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Abstract

The principal tasks of an operating system are to manage the resources of the
system, maintain the permanent data of the system and to provide an efficient
environment for the execution of user programs.  In conventional operating
systems these tasks are centred around the file system as the repository of
permanent data and virtual memory as the execution environment.  Persistent
systems offer an alternative view in which the lifetime of data is separated from the
access mechanism.  In a persistent system all data, regardless of its lifetime, is
created and manipulated in a uniform manner.  When persistence is included as the
basic abstraction of an operating system, many of the inadequacies of existing
operating systems are eliminated and the tasks of an application developer are
greatly simplified.  This results in major improvements both in terms of program
development time and execution efficiency.  Grasshopper, a persistent operating
system being developed by the authors, provides a testbed for the demonstration of
these claims.

Introduction

The principal tasks of an operating system are to manage the resources of the system, maintain
the permanent data of the system and to provide an efficient environment for the execution of
user tasks.  In addition, users expect that the operating system will provide a level of resilience
to failure and appropriate facilities to recover from failure with a minimum of interruption to
computations and minimum loss of data.  Most existing operating systems provide the
resource management, permanent data maintenance and execution environment.  However,
there are two common inadequacies: the discontinuity between permanent and temporary data
and the lack of resilience to failure.

The model of permanent data (a file system) is fundamentally different from the model of data
supported in the execution environment (virtual memory).  Consequently, permanent data must
be accessed indirectly via the file system interface making it difficult to maintain complex data
structures such as graphs.  By contrast, arbitrary data structures may be created and
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manipulated in virtual memory, but these cannot persist longer than the lifetime of the creating
program.

The support of two different data models results in a number of difficulties and potential
inefficiencies:

(i) Programmers must determine the lifetime of their data early in the design process and
write their program accordingly, potentially resulting in duplication of effort.

(ii) If the data embedded within a complex data structure is to be stored permanently, the
programmer must write code to flatten the structure and copy it to a file, and
corresponding code to reload it.

(iii) The programmer must deal with two different protection models.

Memory-mapped files are an attempt to blur this distinction.  However, they are limited in their
application, partly due to the lack of support for resilience and recovery.

Resilience of data and computations are essential for many applications.  For example, a user
editing a file expects that the file will not be lost if the system crashes.  Indeed, they would
prefer that all of the changes up to the time of the crash are included.  Similarly, users with long
running applications (e.g. simulations) would prefer it if these were automatically restarted
from the point at which the crash occurred.  Since the operating system does not include such
services, they are added to each application on an ad hoc basis as discussed in the next section.

In 1981, Atkinson [1, 2] proposed that all data in a system should be able to survive for as long
as that data is required; he called the attribute of longevity persistence.  He also proposed that
all data should be treated in a uniform manner regardless of the length of time for which it
persists. That is, the persistence of data is orthogonal to its other attributes such as size, type,
ownership etc. Systems that provide this abstraction are said to support orthogonal persistence.
In this sense orthogonally persistent systems provide a uniform abstraction over all data
storage.  Furthermore, since the state of a process is just data, processes themselves may be
made persistent [15] and may outlive a single invocation of a system.

Although persistence can be implemented by a programming language runtime system [2] it is
our contention that the provision of support for persistence at the operating system level
ensures the overall integrity of the data without restricting the system to a single language, and
that such a persistent operating system provides a solution to the problems outlined above.
Although virtually all of the examples cited in this paper can be implemented using a
conventional operating system, the result is usually a somewhat contorted design and the
programmer is forced to wrestle with the operating system in order to achieve the desired
result.  A persistent operating system provides a natural and elegant solution, whilst
maintaining efficiency.

This paper describes the approach to persistence and resilience taken in Grasshopper [9], a
persistent operating system being developed at the Universities of Stirling and Sydney.  We
first describe the various approaches to data management and demonstrate that the approach
used in persistent systems removes the need for ad hoc techniques.  This is followed by a
discussion of the requirements of a persistent operating system.  We then describe the
persistence model provided by Grasshopper and show how it provides a uniform model of
persistence and resilience.  We conclude with some initial performance figures.
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Data management

Almost all computer systems are concerned with the saving and recovery of dynamic state. In
the light of this, a variety of ad hoc mechanisms have evolved to maintain dynamic state.
Perhaps the most common example of this is the saving of documents in word processors and
editors. In these applications the saved data is relatively simple consisting of linear strings of
text. In other application areas, such as computer aided design, the data is much more complex,
consisting of large pointer-based data structures containing objects of a variety of types. Such
structures are considerably more difficult to save in either a file system or database.

