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Abstract

The principal tenet of the persistence model is that it abstracts over all the

physical properties of data such as how long it is stored, where it is stored, how it

is stored, what form it is kept in and who is using it. Experience with

programming systems which support orthogonal persistence has shown that the

simpler semantics and reduced complexity can often lead to a significant

reduction in software production costs.

Persistent systems are relatively new and it is not yet clear which of the many

models of concurrency and distribution best suit the persistence paradigm.

Previous work in this area has tended to build one chosen model into the system

which may then only be applicable to a particular set of problems. This thesis

challenges the orthodoxy by designing a persistent framework in which all

models of concurrency and distribution can be integrated in an add-on fashion.

The provision of such a framework is complicated by a tension between the

conceptual ideas of persistence and the intrinsics of concurrency and distribution.

The approach taken is to integrate the spectra of concurrency and distribution

abstractions into the persistence model in a manner that does not prevent the user

from being able to reason about program behaviour.

As examples of the reference model a number of different styles of concurrency

and distribution have been designed and incorporated into the persistent

programming system Napier88. A detailed treatment of these models and their

implementations is given.
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1 Introduction

The persistence abstraction is concerned with the uniform treatment of data that

is independent of its lifetime. In orthogonally persistent systems all data has the

right to survive irrespective of its type. The same mechanisms operate on both

short-term and long-term data, avoiding the traditional need for separate systems

to control access to data of different degrees of longevity. Thus data may remain

under the control of a single persistent programming system for its entire

lifetime. The benefits of orthogonal persistence have been described extensively

in the literature [ACC81, ABC+83, ABC+84, AM85, AMP86, AB87, Dea87,

MBC+87, Wai87, AM88, Dea88, Bro89, MBC+89, Con90, MBC+90, Kir92,

Cut92]. These can be summarised as :-

• improving programming productivity from simpler semantics;

• removing ad hoc arrangements for data translation and long term data storage;

and

• providing protection mechanisms over the whole environment.

Persistent systems are relatively new and it is not yet clear which of the many

models of concurrency and distribution best suit the persistence paradigm. The

goal in this thesis is to devise a persistent framework in which all models of

concurrency and distribution can be integrated in a manner that preserves

understandability. Understandability is a key theme in this work and broadly

means that the underlying system model never prevents the user from being able

to reason about program behaviour.

1.1 Persistent Object Stores

Persistent systems generally rely on a persistent object store as the sole

repository for all data. An object store has a number of desiderata namely infinite
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speed, unbounded capacity, and total reliability. In implementation terms none of

these is realistically achievable and hence store design is concerned with

technological approximations. Concurrency is one way which may effect speed

increase whilst distribution can be used as a method to extend store capacity.

The reliability of a persistent store depends in part on its resilience to failures. A

number of techniques have been developed that enable a store to recover from

system crashes. It is argued here that one method, namely shadow paging, is

worthy of investigation in supporting recoverability in orthogonally persistent

systems. A single-threaded persistent object store which is based on an efficient

implementation of shadow paging is presented. It is shown how this shadow

paging mechanism can be extended to support a concurrent store in a way that

does not constrain how and when the data is accessed.

1.2 Concurrency

There are many different styles of concurrency ranging from atomic transactions

at one extreme to models based on semaphores. Typically application-building

systems employ one particular model which may be suitable for a specific set of

problems. The approach presented in this thesis is to view models of concurrency

as lying on a spectrum of understandability where points on the spectrum define

the extent to which the programmer is responsible for maintaining global

cohesion. The problem of integrating concurrency and persistence can then be

seen as one of incorporating this spectrum into the persistence framework.

A persistent architecture for Napier88 that can support all styles of concurrency

has been constructed. The system incorporates Stemple and Morrison’s

concurrency control specification system CACS system [SM92] into the

architecture in a way that links the CACS concepts of data visibility with the

persistent store and shadow paging scheme. As an example an atomic transaction
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package has been constructed in Napier88 which makes use of the concurrent

system.

1.3 Distribution

As the complexity of applications grows the available address space provided by

a single node may be insufficient and hence data may be distributed over a

number of nodes. Decentralisation of resources can enable sharing among a

number of applications and may improve reliability and availability of systems

since failure at one node may not necessarily prevent others from continuing.

Distribution may be provided at many levels in a computer system. For example

systems such as NFS [SGK+85] provide distribution to the Unix file system

whereas other systems such as Amoeba [MRT+90], Accent [RR81] and the

Cambridge Distributed Systems [NH82] decentralise the operating system across

a number of nodes. One of the design aims of these systems is to attempt to hide

the distribution and create the illusion of a single system. In contrast many

programming languages provide language features such as RPC [Nel81] or the

Ada rendezvous that enable the programmer to exploit distribution. Models of

distribution can thus be viewed in terms of the extent to which their use is

transparent.

A model of distribution that is completely transparent to the user is undoubtedly

the ideal one for orthogonally persistent systems. However there are a number of

technological difficulties that make this hard to deliver on a large scale. What is

presented here is an extension to the Napier88 system that extends its name

space to include other global address spaces. This has been done in such a way as

to enable browsing of remote object stores and for objects to be copied from

these stores in a type-safe manner. Once copied these objects can then be

manipulated just like any other Napier88 object.
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At the implementation level communication with a remote object store is

achieved through TCP/IP based sockets and therefore any Napier88 persistent

object store residing on a machine on the internet can be accessed. The

implementation of this service uses an underlying mechanism that is sufficiently

generic to allow a number of different distribution models to be constructed. As

an illustration of this a model has been constructed which enables Napier88

atomic transactions to take part in a two-phase commit across a number of nodes.

1.4 Integration

In order that the persistence abstraction can deliver its promise of reduced

complexity in the construction and evolution of large scale systems and long-

lived data, it must address the issues of integrating distribution and concurrency.

In [Atk92], Atkinson states that :-

“Perhaps the most challenging problem is to implement a store that

meets the following combination of requirements :-

• manage the various memories and storage devices, allocating and

recovering space, giving the illusion of an indefinitely large store;

• provide stable references (needed to implement all recursive types

[Hoa75] and to provide persistent block retention semantics for

procedures [Joh71]);

• provide a reliable store that offers recovery after various kinds of

failure [Bro89];

• provide mechanisms for concurrent use of data; and

• provide a transactional mechanism to allow programs to

voluntarily withdraw updates that they have grouped together and

to control their release of revised information.”
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In unifying the database and programming languages views of data, the

persistence abstraction must then provide concurrency and distribution

integration in a way that is suitable to both the database domain and the

programming language domain. However these two domains often have

conflicting views of concurrency and distribution that makes the provision of one

single model in the persistence context inappropriate. This then can lead to a

tension between the conceptual ideas of orthogonal persistence and the intrinsics

of concurrency and distribution that makes the integration difficult. The

orthogonal persistence abstraction which hides all physical properties of data

may be too strong a constraint for some concurrency and distribution models.

The goal, then, is to find a solution to the integration that preserves

understandability and confines and controls the relaxation of the orthogonality

constraints of persistence to where and when it is required. Most of the previous

work in this area has concentrated on the provision of just one model [MBC+88,

Wai88, BF89, Bro89]. Instead, this thesis presents an attempt to provide a

complete integration by capturing the spectra of concurrency and distribution

abstractions in a persistent system. The approach taken is to view the levels of

abstraction of concurrency and distribution in terms of the organisational support

required in a persistent architecture. By an appropriate provision of language

facilities and store primitives a persistent system can be given an infrastructure

that enables the construction and support of a range of models.

1.5 Napier88

The Napier88 system [MBC+89] is used as the basis for achieving the

integration of concurrency and distribution. Napier88 is a strongly-typed

persistent programming language with a sophisticated type system, first-class

procedures and environments. Napier88 is supported by a stable persistent object

store through which all data is accessed. The use of Napier88 as a vehicle for this

work has a number of advantages :-
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• The Napier88 system provides no explicit language constructs or store

primitives for the expression of concurrency or transactions. The language

thus has no preconceived view of concurrency that might complicate the

provision of a range of models.

• Similarly, the system has no built-in model of distribution. Since all data in a

Napier88 system is through the persistent store then the system is constrained

by the bounds of the store.

• The Napier88 system is based on a layered architecture [BDM+90] that was

specifically designed to support cost effective experimentation with persistent

store design, concurrency, transactions and distribution in a persistent

environment. The layered architecture provides an explicit layer for each of

the many logical levels of architecture required by a persistent system.

One of the principal design aims in this thesis is to incorporate concurrency and

distribution into the Napier88 system in a way that retains these architectural

abstractions, augments rather than alters the layered interfaces and does not

require the introduction of new language constructs.

The architectural layering has been chosen to take advantage of the persistence

abstraction by ensuring that programs are not able to discover details of how

objects are stored. This divides the architecture between the architectural layers

that provide the persistent object store and those facilities that may be

programmed by a supported programming language. Thus, a data format can be

altered by the compiler without the need to alter the persistent store. The

architectural layering is shown in figure 1.1.
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Concurrency User Transactions

Persistent Abstract Machine

Local Heap

Stable Virtual Memory

Non Volatile Storage

Stable Heap of Persistent Objects

Protection Mechanism

Figure 1.1: The basic architectural layers.

The division has an important consequence for the provision of concurrency,

transactions and distribution. This allows experimental implementations to be

constructed at the language level without the need to redesign the entire

architecture. This is very different from convention where store primitives are

provided that define the distribution and concurrency. However, once a particular

implementation technique has been identified as essential one or more layers of

the persistent store may be reimplemented to incorporate the mechanism. If a

layer interface is changed the change is only visible to the layer immediately

above thereby limiting the required reimplementation.

The design of this layered architecture and an initial implementation on Unix

was produced by Brown [BR91]. Throughout this thesis references are made to

this design and its implementation with appropriate detail in the relevant places.

A brief summary of the function of each layer is given here as an overview.

The Napier88 compilation system maps programs onto an abstract machine, the

Persistent Abstract Machine [CBC+89]. The abstract machine is built on a heap-

based architecture that is designed as a convenient way of supporting the block

retention needed for the use of first-class procedures and is responsible for
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implementing the necessary primitives to support polymorphism and abstract

data types. Since the abstract machine does not allow direct access to the

persistent store it ensures that the compilation system is unaware of the

implementation of object storage, thus separating the use of an object from the

way it is stored. A design aim of the architecture provides the persistent object

store as the only available storage for the abstract machine. This means that there

is only one storage mechanism and one possible way of exhausting it.

To effect efficiency gains the implementation of the abstract machine makes use

of a local heap for two reasons. Firstly the local heap is used as a cache of

persistent objects that enables the abstract machine to work directly on virtual

memory addresses and secondly it provides an area of storage where new objects

can be created. Hence one of the local heap's principal functions is to control the

movement of data to and from the stable heap. The local heap is constructed in

such a way that it can be garbage collected independently of the stable heap and

since a great many new objects are transient they can be efficiently collected on

the local heap. Objects are faulted into the local heap on demand that causes an

address translation, or swizzle, that replaces their persistent store address with a

local heap address.

The stable heap interface provides a number of persistent object management

functions that enable the abstract machine access to the persistent store. The

stable heap layer provides a view of the persistent store that appears stable, is

conceptually unbounded in size and may be uniformly addressed. These

functions include the ability to create and delete objects, a procedure to stabilise

the persistent store and a procedure to invoke the garbage collector. The stable

heap is designed to work independently of the abstract machine and defines an

object format that is not tied to any one programming language. This object

format distinguishes object address fields from non-address fields but the stable
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heap imposes no interpretation of an object. All objects in the heap are reachable

from a single root object.

The stable virtual memory provides a contiguous range of addresses for use by

the stable heap that can always be restored after a soft failure to a self-consistent

state. Data in the stable virtual memory can be read and written through the

interface functions along with a mechanism for establishing a new consistent

state. One of the functions of this layer is to maintain a mapping between the

stable virtual memory and non-volatile store. The combination of the stable

virtual memory and the non-volatile storage layers is often referred to as the

stable store.

1.6 Related Work

1.6.1 Persistence

The concept of persistence can be traced back to investigations by Atkinson

[Atk78] into the integration of databases and programming languages. This led

on to the production of the persistent language PS-algol [ACC81] which

essentially added persistence to the S-algol [Mor79] programming language.

The PS-algol persistent store has been implemented by several systems,

including: the CMS chunk management system [ACC83], which provided a

simple transaction mechanism, concurrency control and manipulation of

arbitrary sized chunks of data; the POMS persistent object management system

[CAB+84]; the CPOMS which is a persistent object manager written in C

[BC85].

The CPOMS architecture is a persistent store that is partitioned into databases.

Objects are faulted from the persistent store to a local heap on demand. Programs

then manipulate these objects, or create new ones, on a local heap and then

commit objects back to the store. The commit atomically copies the transitive
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closure of the committed object to the store. A pessimistic concurrency control

mechanism allows programs to share data.

Much of the implementation techniques used in these systems originated in the

development of the System/R [CAB+81] relational database project. The project

produced a number of key contributions including the SQL query language, two-

phase locking, serializability and shadow paging. System/R uses a combination

of shadow paging and logging to support recovery in a concurrent accesses

database.

The Shrines implementation [Ros83] of an object store for PS-algol used shadow

paging running under the VAX/VMS system. This system operated by mapping

a file holding the persistent store onto the virtual address space of a running

program by directly manipulating the VMS page tables using a special purpose

paging algorithm. The Monads architecture uses a similar shadow paging

technique [RHB+90].

Stores that use logging as a basis for recovery include Argus [OLS85], Eos

[GAD+92], and O2 [VDD+91]. Other systems such as Cedar [Hag87]

incorporate logging as an auxiliary structure in the file system to speed up writes

and recovery whilst in the log-structured file system of Rosenblaum and

Outerhout [RO91] all data, persistent and transient, is kept in logs. The

performance of recovery schemes has been analysed in [KGC85, AD85a,

AD85b].

1.6.2 Concurrency

Work on concurrency in databases first identified the notion of atomic

transactions [Dav73, Dav78, EGL+76] as a way of isolating the effects of one

activity from another using a serializable schedule that preserved

understandability. The concept was extended by Moss [Mos81] to enable

nesting. In contrast the programming language domain developed constructs
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such as semaphores [Dij65] critical regions [Hoa72], monitors [Hoa74], RPC and

rendezvous to enable a programmer to design and control concurrency of co-

operating processes.

The restrictions enforced by atomic transactions can often suppress potential

concurrency and hence overall performance. This is particularly true when

transactions are long lived. The more objects a transaction accesses the greater

potential for conflict resulting in long blocking delays under a locking

mechanism or an expensive abort in an optimistic scheme. The longer a

transaction lives the more likely it will either encounter a system crash or incur

deadlock thus raising the probability of abort.

One suggestion that has gained some attention has been to use semantic

knowledge of an object to increase the amount of concurrency [Gar83]. For

certain objects, especially simple ones, it is often possible to identify operations

on these objects which are commutative and hence they can be processed in any

order. Many such examples exist but is not clear that the method can be adopted

in general. An adaptation of this semantic-based concurrency has been proposed

by De Francesco et al. [DVM+92]. They suggest that linguistic constructs could

be provided in an object-oriented database language such as Nuovo Galileo that

permit the programmer to specify mutually commutative methods.

In the Sagas model [GS87] a possible solution to the problems caused by long-

lived transactions is given. The serializability constraint is relaxed in Sagas

where a long-lived transaction is split into a sequence of transactions that can be

interleaved with other transactions. The mechanism guarantees that the

transactions comprising the long-lived transaction either all commit or

compensation transactions are executed to undo the effects of the partially

completed sequence. It is important to stress that this is not a general solution to

the problems caused by long-running transactions since not all such transactions

can necessarily be broken down to a sequence of shorter ones or compensating
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transactions created. The updates of a partial Saga are globally visible and the

compensating transactions make no attempt to track other transactions that have

seen these uncommitted updates. It is left to the programmer to determine if a

long-lived transaction can be partitioned into a sequence of transactions and that

compensating transactions can be constructed.

For some applications, especially those in the design and interactive systems

[Sut91, EG90, NZ92], the issue is not just one of performance but that the

serializability constraint of atomic transaction model is too restrictive. Many

such systems require the global cohesiveness of the transaction model but require

to interact with each other in a structured way because of their inter-dependence.

For example two designers working on part of a large complex design may wish

to view each others' changes prior to committing or even commit overlapping

changes. In the cases where conflict arises the resolution is done by mutual

agreement. Recovery in these design transactions can be difficult since there may

be complex transaction interdependence. However cascade aborts to effect

correctness might be unacceptable since it could eliminate a lot of useful work.

One approach to providing a suitable transaction model for design applications is

transaction groups [FZ89, NSZ91, NZ92]. A transaction group is a tree hierarchy

of groups whose leaves are co-operating transactions. Co-operating transactions

within a group can read and modify the same, possibly uncommitted, objects.

This is in contrast to the nested transaction model where serializability is

preserved and subtransactions neither communicate nor share data. Each

transaction group explicitly defines a sequence of operations called patterns that

specify the correct execution for members within that group. Any operation or

sequence of operations that is prohibited within a pattern is also specified. These

are called conflicts. Patterns can be thought of as a more expressive form of path

expressions [CH74] that can control who performs a sequence of operations as

well as when such a sequence can be performed. The recovery mechanism is
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designed to restrict the effects from transaction abort or system failure. Only the

operations that form the parts of the patterns that are invalidated by the failure

are undone and not all the groups' co-operative transactions. Co-operative

transactions issue compensating operations to work together to recover. These

compensating operations must adhere to the patterns and conflicts definitions for

the group and are either coded into the transaction or are formed by user

interaction.

ObServer [HZ87] is an object-oriented database that has been used as a base for

implementing transaction groups. It facilitates co-operating transactions by

providing non-restrictive locks and communication modes that enables non-

serializable interleaving. However it was found that within ObServer it was

difficult to control the visibility of intermediate results and specify correctness

for a history of concurrent transactions. To explore the feasibility of transaction

groups in a persistent system Cooper et al [CRW91] produced an implementation

using the language DPS-algol [Wai88] which is an extended version of the

persistent language PS-algol with support for concurrency and distribution. Their

approach was to incorporate the locking mechanisms of ObServer into DPS-algol

and use these as a basis for forming transaction groups. Their work included a

number of sample applications using co-operative transactions running on

different nodes. However, the implementation was not complete in that there was

no recovery mechanism nor was there a mechanism for describing patterns and

conflicts.

Concurrency in persistent systems has tended to be focused on one chosen model

[GAD+92, VDD+91, Wai88, Lis84]. The work of Krablin’s CPS-algol [Kra87]

is a notable exception. CPS-algol is an extension to the vanilla PS-algol that

includes language constructs to support and manage concurrent processes. The

concurrency model is essentially co-operative with procedures executing as

separate threads and synchronising through condition critical regions. Krablin
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showed that with these primitives and the higher-order functions of PS-algol a

range of concurrency abstractions could be constructed including atomic and

nested transactions as well as more co-operative models.

1.6.3 Distribution

There are a number of persistent systems which support a form of distribution.

The Casper system [KSD+91] is a distributed architecture designed to support a

number of Napier88 programs running on distinct nodes against a shared store.

The system has been implemented using the multi-threading and external pager

features of the Mach operating system [ABB+86] and employs a cache-

coherency scheme to ensure consistency. The Monads project [HR91] provides a

distributed recoverable shared virtual memory architecture across a network of

Monads-PCs. Unlike the Casper model there is no central server and each node

provides it own backing store for a portion of the address space. The DPS-algol

system [Wai88] is an extension to the PS-algol language to include a model of

concurrency and distribution that includes lightweight processes and remote-

procedure call. The system enables the PS-algol heap to be distributed across a

number of hosts. By default, the distribution is fully transparent but the language

provides constructs that may be used to discover and influence where objects

reside and processes execute.

The Mneme persistent store [MS88] provides a heap of objects that is designed

to support co-operative, concurrent and distributed collections of data.

Distribution in Mneme is not just concerned with the physical separation of data

but also the decentralisation of the object space management. An object has a

unique identifier and is uninterpreted except for distinguishing between pointers

and non-pointers for the benefit of the automatic storage management. Within

the heap, groups of objects can have particular store management strategies, such

as a clustering policy. Two client languages, a persistent Smalltalk and a

persistent Modula-3, use the Mneme store.
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The Arjuna system [SDP91] is a framework for providing flexible models of

distribution through reuse by multiple inheritance. Arjuna is an object based,

fault tolerant, distributed programming system. Recoverability and concurrency

control mechanisms based on locks are integrated with an object based

framework by using inheritance. Objects become active when invoked by an

atomic action otherwise they are deemed passive and are stored in a stable object

store. Each node has its own stable object store, called Kubera, in which local

passive objects are kept. When objects are activated a server process is created

and the state of the object is copied into a volatile store. Access to the state of an

object is controlled by the object itself. Each Kubera object is kept as a log

corresponding to a version history. Versioning of objects is in support of

alternative concurrency control mechanisms.

1.7 Summary

The principal aim of this thesis is to provide an architecture in which models of

concurrency and distribution can be integrated with persistence. This has resulted

in the development of a flexible persistent architecture for Napier88 in which any

model of concurrency and distribution can be constructed and supported.

Integrating concurrency into Napier88 is achieved by mirroring the CACS data

visibility structures with a concurrent shadow-paging mechanism and developing

communication paths between the Napier88 architecture and the CACS system.

Distribution is integrated into Napier88 through the provision of a store-to-store

communications interface within a client/server infrastructure that enables

models to be constructed.

The development and implementation of this integrated system conforms to the

Napier88 generic layered architecture and has been produced without the need to

introduce new language constructs.
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1.8 Thesis Structure

Chapter 2 examines the issues of the preservation of understandability from the

viewpoint of reliability and in particular failure recovery. Two commonly used

techniques, namely shadow paging and logging, are described in detail together

with a discussion of their appropriateness in persistent systems. Chapter 3

describes the implementation of a new shadow paged stable store that forms the

basis of a Napier88 persistent object store.

Chapter 4 discusses the problems of integrating concurrency into a persistent

system and presents a new persistent architecture based on a combination of a

concurrent shadow-paged store and a concurrency control specification system.

The architecture presented has the flexibility to support a range of concurrency

styles. Chapter 5 details an implementation of this architecture and shows how

two contrasting models of concurrency, a co-operative threads package and

atomic transactions, can be incorporated into the Napier88 system and supported

by this architecture.

Chapter 6 concentrates on the integration of distribution and persistence. Models

of distribution are categorised in terms of their control of the dimensions of

distribution transparency. An implementation of one such model that has been

constructed in the Napier88 system is presented. It is shown how this model can

be simply extended to support a transactional two-phase commit protocol across

a number of nodes.
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2 Recovery Methods

2.1 Introduction

Central to the persistent architecture is the design of the object store. Many

different object stores have been proposed and constructed [ACC83, Ros83,

CAB+84, BC85, MS88, Bro89, HR91, GAD+92, BR92]. Because the models

that these stores are attempting to support are motivated differently they vary

considerably in their functionality and architectural design. However one factor

that is common to all these designs is that they must address the desired

properties of persistent object stores. These are unbounded capacity, infinite

speed and total reliability. In implementation terms none of these are realistically

achievable and hence store design is concerned with technological

approximations. This accounts for the variety of available stores.

This chapter focuses on the problems of reliability and in particular recovery

from failure. Recovery management is concerned with engineering solutions to

failure that provide the required degree of reliability by automatically restoring a

system to a state that is understandable and acceptable to the user. Failure may

occur in a number of different ways. Examples include hardware malfunctions,

operating system failure, incorrect computer operation, etc. It is important in

designing systems to understand the types of expected failures and their impact

on the user.
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Figure 2.1: Conceptual store architecture

In the discussion in this chapter it is assumed that the user manipulates data

through reads and writes to a conceptual store which is implemented on non-

volatile storage, with volatile storage being used as a cache for performance

reasons (figure 2.1). The volatile storage in a system is usually main store and

cache memory and has the typical feature that the information it holds is lost

after a system crash or on power fail. Non-volatile storage is distinguished from

volatile storage in that the data it contains is expected to survive system crashes

and power failures. One function of the system is to maintain the user’s

conceptual view of the store by effectively employing a coherency mechanism

that ensures the movement of data between the stores is atomic and consistent.

Failure can arise from the loss or corruption of either or both the volatile and

non-volatile stores. Hard failures occur from the irrevocable breakdown of a

hardware component that potentially results in the loss of data from both the

non-volatile storage as well as the volatile storage in a system. Disk and tape

systems are commonly used as non-volatile storage and their failures are usually

the result of a head crash or corruption to the recording medium. Such failures

are often called media failures. Soft failures arise when only the volatile storage

is lost or corrupted.

The discussion of recovery techniques in this chapter is restricted to errors that

are detectable. Undetectable errors that corrupt either the volatile or non-volatile
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storage can conceivably happen. To minimise the potential for undetected errors,

hardware often uses error detecting codes, such as cyclic redundancy checks or

parity checks [PB61]. Soft failures through power failure are reasonably easily

detected. Other soft failures may be detected by the logic of the system software.

For example, the system may determine that it is in a state from which it cannot

recover or that it is unsafe to proceed and cause itself to crash.

The next section briefly describes some of the issues involved with recovery

from hard failures. However the main emphasis in this chapter is to provide

background to the issues of recovery techniques that deal with soft failures. A

classification of recovery methods is formed and a detailed discussion of

common approaches to implementing recovery methods. Comparisons of two

popular mechanisms are discussed.

2.2 Recovery from Hard Failure

Recovery from hard failures involves maintaining data on stable storage. Stable

storage is designed to protect data from hard failures by replicating information

held on non-volatile storage to other devices that have an independent failure

mode.

Most systems offer an approximation to stable storage through backup or

archiving facilities. If the backup media is removable it may be sited in a

different location to prevent simultaneous damage to both the original and the

copy. The main problem with this method is granularity. The system is only

reliable up to the point of its last successful backup. Recovery from hard failure

effectively rolls the system back to the time of the last backup. Backups may

require that the system is unavailable whilst making the archive and hence may

not be done very frequently. Similarly the recovery of data from archive may

also be time consuming and frequently requires human intervention.
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Systems that require high reliability and availability of data need automatic and

fast recovery from hard failure. A technique often used is disk mirroring [BT85]

where every update written to disk is mirrored by performing the same update

onto a second disk. Thus the second disk acts as a mirror copy of the first until

there is a soft or hard failure. Should either disk suffer from hard failure the

system can proceed using the information held in the remaining drive. If there is

a soft failure a simple protocol is used to determine which drive successfully

completed the last update and processing continues from that point.

In the case where both drives fail simultaneously then of course both copies of

the data are lost. To circumvent this a third drive could be used in the mirroring

and so on. Variations of mirroring include distorted mirrors [SO91] and doubly

distorted mirrors [OS93] whilst other techniques such as RAID systems and

replicated machines are sometimes used. Clearly absolute reliability is

impossible to guarantee but an arbitrarily high degree can be achieved.

An important point about hard failure recovery is that it used to support recovery

from soft failures. The techniques used to recover from soft failure described

below utilise the non-volatile store under the assumption that it is stable.

2.3 Recovery from Soft Failure

After a soft failure such as a system crash, information held in the volatile store

is lost. There is then a potential that the image of the conceptual store on non-

volatile storage that survived the failure is in an inconsistent state. This can occur

if some of the changes made by the user had not been moved from the volatile to

non-volatile storage by the time the failure happened. The problem for the

recovery manager is to ensure that there is sufficient information held on non-

volatile storage to enable the regeneration of the conceptual store to a consistent

state. Soft failure recovery techniques are thus concerned with what information
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needs to be kept to allow a consistent state to be reconstituted from the non-

volatile store and what the mechanisms are for handling this information.

One simple approach to maintaining synchronisation between the conceptual

store and non-volatile store is to cause a change in the volatile store to be moved

to non-volatile store before the next change can proceed. In this method the

volatile store is no longer being used as a cache and hence the overhead is likely

to be prohibitive. Instead several changes may be held in the volatile store and

moved to non-volatile store in a batch. This then can lead to a mismatch between

the conceptual store and non-volatile store. In order that the user can maintain a

level of understandability the system provides the user with a mechanism, which

shall be called meld, that synchronises the non-volatile store with the conceptual

store. The effect of the meld operation is to move atomically, with respect to the

conceptual store, a batch of changes from the volatile to non-volatile storage.

The term meld is used to describe the action of making updates permanent rather

than terms like commit or stabilise since they imply specific meanings in

particular models. On recovery from soft failure the manager must be able to

restore the conceptual store to the state it was at the previous meld point from the

non-volatile store and proceed from there.

The atomicity of the meld with respect to the conceptual store assures the user

that either all the changes appear to have reached non-volatile store or none have.

