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Abstract
The Object Management Group (OMG) have defined the CORBA Persistent Object
Service (POS) which is intended to provide support for persistent CORBA objects. In this
paper we describe the CORBA POS and demonstrate how it is deficient in a number of
areas. Specifically, it lacks a semantically meaningful failure model, it exhibits problems
with encapsulation, and encourages the prevalence of proprietary architectures which
inhibit vendor independence. The first of these is perhaps the most serious since it results
in the inability of a distributed system to recover to any meaningful state following
individual node failures. The paper introduces an alternative CORBA Persistent Object
Service hosted by a novel persistent operating system called Grasshopper. Persistent
CORBA objects hosted by Grasshopper do not suffer from any of the problems outlined
above. The paper briefly describes the Grasshopper system and how it may be used to host
persistent CORBA objects.

1 Introduction
The thesis of this paper is that the Persistent Object Service (POS) for the Common Object Request Broker
Architecture (CORBA) as defined by the OMG in [13] is deficient in a number of areas. In particular, it
lacks a semantically meaningful failure model, its Persistent Object abstraction introduces security holes
through which objects may be misused, and its imprecise definition encourages proprietary architectures
which inhibit open computing. The paper introduces an alternative architecture based on a persistent
operating system called Grasshopper [1]. All CORBA objects hosted by Grasshopper benefit from its
orthogonal persistence [14] and are consequently persistent regardless of type. Furthermore, the objects
exported by Grasshopper are always semantically consistent, even across server failures.

The paper is structured as follows. In Section 2 we give an overview of CORBA. In Section 3 we describe
the OMG Persistent Object Service (POS). We detail each of the interfaces defined within the POS
specification before examining the service from different perspectives within a network. We will
demonstrate the problems associated with the POS and, show that they are mainly due to the lack of
support it provides for orthogonal persistence. We describe the basic requirements for orthogonal
persistence in section 4. In Section 5 we introduce Grasshopper, and show the advantages of deploying it in
a CORBA environment in Section 6. Section 7 describes the Grasshopper CORBA system and Section 8
concludes.

2 Overview of CORBA
The CORBA specification defines an open standard that allows networked objects to communicate across
heterogeneous environments. The three basic components in this architecture are:

• a common data representation (CDR), unifying the data model across heterogeneous
environments,

• an interface description language (IDL) to provide a means of describing CORBA
objects, and

• mechanisms to allow objects to communicate and invoke operations on other objects.
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Figure 1 shows how these three basic components combine to form an Object Request Broker (ORB), a
unifying substrate over which all applications execute. The client and server are CORBA objects and the
client wishes to make some request of the server. The IDL stubs provide the indirection required to make
the remote access transparent (i.e. the client makes a local request to the IDL stub, which converts this to a
remote request). The IDL skeleton allows the ORB to upcall into the object implementation with the
request. The object adapter allows the object implementation (the server) to access the functionality
provided by the ORB (such as method invocation, security, registration and the generation of object
references). The IIOP communication layer provides the transport protocol used to transmit a local request
to a remote implementation. For a detailed description of the ORB see [10].

Figure 1: The architecture of the ORB

The three components introduced above are all that is required to enable communication between any
network components, however additional (optional) functionality that could be useful to a distributed
application designer is defined in the Common Object Services (COS) specification (CORBAservices).
CORBAservices are connected directly to, but do not form part of the ORB. Figure 1 shows an ORB with
naming, event, time and persistence services.

CORBAservices are motivated by the fact that most distributed applications have common functionality in
addressing problems associated with distribution. Rather than solving the problem separately in each
application, the CORBAservices, if present, offer this functionality to all applications using the ORB. The
client object can make use of the service interface (defined in IDL) and is unaware of whether the service
implementation is local (for example a shared library) or remote. One of the services that are provided is
the persistent object service (POS) (see [11] for the complete specification of all services).

3 The Persistent Object Service (POS)

The motivation behind the POS is “to provide common interfaces to the mechanisms used for retrieving
and managing the persistent state of (CORBA) objects” [OMG, March 31, 1995 #2163]. The specification
indicates that the service is intended to be used in conjunction with other services. For example, a
distributed database might use the Object Collection Service to structure its data, the Object Transaction
Service to control updates, the Relationship Service to maintain dependencies between data and the
Persistent Object Service to store the data.

