This thesis should be referenced as;

Munro, D.S. “On the Integration of Concurrency, Distribution and Persistence”.
Ph.D. Thesis, University of St Andrews (1993).

On the Integration of Concurrency,
Distribution and Persistence

David S. Munro

Department of Mathematical and Computational Sciences
University of St Andrews
St Andrews
Fife KY 16 9SS

Scotland

Abstract

The principal tenet of the persistence model is that it abstracts over al the
physical properties of data such as how long it is stored, where it is stored, how it
is stored, what form it is kept in and who is using it. Experience with
programming systems which support orthogonal persistence has shown that the
simpler semantics and reduced complexity can often lead to a significant

reduction in software production costs.

Persistent systems are relatively new and it is not yet clear which of the many
models of concurrency and distribution best suit the persistence paradigm.
Previous work in this area has tended to build one chosen model into the system
which may then only be applicable to a particular set of problems. This thesis
challenges the orthodoxy by designing a persistent framework in which all

models of concurrency and distribution can be integrated in an add-on fashion.

The provision of such a framework is complicated by a tension between the
conceptual ideas of persistence and the intrinsics of concurrency and distribution.
The approach taken is to integrate the spectra of concurrency and distribution
abstractions into the persistence model in a manner that does not prevent the user

from being able to reason about program behaviour.

As examples of the reference model a number of different styles of concurrency
and distribution have been designed and incorporated into the persistent
programming system Napier88. A detailed treatment of these models and their

implementations is given.

Acknowledgements

There are a number of people who have directly and indirectly helped me in the
production of thisthesis. | would like to give special mention to :-

My supervisor Ron Morrison for his encouragement, good humour, patience and
drive in getting me this far. He must also be acknowledged for employing me to
do one job then spending eight years persuading me to do something completely
different.

Richard Connor for his invaluable contribution in acting as a ‘second’. His
enthusiasm, clarity and willingness to listen and suggest have been an
inspiration.

Fred Brown for helping me with my first ventures down this path and for
showing great patience in explaining the details of his store.

Al Dearle for his enthusiasm, gentle humour and swimming lessons.

Quintin Cutts and Graham Kirby for their contribution in encouraging me to
strive for aroom of my own.

Colin Allison for holding the fort.
Pete Bailey and Ray Carrick for contributions from the good old days.

Malcolm Atkinson for re-defining the meaning of enthusiasm and aways
providing reasons to be cheerful.

Some of the PISA project visitors including Dave Stemple, John Rosenberg,
Chris Barter and Francis Vaughan.

Other people in the Department including Tony Davie, Dave McNally, Craig
Baker and Carl Warren.

Gordon Robertson for getting me out of the Machar and into computing in the
first place.

Finally, Erika and Paul for providing a happy home. My Mum for constant
support and Day Wishart for aways having sound advice.

1 Introduction

11

1.2

1.3

14

1.5

1.6

1.7

1.8

2.2

2.3

24

Contents

Persistent Object SIOres........cccoceevvvceereerieeeene

CONCUITENCY ... eiree et

DiStriDULION ...

1.6.2 CONCUITENCY.....cvvieirieeeiriee e e e sieee e

1.6.3 Distributionoeeeveeeeieeeeeeeeeeeeee

Recovery from Hard Failure...........c.ccccceveneee.

Recovery from Soft Failure...........ccccceevvvenenen.

[0 o 1 oo THS S

2.4.1 Writeahead Log with Deferred Updates

2.4.2 Writeahead Log with Immediate Updates................... 26

25 Shadow Pagingcccccceieerieieiie e see e see e 27
2.5.1 After-look Shadow Pagingcccccceeereereeieeseesiennenn 27

2.5.2 Before-look Shadow Pagingcccccevevveieieeniennnnne 29

2.5.3 Shadowing using ObJECtScccccvevereereeie e 30

2.6 OPtMISALIONS......cccueiieiieeeeeie e ee et sne e e 31
2.6.1 Optimisationsto LOggingccccoveveereereeneeieeseereeneenn 32

2.6.2 ChecKpointing........ccoueveereeiiesieesee e see e eee e 33

2.6.3 Optimisationsto Shadow Paging..........cccccevvevrcvernnnne. 36

2.6.4 Optimisations to After-look Shadow Paging............... 37

2.6.5 Optimisationsto Before-look Shadow Paging 37

2.7 CONCUITENCY ...ueiiiirieesreeeesreeessireessseeesssreesssseessssseessseeesssseeesns 38
2.7.1 Concurrency and LOggingccceveereereeneereeseereensenns 38

2.7.2 Concurrency and Shadow Paging..........c.ccceecvevvernnnne. 40

2.8 Comparing Shadow Paging with LOgging........cccccevevverveenuenne. 40
2.9 CONCIUSIONS.....cceiuiiiintinrereeeeesie e 45
3 Shadow Paging Implementation..............cccecveceecenciesie e 47
3.1 INrOAUCTION. ...ttt 47
3.2 IMplementation ISSUEScccceeeereerie e et 47

3.3 Stable Virtual Memory Implementation in SUnOS 51

3.3 1 INtrOUCHION. .. .ot e e e e 51

3.3.2 SunOS Memory-Mapping Facilities.........c.ccccevvvvrunne. 53
3.3.3 After-look Stable Store Implementation...................... 55
3.3.3.1 Root page layout..........ccccovvveriveceeiirerieeien 58

3.3.3.2 Stablestorecreationcccveeeeeererieienennen. 59

3.3.3.3 StOre Startup........cceevveeeeiieeeeniiee e 59

3.3.3/4 SIOr€ACCESScevvviiiiriierii e 60

3.3.3.5 Checkpointingccccceveeereeiesieseerieseeseeeeas 63

3.3.3.6 SIOr€IreCOVENY......coviiiiieeieee e 64

3.3.3.7 OptimiSations........ccccceereereerieereesee e see e 65

3.3.4 Before-look Stable Store Implementation.................... 68
3.35 COMMENES......coceiiiiiiri e 71

34 CONCIUSIONS.....cceiiiriiresrerieeeese e 73
4 CONCUITENCY ..eeeiureeeiureeeseeeesuseeasssesssseesssssesssssessseessseessseessssesssssesssssessnssens 76
4.1 INrOAUCHION.ciuiitiireeceei e 76
4.2 Concurrent ArchiteCtureccooeveeenincinsceees e 78
4.2.1 Co-operating CONCUITENCY.......c.ccourruereeeeesieeneesenaseens 79
4.2.2 Conflict CONCUITENCY.....ccueeieeeieeieeieeie e siaeeeesensneens 80
4.2.3 DeSigNer CONCUITENCY ...ccveeveerreereereesseeeesseessesseeseensens 81

4.3 Concurrency in Napier88..........cccceecerverieeeiese e e see e 83

43.1

4.3.2

INEFOAUCTION. .. e e e aaaans 83

Conceptual Concurrent Layered Architecture............. 89

4.3.2.1 Concurrent shadow paged storeceeu.... 92

4.3.2.2 Concurrency control and per-action

[41= o 1 oo R 95

4.3.3 Atomic transactionsin Napier88..........cccoccevveevereennnne 96

4.4 CONCIUSIONS......coiiriirirreieieeeste s 99
5 Implementation Of CONCUIMTENCY........ccueieereereereenieesieesieesaesneeeeeseesnens 101
5.1 INrOAUCTION.....ccueiiiiiiresieeeeeie e 101
5.2 Multithreading Implementationcccccceveeevevceeneese e, 102
521 INrOdUCTION.......coiiririirieeeeeerie s 102

5.2.2 Semaphore Implementationccccccevevvveereerereenne. 103

5.2.3 Persistent Abstract Machine..........ccocooeeninccncnnne 104

5.2.4 Definition of Thread Contexts.........c.covevrvrererennene 108

5.2.5 Thread Context Block Creation............ccccoevrveerennne 109

5.2.6 Context SWItChingcccceeviieereece e 110

5.2.7 User-control of Threads...........cccoceoviniiiiiniiniinenns 113

5.2.8 Persistent Threads........cccvvvenerieninieneseee e 114

529 Threadsand [/Occcooinniniiienee e 114

5.2.10 COMMENTS...ccvvuiiiiiiiiieeerieee e eeeeeeeranse e e eeereeer e e ees 115

5.3 Concurrent Persistent Object Store Implementation 116
531 INrodUCLION.......coiiiiiirieieeeesie e 116

5.3.2 OVEIVIBW. ...t 117

5.3.3 Concurrent Shadow-paged Stable Virtual Memory ..119
5.3.3.1 SIOr€aCCESS.......cccvviriririe s 121

5.3.3.2 Transaction context switch............cccccennnee. 122

5.3.3.3 Transaction abort.........cccceevverenenenenenenne, 122

5.3.3.4 Transaction COMMIt.........ccoeererenenenennennns 123

5.3.4 Stable Heap Implementation............ccceccveveeceennnee. 125

5.3.5 Conflict RESOIULION........ccveiviieeeieeeeeeee e 127

5.3.6 COMMENES......oceiiiiriirie 131

5.4 CONCIUSIONS......coiiiiririnreeeeni st 133
6 DISHITDULION. ...ttt e 135
6.1 INrOAUCTION.cuviiiiitesieeeeeesre e 135
6.2 Distribution MOEIS.........ooveeririeecereceeeee e 137
6.2.1 Transparency ProviSionc.cccceceveeiesieeseeseeseennes 137