In the provision of an atomic meld the recovery manager must take into account

that the interface to the non-volatile store is non-atomic and hence writing out a

batch of changes cannot be performed in a single action. A soft failure in the

middle of a meld operation could potentially leave the non-volatile store in an

inconsistent state. To circumvent this the recovery manager employs a controlled

replication of data on non-volatile storage that ensures that after soft failure the

old values for data that have been changed can be found or reconstructed or that

values for changed data that should have occurred as part of the atomic meld can
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be found or reconstituted. There are two procedures the recovery manager can

perform to rebuild a consistent image of the conceptual store. After a soft failure

the recovery system can undo the changes made to data in the non-volatile store

by replacing them with their previous melded value. An undo operation requires

that the previous melded value for some piece of data in the conceptual store has

been copied to non-volatile store before being overwritten. The recovery system

can also undertake a redo action on data in non-volatile storage so that it reflects

the values it would have acquired had the failure not occurred. A redo operation

requires that all the changes the user made to the conceptual store have been

copied to non-volatile storage.

If the system were to crash again whilst in the middle of recovering from the last

crash then the recovery manager must be able to replay the sequence of undo and

redo operations that it was in the process of completing. This implies that the

replay must be idempotent. That is, repeated executions of the replay mechanism

must have the same effect as if it were executed once. Recovery strategies can be

classified into four categories:-

• no undo / redo. The system is constructed in such a way that the recovery

manager is never required to perform undo operations after a crash. This can

be achieved by delaying changes to the non-volatile store until the user

requires a new consistent state to be established. The changes are then applied

to the store. On recovery, redo operations are required to update the non-

volatile storage to make it consistent with the user’s view of the store.

• undo / no redo. To avoid redo operations the system must ensure that all

changes made by the user are recorded in non-volatile store. On recovery

these changes must be undone to the last point where the non-volatile store

and the conceptual store were synchronised.
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• undo / redo. After a system crash the recovery manager may be required to

perform undo operations for some data and redo operations for others to

restore a consistent state.

• no undo / no redo To avoid redo all the changes made by the user must be on

non-volatile storage by the time of the meld. To avoid undo none of the

updates can be on stable storage before the meld. To avoid both requires that

all the updates to the conceptual store are made permanent in one single

atomic action.

The next two sections look at how each of these categories may be realised in an

implementation. For the purpose of describing the recovery mechanisms a

single-threaded operation is assumed. The additional problems incurred by

concurrent access and possible optimisations to the recovery mechanisms are

considered in section 2.6.

In many systems the recovery manager considers data as separate from the

program’s state in that no provision is made for restoring the program state

following a soft failure. Because no program state is maintained then after a

crash a program can only be restarted from the beginning of its execution. To

ensure consistency the recovery manager may need to restore the data to the state

before the program started. However this may have the adverse effect of

eliminating a lot of useful work.

In some orthogonally persistent systems the process state is considered part of

the data and hence the recovery manager must ensure that both the data and

process state are synchronised so that they can be uniformly and consistently

restored after a soft failure. The recovery manager can then restore both the

program and the data to some point in the computation and continue from that

point. The point is that systems that consider the process state as part of the store
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can often restore a system after a crash to a point nearer the crash than would

otherwise be possible thereby reducing the potential loss of information.

Obviously simple programs can be structured to preserve enough state

information that allows the computation to proceed from some intermediate

point. For example the user of an editor or word processor is often encouraged to

make periodic saves so that in the event of a system crash the editing can

proceed from the last save point. This save may not include all aspects of the

editing environment so that on restarting the editor items such as the insertion

point or the contents of the copy/paste buffer may be lost. This method of

recovery is clearly not general and can add considerable complexity to a

program.

The difference in effect on recovery between systems that save the program and

data state to those that don’t is not unlike the difference between the restart and

the sleep commands on an Apple Macintosh PowerBook. The restart first quits

all open applications usually giving the user an opportunity to save any changed

data and then reboots the system. On startup applications are not restored to the

state before the restart and the user has to recreate the environment that existed

before. In contrast the sleep command effectively shuts down the machine but

preserves the current state so that when awoken the user can immediately

continue from the point just before the sleep was issued.

2.4 Logging

Logging [Dav73] is the most widely used recovery method especially in

transaction processing systems. A log is held on stable storage and constitutes a

journal of changes made to the conceptual store. In this discussion it is assumed

that the log survives a crash and that writes to the log are stable. Before any

object is updated a record is appended to the log that records the change being

made. This writeahead log [GMB+81] can then be used after a crash to restore
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the system to a known state by comparing the values for objects held in the log

with values in the non-volatile store. Figure 2.2 gives an outline of the store

architecture showing the log in non-volatile storage and pages copied between

the non-volatile and volatile storage. Logging is usually implemented using one

of two basic schemes described below.

volatile store

non-volatile store

log

Figure 2.2: Layout of logging model

2.4.1 Writeahead Log with Deferred Updates

Updates made by the user are recorded in the log but the changes to the non-

volatile store are deferred until the user melds. Each update causes a log record

to be written that specifies the object involved in the update and its new value.

When the user melds an entry recording the fact is written in the log. At this

point the data is effectively melded. Following this the deferred updated objects

can be copied to non-volatile storage by reading the changes from the log.

If the system crashes after the user has melded but before the updates to the non-

volatile store have completed the log is used to redo the changes made by the

user. Thus on recovery the information in the log can be used to restore the

system to the last consistent state.
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If the system crashes before the user melded then because of the deferred writes

the non-volatile store still reflects the last consistent state. If the program state is

part of the conceptual store then it can be automatically restored from the log by

the recovery manager and its execution restarted. The program may continue

execution from this point and will then effectively reconstruct the conceptual

store to the state just prior to the crash and then carry on its computation. If the

program state is not in the store then the recovery manager is not required since

the state of the non-volatile store always reflects the state at the last consistent

state. This is identical to the situation where the user discards the changes.

Writeahead logging with deferred writes can be classified as using a no undo /

redo algorithm.

2.4.2 Writeahead Log with Immediate Updates

Before the user updates an object in main memory a record of the change is

written to the log. The log entry records the object involved in the update, its

new value and its old value. The update of the object can then take place. Unlike

the previous case updates can be performed straight after the log record has been

written and are not deferred until the user melds. Since the log records contain

the old and new values for modified objects the pages of the volatile store can be

flushed to non-volatile storage at any time. When the user melds a record is

entered in the log.

Since the flushing of modified pages can be done independently of the user’s

updates and melds the log must be used after a system crash to ensure that the

non-volatile storage is consistent with the conceptual state of the store. If the

crash occurred after a modified page was written to non-volatile storage but

before the user melded, the records in the log are used to undo the effects of the

updates. If the crash occurred after a meld record was written to the log but

before all the modified pages pertaining to that meld were flushed, the log
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records are used to redo the effects. If the user discards then the log is again used

to undo the effects of the updates.

Again if the program state is part of the store then after the recovery manager has

completed its undo operation the execution of the program can be automatically

restarted by redoing the log.

Writeahead logging with immediate updates can be classified as using an undo /

redo algorithm.

2.5 Shadow Paging

In a shadow paging system a page replacement algorithm controls the movement

of pages between non-volatile store and main store in such a way that a

consistent state can be recovered from the non-volatile store after a crash. To

effect this the system maintains a disk page table that records the mappings

between the pages in the virtual address space and their associated blocks in non-

volatile store. The first time the user modifies a page a shadow copy of the page

is created so that there is always a retrievable copy of the page as it was before

the modification in non-volatile storage. The system must also record that a

modified page has been shadowed to avoid another shadow copy being created.

Shadow paging employs a meld mechanism that atomically establishes a new

global consistent state. This is executed when the user melds. There are two

varieties of shadow paging :-

2.5.1 After-look Shadow Paging

With an after-look shadow paged scheme the mechanism makes sure that a

modified page is never written back to non-volatile store to the same place it was

read from. When a modified page is written back to non-volatile store an unused

disk block is found and the disk page table updated to reflect the new mapping.
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This is analogous to deferred-write logging. Figure 2.3 illustrates the after-look

scheme showing the modified pages being shadowed to a different disk page.

unallocated main store page

unallocated disk page

modified page

shadow page

unmodified page

main store pages

disk pages

Figure 2.3: After-look shadow paging

The system uses a root block which resides at a known disk address. The root

block is stable by mirroring and from this the disk page table can be located. At

system startup the disk page table is interrogated to re-establish the state of the

address space. In fact two versions of the disk page table are maintained; the

version held on disk which reflects the stable state and another in main memory

which is updated by the shadowing mechanism. This transient disk page table

reflects the current state of the address space. Figure 2.4 illustrates the

architecture. The stable disk page table records the mappings from the last

consistent state whilst the transient disk page table in volatile store records the

current mappings. The diagram shows that the third and fourth page have been

shadowed to unused disk blocks. When the user melds all the modified pages are

flushed to disk and then the in-memory version of the disk page table atomically

replaces the disk version. This atomic update can be performed using an

adaptation of Challis' algorithm [Cha78].
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Figure 2.4: Layout of after-look shadow paging

On crash recovery the root block is read and the disk page table is recovered.

This is used to re-establish the contents of the pages from their associated disk

blocks. It will include the program state if it is considered part of the data. If this

is the case then once the recovery manager has reconstructed the data the

computation will automatically carry on from the last meld point. No changes to

data in this mechanism get undone or rewritten and hence the after-look shadow

paging recovery algorithm can be classified as no undo / no redo.

2.5.2 Before-look Shadow Paging

With before-look shadow paging, the first modification to a page causes a copy

to be written to a new block on non-volatile store, i.e., its shadow page. In

contrast to after-look shadow paging modifications then take place in the

original. The disk page table is used to record the location of the shadow pages

and must itself be on non-volatile store before any updates reach non-volatile

store. This is similar to logging with immediate writes. The before-look scheme
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is illustrated in figure 2.5 where a modified page is written back in place after a

shadow copy of the original has been taken.

unallocated main store page

unallocated disk page

modified page

shadow page

unmodified page

main store pages

disk pages

Figure 2.5: Before-look shadow paging

These shadow pages must be locatable after a crash and effectively form a

coarse-grain log of the previous values of the modified pages. On meld the

modified pages are written to disk and a new consistent state is established. This

log of previous values is then discarded.

Recovery from a system crash occurring before a meld involves using this “log”

to overwrite the pages that have been modified since the last meld with their

previous values. The system is thereby established to the same state as it was at

the last meld. This undo of the pages is clearly idempotent. If the program state

is considered part of the data then once the recovery manager has completed the

undo operation the computation will automatically proceed from the last meld

point. Before-look shadow paging can be classified as having undo / no redo

semantics.

2.5.3 Shadowing using Objects

Some systems adopt an alternate approach to shadowing in that they record

different versions of an object rather that different versions of a page. The

architecture for such a system could be constructed as a stable heap of objects
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that is implemented on non-volatile store using main memory as a cache. Instead

of maintaining page tables a mechanism is required that maps versions of an

object. One possible approach is to reference all objects through object headers

of the form shown in figure 2.6 as in Argus [OLS85]. When an object is first

modified a shadow copy of it is created and used as the current version. All

further modifications to the object affect the current version. When the user

melds the current versions of all modified objects reachable from some root

object it are written out to non-volatile storage and the pointers to the old

versions updated atomically to point to the current versions. Thus the old version

is always the value of the object at the last meld.

Object Id Old Current

Figure 2.6: Object header format

The main attraction of shadowing using objects is the granularity of the shadow

copy. Only objects that are modified require shadow copies rather than a whole

page. This will particularly benefit programs that only modify a small number of

objects. However creating shadow copies of objects could lead to problems of

external fragmentation. The trade-offs of shadowing objects rather than pages are

therefore similar to the arguments of segmentation versus paging. However

hardware and operating systems support for paging is available in many systems

which may favour a shadow paging solution.

2.6 Optimisations

The potential costs of maintaining a recoverable system can be high. The running

costs involve space overhead either for the log records or for the shadow pages

and speed overhead in writing these to non-volatile store. There is also the

overhead involved in the time it takes to recover after a crash. There are a
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number of possible optimisations that can help alleviate these problems without

compromising the recoverability of the system. In general non-volatile store is

implemented using hard disk technology and the optimisations centre around

reducing the frequency of disk writes and minimising seek times. Other

optimisations strategies can be used to aid the space overhead.

2.6.1 Optimisations to Logging

One of the perceived benefits of logging is that log maintenance involves only

sequential disk writes to the end of the log. One obvious optimisation is to buffer

log records and only force the log to disk when either it is essential to maintain

recoverability or more eagerly when there is a block (or a number of blocks) of

records to be written. Of course such buffering will compete with the store for

main memory resources. A second consideration is to determine exactly when it

is essential that the log records are on non-volatile storage. The stable log, that is

the log on non-volatile storage, must contain a record of an update to an object

only when the non-volatile store no longer contains the last melded version of

the object. When using deferred write logging the last melded versions of

changed objects are not overwritten until the meld record has been written to the

stable log. Hence it is possible to also defer the writes to the stable log until the

user melds as long as the buffers are large enough.

This approach will not work when using logging with immediate writes. In this

case the mechanism must ensure that if the log records are buffered then the

updates they record do not overwrite the melded versions in non-volatile store.

Conversely if updates are flushed to non-volatile store then the log records

associated with these updates must be on the stable log beforehand.

One important feature of logging is that there is no requirement at any time to

force modifications made by the user to non-volatile store providing the stable

log has recorded the changes. A user can modify and meld changes to a group of
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objects several times without it being necessary to write these changes back to

non-volatile store. All the necessary recovery information has been recorded in

the log.

When using writeahead logging with deferred writes the update to an object can

be prevented from reaching non-volatile store by pinning the page it resides on in

main memory. After a meld these pages are unpinned and flushed to non-volatile

store. A problem arises if the main memory becomes exhausted before a meld.

The page-replacement mechanism must select a page and unpin it and write it

back to non-volatile storage. However it must write it back to a different location

on non-volatile store to avoid overwriting the last melded version. This then

requires that the mechanism maintains a page table that determines where a page

is mapped to.

One optimisation that is sometimes used in logging implementations is for the

log to record differences, or deltas, between the old value and the new value of a

modified object rather than the values themselves. This can reduce the amount of

information written to the log especially where there are a frequent number of

small changes to large objects.

2.6.2 Checkpointing

It should be clear from the above descriptions that the log size is unbounded.

Unfortunately stable storage isn’t and hence a mechanism is required that enables

the log size to be reduced. Furthermore a large log could have an adverse effect

on recovery time. To alleviate the problem periodic checkpoints are taken. A

checkpoint operation synchronises the state of the conceptual store with the state

of the stable log. This involves flushing any buffered log records and all

modifications made by the user to non-volatile storage and then writing a

checkpoint record to the log. This record logs if any unmelded changes have

been made by the user at the time of the checkpoint.
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A checkpoint enables any records associated with changes that were melded

prior to the checkpoint to be removed from the log thus reducing its overall size.

However retrieving the free space in the log may be a very expensive operation

and in practice rewriting or compacting the log is slow and not frequently

performed and hence the size of a log is typically quite large [Kol87].

Checkpointing reduces the amount of the log that must be searched on crash

recovery.

Recovery from a system crash should only now involve searching the log up to

the checkpoint record and undoing or redoing changes as necessary. There are 5

separate cases to be considered as illustrated in figure 2.7.

The first case, C1, is where the user made some changes that were melded before

the checkpoint. No action is required by the recovery mechanism since the state

of the non-volatile store has not changed since the checkpoint.

Case C2 shows that the user made some changes before and possibly after the

checkpoint and melded these changes before the crash. The recovery manager

must use the log information to redo the changes made by C2. Note though that it

is only necessary to restore from the checkpoint forward since any changes prior

to the checkpoint are still in effect.

Case C3 is where the user made changes prior to the checkpoint but the system

crashed before these changes were melded. In this case the effects of C3 must be

undone including the changes C3 made before the checkpoint. It may then safely

be rolled forward.

In case C4 changes were made after the checkpoint and melded before the crash.

Again the log records are used to restore the changes made by C4.
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Figure 2.7: Checkpointing and recovery

Finally case C5 made changes after the checkpoint which were not melded

before the system crash. Here the effects of C5 must be undone before they can

safely be redone. Note that this is only for the case involving logging with

immediate update. With deferred update any changes made by C5 would not

have reached the non-volatile store and hence do not need to be undone.

If the program's state is considered part of the data then the above scenario is

somewhat different. The checkpoint operation would include synchronising the

program state with the data and hence this state could be re-established after a

crash. In case C2 the changes made after the checkpoint would be automatically

re-established by the program resuming computation from the checkpoint. The

redo information would not need to be read from the log. However in cases

where a lot of computation was involved between the checkpoint and crash point

it may be cheaper to restore from the log. The is also true for case C3. Instead of

undoing all its effects as described above C3 would be resumed from the

checkpoint state and move forward automatically.

Note that in case C5 logging the program state would mean that after the undo

operation had completed the program would automatically restart from the

beginning and move forward. Logging of program state may be a fairly

expensive operation given that each state change would require a new log record.
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One cheaper alternative is to only log program state at a checkpoint. This would

not deliver all the benefits that comes with logging every state change but could

save some changes from being discarded after a crash. In the cases shown

checkpointing the program state would allow case C3 to be redone rather than

undone but could do nothing for case C5 since no log information about its

program state had been taken.

2.6.3 Optimisations to Shadow Paging

With shadow paging, overheads are incurred by the necessity of maintaining a

disk page table. The page table is frequently accessed and updated for every new

shadow. One optimisation is to ensure that the page table is permanently resident

in main memory where this is feasible. One problem that may arise is that with a

very large store the disk page table may be too large to hold in main memory. A

simple solution is to include the page table in the virtual address space. This then

means that the page table itself is paged and modifications to the table will create

shadow copies. One consequence of this is that it also allows the pages of the

disk page table to be mapped to anywhere on disk. However there is still a

requirement for a fixed point so that the disk page table can be located at system

startup and on recovery. This can be accomplished by maintaining a secondary

disk page table at a known location that records the mappings of the pages of the

page table.

Significant performance increases can often be achieved by incorporating the

shadow paging mechanism into the operating system's own paging scheme for

virtual memory. However this kind of facility is not necessarily available on all

operating systems but is becoming more widespread. For example the Mach

[ABB+86] operating system allows access to the paging mechanisms through an

external pager whilst SunOS [Sun90] and earlier versions of VAX/VMS [Dec78]

permit the user to memory-map portions of the file system. Whilst memory-

mapping in these systems does not provide access to the paging mechanisms it
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can aid performance by providing hardware assist in address translations.

Memory-mapping and its benefits are described in more detail in section 3.3.2.

With single-threaded computation checkpointing in a shadow paged store is

identical to the action taken when the user melds.

2.6.4 Optimisations to After-look Shadow Paging

One problem with after-look shadow paging is that two logically adjacent pages

in the conceptual store may be allocated physically distributed shadow pages

causing increased seek time. The effect of this can be reduced by using physical

clustering techniques such as suggested by Lorie [Lor77] where shadow pages

are allocated within a cylinder where possible. With after-looks, shadow pages

need only be allocated disk blocks when the user melds or when main memory is

exhausted and pages must be written back. Hence this provides an opportunity to

use such a clustering scheme.

2.6.5 Optimisations to Before-look Shadow Paging

One of the advantages of before-look shadow paging is that the updates occur in

place and hence the logically adjacent pages will also be physically adjacent on

non-volatile store. Optimisations to before-look shadow paging are similar to

logging optimisations. When a page is first modified a shadow copy in main

memory can be taken instead of a shadow copy on non-volatile store. The user

can then make changes in place. It is only necessary to write the shadow page to

non-volatile store when these changes are about to be written to non-volatile

store. Further, it is only necessary to write back changes when the user melds or

when main memory is exhausted and pages must be written back. Note that the

disk page table which in before-looks records the location of the shadow pages

must be recoverable before any modifications reach non-volatile store. The

before-look mechanism thus requires more disk writes than the after-look
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mechanism since the original page and the “log” must be on disk before any

modifications are written back.

2.7 Concurrency

What impact does the introduction of concurrent operations on the conceptual

store have on the recovery manager? If the model of concurrency is one of co-

operation where all the processes or threads synchronise their activity then

recovery will work as described above. The processes all agree on the state of the

conceptual store and hence they agree on the state of the store after recovery

from system crash.

In the case where the model is one of conflict concurrency the processes do not

commonly agree on the state of the store. Recovery therefore involves restoring

the conceptual store so it contains the effects of any individual processes that

melded and does not contain the effects of any unmelded processes. To describe

the problems associated with recovery from system crash in a concurrent system

a model of atomic transactions is assumed. Recovery mechanisms for non-

serializable transaction systems are very dependent on the particular concurrency

model.

2.7.1 Concurrency and Logging

The logging techniques described naturally extend to handle concurrency atomic

transactions. In fact the logging technique was designed for precisely this model.

Since the log records a journal of changes all that is required is to add a

transaction id to each log record.

Crash recovery and checkpointing uses the same procedure as described above.

In the example given in figure 2.8 this would involve redoing transactions T2

and T4 and undoing T3 and T5. Note that T1 does not need restored from the log

since it melded before the checkpoint. Also the redo of T2 need only be
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performed from the point of the checkpoint forward. Any changes made by T2

prior to the checkpoint will still be in effect.

If the program state is logged then the same advantages that were described for

the single-threaded case apply. That is, that transaction T3 would automatically

be resumed from the checkpoint state and move forward. Similarly T5 would

first have its changes undone and then move forward automatically.

T1
T2

T4

T3

T5

Checkpoint System
Crash

Figure 2.8: Checkpointing and transaction recovery

There are many possible algorithms for recovery using checkpoints. The

following is the one described by Bacon [Bac92]. The recovery system after a

crash constructs a undo_list and a redo_list. The log is searched backwards for

the last checkpoint record. The checkpoint record in this algorithm is assumed to

contain the identity of all transactions that were active at the time of the

checkpoint. These transactions are added to the undo_list. The log is then read

forwards from the checkpoint record to the end of the log. Each start record

found for a new transaction adds that transaction to the undo_list. Each meld

record found moves the transaction from the undo_list to the redo_list. The log is

then read backwards undoing each transaction in the undo_list and finally read

forwards from the checkpoint record to the end redoing transactions on the

redo_list.
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2.7.2 Concurrency and Shadow Paging

In contrast shadow paging does not readily extend to accommodate concurrent

operation. The problem is that transactions may make conflicting requests to

modify the same page. When one of the transactions melds the modified page is

written to its shadow page on non-volatile store. This of course will include the

changes made by any unmelded transaction that modified objects on the same

page.

One solution is to use page-level locking whereby an atomic transaction obtains

an exclusive lock on a page before shadowing the page [AD85b, Lor77]. Each

transaction maintains its own page table of shadows and the locking guarantees

that a page is never in more than one page table. The main drawbacks of this

solution are firstly that it introduces phantom locking where two atomic actions

are prevented from modifying different parts of the same page. Secondly it

employs a built-in concurrency control mechanism at a low level. Problems of

deadlock will also have to be addressed. An alternative approach is given in

chapter 3.

One optimisation that can be used with concurrent shadow paging is meld

batching. Requests to meld are not handled on a one-by-one basis. Instead they

can be delayed until there are a number of such requests which are then serviced

together. This can gain some performance advantages especially if the degree of

multiprogramming is high.

2.8 Comparing Shadow Paging with Logging

Which of the recovery methods described above is the best? Comparisons

between different mechanisms trying to achieve the same overall effect is often a

difficult and usually inconclusive task. A number of (not necessarily

independent) criteria have to be considered when making comparisons :-
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• the tradeoffs in the time taken for recovery against the time and resources

used in constructing a recoverable system.

• expected frequency of hard and soft crashes. In conflict concurrency systems

the frequency of aborted actions is also a factor. This may also depend on the

concurrency control implementation used, for example optimistic

concurrency control may result in more transaction aborts than say two-phase

locking.

.• frequency and cost of checkpoints.

• store architecture and its anticipated use. The issues here include the

frequency of updates, locality of reference, object identity and addressing.

Scalability of the recovery mechanism with respect to store size may also be

of concern.

• hardware and operating system support.

Some systems have sophisticated recovery methods built in as an initial design

decision. For example the Monads [RHB+90] architecture uses shadow paging

of its persistent store to achieve stability. Other systems such as Cedar [Hag87]

incorporate logging as an auxiliary structure in the file system to speed up writes

and recovery whilst in the log-structured file system of Rosenblaum and

Outerhout [RO91] all data, persistent and transient, is kept in logs. As pointed

out earlier several operating systems provide access to the paging mechanisms

giving potential for increased shadow paging performance.

Attempts have been made at analysing and comparing the cost of different

recovery schemes [AD85a, KGC85]. The results of these efforts do not produce

a clear winner. Other research [GMB+81, Kol87, AD85b] would suggest that

logging is a better technique especially when the system needs to support

conflicting actions. Implementations of shadow paging are not widespread and it
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is believed by some to be an inappropriate technology for database applications.

The implementors of System R used a complex combination of shadow paging

and logging and claim that in hindsight they would have adopted a purely log-

based recovery scheme. Furthermore they stated they were unable to perceive of

an appropriate architecture based purely on shadows that could support

transactions.

Agrawal and DeWitt produced a complex cost model used for comparing

shadow paging with logging using a variety of concurrency control techniques.

Their approach was purely analytical and their database simulations did not

account for the costs of buffer management. The results for shadow paging in

these simulations were poor when compared with logging. However closer

inspection of their model reveals an unexplained assumption. In the logging case

it is assumed that the size of the records that are written to the log for each page

modified by a transaction is 10% of the page size. So if during a transaction’s

execution data is modified on 10 pages the assumption is that the size of the log

records for that transaction amount to 1 page. This assumption may be valid in

some models of computation. However if the transactions are generated from

language systems that frequently update large objects, such as graphical objects,

or higher order functions the assumption may not be sustainable.

In contrast the Predator project [KGC85] took an empirical approach to

comparing the two methods. A realistic transaction-based database was

constructed and logging and shadow paging recovery mechanisms implemented

on stock hardware. A variety of transaction experiments were carried out using

both recovery techniques and the results compared. The performance metrics

were based on transaction throughput and mean response time. Their first

observation is that there is no one best mechanism and that the choice of

recovery method is application dependent. They concluded that shadow paging

works best when there is locality of reference and where the page table cache is
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large. By using meld batching, shadow paging outperformed logging as the

number of simultaneous transactions increased. Another interesting observation

they made was that the shadow paging imposes a more evenly balanced I/O load

than logging. Under load a noticeable performance drop was observed in the

logging scheme as the system is divided between requests for sequential disk

writes for the log and page reads and writes for the database.

Most of the objections to shadow paging performance are founded on a belief

that the cost of writing a journal of updates to a log will almost always be more

efficient than the maintenance of shadow pages. This may be true for a class of

problems but may not be true in general. Many of the measurements that this

notion was founded on were based on simulations or were taken from tests run

on machine architectures and configurations that are now obsolete. It may be fair

to suggest that the results of the comparisons related to the limitations of

technology and systems available at the time. For example the overhead of page-

table lookups in shadow paging was considered very costly. However the size

and speed of memory in an average workstation have risen dramatically over the

last few years so that the page table even for a large store could reside in main

memory.

Computational models too have changed, not least with the rise in popularity of

database programming languages and persistent systems. These systems make

different demands on a database or stable store with different patterns of use

from conventional database accesses. For example programs and data are not

treated differently in orthogonal persistent systems. It is not obvious how logging

could be used to efficiently record program state. In contrast this is relatively

straightforward to achieve in a shadow paged system by including the process

state in the address space that is shadowed. These arguments suggest that the

decision on a superior model of recovery is not so clear cut. It may be that

shadow paging is a better alternative. Certainly it is clear that shadow paging
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implementations can get great performance improvements from an operating

system that provides an external pager or memory-mapping support. This

support seems more forthcoming in stock systems than explicit support for fast

logging.

It has been argued [AD85b] that on a small scale, locality of reference would

seem to favour a log-based solution since the amount of information that requires

to be written to the log is small compared with the overhead of copying a whole

page. Furthermore with logging there is no requirement to write back modified

pages after a meld and hence a frequently modified page can reside in main store

through a number of transactions. Kent’s [KGC85] experimental observations

suggest the exact opposite. As locality increases the page table overhead in

shadow paging is soon amortised. With logging the amount of modified data that

must be saved increases. There quickly comes a point where a lot of locality,

especially within one page, along with frequent updates to objects on the page

tips the balance in favour of a solution that makes a one-off copy of a page rather

than maintains a journal of changes. Furthermore if the objects themselves are

fairly big then frequent modifications to them will have an adverse effect on the

log size but not on a shadow page. This kind of locality is exactly the type of

behaviour that might be exhibited in persistent systems with higher-order

functions.

