecture uses shadow paging of its
persistent store to achieve stability. Other systems
such as Cedar [13] incorporate logging as an
auxiliary structure in the file system to speed up
writes and recovery whilst in the log-structured file
system of Rosenblaum and Outerhout [24] all data,
persistent and transient, is kept in logs. Recently there
has been a trend in stock operating systems to
provide limited access to the paging mechanisms
influencing recovery management implementations
such as page based logging and shadow paging [5,
15, 19]. Each of these systems alters the relative cost
of crash recovery.

To illustrate the MaStA model, we chose four
specific recovery mechanisms: object logging and
page logging , both with deferred updates [11]; after -
image shadow paging (AISP) [9, 16]; and before-
image shadow paging (BISP) [3, 5]. These
mechanisms were chosen because of our familiarity
with them [3, 18, 20, 23]. Because we have good
intuitions about how these mechanisms perform
under varying workloads, we can satisfy ourselves
that the model predicts appropriate qualitative
behaviours. Furthermore, having implemented some
of these mechanisms we have a basis for future
empirical validation of the model against actual
implementations.

When using a logging mechanism with deferred
updates, changes are recorded in a log but updates to
non-volatile store may be deferred until commit or
even later. The log may be written sequentially (for
speed), and may be buffered until just before each
transaction commits; group commit can offer further
improvement by writing multiple transactions’
changes together. Since the log is written to a
separate area, database updates do not move database
pages, so the original database clustering, be it good
or poor, is maintained. Updates must eventually be
installed in the non-volatile database. Installing an
update always requires an installation write , though
multiple changes to the same page may be merged to
produce a single page write. In the case of object
logging, installation may also require an installation
read, to obtain the original version of a disk page into
which to merge one or more partial-page updates.
Otherwise, object logging and page logging differ
only in the granularity of the items logged.

In a shadow paging system a page replacement
algorithm controls the movement of pages between
volatile and non-volatile store such that recovery will
always produce a consistent state. To implement this
a disk page table is used to maintain the
correspondence between the virtual pages of the
database and blocks on non-volatile store; the table

may exist (after-image shadow paging) or may be
conceptual (before-image shadow paging).

After-image shadow paging writes each updated page
to a free block and updates the disk page table to
reflect the new mapping. The mechanism maintains a
mirrored root block from which the last consistent
map can be found. When a transaction commits, the
new mappings, in addition to updated data pages, are
written to non-volatile store and then the oldest root
block is updated atomically. Since after-image
shadow paging always writes pages to new disk
blocks, the original clustering of the blocks may be
lost. Note that reclustering may or may not improve
performance; while most database researchers
assume that reclustering degrades performance, log
structured file systems have been seen to offer
improved performance [24].

In before-image shadow paging the first modification
to a page causes the original to be written to a free
disk block. Updates are then performed in place. A
disk page table is used to record the location of the
shadow pages (but not the database pages, since they
do not move), and must be present on disk before
updates overwrite the original disk blocks. The disk
page table can be used to recover the last consistent
state of the database. On commit, updated pages are
written back to disk and the disk page table is no
longer required. Since before-image shadow paging
uses an update-in-place policy it maintains the
original clustering.

3 Developing the MaStA Cost Model

The structure of the MaStA cost model is depicted in
Figure 2. Here that structure is fleshed out, with
specific I/O cost categories, access patterns and
parameter variables, and applied to the four described
recovery mechanisms.

3.1 Categorisation of Recovery Mechanisms

The I/O cost categories used in the MaStA model are:

• Data reads and writes (Data) : The cost of data
reads and writes are included in the model since
the presence of a recovery mechanism may
change the I/O access patterns of a running
system. For this reason MaStA models total I/O
costs as opposed to recovery overheads alone.
For example, an after-image shadow paging
mechanism may be forced to perform clustered
and unclustered synchronous reads because of
long term declustering.

• Recovery reads and writes (Rcvy): The
information to provide recoverability typically
imposes additional costs such as writing log
records in a log based system.

• Installation reads and writes (Instal) :
Database recovery mechanisms that defer
updates to the database may incur installation
I/O costs. For example, an object logging
mechanism must copy updated objects from the
buffer to the database page containing the
object.

• Commit overhead (Comt) : This is the I/O
overhead of recording the committed state of a
transaction on disk. For example in a logging

system this may include writing a transaction
commit record to the log.

Within the MaStA model the four recovery
mechanisms incur costs with I/O categories as shown
in Table 1.

Object
log

Page
log

AISP BISP

Data read ✔ ✔ ✔ ✔

write ✔ ✔ ✔ ✔

Rcvy read ✔

write ✔ ✔ ✔ ✔

Instal read ✔

write ✔ ✔

Comt write ✔ ✔ ✔ ✔

Table 1: Assigning I/O Cost Categories to
Recovery Mechanisms

It can be seen that neither of the shadow paging
schemes require installation reads or writes. This is
because they do not defer updates past commit time.
After-image shadow paging requires recovery reads
and writes to maintain the disk page tables; the other
mechanisms can use an update-in-place policy with a
fixed disk page map. Page logging does not require
installation reads because it installs whole pages as
opposed to merging objects into pages.