6.2.2 NON-TranNSPArENCY.......coeriueeeriiieerireeeeieeeesieeeesneee e 140

6.2.3 One-world modelSccoeoeirincienecee e 143
0.2.3.1 CaSPES....occveeiieeeiieeriee e 143

6.2.4 Federated MOELS..........cooviiniinieecicene e 147

6.24.1 DPS-aAQOl ..ccooviriiriirinineeee e 147

B.2.4.2 ATQUS ...ooiiiiieiiieeeiie et 149

6.3 SLACOS.......ociiriiiirrirr e 150
6.3.1 INtrOdUCLION.......ccvivieeeceresies e 150

6.3.2 Base MOdE ... 152
6.3.2.1 Languageinterface........ccccooevierieieernsnnnnn. 153

6.3.3 Implementationccccoceveereeiesieere e 157
6.3.3.1 Connection establishment..............ccceevrnne. 158

6.3.3.2 Remote object copying........cccccveveereeriveennn. 161

6.3.4 Transaction Processing and Two-phase Commit163

6.3.5 Software Distribution with Two-phase Commit........ 167

6.4 CONCIUSIONS......coiiiiriresieeeieie e 170
T CONCIUSIONS ...ttt r e r e e nre s 172
7.1 Integrating CONCUITENCYccceeeerreeieesreesieeeesseeseeseesseensesseeses 172
7.2 Integrating DistribUtioncccocveeviiene e 174
7.3 Building the ArchiteCturecccocvvveeieece v 175
T4 FULUFE WOIK. ..o 176
741 CONCUITENCY..ccoiteieeiiieeesiieeessireeesnireessseeessseesssneeeens 176

T4.2 DiSIDULION ... 178

743 Re@DIITY ..o 179

744 ME3SUrEMENL.......cociiiiiiieierte s 179

75 FINAE oo s 180
Appendix A Multithreading in Napier88..........cccceveeverveneenesin e 181
Synchronisation of Co-operating Threads............ccceeeveveeieecieeceeenee. 183

Dining Philosophersin Napier88 threads............ccccccvveevieccinieennnnne 183
Appendix B Atomic Transaction Package.............ccccevevvvieenescnsiesieenn, 185
Appendix C Stacos USer iNtErfaCe..........ccvevveeeeereesec e 191

REFEIENCES ...ttt e e e e e e e e e e e e e e e e e eeaeens 195

1 | ntr oduction

The persistence abstraction is concerned with the uniform treatment of data that
is independent of its lifetime. In orthogonally persistent systems all data has the
right to survive irrespective of its type. The same mechanisms operate on both
short-term and long-term data, avoiding the traditional need for separate systems
to control access to data of different degrees of longevity. Thus data may remain
under the control of a single persistent programming system for its entire
lifetime. The benefits of orthogonal persistence have been described extensively
in the literature [ACC81, ABC+83, ABC+84, AM85, AMP86, AB87, Dead7,
MBC+87, Wai87, AM88, Dea88, Bro89, MBC+89, Con90, MBC+90, Kir92,

Cut92]. These can be summarised as :-
* improving programming productivity from simpler semantics;

» removing ad hoc arrangements for data translation and long term data storage;

and
» providing protection mechanisms over the whole environment.

Persistent systems are relatively new and it is not yet clear which of the many
models of concurrency and distribution best suit the persistence paradigm. The
goal in this thesis is to devise a persistent framework in which all models of
concurrency and distribution can be integrated in a manner that preserves
understandability. Understandability is a key theme in this work and broadly
means that the underlying system model never prevents the user from being able

to reason about program behaviour.
1.1 Persistent Object Stores

Persistent systems generally rely on a persistent object store as the sole

repository for all data. An object store has a number of desiderata namely infinite

speed, unbounded capacity, and total reliability. In implementation terms none of
these is redligticaly achievable and hence store design is concerned with
technological approximations. Concurrency is one way which may effect speed

increase whilst distribution can be used as a method to extend store capacity.

The reliability of a persistent store depends in part on its resilience to failures. A
number of techniques have been developed that enable a store to recover from
system crashes. It is argued here that one method, namely shadow paging, is
worthy of investigation in supporting recoverability in orthogonaly persistent
systems. A single-threaded persistent object store which is based on an efficient
implementation of shadow paging is presented. It is shown how this shadow
paging mechanism can be extended to support a concurrent store in a way that

does not constrain how and when the data i s accessed.
12 Concurrency

There are many different styles of concurrency ranging from atomic transactions
at one extreme to models based on semaphores. Typically application-building
systems employ one particular model which may be suitable for a specific set of
problems. The approach presented in this thesisis to view models of concurrency
as lying on a spectrum of understandability where points on the spectrum define
the extent to which the programmer is responsible for maintaining global
cohesion. The problem of integrating concurrency and persistence can then be

seen as one of incorporating this spectrum into the persistence framework.

A persistent architecture for Napier88 that can support all styles of concurrency
has been constructed. The system incorporates Stemple and Morrison's
concurrency control specification system CACS system [SM92] into the
architecture in a way that links the CACS concepts of data visibility with the

persistent store and shadow paging scheme. As an example an atomic transaction

package has been constructed in Napier88 which makes use of the concurrent

system.

1.3 Distribution

As the complexity of applications grows the available address space provided by
a single node may be insufficient and hence data may be distributed over a
number of nodes. Decentralisation of resources can enable sharing among a
number of applications and may improve reliability and availability of systems

since failure at one node may not necessarily prevent others from continuing.

Distribution may be provided at many levelsin a computer system. For example
systems such as NFS [SGK+85] provide distribution to the Unix file system
whereas other systems such as Amoeba [MRT+90], Accent [RR81] and the
Cambridge Distributed Systems [NH82] decentralise the operating system across
anumber of nodes. One of the design aims of these systems is to attempt to hide
the distribution and create the illusion of a single system. In contrast many
programming languages provide language features such as RPC [Nel81] or the
Ada rendezvous that enable the programmer to exploit distribution. Models of
distribution can thus be viewed in terms of the extent to which their use is

transparent.

A model of distribution that is completely transparent to the user is undoubtedly
the ideal one for orthogonally persistent systems. However there are a number of
technological difficulties that make this hard to deliver on a large scale. What is
presented here is an extension to the Napier88 system that extends its name
gpace to include other global address spaces. This has been done in such away as
to enable browsing of remote object stores and for objects to be copied from
these stores in a type-safe manner. Once copied these objects can then be

manipulated just like any other Napier88 object.

At the implementation level communication with a remote object store is
achieved through TCP/IP based sockets and therefore any Napier88 persistent
object store residing on a machine on the internet can be accessed. The
implementation of this service uses an underlying mechanism that is sufficiently
generic to allow a number of different distribution models to be constructed. As
an illustration of this a model has been constructed which enables Napier88

atomic transactions to take part in a two-phase commit across a number of nodes.
14 Integration

In order that the persistence abstraction can deliver its promise of reduced
complexity in the construction and evolution of large scale systems and long-
lived data, it must address the issues of integrating distribution and concurrency.

In[Atk92], Atkinson states that :-

“Perhaps the most challenging problem is to implement a store that

meets the following combination of requirements :-

* manage the various memories and storage devices, allocating and

recovering space, giving theillusion of an indefinitely large store;

» provide stable references (needed to implement all recursive types
[Hoa75] and to provide persistent block retention semantics for

procedures [Joh71]);

» provide areliable store that offers recovery after various kinds of

failure [Bro89];
» provide mechanisms for concurrent use of data; and

e provide a transactiona mechanism to alow programs to
voluntarily withdraw updates that they have grouped together and

to control their release of revised information.”

In unifying the database and programming languages views of data, the
persistence abstraction must then provide concurrency and distribution
integration in a way that is suitable to both the database domain and the
programming language domain. However these two domains often have
conflicting views of concurrency and distribution that makes the provision of one
single model in the persistence context inappropriate. This then can lead to a
tension between the conceptual ideas of orthogonal persistence and the intrinsics
of concurrency and distribution that makes the integration difficult. The
orthogonal persistence abstraction which hides al physical properties of data

may be too strong a constraint for some concurrency and distribution models.

The goal, then, is to find a solution to the integration that preserves
under standability and confines and controls the relaxation of the orthogonality
constraints of persistence to where and when it is required. Most of the previous
work in this area has concentrated on the provision of just one model [MBC+88,
Wai88, BF89, Bro89]. Instead, this thesis presents an attempt to provide a
complete integration by capturing the spectra of concurrency and distribution
abstractions in a persistent system. The approach taken is to view the levels of
abstraction of concurrency and distribution in terms of the organisational support
required in a persistent architecture. By an appropriate provision of language
facilities and store primitives a persistent system can be given an infrastructure

that enables the construction and support of arange of models.
15 Napier 88

The Napier88 system [MBC+89] is used as the basis for achieving the
integration of concurrency and distribution. Napier88 is a strongly-typed
persistent programming language with a sophisticated type system, first-class
procedures and environments. Napier88 is supported by a stable persistent object
store through which all datais accessed. The use of Napier88 as avehicle for this

work has a number of advantages :-

The Napier88 system provides no explicit language constructs or store
primitives for the expression of concurrency or transactions. The language
thus has no preconceived view of concurrency that might complicate the

provision of arange of models.

Similarly, the system has no built-in model of distribution. Since al datain a
Napier88 system is through the persistent store then the system is constrained

by the bounds of the store.