The POS is composed of several (independent) abstractions that combine to provide a service:

• Persistent Identifier (PID) – identifies the location of an object’s persistent data in a
datastore,

• Persistent Object (PO) – an object that supports an interface allowing a client to control
the persistence of its state,

• Persistent Object Manager (POM) – redirects the abstract persistence requests from a
POS client to a particular mechanism used to control an object’s persistence,
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• Protocol – provides the interface between the Persistent Data Service (described below)
and target object, allowing the state of the object to be extracted and restored,

• Datastore – provides a particular mechanism for maintaining an object’s persistent state,
and

• Persistent Data Service (PDS) – provides an interface to any protocol/datastore
combination. That is, it applies a protocol to a persistent object in order to store its state
in a particular datastore.

The POS specification is exceedingly abstract in places thereby allowing implementations to take almost
any form. In other places it is rigid and restrictive. This will become apparent after a description of how the
service operates.

3.1.1 Summary of Interaction Between Modules

Figure 2 shows a typical usage of the CORBA POS. In general a client must perform some initialisation
before persistence operations can occur. In the example shown in Figure 2, this process starts with the
creation of a PID (Figure 2(1)). The PID is constructed through the use of a factory object contained within
the PID abstraction. The PIDfactory associates the newly created PID with a particular datastore. The PID
must then be associated with a particular persistent object. A POfactory object is used to create an instance
of a particular PO. The PID is passed to the POfactory along with an indication of which POM the PO is to
use (Figure 2(2)).

Figure 2: The CORBA Persistent Object Service

The client can now perform persistence operations on the PO. For example, if the client wishes to preserve
the state of the PO, it issues a store request to the object (Figure 2(3)). Since an object may be associated
with multiple PIDs (a client may maintain different versions of an objects persistent data), a particular PID
is passed in the store request. In response, the PO sends a store request to its designated POM (Figure 2(4)).
The POM determines which PDS supports the combination of protocol (exported by the PO) and datastore
(defined by the client). The POM then forwards the store request to the appropriate PDS (Figure 2(5)). The
PDS extracts the state from the PO (Figure 2(6)) using the defined protocol, and stores the state in the
datastore using some unspecified interface (Figure 2(7)).

The above example usage is one of many that are possible, however it gives an overview of how the
components are expected to interact. Sections 3.1.2 to 3.1.7 provide a detailed description of each module
within the POS.

3.1.2 The PID Module

A PID identifies the location of an object’s persistent data within a particular datastore (how the POS
determines which datastore is not defined). In the simplest case, the POS will support just one datastore for
all objects. More complex implementations may provide interfaces to multiple datastores. If there is more
than one type of datastore, the client can define which is to be used when requesting a PID (using the
datastore_type attribute within the PID module). The interface to the PID module consists of two elements:
one indicating the type of the datastore used to support the persistent object and the other being a method
returning a string identifying the PID.
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module CosPersistencePID{
interface PID {

attribute string datastore_type;
string get_PIDString();

};
};

3.1.3 The Persistent Object (PO) Module

The interface supported by the PO describes the operations available to control the persistence of an object.

Unfortunately the POS specification does not include consideration of a compound object model and
consequently does not provide explicit support for the persistence of a graph of objects. However it does
allow the persistence of an object to be controlled externally by a client provided that all the objects in the
object graph support the PO interface. For example, Figure 3 shows a graph of objects which are to be
made persistent. At time t0, object A performs a store. The state of A is extracted by the PDS and the
references to B and C are detected, and those objects sent a store signal. At time t1, the state of B and C are
extracted by the protocol and any objects referenced are sent a store signal (in this case D). Finally, at time
t2, the state of D is extracted and the process completes. The client of a persistent object is responsible for:

• creating and initialising a PID for the object,

• binding the PID to the object instance, possibly using some object factory, and

• controlling the relationship between the object and datastore.

Figure 3: Use of the POS to support compound objects

module CosPersistencePO {
interface PO {

attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

                              in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};
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interface SD {
void pre_store();
void post_store();

};
};

The operations supported by the interface are described in the following sections.

Connect/disconnect

A client can establish a relationship between a persistent object and datastore with the connect call. The
connect signal propagates through to the POM and PDS which implements the relationship. A disconnect
call destroys the relationship. The effect of the relationship is to reflect the transient state of the object with
its persistent state within the datastore, an operation on the object will automatically update the persistent
state. There is no description of how this is to be achieved from the POS specification, however it does
suggest that the persistent state within the datastore may be updated after every operation on the object.

Store/restore

The store and restore operations are provided to explicitly move data to and from the store. The actual data
that is moved is determined by the implementation of the PO. The store/restore methods contained in the
PO are responsible for determining how much and what data is moved between the PO and the POS.