3.2 Disk Access Patterns

The crucial refinement of the MaStA model is to
distinguish various I/O access patterns, on the basis
of their significantly different costs. The model
includes four patterns, called s e q u e n t i a l ,
asynchronous , c lus tered synchronous , and
unclustered synchronous , and further breaks each
down into reads and writes. The patterns are intended
to reflect the characteristics of magnetic disk systems,
but the general idea applies to any device whose
access time varies according to the sequence of
positions accessed. The patterns are defined as
follows:

• Sequential reads/writes (rseq , wseq): The data
are read/written in sequentially increasing
positions. This is the most efficient access
pattern because hardware, firmware, and
software tend to be tuned specifically to support
it well. A typical example is writing to a
sequentially structured log.

• Asynchronous reads/writes (r asc, wasc): The
system maintains a pool of read/write requests
which can be processed in any order. The
requests are scheduled in a favourable order, so
if the pool is large enough the average cost can
approach that of sequential I/O. A typical
example is keeping a pool of modified pages
requiring installation in the database.

• Clustered synchronous reads/writes (r clu , wclu):
This comprises localised accesses that are
synchronous and hence cannot be freely
scheduled. A typical example is localised reads
of database pages for active transactions.

• Unclustered synchronous reads/writes (rucl ,
wucl): These are synchronous accesses that
involve moving the access position arbitrarily
far. A typical example is forcing the log (if it is
stored on the same device as the database), since
the database area can be far from the log area.

The costs of the I/O access patterns vary with
machine platform as well as database size and storage
layout. Given a suitably accurate model of the disk
device and associated software, one might derive an
analytical or simulation model to determine the cost
of each I/O access pattern. One can also run
experiments to measure these values, which is the
approach taken here. Note that the cost of an I/O
access pattern may also depend on the application
workload. For example, the parts of the database
accessed determine the locality of clustered I/O, and
the size and structure of the pools of scheduled I/O
requests. While the costs may remain approximately
the same across a range of related workloads they
may vary between substantially different workloads.

The refinement of I/O costs to include different
access patterns turns out to be significant as will be
seen later. The ratio of the cost of the most expensive
unclustered synchronous write access pattern to the
least, sequential read, was observed to be a factor of
six in an actual system.

3.2.1 Assigning I/O Access Patterns

The I/O access patterns for the four recovery
mechanisms are given in Tables 2a and 2b.

Object
logging

Page
logging

Data read clustered
synchronous

clustered
synchronous

write sequential sequential

Rcvy read

write sequential sequential

Instal read asynchronous

write asynchronous asynchronous

Comt write
sequential (1)
& unclustered

synchronous(2)

sequential (1)
& unclustered
synchronous(2)

Table 2a: I/O Access Pattern Assignments for
Logging

In object logging data reads are clustered
synchronous because the mechanism maintains the
initial clustering of blocks. Data writes consist of
writing sequential records to the log. Recovery writes
are also to the log, so incur sequential write costs.
Installation reads may be required when updated
objects are copied from the buffer to the database.
The pages containing the installed objects are written
back to disk using installation writes. Installation I/O
can be delayed and therefore are asynchronous.
Commit I/O consists of writing a commit record to
the log. This is normally written with other log
records and so is given a sequential write cost.
Writing the commit record may also incur two
unclustered synchronous seeks: one to position the
device at the log and one to move it back to the
database area. The second actually occurs at the
beginning of the next data read but is most

conveniently modelled here. In accordance with our
assumption that main memory is relatively plentiful,
we assume that logged changes are retained in
volatile store until installed, so that the log
installation does not need to read the changes back
from the log.

AISP BISP

Data read
clustered &
unclustered
synchronous

clustered
synchronous

write sequential clustered
synchronous

Rcvy read unclustered
synchronous

write sequential sequential

Instal read

write

Comt write
sequential (1)
& unclustered

synchronous(2)

sequential (1)
& unclustered

synchronous(2)

Table 2b: I/O Access Pattern Assignments for
Shadow Paging

Page logging differs from object logging only in the
granularity of the log records. Since the log contains
complete updated pages, installation reads are not
required.

In after-image shadow paging, updated pages are
written to free disk blocks. These shadow blocks can
be allocated contiguously, so data writes can be
sequential. Through the loss of the original clustering
of the pages, data reads may require clustered and
unclustered synchronous reads. Recovery reads are
required to read the page mapping tables; such reads
require unclustered synchronous disk seeks.
Recovery writes to write the page tables can be
sequential once the disk head is correctly positioned.
The cost of this seek is charged to commit I/O.
Commit I/O consists of writing the root block and is
given the cost of an unclustered synchronous write.

In before-image shadow paging clustering is
maintained, so data reads and writes are both
clustered synchronous. There are two costs involved
in recovery writes. The first is writing before-images
to shadow blocks. Shadow blocks can be allocated
contiguously and written sequentially. The second
cost is writing page table mappings indicating the
locations of the shadow copies. These mappings must
be written before an original block is overwritten, and
therefore consists of unclustered synchronous writes.
Commit I/O is as for after-image shadow paging.