The Napier88 system is based on a layered architecture [BDM+90] that was
specifically designed to support cost effective experimentation with persistent
store design, concurrency, transactions and distribution in a persistent
environment. The layered architecture provides an explicit layer for each of

the many logical levels of architecture required by a persistent system.

One of the principal design aims in this thesis is to incorporate concurrency and

distribution into the Napier88 system in a way that retains these architectural

abstractions, augments rather than alters the layered interfaces and does not

require the introduction of new language constructs.

The architectural layering has been chosen to take advantage of the persistence

abstraction by ensuring that programs are not able to discover details of how

objects are stored. This divides the architecture between the architectural layers

that provide the persistent object store and those facilities that may be

programmed by a supported programming language. Thus, a data format can be

altered by the compiler without the need to ater the persistent store. The

architectural layering is shown in figure 1.1.

/\\
Distribution

Concurrency User Transactions

-

Persistent Abstract Machine

Local Heap
(Protection Mechanism.]

Stable Heap of Persistent Objects

(Stable Virtua Memory 3

[Non Volatile Storage]

Figure 1.1: The basic architectural layers.

The division has an important consequence for the provision of concurrency,
transactions and distribution. This allows experimental implementations to be
constructed at the language level without the need to redesign the entire
architecture. This is very different from convention where store primitives are
provided that define the distribution and concurrency. However, once a particul ar
implementation technique has been identified as essential one or more layers of
the persistent store may be reimplemented to incorporate the mechanism. If a
layer interface is changed the change is only visible to the layer immediately

above thereby limiting the required reimplementation.

The design of this layered architecture and an initial implementation on Unix
was produced by Brown [BR91]. Throughout this thesis references are made to
this design and its implementation with appropriate detail in the relevant places.

A brief summary of the function of each layer is given here as an overview.

The Napier88 compilation system maps programs onto an abstract machine, the
Persistent Abstract Machine [CBC+89]. The abstract machine is built on a heap-
based architecture that is designed as a convenient way of supporting the block

retention needed for the use of first-class procedures and is responsible for

implementing the necessary primitives to support polymorphism and abstract
data types. Since the abstract machine does not allow direct access to the
persistent store it ensures that the compilation system is unaware of the
implementation of object storage, thus separating the use of an object from the
way it is stored. A design aim of the architecture provides the persistent object
store as the only available storage for the abstract machine. This means that there

is only one storage mechanism and one possible way of exhausting it.

To effect efficiency gains the implementation of the abstract machine makes use
of a local heap for two reasons. Firstly the local heap is used as a cache of
persistent objects that enables the abstract machine to work directly on virtual
memory addresses and secondly it provides an area of storage where new objects
can be created. Hence one of the local heap's principal functions s to control the
movement of data to and from the stable heap. The local heap is constructed in
such away that it can be garbage collected independently of the stable heap and
since a great many new objects are transient they can be efficiently collected on
the local heap. Objects are faulted into the local heap on demand that causes an
address trandlation, or swizze, that replaces their persistent store address with a

local heap address.

The stable heap interface provides a number of persistent object management
functions that enable the abstract machine access to the persistent store. The
stable heap layer provides a view of the persistent store that appears stable, is
conceptually unbounded in size and may be uniformly addressed. These
functions include the ability to create and delete objects, a procedure to stabilise
the persistent store and a procedure to invoke the garbage collector. The stable
heap is designed to work independently of the abstract machine and defines an
object format that is not tied to any one programming language. This object

format distinguishes object address fields from non-address fields but the stable

heap imposes no interpretation of an object. All objects in the heap are reachable

from a single root object.

The stable virtual memory provides a contiguous range of addresses for use by
the stable heap that can always be restored after a soft failure to a self-consistent
state. Data in the stable virtual memory can be read and written through the
interface functions along with a mechanism for establishing a new consistent
state. One of the functions of this layer is to maintain a mapping between the
stable virtual memory and non-volatile store. The combination of the stable
virtual memory and the non-volatile storage layers is often referred to as the

stable store.

1.6 Related Work

161 Persistence

The concept of persistence can be traced back to investigations by Atkinson
[Atk78] into the integration of databases and programming languages. This led
on to the production of the persistent language PS-algol [ACC81] which
essentially added persistence to the S-algol [Mor79] programming language.

The PS-algol persistent store has been implemented by several systems,
including: the CMS chunk management system [ACC83], which provided a
simple transaction mechanism, concurrency control and manipulation of
arbitrary sized chunks of data; the POMS persistent object management system
[CAB+84]; the CPOMS which is a persistent object manager written in C
[BC85].

The CPOMS architecture is a persistent store that is partitioned into databases.
Objects are faulted from the persistent store to aloca heap on demand. Programs
then manipulate these objects, or create new ones, on a loca heap and then

commit objects back to the store. The commit atomically copies the transitive

closure of the committed object to the store. A pessimistic concurrency control

mechanism allows programs to share data.

Much of the implementation techniques used in these systems originated in the
development of the System/R [CAB+81] relational database project. The project
produced a number of key contributions including the SQL query language, two-
phase locking, seriaizability and shadow paging. System/R uses a combination
of shadow paging and logging to support recovery in a concurrent accesses

database.

The Shrines implementation [Ros83] of an object store for PS-algol used shadow
paging running under the VAX/VMS system. This system operated by mapping
a file holding the persistent store onto the virtual address space of a running
program by directly manipulating the VMS page tables using a special purpose
paging algorithm. The Monads architecture uses a similar shadow paging
technique [RHB+90].

Stores that use logging as a basis for recovery include Argus [OLS85], Eos
[GAD+92], and O2 [VDD+91]. Other systems such as Cedar [Hag87]
incorporate logging as an auxiliary structure in the file system to speed up writes
and recovery whilst in the log-structured file system of Rosenblaum and
Outerhout [RO91] al data, persistent and transient, is kept in logs. The
performance of recovery schemes has been analysed in [KGC85, AD85a,
ADB85h].

16.2 Concurrency

Work on concurrency in databases first identified the notion of atomic
transactions [Dav73, Dav78, EGL+76] as a way of isolating the effects of one
activity from another using a seridizable schedule that preserved
understandability. The concept was extended by Moss [Mos8l] to enable

nesting. In contrast the programming language domain developed constructs

10

such as semaphores [Dij65] critical regions [Hoa72], monitors [Hoa74], RPC and
rendezvous to enable a programmer to design and control concurrency of co-

operating processes.

The restrictions enforced by atomic transactions can often suppress potential
concurrency and hence overal performance. This is particularly true when
transactions are long lived. The more objects a transaction accesses the greater
potential for conflict resulting in long blocking delays under a locking
mechanism or an expensive abort in an optimistic scheme. The longer a
transaction lives the more likely it will either encounter a system crash or incur

deadlock thus raising the probability of abort.

One suggestion that has gained some attention has been to use semantic
knowledge of an object to increase the amount of concurrency [Gar83]. For
certain objects, especially simple ones, it is often possible to identify operations
on these objects which are commutative and hence they can be processed in any
order. Many such examples exist but is not clear that the method can be adopted
in general. An adaptation of this semantic-based concurrency has been proposed
by De Francesco et a. [DVM+92]. They suggest that linguistic constructs could
be provided in an object-oriented database language such as Nuovo Galileo that

permit the programmer to specify mutually commutative methods.

In the Sagas model [GS87] a possible solution to the problems caused by long-
lived transactions is given. The serializability constraint is relaxed in Sagas
where along-lived transaction is split into a sequence of transactions that can be
interleaved with other transactions. The mechanism guarantees that the
transactions comprising the long-lived transaction either al commit or
compensation transactions are executed to undo the effects of the partialy
completed sequence. It isimportant to stress that thisis not a general solution to
the problems caused by long-running transactions since not all such transactions

can necessarily be broken down to a sequence of shorter ones or compensating

11

transactions created. The updates of a partial Saga are globally visible and the
compensating transactions make no attempt to track other transactions that have
seen these uncommitted updates. It is left to the programmer to determine if a
long-lived transaction can be partitioned into a sequence of transactions and that

compensating transactions can be constructed.

For some applications, especially those in the design and interactive systems
[Sut91l, EG90, NZ92], the issue is not just one of performance but that the
serializability constraint of atomic transaction model is too restrictive. Many
such systems require the global cohesiveness of the transaction model but require
to interact with each other in a structured way because of their inter-dependence.
For example two designers working on part of alarge complex design may wish
to view each others changes prior to committing or even commit overlapping
changes. In the cases where conflict arises the resolution is done by mutual
agreement. Recovery in these design transactions can be difficult since there may
be complex transaction interdependence. However cascade aborts to effect

correctness might be unacceptable since it could eliminate alot of useful work.

One approach to providing a suitable transaction model for design applicationsis
transaction groups [FZ89, NSZ91, NZ92]. A transaction group is a tree hierarchy
of groups whose leaves are co-operating transactions. Co-operating transactions
within a group can read and modify the same, possibly uncommitted, objects.
This is in contrast to the nested transaction model where seriaizability is
preserved and subtransactions neither communicate nor share data. Each
transaction group explicitly defines a sequence of operations called patterns that
specify the correct execution for members within that group. Any operation or
sequence of operations that is prohibited within a pattern is also specified. These
are called conflicts. Patterns can be thought of as a more expressive form of path
expressions [CH74] that can control who performs a sequence of operations as

well as when such a sequence can be performed. The recovery mechanism is

12

designed to restrict the effects from transaction abort or system failure. Only the
operations that form the parts of the patterns that are invalidated by the failure
are undone and not al the groups co-operative transactions. Co-operative
transactions issue compensating operations to work together to recover. These
compensating operations must adhere to the patterns and conflicts definitions for
the group and are either coded into the transaction or are formed by user

interaction.