Delete

A delete call removes the persistent data associated with a particular object from the store.

Pre_store/post_restore

The pre_store and post_restore operations allow for synchronisation. Tasks that must be undertaken (such
as flushing of buffers) before transient data is made persistent are implemented in the pre_store operation.
The dual of this operation (post_restore) implements tasks that must be undertaken after a restore operation
(such as moving the object to a specific state). The operations are implemented by the object and intended
for use by the POM. However, there is an opportunity for encapsulation to be breached as any object can
invoke these operations.

3.1.4 The Persistent Object Manager (POM) Module

The POM routes requests from persistent objects to a PDS that supports both the datastore desired by the
client and the protocol implemented by the persistent object. A POM may have a fixed number of PDSs
and no mechanism for introducing any more, or it may support an interface for allowing other PDSs to be
added to the POS (this allows other datastores and object protocols to be supported). Such an interface is
not defined by the specification.
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module CosPersistencePOM{
interface Object;
interface POM {

CosPersistencePDS::PDS connect (
in Object obj, in CosPersistencePID::PID p);

void disconnect(in Object obj, in CosPersistencePID::PID p);
void store(in Object obj, in CosPersistencePID::PID p);
void restore(in Object obj, in CosPersistencePID::PID p);
void delete(in Object obj, in CosPersistencePID::PID p);

};
};

The methods implemented by the POM are called by the PO, and call operations of the same name in the
PDS.

3.1.5 The Protocol Module

The interaction between an object and the PDS is termed the protocol. It may consist of calls to the object,
calls from the object, operations implemented with hidden interfaces, or some combination of these. The
POS specification does not define any aspect of the protocol, but does give example protocols, one of
which is the Direct Access protocol. This uses the underlying CORBA mechanisms for managing an
object’s attributes to expose these attributes to the POS.

3.1.6 The Datastore Module

The interaction between the PDS and the actual data repository is termed the datastore. Again, as with the
protocol, no aspect of the datastore interface is defined by the POS specification. The specification does
show an example interface describing how it might be achieved.

3.1.7 The Persistent Data Service (PDS) Module

The PDS module maps (a specialisation of) the abstract persistence operations received from a client (via
the POM) onto the protocol on the client’s side, and a datastore interface on the repository side. This has
the effect of de-coupling the datastore from the object, that is the object could implement its protocol using
the externalization service [12], and this could be used to map the object’s persistent data onto many
different types of datastore.

module CosPersistencePDS {
interface Object;
interface PDS {

PDS connect (in Object obj, in CosPersistencePID::PID p);
void disconnect (in Object,in CosPersistencePID::PID p);
void store (in Object obj, in CosPersistencePID::PID p);
void restore (in Object obj, in CosPersistencePID::PID p);
void delete (in Object obj, in CosPersistencePID::PID p);

};
};

3.2 A Client’s View of the POS
Figure 4 shows the view a client (of a persistent object) has of the POS. A client requires a PID before any
persistence operations can be performed  (Figure 4(1)). The PID is associated with the PO (possibly
through the use of a POFactory) and the POM to be used is specified (Figure4(2)). As shown in Figure
4(3), the client can now use the persistence operations as supported by the PO, such as store(pid).

Unfortunately, due to the nature of the POS specification, a client must deal with a number of problems.
These are described in sections 3.2.1 and 3.2.2.
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Figure 4: The client's view of the Persistent Object Service

3.2.1 No Failure Model

Although the client in this model is the instigator of persistence operations, it is here that its involvement
ends. There is no mechanism defined for reporting status or results back to the client. This is essential if the
POS is being used for resilience. For example, Figure 5 depicts a client managing the persistence of two
objects (A and B) which represent children. Both children are in the same school class and as such they
share the same teacher (represented by Y). Although both objects maintain their state independently, they
conceptually share state which is part of their persistent data (here it is a reference to their teacher, Y). The
integrity of the (distributed) system depends on each child of a particular school class having the same
teacher. In Figure 5(1), the state of the persistent store is consistent with the transient objects. Figure 5(2)
depicts the class with a new teacher (Z) and the client updates both objects to reflect this. A store operation
is performed on both objects by the client to make the persistent data consistent with the transient state of
the objects. A failure at any point of the store operation on either object would leave the persistent data
inconsistent with the transient objects. If the failure is limited to the store operation (i.e. other persistence
operations result in success), the opportunity for failure is compounded. In Figure 5(3), the client
performing a restore operation causes the inconsistency to be back propagated into the transient system
resulting in a globally inconsistent state. In our example, it results in two pupils in the same class being
taught by different teachers.