3.3 Transaction Workload

The goal of the application workload model is to
capture all the parameters that affect I/O. For
example, the number of updated pages affects the
number of log records or shadow pages written.
These parameters are expressed in terms of derived
variables which are normalised to produce the
number of page I/Os incurred.

The application workload derived variables could be
obtained by simulation, measurement of a real system
or, as in this case, from a combination of basic
variables that decompose workload into more

fundamental units. The basic variables, the derivation
functions and the method of calculation of the
derived variables using the derivation functions is
given in [26]. Here we concentrate on the derived
variables to illustrate the workings of the MaStA
model. Table 3 describes the application workload
derived variables used to cost the four recovery
mechanisms.

Derived
Variable

Description

PMiss the number of data page read
misses

PDirty the number of pages updated

PTMiss the number of page table page
read misses

PTDirty the number of page table pages
updated

PIRead the number of installation reads

PIWrite the number of installation writes

PLog the number of pages written for
log records

PolHouse the number of pages written for
log housekeeping information

PpHouse
the number of pages written to
record the position of pages in
the log

PcommR the number of log pages written
to secure a commit record

PRoot the number of root pages written
to the log to record commit state

Table 3: Workload Derived Variables

The model includes additional variables to take
account of implementation details of particular
recovery mechanisms. These variables are described
below.

3.4 Parameter Determination of Object
Logging Mechanisms

The following variables affect the amount of data
written to the log when using object logging:

• The average ratio of object size to log record
size. Some logging mechanisms may record
only updated byte ranges thereby potentially
reducing the amount of the data written to the
log.

• The average number of log records per updated
object. For example, a mechanism which writes
a record for every update may write a different
amount from a mechanism writing only one
record per updated object.

• The size of per-log-record housekeeping data.

3.5 Parameter Determination of Shadow
Paging Mechanisms

In shadow paging mechanisms the choice of I/O
access patterns used in the I/O categories is
influenced by the block allocation strategy used.
Allocating new blocks sequentially, for example, may
allow the mechanism to take advantage of sequential
writes. Other possible allocation strategies include:

• Paired blocks: all blocks are allocated in pairs,
so that shadow blocks are allocated adjacent to
original blocks.

• Same cylinder: the mechanism tries to allocate
shadow blocks in the same cylinder as originals.

• Dynamically clustered: new blocks are chosen
from a set of free blocks, allowing some control
over clustering.

3.6 The MaStA Cost Model for the Four
Recovery Mechanisms

Table 4a and 4b show the cost functions for the four
recovery mechanisms. Within each category the I/O
cost function is the product of a derived variable and
an I/O access pattern cost, or in the case of before-
images shadow paging, a sum of two such products.

I/O
Category

Object Logging Page Logging

Derived
Variable

Access
Pattern

Derived
Variable

Access
Pattern

Data
Read

PMiss rclu PMiss rclu

Data
Write

PLog wseq PDirty wseq

Recovery
Read

Recovery
Write

PolHouse wseq PpHouse wseq

Instal
Read

PIRead rasc

Instal
Write

PIWrite wasc PIWrite wasc

commit/
other

PcommR
2

wseq
sucl

PcommR
2

wseq
sucl

Table 4a: I/O Cost Functions for Logging

I/O
Category

After Image
Shadow Paging

Before Image
Shadow Paging

Derived
Variable

Access
Pattern

Derived
Variable

Access
Pattern

Data
Read

PMiss rucl /
rclu

PMiss rclu

Data
Write

PDirty wseq PDirty wclu

Recovery
Read

PTMiss rucl

Recovery
Write

PTDirty wseq PTDirty
PDirty

wseq
wseq

Instal
Read

Instal
Write

commit/
other

PRoot
2

wucl
sucl

PRoot
1

wucl
sucl

Table 4b: I/O Cost Functions for Shadow Paging

An access pattern Sucl is attributed to the
commit/other category to indicate that unclustered
seek costs are incurred by the mechanisms. Two

unclustered seeks are incurred for example by the
logging mechanisms to move to the log area and back
to the data area when writing to the log.

As an example, when written out, the cost function
for object logging is:

PMiss * rclu+ PLog * wseq + PolHouse * wseq +
PIRead * rasc + PIWrite * wasc + PcommR * wseq +
2 * sucl

4 Experimentation and Results

To show the flexibility and utility of the model,
several experiments will be described. By experiment
we mean supplying values for the variables and
predicting the I/O costs of the four schemes.

In the experiments described here the following
assumptions are made :

• main memory is large enough to hold all
required log records, page mapping tables and
data pages accessed and updated by all running
transactions;

• a paged virtual memory system is assumed and
hence all mechanisms perform the same number
of data reads.

The following recovery mechanism costs are omitted:

• the cost of recovering from a crash;

• the cost of aborting and re-running transactions;

• other costs of concurrency control schemes;

• the influence of multi-programming;

• checkpointing.