ObServer [HZ87] is an object-oriented database that has been used as a base for
implementing transaction groups. It facilitates co-operating transactions by
providing non-restrictive locks and communication modes that enables non-
serializable interleaving. However it was found that within ObServer it was
difficult to control the visibility of intermediate results and specify correctness
for a history of concurrent transactions. To explore the feasibility of transaction
groups in a persistent system Cooper et al [CRW91] produced an implementation
using the language DPS-algol [Wai88] which is an extended version of the
persistent language PS-algol with support for concurrency and distribution. Their
approach was to incorporate the locking mechanisms of ObServer into DPS-algol
and use these as a basis for forming transaction groups. Their work included a
number of sample applications using co-operative transactions running on
different nodes. However, the implementation was not complete in that there was
no recovery mechanism nor was there a mechanism for describing patterns and

conflicts.

Concurrency in persistent systems has tended to be focused on one chosen model
[GAD+92, VDD+91, Wai88, Lis84]. The work of Krablin's CPS-algol [Kra87]
is a notable exception. CPS-algol is an extension to the vanilla PS-algol that
includes language constructs to support and manage concurrent processes. The
concurrency model is essentially co-operative with procedures executing as

separate threads and synchronising through condition critical regions. Krablin

13

showed that with these primitives and the higher-order functions of PS-algol a
range of concurrency abstractions could be constructed including atomic and

nested transactions as well as more co-operative models.

1.6.3 Distribution

There are a number of persistent systems which support a form of distribution.
The Casper system [KSD+91] is a distributed architecture designed to support a
number of Napier88 programs running on distinct nodes against a shared store.
The system has been implemented using the multi-threading and external pager
features of the Mach operating system [ABB+86] and employs a cache-
coherency scheme to ensure consistency. The Monads project [HR91] provides a
distributed recoverable shared virtual memory architecture across a network of
Monads-PCs. Unlike the Casper model there is no central server and each node
provides it own backing store for a portion of the address space. The DPS-algol
system [Wai88] is an extension to the PS-algol language to include a model of
concurrency and distribution that includes lightweight processes and remote-
procedure call. The system enables the PS-algol heap to be distributed across a
number of hosts. By default, the distribution is fully transparent but the language
provides constructs that may be used to discover and influence where objects

reside and processes execute.

The Mneme persistent store [MS88] provides a heap of objects that is designed
to support co-operative, concurrent and distributed collections of data.
Distribution in Mneme is not just concerned with the physical separation of data
but also the decentralisation of the object space management. An object has a
unique identifier and is uninterpreted except for distinguishing between pointers
and non-pointers for the benefit of the automatic storage management. Within
the heap, groups of objects can have particular store management strategies, such
as a clustering policy. Two client languages, a persistent Smalltalk and a

persistent Modula-3, use the Mneme store.

14

The Arjuna system [SDP91] is a framework for providing flexible models of
distribution through reuse by multiple inheritance. Arjuna is an object based,
fault tolerant, distributed programming system. Recoverability and concurrency
control mechanisms based on locks are integrated with an object based
framework by using inheritance. Objects become active when invoked by an
atomic action otherwise they are deemed passive and are stored in a stable object
store. Each node has its own stable object store, called Kubera, in which local
passive objects are kept. When objects are activated a server process is created
and the state of the object is copied into a volatile store. Access to the state of an
object is controlled by the object itself. Each Kubera object is kept as a log
corresponding to a version history. Versioning of objects is in support of

alternative concurrency control mechanisms.
17 Summary

The principal am of this thesis is to provide an architecture in which models of
concurrency and distribution can be integrated with persistence. This has resulted
in the development of aflexible persistent architecture for Napier88 in which any

model of concurrency and distribution can be constructed and supported.

Integrating concurrency into Napier88 is achieved by mirroring the CACS data
visibility structures with a concurrent shadow-paging mechanism and developing

communication paths between the Napier88 architecture and the CACS system.

Distribution is integrated into Napier88 through the provision of a store-to-store
communications interface within a client/server infrastructure that enables

models to be constructed.

The development and implementation of this integrated system conforms to the
Napier88 generic layered architecture and has been produced without the need to

introduce new language constructs.

15

1.8 Thesis Structure

Chapter 2 examines the issues of the preservation of understandability from the
viewpoint of reliability and in particular failure recovery. Two commonly used
techniques, namely shadow paging and logging, are described in detail together
with a discussion of their appropriateness in persistent systems. Chapter 3
describes the implementation of a new shadow paged stable store that forms the

basis of a Napier88 persistent object store.

Chapter 4 discusses the problems of integrating concurrency into a persistent
system and presents a new persistent architecture based on a combination of a
concurrent shadow-paged store and a concurrency control specification system.
The architecture presented has the flexibility to support a range of concurrency
styles. Chapter 5 details an implementation of this architecture and shows how
two contrasting models of concurrency, a co-operative threads package and
atomic transactions, can be incorporated into the Napier88 system and supported

by this architecture.

Chapter 6 concentrates on the integration of distribution and persistence. Models
of distribution are categorised in terms of their control of the dimensions of
distribution transparency. An implementation of one such model that has been
constructed in the Napier88 system is presented. It is shown how this model can
be ssimply extended to support a transactional two-phase commit protocol across

anumber of nodes.

16

2 Recovery Methods
2.1 I ntroduction

Central to the persistent architecture is the design of the object store. Many
different object stores have been proposed and constructed [ACC83, Ros83,
CAB+84, BC85, MS88, Bro89, HR91, GAD+92, BR92]. Because the models
that these stores are attempting to support are motivated differently they vary
considerably in their functionality and architectural design. However one factor
that is common to all these designs is that they must address the desired
properties of persistent object stores. These are unbounded capacity, infinite
speed and total reliability. In implementation terms none of these are redlistically
achievable and hence store design is concerned with technological

approximations. This accounts for the variety of available stores.

This chapter focuses on the problems of reliability and in particular recovery
from failure. Recovery management is concerned with engineering solutions to
failure that provide the required degree of reliability by automatically restoring a
system to a state that is understandable and acceptable to the user. Failure may
occur in a number of different ways. Examples include hardware malfunctions,
operating system failure, incorrect computer operation, etc. It is important in
designing systems to understand the types of expected failures and their impact

on the user.

17

Volatile
Store

Conceptual
Store

Non-volatile
Store

Figure 2.1: Conceptual store architecture

In the discussion in this chapter it is assumed that the user manipulates data
through reads and writes to a conceptual store which is implemented on non-
volatile storage, with volatile storage being used as a cache for performance
reasons (figure 2.1). The volatile storage in a system is usually main store and
cache memory and has the typical feature that the information it holds is lost
after a system crash or on power fail. Non-volatile storage is distinguished from
volatile storage in that the data it contains is expected to survive system crashes
and power failures. One function of the system is to maintain the user's
conceptual view of the store by effectively employing a coherency mechanism

that ensures the movement of data between the storesis atomic and consistent.

Failure can arise from the loss or corruption of either or both the volatile and
non-volatile stores. Hard failures occur from the irrevocable breakdown of a
hardware component that potentially results in the loss of data from both the
non-volatile storage as well as the volatile storage in a system. Disk and tape
systems are commonly used as non-volatile storage and their failures are usually
the result of a head crash or corruption to the recording medium. Such failures
are often called media failures. Soft failures arise when only the volatile storage

islost or corrupted.

The discussion of recovery techniques in this chapter is restricted to errors that

are detectable. Undetectable errors that corrupt either the volatile or non-volatile

18

storage can conceivably happen. To minimise the potential for undetected errors,
hardware often uses error detecting codes, such as cyclic redundancy checks or
parity checks [PB61]. Soft failures through power failure are reasonably easily
detected. Other soft failures may be detected by the logic of the system software.
For example, the system may determine that it is in a state from which it cannot

recover or that it is unsafe to proceed and cause itself to crash.

The next section briefly describes some of the issues involved with recovery
from hard failures. However the main emphasis in this chapter is to provide
background to the issues of recovery techniques that deal with soft failures. A
classification of recovery methods is formed and a detailed discussion of
common approaches to implementing recovery methods. Comparisons of two

popular mechanisms are discussed.
2.2 Recovery from Hard Failure

Recovery from hard failures involves maintaining data on stable storage. Stable
storage is designed to protect data from hard failures by replicating information
held on non-volatile storage to other devices that have an independent failure

mode.

Most systems offer an approximation to stable storage through backup or
archiving facilities. If the backup media is removable it may be sited in a
different location to prevent simultaneous damage to both the origina and the
copy. The main problem with this method is granularity. The system is only
reliable up to the point of its last successful backup. Recovery from hard failure
effectively rolls the system back to the time of the last backup. Backups may
require that the system is unavailable whilst making the archive and hence may
not be done very frequently. Similarly the recovery of data from archive may

also be time consuming and frequently requires human intervention.

19

Systems that require high reliability and availability of data need automatic and
fast recovery from hard failure. A technique often used is disk mirroring [BT85]
where every update written to disk is mirrored by performing the same update
onto a second disk. Thus the second disk acts as a mirror copy of the first until
there is a soft or hard failure. Should either disk suffer from hard failure the
system can proceed using the information held in the remaining drive. If thereis
a soft failure a simple protocol is used to determine which drive successfully

completed the last update and processing continues from that point.