It was shown earlier that for systems that consider the program state as part of

the data there is potential for restoring more information following a crash.

Maintaining program state changes in a log-based system may be expensive

since each state change potentially requires a log entry. This can be alleviated to

some extent by only recording the program state at a checkpoint. In contrast

shadow paging seems well suited to handling programs as data. Most state

changes are probably fairly localised and so once the first state change has

caused a shadow page to be created there is little extra overhead involved.
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2.9 Conclusions

The issues of recovery management centre around the trade-offs between the cost

of data recoverability against the expected frequency and impact of failure. The

cost of recovery management not only involves the overhead of restoring data

after a failure but also the time and space overhead required to maintain

sufficient information during normal operation that ensures that data are

recoverable.

In the case of soft failure recovery management data must be restored to a state

that is acceptable to the user following the loss of the volatile store. The user can

control the points at which his view of the data, the conceptual store, corresponds

with its image on non-volatile store by melding. The atomicity of melding with

respect to the conceptual store is not reflected in updating the non-volatile store

since multiple writes to non-volatile store are not atomic. Techniques for soft-

failure recovery enable a consistent state to be reconstructed after a crash by

replicating data or changes to data on non-volatile storage. This information is

used on recovery to restore consistency through a combination of undo and redo

operations.

This chapter has given some background to the issues of recovery from soft

failure and presented a detailed description of two common methods, namely

logging and shadow paging. The logging and shadow paging mechanisms were

discussed together with possible optimisation techniques and the complications

arising from conflicting concurrent operation.

From comparative studies that have been carried out it is clear that no one

particular method is superior. Rather the choice of the best recovery method is

heavily dependent on the way the data is used. However there is some evidence

to suggest that shadow paging may be the appropriate technique to use in

orthogonally persistent systems. This view is based on the belief that such
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systems are expected to exhibit a high degree of locality. It is also contended that

shadow paging may be a more efficient technique than the alternatives for

supporting recoverability in persistent systems that regard the program state as

data.

The next chapter demonstrates how after-look shadow paging may be efficiently

incorporated into the implementation of a persistent object store within the Unix

framework. This store is primarily designed to support the persistent language

Napier88 and has a single-user operation. Chapter 4 shows how the design of the

store and the after-look mechanism can be extended to cater for concurrent

operation.
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3 Shadow Paging Implementation

3.1 Introduction

In the previous chapter the recovery techniques of logging and shadow paging

were explored and the view was expressed that shadow paging may provide a

more efficient soft failure recovery mechanism for orthogonally persistent

systems. To this end an efficient implementation of a stable virtual memory

system based on after-look shadow paging has been designed and built. The

stable virtual memory provides a paged address space that can always be restored

after a soft failure to a self-consistent state. The interface provides functions for

reading and writing to the stable virtual memory along with a meld operation that

atomically establishes a new consistent state. This system has been built within

the persistent object store framework used to support Napier88.

This chapter examines the problems of implementing single-user shadow paging

in virtual memory and presents a detailed description of how this stable virtual

memory system was built on the SunOS operating system.

3.2 Implementation Issues

Paged virtual memory separates the user logical memory from the physical

memory such that the logical address space can be much larger than the size of

the main store. The virtual address space is divided into a number of fixed-sized

pages that reside on disk blocks on backing store and the main store is divided

into page frames of the same size. The operating system’s memory management

controls the movement of pages of the virtual memory on backing store to and

from the page frames on main store and maintains a page table, the main

memory page table, which records the allocation of page frames of main memory

to pages of the virtual memory.
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Figure 3.1: Virtual memory

Figure 3.1 depicts a virtual memory scheme with the pages of the virtual memory

held on disk. The page table records the mappings of pages to main store page

frames. Since a soft failure results in the loss of the main store then there is no

point preserving the page table through system crashes and hence it is transient.

The operating system typically allocates the pages of the virtual memory to a

contiguous range of disk blocks on backing store and records the disk address of

the first disk block, the base address. Virtual memory addresses are usually

relative offsets from the first page and hence the ith page can be found at the ith

disk block from the base because the pages and disk blocks are always in one-to-

one correspondence.

A shadow-paged virtual memory system is similar to the scheme shown in figure

3.1 where the pages of the virtual memory reside on backing store and a main-

memory page table records the allocation of pages to physical memory page

frames. The main difference in shadow paging is that the system ensures that

before a modified page is written back to non-volatile store that there is always a

retrievable copy of the original page on non-volatile storage.
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Figure 3.2 illustrates the after-look shadow paging mechanism showing that the

virtual memory page P is initially located at disk block D. Page P is moved into

main store and subsequently modified. When P is paged out it is written back to

a different disk block D’, its shadow page, leaving the original intact at the old

location. This scheme then destroys the one-to-one correspondence between the

pages of the virtual memory and disk blocks and so shadow paged virtual

memory maintains a disk page table that records the mapping between pages of

the virtual memory and disk blocks on backing store.

A further requirement in shadow paging is that this disk page table is stable. In

order that a consistent state can be recovered from the non-volatile store after a

crash the shadow page mechanism requires that the mappings of the disk page

table survive a soft failure. The shadow paging scheme maintains two versions of

the disk page table; a stable disk page table on non-volatile store which records

the mappings from the last consistent state and a transient disk page table which

reflects the current state of the mappings. Figure 3.3 illustrates the architecture
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The principal function of shadow paging is to make sure that there is always a

recoverable consistent version of the virtual memory. To establish a new

consistent state when the user melds, the shadow paging must first write out all

modified pages to their shadows and then provide a mechanism that replaces the

stable disk page table with the transient disk page table in a single atomic action.

Most operating systems do not support the requirements for a shadow paged

virtual memory system outlined above and hence an implementation strategy

must adopt its own mechanisms. A problem in describing implementation issues

for shadow paging arises because the extent to which facilities of the paging

systems can be accessed or manipulated by user program varies amongst

operating systems. For example in Mach control of paging can be directed from a

user-written external pager. SunOS takes a different approach by allowing some

degree of paging control through memory-mapped files. An implementation

strategy will be heavily influenced by what access and control to paging and

system page tables is permitted by the operating system. For example an

operating system may inform the process when a page in main store is being
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written back to disk. This would allow the shadow paging implementation to

delay the allocation of a shadow block until it is needed. This functionality could

be exploited by an implementation to perform the commit batching optimisation

outlined in 2.6.3.

Regardless of the accessibility to the system’s page management an

implementation of shadow paging in a traditional virtual memory operating

system requires not only a main memory page table but also, as a direct

consequence of the shadow pages, the maintenance of a disk page table. As

stated above this disk page table must be stable and the implementation must

provide a mechanism for atomically updating it.

3.3 Stable Virtual Memory Implementation in SunOS

3.3.1 Introduction

An overview of the generic layered architecture used to support Napier88 was

given in chapter 1. One of the strengths of this layering is that it allows

experimentation whereby different implementations of a layer may be

interchanged without the need to alter the layers above or below. This section is

concerned with the stable virtual memory layer and its interaction with the non-

volatile storage.

The stable virtual memory (SVM) provides a contiguous range of addresses for

use by the stable heap that can always be restored after a soft failure to a self-

consistent state. Data in the SVM can be read and written through the interface

functions along with a mechanism for establishing a new consistent state. One of

functions of this layer is to maintain a mapping between the SVM and non-

volatile store. The combination of the SVM and the non-volatile storage layers is

referred to as the stable store.
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The flexibility of this architecture has led to a number of implementations of the

layers, in particular the stable virtual memory layer. This is not surprising since

this is the level which interacts closely with the operating system for the

provision of non-volatile storage and stable virtual memory.

Currently, there are three versions of the stable store. They can be summarised as

follows :-

• The original store implementation by Brown [Bro89] uses block reads and

writes for the movement of data between the SVM and the non-volatile

storage and performs all the address translations. It employs a before-look

shadowing scheme to ensure that a consistent store state is recoverable after a

soft crash. This is the most portable and the least efficient of the versions.

• Brown also produced a second implementation of a before-look shadow-

paged stable store. This version utilises the memory-mapping facilities of the

SunOS operating system described below to implement the paging

mechanisms.

• A new after-look shadow-paged stable store based on the Shrines [Ros83]

model has been implemented as part of this thesis. This also uses the SunOS

memory-mapping features.

The next section gives an overview of the SunOS memory-mapping facilities.

The rest of the chapter then describes in detail the implementation of this third

version, the new after-look shadow-paged stable store, how it makes use of the

memory-mapping features of SunOS and gives some comparisons with Brown’s

second implementation. The discussion of these stores centres around the issues

of :-

• Stable virtual memory and non-volatile address space layout

• Format of the root pages
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• Stable store creation

• Stable store startup

• Stable store access

• Stable store checkpointing

• Stable store recovery

3.3.2 SunOS Memory-Mapping Facilities

The memory-mapping functions of SunOS are a set of system calls that allow the

establishment of a mapping and a degree of control over the movement of data

between pages in the virtual address space and blocks of a file.

Process virtual address spacestart VA

Unix file

mmap

Figure 3.4: SunOS memory-mapping

The mmap function sets up a mapping between the given contiguous blocks of a

file and the process virtual address space and returns the starting virtual address

of the mapping (figure 3.4). An option of mmap allows the caller to determine

where in the process virtual address space to place the mapping. Otherwise the

system chooses an appropriate value. The whole file need not be mapped in one

chunk. The function is flexible in that it allows the mapping of individual blocks

of a file to specific pages in the virtual address space.
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In addition to the mmap function there are related functions. msync writes all

modified pages in the main store in the specified range of the virtual address

space to their permanent storage locations. It can optionally invalidate any pages

so that further references will force the pages to be read from their permanent

locations. The mprotect function changes the access protections for a given

address range to the specified protection. Protection options are read, write,

execute or none. The munmap system call removes the mappings.

The main reason for using this memory-mapping facility is the gain in

performance. Performance of the store is greatly enhanced since it uses the

operating system’s page-replacement mechanism and utilises the Sun memory

management hardware to perform the address translations.

However the SunOS memory-mapping does not provide all the facilities needed

to implement shadow paging. For example :-

• The memory-mapping does not provide access to the page-replacement

mechanism. This means that the operating system has total control of the

movement of pages between the main store and virtual memory and the user

process cannot determine when and which pages are written back to disk. As

a consequence the operating system requires that before a page is accessed in

the virtual address space the page must have an associated disk block to write

out to. This effectively eliminates many of the shadow paging recovery

optimisations, such as commit batching.

• The memory-mapping functions do not allow access to the main memory

page tables. The user then cannot determine which pages of process virtual

address space are in main store at any given time or which pages have been

modified. This implies that the stable store implementation needs to keep

track of which pages have been modified.
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• In memory-mapping disk blocks to virtual memory pages the SunOS

operating system is effectively maintaining a disk page table. This table is

maintained by the operating system on a per-process basis. The disk page

table is transient not only because it is not maintained through soft failures but

also because the mappings it contains are discarded when a process

completes. The memory-mapping does not allow the user access to the disk

page tables. Although the memory-mapping allows the user to create

mappings between pages in the virtual address space and backing store it does

not provide any facility to enable the user to query the operating system to

find what the mappings are. This means that the stable store implementation

needs to maintain its own transient disk page table as well as a stable disk

page table.

3.3.3 After-look Stable Store Implementation

The stable store implementation uses memory-mapping to control and

manipulate the pages of the process virtual address space and the non-volatile

storage such that the state of the virtual address space can always be restored to a

consistent state. The performance gains in using the memory-mapping features

are so compelling that the after-look mechanism used in this implementation

works round the limitations outlined in the previous section.

Non-volatile storage is provided through a Unix file where the blocks of this file

are mapped into the virtual memory using the mmap call. This file is referred to

as the stable store file. The after-look shadowing mechanism in this

implementation effectively involves detecting the first modification to a page in

the SVM, finding an unused disk block in the stable store file and establishing a

new mapping between this block and the page. When the operating system pages

out this page, it will be written to the new block thereby leaving the old block

with an image of the page before it was first modified.
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disk page table0 1 data pages
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Figure 3.5: Layout of SVM address space

The layout of the stable virtual memory is given in figure 3.5. The first two

pages are the root pages whose structure and function are described below. The

data pages define the area of the address space that is used by the stable heap.

The disk page table is used to record the current mappings between the disk

blocks of the stable store file and the data pages. The format of a disk page table

entry is given in figure 3.6. The disk page table entries are organised as an array

of 32-bit words with one entry for each data page such that the ith entry of the

table contains the entry for the ith data page. Each disk page table entry (PTE)

records the block offset in the non-volatile storage that is mapped to the page or

zero if no mapping exists. Each PTE also has a number of flags which record

state information for the page. The disk page table is included in the SVM

address range so that pages of disk page table are subjected to the same shadow

paging scheme as the data pages. A secondary disk page table which is located in

the root pages keeps an array of disk page table entries for each of the pages of

the disk page table.

block offsetflags

02431

Figure 3.6: A disk page table entry

The number of data pages and hence the address space of the SVM is fixed at

store creation time. The SunOS system imposes an upper limit on the number of

pages that can be memory-mapped by a process. This limit is dependent on the

operating system version and machine type. By experimentation the SVM
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address range has been calculated and set to the maximum that can be used

across the range of machines.

An illustration of the layout of the non-volatile store and how it is mapped into

the SVM is given in figure 3.7. The root pages are mapped to fixed locations in

non-volatile store as shown. For the rest of the SVM the system does not

associate a disk block in non-volatile store with a page until the page is first

accessed. Since these mappings are created on demand then the order of pages in

the SVM address space is independent of the order of disk blocks of the non-

volatile storage.

disk page table0 1 data pages

root pages

Layout of SVM address space

Layout of non-volatile store

0 1

root blocks

unused 
block

Figure 3.7: Stable store layout

The shaded areas in figure 3.7 represent unused disk blocks. On startup or after a

checkpoint the system can establish that some of the mappings are no longer

required and hence the disk blocks associated with these mappings can be re-

used. If there is a request to access a previously unused data page a free block

must be found. One of the features of this implementation is that if there are no

free disk blocks available then the Unix file that is being used to represent the

non-volatile storage layer can be extended to accommodate the request. A free

space bitmap is constructed in local memory at start up to record which disk

blocks are unused. The bitmap has a bit for each page of the SVM address space
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rather than a bit for each disk block so that as the file expands the free list does

not need to be thrown away and recreated. Hence in this implementation the size

of the SVM address space is determined and fixed at store creation time whilst

the non-volatile storage is variable in size and grows on demand as new data

pages are accessed.

3.3.3.1 Root page layout

As shown in figure 3.7 above the disk page table resides in the stable virtual

memory address space along with the data pages. Therefore the disk page table

itself is paged and hence the architecture is required to maintain a disk page table

for the disk page table pages. This secondary disk page table is recorded in the

root page (figure 3.8) with one entry for each page of the primary disk page

table. Each entry uses the same format as the primary disk page table entries

shown in figure 3.6. The mappings of the entire stable store can therefore be

found by a traversal of the secondary disk page table in the root page.

date
stamp

page size store
length

secondary page table date
stamp

Figure 3.8: The root page layout

The implementation uses two root pages to achieve atomicity. Details of this

checkpointing mechanism are given in section 3.3.3.5. The term checkpointing is

used in the description of this implementation since in a single-user shadow-

paged store it is identical to a meld operation as described in section 2.6.3. The

date stamps on the root page are incremented when the page is written back on

checkpoint. The date stamps are then used on startup to discover which root page

was used in the most recent checkpoint. The two date stamps on the root page are

there to detect if any root page corruption occurred when the page was written
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back to disk. If the two date stamps on a root page are identical then it is

assumed that the page was successfully written to disk.

The page size field records the size of a page in this store implementation and the

store length field records the size in bytes of the data pages area of the SVM

address space. The size of the primary disk page table area is not recorded since

it can be easily calculated from the size of the data pages area. Similarly the size

of the secondary disk page table in the root page can also be calculated from the

length of the primary disk page table. The current length of the non-volatile

storage file is not recorded in the root page since the size of a Unix file can

readily be obtained through a system call.

3.3.3.2 Stable store creation

A new stable store is created by a program outwith the Napier88 system. Stable

store creation involves creating the Unix file to be used for non-volatile storage,

initialising the two root pages and writing them out to the file. The date stamps

and the secondary disk page table entries are all set to zero. In the

implementation the page size is 8192 bytes and the store length which records

the maximum size of the data pages area is set to 384Mb. This means the data

area has 49152 pages. The disk pages tables thus need 49152 disk page table

entries each of 4 bytes so the disk page tables area is 24 pages long. The

secondary disk page table in the root page therefore has 24 entries.

3.3.3.3 Store startup

The startup procedure begins by memory-mapping the root blocks of stable store

file into the virtual address space. The date fields of the root pages are then

interrogated to find which root page is the most recent. This root page is then

copied into local memory, that is memory outwith the SVM. The root page in

local memory, the current root page, will be modified as changes are made to the

secondary disk page table between startup and checkpoint. Because the SVM has
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no control over when the pages are written out the root page on disk, the root

block, must not be overwritten until a checkpoint. In using a local copy of the

root page the SVM can prevent the root block from being overwritten until

checkpoint.

From the current root page the SVM is reconstructed to the state it was at the last

checkpoint by re-establishing the mappings between pages in the SVM address

space and their disk blocks. This is done by a traversal of the secondary disk

page table. Each non-zero entry in this table specifies the block offset in the

stable store file of a primary disk page table page. Each primary disk page table

page is then memory-mapped, using the mmap system call, into the SVM from

this block offset. Each primary disk page table page that is restored contains an

array of disk page table entries for the data pages. These disk page table entries

specify the block offsets in the stable store file for the data pages and hence this

is used to map, again using the mmap call, the data pages into the SVM.

The free space list referred to in section 3.3.3 is created in local memory on store

startup as a bitmap. For each disk block that is memory-mapped into the SVM at

startup the free space list sets the appropriate bit to indicate an allocated disk

block in the store file.

The last action of the startup process is to designate all the restored pages as read

only using the mprotect function.

3.3.3.4 Store access

One of the conventions of the SVM interface is that the stable heap must

“allocate” space from the SVM before using it for the first time. When the stable

heap layer requests the use of a range of virtual addresses the page boundaries

for this range are calculated. The SVM then ensures that each page in the range

has an associated disk block to write back to. This then satisfies the requirements

60



of the SunOS memory-mapping facility that every page accessed in the process

virtual address space must have a block to page out to.

If any of the pages in the request have no associated block then the free list is

searched for an unused disk block. If there are no free blocks in the stable store

file the store file is extended by writing a disk block to the end of the file. This

new block is then memory-mapped with mmap to the requested page and the

disk page table entry associated with this page updated.

When updating the disk page table entry a similar check must be made to ensure

that the page that encompasses this disk page table entry also has an associated

disk-block.

The after-look shadow paging mechanism requires that a shadow copy is created

the first time a page is about to be modified since a checkpoint. To do this the

SVM first searches the free space list for an unused block. If there is one, the

page that is about to be modified is written out to this block otherwise the page is

written out to the end of the stable store file. Either way a copy of the page is

written out to its shadow. This block is then memory-mapped to the page and the

disk page tables updated to reflect the new mapping. The disk page table entry

records the new mapping of the page. The flags field of the disk page table entry

records that the page has been shadowed so that any further modifications to this

page will not create another shadow.

Updating the disk page table to record the new mapping of the shadow page of

course modifies the disk page table entry’s page. If this is the first modification

to this page then it too must be shadowed. This shadow paging of the disk page

table page is performed exactly as for a data page and causes an update to the

secondary disk page table in the current root page. This of course is not

shadowed and therefore the process stops here.
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This is the essence of after-look shadow paging where changes to a page will be

written out to a new disk block with the previous state of the page left intact in

the old disk block.

The state at the last checkpoint can always be traced from the root page on disk

whilst the current state can be traced from the local root page copy.

SVM address space

non-volatile store

P

a

D D’

c
b

Q

d

D’

Figure 3.9: After-look shadow paging mechanism

The sequence of events, lettered a to d, that happen when a page is shadowed is

illustrated in figure 3.9. Initially the disk block D is memory-mapped to page P

and the disk page table entry for P resides in page Q.

a) A request is made to modify page P. If this is the first modification to P then a

shadow copy of P must be taken. The free space list is searched for a free

block in the stable store file extending the file if necessary. A free block D’ is

found.

b) Page P is written out to disk block D’.

c) Disk block D is unmapped from P using the munmap call. Disk block D’ is

then memory-mapped to P. There are two reasons why step b is performed

before step c can be done. Firstly the mmap system call establishes a map

between a disk block and a page, not the other way round. After the
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unmapping and remapping the operating system may decide that page P must

be overwritten with D’. Step b ensures that D’ has a copy of P before

establishing the mapping. Secondly the mapping of D’ to P must happen

before P is modified. The stable store has no way of detecting when the

operating system may page out P and must ensure that disk block D is not

overwritten.

d) The disk page table entry for page P is updated to record that P has been

modified and shadowed and that D’ is now mapped to P.

If this is the first update to the page Q, the page containing the disk page table

entry for P, then Q is also shadowed following exactly the steps a to c. The

new mapping for Q is recorded in the secondary disk page table in the current

root page.

3.3.3.5 Checkpointing

In an ideal situation a checkpoint would begin by writing out all modified pages

in main store to disk. The only interface provided by the operating system to

write back modified pages is the msync function call. The function is

parameterised by the process virtual address range of pages to be written out to

disk. Since, as stated earlier, the stable store cannot determine which pages in the

SVM are currently in main store, the checkpoint mechanism must either msync

the entire SVM range or individually msync each modified page. However many

of the pages of the SVM have not been allocated disk blocks to write back to

since they have never been accessed. An msync on the entire SVM first checks

that each page has somewhere to write back to before deciding if the page needs

written back and hence will fail. So the checkpoint mechanism works by finding

all the modified pages and using msync call to write it back to disk.

Starting with the secondary disk page table in the current root page the SVM is

traversed as before and each modified page is written back to disk. The date
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stamps of the current root page are then incremented. The SVM then copies the

current root page from local memory into one of the root pages in the SVM

address space and flushes that root page to disk. On checkpoint the current root

page is not copied back to the root page it was read from but is always copied to

the “other” root page. In other words the root page holding the information about

the previous checkpoint is preserved and the other root page is overwritten.

Because of the after-look mechanism no block in the non-volatile storage

involved in the checkpoint is overwritten. The atomicity of the checkpoint is

therefore only dependent on the atomic update of the root block. It is assumed

that any error encountered in writing the root page to disk will be detected and

can be acted on immediately. As a further precaution the date stamps at the

beginning and end of the root blocks can be compared. Any difference in these

indicates that the root block is corrupt.

Now that a consistent state has been established the original disk blocks that

were mapped to pages that were shadowed at the checkpoint can now safely be

re-used. For example the disk block D in the example shown in figure 3.9 can

safely be overwritten after the checkpoint since page P has been flushed to D’

and the disk page tables and root pages updated. Finding such disk blocks is

done by designating all the disk blocks unused by clearing out the free list and

then reconstructing the ones that survived the checkpoint by traversing the store

from the current root page. Note that this is exactly what happens when the store

is started up. From the root page the disk page tables are traversed and the pages

mapped to their recorded disk blocks.

3.3.3.6 Store recovery

Since the after-look mechanism ensures that nothing is overwritten there is

always a consistent state of the store on non-volatile storage. After a soft-failure

the recovery mechanism finds the most recent, consistent root block and from
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there reconstitutes the mappings between the SVM and the non-volatile store.

Note that this is exactly the same procedure as used for store startup. Because

recovery from soft failure is identical to store startup this mechanism can be

described as being no-undo/no-redo.

3.3.3.7 Optimisations

A number of optimisations have been made to the stable store implementation

just described. The main changes are designed to reduce the cost of checkpoint.

The checkpoint operation in the original implementation can be costly for two

reasons. Firstly finding the modified pages that need to be written out to disk

involves a lengthy traversal of the store through the secondary and primary disk

page tables. Secondly, as each modified page is found it is written out to its

associated disk block using the msync call. This operation may incur a heavy

seek time cost since the order of modified pages in the SVM is independent of

the disk block order. Both these issues are tackled using a block list which is

effectively a log of pages that are modified between checkpoints.

The new layout of the SVM and non-volatile store is given in figure 3.10. As

before there are two root pages at the start of the SVM that are mapped to

specific disk blocks. The disk page tables are again located in the SVM after the

root pages. This is followed by the block list which is the same size as the disk

page tables.
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Figure 3.10: Stable store layout

Each time a page is shadowed it is allocated an unused disk block and the

address of this page is added to the end of the block list. The block list can be

thought of as a log of SVM addresses of modified pages. Finding an unused

block involves a linear search of the free list and if none are found by extending

the stable store file. Since this is in block order the block lists record a block-

order mapping of modified pages that need to be written to disk on a checkpoint.

It is sufficient on a checkpoint to use this block list to determine which pages

need to be written out. Because the pages are written out in increasing block

order the disk seek time should be minimised. The checkpoint procedure

employs a further optimisation by using a form of run length encoding. Rather

than just write out one modified page at a time the block list is inspected for a

sequence of contiguous pages which can be written out in one system call. So a

sequence of say five contiguous modified pages will be written out with one

system call of five page lengths rather than five system calls of one page length.

When the stable store file is created disk blocks are allocated and reserved for the

root pages and for the pages of the disk page table. A second set of disk blocks is

also allocated to accommodate shadow copies of these disk page table pages.

Space on the stable store file is also reserved for the pages of the block list.
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In this optimised implementation shadow copying data pages is done as before

but a different mechanism is used for shadow copying disk page table pages.

When a data page is first modified a new, unused block is allocated for the

shadow copy and mapped to the page. The disk page table entry for this data

page then records the block offset that the page is now mapped to.

Each disk page table page has two disk blocks associated with it. The ith disk

page table page is either mapped to the ith disk block in the first disk page table

(marked PTE 0 ) or to the ith disk block of the second disk page table (marked

PTE 2). As before the secondary disk page table in the root page records the

mapping between the disk page table page and its disk block. When a disk page

table page is first modified its entry is looked up in the secondary disk page table

of the current root page. This determines which disk block the page is currently

mapped to. The disk page table page is then shadow copied to its disk block in

the other disk page table and the secondary disk page table updated to reflect

this. The advantage of this method is that the blocks for the disk page table pages

are pre-allocated and reasonably localised.

date
stamp

page
size

store
length

average
modified

pages

modified
PTE bitmap

secondary
page table

date
stamp

Figure 3.11: Root page

The format of the root page in this optimised implementation is given in

figure 3.11. Two extra fields have been added. The modified disk page table

entry bitmap is used to determine which of the disk page table pages have been

modified between checkpoints. This bitmap has one bit for each of the pages of

the disk page table. This is used when doing a checkpoint to limit the search for

modified pages.
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The average number of pages that were modified between checkpoints is

recorded in the root page at each checkpoint. At store startup time the system

ensures that the stable store file has this number of free blocks available for

shadow copies extending the stable store file if necessary. This can speed up the

store access time since a search for a free block in the stable store file is almost

always going to be satisfied and hence there is seldom any need to extend the

stable store file.

3.3.4 Before-look Stable Store Implementation

This section gives a short description of the stable store designed and built by

Brown [BR91]. This stable store is a before-look shadow-paged store built using

the same layered architecture and using the same interface functions.

root pages

Layout of SVM address space

Layout of non-volatile store

root blocks

0 1

0 1

active space shadow space

Figure 3.12: Layout of Brown’s stable store

There are two main differences between Brown’s store and the after-look store

described above. The first is the layout of the SVM and non-volatile address

space and the second is the before-look shadow paging mechanism.

The layout of this store is given in figure 3.12. The root pages in this

implementation are used in the same fashion as in the after-look store. The

remainder of the SVM address space is divided between active and shadow
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space. The active space defines the range of the address space that is used by the

stable heap and the shadow space is used as an area for shadow copies of pages.

In this implementation the entire physical resource needed to support this SVM

is pre-allocated. When the stable store is created the user must specify the size of

the active area and the size of the shadow area. The Unix file, which is used as

non-volatile storage, allocates disk blocks not only for the two root pages but

also for each page of the active and shadow areas. The stable store file is thus

identical in size to the SVM address space and there is therefore a 1-1

correspondence between pages of the SVM address space and disk blocks of the

non-volatile storage. In this implementation the stable store file does not grow in

size and hence the active and shadow size specified by the user determines the

maximum size of the stable store. The position of the static division between the

active and shadow areas is recorded in the root pages. On store startup the entire

stable store file is memory-mapped into the virtual address space. Because there

is a 1-1 correspondence between the pages of the SVM and the disk blocks of the

non-volatile storage there is no need for the stable store to maintain its own disk

page tables.