4.1 Calibration

Measurements were performed on two platforms to
illustrate the platform independence of the MaStA
model. From these measurements, values were
obtained for the I/O access patterns for each platform.
The two platforms were a Sun SPARCStation ELC
running SunOS 4.1.3 with 48MB main memory,
500MB CDC Wren V SCSI drive, and a DEC Alpha
AXP 3000/600 running OSF/1 V2.0 with 128MB
main memory and a 2.1GB Seagate ST12550N
(Barracuda II) SCSI drive. The experiments involved
block read and write operations on large disk files
which spanned the majority of the disk, intending to
avoid operating system disk cache effects. The
locality of I/O operations was controlled to simulate
sequential, asynchronous, and unclustered
synchronous I/O. All experiments were performed on
a cold single-user system and timings were obtained
using the operating systems’ time commands. A
"cold" cache was obtained by reading a large file
from another device, forwards and backwards.

Sequential I/O was simulated by performing ordered
I/O operations on contiguous blocks of the file.
Unclustered synchronous I/O was simulated by
choosing at random 10% of the blocks in the file and
accessing the blocks in the random order.
Asynchronous I/O was simulated by sorting the block
numbers used in the unclustered synchronous
experiment and then accessing these in order. There
was less than 5% variation between runs. Table 5
shows the measured I/O access pattern costs as a ratio
to that of sequential reads. It is important to point out

that these do not compare the I/O access costs of the
Alpha and the SPARCStation but give each
machine’s I/O access costs as multiples of the cost of
a sequential read on that machine. ASR stands for
Alpha sequential read and SSR for SPARCStation
sequential read.

I/O Access Pattern Alpha SPARC
Station

Sequential reads 1.0 ASR 1.0 SSR

Sequential writes 1.0 ASR 1.0 SSR

Asynchronous
reads

4.0 ASR 1.8 SSR

Asynchronous
writes

2.1 ASR 1.5 SSR

Clustered
synchronous reads 3.0 ASR 1.5 SSR

Clustered
synchronous writes 3.5 ASR 3.5 SSR

Unclustered
synchronous reads

5.6 ASR 2.6 SSR

Unclustered
synchronous writes

5.7 ASR 5.5 SSR

Table 5: Costs Assigned to I/O Access Patterns

4.2 Applications of the Model

Experiment 1

Experiment 1 considers the relative costs of the
recovery mechanisms under a given workload. The
I/O access pattern costs used are those of Table 5
with the basic workload variable values of Table 6.

In this experiment all but the DObjLoc basic variable
remain constant. In this and subsequent experiments
the degree of locality of the objects updated is varied
between 0 and 1 thus varying the number of pages
dirtied obtained from the derived variable PDirty.
The x-axis of the graphs plotted indicates the pages
updated as a percentage of the number of pages
accessed.

Workload
Variables

Description Values

Oacc number of objects
accessed

10000

Psize page size 2048 words

Osize object size 16 words

ObjLoc object locality within
the address range*

0.3

DObjLoc dirty object locality
within pages

varied in the
range [0, 1]

Odirt percentage of objects
updated

20%

iread
% of updated pages
requiring installation
reads

30%

iwrite
% of updated pages
requiring installation
writes

30%

PTemp degree of page
temporal locality

20%

Ploc locality of updated
pages

20%

LRover average log record
overhead

3 words

MapEntry mapping entry size 2 words

LRratio log record/object
ratio

100%

Table 6: Basic Workload Variables Values used in
Experiment 1

The graphs in Figure 3 plot values for this percentage
from 0.19%, the minimum possible to 30% using
three sets of I/O access pattern costs.

OL PL AISP BISP

a. SPARCStation c. Uniformb. Alpha

% accessed pages updated

0

5000

10000

15000

20000

25000

30000

0 10 20 30

C
os

t
(m

ul
ti

pl
e

of
 s

eq
ue

nt
ia

l
re

ad
 c

os
t)

0

5000

10000

15000

20000

25000

0 10 20 30

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30

Figure 3: Experiment 1

Graphs 3.a and 3.b show that when the percentage of
accessed pages updated is at the minimum, the
mechanisms, except for after-image shadow paging,
have similar costs. This is because they have the
same data read costs, and because at this level of
mutation write costs are small relative to read costs.
After-image shadow paging has higher I/O costs even
at low percentages of updated pages because its data
reads are in part unclustered synchronous whilst the
other schemes are clustered synchronous.

* This value can be varied in the range [0, 1]. A value
of 1 indicates that the objects are held on the fewest
pages possible. A value of 0 indicates that the objects
are scattered in the address range and are held on as
many pages as possible.

As would be expected the I/O costs of all the
mechanisms increase as the percentage of updated
pages increases. The graphs illustrate that the I/O cost
of before-image shadow paging increases more
rapidly compared to the other mechanisms. This is
due to the extra page writes required in this
mechanism. Figure 3.c illustrates the relative costs of
the recovery mechanisms calculated using a uniform
I/O access pattern cost of 3.5 in every I/O cost
category. As can be seen the relative positions of the
costs of the recovery mechanisms is different from
that of graphs 3.a and 3.b, stressing the importance of
distinguishing different I/O access patterns.