In the case where both drives fail ssmultaneously then of course both copies of
the data are lost. To circumvent this a third drive could be used in the mirroring
and so on. Variations of mirroring include distorted mirrors [SO91] and doubly
distorted mirrors [OS93] whilst other techniques such as RAID systems and
replicated machines are sometimes used. Clearly absolute reliability is

impossible to guarantee but an arbitrarily high degree can be achieved.

An important point about hard failure recovery isthat it used to support recovery
from soft failures. The techniques used to recover from soft failure described

below utilise the non-volatile store under the assumption that it is stable.
2.3 Recovery from Soft Failure

After a soft failure such as a system crash, information held in the volatile store
is lost. There is then a potential that the image of the conceptual store on non-
volatile storage that survived the failure isin an inconsistent state. This can occur
if some of the changes made by the user had not been moved from the volatile to
non-volatile storage by the time the failure happened. The problem for the
recovery manager is to ensure that there is sufficient information held on non-
volatile storage to enable the regeneration of the conceptual store to a consistent

state. Soft failure recovery techniques are thus concerned with what information

20

needs to be kept to alow a consistent state to be reconstituted from the non-

volatile store and what the mechanisms are for handling this information.

One simple approach to maintaining synchronisation between the conceptual
store and non-volatile store is to cause a change in the volatile store to be moved
to non-volatile store before the next change can proceed. In this method the
volatile store is no longer being used as a cache and hence the overhead is likely
to be prohibitive. Instead several changes may be held in the volatile store and
moved to non-volatile store in a batch. This then can lead to a mismatch between
the conceptual store and non-volatile store. In order that the user can maintain a
level of understandability the system provides the user with a mechanism, which
shall be called meld, that synchronises the non-volatile store with the conceptual
store. The effect of the meld operation is to move atomically, with respect to the
conceptual store, a batch of changes from the volatile to non-volatile storage.
Theterm meld is used to describe the action of making updates permanent rather
than terms like commit or stabilise since they imply specific meanings in
particular models. On recovery from soft failure the manager must be able to
restore the conceptual store to the state it was at the previous meld point from the

non-volatile store and proceed from there.

The atomicity of the meld with respect to the conceptual store assures the user
that either all the changes appear to have reached non-volatile store or none have.
In the provision of an atomic meld the recovery manager must take into account
that the interface to the non-volatile store is non-atomic and hence writing out a
batch of changes cannot be performed in a single action. A soft failure in the
middle of a meld operation could potentially leave the non-volatile store in an
inconsistent state. To circumvent this the recovery manager employs a controlled
replication of data on non-volatile storage that ensures that after soft failure the
old values for data that have been changed can be found or reconstructed or that

values for changed data that should have occurred as part of the atomic meld can

21

be found or reconstituted. There are two procedures the recovery manager can
perform to rebuild a consistent image of the conceptual store. After a soft failure
the recovery system can undo the changes made to data in the non-volatile store
by replacing them with their previous melded value. An undo operation requires
that the previous melded value for some piece of datain the conceptual store has
been copied to non-volatile store before being overwritten. The recovery system
can also undertake a redo action on data in non-volatile storage so that it reflects
the values it would have acquired had the failure not occurred. A redo operation
requires that all the changes the user made to the conceptual store have been

copied to non-volatile storage.

If the system were to crash again whilst in the middle of recovering from the last
crash then the recovery manager must be able to replay the sequence of undo and
redo operations that it was in the process of completing. This implies that the
replay must be idempotent. That is, repeated executions of the replay mechanism
must have the same effect asiif it were executed once. Recovery strategies can be

classified into four categories:-

* no undo / redo. The system is constructed in such a way that the recovery
manager is never required to perform undo operations after a crash. This can
be achieved by delaying changes to the non-volatile store until the user
requires anew consistent state to be established. The changes are then applied
to the store. On recovery, redo operations are required to update the non-

volatile storage to make it consistent with the user’ s view of the store.

e undo / no redo. To avoid redo operations the system must ensure that all
changes made by the user are recorded in non-volatile store. On recovery
these changes must be undone to the last point where the non-volatile store

and the conceptual store were synchronised.

22

» undo / redo. After a system crash the recovery manager may be required to
perform undo operations for some data and redo operations for others to

restore a consistent state.

* noundo/noredo To avoid redo al the changes made by the user must be on
non-volatile storage by the time of the meld. To avoid undo none of the
updates can be on stable storage before the meld. To avoid both requires that
all the updates to the conceptual store are made permanent in one single

atomic action.

The next two sections look at how each of these categories may be realised in an
implementation. For the purpose of describing the recovery mechanisms a
single-threaded operation is assumed. The additional problems incurred by
concurrent access and possible optimisations to the recovery mechanisms are

considered in section 2.6.

In many systems the recovery manager considers data as separate from the
program’s state in that no provision is made for restoring the program state
following a soft failure. Because no program state is maintained then after a
crash a program can only be restarted from the beginning of its execution. To
ensure consistency the recovery manager may need to restore the data to the state
before the program started. However this may have the adverse effect of

eliminating alot of useful work.

In some orthogonally persistent systems the process state is considered part of
the data and hence the recovery manager must ensure that both the data and
process state are synchronised so that they can be uniformly and consistently
restored after a soft failure. The recovery manager can then restore both the
program and the data to some point in the computation and continue from that

point. The point is that systems that consider the process state as part of the store

23

can often restore a system after a crash to a point nearer the crash than would

otherwise be possible thereby reducing the potential loss of information.

Obviousdy simple programs can be structured to preserve enough state
information that alows the computation to proceed from some intermediate
point. For example the user of an editor or word processor is often encouraged to
make periodic saves so that in the event of a system crash the editing can
proceed from the last save point. This save may not include al aspects of the
editing environment so that on restarting the editor items such as the insertion
point or the contents of the copy/paste buffer may be lost. This method of
recovery is clearly not general and can add considerable complexity to a

program.

The difference in effect on recovery between systems that save the program and
data state to those that don't is not unlike the difference between the restart and
the sleep commands on an Apple Macintosh PowerBook. The restart first quits
all open applications usually giving the user an opportunity to save any changed
data and then reboots the system. On startup applications are not restored to the
state before the restart and the user has to recreate the environment that existed
before. In contrast the sleep command effectively shuts down the machine but
preserves the current state so that when awoken the user can immediately

continue from the point just before the sleep was issued.
2.4 L ogging

Logging [Dav73] is the most widely used recovery method especialy in
transaction processing systems. A log is held on stable storage and constitutes a
journal of changes made to the conceptual store. In this discussion it is assumed
that the log survives a crash and that writes to the log are stable. Before any
object is updated a record is appended to the log that records the change being
made. This writeahead log [GMB+81] can then be used after a crash to restore

24

the system to a known state by comparing the values for objects held in the log
with values in the non-volatile store. Figure 2.2 gives an outline of the store
architecture showing the log in non-volatile storage and pages copied between
the non-volatile and volatile storage. Logging is usually implemented using one

of two basic schemes described below.

volatile store

log
non-volatile store

Figure 2.2: Layout of logging model

24.1 Writeahead L og with Deferred Updates

Updates made by the user are recorded in the log but the changes to the non-
volatile store are deferred until the user melds. Each update causes a log record
to be written that specifies the object involved in the update and its new value.
When the user melds an entry recording the fact is written in the log. At this
point the data is effectively melded. Following this the deferred updated objects

can be copied to non-volatile storage by reading the changes from the log.

If the system crashes after the user has melded but before the updates to the non-
volatile store have completed the log is used to redo the changes made by the
user. Thus on recovery the information in the log can be used to restore the

system to the last consistent state.

25

If the system crashes before the user melded then because of the deferred writes
the non-volatile store still reflects the last consistent state. If the program state is
part of the conceptual store then it can be automatically restored from the log by
the recovery manager and its execution restarted. The program may continue
execution from this point and will then effectively reconstruct the conceptual
store to the state just prior to the crash and then carry on its computation. If the
program state is not in the store then the recovery manager is not required since
the state of the non-volatile store always reflects the state at the last consistent

state. Thisisidentical to the situation where the user discards the changes.

Writeahead logging with deferred writes can be classified as using a no undo /
redo algorithm.

24.2 Writeahead L og with Immediate Updates

Before the user updates an object in main memory a record of the change is
written to the log. The log entry records the object involved in the update, its
new value and its old value. The update of the object can then take place. Unlike
the previous case updates can be performed straight after the log record has been
written and are not deferred until the user melds. Since the log records contain
the old and new values for modified objects the pages of the volatile store can be
flushed to non-volatile storage at any time. When the user melds a record is

entered in the log.

Since the flushing of modified pages can be done independently of the user’s
updates and melds the log must be used after a system crash to ensure that the
non-volatile storage is consistent with the conceptua state of the store. If the
crash occurred after a modified page was written to non-volatile storage but
before the user melded, the records in the log are used to undo the effects of the
updates. If the crash occurred after a meld record was written to the log but

before all the modified pages pertaining to that meld were flushed, the log

26

records are used to redo the effects. If the user discards then the log is again used

to undo the effects of the updates.

Again if the program state is part of the store then after the recovery manager has
completed its undo operation the execution of the program can be automatically

restarted by redoing the log.

Writeahead logging with immediate updates can be classified as using an undo /
redo algorithm.