With before-look shadow paging the original page is copied to another location

and updates to the page are done in place. The before-look mechanism has to

ensure before the update in place is allowed to proceed there must be a copy of

the original page on non-volatile storage. Furthermore this copy of the original

must be recoverable from the non-volatile storage in the event of a soft failure.

The shadow area of the SVM is used to store the shadow copies of pages that are

about to be modified. This area effectively forms a sequential log of before-

images of pages that have been modified. The root page maintains a

corresponding array, the copied pages array, that records the address of each

page that has been shadowed. So the ith entry of this array gives the address of

the page that has been copied to the ith page of the shadow area.
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On checkpoint a new consistent state is saved by flushing all the modified pages

of the active area to disk. The copied pages array of the current root page is set to

zero and the root page is also flushed to disk. This signifies that the before-

images in the shadow area are no longer required since a new consistent state has

been saved on non-volatile store. The same conditions for the atomic update of

the root page that were described in the after-look store are used here.

P4

SVM address space

non-volatile store

P P

a

b

c

d

e

current root page

Figure 3.13 : Before-look shadow-page mechanism

Figure 3.13 illustrates the sequence of events, lettered a to e, that are involved in

the before-look shadow paging mechanism. The area to the right of the broken

vertical line represents the shadow area.

a) A request is made to modify page P. If this is the first modification to P then a

shadow copy of the page must be taken.

b) The page P is copied to the SVM shadow area. The offset in the shadow area

that the page is copied to is found in the current root page (offset 3 in this

case).
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c) This shadow copy is forced onto non-volatile store by writing the page onto

its corresponding disk block. This ensures that a copy of the original is on

non-volatile storage before the update takes place.

d) The current root page records that another page has been shadowed and saves

its address in copied pages array. In this example the root page records that

the fourth page that has been shadowed is page P.

e) Finally the current root page is written back to non-volatile storage. After this

has completed the update to page P can proceed.

This final step of writing the root page back to disk is necessary so that after a

soft failure the state of the SVM can be reconstructed from non-volatile store.

The before-look mechanism effects this reconstruction after a crash using a

undo/no-redo algorithm. On store startup the most recent root page is copied into

local memory from the stable store file. If there are any entries in the copied

pages array then it is assumed that there was a soft failure before a new

consistent state was established. The undo mechanism reconstructs the last

consistent state by overwriting the pages in the active area specified in the copied

pages array with the originals from the shadow area.

3.3.5 Comments

Brown’s store has a number of possible advantages over the after-look store :-

• All the physical resource required to support the store is available before the

store is accessed. This has enabled a number of run-time checks and error

handling mechanisms to be avoided.

• There is no requirement to maintain separate disk page tables because there is

a 1-1 correspondence between the pages of the SVM and disk blocks of the

non-volatile storage despite having no access to the operating system's page

tables. This store may expect some performance gains since all the memory-
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mapping of disk blocks to pages is performed at store startup. These

mappings are not altered during store access.

• The before-look mechanism performs update in place and hence preserves

clustering. The contiguity of large objects or objects which cross page

boundaries will be preserved.

However there are a number of possible drawbacks with this implementation :-

• The size of stable store is permanently fixed at creation time with no facility

for expanding. The user must determine at store creation time the maximum

size of the store. If the store is found to be too small for its intended use then

the only available option is to throw it away and allocate a new larger store. If

store is created too large then it suffers from internal fragmentation.

• Statically defining the active and shadow areas at creation time determines the

maximum number of changed pages that can be shadowed between

checkpoints.

• The before-look shadow-paging mechanism used effectively involves a

checkpoint of the log of shadowed pages. When a range of pages is being

shadowed a disk write is required for each page and a disk write for the root

page.

The design of the after-look store tries to address some of the possible

shortcomings of Brown’s store implementation. The main differences are that :-

• it separates the store address space from the non-volatile address space. The

user is not required to statically define the maximum size of the store when it

is created. The SVM uses as large an address space as can be memory-

mapped by the operating system. The Unix file created to support the non-

volatile storage is created to a minimal size and is grown on demand.
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• The after-look shadow paging mechanism ensures that a modified page is

written back to a different disk block. The state of the last checkpoint is

therefore always on non-volatile storage and hence recoverable after a soft

failure. This implementation thus employs a no undo/no redo recovery

algorithm. Shadowing a page then just requires one disk write to copy the

page to its new location.

One optimisation that has not been explored in either implementation is pinning.

In the after-look store pinning could be used to implement commit batching by

holding a page in main memory until a checkpoint then flushing these pages out

in a sequential write. The SunOS memory-mapping features allow pages to be

locked in main memory. However this facility is restricted to privileged users.

3.4 Conclusions

Traditional demand-paged virtual memory systems maintain a main memory

page table to record the mapping of pages to main store page frames. The pages

of the virtual memory reside on contiguous disk blocks on backing store and do

not move during the lifetime of the process. In an after-look shadow paging

system modified pages are never written back to backing store to the same place

they were read from and hence the one-to-one correspondence of pages to disk

blocks is broken. As a consequence such systems require an additional table, the

disk page table, to record the mappings between the pages of the virtual memory

and the disk blocks of non-volatile store. The main reason for a shadow paged

system is to ensure that a consistent version of the address space can always be

recovered, even after a soft failure. This implies that the shadow-paging system

maintains a stable disk page table on non-volatile store which records the

mappings from the last consistent state and a transient disk page table which

reflects the current state of the mappings. The shadow paging scheme must

provide a mechanism that allows the atomic update of the stable disk page table.
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The implementation strategy of a shadow paged system built on a typical virtual

memory system relies on the extent to which control and access to the paging

mechanisms are afforded by the target operating system. Aspects of an

implementation are thus chiefly concerned with how it makes use of the

available operating system facilities and how it compensates for the lack of

others.

This chapter has documented a particular implementation of an after-look

shadow paged virtual memory system under SunOS. The SunOS operating

system offers the user a degree of control over the paging process through the

memory-mapping functions. These allow the user to effectively control the

mappings between the pages of virtual memory and the disk blocks on non-

volatile store. Of interest in this implementation are the mmap, msync, mprotect

and munmap functions. The mmap function establishes mappings between the

blocks of a file and pages of the process virtual address space. The msync

function flushes all modified pages in the specified range from main store to

their permanent storage locations. The mprotect function changes the access

protections for a given address range to the specified protection. Protection

options are read, write, execute or none. The munmap system call removes the

mappings.

The SunOS stable virtual memory implementation uses these facilities for

performance gain since the memory-mapping functions use the operating

systems page-replacement mechanism and memory management hardware to

effect address translations. Non-volatile store is implemented through a Unix file

where the blocks of this file are mapped to the pages of the stable virtual

memory. When a page is about to be modified for the first time the

implementation finds an unused disk block in this file and changes the mappings

so that the modified page will be written out to a different block thereby

effecting an after-look scheme. The SVM maintains a disk page table which
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records the disk block to pages mappings. On a checkpoint all modified pages

are flushed to their shadows using the msync call and a new consistent state is

established by atomically writing the page table to non-volatile store.
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4 Concurrency

4.1 Introduction

Many models of concurrency have been designed and implemented [Dav73,

Dav78, EGL+76, Mos81, NZ92, Hoa74, Hoa75, Bri75, Mi80] yet it is not clear

which model, if any, is best suited in a persistent context or how concurrency

should be incorporated into the persistent architecture framework. Most of the

previous work in this area has concentrated on particular models [MBC+88,

Wai88, KB92] which may only be useful for a particular set of problems. One

exception is CPS-algol [Kra87] which allows the user to specify a number of

models in the language. The incorporation of concurrency into the Napier88

system presented here has some similarities to the CPS-algol approach.

The interpretation of concurrency presented here is as a spectrum of

understandability (figure 4.1) where points on this spectrum denote the extent to

which the user can perceive and manipulate concurrent activities. The points on

this scale can be thought of as levels of abstraction over the exposition and

control of concurrent operation.

Isolation Co-operation

Figure 4.1: Spectrum of understandability

At one extreme is isolation where the concurrent activity is hidden from the user

and concurrent activities work without knowledge of or interaction with each

other. At the other end is co-operation where the conceptual interaction of

concurrent activities is under complete user control. Specific models of

concurrency lie on points within this spectrum. For example the atomic

transaction model [EGL+76] could be thought of as lying towards the isolation
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end of the spectrum whilst models based on semaphores lie towards the co-

operation end (figure 4.2).

A different interpretation of this spectrum can be formed by making the

observation that concurrency models residing towards the isolation extreme are

typically found in the database paradigm whilst the co-operating models tend to

belong in the programming languages world. One of the principal aims of the

persistence model is to avoid the impedance mismatch between these two worlds

by providing the user with a uniform view of data. The problem of integrating

concurrency and persistence can then be seen as one of incorporating this

spectrum into the persistence framework.

Isolation Co-operation

Databases Programming 
Languages

Atomic
transactions

Semaphores

Figure 4.2: Alternate view of the spectrum

Incorporating the complete concurrency spectrum in a persistent system then

enables any particular model to be built. Since it is not yet clear which level of

concurrency abstraction, if any, is best suited in a persistent context this

approach provides a flexible basis for experimentation and usage.

This chapter begins with a discussion of some background issues of concurrency

and broadly categorises styles of concurrency in terms of the bounds of cohesion.

The second section presents a persistent architecture that has been designed to

provide all styles of concurrency by capturing this spectrum into Napier88. This

is achieved by the provision of threads and semaphores at the language level to

enable the expression of concurrent activity and a supporting architecture which

is a marriage between an extended form of shadow paging and the CACS
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concurrency control specification system [SM92]. Concurrency schemes,

designed using CACS, are directly mapped into these threads. The interaction of

the threads on data is then controlled by the dictates of the specification and

maintained by the architecture.

4.2 Concurrent Architecture

The basic properties of any model of concurrency can be described in terms of :-

• Concurrent Activity - The system provides support for the expression and

management of logically separate activities executing at the same time.

• Shared Information - A fundamental requirement of any concurrency model

is a specification of how information is communicated among activities.

• Understandability - It is essential that the programmer can reason about the

behaviour of the model’s execution. This means that the system supporting

the model must maintain the model in a state that is explainable to the user.

Implementation strategies for concurrency models broadly speaking take the

following approach to realising these intrinsics.

• Concurrent activity is usually represented by processes or threads of control

[HR73, Ras86]. The term process will be used in the rest of this chapter to

denote a separate activity.

• Information sharing is achieved using either a shared memory mechanism or

message passing [Dij65, Bri70].

• Understandability is derived from process synchronisation techniques,

melding and stability mechanisms [Hoa74, Lor77].

A particular model of concurrency can be defined in terms of the specification

and interaction of these mechanisms. The model’s position on the spectrum of
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understandability is therefore set by the extent to which the user can determine

and control the mechanisms and their interaction. A persistent architecture that

incorporates the entire concurrency spectrum must provide :-

• the user with a method of specifying concurrency models.

• a method of executing concurrency models.

• a number of concurrency primitives.

• interfaces to these primitives that allow the system to relinquish and retain

control of their interaction as determined by the user’s model.

To shed some light on how such an architecture might be constructed the next

three sections provide some background by describing three different styles of

concurrency that represent different levels of concurrent abstraction and

emphasise the organisational support they require from a concurrent system.

They are :-

• Co-operating concurrency

• Conflict concurrency

• Designer concurrency

4.2.1 Co-operating Concurrency

At the co-operating end of the spectrum, the programmer is responsible for

maintaining global cohesion. Models in this category have complete freedom to

organise the concurrent activities and their interaction. The constraints on

patterns of behaviour are imposed by co-operation and the preservation of

understandability is by agreement.

Typically processes within this framework organise themselves by

communication and synchronisation to achieve understandability.
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Synchronisation is provided through a system primitive such as a semaphore

[Dij65] or critical region [Hoa72]. The important point of this organisation is that

the various concurrent activities are completely defined and controlled by

agreement between processes.

The major variations with models in this category centre around how processes

communicate and how they synchronise. In essence there are two approaches.

The shared variable model where processes share a common address space

through which they communicate or by message passing.

4.2.2 Conflict Concurrency

In contrast to co-operating concurrency, global understandability may be

enforced. The underlying system may hide much of the concurrent operation and

present the user with a very limited view of concurrent activity by imposing an

organisation that completely controls the interaction of processes. This type of

concurrency is needed in situations where processes work in isolation and whose

interactions with the system may interfere with other processes. The system

provides a framework that ensures that the separate activities do not conflict.

The system is responsible for ensuring the understandability of process execution

and, in executing the separate activities concurrently, must take appropriate

action to ensure a serializable schedule of component parts from a number of

processes. The system must also ensure that when a process completes its effects

are made permanent. One widely documented model that fits well with this

scheme is the atomic transaction model [EGL+76].

The required components necessary to construct a system with imposed

organisation are :-

• A concurrency control mechanism is required to ensure that processes do not

interfere with each other. More precisely the concurrency control mechanism
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determines which processes have access to data and the type of access.

Common concurrency control mechanisms include locking, timestamp

ordering and optimistic concurrency.

• A mechanism that implements atomicity. In particular it must ensure that the

effects of an aborted process or one that failed to complete due to system

failure must be undone.

• A mechanism that provides permanence of effect. The changes made by a

committed process must be persistent and recoverable after system failure. A

detailed discussion of recovery techniques is given in chapter 2.

4.2.3 Designer Concurrency

Strictly speaking any concurrency scheme where the operation is not completely

system controlled can be considered to be co-operative. If the system does not

impose all the constraints outlined in the previous section then an activity that

causes inconsistency can always be constructed. However there is a need to

identify a middle ground and recognise that there are a growing number of

concurrency models which require a level of global cohesion in which conflicts

can occur but that the imposition of total system control is too restrictive.

The reason for the rise in the number of such models is that for a large class of

applications the constraints imposed by the atomic transaction model are too

heavy. For many of these applications the issue is purely one of performance

where the restrictions enforced by atomic transactions can often stifle potential

concurrency and hence overall throughput. This is particularly true when

transactions are long lived. Techniques such as semantic-based concurrency

[Gar83] and the Sagas model [GS87] have been proposed as methods of

alleviating this problem.
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Many applications that have sprung from work on CAD databases, multi-media,

interactive systems and software engineering find that, in addition to stifling

performance, the conflict concurrency is unsuitable from a modelling

perspective. Tasks in these applications often split naturally into a hierarchy of

highly inter-dependent subtasks that are required to interact with each other in a

structured way. Total co-operation may not be suitable since groups of subtasks

may require to work in isolation from other groups. These so-called design

transactions are often open-ended in that they are interactive and iterative in

nature and cannot always be completely specified when they start.

A variety of concurrency models [FZ89, NSZ91, NZ92, Sut91, EG90] that relax

the serializability constraint have come from these application areas. In these

models the separate activities do not work in total isolation or in complete

agreement with each other. Conflict is either avoided or the effects compensated

by following the convention of the model. The processes agree to follow the

conventions of the model but not necessarily with each other. In this sense then

the system abdicates responsibility to the model for maintaining correct

concurrent operation. The level of concurrent abstraction in the designer

concurrency range varies from one model to the next. Such models often employ

ad-hoc methods to provide a level of understandability. These models are not

generally applicable but are only workable in situations where the problem can

be expressed within the limitations of the model.

The architectural requirements for designer concurrent systems are difficult to

pin down since the models are so diverse. The architecture of each of these

systems tends to be specifically tailored to supporting its particular concurrency

control mechanism.
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4.3 Concurrency in Napier88

4.3.1 Introduction

The integration of concurrency into Napier88 was directed by a number of

design aims :-

• The model must be able to support the range of concurrency models.

• Concurrency should be incorporated without changes to the language model.

• The existing layered architecture should be retained and the integration

should build in as few primitives as possible to the system.

The crux of the approach taken is to define understandability in terms of data

visibility between concurrent activities. This is reflected in the design of a

conceptual concurrent layered architecture in which visibility is defined and

controlled by the movement of data between a hierarchy of conceptual address

spaces. The architecture provides global cohesion at one end of the spectrum by

constraining data accessed by one activity to a separate address space from all

others. Concurrency models using this architecture define their point on the

spectrum in terms of data visibility through the sharing of address spaces and the

control of movement between these spaces.

The motivation for this design comes from Stemple and Morrison’s CACS

system [SM92]. The CACS system provides a framework in which concurrency

control schemes can be specified. The CACS system is a generic utility for

providing concurrency control for other applications. The system does not

actually manipulate any objects, but instead maintains information about their

pattern of usage. In order for the system to collate this information, the attached

applications must issue signals regarding their intended use of their objects. In
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return the CACS system replies indicating whether or not the operation would

violate the concurrency rules.

A particular concurrency control scheme is defined by giving a set of rules for

the behaviour of the CACS abstract machine. The CACS language is a formal

design language supporting mechanical theorem proving. The conceptual

framework of CACS may be explained in terms of the components used to

specify concurrency control schemes. These are actions, objects, events, and

visibility control.

• Actions

An action is a sequence of operations on shared data that has some sense of

cohesion; it is a unit of computation that needs some isolation from

concurrent users of shared data.

Actions perform their computations by executing programs which are

algorithms annotated by markers. The algorithms specify the manipulations of

the data whereas the markers, called events in CACS, specify the points at

which the actions must interact with the control system to operate correctly

over the shared data.

• Objects

The data consists of uniquely identified objects.

• Events

In CACS there are two categories of events: action events and object/visibility

events. All events are requests by an action to the control system to proceed

and any particular concurrency control scheme will include all the events

necessary to control the use of shared data.
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Action events include action initiation and termination. Other events, such as

spawning subtransactions in the nested transaction model are action events in

particular concurrency control schemes. Action events and their semantics are

defined as part of concurrency control schemes. The semantics of these events

is defined by rules that specify the effects of actions on the visibility and

dependencies.

Object/visibility events include object operations and object commits.

• Visibility

The model of computation that forms the CACS abstraction is designed to

focus on the visibility of data from different actions. The semantics of CACS

control over visibility is expressed in terms of the database, which comprises

the globally visible data, and conceptual stores called access sets. Each action

is associated with a local access set and may use other shared access sets in

order to effect communication between actions without using the database.

When using CACS to specify a concurrency control scheme and when

explaining the semantics of a particular control scheme the access sets may be

thought of simply as stores holding data. When actions operate on shared data

this is modelled in CACS by the effects of the operations being kept in shared

access sets. Movement of data from access sets to the database, which is the

semantics of object commit, is the way changes to visibility are made global

in CACS. Movement among local and shared access sets occurs explicitly.

The basic components of the architecture of CACS are shown in figure 4.3.
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Figure 4.3: The CACS Basic Components

CACS then presents a model that is based on data-centred invariance. This is in

contrast to the approach taken by formal models such as CCS [Mi80] and π-

calculus [Mi92] which build abstractions from a co-operative concurrency base.

In these models the programmer must be aware of the total code body of the

system because of the local cohesiveness of the synchronisation primitives. This

can add considerable complexity in defining and building concurrency models

especially in an evolving system of some scale.

From the conceptual layered design a concurrent persistent architecture has been

constructed that supports the CACS model in the Napier88 system. The

persistent store is used as the model for the CACS database with a concurrent

shadow-paging scheme corresponding to the access sets of CACS. Actions in

this system are defined as collections of lightweight threads and semaphores

which are used as a way of expressing concurrent activity. A multithreading and
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semaphore package has been added to Napier88 and its language design and

interface are described in appendix A.

The advantages of dovetailing CACS and Napier88 with a concurrent shadow-

paged persistent store are seen as :-

• a system which is capable of supporting any model of concurrency with

CACS controlling the movement of data between access sets.

• alliance of access sets with shadow paging. It was argued in chapter 2 that the

coarse granularity of shadow paging was seen as an advantage in systems

which exhibit locality. The shadow paging scheme does not employ page-

level locking.

• The resulting architecture enhances the existing Napier88 layered architecture

rather than re-defining it.

The rest of this chapter is concerned with the details of the conceptual layered

architecture, the concurrent shadow-paged store derived from it and the

incorporation of CACS and the Napier88 architecture. The chapter concludes

with an example of how one concurrency model, the atomic transaction model,

can be designed and built in this system.
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Figure 4.4: The Napier88 Concurrent Persistent Layered Architecture

The implementation of CACS can be thought of as a whiteboard architecture

[Cut92] that enables communication from different levels of the Napier88 system

(figure 4.4). At the top level the CACS system regards Napier88 programs as

event generators. A Napier88 program will observe a concurrency control

protocol when written and present itself to the CACS protocol generator. This

transforms the program with the correct CACS communication built in.

For example in an atomic transaction model the protocol will communicate with

CACS when a significant event occurs such as starting a transaction, committing

or aborting a transaction and reading and writing data. CACS then can maintain

information that enables it to check for read or write conflicts when a transaction

commits. On a commit CACS will inform the paging system to meld thereby

establishing a new consistent state on non-volatile store. Once the changes made

by the transaction become permanent they must be made visible to the other

transactions. The meld involves writing the pages to disk changed by the

transaction and atomically modifying the stable disk page table so that it reflects

these changes thereby creating a new consistent recoverable global state. The

differences between the shadowed pages modified by the transaction are then
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propagated to any other transaction working on a copy of the same original

pages.

4.3.2 Conceptual Concurrent Layered Architecture

The conceptual concurrent architecture is layered in such a way that it separates

the concurrency control mechanism, the atomicity and the persistence. These

layers are described in terms of conceptual address spaces together with a

protocol that controls the movement of data between these address spaces. By

unbundling and distributing the concurrency intrinsics in this hierarchy the

architecture provides a generic layered store capable of supporting a number of

different models of concurrency.

Figure 4.5 gives a diagram of the architectural hierarchy shown as a layer of

conceptual address spaces. Each layer implements a separate and independent

property of concurrency. This permits any particular concurrency model the

flexibility to choose a desired combination of intrinsics.
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Figure 4.5: Conceptual Concurrent Architecture

At the top level is a logical address space that contains a full definition of the

concurrency control mechanism. No assumptions are made by the lower layers

about the concurrency control and hence this leaves the implementor freedom to

choose any desired scheme. For example this may be realised in an

implementation as a heap of objects incorporating two-phase locking or

alternatively by CACS.

An action, in this architecture, is an isolated thread of control that communicates

with the concurrency control address space and whose state is defined by the

action address space. The action address space layer is a set of private and group

address spaces. Each action has a private address space (marked “L” in

figure 4.5) which is analogous with the local access set of CACS. In addition the

action address space may house a number of group address spaces that are shared

by a combination of actions (marked “S” in figure 4.5) which reflects the CACS

shared access sets. Group address spaces can be hierarchic. The CACS database

is modelled by the persistent address space.
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The operations available at the interface allow the concurrency control scheme to

create actions, abort actions and move data between address spaces. There is no

in-built communication, synchronisation or serializability between actions and

hence the concurrency control must define the movement of data between the

group and local address spaces. The architecture ensures that all data movement

is atomic. Movement of data from an action’s private address space or a group of

actions’ group address space to the persistent address space is through a meld

operation. The architecture supports the atomic update of the persistent address

space so that its data is permanent, recoverable and consistent. The meld

operation, under the control of the concurrency control, makes sure that data

movement to the persistent address space becomes visible to all other actions.

The effect of an action abort is to release the action’s private address space. The

relationship between action abort and group address space is determined by the

concurrency control.

This architecture framework enables the separation of concurrency intrinsics into

logical address spaces. Concurrency control is defined and contained within the

concurrency control address space. Isolated and group actions operate within the

action address space. Atomicity is provided by the action address space layer and

permanence is handled by the persistent address space layer. This then provides

the versatility to support a complete range of concurrency models. For example:-

• Support for atomic transactions can be provided in this architecture through a

concurrency control specification that constrains each action’s updates to their

private address space thereby isolating their effects. Transaction commit

involves the atomic update of the transient and persistent address space

making the transaction’s changes permanent and globally visible. Transaction

abort is a trivial matter of discarding the private address space.

• Co-operative concurrency is viewed in this architecture as a single action

since the interaction of co-operative activities do not require isolation control.
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• Designer transactions models can be accommodated by a combination of

private and group address spaces and a concurrency control specification that

defines their creation, interaction and movement. Thus the effects of

operations may be shared among actions without their objects being

committed to the persistent address space.

4.3.2.1 Concurrent shadow paged store

It may be difficult to produce an efficient implementation of an architecture,

especially on stock hardware, that involves the maintenance of a range of

separate address spaces and the control of data movement between them. One

possible solution arises from the observation that each layer need only maintain

copies of the portions of the underlying layer’s address space that it has changed

along with a table which provides a mapping between the original and the copy.

Applying this strategy down the layers, the resulting architecture collapses into

one flat address space with a hierarchy of mappings. This address space can then

be implemented as a recoverable paged virtual address space using an extended

form of after-look shadow paging.

The shadow paging scheme works much as described before in section 2.5.1

whereby the virtual address space is mapped to non-volatile storage through a

disk page table. Modified pages are shadowed and the transient disk page table

reflects the current global state of the address space. In addition a separate disk

page table is created for each private and group action address space used. Each

action has its own private address space and so a disk-page table is created for

each action. Similarly a disk page table is created for each group address space

required by the model. Entries to the disk page tables are added for each page

modified by the action. When an action first modifies a page a shadow copy is

made and the action works on the copy. The concurrency control specification

dictates whether the update is a private or group one. Hence the changes made by

an action to its private address space are totally isolated from other actions’
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private address spaces. Also the group address spaces are isolated from each

other and from the private address spaces.

The architecture is illustrated in figure 4.6 and shows that the transient disk page

table and the action disk page tables are accessible from the root page. As in the

single threaded case the transient disk page table and the stable disk page table

maintain a page table entry for each page of the address space. When a page,

modified by an action, is written out to non-volatile store it is written to its

shadow and the mapping recorded in the per-action page table. The action page

table only has entries for pages modified by that action and not the complete

address space. The illustration in figure 4.6 shows that there are five pages in the

virtual address space and that there are currently two actions A and B. The disk

page table for action A shows that A has modified pages 0 and 2 in its private

address space and that action B has modified pages 0, 1 and 3 in its private

address space. Note that page 0 has been modified by both actions but that the

shadow page mechanism isolates their modifications. The third disk page table

reflects a group address space that shows action A and B are working on a shared

copy of page 2 and 4. CACS will disambiguate action A’s access to page 2.

The scheduler for this concurrent system must ensure that the correct mappings

are established on a page fault. For example when action A accesses a page that

results in a page fault, the system must search A’s disk page table for the page

(or a group that A is currently in). If there is no entry for the page in A’s disk

page table then the transient disk page table is searched.
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Figure 4.6: Concurrent shadow-paged architecture

A meld mechanism is provided on a per-action basis so that changes made by an

action can become part of a new recoverable, consistent state and then these

changes are made visible to other actions. It is possible for a number of actions to

be working on shadow copies of the same page and the meld propagates the

differences between the shadowed pages modified by the action and the originals

through to any other action working on copies of the same original pages.

To establish a new consistent state all pages modified by the action are written to

their shadows. Then the entries for these pages in the transient disk page table are

updated to record the same mappings. For example, if a melding action had

modified page P and its shadow page was disk block D then the transient disk

page table entry for P must also record that it is mapped to D. To ensure

atomicity of the meld the updating of the transient disk page table will involve
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shadowing of the page encompassing the transient disk page table entry. Once

the transient disk page table reflects the new consistent state it atomically

replaces the stable disk page table.

4.3.2.2 Concurrency control and per-action melding

The algorithm that meld uses to propagate changes is dependent on the particular

concurrency model in operation. For example suppose that two actions A and B

share a page but modify different objects on that page. Because of the isolation

of the concurrent shadow paging mechanism A can meld without affecting B.

For B to meld it must retain the changes that A made. And so a mechanism is

required for B to ingest the changes made by A. The approach taken is to link

data access and the melding process in with the concurrency control through an

implementation of the CACS system.

There are a number of ways this propagation could be implemented. For each

page in its page table the action could record the address ranges that it has

modified within that page as the changes are made. This could then be used to

copy the modifications to other transactions holding a copy of the same page. An

alternate method is page diffing as suggested by Wilson [SKW92] whereby a

byte-by-byte comparison of a page is made with the original to determine the

changes.

Alternatively logical operations can be used to propagate the changes. Suppose

two actions A and B have changed different objects on the same page P and

action A melds. The changes made by A to page P can be calculated by xor P

onto the original page. These changes can now be xor’d onto action B’s copy of

page P. Thus B’s version of page P now includes the changes made by A. This

will only work provided that two transactions have not modified the same object.

Provided that there is a mechanism elsewhere that prevents or detects such object
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conflicts then this approach may be reasonably efficient and is the one that is

adopted in the first implementation.