As the complexity of the data that is saved and restored increases, so does the time taken to
save and recreate the data set each time an application is run. In many cases application users
have compromises forced upon them due to the complexity and cost of having programmers
make the appropriate encodings. A good example of this is core files where we are forced to
examine a flat data representation (a core file) of an extremely complex collection of data
structures such as register sets, stacks and heaps.

In all the above cases, the data that is saved is separate from the computation that transforms
the data. In other computations, it is the actual state of the computation that we wish to
preserve.  Consider a long lived computer simulation; we may wish to snapshot the state of the
computation so that it may be recovered after a system failure. In this case there is extremely
close coupling between the data that is saved: register values, stacks, memory state etc. and the
application itself.

The technique of saving the state of an active application may also be applied to arbitrary
application programs such as word processors and editors. For example, an entire window
manager session could be saved and subsequently recovered at some later time. Such an
approach would have many advantages; for example we would no longer require a plethora of
ad hoc mechanisms such as .xsession, .Xrdb, .login, .cshrc and autoexec.bat to recreate some
of the state of the user's environment since all of the dynamic state would be captured in the
snapshot.

Persistent systems have no need for the ad hoc techniques described above.  Since all data may
persist for an arbitrary length of time, the original data structures used by applications may be
maintained in their original form.  Subsequent work on saved documents simply involves the
application re-attaching itself to the persistent data structures.  Similarly, the data and process
driving a simulation will persist across system invocations.  Startup files such as .cshrc, etc. are
no longer needed since the environment they attempt to recreate is persistent.

An operating system supporting orthogonal persistence

Most existing persistent systems have implemented the abstraction of persistent data at the
programming language level [3, 18, 20] and, as a result, have suffered from two drawbacks.
First, the host operating system was not designed to support persistence; therefore the
operating system interface does not usually provide abstractions sympathetic to a persistent
language implementation.  The consequence of this is that the language designer is usually
forced to implement a persistent abstract machine above the operating system abstractions,
with a corresponding loss of efficiency.  A similar problem is reported by the designers of
database systems [22, 24].
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The second problem with this approach is that every persistent language implements its own
persistent abstract machine duplicating much of the functionality found inside the operating
system and other language implementations.  Often these different implementations are entirely
incompatible with each other, prohibiting interactions between programs written in different
languages.  This would appear to be a retrograde step compared to the mixed language
environments supported by  conventional systems.

The implementation of the orthogonal persistence abstraction by the operating system avoids
these problems.  We believe that such an approach to operating system design could be as
revolutionary as virtual memory in terms of the advantages for user-level applications.

The requirements of a persistent operating system are quite different from those of
conventional systems.  Tanenbaum [23] lists the four major components of an operating
system as being memory management, the file system, the input-output subsystem and
process management.  The nature of these four components is different in persistent systems.
In a persistent system, the functionality of the file system and memory management are
replaced by the persistent store.  In many operating systems, notably Unix, input-output is
presented using the same abstractions as the file system; clearly this is not appropriate in a
persistent environment since there is no file system, and much of the input-output is eliminated
by the single store abstraction.  In most operating systems, processes are ephemeral entities;
we have already argued the virtue of making processes persistent.  It is therefore to be expected
that an operating system designed to support persistence will have a different structure from a
conventional operating system and will provide a different set of facilities.

We can summarise the principal requirements of such an operating system as follows [11]:

• support for persistent objects as the basic abstraction,

• consistent recoverability of data,

• support for persistent and resilient processes, and

• a uniform protection mechanism.

We call an operating system that provides all of these facilities a persistent operating system.  It
is important to distinguish such an operating system from a system which provides only
limited support for the implementation of persistence.  For example, both Spring [19] and Opal
[6] have some notion of persistence, but this is not the central theme of these systems and they
do not meet all of the requirements listed above.  In particular they do not support resilience of
data or persistent processes.  Choices [4] takes a different approach in which the basic kernel
abstraction of storage is the memory object.  Inheritance is then used to special these into both
file objects and persistent objects.  Again, persistence is not ubiquitous and processes are
transient.