Figure 5: Semantic inconsistencies

Such situations are typically avoided through the use of transaction control mechanisms. The client requires
the ability to undo all store operations if one store fails. OMG’s Object Transaction Service (OTS) [12] is
defined for exactly this purpose. However it cannot be used to control the use of the POS by a client, since
the critical resource being manipulated (some entry in a datastore) is disjoint from the source of the request
(a client of a PO).
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3.2.2 Local Persistence Operations Yield Global Inconsistencies

The motivation behind allowing a client to control the persistence of an object is to allow persistence
operations to propagate through a distributed system. If an object is to be made persistent, it can broadcast a
store operation to all the objects on which it depends. For example, Figure 6 shows the chain of command
within a company. Each object maintains state to be made persistent (p) and state that may be transient (t).
A is a company director, B reports to and gets instructions from A, C reports to and gets instruction from B,
and D usually reports to and gets instruction from C. These relationships are captured within the object’s
persistent data. For a limited time however, D is seconded to work immediately under the director. To
model this, A maintains this relationship within state not included in persistence operations (t). Figure 6(1)
shows how a store operation on A will cause a store on B, which in turn causes a store on C, and finally a
store on D. In Figure 6(2), A is pleased with D’s work and modifies the state of D to indicate that he is
ready for promotion (p1 is updated to p2 and t is updated to t2). Meanwhile, B has detected some failure in
C (but cannot decide whether the problem lies with C or itself) and decides to perform a restore operation
on itself to restore the last known consistent state, shown in Figure 6(3) Just as B’s restore implementation
propagates a restore signal to C, so C’s implementation propagates the signal to D. All updates made on D
since the last store operation have now been lost, D is no longer ready for promotion. More crucially, A is
unaware of the adoption of earlier state by objects it depends on. A is now inconsistent with the rest of the
system.

Figure 6: Lack of global control

The problem arises because it is not possible to notify the client of a persistent object that a restore has
been performed on that object. One solution to this problem would be to define a mechanism to allow a
restore signal to be broadcast to clients of an object. However, there is no mechanism defined for
identifying the clients of a persistent object.

3.3 An Object’s View of the POS
Figure 7 shows an example of how a persistent object views the POS. In this example, a client is managing
the target object’s persistence, the object must therefore support the PO interface. (An object may decide
not to support the PO interface and manage its own persistence operations). Any persistence operation (in
this case a store) is passed to the POM. The POM resolves which PDS to use (the PDS must support the
protocol implemented by the object and an appropriate datastore interface). The store request is forwarded
to the PDS, which extracts the persistent state from the object using the implemented protocol. The
following sections describe a number of problems that arise and are highlighted by the example shown in
Figure 7.
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Figure 7: Persistent Object's View of the Persistent Object Service

3.3.1 Legacy Objects

The server object (the PO) must inherit from a known protocol if it is to use the POS. This restricts the use
of the POS to objects that expect to use it at compilation (definition) time. Therefore the range of objects
that an application can use within a persistent system is limited to those explicitly designed to support
persistence.

3.3.2 Loose Association Between PID and Object

Another problem for a PO is the loose association between an object and its PID (and therefore its
persistent data). For example, in Figure 8 objects A and B share a reference to object C and manage its
persistent state independently (possibly even in different datastores). After some failure, both objects
attempt to reconstruct C using the persistent data (possibly through the use of some generic object factory).
As neither recognises the object is shared, two objects are created. This problem is known as loss of
referential integrity.

Figure 8: Weak binding between PID and object

3.3.3 Broken Encapsulation

A PO cannot arbitrarily decide which protocol to use to export its state to the POS. It must use a protocol
implemented by the POS. This can lead to broken encapsulation of an object thereby seriously breaching
security. If the POS supports the most basic protocol (the Direct Access protocol discussed in Section
3.1.5) any client of a PO has the opportunity to use this interface to circumvent encapsulation.
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3.3.4 Proprietary Architecture

The PDS module that is used to extract the state from an object and enter it into some datastore underpins
the Persistent Object Service. The specification does not define any requirements for either of these
activities. More importantly, the specification does not indicate how a POS is to support the ability to add
new PDSs. Without at least this defined, there is no guidance to POS designers that will allow
implementations of different modules to interact in a single POS.