4.3.3 Atomic transactions in Napier88

The concurrent shadow paged store just described together with the per-action

melding, threads, semaphores and the CACS system provide sufficient flexibility

to enable a number of concurrency models to be constructed. The Napier88

system and CACS communicate with each other at three levels. At the language

level the Napier88 program contains annotations which signal events, such as

starting an action or committing an action, to the CACS system. The abstract

machine level communicates with CACS to register the object reads and writes

and CACS communicates with the store level to perform the meld. As an

illustration an atomic transaction package has been built in this system.

The package uses a serializable schedule that is based on an optimistic version of

the readers/writers protocol and observes the following :-

• An object O is always read by a transaction Ti before it is written.

• An object O modified by Ti and read by any Tj where i ≠ j will cause Tj to be

aborted.

The protocol is optimistic in the sense that a transaction performs updates and

only checks for conflicts with other transactions when it commits. If there are

conflicts then the other transactions that have contributed to the conflict are

aborted. This approach is possible because of the passive nature of the CACS

system and the per-action shadow paging which isolates the changes made by

running transactions (figure 4.4).
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type transactionPack is abstype [tid] (
createTransaction : proc (-> tid);
beginTransaction : proc (tid, proc ());
commitTransaction : proc (tid);
abortTransaction : proc (tid);
readPid : proc (tid, pId);
writePid : proc (tid, pId))
)

Figure 4.7: The transaction package definition

The transaction package generates five events that are significant to the CACS

system. These are begin transaction, commit transaction, abort transaction and

read and write. These events are reflected in the transaction package definition

shown in figure 4.7. The transaction package is declared as an abstract data type

parameterised by the transaction identifier so that its structure cannot be

discovered or impersonated. The createTransaction procedure registers a new

transaction and returns a unique transaction identifier which the user then

provides on calls to the other transaction procedures.

The beginTransaction procedure is also parameterised by a void procedure

which is the code the transaction executes. The beginTransaction will signal the

event to CACS which will communicate with the stable virtual memory system

to create a new per-action shadow page table. Similarly the abortTransaction

procedure will cause CACS to inform the system to discard the shadow page

table.

The only shared data in this model is persistent data and sharing is done at the

object level. Persistent objects in the stable heap are addressed through their

persistent identifiers, or pids. The Napier88 architecture as shown in figure 4.4

uses a local heap as a cache of persistent objects. Both the local heap and the

abstract machine work directly on virtual memory addresses and hence there are

no explicit read and write procedures to move data between the local heap and

the abstract machine. However, a convention is required so that the abstract
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machine can distinguish local heap addresses from pids. This may arise for

example if the abstract machine was to de-reference a field of a structure in the

local heap that pointed to an object in the stable heap. Such a dereference causes

the object to be copied from the stable heap to the local heap and effects an

address translation or swizzle that overwrites its pid with the local heap address.

When objects are written out from the local heap cache they are de-swizzled and

have their local heap addresses replaced with pids and hence local heap objects

carry their pid (figure 4.8).

pid Pointer 
Fields

Non-pointer
Fields

Figure 4.8: Format of local heap object

The abstract machine can tell when a swizzle has occurred or when an object has

been modified and can signal these events to the CACS system through the

readPid and writePid procedures. CACS maintains a table of transactions and

pids which can then be used to detect conflicts. When commitTransaction is

communicated to CACS this table is checked for conflicts and any offending

transaction aborted. CACS can then signal the stable virtual memory to perform

a meld and propagate the changes to the other transactions using the double xor

method described above.

Capturing and reporting the shared object accesses from the abstract machine

highlights the most significant difference between this approach and the CPS-

algol model [Kra87]. In CPS-algol the shared objects must be declared when the

program is constructed and are wrapped up in a package of procedures that are

used to monitor access to these objects. In the Napier88 atomic transaction

system the user need not be concerned by shared objects and can access and

manipulate objects normally. The user interface to the transaction package thus

only has procedures for creating, starting, aborting and committing transactions

as shown in figure 4.9.
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type userTransactions is structure (
createTransaction : proc (-> any);
beginTransaction : proc (any, proc (any -> proc ()));
abortTransaction, commitTransaction : proc (any))

Figure 4.9: User interface to the transaction package

The createTransaction procedure returns a value of type any which acts as a

handle or key into the transaction package for that particular transaction. The

structure of the any cannot be discovered by the user. This key is a value of the

dynamic witness type for the transactionPack abstract data type injected into an

infinite union. This reflects the way in which Napier88 enables values of witness

types to escape their scope [Cut92].

4.4 Conclusions

The concept of concurrency can be viewed as a spectrum of understandability

where points on the spectrum define levels of abstraction over the exposition of

concurrent operation. The integration between concurrency and persistence is

seen as one of incorporating this spectrum into the persistence model. This

requires a persistent architecture that has the flexibility to support all styles of

concurrency.

In an effort to understand how such an architecture might be constructed three

different styles of concurrency that represent different points on the spectrum

were discussed. The styles were categorised by how they specify and interpret

the concurrency intrinsics of separate activity, sharing and understandability and

how these interpretations inter-relate.

The approach to integrating concurrency into a persistent system presented here

is to view understandability in terms of data visibility between separate actions.

A conceptual concurrent layered architecture was described in which the
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intrinsics of concurrency were separated into address spaces. In the model the

visibility of data was equated to the sharing of address spaces and the movement

of data between them. The motivation for this architecture arose from the

specification system CACS.

From this design a persistent architecture for Napier88 that can support all styles

of concurrency has been constructed. The system incorporates CACS with the

persistent store acting as the database and uses a correspondence between

concurrent shadow paging and the CACS access sets.

As an example of how the features of this new architecture can be combined the

construction of an atomic transaction package was presented.
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5 Implementation of Concurrency

5.1 Introduction

The issue of integrating concurrency into a persistent framework was seen as one

of the linguistic provision and machine support for a range of styles of

concurrency. In the previous chapter an architecture was presented which has the

flexibility to enable any concurrency model to be built. As examples of this, two

concurrency models in Napier88 which lie on opposite ends of the concurrency

spectrum have been implemented :-

• A co-operating concurrency model based on lightweight threads and

semaphores for synchronisation. The language level interfaces for these

packages together with an example program is given in appendix A.

• A competitive concurrency model based on an atomic transaction package.

This package, constructed in Napier88, builds transactions from the threads

and semaphores and relies on a new concurrent shadow paged store to ensure

isolation. The package employed the CACS system to monitor conflicts and

to communicate with the stable store. Appendix B gives an annotated listing

of the Napier88 code for this package.

This chapter is concerned with details of the implementation changes to

Napier88 system to realise an architecture that can support all styles of

concurrency and how these contrasting models were accommodated. The

presentation of the implementation details is divided into two main sections. The

first section deals exclusively with how the Napier88 system was adapted to

provide the multithreading facilities. Because the threads are used as a basis for

co-operating concurrency then there is no requirement to isolate the changes

made by one executing thread from another. Hence the provision of
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multithreading can be accommodated entirely within the language and abstract

machine.

The second section is concerned with the implementation of the atomic

transaction package and in particular with the concurrent shadow paged store. At

present a full implementation of the CACS system is still being designed. In

particular the area of the primitives and protocols required for CACS to

communicate with the Napier88 system at various architectural levels outlined in

section 4.3.3.4 are yet to be finalised. Towards this goal a new concurrent

shadow paged store that directly supports the atomic transaction package has

been designed and built. The implementation essentially hardwires in the

handling of the significant events that would be passed to CACS. Such an

approach allows for experimentation with the language level atomic transaction

model and hopefully helps to make it clearer how a CACS system might be

constructed.

5.2 Multithreading Implementation

5.2.1 Introduction

The implementation strategy in incorporating multithreading into the Napier88

system involves changes to the Persistent Abstract Machine (PAM) [CBC+90].

The Persistent Abstract Machine is primarily designed to support the Napier

programming language. It is closely based on the PS-algol abstract machine

[BCC+88], which in turn evolved from the S-algol abstract machine [BMM80].

As such the PAM is inherently single threaded.

The issues involved in adding multithreading functionality to PAM centre around

:-

• the definition of a thread context.

• the creation and deletion of thread contexts.
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• the scheduling of contexts.

• the abstract machine’s interpretation of user control over threads.

• making threads persist.

The strategy for incorporating multithreading presented here is constrained to

implementations of the abstract machine that operate on single processor

machines. At any one time there is only ever one thread executing. This greatly

simplifies the implementation. The decision to take this approach allowed for

greater experimentation and testing of the language model. With the benefit of

experience of persistent threads and a better feel for the desirable features of a

thread context, future implementations may be designed to fit multiprocessor

machines.

5.2.2 Semaphore Implementation

For experimentation purposes it was decided to implement the semaphore

package in Napier88 in the standard environment rather than implementing a

semaphore abstract machine primitive. This allowed for greater flexibility in that

it is easier to modify its implementation. The package presents a general

semaphore and its implementation is given in figure 5.1. The implementation

uses the Napier88 primitive function modlock to achieve atomic update to the

semaphore value. Details of this function and its implementation are given in

section 5.2.6.
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use threadPackage as X[ Thread ] in
begin

rec type SemaphoreQ is variant( entry : SemaphoreStruct; empty : null )
&
SemaphoreStruct is structure( thread : Thread ; next : SemaphoreQ )

let semaphoreGen = proc( initialValue : int -> SemaphorePack )
begin

let count := initialValue
let Q := SemaphoreQ( empty : nil )

let wait = proc( )
begin

let dontCare = modlock( 1 )        ! Atomic update
count := count - 1
if count < 0 then
begin

let thisProc = X( getThreadId )()
! Get id of this thread
! Add this thread to the end of the SemaphoreQ
…
! Suspend this thread release modlock atomically
let dontCare = modlock( -1 )
X( suspend )( thisProc )

end else { let dontCare = modlock( -1 ) }
end

let signal = proc( )
begin

let dontCare = modlock( 1 )       ! Atomic update
count := count + 1
if count <= 0 then
begin

! Now take a thread off front of the SemaphoreQ
…
! Release lock and restart this thread
let dontCare = modlock( -1 )
X( restart )( thisProc )

end else { let dontCare = modlock( -1 ) }
end

SemaphorePack( wait,signal )
end

end

Figure 5.1: Semaphore implementation

5.2.3 Persistent Abstract Machine

To understand how multithreading is built into the Napier88 system requires

some background detail of the Persistent Abstract Machine (PAM) [CBC+90].
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The machine is an integral part of the Napier88 layered architecture and

interfaces cleanly with the persistent store. The abstract machine has the

following distinguishing features :-

• a uniform representation of heap objects

• a block retention system

• a low-level type system

•  a heap-based storage architecture

• a small number of machine registers

The PAM uses one object format for all heap items. This allows the utility

programs such as garbage collectors and persistent object managers to be built in

a manner that is independent of the programming language types. Heap objects

have the following format :-

word 0 object header (includes the number of pointer fields)

word 1 the size in words of the object

word 2..n the pointer fields

word n+1.. the non pointer fields

The block retention mechanism is required to support higher-order functions.

The Napier language supports first-class procedures with free variables. To

achieve the desired semantics, the locations of these variables may have to be

preserved after their names are out of scope.

A primitive two-level type system within the machine contains enough

information to allow machine instructions whose behaviour depends on the

dynamic type of their operands. In conjunction with the block retention
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architecture, the type system is used to provide an implementation of

polymorphic procedures, abstract data types, and bounded universal

quantification [MDC+91].

The abstract machine is built entirely upon a heap-based storage architecture.

Although the machine was primarily designed to support a block-structured

language, for which a stack implementation might be the obvious choice, the

heap-based architecture was chosen as a convenient way of supporting the block

retention. The PAM does not maintain its own store using the stable heap

interface to the persistent store instead. This means that there is only one storage

mechanism and one possible way of exhausting it.

Stacks are still used conceptually, and each stack frame is modelled as an

individual data object. Stack frames represent the piece of stack required to

implement each block or procedure execution of the source language. To aid

garbage collection, a stack frame contains two separate stacks, one for pointers

and one for non-pointers. The size of each frame can be determined statically.

The PAM uses five registers :-

• ROP - abstract machine root object pointer

The special object, known as the root object for the abstract machine, is

pointed to by the ROP register. The object contains, within its closure, all the

housekeeping information required by the abstract machine, including the

current state of any active programs, and a pointer field that is used as the root

of persistence for user data.

• LFB - local frame base

The persistent abstract machine implements a stack using a separate heap

object for each stack frame, described below. A stack frame is created

whenever a procedure is called or a block is executed. The LFB register is
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used to point to the stack frame for the currently executing procedure or block

(the local frame) and must be updated on every procedure call, procedure

return, block entry and block exit. All local data may be accessed by indexing

the LFB.

• LMSP and LPSP - local frame main and pointer stack tops

In order to conform to a single object format, each object representing a stack

frame actually contains two distinct stacks [Mor79b]. The pointer stack

contains pointers and the main stack contains non-pointers. Within the local

frame, pointed to by the LFB register, the LMSP register points to the top of

the main stack and the LPSP register points to the top of the pointer stack. In

fact the LMSP and LPSP registers point to the word following the last word

on the appropriate stack. It should be noted that the LMSP and LPSP directly

address the contents of a heap object. However, these registers are never

stored in the persistent heap and are always recalculated whenever the LFB

register is updated.

• CP - code pointer

The next abstract machine instruction to be executed is directly addressed by

the CP register. The CP register is similar to the LMSP and LPSP registers in

that it is never stored in the persistent heap. Its contents are always

recalculated whenever the object containing the abstract machine code is

changed or moved.

A stack frame contains a pointer stack, a main stack, the relative positions of the

stack tops with respect to the start of the frame and the relative position of the

next instruction with respect to the start of the code vector. The relative positions

are used to calculate the values of LMSP, LPSP and CP when a frame becomes

the local frame. Similarly, the relative positions are recalculated whenever a

frame ceases to be the local frame or a store operation is performed that may
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move the local frame or the code vector. The format of a stack frame is shown in

figure 5.2.
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Figure 5.2: Stack frame

word 0,1 object header and size

word 2 the dynamic link ( DLINK )

word 3 a pointer to the code vector for the frame's procedure (CVEC)

word 4 the static link for the frame's procedure (SLINK)

word 5..m the pointer stack for the frame's procedure

word m+1..n the main stack for the frame's procedure

word n+1 the resume address for the frame's procedure ( RA ), the saved

offset (in bytes) of CP from the start of the procedure's code

vector

word n+2 the saved offset (in words) of the LMSP from the LFB (MSP)

5.2.4 Definition of Thread Contexts

The inspiration for the multithreading implementation strategy comes from the

observation that, on a checkpoint, the abstract machine saves the context of the

currently executing procedure in the local frame and a pointer to that frame is

saved in the PAM root object. On system startup the PAM root object and the

local frame are fetched from the store. From the local frame, the machine

registers are re-established and the procedure continues from exactly the point it
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was at before the checkpoint. The multithreading implementation essentially

generalises this method by the introduction of thread objects, or throbs, in PAM

which capture the context of the executing procedure associated with each

thread.

header size next
throb lfb thread

status
thread

ID

Figure 5.3: Thread context block

The format of the thread context block is given in figure 5.3 and shows that the

throbs conform to the heap object format.

word 0,1 object header and size

word 2 pointer to next thread context block

word 3 a pointer to local frame base containing the current context for

this thread’s procedure

word 4 current status of the thread. E.g., suspend, runnable etc.

word 5 integer thread identification

In the initial implementation thread context blocks are held as a single linked list

where the head of the list is stored in a field of the PAM root object. This was

done purely for simplicity to ease the implementation and allow for

experimentation.

5.2.5 Thread Context Block Creation

A new thread context block is created every time the user starts a new thread.

The user interface is through an abstract data type, ThreadPack, as shown in

figure A.1. The interface allows a user to start a new thread with an associated
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void procedure, kill, suspend and resume threads and find the id of the current

thread.

The ThreadPack abstract data type is defined in the Napier88 standard

environment where it is specialised to integer. Each of the procedures of the

ThreadPack calls a primitive Napier88 function which executes an appropriate

PAM instruction. Rather than add a new PAM instruction for each procedure of

the thread pack the implementation introduces one new instruction, threadOp,

which is parameterised to distinguish each thread operation.

When a new thread is started, a new stack frame object and a new throb is

allocated from the heap. The static link and code vector for the thread’s

procedure are taken from the stack and placed in the corresponding fields of the

new frame. The dynamic link field is set to nil so that the thread can exist

independently of its caller. A pointer to this frame is saved in the new throb and

the thread status is marked as ready to run. The identification number of the

thread is obtained from the root object. The root object then increments this

number.

5.2.6 Context Switching

The multithreading implementation requires a scheduler to control the execution

of separate threads. One possibility would have been to execute the threads as

SunOS lightweight threads and let the target machine perform its own

scheduling. It was felt that initially it would more beneficial for experimentation

to retain full control over scheduling threads by writing a scheduler within the

abstract machine. This avoided problems that might have arisen in the interplay

between the execution of PAM and the SunOS scheduler. For example the

scheduler can easily ensure that a context switch does not happen in the middle

of a PAM instruction.
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By incorporating a scheduler into the abstract machine the atomicity of PAM

instructions can be preserved. There are however two critical sections in

Napier88 where it is necessary for a sequence of PAM instructions to be

executed indivisibly with respect to context switching :-

• Update of a semaphore value must be done atomically. The semaphore

implementation is written in Napier88, as shown in section 5.2.2, and hence

the semaphore value update may involve the execution of a number of PAM

instructions. Context switching in the middle of this sequence of instructions

must be prevented.

• Similarly the implementation of environments is also written in Napier88 and

hence environment updates need to be atomic with respect to context

switching.

Such critical sections are identified by enclosing them in calls to the primitive

function modlock. This function sets a global lock that the scheduler tests before

context switching. The lock is maintained as an integer count rather than a lock

bit and its value is incremented when current executing thread enters a critical

section and decremented when it leaves. The scheduler will not context switch

when the lock count is positive. A lock count is used so that the currently

executing thread can nest through critical sections. It is recognised that the use of

a global lock for the semaphore value update may cause an unnecessary

bottleneck in the store. This approach was taken for simplicity of implementation

to quickly produce a system that could be used to test the language model. Future

implementations will consider alternatives such as using a Unix system

semaphore.

It should be pointed out that the modlock operation is strictly dependent on a

single processor machine. Because there is only one currently executing thread it

will always “get” the lock and never be halted waiting for it. The lock count is
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held in the PAM root object so that its value will be automatically saved and

restored on a checkpoint.

The scheduler forms part of the PAM instruction decode loop. The decode loop

extracts the next current instruction from the code pointer, increments the code

pointer and calls a procedure to handle that particular instruction. After each

instruction has been executed the decode loop checks to see if an asynchronous

event that needs attention has happened during the execution of the last

instruction, such as input from the keyboard. These events are dealt with before

the next instruction is extracted and dispatched. At this point the scheduler

determines if a context switch should happen. The scheduler can be forced to

context switch or it may decide itself to switch. A forced context switch is

flagged by the last executed instruction setting a thread signal. This will happen

for example when the user suspends the current thread. The scheduler will

undertake a context switch based on time-slicing and provided the lock count is

zero. Thread execution is time-sliced by the number of PAM instructions it has

executed. Currently the number of instructions, determining the time quantum, is

fixed but experiments and future implementations may make this a persistent

self-modifying variable dependent on execution analysis.

The context switch involves first searching the list of threads for one that is not

suspended. The scheduler employs a round robin algorithm by placing the

current thread on the end of the list and making the first waiting thread found

that is ready to run the current thread. Before placing the current thread on the

end of the queue its context, the code pointer and stack pointers, is saved in the

local frame base and the pointer to this frame is stored in the local frame base

field of the current throb. To complete the context switch the PAM machine

registers are then loaded from the new current thread context block. The decode

loop will now execute the instructions from the code for the procedure associated

with this new thread from the point where it was suspended.
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When a thread’s procedure completes the thread context block is automatically

removed from the list of threads. This can be detected by the interpreter at the

point where a return instruction is executed and there is no dynamic link. The

scheduler will then switch to another thread. If there are no more threads or if all

existing ones are suspended and not ready to run then the state of the machine,

including the suspended threads, is checkpointed and the current session

terminates.

5.2.7 User-control of Threads

As explained above the user can control the threads through suspend, kill and

restart procedures. Calls to these result in the execution of the threadOp

instruction parameterised to indicate which procedure is being called.

A suspend or restart threadOp instruction results in the status of the specified

thread recording the new state. If the specified thread is the currently executing

thread then the instruction sets a flag to inform the scheduler to context switch

immediately.

A kill thread instruction simply removes the specified thread’s context block

from the list of throbs. If the currently executing thread is being killed then the

suicide is reported to the scheduler which then forces a context switch.

At present no attempt is made to report errors in control of the threads back to

the user. Examples of the kind of errors that can arise include trying to kill a

thread that was already killed or restarting a process that was not suspended. It is

not clear whether it is vital to report such situations or to take the approach here

and just ignore the errors. One suggestion that may help is for each thread to

have the functionality to provide its own error reporting. At present the root

object contains a pointer to a vector of event handling procedures and a pointer

to a structure of error handling procedures. It would not be difficult to provide

these on a per-thread basis.

113



5.2.8 Persistent Threads

When a checkpoint is initiated the state of the machine must be saved onto non-

volatile store and restored on startup. By including a pointer to the list of threads

in the root object the checkpoint will automatically save their state since it forms

part of the closure of the root object. On startup the list of throbs must be pulled

from the store for the scheduler to resume execution.

It is rather easy for the user to construct either deliberately or inadvertently a

runaway thread for which the user has no handle or to create suspended threads

that cannot be awoken through mismatch of wait and signals on a semaphore.

These threads however will persist since they are still in the closure of the root

object. One possible solution is to make provision for a “super-user” or system

control that supplies a handle on all threads hanging off the root thus allowing

unwanted threads to be killed. This implies that such threads can be identified

and that it may also be useful to record in the throb statistical information such as

date and time started, number of context switches and number of instructions

executed. All this of course tends to fatten the lightweight thread.

5.2.9 Threads and I/O

Textbook lightweight threads usually operate with minimum context and

independently of their parents. It is often in the area of inherited features from

parents that distinguishes heavyweight from lightweight threads. One particular

area concerns the problem of whether files or devices opened by a parent can be

accessed by a child thread. There are essentially two options; either a thread

inherits its parent’s open file descriptors or it doesn’t. The problem in this

Napier88 thread implementation is that control over access to such file

descriptors is determined by the closure of the procedure the thread is executing.

The program fragment Figure 5.4 illustrates the problem. A file is opened in an

outer scope of a procedure which will executed by a thread. The thread can
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correctly reference the file descriptor since it is in its closure and hence can close

the file. If the semantics define that a thread inherits the parent’s open file

descriptors then the success of the read procedure call is dependent on whether it

is executed before or after the close call in the threadProc procedure.

If the semantics are the opposite so that a thread does not inherit the open file

descriptors of its parent then there is a dilemma. The close of the file descriptor

in the threadProc will cause an exception since that thread never opened the file

yet the program is still perfectly valid Napier88. If threadProc were called as a

procedure rather than executed as a separate thread then there would be no

exception.

let f = open( “AFile”, 0 )
let threadProc = proc()
begin

…
close( f )
…

end
…
aThread( start )( threadProc )
let noOfBytes = read( f, … )

Figure 5.4: Threads and file I/O

5.2.10 Comments

Future implementations will be based on a thread object format shown in

figure 5.5. This format has been formed in collaboration with Casper project at

the University of Adelaide [KSD+91]. The Casper project is a system which

provides a shared persistent store in a distributed environment where client

processes execute separate threads against the shared store. The system is

described in more detail in chapter 6. Thread context blocks will be kept in a

vector structure with a pointer to the vector from the root object. The threads will
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have the capacity to define their own event handler and error handler procedures

but will default to the system-provided procedures.

Throb =
begin

eventProc ! per process pointer to event handler routines
errorProc ! per process pointer to error handler routines
openFiles ! per process pointer to open files
saveLFB ! save LFB on context switch
semaphore ! pointer to semaphore the process is currently blocked on
copyout ! Casper use, pointer to Casper special data structs
throbId ! thread Id
lastIO ! last I/O error
numberObj ! Casper use, number of objects in heap
lheapStart ! Casper use, VM addr of start of local heap
lheapEnd ! Casper use, VM addr of end of local heap
lheapP ! Casper use, VM addr of heap alloc pointer
remSetBase ! Casper use, VM addr of end of remembered set
remSetP ! Casper use, VM addr of alloc pointer of rem set.

end

Figure 5.5: New thread object format

5.3 Concurrent Persistent Object Store Implementation

5.3.1 Introduction

One of the principal aims in implementing the concurrently accessible persistent

object store was to preserve as much of the existing Napier88 store technology as

possible. This is evident in that the same architectural abstractions of a stable

heap of objects operating on top of a stable virtual memory (SVM) are preserved

as are the majority of the interface functions. The general model of the

architecture was shown figure 4.4 where the Napier88 layered architecture

communicated with CACS in three different levels. At the language level the

annotated Napier88 programs were seen as CACS event generators. The abstract

machine informed CACS of read/write operations on objects. The store provided

the CACS visibility structures with the persistent store acting as the CACS
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shared database and a collection of shadow pages representing the CACS access

sets. Figure 4.6 illustrated the resulting architecture.

Ideally the store implementation would have been built with a flexible paging

strategy and meld mechanism that communicated with an implementation of the

CACS system for support. However in the absence of a full CACS

implementation, the store has been constructed with explicit support for the

transaction model discussed in section 4.3.3. The transaction package is written

in Napier88 (appendix B) which implements a version of conflict serializability

as concurrency control. The abstract machine traps reads on pid translation and

writes on local heap updates. The store has a built-in melding mechanism based

on the double xor function described in 4.3.2.2. The transactions operate over a

shared shadow paged stable virtual memory address space. At the language level

the transactions are constructed using the Napier88 threads and thus the

interleaving of transaction execution is controlled by the same scheduler as the

one described in section 5.2.5.

The implementation described here is one that was produced under the SunOS

operating system and makes extensive use of the memory-mapping facilities

detailed in chapter 3. Hence it is subject to the same benefits and drawbacks of

the operating system’s memory-mapping facilities as the store implementation

described in chapter 3.

5.3.2 Overview

The concurrent after-look shadow paging scheme works on a per-transaction

basis. For each page that is shared by a number of transactions there may be, at

any time, a number of shadows of that page residing in different disk blocks.

Figure 5.6 shows three shadow pages mapped to a page P in the SVM.

Transactions T1 and T2 have modified the page and hence have their own

shadows and there is also a version of the page on non-volatile store that reflects
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the last consistent state of the page. For each running transaction a shadow page

is created when the transaction modifies a page and each transaction maintains

its own mapping table (the per-transaction mapping table) that describes which

pages the transaction has modified and where these pages are in the backing

store.

P

T1 T2Stable

Stable virtual memory

Non-volatile store

Figure 5.6: Shared page mapped to different shadows

When the scheduler is context switched to a thread of a different transaction, i.e.,

a transaction context switch, the PAM informs the store which then uses the

mapping table for the incoming transaction to map the modified pages of this

transaction back from the shadow pages into the SVM. In the SunOS

implementation it is necessary to write back all pages of the outgoing transaction

that were modified during a time slice to their shadows at a context switch. This

is because the memory-mapping does not provide access to the page-replacement

mechanism.

The per-transaction shadowing thus provides a method for isolating the changes

made by transactions without the necessity to resort to page-level locking.

Transaction abort is a trivial matter in this scheme because of the isolation of

changes. Transaction commit first establishes a new consistent state through a

transaction-based meld and then ensures that the changes made by the

transaction are propagated to other active transactions. Establishing a new

consistent state effectively involves the atomic update of the stable disk page

table to reflect the changes made by the committing transaction. For example if
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transaction T1 in figure 5.6 committed then the stable disk page table would be

modified to reflect that page P was now mapped to T1’s shadow disk block.

Because the atomic transaction implementation is hardwired into this store the

changes made by the committing transaction are propagated to other transaction

using the double xor mechanism outlined in section 4.3.3.2. It is also assumed

that conflicts arising where two transactions have modified the same object on a

page are resolved by CACS conflict serializability.

The motivation for considering a concurrent shadow paged store is based on the

belief that shadow paging is a better method than the alternatives for persistent

systems that are expected to exhibit a high degree of locality and regard code as

data. The design and implementation of this particular store was derived from the

single-threaded store design presented in chapter 3. One of the features of that

implementation was the introduction of disk page tables to record the mappings

between the SVM and the non-volatile store. These mappings were created on

demand and hence the order of pages in the SVM address space is independent

of the order of disk blocks on the non-volatile storage. The concurrent

implementation essentially generalises this approach by maintaining a mapping

table per transaction.