Experiment 2

This experiment increases the object locality from
30% to 100%, that is the objects accessed are densely
packed, and increases the percentage of objects
updated from 20% to 60%. The remaining workload
variables are unchanged from Experiment 1.

a. SPARCStation c. Uniformb. Alpha

% accessed pages updated

C
os

t
(m

ul
ti

pl
e

of
 s

eq
ue

nt
ia

l
re

ad
 c

os
t)

0

50

100

150

200

250

300

350

400

0 50 100

0
50

100
150

200
250

300
350

400
450

0 50 100

0

100

200

300

400

500

600

700

0 50 100

Figure 4: Experiment 2

Varying the application workload causes up to 100%
of the accessed pages to be updated. Comparing
graphs the 4.a and 4.b shows that after-image shadow
paging outperforms the other schemes on the
SPARCStation when the percentage of updated pages
is higher than 75%. This happens for two reasons.
Firstly, with high object locality and a higher
percentage of objects updated, the amount of
unchanged data written back is reduced in the page
based mechanisms. This reduces the advantage of
object logging over page based schemes. Secondly,
as the number of pages updated increases, page
logging costs increase because there are more
installation writes. Figure 4.c shows predictions of
the uniform I/O cost model, which again are different
from the refined models.

Experiment 3

This experiment increases the average object size
(Osize) from 16 to 1024 words to show the effect on
the mechanisms of accessing large objects. The
remaining workload variables, including object
locality and the percentage of objects updated, are
given the values in Table 9.

a. SPARCStation c. Uniformb. Alpha

% accessed pages updated

C
os

t
(m

ul
ti

pl
e

of
 s

eq
ue

nt
ia

l
re

ad
 c

os
t)

0

5000

10000

15000

20000

25000

0 10 20 30

0

5000

10000

15000

20000

25000

30000

0 10 20 30

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30

Figure 5: Experiment 3

Graphs 5.a and 5.b show that the minimum
percentage of updated pages has increased due to the

large object size. Under this workload, page logging
has the lowest costs on the Alpha, and when low
percentages of pages are updated on the
SPARCStation. There are two reasons for this: page
logging requires no installation reads, and page
logging reads are better clustered than those of after-
image shadow paging. The difference between the
cost of after-image shadow paging and the other
mechanisms is more pronounced in graph 5.b than in
graphs 5.a again due to the difference in the ratios of
the I/O access pattern costs between the two
configurations.

These experiments show that relative performance of
the recovery mechanisms depends not only on the
application workload but also on the platform. They
also demonstrate a primary hypothesis of the model:
that different I/O access patterns affect the costs
strongly enough that they must be modelled.

5 Validation

The MaStA model is an analytical cost model which
estimates of performance for a particular combination
of application workload, recovery mechanism, and
execution platform [26]. Since the interactions
between these are highly complex, performance often
proves impossible to predict intuitively. Measurement
on real systems is usually too expensive a task to
contemplate and too complex for fine-grained
analytical modelling. The result is that arbitrary
choices are sometimes made for the recovery
mechanism and execution platform to support a
particular application system.

The MaStA model provides an analytical framework
within which an estimate may be made at relatively
low cost. To recap, the main features of the model
are:

• Cost is based upon a probabilistic estimation of
disk activity, broken down into sequential;
asynchronous; clustered synchronous, and
unclustered synchronous disk accesses for each
recovery scheme.

• The model may be calibrated by different disk
performance characteristics, either simulated,
measured by experiment or predicted by
analysis.

• The model is usable over a wide variety of
workloads, including those typical of object-
oriented and database programming systems.

Three major abstractions are made to simplify the
process of making a cost estimate, based upon the
following critical underlying assumptions:

Recovery mechanism abstraction

Each recovery mechanism is analysed to assess its
I/O costs in a number of different categories. The
total cost derived by the model is the sum of these
categories. The purpose of the categorisation is to
ameliorate the analysis of the recovery mechanism,
and indeed it has proved relatively straightforward to
perform such analysis. The success of this abstraction
depends heavily upon two assumptions:

Assumption 1 : The significant extra cost
associated with a recovery mechanism is in extra
I/O activity generated: extra CPU costs are
insignificant.

Assumption 2 : The interaction between the
different categories of I/O accesses is not
significant; that is, the cost of running the I/O
stream generated by a given recovery
mechanism is not significantly different from the
cost of running serially the streams generated by
each category.

Note that Assumption 2 states only that the category
streams must be re-orderable, rather than the total set
of disk accesses. As will become clear, the category
streams are defined in such a way that, for example,
batches of sequential or asynchronous accesses are
always within a single category. The assumption is
thus much weaker than a total re-ordering
assumption.

Disk performance abstraction

The performance of I/O devices such as disks is
highly dependent upon the ordering and
synchronicity attributes of the access streams. The
abstraction assigns batches of disk accesses into eight
different patterns. These are, for both reads and
writes: sequential; asynchronous; clustered
synchronous, and unclustered synchronous. The cost
abstraction assigns an average cost to each disk
access in each of these patterns. The average cost
may be obtained either by simulation, experiment or
by further analysis of the device in question.

Assumption 3 : The cost of running an I/O stream
in each pattern is the same as multiplying the
average cost of that pattern by the number of
accesses.