3.4 Summary of the POS
The problems introduced above result from a client applying persistence operations to transient objects. It
has long been argued that persistence should not be obtained through explicit operations on an object, but
should be an intrinsic attribute of an object, supported by the infrastructure within which the object operates
[2]. That is, the persistence of an object should be orthogonal to use, type and identification of the object.

4 Orthogonal Persistence
The three basic principles behind orthogonal persistence [9] are that:

• all objects may (persist) exist for as long, or as short, a period as is required,

• all objects are manipulated in the same manner, regardless of their longevity, and

• the identification of persistent objects is not linked to the type system.

All objects have the right to the same persistence regardless of type; a system only supports type
orthogonality if the range of time that an object can persist is the same for all objects. This means a
particular set of data is guaranteed to behave in a consistent manner as each of its elements posses the same
persistence. A designer is never faced with the situation where one element of a data set can persist while
another cannot.

All programs look the same regardless of the longevity of the data over which they operate. This means the
operations to operate on transient data are the same as operations required for long-lived data. This allows
the designer to concentrate on the problem domain. For example, the designer of a simple text editor can
reason about the functionality of the editor without adding the complication of miscellaneous operations
such as performing incremental saves. These operations are not in the domain of the problem the
programmer is attempting to solve. The underlying support system must implement the mechanism
required to move data to/from store and perform any required translation, all transparently to the
programmer.

If the persistence of data is identified through the use of specific variable names, or specific types, then all
objects are not treated uniformly, contravening the first principle. The technique used to identify persistent
data must be independent of the type system. One such method would be to employ persistence by
reachability. The system automatically identifies persistent data by following pointers from some persistent
root[3].

OMG’s persistent model provides limited support for the first principle. Indeed this support is somewhat
less than a traditional operating system could offer (a write system call can report failure to the instigator of
the call, whereas a store operation cannot). Without orthogonal persistence, it is impossible to solve any the
problems identified with the Persistent Object Service.

 There have been two approaches to providing orthogonal persistence, the first is to provide persistence
through the language system [3] and the other is through the operating system [5]. Within a CORBA
environment, the language system may vary throughout an application. For example, an application might
choose to implement data manipulation operations in C, a graphical front end using Visual Basic, provide
Internet access to the application using Java, and other elements of the application using other languages.
For the application to enjoy the support of orthogonal persistence at the language level, all of the languages
implementing the objects in the application must support persistence. As there is little support within host
operating systems for persistence, most persistent language designers implement a persistent abstract
machine above the operating system. If each language implements its own persistent abstract machine,
much effort is duplicated. With regards to the CORBA environment, each of these abstract machines would
require its own implementation of the object request broker.
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Implementing orthogonal persistence within the operating system avoids these problems. We have
constructed the Grasshopper operating system to research the implications of providing persistence as a
basic operating system abstraction. Grasshopper executes on conventional hardware platforms and presents
the user with a resilient and persistent environment. Applications can be built using standard language
technologies (assembly language, C, Napier88, C++ and Java) and can be executed within the Grasshopper
environment. In sections 5, 6 and 7 we discuss the abstractions provided by the Grasshopper operating
system, and show how Grasshopper may be used in the CORBA environment.

5 The Grasshopper Operating System
Grasshopper  is an example of a persistent operating system. In this section we describe the three basic
abstractions provided by Grasshopper. The abstraction over storage is the container and the abstraction
over execution is the locus (plural loci). The third basic abstraction is the capability which provides control
over access to Grasshopper entities.

5.1 Containers
Containers are the only storage abstraction provided by Grasshopper; they are persistent entities which
replace both address spaces and file systems. Like address spaces and files, containers may hold both code
and data and sometimes both. In most operating systems, the notion of a virtual address space is associated
with an ephemeral entity, a process, which accesses data within that address space. In contrast, containers
and loci are orthogonal concepts. A Grasshopper system consists of a number of containers which may
have loci executing within them. At any time, a locus can only address the data visible in the container in
which it is executing – its host container. However, an arbitrary region of one container may be mapped
into another. This provides a basic mechanism for sharing data between containers and for the construction
of libraries. Each container may export an invocation point which permits a locus to change its execution
environment to the container and begin executing the code found at the invocation point. When used in
conjunction with containers containing both code and data, this provides a mechanism with which hardware
protected abstract data types may be constructed. In Grasshopper many containers export IDL interfaces
which are used by invoking loci to obtain services provided by the container.