5.3.3 Concurrent Shadow-paged Stable Virtual Memory

Much of the SVM layout is similar to the single-threaded store. Figure 5.7

illustrates the layout. The root pages, disk page table, data pages and block list

all perform the same functions as before. The stable store file which is used to

provide the disk blocks of non-volatile store is again one that grows on demand.
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Figure 5.7: Layout of the stable store

At the end of the SVM, space is reserved for the per-transaction mapping tables.

The SVM is informed through its interface when a new transaction is created by

the user. The SVM allocates a page in this area which is then used as a table for

the mappings of the shadows of pages modified by the transaction. This page is

thus an array of per-transaction mapping entries. Each entry is a two word

structure where the first word records the SVM address of the modified page and

the second word records the disk block where the page is written out to. The

entry also records status information about the page and its shadow in the flags

field (figure 5.8).

block offsetflags

02431

SVM page address

Figure 5.8: Per-transaction mapping table entry

In addition to the fields used in the single-threaded store the root page records

the next transaction identification number and the current transaction id and

maintains a free list for the pages of the per-transaction mapping tables. It also

houses the disk page table entries for the pages of the per-transaction mapping

tables. The format of the new fields of the root page and the disk page tables for

the pages of the per-transaction mapping tables pages is shown in figure 5.9.
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Figure 5.9: Root page

The page size and data area size is the same as the single-threaded store. With

the new additions the root page has sufficient space to accommodate a page table

for 960 pages of per-transaction mapping tables.

5.3.3.1 Store access

Unlike the previous implementation the mappings between the disk blocks of

non-volatile store and the pages of the SVM are established on demand. This

allows for a much cheaper context switching as explained in section 5.3.3.2.

The SVM traps a signal from the operating system when an address is accessed

for a page that is not mapped to a disk block. To resolve such a signal the SVM

page-fault handler must first check the per-transaction mapping table of the

currently executing transaction to determine if that address lies in a page that has

been modified by the transaction. If an entry is found then the table is used to

establish a mapping between the disk block which contains the transaction’s

copy of the page and the SVM page. If there is no entry for that page in the per-

transaction mapping table the mapping from the transient disk page table is used

instead.

The first time a page is modified a shadow page is found from an unallocated

disk block in the stable store file. If none are found then the store file is
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extended. The page is then copied to its shadow page and the shadow page

memory-mapped to the page. The per-transaction mapping table for this

transaction then records the mapping in a new table entry. The flags field of this

mapping table entry records that the page has been modified and shadowed. The

shadow flag determines if a page has been modified since the start of the

transaction whereas the modified flag indicates if the page has been modified

during the current time slice. The address of the page is added to the block list

which records the block order mappings for pages modified by the transaction.

5.3.3.2 Transaction context switch

The scheduler in the abstract machine informs the store when a transaction

context switch is about to happen. Because the SunOS memory-mapping does

not allow access to the page-replacement mechanism then all the pages modified

by the transaction during its time slice are written back to their shadows and the

mapping table entries for these pages are then marked as unmodified. These

pages are easily found since the block list records the modified pages in block

order. To complete the context switch the block list is cleared and the pages that

were memory-mapped in during the time slice have their mappings

disestablished.

When the next transaction starts to execute the store will have no mappings

established for any of the data pages and the SVM page fault handler will map

these in on demand.

5.3.3.3 Transaction abort

The SVM traverses the aborting transaction’s disk mapping table entries. The

disk blocks in non-volatile store used for the transaction’s shadows are marked

as unallocated. Finally the page containing the mapping table entries for the

transaction is marked as available.
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5.3.3.4 Transaction commit

The commit mechanism is performed in two stages. The first stage establishes a

new consistent, recoverable state on non-volatile store and the second stage

handles the propagation of changes made by the committing transaction to other

transactions.

To establish a new consistent state the SVM first writes out all pages modified

by the transaction to their shadows. Then the entries for these pages in the

transient disk page table are updated to record the same mappings. For example,

if the committing transaction had modified page P and its shadow page was disk

block D then the transient disk page table entry for P must also record that it is

mapped to D. To ensure atomicity of the commit the updating of the transient

disk page table will involve shadowing of the page encompassing the transient

disk page table entry. This shadow is recorded in the secondary page table in the

root page. Once this has been done for all pages modified by the transaction a

new consistent state is established by atomically writing back the root page.

Now that a consistent state is safely on non-volatile store the original disk

blocks, that were mapped to the pages which were shadowed by the transaction,

would usually be marked for re-use. However each of these disk blocks contains

an image of the pages as they were before the transaction modified them. These

are needed to propagate the changes to other transactions that are sharing pages.

With the after-look mechanism there are always two recoverable consistent states

on the non-volatile store immediately after a meld. From the most recent root

block the new consistent state can be traversed and the previous consistent state

can be found from a traversal of the other root block.
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Figure 5.10: Propagating the changes

The sequence of events that are used to propagate are illustrated in figure 5.10.

Page P has been modified by the committing transaction. Dold is the disk block

that holds the previous consistent state of P and Dnew holds the new consistent

state of P. For each page P modified by the transaction the propagation proceeds

as follows :-

a) Dold is found by traversing the secondary and primary page from the old root

block. Dold is then mapped into an unused page T in the SVM.

b) Page P is then xor’d onto T. T now contains the differences to page P made

by the transaction.

For each transaction that has also modified P :-

c) Its shadow, Dt, is found from the per-transaction mapping table and mapped

into P.

d) T is then xor’d onto P. Page P now has incorporated the changes made by the

committing transaction.

e) Page P is written back to its shadow, Dt.
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5.3.4 Stable Heap Implementation

In making the persistent store concurrently accessible, changes have been made

to the stable heap layer. The stable heap layer maintains a heap of persistent

objects that is visible to the programming language level. The interface provides

a number of persistent object management functions that enable the

programming language access to the persistent store. These functions include the

ability to create and delete objects, a checkpointing procedure to stabilise the

persistent store and a procedure to invoke a garbage collector.

Objects >>>
Indirection

Table<<< 

data
free

index
free

Page
A B DC E

Figure 5.11: The stable heap layout.

The address range of the stable heap is defined by the data area of the SVM and

its layout is shown in figure 5.11. The stable heap is split into two distinct areas -

an object area and an indirection table. The object area, which contains heap

objects, starts at the low address end of the heap and grows towards the high

address end. For each object in the heap there is a corresponding two word entry

in the indirection table. Entries in this table start at the high address end of the

heap and grow towards the low address end.
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Figure 5.12: Object allocation

The heap is implemented using indirect addressing. When a new object is created

it is allocated space from the object area along with two words from the

indirection table. The first word of the entry is set to point to the object as shown

in figure 5.12. The logical address of this entry is called the object's key and is

the address used by the abstract machine to refer to the object. Indirect

addressing simplifies the compacting garbage collection since all references to an

object are indirect. The second word of each entry in the indirection table is used

during the marking phases of the garbage collection.

The main problem in adding concurrency to the stable heap concerns the strategy

for allocating new objects. The stable heap occupies the data area of the shared

paged SVM. With the context switching mechanism described above the state of

the stable heap, at any one time, reflects the view of the currently executing

transaction. The data_free and index_free pointers are held on a global basis and

new objects are allocated from the ends of these variables. This avoids

introducing conflicts where the allocation of new objects might lead to

transactions modifying the same areas on the same page. This implies that from a

transaction point of view the allocation of new objects is not contiguous. This

leads to a situation as shown in figure 5.13 where from the point of view of the

current transaction there are a number of “holes “which, in fact, are objects on

the page that have been allocated to other transactions.

126



data
free

index
free

Page
A B DC E

tranasction T1’s new objects

tranasction T2’s new objects

tranasction T3’s new objects

Figure 5.13: Allocation of new objects

Allocating new objects using this mechanism leads to a difficulty in designing a

compacting garbage collector. At any one time the heap contains the state for the

current transaction. This implies that marking all reachable objects, not just those

of the current transaction, and then compacting can only be performed at the

heap level if it takes into account all running transactions. A suitable collector is

still being designed and the present implementation uses the compacting

collector that existed in the single-threaded store but only performs this off-line

when there are no outstanding transactions.

5.3.5 Conflict Resolution

The atomic transaction model outlined in section 4.3.4 used an optimistic

concurrency control based on conflict serializability. A transaction could commit

first and then check for conflicts with other transactions. Any transaction found

that conflicted was aborted. In the model the only shared data would be

persistent data The abstract machine detected when a transaction read an object

in from the stable heap by trapping when the object was swizzled to a local heap

address. The abstract machine trapped a transaction write of a persistent object
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by detecting when an object with a persistent id (pid) was modified on the local

heap. These events were reported to CACS which could be queried on a

transaction commit for conflicts. For the present this package can be considered

as being CACS and hence the detection and resolution of conflicts must be

implemented as part of the package.

The PAM operates over a local heap that has two main purposes. The first is to

gain some efficiency by providing a cache of persistent objects. The second is to

provide an area of storage where new objects can be created. Hence one of the

local heap's principal functions is to control the movement of data to and from

the stable heap. All new objects are created in the local heap. These objects only

migrate to the stable heap after a meld has determined that they are reachable

from the root of persistence. This then prevents the overhead of unnecessarily

allocating whatever resources are required in creating objects in the stable heap.

The local heap is constructed in such a way that it can be garbage collected

independently of the stable heap and since a great many new objects are transient

they can be efficiently collected on the local heap.

The local heap is divided into two areas. Objects are allocated space

contiguously from the low address end growing to the high end address. A

mapping table is used to map the addresses of stable heap objects, known as pids

or keys, that have been cached to their local heap addresses. The entries in this

mapping table start at the high address and grow towards the low end. An entry

is added to this table for each object cached in the local heap. This table is called

the key to RAM address table or KRT.
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 Figure 5.14: The layout of the local heap

The layout of the local heap is shown in figure 5.14. When an object is brought

into the local heap from the stable heap an extra word is allocated. This extra

word prefixes the object and is used to hold the object's key. This provides the

reverse mappings from local heap addresses to keys. This is used when objects

are copied back to the stable heap.

With the introduction of concurrency the transactions work over a shared local

heap and thus may cache objects with the same key. There is therefore a need to

isolate the changes made by one transaction on an object in the local heap from

the changes made by another. One approach is to cache the objects in on a per-

transaction basis hence potentially duplicating objects in the local heap. This

effectively involves parameterising the KRT entries by transaction id.

Figure 5.15 illustrates the idea.
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Figure 5.15: Per-transaction caching

The atomic transaction implementation at the language level maintains it own

record of objects that have been read and written to and from the stable heap.

The current set of transactions is kept as a cons list and within each transaction

two binary trees are constructed that record the persistent objects that have been

read or written. Entries in the binary tree are indexed by the object’s key

(figure 5.16).

type pId is int

rec type pidIndex is variant( node : Node ; tip : null )
& Node is structure( key : pId ; left,right : pidIndex )

type tId is int

type transaction is structure( tid : tId ; thread : any ;
readPids,writePids : pidIndex )

rec type transactionList is variant( cons : Cons; tip : null )
& Cons is structure( hd : transaction ; tl : transactionList )

Figure 5.16: Transaction data structure

Entries to the transaction’s trees of persistent object accesses are through two

procedures readPid and writePid which use a mutual exclusion semaphore to
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ensure an atomic update to the binary trees (figure 5.17). These procedures must

be called from the abstract machine when it detects a swizzle or write of a

persistent object. In the current implementation this is done by adding these two

procedures to the events vector in the events environment.

let readPid = proc( tid,pid : pId )
begin

wait()
let this = getTransaction( transactionsList,tid )
if this ≠ emptyTransactionList do
     this'cons ( hd,readPids ) := pidEnter( pid,this'cons( hd,readPids ) )
signal()

end

let writePid = proc( tid,pid : pId )
begin

wait()
let this = getTransaction( transactionsList,tid )
if this ≠ emptyTransactionList do
     this'cons ( hd,writePids ) := pidEnter( pid,this'cons( hd,writePids ) )
signal()

end

Figure 5.17: Recording persistent object accesses

After a commit the pidIndex binary trees of each transaction can be interrogated

to look for read and write conflicts.

Appendix B gives a complete listing of the transaction package.

5.3.6 Comments

One of the drawbacks of the transaction implementation just described is that it

involves object duplication in the local heap and page duplication in the stable

store. This seems a little excessive. The problem arises since the transactions and

PAM operate over a shared local heap and local heap is a cache for a shared

stable heap. The movement of data between these heaps is also of significance to

the atomic transaction model. There are two possible ways of avoiding this

duplication :-
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• The first is to use a single-threaded store like the one described in chapter 3

and to devise a competitive concurrency scheme that exists only in the local

heap. This could be achieved provided data only moved from the local heap

to the stable heap when a transaction committed. This would restrict the

computation and data of transactions to the size of the local heap. This

approach would also not take advantage of the perceived benefits of using

shadow paging for a concurrent orthogonally persistent system and could not

employ the fast xor mechanism for propagating changes.

This would alter the relationship between the local heap and stable heap. The

local heap would no longer act as merely a cache and an area for new data.

The persistent object store architecture has always provided a stable heap that

can operate independently of a local heap. Many of the languages that use the

existing store such as Staple, Galileo and Quest do not use a local heap and so

would gain nothing from this approach.

• The second solution is to abandon Napier88’s use of the local heap and to

operate the PAM directly on top of the stable heap. This requires a significant

rewrite of the abstract machine since it expects to manipulate direct virtual

memory addresses and not object keys. Much of the performance of the PS-

algol/CPOMS system was believed to be derived from the address translation

mechanisms that minimises the number of checks required.

However this approach is worth pursuing - even if to provide some basis for

comparing two approaches. It is difficult to quantify the benefit of using a

local heap. The advantage of an area to create new objects that can be

independently garbage collected may be offset by the cost of memory-to-

memory copies from one heap to another.
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5.4 Conclusions

The incorporation of two different models of concurrency into the Napier88

system has required a number of changes to the abstract machine and object

store. The support for a co-operating concurrency model based on threads and

semaphores was provided through the creation and manipulation of thread

context blocks. Each context block can be thought of as an abstract machine root

object for the procedure the thread is executing. The thread context block is then

a small structure that contains a pointer to the stack frame for the thread’s

procedure and a unique identifier for the thread. These threads are autonomous

and can be nested to any depth.

The scheduling of threads is handled within the decode loop of the abstract

machine and is constrained to executing only one thread at a time. This allowed

for an implementation to be fairly readily constructed and enables

experimentation with the threads and semaphores language model.

Providing support for the atomic transaction model has meant a significant

change to the operation of the object store. In essence the transactions operate

over an after-look shared stable virtual memory. Each transaction has its own

mapping table which is used to keep shadows of pages it has modified. Thus the

effects of one transaction are isolated from another. On a commit the changes are

propagated to other transactions sharing a page using bitwise logical operations

on the page. The implementation presented here uses the same scheduler as the

threads package and is subject to the constraint of only being able to execute one

transaction at any one time.

The design and implementation of the threads and concurrent shadow pages store

has shown up a number of possible enhancements. With persistent threads there

is a need to be able to identify and remove runaway and permanently suspended

threads. This may be provided by allowing some sort of privileged access to the
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thread queue structures. The concurrent shadow page store and its relationship to

the local heap has meant a duplication of effort to ensure isolation of

transactions. One proposed solution is to implement a Napier88 system that

works directly on top of the stable heap.
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6 Distribution

6.1 Introduction

To maintain the illusion of an unbounded data space, persistent stores must

eventually be distributed. However, there is a tension between the conceptual

ideals of orthogonal persistence and the technological realities of distribution that

make their integration difficult. This gives rise to a spectrum of possible

solutions that balance the ease of user programming and conceptual modelling

with the ease of implementation of the underlying system.

At one end of the spectrum, distribution is introduced to enhance the

performance of the overall system and the ideal behaviour, as far as ease of

programming is concerned, is where the distributed system may be programmed

as if it were non-distributed. All other models of distribution expose some aspect

of the underlying distribution to the user. To this extent distributed systems can

be categorised by the manner in which they hide the underlying distribution

mechanisms from the user. This concept is called transparency and has been

shown to have a number of dimensions.

In [ANS89] the dimensions of transparency are given in relation to object-

oriented systems. The situation is somewhat different for persistent systems; the

dimensions of distribution transparency may be refined to the following:-

• operation transparency means that there is a uniform mechanism for invoking

operations of both local and remote values, concealing any ensuing network

related communications;

• location transparency means that the user cannot tell the location of a value in

the network from its name;
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• migration transparency means that an object may be moved from node to

node by the system while maintaining its identity;

• replication transparency means that, wherever an object is replicated by the

system for greater availability or efficiency, the intricacies of replica

consistency maintenance are concealed;

• recovery transparency  means that the semantics of any recovery mechanism

is independent of the way the data it governs may be distributed.

In addition to the above and in order that the distributed stores be considered as

part of one system there must be some underlying mechanism to allow them to

work in unison. This is provided by the concurrency control mechanism which

may be co-operative and controlled by synchronisation, competitive and

controlled by atomic transactions or in between as in designer transactions. Thus

the concurrency control ensures both synchronisation and isolation across the

network. Implementation of this is non-trivial and may involve system wide

semaphores and two phase commit protocols.

Where the distribution mechanism is completely transparent the user is presented

with a single large persistent space, the one-world model. This approach fits in

well with the concept of orthogonal persistence since all the physical properties

of the data are hidden from the user including the placement of data, replication

of data and the failure of nodes. The system is free to move, copy and replicate

data to optimise its utility and is responsible for abstracting over any failure due

to distribution. Applications need no modification to operate in different

distributed environments.

While the one-world model is conceptually simple, there are a number of

technological issues that make it difficult to deliver in scale. The management of

very large stores involves problems which are well known to cause

implementation difficulties. This chapter provides some background on these
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problems and the effects of exposing levels of distribution transparency. The

chapter discusses :-

• Mechanisms for providing transparency and the problems of totally

transparent distribution.

• Alternate models of distribution that relax some of the transparencies.

• Particular models built for persistent systems.

• A distribution model that has been constructed in the Napier88 system as part

of this thesis.

• an extension to the model that effects a two-phase commit of Napier88 atomic

transactions over a number of nodes.

• an example application that uses the two-phase commit in a networked

software distribution scheme.

6.2 Distribution Models

6.2.1 Transparency Provision

A number of mechanisms have been used as solutions or partial solutions to the

problems of transparency provision :-

• operation transparency may be provided by an implementation of distributed

shared virtual memory or alternatively through a mixture of procedure call

and remote procedure call (RPC) [Nel81] depending of the locality of the

called procedure. This is the basis of the Newcastle Connection [BMR82] and

Amoeba [MRT+90] systems.

• Location transparency requires uniform naming and mapping tables from

logical names to physical addresses. These mapping tables may also be used

in the implementation of migration transparency.
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• Replication transparency requires a more complex set of mapping tables and a

coherency mechanism.

• Recovery transparency should ensure that the system can recover after a

failure due to distribution.

The provision of a universal address space with total transparency on anything

other than a small number of nodes is beset by technical problems. These are

outlined by Dearle [DRV91] as involving :-

• the generation of unique addresses. In a flat shared address space objects are

typically designated a unique address. When a collection of nodes are sharing

this space then the address space must be large enough to ensure the unique

identification of any object. Research into support for persistent stores over a

large virtual address space [KR90, Coc89, Coc90] has focused on the

development of specialist hardware which is not particularly widespread.

Moss [Mos89] examines the cost of providing a large flat address space. He

suggests that the provision of wide addresses could have an adverse price-

performance effect on the CPU, cache and main store and backing store.

Instead he favours a contextual naming scheme such as that designed in

Mneme [MS88] where the address space is separated into distinct localities.

Each locality has considerable autonomy in the management of free space,

clustering strategies, object formats, recovery methods and concurrency

control. Typically the locality of data is such that programs usually need only

manipulate short addresses. The problem, however, with contextual

addressing is that there is little or no hardware support and it requires

considerable overhead in managing the localities. In addition, the availability

of larger address space architectures is rapidly becoming more widespread

and a number of Moss’s objections to large address spaces have been
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diminished by recent research in addressing and address translation

techniques [SKW92, VD92].

• free space management. The structures used by a system to keep track of free

space can be large. This overhead may be exacerbated by an increased

address space. Coupled with this is the cost of allocation and freeing of

secondary storage. A further consideration is distributed garbage collection.

Garbage collection mechanisms that are time-independent of the size of the

address space [Kol92, ELA88] can be complex. The complexity is increased

when the address space is distributed over several nodes. A review of

distributed collectors in [AMR92] highlights the problems and indicates that

very few fault-tolerant collectors exist.

• distributed stability and recovery. The issues of distributed stability are

similar to the problems of distributed garbage collection. In a one-world store

pointers can “leak” across nodes and hence an interdependence of nodes is

constructed so that they must be stabilised together. Recovery transparency

may have to capture the entire state of the persistent stores at a checkpoint for

co-operative concurrency models, and the partial but interrelated states for

transaction models.

Detecting such causal relationships in distributed systems has been the subject

of much research [CL85, Jef85, SY85]. The algorithms for achieving

distributed synchronisation and recovery are non-trivial and may result in

cascade rollbacks. Rollback propagation can happen when a node X has

become dependent on another node Y because they share a copy of the same

modified object. If node Y were to crash and be restored to its last checkpoint

state then, in order that the store on Y does not appear to travel backwards in

time with respect to X, node X is also rolled back to it last consistent state.

This may start a domino effect since the rollback of X may cause other nodes,

including Y, to also rollback.
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Algorithms for such stability often involve some form of two-phase commit

[Gra78]. By using two phase commit protocols over a high bandwidth local

area network, a modest number of reliable machines may be stabilised

together. However, it is unlikely that such protocols would be successful

when applied to large numbers of machines in geographically distributed

locations.

6.2.2 Non-transparency

In light of these issues it is clear that persistent systems that wish to

communicate over a wider-area distribution must consider alternative models.

For scalability it may be prudent to relax the ideal of complete transparency by

partitioning the persistent store into regions and making these regions visible at

the language level. This relaxes location, migration and replication

transparencies. The movement of data is now explicit and objects may be moved

and replicated by the user. The potential advantages are for enhancing the

performance of the system by user controlled parallelism and replication. This

comes at some programming cost since, as the placement is no longer

transparent, then programs may not work for all configurations of the system. In

such models there is a need to define the semantics of failure so that the user can

understand and react to it.

The relaxation of any of the transparencies is governed by a set of design

decisions that gives the user more control and flexibility at the cost of

complexity in the model. Where the system is not totally transparent there are a

number of degrees of relaxation. A transparency may be available but in a

restricted number of operations (✓R), it may be visible (V), visible but with a

restricted number of operations (VR) or not available at all (X). An example of

the last is where a distributed system does not allow migration of objects. Two

visibilities are introduced in order to categorise non-transparent systems. They

are :-
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• side effect visibility. This means that operations may cause visible side effects

in remote stores.

• structure visibility. This means that the structure of data and its internal

sharing will not be preserved over operation invocation, migration and

replication.

There are two broad models of distributed systems that allow different degrees of

visibility. With the federated model, the persistent stores are known to be

independent but obey some laws (transparencies) of the federation whereas the

confederated model is a loose association of non-interfering stores only acting in

unison by ad hoc agreement and disallowing side effects.

In a federated model some operations are made available to the user that

explicitly refer to remote stores. Typically these operations deal with remote

execution or remote data manipulation, such as RPC, and as such require the user

to have knowledge of data location. This then makes location, migration and

replication visible. The model has an overall protocol that governs data

movement so that the referential integrity is maintained. The movement of data

across store boundaries that preserves sharing can lead to pointer “leaking”

where the closure of an object may reside on a number of stores. To preserve

integrity then these stores become dependent on each other and hence must be

synchronised together.

In the confederated model a restricted set of operations is provided, the stores do

not make any attempt to act together and stabilising the stores is performed

independently. For example the Stacos store, described below, is confederated

and provides the user with a restricted store interface to interrogate a remote

store and copy objects from it. Failure may occur between or during

interrogations. The advantage of the confederated approach is that there are no

remote pointers or inter-store dependency through side-effect. The stores can
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then stabilise and perform garbage collection without regard to one another. The

stores may however take part in a distributed commit by a two phase protocol

and may synchronise within transactions by convention.

A major disadvantage of the confederated approach is the potential loss of

referential integrity. This refers to a situation where two roots of a graph are

independently moved or replicated in a store and these refer directly or indirectly

to a common sub-graph. In a system which maintains referential integrity, only

one copy of the common sub-graph is moved or replicated. Confederation by

definition does not allow pointers to span stores therefore copies of data

structures must be propagated between stores. Such copying may (and often

does) violate referential integrity.

Figure 6.1 summarises the transparency/distribution model matrix using the

notation described above.

Transparency One-world Federated Confederated

Operation ✓ ✓R ✓R

Location ✓ V VR

Migration ✓ V X

Replication ✓ V X

Recovery ✓ ✓ VR

Visibility

Side-effect N/A V X

Structure N/A ✓ V

Figure 6.1: Transparency/Model matrix
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6.2.3 One-world models

One approach to complete distribution transparency has been through the

provision of distributed shared virtual memory [Li86, LH89, WF90]. The

architecture typically comprises of a number of loosely connected computers

each with their own local memory, no shared physical memory and a protocol

that presents a uniform shared virtual address space to all the nodes. Each node

maps local memory into the shared virtual address space with pages moving not

only between main store and disk but also between the physical memories of the

nodes. Several nodes may contain copies of the same page and hence the

mechanism employs a coherency protocol to preserve data integrity.

The versatility of the coherency mechanism is usually the distinguishing feature

between implementations. Wu and Fuchs [WF90] present a scheme that allows

the virtual memory to be recoverable without cascade rollbacks. Their approach

involves automatic node checkpointing and recovery that limits the rollback

propagation. The solution proposed by Wu and Fuchs limits the rollback

propagation by insisting that a process always checkpoints before sending a

modified page to another node.

Two different distributed persistent systems, the Casper model [KSD+91] and

the Monads system [HR91] have been designed and built using the distributed

shared memory approach and are discussed below.

6.2.3.1 Casper

Casper (Cached Architecture Supporting Persistence) is of particular interest in

this thesis as it is a distributed architecture designed to support Napier88

programs. The architecture, as shown in figure 6.2, is based on a client-server

model where a client is a Napier88 thread operating on a page cache of objects

from a single stable virtual memory. The central heap manager in the server

allocates unused pages to clients requesting free space. The backing store for the
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shared memory is provided by the server which employs a shadow paging

mechanism to ensure that a consistent state is always recoverable.

• • •

PAM interpreter

Client
Request
Handler

page cache local heap

external pager

Client A Client n

PAM interpreter

Client
Request
Handler

page cache local heap

external pager

Server Request Handler

Stable Store Heap Manager

Stable Medium

Figure 6.2: The Casper architecture

A coherency protocol is used that guarantees data integrity. The protocol allows

multiple clients to read the most up-to-date copy of a page using a single writer

with multiple readers mechanism.

• All read/write requests are channelled through the server. If the server does

not hold a copy of the most recently modified state of a page the request is

forwarded to the client that does.

• Clients become dependent on each other because they have seen the same

modified page with respect to the server. The set of mutually dependent

clients is called an association. Any client initiating a meld requires all other

clients in its association to meld also. This allows several independent melds

to be in progress at the same time.
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• The server maintains the list of associations. If a client fails then all members

of the client's association must return to their previous consistent state.

The Casper system has been implemented using the multi-threading and external

pager features of the Mach operating system.

6.2.3.2 Monads

The Monads project has produced a new computer architecture that was designed

to support :-

• a large single-level persistent store through a stable, paged virtual address

space based on shadow paging.

• a uniform and secure protection scheme based on capabilities.

• separate address spaces within the virtual address space that can be used as

independent information-hiding modules.

The resulting research led to the construction of a new microprocessor, the

Monads-PC, which implemented these ideas. Further work on the project [HR91]

resulted in the extension of the virtual memory address space to a distributed

shared virtual memory across a network of Monads-PCs. Unlike the Casper

model there is no central server and each node provides it own backing store for

a portion of the address space. This complicates the coherency protocol in that

the mechanisms such as stability and free-space management are then necessarily

de-centralised.

The virtual addresses of the distributed shared virtual memory are unique

network-wide and are never re-used. Figure 6.3 illustrates the partitioning of a

Monads virtual address.
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Node No. Volume No. Address Space No.
Offset
within

Address Space

Figure 6.3: A Monads virtual memory address

• The node number uniquely identifies a host. All addresses therefore have an

explicit owner node.

• The volume number corresponds to a disk or logical disk partition on the host.

• The address space number corresponds to an in-volume address space that

typically contains related sets of data such as a program, an information-

hiding module, or process stack. Address spaces are divided into segments

and accessed by segment capabilities.