2.5 Shadow Paging

In a shadow paging system a page replacement algorithm controls the movement
of pages between non-volatile store and main store in such a way that a
consistent state can be recovered from the non-volatile store after a crash. To
effect this the system maintains a disk page table that records the mappings
between the pagesin the virtual address space and their associated blocks in non-
volatile store. The first time the user modifies a page a shadow copy of the page
is created so that there is always a retrievable copy of the page as it was before
the modification in non-volatile storage. The system must also record that a
modified page has been shadowed to avoid another shadow copy being created.
Shadow paging employs a meld mechanism that atomically establishes a new
global consistent state. This is executed when the user melds. There are two

varieties of shadow paging :-
251 After-look Shadow Paging

With an after-look shadow paged scheme the mechanism makes sure that a
modified page is never written back to non-volatile store to the same place it was
read from. When a modified page is written back to non-volatile store an unused

disk block is found and the disk page table updated to reflect the new mapping.

27

This is analogous to deferred-write logging. Figure 2.3 illustrates the after-look
scheme showing the modified pages being shadowed to a different disk page.

main store pages

unallocated main store page

unallocated disk page
modified page

shadow page

HEER B EN

unmodified page

disk pages

Figure 2.3: After-look shadow paging

The system uses a root block which resides at a known disk address. The root
block is stable by mirroring and from this the disk page table can be located. At
system startup the disk page table is interrogated to re-establish the state of the
address space. In fact two versions of the disk page table are maintained; the
version held on disk which reflects the stable state and another in main memory
which is updated by the shadowing mechanism. This transient disk page table
reflects the current state of the address space. Figure 2.4 illustrates the
architecture. The stable disk page table records the mappings from the last
consistent state whilst the transient disk page table in volatile store records the
current mappings. The diagram shows that the third and fourth page have been
shadowed to unused disk blocks. When the user melds all the modified pages are
flushed to disk and then the in-memory version of the disk page table atomically
replaces the disk version. This atomic update can be performed using an

adaptation of Challis algorithm [Cha78].

28

non-volatile store

o o 0
T Y e 1
2 2
— ;7 3]
i I 4
root block S N 5 root page
stable disk transient disk

pages on disk

page table page table

] shadow page] modified page

Figure 2.4: Layout of after-look shadow paging

On crash recovery the root block is read and the disk page table is recovered.
This is used to re-establish the contents of the pages from their associated disk
blocks. It will include the program state if it is considered part of the data. If this
is the case then once the recovery manager has reconstructed the data the
computation will automatically carry on from the last meld point. No changes to
data in this mechanism get undone or rewritten and hence the after-look shadow

paging recovery algorithm can be classified asno undo/ no redo.

252 Before-look Shadow Paging

With before-look shadow paging, the first modification to a page causes a copy
to be written to a new block on non-volatile store, i.e., its shadow page. In
contrast to after-look shadow paging modifications then take place in the
original. The disk page table is used to record the location of the shadow pages
and must itself be on non-volatile store before any updates reach non-volatile

store. Thisis similar to logging with immediate writes. The before-look scheme

29

isillustrated in figure 2.5 where a modified page is written back in place after a
shadow copy of the original has been taken.

main store pages

|| unallocated main store page
I unallocated disk page
B modified page
|] shadow page
. l [] unmodified page
L ‘
disk pages

Figure 2.5: Before-look shadow paging

These shadow pages must be locatable after a crash and effectively form a
coarse-grain log of the previous values of the modified pages. On meld the
modified pages are written to disk and a new consistent state is established. This

log of previous valuesis then discarded.

Recovery from a system crash occurring before a meld involves using this “log”
to overwrite the pages that have been modified since the last meld with their
previous values. The system is thereby established to the same state as it was at
the last meld. This undo of the pages is clearly idempotent. If the program state
is considered part of the data then once the recovery manager has completed the
undo operation the computation will automatically proceed from the last meld
point. Before-look shadow paging can be classified as having undo / no redo

semantics.

253 Shadowing using Objects

Some systems adopt an aternate approach to shadowing in that they record
different versions of an object rather that different versions of a page. The

architecture for such a system could be constructed as a stable heap of objects

30

that is implemented on non-volatile store using main memory as a cache. Instead
of maintaining page tables a mechanism is required that maps versions of an
object. One possible approach is to reference all objects through object headers
of the form shown in figure 2.6 as in Argus [OLS85]. When an object is first
modified a shadow copy of it is created and used as the current version. All
further modifications to the object affect the current version. When the user
melds the current versions of all modified objects reachable from some root
object it are written out to non-volatile storage and the pointers to the old
versions updated atomically to point to the current versions. Thus the old version

is always the value of the object at the last meld.

Object Id Qld Current
| | | |

Figure 2.6: Object header format

The main attraction of shadowing using objects is the granularity of the shadow
copy. Only objects that are modified require shadow copies rather than a whole
page. Thiswill particularly benefit programs that only modify a small number of
objects. However creating shadow copies of objects could lead to problems of
external fragmentation. The trade-offs of shadowing objects rather than pages are
therefore similar to the arguments of segmentation versus paging. However
hardware and operating systems support for paging is available in many systems

which may favour a shadow paging solution.
2.6 Optimisations

The potential costs of maintaining a recoverable system can be high. The running
costs involve space overhead either for the log records or for the shadow pages
and speed overhead in writing these to non-volatile store. There is aso the

overhead involved in the time it takes to recover after a crash. There are a

31

number of possible optimisations that can help alleviate these problems without
compromising the recoverability of the system. In general non-volatile store is
implemented using hard disk technology and the optimisations centre around
reducing the frequency of disk writes and minimising seek times. Other

optimisations strategies can be used to aid the space overhead.

26.1 Optimisationsto Logging

One of the perceived benefits of logging is that log maintenance involves only
sequential disk writes to the end of the log. One obvious optimisation is to buffer
log records and only force the log to disk when either it is essential to maintain
recoverability or more eagerly when there is a block (or a number of blocks) of
records to be written. Of course such buffering will compete with the store for
main memory resources. A second consideration is to determine exactly when it
is essential that the log records are on non-volatile storage. The stable log, that is
the log on non-volatile storage, must contain a record of an update to an object
only when the non-volatile store no longer contains the last melded version of
the object. When using deferred write logging the last melded versions of
changed objects are not overwritten until the meld record has been written to the
stable log. Hence it is possible to also defer the writes to the stable log until the

user melds as long as the buffers are large enough.

This approach will not work when using logging with immediate writes. In this
case the mechanism must ensure that if the log records are buffered then the
updates they record do not overwrite the melded versions in non-volatile store.
Conversely if updates are flushed to non-volatile store then the log records

associated with these updates must be on the stable log beforehand.

One important feature of logging is that there is no requirement at any time to
force modifications made by the user to non-volatile store providing the stable

log has recorded the changes. A user can modify and meld changes to a group of

32

objects several times without it being necessary to write these changes back to
non-volatile store. All the necessary recovery information has been recorded in

the log.

When using writeahead logging with deferred writes the update to an object can
be prevented from reaching non-volatile store by pinning the page it residesonin
main memory. After ameld these pages are unpinned and flushed to non-volatile
store. A problem arises if the main memory becomes exhausted before a meld.
The page-replacement mechanism must select a page and unpin it and write it
back to non-volatile storage. However it must write it back to a different location
on non-volatile store to avoid overwriting the last melded version. This then
requires that the mechanism maintains a page table that determines where a page

is mapped to.

One optimisation that is sometimes used in logging implementations is for the
log to record differences, or deltas, between the old value and the new value of a
modified object rather than the values themselves. This can reduce the amount of
information written to the log especially where there are a frequent number of

small changes to large objects.

2.6.2 Checkpointing

It should be clear from the above descriptions that the log size is unbounded.
Unfortunately stable storageisn’t and hence a mechanism is required that enables
the log size to be reduced. Furthermore a large log could have an adverse effect
on recovery time. To aleviate the problem periodic checkpoints are taken. A
checkpoint operation synchronises the state of the conceptual store with the state
of the stable log. This involves flushing any buffered log records and all
modifications made by the user to non-volatile storage and then writing a
checkpoint record to the log. This record logs if any unmelded changes have

been made by the user at the time of the checkpoint.

33

A checkpoint enables any records associated with changes that were melded
prior to the checkpoint to be removed from the log thus reducing its overall size.
However retrieving the free space in the log may be a very expensive operation
and in practice rewriting or compacting the log is slow and not frequently

performed and hence the size of alog istypically quite large [Kol87].

Checkpointing reduces the amount of the log that must be searched on crash

recovery.

Recovery from a system crash should only now involve searching the log up to
the checkpoint record and undoing or redoing changes as necessary. There are 5

separate cases to be considered asillustrated in figure 2.7.

Thefirst case, C1, iswhere the user made some changes that were melded before
the checkpoint. No action is required by the recovery mechanism since the state

of the non-volatile store has not changed since the checkpoint.

Case C2 shows that the user made some changes before and possibly after the
checkpoint and melded these changes before the crash. The recovery manager
must use the log information to redo the changes made by C2. Note though that it
isonly necessary to restore from the checkpoint forward since any changes prior

to the checkpoint are till in effect.

Case C3 is where the user made changes prior to the checkpoint but the system
crashed before these changes were melded. In this case the effects of C3 must be
undone including the changes C3 made before the checkpoint. It may then safely

be rolled forward.

In case C4 changes were made after the checkpoint and melded before the crash.