5.2 Loci
A locus is essentially a kernel-supported thread that can change its execution environment by invocation.
Thus, a locus may invoke a container thereby changing its host container and may later return to the
original container. Like containers, loci are maintained by the Grasshopper kernel and are inherently
persistent. A locus is associated with a host container. The locus perceives the address space of the host
container overlayed with any mapped containers. Virtual addresses generated by the locus map directly
onto addresses within the host container and any privately mapped containers. A container comprising
program code, mutable data and a locus forms a basic running program. Loci are an orthogonal abstraction
to containers; any number of loci may execute simultaneously within a given container.

5.3 Protection
In the previous sections we have described two of the three basic abstractions in Grasshopper and the
operations over these abstractions. Given that containers are the only abstraction over storage (i.e. there is
no file system), a naming and access control mechanism is required and this is provided by capabilities
which are protected by segregation. For a full description of capabilities see [6].

5.4 Naming
Symbolic naming which maps from strings to capabilities is provided by nameservers which are
themselves constructed from user-level containers using the mechanisms described above. Nameservers
support attributed mappings from strings to capabilities. An arbitrary number of typed attributes may be
associated with each mapping. Like most Grasshopper entities, nameservers are implemented as abstract
data types containing the nameserver code and the data they support. They export an IDL interface which
permits loci to invoke them in order to make bindings, iterate over their contents, and extract capabilities
and attributes.
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5.5 Recovery
The Grasshopper kernel treats loci and the data accessed by them during computation as the unit of
recovery. Loci are able to snapshot the state of their computation at any time, a task which is co-ordinated
by the kernel and draws on services provided by user level managers to snapshot user level data. A
snapshot consists of all the data related to the computation of a locus and includes:

1. any modified container data seen by the locus,

2. any data maintained within the kernel to represent the state of the locus (including the
registers) and the containers in which it has executed.

Since a locus can move between containers during the course of its computation, a snapshot typically
involves recording the state of pages within a number of different containers. In contrast to other persistent
systems in which a snapshot involves making the entire persistent store stable, the snapshot mechanism in
Grasshopper only affects the stability of the portions of containers seen during the computation of a
particular locus. Since loci are free to use shared memory as a means of inter-process communication; the
actions of one locus can be influenced by the actions of another. This interaction creates causal
dependencies between loci. During the normal operation of the system it is possible to ignore these causal
dependencies because they are automatically preserved. However, if the system needs to be restarted after a
shutdown or crash, locus snapshots must be used to rebuild a consistent system state.

It is therefore necessary to detect causal dependencies and ensure that they are preserved across failure of
the system, thus guaranteeing global consistency. Detection of causal dependencies is performed by the
kernel and managers which monitor read and write faults to compile modified page lists containing an entry
for every modified page seen by a locus since its last snapshot. In addition, the kernel also maintains a list
of containers in which a locus has seen modified data. The kernel uses this list to determine which
managers it must request to snapshot data modified by the snapshotting locus.

The kernel co-ordinates the processing of locus snapshots and maintains dependency information such that
it is possible to recover the state of the system from a causally consistent set of locus snapshots following a
failure. Causal dependencies between loci are represented using vector time [7].

The above mechanism guarantees that a Grasshopper system will always recover both data and
computation (loci) to a globally consistent state. It does not guarantee that the snapshotted state of the
system was semantically consistent when a snapshot was made. Such guarantees require either co-operation
or exclusion at the application level. Grasshopper supports these activities by providing mechanisms that
allow concurrent loci to co-operate. These mechanisms include semaphores and conditional locks.

6 Using Grasshopper in a CORBA Environment
The CORBA specification includes no formal semantics for the persistence of an object. With no guidance,
distributed application developers will adopt ad-hoc descriptions of their behaviour. In particular, the
specification does not describe behaviour regarding problems associated with the nature of transient
objects. Implementations are at liberty to deal with all such problems in an arbitrary fashion.

The basic premise behind Grasshopper is that every object has the right to persist and be resilient against
failure. Within a distributed context, this statement requires further qualification – after all, a platform
running Grasshopper suffers just as much during a power failure as any other system. Figure 9 shows a
typical sequence of events that might occur with objects based in a traditional “non-persistent” environment
when there is a power failure.
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Figure 9: Failure with CORBA Persistent Objects

Figure 9(A) shows the client accessing object B on the server. In Figure 9(B), the server is experiencing a
power failure and the client is informed of the symptoms of the problem by the underlying CORBA
exception model. The client is unsure of the cause of the problem, any component between itself and the
server could be at fault. If it were a transient communication problem, the server state would be maintained,
although the client is not at liberty to make these assumptions. In Figure 9(C) power is restored. However
some of the state has been lost. The state that survives is that which has explicitly been made persistent and
the server automatically regenerates. The behaviour of the client is tempered by the failure; that is the client
is explicitly aware of some problem and must participate with the server in recovery. Thus the client must
support recover-on-failure semantics. This may involve re-synchronising its state with that of the server
object. Compare this to the same scenario within a Grasshopper environment (shown in Figure 10).