Each node maintains an exported pages table (XPT) and an imported pages table

(IPT) which are used in the single writer/multiple readers coherency scheme.

When a page-fault occurs the node number of the address is checked to see if the

page is local or remote. A page-fault for a local page must first check the

exported page table to ensure that no other node has a writeable version of the

page. If there is such a node, it is requested to return the page and mark the page

as read-only in its imported page table. The page-fault is then resolved from the

network rather than the local disk. On a page fault of a remote page, a copy of

the page is requested from the owner node. Pages are always exported read-only.

The remote node must explicitly request promotion to write status. Unlike the

Casper model if there is a single writer then no other writers or readers have a

copy of that page. In other words nodes do not form associations. However, if a

node fails and is restarted from the point of its last consistent state then any node

that has write access to a page from the crashed node must also rollback to its

previous state.
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6.2.4 Federated Models

6.2.4.1 DPS-algol

DPS-algol [Wai88] is a persistent system derived from PS-algol that supports a

model of distribution through the provision of a universal address space that

spans several nodes. Other extensions to the language include a facility for

expressing and manipulating separate concurrent activities and a remote

procedure call mechanism that enables inter-process communication and

synchronisation.

Through the provision of a universal address space DPS-algol presents a one-

world model where all the transparency dimensions are supported. However an

assertion is made that it may not always be desirable for efficiency reasons to

completely abstract over locality. DPS-algol provides a facility that allows the

explicit naming of remote nodes and the discovery of object locality. Remote

nodes are named as values of a new type locality and are spaces where processes

may be executed. Two language constructs transcopy and assign enable the

atomic data movement between localities. Figure 6.4 illustrates the ideas.

let presto = locality selectCuts
! presto is a handle on the locality (node) where the object selectCuts resides

let prestoBrekkies := transcopy brekkies to presto
! This transfers a copy of the object brekkies to the presto locality

assign newImprovedBrekkies to prestoBrekkies
! The value of the variable prestoBrekkies is re-assigned to the value
! of the object newImprovedBrekkies
! The assign will effectively transcopy the object to prestoBrekkies locality

Figure 6.4: Using localities in DPS-algol

The semantics of the copying are dependent on the type of the object being

copied and effectively involves a top-level copy of the object’s closure rather
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than a deep copy. The idea is to reduce the quantity of data transferred between

localities and avoid the inadvertent copying of the complete store without the

programmer’s knowledge. As a consequence of this method an object graph can

be spread across several nodes.

With this notion of locality a process can be executed on a remote store or a

remote procedure called via the RPC mechanism. The example in figure 6.5

shows how a process can be executed on a remote machine. The second

expression of the start construct, shopping, determines the name that the process

is registered with on the remote store.

let shopping = “shoppingProcess”
let goShopping = process
begin
…
end
let processHandle = start goShopping as shopping at presto

Figure 6.5: Starting a process on a different locality

The illusion of a universal address space is provided through a uniform treatment

of object reference. This is supported by the DPS-algol abstract machine which

distinguishes pointers to local and remote data. References to remote objects are

through heap objects called remote pointers  which use contextual addressing to

uniquely define the object. An instance of the abstract machine running over a

local store generates a remote pointer when there is an external reference to an

object in that store. Each process maintains an export table of remote pointers it

has exported. The coherency of the distributed address space is thus dependent

on the consistency between the export table on a store and the use of remote

pointers by a process.

The essence of DPS-algol is that it provides, by default, a one-world model

where a user can manipulate data and execute threads without knowledge of
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locality. The programmer can make use of constructs that expose locality

allowing the explicit movement of data or placement of process execution.

6.2.4.2 Argus

The Argus [Lis84] system is an archetypal example of a federated system that

allows a programmer to construct programs into a collection of modules that are

executed on different nodes. A guardian is the Argus abstraction for an stable

store and encapsulates data and a set of processes that operate on the data. A data

object in Argus wholly resides within one guardian and the sharing of objects

between guardians is not permitted. Instead guardians communicate through

handlers which are defined in the body of a guardian definition.

An Argus program is structured as an atomic action that is recoverable,

serializable and total. As a program execution progresses it accesses and

modifies data at several other guardians through handler calls. The system

employs a two-phase commit protocol that ensures that when an action

completes it either commits all the changes made at all the visited guardians or

aborts at every guardian. The commits are to stable storage and are hence

recoverable.

Argus uses a remote procedure call mechanism to pass data between guardians.

Pointer leaking between guardians is avoided by (deep) copying objects between

the sender and receiver. These copies are considered to be separate and hence

referential integrity is lost. The Argus model thus exhibits structure visibility.

Figure 6.6 summarises the models described. The DPS-algol can function as a

one-world model but has the transcopy and assign operations that control the

visibility.
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Transparency Casper/Monads DPS-algol Argus

Operation ✓ ✓R ✓R

Location ✓ ✓R V

Migration ✓ ✓R X

Replication ✓ ✓R X

Recovery ✓ ✓ ✓

Visibility

Side-effect N/A V V

Structure N/A ✓ V

Figure 6.6: Classification of models

6.3 Stacos

6.3.1 Introduction

Stacos (St Andrews Confederated Object Store) is a confederated model that

extends the Napier88 name space to include other global address spaces. The

model is confederated in that the distribution is constrained to services that do

not side-effect these other spaces. Two stores then can communicate with each

other but at no time become inter-dependent and hence can meld and garbage

collect independently. Figure 6.7 shows where the Stacos model lies within the

transparency classifications.
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Transparency Stacos

Operation ✓R

Location VR

Migration X

Replication X

Recovery VR

Visibility

Side-effect X

Structure V

Figure 6.7: Stacos classification

Whilst this is a fairly restrictive form of distribution the architecture design to

support confederate distribution can be used as a framework for building other

models. The features of Stacos presented in this section are :-

• a base model that incorporates a simple extension to the Napier88

environment that allows a program to browse remote object stores and specify

and deep copy objects from these stores in a type-safe manner.

• an implementation level communication based on a protocol layered on

TCP/IP sockets. This abstraction was chosen instead of a higher-level

mechanism, such as Sun’s RPC implementation, principally for the

widespread availability on a range of platforms and world-wide connectivity.

This enables any Napier88 persistent object store residing on a machine on

the internet to be accessible.

• an extension to the model that enables user-written services in addition to the

scan/copy functionality. These services can define there own store-to-store

protocol with the restriction that they do not side-effect the remote store.
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• the provision of support in the model for two-phase commit of Napier88

atomic transactions across stores.

6.3.2 Base Model

In the base model remote Napier88 stores can be named and communication

established that allows the remote stores to be browsed and have objects copied

from them. A Napier88 program still has its own stable store with one

distinguished persistent root but has the ability to import objects from other

stores. Once an object has been copied it then behaves and can be manipulated

like any other Napier object.

Figure 6.8 illustrates the architecture with the distribution at the Napier88 level.

The user converses with another store using a package of communications

procedures that provides clean failure semantics so that the user can understand

and react to failure.

Napier88

Abstract Machine

Local Heap

Stable Heap

Stable Virtual Memory

Napier88

Abstract Machine

Local Heap

Stable Heap

Stable Virtual Memory

Figure 6.8: Stacos architecture

The model is inherently confederated since browsing and copying do not cause

side-effects on the remote store. Objects can only be copied in one direction -

i.e., 'pulled' from a remote store and because the objects are copied by transitive

closure there is no possibility of “pointer leaking” across stores. Note that this is

in stark contrast to the transcopy construct of DPS-algol. However there is a
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consequential loss of referential integrity since the object identities are forfeited

and hence a loss of replication transparency. If two objects on the remote store

that point to the same object are copied to the local store then they will no longer

share the object in common. Each will have a copy of the object.

Remote objects are specified by pathname through environments. For each

connection to a remote store an instance of a browser procedure and a copy

procedure is supplied that allows remote environments to be scanned and objects

copied. Each scan returns a list of name-type tuples for the specified pathname.

Using this information the calling program can traverse the remote store's

hierarchy. The copy function names an object in a specified environment that is

to be deep copied to the local store.

6.3.2.1 Language interface

An addressing convention in this model uniquely identifies a remote store by a

combination of the host’s internet domain name or number and the full pathname

of the stable store file. The user references a remote store by assigning a

symbolic name to the remote store’s address. A database is provided that allows

the user to add, list and delete these names. The interface functions to this

database are given in figure 6.9.

type RemoteStore is structure( name,host,storeDir : string )

addEntry : proc( string, string, string → string )
listEntries : proc( → List[ RemoteStore ] )
removeEntry : proc( string → string )

Figure 6.9: Remote store database interface functions

• addEntry : proc( string, string, string → string )

153



This procedure adds a new entry to the remote stores database. The

parameters are the entry name, the name of the remote host and the pathname

of the store at the remote host. The host name may be specified as a local

machine name, a full Internet host name or an Internet number. If an entry

with the given name already exists the addition fails and an error message is

returned, otherwise the null string is returned.

• listEntries : proc( → List[ RemoteStore ] )

This procedure returns a list of the entries in the remote stores database. Each

element of the list is a structure containing an entry name, a host name and a

store pathname.

• removeEntry : proc( string → string )

This procedure takes the name of an entry in the remote stores database and

removes the entry from the database. If an entry with the given name does not

exist an error message is returned, otherwise the null string is returned.

The symbolic name for a remote store is used in the openRemoteStore procedure

call to establish a new remote connection. Figure 6.10 shows the definition of the

procedure and its associated types.

type EnvEntry is structure( entryName : string ; entryType : TypeRep )

type ScanResult is variant( successful : List[ EnvEntry ] ; error : string )

type CopyResult is variant( successful : any ; error : string )

type RemotePack is structure(
scan : proc( string → ScanResult ) ;
remoteCopy : proc( string,string → CopyResult ) ;
closeRemotePack : proc() )

type ConnectionResult is variant( successful : RemotePack ; error : string )

openRemoteStore : proc( string → ConnectionResult )

Figure 6.10: Remote store communication language interface
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• openRemoteStore : proc( string → ConnectionResult )

This procedure takes the name of an entry in the remote stores database and

attempts to open the remote store for scanning and copying. If the open

operation is unsuccessful the result is a string giving an explanatory error

message, otherwise it is a structure containing the following operations on the

remote store:-

• scan : proc( string → ScanResult )

This procedure takes a string pathname describing an environment in the

remote store and attempts to scan it. A pathname is relative to the persistent

root and should consist of an initial slash followed by environment names

separated by slashes, for example: "/Library/Distribution".

If the pathname is not well formed or if a communication error has occurred

during the scan the result is a string describing the error. Otherwise the result

is a list of structures containing one element for each of the bindings present

in the remote environment at the time of the scan. Each element contains the

name of the binding as a string and a representation of the type of the binding.

• remoteCopy : proc( string, string → CopyResult )

This procedure takes the name of a binding in a remote environment and a

string pathname describing the location of the remote environment, and

attempts to make a deep copy of the binding. The pathname is described in

the same way as for scan above. If the pathname is not well formed or no

binding with the given name is present, or a communications error occurred

the result is a string describing the error. Otherwise the result is a copy of the

remote binding injected into any.
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• closeRemotePack : proc()

This procedure closes the connection to the remote store. Further calls to the

procedure have no effect. Subsequent calls to scan and remoteCopy result in

messages stating that the connection is closed.

face : image

personData : env

Figure 6.11: Example remote store

For example consider the remote store illustration in figure 6.11 and suppose that

a Napier88 program running on a local store wants a copy of the object face in

the remote store. The code to initiate the connection and scan the path to the

environment containing face and copy the object is shown in figure 6.12.
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let connect = openRemoteStore( myNameforRemoteStore )
if connect isnt successful then writeString( connect’error ) else
begin

let scan = connect’RemotePack( scan )
let remoteCopy = connect’RemotePack( remoteCopy )
let closeConnection = connect’RemotePack( closeRemotePack )
! Now scan the root environment
let currentEnv := “/”
let scanResult := scan( currentEnv )
if scanResult isnt successful then writeString( scanResult’error ) else
begin

! Look through the return list of name-type tuples for personData
…
currentEnv := currentEnv ++ “personData”
scanResult := scan( currentEnv )
if scanResult isnt successful then … else
begin
! Look through the return list of name-type tuples for face
…
let copyResult = remoteCopy( currentEnv, “face” )
if copyResult isnt successful then …else
project copyResult’successful as X onto
image : writeString( “Successful copy” )
default : writeString( “Oops” )

end
end

Figure 6.12: Program to scan and copy remote object

To simplify accessing remote stores a graphical interface was developed and

incorporated into the Napier88 programming environment. This is described in

Appendix C.

6.3.3 Implementation

The implementation strategy for supporting Stacos involved the following :-

• incorporation of an interface to the Unix socket abstraction in Napier88.

• definition of communication establishment protocol and store-to-store

copy/scan protocol.

• a mechanism for transferring the transitive closure of an object across a

virtual circuit.
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The socket-based connect/accept primitives were incorporated into the Napier88

primitiveIO environment. The procedures in this environment provide a mapping

between the I/O facilities of Unix and Napier88. The socket-to-socket

communication is seen at the language level as file or device I/O. Once a

connection is established the user can then perform I/O in the same fashion as

reading and writing disk files.

6.3.3.1 Connection establishment

Connection establishment between two stores using sockets is complicated by

the internet address binding mechanisms. Communicating processes between

sockets on the internet are bound by an association. An association is composed

of local and foreign addresses (hosts) and local and foreign ports. Associations

are always unique and no duplicate <protocol, local port, local address, foreign

port, foreign address> tuples exist network-wide. On a connection set-up the

sender is allocated the local port and local address dynamically by the operating

system and uses the internet number of the receiving host to form the foreign

address The problem for the sender is knowing what the foreign port number is.

Typically a TCP/IP Unix application such as telnet uses a fixed port number that

is agreed by convention. The internet daemon process on Unix listens on that

port on behalf of the application for incoming requests. For each connect

received the daemon accepts the call on behalf of the application and forks a

process that executes the application binary. The application binary is started

with its standard input and standard output descriptors bound to the socket.

There are a number of reasons why this approach does not blend well with the

Napier88 to Napier88 communications model :-

• The application binary in the Napier88 case is an instance of the abstract

machine interpreter running Napier88 programs against a store. This implies

that an instance of the interpreter would be executed for each incoming
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connect request and also that each interpreter would be limited to one

connection. This then places a heavy restriction on the functionality of the

Stacos model.

• Having an instance of the interpreter that is bound to the standard input and

standard output will again restrict the functionality of the model.

• Having a number of Napier88 interpreters, spawned by a connection, running

against a single store does not fit the concurrency models outlined in

chapter 4.

The implemented solution was to create a front-end program, outwith the

Napier88 system, that acted as an interface between the connection establishment

procedures of Unix and the Napier88 requirements. The front-end program is

called by the internet daemon every time a connect request for access to a

Napier88 store arrives at the host. The solution effectively defines a protocol

between any running Napier88 interpreters on a host and an incoming connect

and a protocol between the program and the abstract machine of the caller. The

sequence of events is portrayed in figure 6.13. When a Napier88 session begins a

Napier88 thread is executed that allocates a free port number from the operating

system using a primitive I/O socket function. The thread then registers its port

number and the pathname of the store that this interpreter is running against with

the front-end program. The front-end program maintains a table of <store

pathname, port number> tuples for each running Napier88 system on that host.

When the client program issues an openRemoteStore the abstract machine issues

a connect request on a known port number to the server host. The internet

daemon sees the connect and accepts the call on behalf of the front-end program

and forks a process which then executes the front-end program.

At this point the interpreter of the client and the front-end program enter into a

dialogue. The client will have received the accept of the call by the server’s
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internet daemon and so sends back a string containing the pathname of the

remote store that it wishes to access. The front-end program matches that string

against its table entries and if one is found the port number of the entry is

returned to the client. If no match is found, indicating that the requested store

either does not exist or is not currently available for access, the front-end

program closes the connection.

The client then closes the first connection and makes a new connection call using

the returned port number. At this point the thread of the Napier88 program

running on the server is resumed. The thread first removes its entry from the

listening table, accepts the call and starts a new listening thread. The Napier88-

to-Napier88 communication has now been established.
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Napier88 Store P Napier88 Store Q

Client on host X Server on host Y

Start new thread
Get free port number (A) from 
system

Register store directory (/stores/Q) 
and port number with host Y

Suspend while waiting for 
connectsOpenRemoteStore to /stores/Q on 

host Y 

Thread wakes up. De-register 
/stores/Q from lookup table.

Start new listening thread as 
above and accept call

Socket connection to host Y 
on  Napier88 port

Is “/stores/Q” available?

Socket connection to host Y 
on  port A

Abstract Machine

accept

Look up table for 
/stores/Q

Reply -- yes call it on 
port A

Front-end program

Figure 6.13: Connection establishment

6.3.3.2 Remote object copying

Once a connection is established then communication between the stores is

controlled through the Napier88 programs at either end of the connection

following a simple protocol. The client sends scan/copy requests to the server by

constructing a string with the desired command (scan or copy) and the

parameters as quoted strings. This string is then written to the socket. The client

then waits for a reply.

The server is a thread which runs a loop looking for scan/copy commands from

the client. On a scan request the parameters are read from the network and a list

161



of the bindings in the specified environment are constructed using the scan

procedure from the standard Napier88 user environment. The list is then

transferred across the connection using a mechanism described below. A copy

request similarly checks to see if the requested object does in fact reside in the

specified environment. The object is then injected into an any and copied across

the network.

The server thread is suspended by the scheduler if it is blocked waiting for a

command from the client. The scheduler keeps track of all threads that are

blocked waiting on an external event and periodically checks for data pending on

any open file descriptors.

It should be noted that the server copy and scan functions are written in Napier88

and compiled using the bootstrap compiler. As such they have access to

primitive functions not generally available to the user. For example one of

primitive functions allows a value of type env to be decomposed into its internal

structure which includes its name as a string. This function is used by the

scan/copy functions to match the string pathname parameters passed by the user

with environments in the store.

Two new primitive functions were constructed to enable the transfer of Napier88

objects across a socket. One to flatten an object and write it to the socket and

another to read from the socket and reconstruct the object. Two functions,

namely importAny and exportAny, already perform such a function and are used

for code planting to the file system and reconstituting code from a Napier88

object file. However the implementation of exportAny performs a recursive

traversal of an object ‘s closure writing out each object’s header as it traverses

and then back patching the pointer fields with file offsets using file seeks. These

procedures keeps a list of objects already checked to handle circular references.

Seek operations cannot be performed on a socket stream and so two similar

functions, exportAnyStream and importAnyStream, were written to perform the
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same job but without seeks. The exportAnyStream procedure recursively

traverses an object’s closure and assigns each object with a unique object number

which is written out along with the object header. As an object is traversed its

pointer fields are written to the socket with either the object number assigned to

the object pointed at if it has been written out already or a new object number.

The importAnyStream function reads the data from the input stream socket and

builds the objects as they are read. From the object numbers in the pointer fields

a table of pending objects, that is objects that are still to be read in, is

constructed. For each entry in the pending table a list of objects is kept that

“point” to the pending object. When a pending object is read from the socket this

construct is used to resolve the pointers and the object’s entry is removed from

the table.

6.3.4 Transaction Processing and Two-phase Commit

Whilst the scan/copy service is limited in its functionality it can provide a

valuable service as a passive data server to a number of Napier88 clients. The

functionality of the model can be enhanced by developing a more complicated

underlying protocol. The communications framework of the virtual circuit, the

object copying facility and the connection establishment procedure can be used

as a base for developing different services. The connection establishment

protocol discussed in section 6.3.3.1 described how a server thread displays its

willingness to accept calls by registering the port number and store pathname

with the front-end program. By adding an extra parameter to the handshaking

protocol a number of threads can be started by the server, each of which listen on

a different port number and perform a different service. For example, in addition

to the scan/copy facility, a listener thread may be written that provides a network

“talk” service between two users using different stores.

Any service can be developed provided it does not rely on the availability of a

connection or side effect the data on the server. These services can be thought of
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as the equivalent of the guardians of Argus. By developing services that

communicate with other services a controlled two-way communication can be

created. For example node X may call a service of node Y that asks Y to copy a

procedure from X and execute it. This then could form the basis of a RPC

mechanism or a remote evaluation model [SG90]. In addition a model could be

constructed where a node transfers source to another node where it is then

compiled and executed. In particular the source may be the code for a new

service and by using the callable compiler of Napier88 one node could be asked

to transfer the code.

Building more complex models from these basic services inevitably leads to a

position where a store may want to synchronise changes with a number of

remote stores. By encompassing the facility in the transaction package described

in chapter 4 a two-phase transactional commit can be constructed to provide

distributed synchronisation.

In a two-phase commit protocol one of the transactions acts as a co-ordinator and

the other transactions involved act as participants. Both the co-ordinator and the

participants have a preparing phase and a committing phase. Since the

participants are running as Napier88 transactions then no permanent change will

have been made to the store until a meld is executed. It is the synchronisation of

each participant’s meld that is the subject of this model’s two-phase commit.

Figure 6.14 shows the amended language interface with a prepare and result

procedure added to the RemotePack. Note also that the RemotePack has been

altered to cater for a number of different services.
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type ScanCopyPack is structure(
scan : proc( string → ScanResult ) ;
remoteCopy : proc( string,string → CopyResult ) )

type OtherPack is structure(…)

type ServicePack is variant( scanCopy : ScanCopyPack ;
otherServices: OtherPack …

type RemotePack is structure(
servicePack : ServicePack ;
prepare : proc( → bool ) ;
! true reply means “prepared” ; false is “abort”
result : proc( bool → bool ) ;
! send true means that all the participants are prepared
! and should now commit
! Reply boolean should always be true except to indicate network errors
closeRemotePack : proc() )

type ConnectionResult is variant( successful : RemotePack ; error : string )

openRemoteStore : proc( string,string → ConnectionResult )

Figure 6.14: Amended Remote store communication language interface

• prepare : proc( → bool )

The co-ordinator calls this procedure for each remote connection to signal to

the participants that they should prepare to commit. If a participant replies

that it has successfully prepared then a true value is returned. All other

responses result in a false being returned.

• result : proc( bool → bool )

This is issued by the co-ordinator to each open connection to inform them of

the outcome of the “vote” on the prepare call. If all the participants involved

acknowledged that they had prepared the result procedure is parameterised by

true telling them to commit now. Otherwise an abort is signalled using false

as the parameter value.

If the participants were instructed to commit then when this has been done the

result procedure returns true. This should always be the return value of such
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a call since the protocol demands that a co-ordinator, once it has sent a

commit request to each participant, must continue sending messages to the

participant until it gets a reply.

To support two-phase commit requires a change to the concurrent store to

accommodate a “prepared” transaction state that is recoverable. This is described

in the sequence of actions of the two-phase commit below :-

• Co-ordinator Actions

Prepare phase. Each participant is sent a prepare-to-commit message. If each

participant replies “prepared” the co-ordinator enters the completion phase. If

any participant replies “abort” the co-ordinator sends abort to each

participant.

Completion phase. The co-ordinator transaction executes a meld. The meld

signifies that the transaction has committed and that that state cannot be

revoked even in the face of network or participant failures. The program state

of transaction forms part of the meld so in the event of a subsequent crash of

the co-ordinator node the transaction would automatically be restored and

continue from that point. As a consequence it is essential that the meld

includes sufficient information to allow communications to be re-established

on system restart. This is achieved by retaining the remote hosts and remote

store pathname information as part of the open files vector which is in the

PAM root object written back on a meld. This can be interrogated on start-up

and a socket connection for each store re-connected.

Committing messages are now sent to each participant and the transaction

waits for committed replies from each participant. Once it has received these

it again melds and the transaction is complete.
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• Participant Actions

Prepare phase. This requires that a transaction saves its state in the persistent

store so that it is recoverable but without committing changes. To

accommodate this a “prepare” function has been added to the transaction

interface. This function writes back all pages modified by the transaction to

their shadow pages. The stable disk page table is not updated at this point as

would happen in a commit. Instead the current root page records that the

transaction is in a prepared state by setting a flag in the secondary transaction

disk-page table for that transaction. The root page is then written back

atomically and a prepared message returned to the co-ordinator. The

participant enters the completion phase.

Should the system crash at this point then on restart any prepared but

incomplete transactions can be found from an inspection of the root page. The

running state of the transaction will not have been saved with the crash since

it did not form part of the last meld and so the system spawns special purpose-

built transactions that listen for a committing or abort messages from the co-

ordinator.

Completion phase. The participant waits for either a commit or abort

message from the co-ordinator. On a commit the transaction melds, sends a

completed message to the co-ordinator and completes. On an abort the

transaction aborts and releases its shadowed pages.

6.3.5 Software Distribution with Two-phase Commit

As an example of the kind of functionality a confederated model can provide, a

software distribution scheme has been built into the Stacos model. The model

involves a Napier88 program informing a number of remote stores that it has a

new version of a piece of software and where it is stored. The remote stores can
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then copy the software to their own stores. The distribution scheme is

constructed as a set of transactions that communicate across nodes and then

synchronise using the two-phase commit.

In this software distribution scheme two listening transactions are spawned when

a Napier88 system is started. One is for the copy/scan communication as before

except that the other transaction listens on a different port for any news of new

software from any other Napier88 system. This transaction registers with the

front-end program giving a port number, store pathname and a service name of

“software distribution”. As part of the TCP/IP socket abstraction a receiver of a

connect can always ascertain from the incoming information the remote address

of the caller. The handshaking protocol and the Napier88 accept primitives have

been amended so that when a listener thread receives a connection it is provided

with the internet address and store pathname of the caller.

When a machine wishes to connect to a remote store it must now also specify the

service it wants to talk to. The changes to the connection interface are given in

figure 6.15. The RemotePack returned by a connect uses the variant ServicePack

which contains the pack of procedures specific to the particular service

connection. As new services are added to this system their interface functions

can be added to the ServicePack.
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type EnvEntry is structure( entryName : string ; entryType : TypeRep )
type ScanResult is variant( successful : List[ EnvEntry ] ; error : string )
type CopyResult is variant( successful : any ; error : string )
type SoftDistResult is variant( successful : null ; error : string )

type ScanCopyPack is structure(
scan : proc( string → ScanResult ) ;
remoteCopy : proc( string,string → CopyResult ) )

type SoftDistPack is structure(
newObjects : proc( *string → SoftDistResult ) )

type ServicePack is variant( scanCopy : ScanCopyPack ;
softDist : SoftDistPack )

type RemotePack is structure(
servicePack : ServicePack ;
prepare : proc( → bool ) ;
result : proc( bool → bool ) ;
closeRemotePack : proc() )

type ConnectionResult is variant( successful : RemotePack ; error : string )

openRemoteStore : proc( string,string → ConnectionResult )

Figure 6.15: New Remote store communication language interface

The software distribution protocol begins with a Napier88 system sending a

remote Napier88 system a connect request for the software distribution service.

If this is accepted then the caller receives an instance of the SoftDistPack

structure with the newObjects procedure. The caller then uses this procedure to

tell the remote store where the new objects are. This is specified as a vector of

strings where each string is a pathname for the objects the caller wishes to be

copied. The caller then waits for a reply. A successful reply indicates that the

remote store has successfully copied objects. Otherwise a string with an

explanatory message is returned.

At the remote end a transaction listens for software distribution service

connection requests. When such a request arrives the transaction reads the vector

of pathnames from the socket after accepting the call and then calls the caller’s

copy/scan service. Using the pathnames it was provided with the remote store
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pulls the objects over to its store and then closes the connection. The caller’s

newObjects procedure returns successfully.

Since the participants are running as transactions then no permanent change will

have been made to the store until a meld is executed.

The co-ordinator in this model is the transaction that initiates the distribution.

Once each of the participants has replied that the software updates have been

successfully transferred then the two-phase commit can begin. The co-ordinator

will issue a “prepare” to each participant and wait for replies. If all the replies are

successful then the co-ordinator melds and requests each participant to do

likewise. The co-ordinator then waits for the acknowledgement from the

participants. On receiving a prepare message a participant transaction enters its

prepare phase which effectively terminates the transaction execution. The

Napier88 system writes all pages modified by the transaction to its shadow

blocks and records the transaction prepared state in the root page. The “prepared”

message is then sent to the co-ordinator and the system will either effect a meld

or an abort dependent on the outcome of the commit.

6.4 Conclusions

The one-world model where the distribution is completely transparent to the user

is undoubtedly the ideal model for orthogonally persistent systems. This

approach preserves the persistence abstraction of hiding all the physical

properties of data from the user. A number of distributed persistent systems have

been designed and built using such a model. These systems effect a one-world

model through the provision of a uniform address space across a number of

nodes. Such schemes require a coherency protocol to guarantee data integrity.

The problems of maintaining the universal address space illusion were discussed.