Workload abstraction

The last abstraction is over the workload associated
with the application. As the interest is only in I/O
behaviour, this need not encompass any CPU activity
of the application, but only its object accesses. The
application is characterised in terms of factors such as
average object size, object density, update density
and so on. Again, a major issue is to keep the
characterisation sufficiently simple that it may be
measured or estimated for a given application
workload.

Assumption 4: The cost of running the I/O
stream generated by an application is
approximately the same as running the I/O
stream generated by the workload abstraction of
the application.

5.1 Validation Strategy

The proposed strategy for validation of the MaStA
model is outlined in Figure 6. A main feature of this
approach is that results from simulations are
compared alongside experimental measurements
from real systems at the transaction workload,
database and device levels. Validation is achieved
through an analysis of the resulting times and traces
from a variety of combinations of synthetic and
measured experiments.

Napier88 Mneme Exodus Database
Simulator

Real
Device

Device
Simulation

007
Benchmarks

001
Benchmarks

Synthetic
Workloads

object access read, write,
commit, abort

I/O
access
stream

Time
Figure 6: Validation Strategy

A trace of database accesses generated from synthetic
workloads and the standard 001 [8] and 007 [7]
benchmark suites are fed into a number of database
systems and simulators reflecting different recovery
methods and buffer models. An I/O access stream is
produced from these systems tagged by I/O cost
category. These traces are then run across a number
of real and simulated devices to produce an overall
cost. The Napier88 systems [17] are supported by
object stores [4, 19] which utilise a before-image and
an after-image shadow-paging scheme whilst
Mneme [18] and Exodus [6] use page and object-
based logging respectively. By feeding into these
systems representative samples of applications, a
range of performance of recovery methods is
obtained.

The purpose of the validation strategy is to verify the
assumptions in the model that support the basic
abstractions. These four assumptions referred to in
section 1 are now re-examined for validation.

Assumption 1 : The extra CPU costs are obtained
by instrumenting the execution platform. An
estimate of how significant these costs are then
made.

Assumption 2: The cost of the interaction of the
I/O streams is calculated by comparing the
overall running time with the time for the
streams when they are re-ordered into I/O
categories.

Assumption 3 : The cost of running an I/O stream
for a pattern is calculated and compared with the
estimated cost of the product of the number of
accesses and the average cost for that pattern.

Assumption 4: The cost of running the
workloads on the validation suite are compared
with the estimate in the MaStA model.

Once the MaStA model has been calibrated by the
above experiments there is a final assumption that is
used in estimating the cost of any system. The
assumption is that there are no significant phase
changes in the performance of the system [2].

6 Related Work

Reuter [22] presents a cost model which uses this
classification to analyse and compare the
performance of a number of recovery schemes. The
model ignores CPU costs using the number of I/O
operations as a cost unit. The model computes a
number of costs associated with a recovery
mechanism taking into account the mean time
between failures, the frequency of the checkpointing

interval, the probability of abort and the availability
of shared pages. Altogether ten recovery schemes are
analysed and compared.

From simulations using different transaction
workloads, Reuter concludes that page-logging is
generally more costly than object-level logging, that
an increase in shared pages makes all f o r ce
algorithms [12] drastically worse than others and that
schemes that use indirect mapping, such as after -
image shadow paging, impose extra overheads unless
the page-table costs can be amortised.

Agrawal and DeWitt [1] produced an analytical
model which they use to investigate the relative costs
of object logging, shadow paging, and differential
files and their interaction with locking, timestamp
ordering and optimistic concurrency control schemes.
Rather than produce costings based on transaction
throughput their model uses a performance metric
that describes the burden imposed on a transaction by
a recovery mechanism and a particular concurrency
control scheme. The model recognises that real
systems have finite resources and incorporates CPU
costs and the impact that the concurrency control
schemes may have on the probability that a
transaction will run to completion. Burden ratios for
the different integrated concurrency control and
recovery mechanisms are calculated and compared
using sample evaluations from varying transactions
workloads and database characteristics. The
conclusions from these test runs suggest that there is
no overall best integrated mechanism but that a load
which comprises of a mix of transaction sizes favours
logging with a locking approach. Shadow paging
performs rather poorly in their tests. However their
model takes no account of synchronous costs, such as
the writing back of data pages in shadow paging, or
checkpointing in logging. A weakness of the model
with respect to more modern systems is that shadow
page tables reads were assumed to be from disk,
whereas with modern memory sizes the entire
shadow page table may reasonably be assumed to be
resident in main memory.

These previous studies represent work that is
probably closest to that presented in this paper.
Further investigation of analytical models is justified
in the light of more recent knowledge and more
modern machine architectures. In particular, both of
the above models have only a single disk I/O cost,
making no allowance for the different costs of
sequential, asynchronous or synchronous I/O,
whereas most modern schemes are designed to take
advantage of the differences between these costs.