Figure 10: Failure with Grasshopper Persistent CORBA Objects

The behaviour the client experiences is identical to that of the traditional non-persistent system up until
Figure 10(C). As Grasshopper guarantees the restoration of the state of all objects operating within its
environment to some consistent state, the client may safely treat all failures as transient communication
problems. When the power is restored, the state of the server will be restored. This results in a system that
is easier for the client to reason about. The client only has to support delay-on-failure semantics. This is the
ideal situation, however due to certain Byzantine conditions, there is likely to be some minimal re-
synchronisation required.

7 Provision of (Persistent) CORBA Objects Using Grasshopper
Figure 11 shows the implementation of the CORBA system on Grasshopper. The functionality the
arbitrator provides is similar to that provided by the Orbix Daemon (orbixd). The arbitrator acts as the
broker permitting clients to connect to objects and servers hosted by Grasshopper. In order to do this it
must be able to discover which containers want to export CORBA services. The arbitrator manages a
namespace with which loci can register containers offering services (Figure 11(1)). This namespace is
consulted whenever the arbitrator receives an incoming request.
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Figure 11: The Grasshopper CORBA System

The act of servers registering their existence with the namespace is similar to the putit utility provided with
Orbix. The granularity with which an object can register with the arbitrator is currently on a per-server
basis (equivalent to the shared activation mode of Orbix). In the future we expect to extend this to include
per-object and per-method registration. The identity of objects hosted by Grasshopper is supported by a
two-part naming scheme. The first half identifies a container within the nameserver, the second a local
name within the container. Local names within containers are implemented as indexes into an export table
implemented within the container. This permits access controls to be implemented locally by the container.
It also prevents all objects from being inadvertently visible to the world.

Every container registered with the nameserver provides a standard set of entry points with which the
server can invoke the container. This provides the basic mechanism for activation of a CORBA server. The
containers contain generic CORBA code, application specific code and objects. The code implementing the
CORBA code is provided by the Grasshopper CORBA library which is mapped into server containers. This
library (which is also used by the arbitrator) contains the IIOP engine, the dispatcher and assorted necessary
functions.

An incoming request (Figure 11(2)) arriving at the arbitrator is handled as follows:

• the arbitrator resolves to which server the client is attempting to connect (Figure 11(3)),

• a locus is either taken from a pool or is created to handle the incoming request (the
arbitrator is the source of computational elements),

• the server is assigned an as-yet unused communication port which is used for further
communication with the client (Figure 11(4)),

• the server is invoked with the IIOP packet and communication port as parameters (Figure
11(5)), and

• future requests occur on the newly assigned port (Figure 11(6)).

Once the container has been invoked, the code at the invocation point calls code contained in the CORBA
library to decode the IIOP packet. The target object is looked up in the container's export table and
provided that the object is found, the dispatcher will call the correct object with the parameters extracted
from the IIOP packet. The CORBA library is responsible for maintaining the appropriate state to enable the
reply to be returned to the client on the port passed to the container by the arbitrator.

7.1 Persistence of CORBA Objects in Grasshopper
In the above discussion, persistence, the main topic of this paper has not been mentioned. This is because in
an orthogonally persistent system, persistence is an ever present but invisible property of the objects and, in
the case of Grasshopper, the processes. As described above, Grasshopper supports a strong causal
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consistency model that ensures that all computations performed on Grasshopper are always causally
consistent. However, if the problems of consistency described sections 3.2 and 3.3 are to be addressed,
some mechanism needs to be provided to ensure that inconsistent states are not visible from outside the
Grasshopper system, in this case by CORBA clients. In Grasshopper, this may be addressed in a number of
ways which basically trade cost against implementation efficiency.

The simplest approach to ensuring view consistency is to snapshot the state of loci manipulating CORBA
objects after every update and before the update has propagated to CORBA clients. This approach may be
sophisticated enough for many applications since snapshot costs are low, especially when performed
frequently due to Grasshopper’s log structured storage technology employed by the kernel [8]. However, it
is also possible to log incoming requests and use these to restore the system to an externally visible state
during recovery. This approach depends on the ability to restore a computation to some snapshotted state.
The recovery manager can pull the state of the container forward in time to the state perceived by the
clients by replaying the messages from the message log. The recovery manager must ensure that any
outgoing messages are discarded during recovery to maintain the consistent view held by clients.