Grasshopper

Grasshopper [9] is an example of a persistent operating system.  In this section we describe the
three basic abstractions provided by Grasshopper.  The abstraction over storage is the container
and the abstraction over execution is the locus (plural loci).  The container in which a locus is
currently executing is called its host container.  Containers are repositories of data and may be
of any size.  The third basic abstraction is capabilities which provide control over access to
Grasshopper entities.
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Containers

Containers are the only storage abstraction provided by Grasshopper; they are persistent entities
which replace both address spaces and file systems.  In most operating systems, the notion of a
virtual address space is associated with an ephemeral entity, a process, which accesses data
within that address space.  In contrast, containers and loci are orthogonal concepts.  A
Grasshopper system consists of a number of containers which may have loci executing within
them.  At any time, a locus can only address the data visible in the container in which it is
executing.  Grasshopper provides two facilities, mapping and  invocation, which allow the
transfer of data between containers.

The purpose of container mapping is to allow data to be shared between containers.  This is
achieved by allowing data in a region of one container to be viewed within a region of another
container.  Mappings may be either global, or private to a particular locus while executing in a
particular container.  Unlike the memory object mechanism provided by other systems [7],
containers may be arbitrarily (possibly recursively) composed which provides considerably
enhanced flexibility and performance [17].

Since any container can have another mapped into it, it is possible to construct a hierarchy of
container mappings which forms a directed acyclic graph as shown in figure 1.  The restriction
that mappings cannot contain circular dependencies is imposed to ensure that one container is
always ultimately responsible for data.  In Figure 1, container C2 is mapped into container C1
at location a1. In turn, C2 has regions of containers C3 and C4 mapped into it.  The data from
C3 is visible in C1 at address a3, which is equal to a1 + a2.

Loci

In its simplest form, a locus is simply the contents of the registers of the machine on which it
is executing.  Like containers, loci are maintained by the Grasshopper kernel and are inherently
persistent.

A locus is associated with a host container.  The locus perceives the address space of the host
container plus any privately mapped containers.  Virtual addresses generated by the locus map
directly onto addresses within the host container and the privately mapped containers.  A
container comprising program code, mutable data and a locus forms a basic running program.
Loci are an orthogonal abstraction to containers; any number of loci may execute
simultaneously within a given container.
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Figure 1: A container mapping hierarchy

Inter-Container Communication

An operating system is largely responsible for the control and management of two entities:
objects, which contain data (containers); and processes (loci), the active elements which
manipulate these objects. One of the most important considerations in the design of an
operating system is the model of interaction between these entities.  Grasshopper uses the
object-thread model in which communication is achieved via a mechanism similar to procedure
calls in which threads (loci) move between entities.  Thus a locus may invoke a container
thereby changing its host container and may later return to the original container.

Naming and Protection

In the previous sections we have described the basic abstractions in Grasshopper and the
operations over these abstractions.  Given that containers are the only abstraction over storage
(i.e. there is no file system), a naming and access control mechanism  is required and this is
provided by capabilities which are protected by segregation [12].

In Grasshopper, every container and locus has an associated list of capabilities [8].  A
capability list is constructed from tuples containing a unique fixed length key and a capability.
Operations are provided for copying capabilities and for adding and removing them to and
from lists.  The capability mechanism is deliberately simple and low-level for reasons of
efficiency and flexibility.  Higher level naming mechanisms, e.g. name servers, are
implemented as user-level containers using the operations described above.

Managers

Thus far we have described how all data storage in Grasshopper is provided by containers.
However, we have not described how containers are populated with data.  This is the
responsibility of managers which are also user-level entities.  The use of managers is
motivated by the desire, as far as practicable, to leave all policy decisions out of the kernel.  The
kernel provides mechanisms which can be used by higher level software to implement required
policies.  This provides maximum flexibility and avoids the kernel making decisions which
impact upon performance.  For example, the memory management policy can have major
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effects on the performance of garbage collection.  User-level virtual memory management,
supported on a number of recent operating systems [14], has a similar motivation.

Each container has an associated manager, which is an ordinary user-level program, held
within a container.  The manager is responsible for:

• provision of the pages of data stored in the container,

• responding to access faults,

• operation within a limited amount of physical memory (page discard),

• implementation of a stability algorithm for the container [10], i.e. maintenance of the
integrity and resilience of data, and

The kernel provides a standard framework in which managers may operate.  This includes
automatic invocation of the appropriate manager on an access fault, and a set of interfaces
which allow managers to arrange the hardware translation tables in such a way that the required
data is visible at an appropriate address in the container.  Thus managers provide user-level
virtual memory management in common with several other operating systems [25].