One particular problem that affects distributed systems is the detection of causal

relationships between nodes that derives from the absence of a global clock. In a
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distributed persistent system this can be seen in recovery and garbage collection

techniques across nodes. Fault-tolerant distributed collectors and network-wide

recovery procedures can suffer from a cascade of rollback propagation. The

technical solutions to providing complete distribution transparency suffer from a

lack of scalability that constrains such systems to only a handful of nodes.

Distribution models that relax any of the transparencies can be categorised as

being either federated or confederated. In these models the user is made aware of

other address spaces and is provided with a mechanism for communicating with

them. A federated model is one where each store operates on a logically separate

address space but the stores conform to a global convention. In a confederated

model there is no convention and interaction between stores is limited to

functions that do not side-effect across store boundaries.

In view of the scale limitation of the one-world model and the plethora of non-

transparently distributed alternatives, a persistent system that has the flexibility

and infrastructure to support a range of models may be the optimum strategy.

The Stacos store is a typical example of a confederated model. The model allows

a remote store to be scanned and objects copied from it. It was shown how this

model could be enhanced to provide a synchronised update service to a number

of participants. This then can be viewed as providing a base on which models of

distribution can be constructed and integrated into Napier88. There are a number

of issues of the Stacos store which warrant further investigation. For example

techniques that can reduce the amount of data transferred in a deep copy could be

improved. It is hoped that the advent of hyperworlds [Kir92] will help reduce the

size of an object’s transitive closure. The export/import functions used to transfer

the data across the virtual circuit may benefit from some compression/de-

compression filters.
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7 Conclusions

The motivation for the work presented in this thesis is the integration of the

concepts of concurrency and distribution with the persistent abstraction. The

principal contribution presented is the development of a flexible persistent

architecture for Napier88 in which any model of concurrency and distribution

can be constructed and supported. The key areas in this study are :-

• Integration of concurrency with persistence.

• Integration of distribution with persistence.

• Design and implementation strategy for the construction of the supporting

architecture.

7.1 Integrating Concurrency

The concept of concurrency has been viewed here as a spectrum of

understandability. Concurrency models lie on points on the spectrum and are

distinguished by the extent to which the programmer or the system is responsible

for the maintenance of global cohesion. By capturing this spectrum into the

Napier88 persistent architecture a framework is provided in which all models of

concurrency can be built and supported.

A conceptual layered architecture was developed that separated the intrinsics of

concurrency into separate address spaces. The concurrency control address space

specifies and controls the interaction of the separate actions and directs the

movement of data between the address spaces. Each action has a private address

space in the action address space layer and may also belong to a group address

space shared with other actions without the data being globally visible. The

concurrency control can commit actions through a meld operation by transferring

the local or group address spaces to the persistent address space. Data in the
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persistent address space is visible to all actions. The movement of all data is

atomic.

Concurrency in this architecture is defined in terms of the sharing of address

spaces and the movement of data between them rather than by a description of

the behaviour and interaction of processes. The motivation for this approach is

derived from the CACS specification system. The address spaces reflect the

CACS visibility structures with the persistent address space corresponding to

CACS database and the action address spaces equated with the access sets.

The conceptual architecture led to the design of a concurrent shadow-paged store

which conforms to the Napier88 layered architecture design and supports the

CACS view of data visibility. In this store the stable virtual memory acts as the

CACS shared database with a form of shadow paging being used to support the

access sets.

The implementation of this concurrent store provides a basis for supporting

CACS in the Napier88 system. The incorporation of CACS into Napier88 is

completed with the provision of communication paths between the two systems

at strategic points in the architecture. These channels which enable CACS to

control and get feedback from the execution of any concurrency model involve:-

• At the language level annotations in the model’s code to inform CACS of the

significant events such as action begin or action commit.

• Object events such as read and write communicated to CACS from the

abstract machine’s detection of swizzling and object update.

• CACS communicating events to the store to perform melding, aborting and

the per-action shadow paging.

A number of issues concerning the complete integration of CACS into the

Napier88 system still need investigation and are outlined in section 7.4. As a step
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towards this, an instance of the concurrent architecture was constructed that

directly supports an atomic transaction package written in Napier88. The atomic

transaction package effectively acts as CACS and handles the transaction events

and detects and resolves conflicts. A transaction commit results in an action meld

where the propagation procedure for making changed objects globally visible is

hardwired into the store using the double xor algorithm. From this

implementation, and future implementations of different concurrency models, it

is hoped that a clearer idea how a CACS system might be constructed will

emerge.

7.2 Integrating Distribution

Maintaining the illusion of a uniform persistent address space transparently

distributed across a number of nodes is beset with technological difficulties. The

approach here is to tackle distribution from the opposite end of the transparency

spectrum and provide a basic communication primitive in which objects can

move between stores. The primitive can then be used as a building block on

which any model can be constructed and so provides a high-level testbed in

which hybrid schemes can be developed.

At the base level the distribution primitive makes all the transparency

dimensions visible. The programmer can construct abstractions over this

primitive to form desired transparencies for a particular model. At one extreme

the architecture may be used to create a one-world model, admittedly at some

cost, which could then be used for experimenting with the problems of a large

scale fully-transparent distribution.

At the machine level the implementation is based on the widely-available

TCP/IP protocol and thus offers an infrastructure that can be used to unite

Napier88 stores across the internet.

Two example models of the concept were constructed :-
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• A client/server style model that enables a user to browse remote stores and

copy objects from these stores in a type-safe manner. The copy involves the

transfer of the object’s transitive closure to prevent pointer leaking.

• A model that provides a two-phase commit protocol that enables the Napier88

atomic transactions to perform a distributed synchronise across a number of

nodes.

7.3 Building the Architecture

Engineering the integration of concurrency and distribution into the Napier88

architecture has required significant changes at all levels to the vanilla system.

One of the important achievements in this work is that the implementation

strategy used to realise the integration :-

• did so without the introduction of new language constructs.

• preserved the overall layering of the standard Napier88 architecture by

augmenting the interfaces rather than altering them. This is really a testament

to the genericity of the original layered design.

• probably, most importantly, protected the investment in Napier88 by ensuring

that the large body of existing applications, software tools, compilers etc. all

work as before.

Producing an integrated system has resulted in a number of innovative

implementation components :-

• an after-look shadow paging scheme that is designed to get performance

benefits within the limitations of the memory-mapping features of the SunOS

system.

• an extended after-look scheme to handle concurrent access.
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• incorporation of persistent threads and semaphores together with a process

scheduler in the abstract machine.

• an atomic transaction package that dovetails into the architecture at the

language level, the abstract machine for pid translation to capture object reads

and writes and the store level to effect the per-action shadow paging and the

double xor melding function.

• a socket abstraction that fits into Napier88’s device I/O interface together

with a mechanism for flattening and expanding an object’s closure for

transferring across a stream interface.

• a connection establishment protocol that interfaces between the Unix

convention and the requirements of Napier88.

• enhancements to the atomic transaction package to enable a distributed two-

phase commit between nodes.

7.4 Future Work

The provision of this architecture should really only be regarded as an initial

result which forms a sound basis on which models of concurrency and

distribution can be constructed. The specific research areas and experiments that

follow from this work are itemised below.

7.4.1 Concurrency

CACS provides a system in which models of concurrency can be specified in an

abstract, operational way that aids their implementation. The ultimate goal is to

provide a system in which different concurrency schemes can be specified,

constructed and compared in a meaningful way. There are still a number of open

issues regarding the completion of CACS within the Napier88 architecture that

need to be researched and developed. These include :-
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• A delivery vehicle for turning CACS specifications into Napier88. This

involves firstly the provision of a process to automatically (or semi-

automatically) generate the annotations of a Napier88 program with the

CACS events through program transformation. Secondly, using the Napier88

reflection technology [Kir92] to turn the annotations into code. For example

these may be provided as procedure calls to CACS or alternatively as in-line

code.

• A persistent architecture that can support the completed CACS. The work

presented here provides an initial framework but the support for a complete

CACS as a whiteboard architecture remains an issue. In particular :-

At the abstract machine level the mechanism for reporting object reads and

writes to CACS needs generalising. One possible approach may be to extend

the thread context block to enable CACS-specific event handler procedures to

be dynamically assigned to an action.

At the store level the provision of a generic melding mechanism for

propagating the changes made by a committing action to other actions. The

double xor of the shadow pages only works in the cases where no two actions

have modified the same object.

Specific experiments to evaluate the reference model will be carried out. These

will produce hardwired instances of the architecture to support specific

concurrency models. Building architectures to support models such as Sagas,

transaction groups and nested transaction will give a fuller examination of issues

of attaining a generic architecture to support CACS.

In the concurrent store the operation of using a local heap as a cache for the

stable heap led to a duplication of effort to ensure the isolation of actions and

detracted somewhat from the expected benefits of using shadow-paging. One

future experiment will be to redesign the PAM so that it runs directly from the
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stable heap. This will involve identifying the points where PAM assumes its

working on virtual memory addresses rather than checking for persistent

addresses. This change will also require a alternate method to swizzling for

trapping when an action has been read or written. With all objects, new and

transient as well as stable objects, being created on the stable heap an efficient

stable heap garbage collector is required. This will lead investigations into

generation and incremental collectors with the work of Kolodner [Kol92] on the

concurrent tracking of newly stable objects of some interest. With two

functionally equivalent Napier88 systems, one with a local heap and one without,

a good basis would be available for measurement experiments.

7.4.2 Distribution

The provision of the distribution primitive provides a building block for

constructing any models. Investigations will be undertaken into designing

models for examining the problems of a distributed universal address space.

These models may implement specific transparencies or combinations of

transparencies to isolate a particular issue such as recovery or migration

visibility. One interesting idea would be to develop a CACS equivalent for

distribution in which models could be formally specified and constructed.

Specific implementations of known models such as RPC on top of the primitive

will eventually lead to the provision of a large-scale fully-transparent distribution

model.

Work on increasing node-to-node throughput will include investigations into

minimising the depth of an objects closure and exploring the usefulness of

employing compression to the object flattening.
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7.4.3 Reliability

The provision of shadow-paging enables an atomic update to the store and

ensures recoverability after a system crash. Future work in reliability will include

investigations into making the object store resilient from media failure through

mirroring or RAID technology.

It has been argued here that shadow paging may suit persistent systems which

exhibit locality. It is worth investigating the validity of this claim through the

provision of a framework in which shadow-paging implementations may be

measured against logging alternatives. This will involve the design of a platform

for building and comparing models of shadow-paging and logging models.

7.4.4 Measurement

Much of the work that has been implemented as part of this thesis has not yet

been sufficiently analysed and measured. Future work will include research into

how concurrency models and distribution models can be quantitatively

compared. Similarly methods of comparing and measuring shadow paging and

logging will be investigated.

It is not clear exactly what metrics would be used but past experiments, such as

the Predator project [KGC85], provide valuable pointers. In addition to

measuring performance based on transaction throughput and mean response

times, the Predator project also compared the cost of building recovery managers

and measured the crash recovery time. Their results were derived from a

purpose-built testbed.

The work of Atkinson [ABJ+93] in the measurement of persistent systems

should be valuable in these experiments. Atkinson has developed a range of

benchmarks in Napier88 that have been run under the single-threaded Napier88

system and offers some insights into the interpretation of measurement results.
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7.5 Finale

This thesis has presented an attempt to integrate the notions of concurrency and

distribution into a persistent framework in a flexible manner. The resulting

architecture enables models of concurrency and distribution to be designed,

constructed and executed in a persistent system. Providing concurrency and

distribution as an add-on facility instead of building it into the system challenges

the convention of related work. Whether or not this approach is superior is highly

subjective but is founded on a conviction that a high-level solution delivers

increased expressive power, safety and simplicity in the production of complex

models.

It is hoped that providing this functionality has increased the expressive and

modelling potential of a persistent system and that the work may broaden the

appeal of persistence to a wider audience. However what metrics can one use to

determine if such an approach is successful? Even if the work here becomes

adopted, adapted and widely used, an argument based on popularity must by the

same token decide if Cobol and C and systems such as Unix and MS-DOS

should be considered successful. Whatever the outcome, the effort will not have

been fruitless since the personal rewards gained from undertaking this research

and the production of this thesis have finally convinced the author that there is a

more interesting life beyond the System Manager’s Guide [Mor85-93]. A case of

WTFM superseding RTFM.
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Appendix A Multithreading in Napier88

The provision of co-operating concurrency in Napier88 requires a way of

expressing concurrent activity at the language level, a synchronisation primitive

and a scheduler to control concurrent operation. An important point to note is

that because the concurrent activities in this model interact by agreement rather

than in conflict there is no need to isolate the effects of one action on the store

from another. This means that the introduction of co-operating concurrency into

the Napier88 system has no bearing on the object store architecture and can be

fully implemented within the language and abstract machine.

Concurrent expression in this model is provided through an abstract data type

that provides a package of procedures that allow the creation and manipulation of

separate threads of control. The thread package is not built into the language but

is obtained through the standard environment. The standard environment is a

special Napier88 environment that contains many packages of standard

functions. The specification of the thread package is given in figure A.1.

type ThreadPack is abstype[ Thread ] (
start proc( proc() → Thread ) ;
getThreadId proc( → Thread ) ;
kill,
restart,
suspend : proc( Thread )
)

Figure A.1: Thread Package

This abstract data type contains procedures to operate on threads. For some

witness type Thread the operations are :-

• start : proc( proc() → Thread )
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This procedure creates a new thread to execute the given void procedure, adds

the thread to the list of threads, marks the thread as runnable, and returns an

identifier for the thread. The thread completes when the given procedure

completes.

• getThreadId : proc( → Thread )

This procedure returns the identifier of the currently executing thread.

• kill : proc( Thread )

This procedure removes the thread denoted by the given identifier from the

list of threads. If the thread is currently executing it is terminated.

• restart : proc( Thread )

This procedure marks the thread denoted by the given identifier as runnable.

If the thread is currently executing the procedure has no effect.

• suspend : proc( Thread )

This procedure marks the thread denoted by the given identifier as suspended.

If the thread is currently executing it is immediately suspended.

The thread package enables any number of void procedures to be executed

concurrently without a change to the Napier88 language model. Threads can be

nested to any depth and a thread will execute in the same environment as its

parent. However there is no implicit dependency between a parent and child

process; suspension or termination of one does not affect the other. The thread

package is not dissimilar to the dynamic processes used in CPS-algol [Kra87].

One novelty of this approach is that in using an abstract data type the witness

type cannot be discovered and hence thread ids are unforgable.
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Synchronisation of Co-operating Threads

The facility for synchronisation of the threads is provided through a semaphore

package shown in figure A.2.

type Semaphore is structure( wait,signal : proc() )
semaphoreGen : proc( int → Semaphore )

Figure A.2: Semaphore Package

• semaphoreGen : proc( int → Semaphore )

This procedure takes an initial value for the semaphore and returns a structure

containing procedures to operate on the semaphore.

• wait : proc()

The value of the semaphore is decremented. If the new value is less than zero

then the current thread is suspended and its dependency on the semaphore is

recorded.

• signal : proc()

The value of the semaphore is incremented. If the new value is less than or

equal to zero, one of the threads suspended on the semaphore is selected and

re-activated.

Dining Philosophers in Napier88 threads

As an example of how the threads are programmed the following listing gives a

solution to the dining philosophers problem.

type ThreadPack is abstype[ Thread ] (
start : proc( proc() → Thread ) ;
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getThreadId : proc( → Thread ) ;
kill,restart,suspend : proc( Thread )
)

type SemaphorePack is structure( wait,signal : proc() )
type message is bool

use PS() with Library : env in
use Library with Concurrency : env in
use Concurrency with threadPackage : ThreadPack ;
semaphoreGen : proc( int → SemaphorePack ) in
begin

let enter = true ; let exit = false
let pickup = true ; let putdown = false

use threadPackage as X[ Thread ] in
begin

let Room = semaphoreGen( 4 )

let room = proc( message : message )
if message = exit then Room( signal )() else Room( wait )()

let forkSemaphore = proc( i : int → SemaphorePack )
semaphoreGen( 1 )

let Forks = vector 0 to 4 using forkSemaphore

let forks = proc( i : int ; message : message )
if message = pickup then
Forks( i )( wait )() else Forks( i )( signal )()

let philosopherGenerator = proc( i : int → Thread )
begin

let philosopher = proc()
while true do
begin

! Think
room( enter ) ; ! Enter the room
forks( i,pickup ) ; ! Get one fork
forks( ( i + 1 ) rem 5,pickup ) ; ! Get two forks

! Eat
forks( i,putdown ) ; ! Put down one fork
forks ( ( i + 1 ) rem 5,putdown )
! Put down second fork

room( exit ) ! Leave the room
end
! A new philosopher is born

                      X( start )( philosopher )
end

let philosophers = vector 0 to 4 using philosopherGenerator
end

end
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Appendix B Atomic Transaction Package

The listing below gives a the full description of the atomic transaction package

hardwired into the system. The listing is split into 5 sections with the following

interpretation :-

• a section which maintains a binary tree of objects read and written on a per-

transaction basis.

• a section which maintains the transaction data structures.

• a section which has code to handle the transaction events. This includes the

code that is called from the abstract machine when an object is read or

written. The code for the conflict resolution on a commit uses the conflict

serializability method described in chapter 4.

• a section which describes the language level interface to the package.

• an example program of transactions on a simple bank account.

! Here are the index (binary tree) types for the pids within a transaction
type pId is int

rec type pidIndex is variant (node : Node; tip : null)
& Node is structure (key : pId ; left, right : pidIndex)

let nilPidIndex = pidIndex (tip : nil)
rec let pidEnter = proc (k : pId; i : pidIndex -> pidIndex)
!Enter the value into the binary tree indexed by key
if i is tip then pidIndex (node : Node (k, nilPidIndex, nilPidIndex)) else
case true of

k < i'node (key) : { i'node (left) := pidEnter (k, i'node (left)) ; i }
k > i'node (key) : { i'node (right) := pidEnter (k, i'node (right)) ; i }

default : i

let pidLookup = proc (k : pId; i : pidIndex -> bool)
!lookup the value in the binary tree
begin

let head := i
while head is node and k ≠ head'node (key) do
head := if k < head'node (key) then head'node (left)
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else head'node (right)
head is node

end

! Here are the list types for keeping the transactions
type tId is int
type transaction is structure (tid : tId ; thread : any ; readPids, writePids :
pidIndex)
rec type transactionList is variant (cons : Cons; tip : null)
& Cons is structure (hd : transaction ; tl : transactionList)

let mkTransactionList = proc (element : transaction;
tList : transactionList -> transactionList)
transactionList (cons : Cons (element, tList))

let removeTransaction = proc (tList : transactionList ;
element : transaction -> transactionList)

if tList is tip then mkTransactionList (element, tList) else
begin

let eqTransaction = proc(a, b : transaction -> bool) ; a (tid) = b (tid)
if eqTransaction (tList'cons (hd), element) then tList'cons (tl) else
begin

let done := false ; let this := tList
while this'cons (tl) isnt tip and ~done do

if eqTransaction (this'cons (tl)'cons (hd), element) then
begin

this'cons (tl) := this'cons (tl)'cons (tl)
done := true

end else this := this'cons (tl)
tList

end
end

let getTransaction = proc (tList : transactionList; tid : tId -> transactionList)
begin

let done := false
while tList is cons and ~done do

if tList 'cons (hd, tid) = tid then done := true
else tList := tList 'cons (tl)

tList
end

let addTransaction = proc (tList : transactionList;
element : transaction -> transactionList)

begin
let geTransaction = proc (a, b : transaction -> bool) ; a (tid) > b (tid)
if tList is tip or getTransaction (tList'cons (hd), element)
then mkTransactionList (element, tList) else
begin

let done := false ; let this := tList
while this'cons (tl) isnt tip and ~done do

if geTransaction (this'cons (tl)'cons (hd), element) then
begin

this'cons (tl) := mkTransactionList (element,
this'cons (tl))
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done := true
end else this := this'cons (tl)

if ~done do
this'cons (tl) := mkTransactionList (element, this'cons (tl))
tList

end
end

! Code to handle transaction events
type threadPack is abstype [thread] (start : proc (proc () -> thread) ;

kill, restart, suspend : proc (thread))

type SemaphorePack is structure (wait,signal : proc ())

type transactionPack is abstype [tid] (
createTransaction : proc (-> tid);
beginTransaction : proc (tid, proc ());
commitTransaction : proc (tid);
abortTransaction : proc (tid);
readPid : proc (tid, pId);
writePid : proc (tid, pId))

let createTransactionPack = proc (-> transactionPack)
use PS() with Library : env in
use Library with Concurrency, Transactions: env ; meld : proc () in
use Concurrency with threadPackage : threadPack ;

semaphoreGen : proc (int -> SemaphorePack) in
use Transactions with pidEnter : proc (pId, pidIndex -> pidIndex);

pidLookup : proc (pId, pidIndex -> bool);
addTransaction : proc (transactionList, transaction -> transactionList);
removeTransaction : proc (transactionList,

transaction -> transactionList);
getTransaction : proc (transactionList, tId -> transactionList) in

begin
let emptyTransactionList = transactionList (tip : nil)
let transactionsList := emptyTransactionList
let tid := 0
let mutex = semaphoreGen (1)
let wait = proc () ; mutex (wait) ()
let signal = proc () ; mutex (signal) ()
let startThread = proc (a : proc () -> any)
begin

let this := any (0)
use threadPackage as X [thread] in
begin

let thisOne = X (start) (a)
this := any (thisOne)

end
this

end

let killThread = proc (a : any)
use threadPackage as X [thread] in
project a as Y onto

thread : X (kill) (Y)
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default : {}

let emptyAny = any (0)

let createTransaction = proc (-> tId)
begin

wait ()
tid := tid + 1
transactionsList := addTransaction (transactionsList,
transactionType (tid, emptyAny, nilPidIndex, nilPidIndex))
let x = tid
signal ()
x

end

let beginTransaction = proc (tid : tId ; prog : proc ())
begin

wait ()
let this = getTransaction (transactionsList, tid)
if this ≠ emptyTransactionList do
this'cons (hd) (thread) := startThread (prog)
signal ()

end

let stopThis = proc (tid : tId)
begin

let this = getTransaction (transactionsList, tid)
if this ≠ emptyTransactionList do
begin

killThread (this'cons (hd) (thread))
transactionsList := removeTransaction (transactionsList,

this'cons (hd))
end

end

let abortTransaction = proc (tid : tId)
begin

wait ()
stopThis (tid) ! Let go of all shadows
signal ()

end

rec let overlap = proc (a, b : pidIndex -> bool)
a isnt tip and (overlap (a'node (left), b) or

pidLookup (a'node (key), b) or
overlap (a'node (right), b))

let findConflictsandAbort = proc (tid : tId)
begin

let theseWrites = getTransaction (transactionsList, tid)
if theseWrites ≠ emptyTransactionList do
begin

let writes = theseWrites'cons (hd) (writePids)
let this := transactionsList
while this isnt tip and this'cons (hd, tid) ≠ tid do
begin

if overlap (writes, this'cons (hd, readPids)) do
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abortTransaction(tid)
this := this'cons (tl)

end
end

end

let commitTransaction = proc (tid : tId)
begin

wait ()
meld () ! Assume successful
findConflictsandAbort (tid)
stopThis (tid)
signal ()

end

let readPid = proc (tid, pid : pId) ! Called from PAM
begin

wait ()
let this = getTransaction (transactionsList, tid)
if this ≠ emptyTransactionList do

this'cons (hd, readPids) := pidEnter (pid,
this'cons (hd, readPids))

signal ()
end

let writePid = proc (tid, pid : pId)  ! Called from PAM
begin

wait ()
let this = getTransaction (transactionsList, tid)
if this ≠ emptyTransactionList do

this'cons (hd, writePids) := pidEnter (pid,
this'cons (hd, writePids))

signal ()
end

transactionPack [int] (createTransaction, beginTransaction,
abortTransaction,
commitTransaction, readPid, writePid)

end

! User interface to transaction pack

type userTransactions is structure (createTransaction : proc (-> any),;
beginTransaction : proc (any, proc (any -> proc ()));
abortTransaction, commitTransaction : proc (any))

let userTransactionsPack = proc (-> userTransactions)
begin

let transactionPackage = createTransactionPack ()

let createTransaction = proc (-> any)
begin

let this := any (0)
use transactionPackage as X [TID] in

this := any (X (createTransaction) ())
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this
end

let beginTransaction = proc (tid : any ; a : proc (any -> proc ()))
use transactionPackage as X [TID] in
project tid as Y onto

TID: X (beginTransaction) (Y, a (tid))
default : {}

let abortTransaction = proc (tid : any)
use transactionPackage as X [TID] in
project tid as Y onto

TID: X (abortTransaction) (Y)
default : {}

let commitTransaction = proc (tid : any)
use transactionPackage as X [TID] in
project tid as Y onto

TID: X (commitTransaction) (Y)
default : {}

userTransactions(createTransaction,beginTransaction
abortTransaction,commitTransaction)

end

! Example Use
let thisTransaction = userTransactionsPack ()
let createTransaction = thisTransaction (createTransaction)
let beginTransaction = thisTransaction (beginTransaction)
let abortTransaction = thisTransaction (abortTransaction)
let commitTransaction = thisTransaction (commitTransaction)

type account is structure (bal, Limit : int)

let withdraw = proc (tid : any -> proc ())
! Withdraw debit pounds from ac.
proc ()
use PS() with Library : env; accounts: *account; upb : proc [t] (*t -> int);

readInt : proc (-> int); writeString : proc (string) in
begin

let ac = accounts (upb [account] (accounts))
writeString ("Please input account requested : 'n")
let debit = readInt ()
let result = ac (bal) - debit
if result > ac (Limit) and debit > 0 then
begin

ac (bal) := result
commitTransaction (tid)

end else abortTransaction (tid)
end
! loop forever preparing transactions in this style
let tid = createTransaction ()
beginTransaction (tid, withdraw)
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Appendix C Stacos user interface

To simplify the interface to accessing remote stores a graphical communications

tool was developed and incorporated into the Napier88 programming

environment [Kir92]. The programming environment is an application written

entirely in Napier88 that supports the interactive development of Napier88

programs. It comprises of a number of tools including a persistent window

manager, an editor, callable compiler and object browser. The programming

environment allows source programs to be constructed, compiled and linked into

the store all within the one environment. The communications tool enables the

connection and remote scan and copy of other stores to be directed by user

gesture.

To explain fully the functionality of the communications tool and its

incorporation into the programming environment requires some background

description of some of the existing tools and in particular the function of the

Local Values window.

The programming environment provides editing tools that can be used to develop

program source. An evaluate button in an editor window compiles the selected

text. Any compilation errors are reported in an Output window. If the

compilation is successful then the resulting code is executed. If the code is non-

void, then the user is prompted for a name for the result and that name is entered

in the Local Values window shown in figure C.1. The names and corresponding

values in the Local Values window are automatically brought into scope in

subsequent compilations.
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Local Values

fred

remove show

rootEnv

temp1

temp2

windowGen

windowManager

select all

Figure C.1: Local Values window

The communications tool allows the symbolic naming of remote object stores to

be done using the Remote Stores window shown in figure C.2. When adding a

new entry the user is prompted via a dialogue box for three parameters

corresponding to the fields of the RemoteStore structure, namely the symbolic

name for the remote store, the remote host name and the pathname of the store.

The symbolic name appears in the Remote Stores window.

connect/disconnect

Remote Stores

fredsStore

remove show

Glasgow

St Andrews

Hamburg

add

Figure C.2: Remote Stores window

To access a remote store the user selects an entry in the window and then presses

the connect/disconnect button. If the connection is successful then the root

environment of the remote store is browsed and a new window displayed
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showing the bindings of the remote root environment. This is illustrated in

figure C.3. An unsuccessful connection results in the error string being displayed

in the Output window.

remove
Glasgow

Arithmetical : env

copy upscan

Device : env

Error : env

Event : env

Font : env

IO : env

Figure C.3: A remote connection window

The window title displays the symbolic name used to refer to the remote store.

The scan button is used to move down the remote object store graph, displaying

the bindings of the selected entry. Each environment that is scanned results in the

window being updated to display the bindings for that remote environment.

Whilst scanning down in this manner, the output window displays the

"pathname" of the environment currently being scanned. The up button has the

same effect as the scan button but is used to move back up the object graph. The

copy button copies the selected object from the remote store to the local store and

makes an entry in the Local Values window where it can then be browsed or

used in subsequent compilations.

Because the remote object store is being used concurrently then each invocation

of the scan, copy or up button must check that the path to the selected

environment or object is still valid and has not been removed since the last

invocation. These functions cope with this type of failure by displaying a

message in the Output Window.
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Finally the communication to a remote store can be disconnected by selecting the

connect/disconnect button.
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