In contrast to the analytical models described above,
the Predator project [14] takes an empirical approach
to comparing recovery methods. Prototype databases
supporting different recovery mechanisms are
constructed on stock hardware together with a
transaction simulator used for experimentation. A
suite of transaction experiments which vary locality
of update, abort frequency and I/O access methods is
carried out over databases supporting concurrent
shadow paging and page based logging. The
performance metrics are based on transaction
throughput and mean response time. The experiments
are constructed from short transactions on a small
system and conclude that shadow paging works best
when there is locality of reference and where the

page table cache is large, otherwise logging is the
better mechanism. The main observation from this
work suggests that there is no one best mechanism
and that the choice of recovery method is application
dependent. However one interesting observation
made is that the transaction abort rate has a more
radical effect on the performance of logging recovery
schemes than on shadow paging.

7 Conclusions

Comparisons between different recovery mechanisms
is often a difficult and inconclusive task. A number of
not necessarily independent criteria have to be
considered when making comparisons. These are:

• The tradeoffs in the time taken to recover after
failure, the time and resources used to collect
recovery information and the time and resources
used in constructing a recoverable system.

• The store architecture and its anticipated use.
The issues here include the frequency of
updates, locality of reference, object identity and
addressing. Scalability of the recovery
mechanism with respect to store size may also
be of concern.

• The expected frequency of hard and soft crashes.
In conflict concurrency systems the frequency of
aborted actions is also a factor. This may also
depend on the concurrency control
implementation used, for example optimistic
concurrency control may result in more
transaction aborts than say two-phase locking.

• The frequency, cost and style of checkpoints.

• The hardware and operating system support.

The major motivation for this work is that ongoing
changes in machine architectures, hardware
technology, and database usage patterns are
perceived to change the cost comparisons among
different recovery mechanisms. To this end an
attempt has been made to produce a cost model
which is independent from both machine and
application workload parameters; these parameters
may be injected into the model based either on
measurements from real systems or as the result of
further analyses and estimates.

Although the work is at an early stage, the line of
investigation is believed to have been justified for
two reasons: firstly, a cost model which is
independent from machine and workload parameters
has been implemented and has been shown to be
usable; secondly, early investigations of the model fit
with both intuition and some rudimentary
experiments with real systems. The results do show
already that some of the orthodoxy of crash recovery
engineering may be challenged in the context of
modern application loads and hardware systems.

Much work remains to be done in terms of the
refinement and verification of the model. To avoid
complexity, the model has been kept deliberately
simple; in particular, the costs of checkpointing and
transaction failure recovery are not yet included. The
results shown by the current model therefore favour
object logging somewhat artificially over the other
mechanisms.

In terms of verification, it is intended to parameterise
the model with a number of full sets of configuration

and workload parameters which are obtained by
measurement and analysis from real database
programming applications. These will be used to
calibrate and inspire confidence in the model, with
the eventual intention of being able to predict the
running time of an arbitrary mixture of application,
recovery mechanism and platform.

This paper has described a strategy for validating the
MaStA model by verifying the four assumptions that
support the basic abstractions. An experimental
framework using simulations, measurements,
synthetic and real workloads which are fed into
simulators and real systems that implement recovery
methods, has been proposed. This work is now
underway.

8 Acknowledgements

This work was undertaken during the visit of Eliot
Moss to the University of St Andrews as an EPSRC
Senior Visiting Fellow on grant GR/K 34924. This
work was also supported by ESPRIT III Basic
Research Action 6309 — FIDE2. Richard Connor is
supported by EPSRC Advanced Fellowship
B/94/AF/1921. Further work on the validation of
MaStA will be undertaken with the support of
EPSRC Grant GR/K 55509.

9 References
[1] Agrawal, R. & DeWitt, D. "Integrating

Concurrency Control and Recovery
Mechanisms: Design and Performance
Evaluation". ACM Transactions on Database
Systems, Vol. 10, No. 4, December 1985, pp
529-564.

[2] Atkinson, M.P., Birnie, A., Jackson, N. &
Philbrow, P.C. “Measuring Persistent Object
Systems” In Proc. 5th International Workshop
on Persistent Object Systems, San Miniato,
Italy (1992). In Persistent Object Systems (Eds.
A.Albano & R.Morrison). Springer-Verlag pp
63-85.

[3] Brown, A.L. “Persistent Object Stores”. Ph.D.
Thesis, University of St Andrews (1989).

[4] Brown, A.L., Dearle, A., Morrison, R., Munro,
D.S. & Rosenberg, J. "A Layered Persistent
Architecture for Napier88". International
Workshop on Computer Architectures to
Support Security and Persistence of
Information, Universität Bremen, West
Germany, (May 1990). In Security and
Persistence. (Eds. J.Rosenberg & L.Keedy).
Springer-Verlag, 155-172.

[5] Brown, A.L. & Rosenberg, J. “Persistent Object
Stores: An Implementation Technique”. In
Dearle, Shaw, Zdonik (eds.), Implementing
Persistent Object Bases, Principles and
Practice, Morgan Kaufmann, 1991 pp 199-212.

[6] Carey, M.J., DeWitt, D.J., Frank, D., Graefe,
G., Muralikrishna, M., Richardson, J.E. &
Shekita, E.J. “The Architecture of the
EXODUS Extensible DBMS”. In Twelfth
International Conference on Very Large Data
Bases, 1986 pp 52-65.

[7] Carey, M.J., DeWitt, D.J. & Naughton, J.F.
“The OO7 Benchmark”. In SIGMOD
Conference on the Management of Data, 1993.