Again the log records are used to restore the changes made by C4.

c1 4 | start point
C2

$ ¢ meld point
. Cc3
: c4 %
= P
. C5
' N
3» time
System
Checkpoint Crash

Figure 2.7: Checkpointing and recovery

Finally case C5 made changes after the checkpoint which were not melded
before the system crash. Here the effects of C5 must be undone before they can
safely be redone. Note that this is only for the case involving logging with
immediate update. With deferred update any changes made by C5 would not

have reached the non-volatile store and hence do not need to be undone.

If the program's state is considered part of the data then the above scenario is
somewhat different. The checkpoint operation would include synchronising the
program state with the data and hence this state could be re-established after a
crash. In case C2 the changes made after the checkpoint would be automatically
re-established by the program resuming computation from the checkpoint. The
redo information would not need to be read from the log. However in cases
where alot of computation was involved between the checkpoint and crash point
it may be cheaper to restore from the log. The is also true for case C3. Instead of
undoing all its effects as described above C3 would be resumed from the

checkpoint state and move forward automatically.

Note that in case C5 logging the program state would mean that after the undo
operation had completed the program would automatically restart from the
beginning and move forward. Logging of program state may be a fairly

expensive operation given that each state change would require a new log record.

35

One cheaper aternative is to only log program state at a checkpoint. This would
not deliver all the benefits that comes with logging every state change but could
save some changes from being discarded after a crash. In the cases shown
checkpointing the program state would allow case C3 to be redone rather than
undone but could do nothing for case C5 since no log information about its

program state had been taken.

2.6.3 Optimisationsto Shadow Paging

With shadow paging, overheads are incurred by the necessity of maintaining a
disk page table. The page table is frequently accessed and updated for every new
shadow. One optimisation is to ensure that the page table is permanently resident
in main memory where thisis feasible. One problem that may arise is that with a
very large store the disk page table may be too large to hold in main memory. A
simple solution is to include the page table in the virtual address space. This then
means that the page table itself is paged and modifications to the table will create
shadow copies. One consequence of this is that it also allows the pages of the
disk page table to be mapped to anywhere on disk. However there is still a
requirement for afixed point so that the disk page table can be located at system
startup and on recovery. This can be accomplished by maintaining a secondary
disk page table at a known location that records the mappings of the pages of the
page table.

Significant performance increases can often be achieved by incorporating the
shadow paging mechanism into the operating system's own paging scheme for
virtual memory. However this kind of facility is not necessarily available on all
operating systems but is becoming more widespread. For example the Mach
[ABB+86] operating system allows access to the paging mechanisms through an
external pager whilst SunOS [Sun90] and earlier versions of VAX/VMS [Dec78]
permit the user to memory-map portions of the file system. Whilst memory-

mapping in these systems does not provide access to the paging mechanisms it

36

can aid performance by providing hardware assist in address tranglations.

Memory-mapping and its benefits are described in more detail in section 3.3.2.

With single-threaded computation checkpointing in a shadow paged store is

identical to the action taken when the user melds.

264 Optimisationsto After-look Shadow Paging

One problem with after-look shadow paging is that two logically adjacent pages
in the conceptual store may be allocated physically distributed shadow pages
causing increased seek time. The effect of this can be reduced by using physical
clustering techniques such as suggested by Lorie [Lor77] where shadow pages
are alocated within a cylinder where possible. With after-looks, shadow pages
need only be allocated disk blocks when the user melds or when main memory is
exhausted and pages must be written back. Hence this provides an opportunity to

use such a clustering scheme.

2.6.5 Optimisationsto Before-look Shadow Paging

One of the advantages of before-look shadow paging is that the updates occur in
place and hence the logically adjacent pages will also be physically adjacent on
non-volatile store. Optimisations to before-look shadow paging are similar to
logging optimisations. When a page is first modified a shadow copy in main
memory can be taken instead of a shadow copy on non-volatile store. The user
can then make changes in place. It is only necessary to write the shadow page to
non-volatile store when these changes are about to be written to non-volatile
store. Further, it is only necessary to write back changes when the user melds or
when main memory is exhausted and pages must be written back. Note that the
disk page table which in before-looks records the location of the shadow pages
must be recoverable before any modifications reach non-volatile store. The

before-look mechanism thus requires more disk writes than the after-look

37

mechanism since the origina page and the “log” must be on disk before any

modifications are written back.
2.7 Concurrency

What impact does the introduction of concurrent operations on the conceptual
store have on the recovery manager? If the model of concurrency is one of co-
operation where all the processes or threads synchronise their activity then
recovery will work as described above. The processes all agree on the state of the
conceptual store and hence they agree on the state of the store after recovery

from system crash.

In the case where the model is one of conflict concurrency the processes do not
commonly agree on the state of the store. Recovery therefore involves restoring
the conceptual store so it contains the effects of any individual processes that
melded and does not contain the effects of any unmelded processes. To describe
the problems associated with recovery from system crash in a concurrent system
a model of atomic transactions is assumed. Recovery mechanisms for non-
serializable transaction systems are very dependent on the particular concurrency

model.
271 Concurrency and Logging

The logging techniques described naturally extend to handle concurrency atomic
transactions. In fact the logging technique was designed for precisely this model.
Since the log records a journa of changes al that is required is to add a

transaction id to each log record.

Crash recovery and checkpointing uses the same procedure as described above.
In the example given in figure 2.8 this would involve redoing transactions T2
and T4 and undoing T3 and T5. Note that T1 does not need restored from the log
since it melded before the checkpoint. Also the redo of T2 need only be

38

performed from the point of the checkpoint forward. Any changes made by T2

prior to the checkpoint will still bein effect.

If the program state is logged then the same advantages that were described for
the single-threaded case apply. That is, that transaction T3 would automatically
be resumed from the checkpoint state and move forward. Similarly T5 would

first have its changes undone and then move forward automatically.

T1)
— T2 4
I ¢)

T3

T4

|—<|>Iﬂ

VOV VOV VN

- System
Checkpoint Crash

Figure 2.8: Checkpointing and transaction recovery

There are many possible algorithms for recovery using checkpoints. The
following is the one described by Bacon [Bac92]. The recovery system after a
crash constructs a undo_list and aredo_list. The log is searched backwards for
the last checkpoint record. The checkpoint record in this algorithm is assumed to
contain the identity of al transactions that were active at the time of the
checkpoint. These transactions are added to the undo_list. The log is then read
forwards from the checkpoint record to the end of the log. Each start record
found for a new transaction adds that transaction to the undo list. Each meld
record found moves the transaction from the undo_list to theredo_list. Thelogis
then read backwards undoing each transaction in the undo_list and finally read
forwards from the checkpoint record to the end redoing transactions on the

redo list.

39

2.7.2 Concurrency and Shadow Paging

In contrast shadow paging does not readily extend to accommodate concurrent
operation. The problem is that transactions may make conflicting requests to
modify the same page. When one of the transactions melds the modified page is
written to its shadow page on non-volatile store. This of course will include the

changes made by any unmelded transaction that modified objects on the same

page.

One solution is to use page-level locking whereby an atomic transaction obtains
an exclusive lock on a page before shadowing the page [AD85b, Lor77]. Each
transaction maintains its own page table of shadows and the locking guarantees
that a page is never in more than one page table. The main drawbacks of this
solution are firstly that it introduces phantom locking where two atomic actions
are prevented from modifying different parts of the same page. Secondly it
employs a built-in concurrency control mechanism at a low level. Problems of
deadlock will also have to be addressed. An alternative approach is given in
chapter 3.

One optimisation that can be used with concurrent shadow paging is meld
batching. Requests to meld are not handled on a one-by-one basis. Instead they
can be delayed until there are a number of such requests which are then serviced
together. This can gain some performance advantages especialy if the degree of

multiprogramming is high.
2.8 Comparing Shadow Paging with L ogging

Which of the recovery methods described above is the best? Comparisons
between different mechanisms trying to achieve the same overall effect is often a
difficult and wusually inconclusive task. A number of (not necessarily

independent) criteria have to be considered when making comparisons :-

40

 the tradeoffs in the time taken for recovery against the time and resources

used in constructing a recoverable system.

» expected frequency of hard and soft crashes. In conflict concurrency systems
the frequency of aborted actions is also a factor. This may also depend on the
concurrency control implementation used, for example optimistic
concurrency control may result in more transaction aborts than say two-phase

locking.

.» frequency and cost of checkpoints.

e store architecture and its anticipated use. The issues here include the
frequency of updates, locality of reference, object identity and addressing.
Scalability of the recovery mechanism with respect to store size may also be

of concern.

» hardware and operating system support.

Some systems have sophisticated recovery methods built in as an initial design
decision. For example the Monads [RHB+90] architecture uses shadow paging
of its persistent store to achieve stability. Other systems such as Cedar [Hag87]
incorporate logging as an auxiliary structure in the file system to speed up writes
and recovery whilst in the log-structured file system of Rosenblaum and
Outerhout [RO91] all data, persistent and transient, is kept in logs. As pointed
out earlier several operating systems provide access to the paging mechanisms

giving potential for increased shadow paging performance.

Attempts have been made at analysing and comparing the cost of different
recovery schemes [AD85a, KGCB85]. The results of these efforts do not produce
a clear winner. Other research [GMB+81, Kol87, AD85b] would suggest that
logging is a better technique especially when the system needs to support

conflicting actions. Implementations of shadow paging are not widespread and it

41

is believed by some to be an inappropriate technology for database applications.
The implementors of System R used a complex combination of shadow paging
and logging and claim that in hindsight they would have adopted a purely log-
based recovery scheme. Furthermore they stated they were unable to perceive of
an appropriate architecture based purely on shadows that could support

transactions.