Persistence, Recoverability and Concurrency Control

The Grasshopper kernel treats loci and the data accessed by them during computation as the
unit of recovery. Loci are able to snapshot the state of their computation at any time, a task
which is coordinated by the kernel and draws on services provided by the managers to
snapshot user level data. A snapshot consists of all the data related to the computation of a
locus and includes:

1. any modified container data seen by the locus,

2. any data maintained within the kernel to represent the state of the locus (including
the registers) and the containers in which it has executed.

Since a locus can move between containers during the course of its computation, a snapshot
typically involves recording the state of pages within a number of different containers. In
contrast to other persistent systems in which a snapshot involves making the entire persistent
store stable, the snapshot mechanism in Grasshopper only affects the stability of the portions
of containers seen during the computation of a particular locus. Since loci are free to use shared
memory as a means of inter-process communication, the actions of one locus can be
influenced by the actions of another. This interaction creates causal dependencies between loci.
During the normal operation of the system it is possible to ignore these causal dependencies
because they are automatically preserved. However, if the system needs to be restarted after a
shutdown or crash, locus snapshots must be used to rebuild a consistent system state.

It is therefore necessary to detect causal dependencies and ensure that they are preserved across
failure of the system, thus guaranteeing global consistency. Detection of causal dependencies is
performed by the kernel and managers which monitor read and write faults to compile
modified page lists containing an entry for every modified page seen by a locus since its last
snapshot. In addition, the kernel also maintains a list of containers in which a locus has seen
modified data. The kernel uses this list to determine which managers it must request to
snapshot data modified by the snapshotting locus.
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The kernel coordinates the processing of locus snapshots and maintains dependency
information such that it is possible to recover the state of the system from a causally consistent
set of locus snapshots following a failure. Causal dependencies between loci are represented
using vector time [13]. Each locus has an associated vector time which is lazily updated
whenever a snapshot is performed [10]. The vector time contains a list of pairs representing the
state of each computation on which the snapshotting locus is dependent. Each pair contains the
identity of a locus and a timestamp derived from a Lamport clock [16] associated with the
locus which is used to identify points in time during its execution. This information is
sufficient to characterise the causal dependencies of loci and their snapshots [10].

The above mechanism guarantees that a Grasshopper system will always recover data and
processes to a self consistent state.  It does not guarantee that the snapshotted state of the
system was semantically consistent when a snapshot was made. Such guarantees require either
cooperation or exclusion at the application level. Grasshopper supports these activities in two
ways. First mechanisms that allow concurrent loci to cooperate are provided. These
mechanisms include semaphores and conditional locks. Secondly the Grasshopper kernel and
managers cooperate to provide those loci that require it with transactional semantics.

Applications

The Grasshopper model effectively provides the programmer with resilient and recoverable
data and processes.  In this section we return to the examples of ad hoc data management
discussed earlier and show how the Grasshopper mechanisms provide a coordinated and
simple solution to the problems described.

Applications such as word processors, spreadsheet programs, CAD systems, editors, etc are
required to operate on different sets of data at different times.  In conventional systems the
permanent state of these documents is held in files.  In Grasshopper each document is held in
its original form in a container.  The application code is also held in a container.  Each
document container has its corresponding application container mapped into itself with the
invocation point set to the start of the application code.  Thus the application may be initiated to
operate on any document simply by invoking that document container.  The application has
direct access to the data structures representing the document and the costs associated with
converting the document to and from its file format are totally avoided; no recovery code need
be written by the application developer.  In addition the capability system can guarantee that the
internal representation of the documents cannot be accessed by other programs.  It should be
stressed that this is only one approach and several other techniques using the Grasshopper
mechanisms are possible.

Compilation systems present an excellent example of simplifications introduced by persistence.
Typically compilers provide an option to embed symbolic information which can be used by
the debugger within the generated executable code.  The information is essentially a flattened
copy of the symbol table produced and used during the compilation process.  In Grasshopper,
the symbol table can outlive the compilation in its original form. This could either be stored in
the generated code container or in a separate container for use by tools such as the debugger.
Similarly, intermediate representations of the code can be maintained to improve error
reporting or to enable automatic re-generation of machine code if the application is moved to a
different architecture.  This latter approach is used on the AS/400 [21].  It is important to note
that these facilities can be provided with very little change to the compilation system.  The data
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structures already exist and Grasshopper automatically makes them persistent.  The use of
strongly-typed programming languages [18] can ensure the integrity of such stored data
structures.

The third example is long-lived applications such as simulations.  In Grasshopper these
applications and the corresponding loci are automatically resilient.  The application programmer
need not write any special recovery code.  The system guarantees that, following a crash, the
loci executing these applications automatically restart from the last consistent state.  This results
in considerable savings in terms of programmer productivity and program development time.