[8] Cattell, R.G.G. & Skeen, J. “Object Operations
Benchmark”. ACM Transactions on Database
Systems 17,1 (1992) pp 1-31

[9] Challis, M.P. “Data Consistency and Integrity
in a Multi-User Environment”. Databases:
Improving Usability and Responsiveness,
Academic Press, 1978.

[10] Elhardt, K. & Bayer, R. "A Database Cache for
High Performance and Fast Restart in Database
Systems". ACM Transactions on Database
Systems, Vol. 9, No. 4, December 1984, Pages
503-525.

[11] Gray, J.N. “Notes on Database Operating
Systems”. LNCS 60, Springer-Verlag (1978) pp
393-481.

[12] Haerder, T. & Reuter, A. “Principles of
Transaction-Oriented Database Systems”. ACM
Computing Surveys, 15,4 (1983) pp 287-318.

[13] Hagmann, R.B. “Reimplementing the Cedar file
system using logging and group commit”. In
Proc. 11th Symposium on Operating Systems
Principles, 1987 pp 155-162.

[14] Kent, J., Garcia-Molina, H. & Chung, J. “An
experimental evaluation of crash recovery
mechanisms”. In Proc 4th ACM Symposium on
Principles of Database Systems (1985) pp 113-
122.

[15] Koch, B., Schunke, T., Dearle, A., Vaughan, F.,
Marlin, C., Fazakerley, R. & Barter C. “Cache
Coherency and Storage Management in a
Persistent Object System”. in Dearle, Shaw,
Zdonik (eds.), Implementing Persistent Object
Bases, Principles and Practice, Morgan
Kaufmann, 1991 pp 103-113.

[16] Lorie, A.L. “Physical Integrity in a Large
Segmented Database”. ACM Transactions on
Database Systems, 2,1 (1977) pp 91-104.

[17] Morrison, R., Brown, A.L., Connor, R.C.H. &
Dearle, A. “The Napier88 Reference Manual”.
University of St Andrews Technical Report
PPRR-77-89 (1989).

[18] Moss, J.E.B. & Sinofsky, S. “Managing
persistent data with Mneme: Designing a
reliable shared object interface”. In Dittrich,
K.R. (ed.) Advances in Object-Oriented
Database Systems: Second International
Workshop on Object-Oriented Database
Systems, LNCS 334, Springer-Verlag, 1988 pp
298-316.

[19] Munro, D.S., Connor, R.C.H., Morrison, R.,
Scheuerl, S. & Stemple, D.W. “Concurrent
Shadow Paging in the Flask Architecture”. To
appear in Proc. 6th International Workshop on
Persistent Object Systems, Tarascon, France
(1994).

[20] Munro, D.S. “On the Integration of
Concurrency, Distribution and Persistence”.
Ph.D. Thesis, University of St Andrews (1993).

[21] O'Toole, J. & Shrira, L. "Opportunistic Log:
Efficient Installation Reads in a Reliable Object
Server". Technical Report MIT/LCS-TM-506,
March 1994. To appear in 1st International
Symposium on Operating Systems Design and
Implementation, Monterey, CA (1994).

[22] Reuter, A. “Performance Analysis of Recovery
Techniques”. ACM Transactions on Database
Systems, 9, 4 (1984), pp 526-559.

[23] Rosenberg J., Henskens F., Brown A.L.,
Morrison R. & Munro D.S. "Stability in a
Persistent Store Based on a Large Virtual
Memory.". International Workshop on
Computer Architectures to Support Security
and Persistence of Information, Universität
Bremen, West Germany, (May 1990). In
Security and Persistence. (Eds. J.Rosenberg &
L.Keedy). Springer-Verlag pp 229-245.

[24] Rosenblum, M. & Ousterhout, J.K. “The design
and implementation of a log-structured file
system”. In Proc 13th Symposium on Operating
Systems Principles, 1991 pp 1-15.

[25] Severance, D. “A Practical Guide to the Design
of Differential Files for Recovery of On-line
Databases”. ACM Transactions on Database
Systems, 7,4 (1982) pp 540-565.

[26] Scheuerl, S., Connor R.C.H., Morrison, R.,
Moss, J.E.B. & Munro, D.S. “MaStA - An I/O
Cost Model for Database Crash Recovery
Mechanisms” Technical Report CS/95/1
(1995), University of St Andrews.

	Title
	Abstract
	1 Introduction
	2 Recovery Mechanisms
	3 Developing the MaStA Cost Model
	3.1 Categorisation of Recovery Mechanisms
	3.2 Disk Access Patterns
	3.2.1 Assigning I/O Access Patterns

	3.3 Transaction Workload
	3.4 Parameter Determination of Object Logging Mechanisms
	3.5 Parameter Determination of Shadow Paging Mechanisms
	3.6 The MaStA Cost Model for the Four Recovery Mechanisms

	4 Experimentation and Results
	4.1 Calibration
	4.2 Applications of the Model

	5 Validation
	5.1 Validation Strategy

	6 Related Work
	7 Conclusions
	8 Acknowledgements
	9 References