8 Conclusions
OMG’s Persistent Object Service specification is intended to allow distributed application developers to
use a standard interface to control an object’s persistence. Reasoning about the persistence of an object
(especially in a distributed context) is difficult, and the specification has done little to aid this. We have
shown that the POS lacks some core functionality resulting in the following problems:

• no failure model resulting in application’s that cannot reason about failure,

• lack of control mechanisms that allow for the persistence of compound objects,

• inability to include legacy objects within a compound persistent object,

• weak association between the PID and its associated object,

• the ability to circumvent the encapsulation of an object through the protocol interface,
and

• the promotion of proprietary architectures.

We advocate the superior model of orthogonal persistence and demonstrate how the persistent operating
system Grasshopper can support the orthogonal persistence and resilience of CORBA objects. This
approach to persistence in CORBA could be extended to all ORBs if supported by a suitable persistent
infrastructure. We contend that such an approach would aid reasoning about the semantics of applications
constructed using CORBA and therefore make the design and programming of distributed applications
easier and less error prone.

9 Acknowledgements
This work is supported by ESRC research grant number H519255403, “Integrated Operating System
Support for Large Heterogeneous Archives”. We would like to thank Iona Technologies for their support in
particular Fiona Hayes. This work benefits from SunSoft’s public domain IIOP engine [15].

References
[1] R.di Bona, Anders Lindstrom, Alan Dearle, Stephen Norris, John Rosenberg, Francis Vaughen.

"Persistence in the Grasshopper Kernel", in Proceedings of Proceedings of the 18th Australasian
Computer Science Conference, pp. 329-338, 1995.
http://www.gh.cs.su.oz.au/Grasshopper/Papers/Papers.html

[2] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and R. Morrison, "An Approach to
Persistent Programming", The Computer Journal, 26(4), pp. 360-365, http://www-fide.dcs.st-
and.ac.uk/Info/Papers1.html#approach.persistence, 1983.



16

[3] M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott, "PS-algol: An Algol with a Persistent Heap",
ACM SIGPLAN Notices, 17(7), pp. 24-31, 1981.

[4] S. Baker, "CORBA Distribute Objects Using Orbix", Addison-Wesley, Harlow, England, 1997.

[5] A. Dearle, J. Rosenberg, F.A. Henskens, F.A. Vaughan, and K.J. Maciunas. "An Examination of
Operating System Support for Persistent Object Systems", in Proceedings of 25th Hawaii
International Conference on System Sciences, Poipu Beach, Kauaii, pp. 779-789, 1992.
URL http://persistence.cs.stir.ac.uk/~al/abstracts.html#GH-09.

[6] R. Fabry, "Capability-Based Addressing", Communications of the ACM, 17(7), pp. 403-412, 1974.

[7] C. Fidge. "Timestamps in Message-Passing Systems That Preserve Partial Ordering", in
Proceedings of 11th Australian Computer Science Conference, pp. 56-66, 1988.

[8] D. Hulse, "Store Architecture in a Persistent Operating System", Computer Science Department,
University of Adelaide, Adelaide, 1998. ftp://persistence.cs.stir.ac.uk/pub/papers/dave-thesis.pdf

[9] M. Atkinson and R. Morrison, "Orthogonally Persistent Object Systems", The VLDB Journal,
4(3), pp. 319-401, 1995.

[10] OMG, "The Common Object Request Broker: Architecture and Specification", 2.1, August 1997
1995.

[11] OMG, "CORBAservices: Common Object Services Specification", July 1997 March 31, 1995.

[12] OMG, Externalization Service Specification, in CORBAservices:Common Object Services
Specification. March 31, 1995. p. 8-1 to 8-32.

[13] OMG, Persistent Object Service Specification, in CORBAservices:Common Object Services
Specification. March 31, 1995. p. 5-1 to 5-44.

[14] J. Rosenberg, A. Dearle, D. Hulse, A. Lindström, and S. Norris, "Operating System Support for
Persistent and Recoverable Computations", CACM, 39(9), pp. 62-69, 1996.
URL http://persistence.cs.stir.ac.uk/~al/abstracts.html#CACM.

[15] Sunsoft, Inter-ORB engine, 1995. ftp://ftp.omg.org/pub/interop.