The cost of construction of a typical Unix/X-windows environment can be significant, both in
terms of execution time and user time.  Users typically create several windows and establish
particular environments within those windows.  In conventional systems this environment
must be recreated each time the user logs on, a process which may involve the execution of a
number of scripts as well as gestures by the user in order to re-establish the state within
windows.  In Grasshopper this cost is eliminated.  Since the environment (including open
windows) is represented by data structures in containers, it is automatically persistent.
Furthermore, any loci (processes) associated with the environment are also persistent.  Thus,
login simply corresponds to reconnecting to the environment and no user provided start-up
code or initial gestures need be performed.  In addition, users may create many different
environments and connect to the one most appropriate for the task at hand.  For example, there
may be a program development environment, a word processing environment, etc.  Again, no
special user-level code need be written to achieve this flexibility; it is all a direct result of
persistence.

Performance

Performance of an operating system is extremely difficult to evaluate because of the close
dependency on the particular applications being executed.  The major differences between
Grasshopper and conventional operating systems are in two areas: first, the model of address
spaces and processes and second, the support of orthogonal persistence.

Initial measurements of the invocation mechanism indicate that it is significant improvement
over similar mechanisms in other systems.  For example, the Opal group reports that cross
address space communication on the Mach microkernel takes about 88 µs whereas a
Grasshopper invocation takes around 20 µs on identical hardware.  This result corroborates
other studies that show that allowing a single computation to cross address space boundaries
provides superior performance to message-based RPC.  It is interesting to note that a variant of
this facility is being considered as an extension to Mach.

The cost of persistence is harder to determine.  Here we present some initial results from the
OO1 benchmark developed by Cattell and Skeen [5].  A simple physical storage model based
on B-tree indexes was used for the experiment.  The small OO1 database consisting of 20,000
parts and occupying about 7 megabytes was measured.  The operations include random
lookup, directed search (traversal) and insertion of new records.  Although the database is quite
small it does provide useful figures since most of the cost is related to loading the data from the
store and address translation.

Three different versions were measured.  In all cases the programs were run on a 133 Mhz
DEC Alpha with 64 Megabytes of memory, using both OSF Unix and Grasshopper.  The first

- 9 -



version used the Unix file system to access the database.  The second version used memory-
mapped files under Unix and the third version used persistent containers under Grasshopper.
The results for each of the operations are shown in Table 1.  All figures are in seconds and the
experiments were repeated one hundred times and the results averaged.

Operation OSF: Files OSF: Memory-mapped Grasshopper

Lookup 1.45 0.20 0.11

Traversal 7.86 0.85 0.47

Insert 1.70 0.27 0.18

Total 10.01 1.32 0.76

Table 1: Performance on the OO1 Benchmark

The figures indicate that Grasshopper is approximately twice as fast as OSF using memory-
mapped files.  This is extremely promising when it is considered that Grasshopper provides
full recoverability whereas no such support is provided by OSF.  In addition it should be noted
that no effort has been expended in optimising the Grasshopper structures or algorithms.

There are two points to be made about these figures.  First, Grasshopper performs the
benchmark approximately fifteen times faster than the file-based version.  This is the sensible
comparison since conventional systems access file data via the file system.  Second, although
OSF supports memory-mapped files which can run the benchmark at a speed closer to that of
Grasshopper, these are totally non-resilient and therefore could not be used for "real"
applications.

The above figures give us confidence that Grasshopper can compete with conventional systems
and provide an efficient computing platform.

Conclusions

A significant proportion of the effort spent developing an application is devoted to dealing with
issues of storage and recoverability.  This is because most existing operating systems provide a
severely limited long-term storage data model and little support for recoverability, resilience
and consistency of recovered data.  Grasshopper provides persistent containers and loci as its
base abstractions and guarantees their recoverability; following a system failure, they will be
recovered to an globally self-consistent state.

The provision of these guarantees by the operating system, coupled with the ability to create
arbitrarily long-lived data structures, considerably simplifies the development of application
programs and encourages the construction of integrated systems.  The programmer is not
required to write any code in order to save a data structure and all programs are automatically
recoverable and resilient.  This results in major improvements in terms of both program
development time and execution efficiency.

A first implementation of the Grasshopper operating system is nearing completion.  This
operates on the DEC Alpha range of machines.  Initial experiments with development of
applications in (persistent) C confirm our expectations.
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