Agrawal and DeWitt produced a complex cost model used for comparing
shadow paging with logging using a variety of concurrency control techniques.
Their approach was purely analytical and their database ssimulations did not
account for the costs of buffer management. The results for shadow paging in
these simulations were poor when compared with logging. However closer
inspection of their model reveals an unexplained assumption. In the logging case
it is assumed that the size of the records that are written to the log for each page
modified by a transaction is 10% of the page size. So if during a transaction’s
execution data is modified on 10 pages the assumption is that the size of the log
records for that transaction amount to 1 page. This assumption may be valid in
some models of computation. However if the transactions are generated from
language systems that frequently update large objects, such as graphical objects,

or higher order functions the assumption may not be sustainable.

In contrast the Predator project [KGC85] took an empirical approach to
comparing the two methods. A realistic transaction-based database was
constructed and logging and shadow paging recovery mechanisms implemented
on stock hardware. A variety of transaction experiments were carried out using
both recovery techniques and the results compared. The performance metrics
were based on transaction throughput and mean response time. Their first
observation is that there is no one best mechanism and that the choice of
recovery method is application dependent. They concluded that shadow paging

works best when there is locality of reference and where the page table cache is

42

large. By using meld batching, shadow paging outperformed logging as the
number of simultaneous transactions increased. Another interesting observation
they made was that the shadow paging imposes a more evenly balanced 1/0 load
than logging. Under load a noticeable performance drop was observed in the
logging scheme as the system is divided between requests for sequential disk

writes for the log and page reads and writes for the database.

Most of the objections to shadow paging performance are founded on a belief
that the cost of writing ajournal of updates to a log will almost aways be more
efficient than the maintenance of shadow pages. This may be true for a class of
problems but may not be true in general. Many of the measurements that this
notion was founded on were based on simulations or were taken from tests run
on machine architectures and configurations that are now obsolete. It may be fair
to suggest that the results of the comparisons related to the limitations of
technology and systems available at the time. For example the overhead of page-
table lookups in shadow paging was considered very costly. However the size
and speed of memory in an average workstation have risen dramatically over the
last few years so that the page table even for a large store could reside in main

memory.

Computational models too have changed, not least with the rise in popularity of
database programming languages and persistent systems. These systems make
different demands on a database or stable store with different patterns of use
from conventional database accesses. For example programs and data are not
treated differently in orthogonal persistent systems. It is not obvious how logging
could be used to efficiently record program state. In contrast this is relatively
straightforward to achieve in a shadow paged system by including the process
state in the address space that is shadowed. These arguments suggest that the
decision on a superior model of recovery is not so clear cut. It may be that

shadow paging is a better aternative. Certainly it is clear that shadow paging

43

implementations can get great performance improvements from an operating
system that provides an external pager or memory-mapping support. This

support seems more forthcoming in stock systems than explicit support for fast

logging.

It has been argued [AD85b] that on a small scale, locality of reference would
seem to favour alog-based solution since the amount of information that requires
to be written to the log is small compared with the overhead of copying a whole
page. Furthermore with logging there is no requirement to write back modified
pages after ameld and hence a frequently modified page can reside in main store
through a number of transactions. Kent's [KGCB85] experimental observations
suggest the exact opposite. As locality increases the page table overhead in
shadow paging is soon amortised. With logging the amount of modified data that
must be saved increases. There quickly comes a point where a lot of locality,
especialy within one page, along with frequent updates to objects on the page
tips the balance in favour of a solution that makes a one-off copy of a page rather
than maintains a journal of changes. Furthermore if the objects themselves are
fairly big then frequent modifications to them will have an adverse effect on the
log size but not on a shadow page. This kind of locality is exactly the type of
behaviour that might be exhibited in persistent systems with higher-order

functions.

It was shown earlier that for systems that consider the program state as part of
the data there is potential for restoring more information following a crash.
Maintaining program state changes in a log-based system may be expensive
since each state change potentially requires alog entry. This can be alleviated to
some extent by only recording the program state at a checkpoint. In contrast
shadow paging seems well suited to handling programs as data. Most state
changes are probably fairly localised and so once the first state change has

caused a shadow page to be created there is little extra overhead invol ved.

29 Conclusions

The issues of recovery management centre around the trade-offs between the cost
of data recoverability against the expected frequency and impact of failure. The
cost of recovery management not only involves the overhead of restoring data
after a failure but also the time and space overhead required to maintain
sufficient information during normal operation that ensures that data are

recoverable.

In the case of soft failure recovery management data must be restored to a state
that is acceptable to the user following the loss of the volatile store. The user can
control the points at which his view of the data, the conceptual store, corresponds
with its image on non-volatile store by melding. The atomicity of melding with
respect to the conceptual store is not reflected in updating the non-volatile store
since multiple writes to non-volatile store are not atomic. Techniques for soft-
failure recovery enable a consistent state to be reconstructed after a crash by
replicating data or changes to data on non-volatile storage. This information is
used on recovery to restore consistency through a combination of undo and redo

operations.

This chapter has given some background to the issues of recovery from soft
failure and presented a detailed description of two common methods, namely
logging and shadow paging. The logging and shadow paging mechanisms were
discussed together with possible optimisation techniques and the complications

arising from conflicting concurrent operation.

From comparative studies that have been carried out it is clear that no one
particular method is superior. Rather the choice of the best recovery method is
heavily dependent on the way the data is used. However there is some evidence
to suggest that shadow paging may be the appropriate technique to use in
orthogonally persistent systems. This view is based on the belief that such

45

systems are expected to exhibit a high degree of locality. It is also contended that
shadow paging may be a more efficient technique than the alternatives for
supporting recoverability in persistent systems that regard the program state as
data.

The next chapter demonstrates how after-look shadow paging may be efficiently
incorporated into the implementation of a persistent object store within the Unix
framework. This store is primarily designed to support the persistent language
Napier88 and has a single-user operation. Chapter 4 shows how the design of the
store and the after-look mechanism can be extended to cater for concurrent

operation.

46

3 Shadow Paging I mplementation
31 Introduction

In the previous chapter the recovery techniques of logging and shadow paging
were explored and the view was expressed that shadow paging may provide a
more efficient soft failure recovery mechanism for orthogonally persistent
systems. To this end an efficient implementation of a stable virtual memory
system based on after-look shadow paging has been designed and built. The
stable virtual memory provides a paged address space that can always be restored
after a soft failure to a self-consistent state. The interface provides functions for
reading and writing to the stable virtual memory along with a meld operation that
atomically establishes a new consistent state. This system has been built within

the persistent object store framework used to support Napier88.

This chapter examines the problems of implementing single-user shadow paging
in virtual memory and presents a detailed description of how this stable virtual

memory system was built on the SUunOS operating system.
3.2 I mplementation | ssues

Paged virtual memory separates the user logica memory from the physical
memory such that the logical address space can be much larger than the size of
the main store. The virtual address space is divided into a number of fixed-sized
pages that reside on disk blocks on backing store and the main store is divided
into page frames of the same size. The operating system’s memory management
controls the movement of pages of the virtual memory on backing store to and
from the page frames on main store and maintains a page table, the main
memory page table, which records the allocation of page frames of main memory

to pages of the virtual memory.

47

0 A
1 B 2 2 0 C
2 C 20 1 F
3 D 3 2 A
5[1

4 E 63 3 G
5 F .

page main
6 G table store

virtual memory
pages on disk

Figure 3.1: Virtual memory

Figure 3.1 depicts a virtual memory scheme with the pages of the virtual memory
held on disk. The page table records the mappings of pages to main store page
frames. Since a soft failure results in the loss of the main store then there is no

point preserving the page table through system crashes and hence it is transient.

The operating system typically allocates the pages of the virtual memory to a
contiguous range of disk blocks on backing store and records the disk address of
the first disk block, the base address. Virtua memory addresses are usually
relative offsets from the first page and hence the ith page can be found at the ith
disk block from the base because the pages and disk blocks are always in one-to-

one correspondence.

A shadow-paged virtual memory system is similar to the scheme shown in figure
3.1 where the pages of the virtual memory reside on backing store and a main-
memory page table records the alocation of pages to physical memory page
frames. The main difference in shadow paging is that the system ensures that
before a modified page is written back to non-volatile store that there is aways a

retrievable copy of the original page on non-voléatile storage.

48

main store

D D’
non-volatile store

Figure 3.2: After-look shadowing

Figure 3.2 illustrates the after-look shadow paging mechanism showing that the
virtual memory page P isinitially located at disk block D. Page P is moved into
main store and subsequently modified. When P is paged out it is written back to
a different disk block D’, its shadow page, leaving the original intact at the old
location. This scheme then destroys the one-to-one correspondence between the
pages of the virtual memory and disk blocks and so shadow paged virtual
memory maintains a disk page table that records the mapping between pages of

the virtual memory and disk blocks on backing store.

A further requirement in shadow paging is that this disk page table is stable. In
order that a consistent state can be recovered from the non-volétile store after a
crash the shadow page mechanism requires that the mappings of the disk page
table survive a soft failure. The shadow paging scheme maintains two versions of
the disk page table; a stable disk page table on non-volatile store which records
the mappings from the last consistent state and a transient disk page table which

reflects the current state of the mappings. Figure 3.3 illustrates the architecture

49

non-volatile store

0 / \ 0
T Y e 1
2 2
I e I g s
4 o 4
root block S N 5 root page
stable disk : transient disk
page table pages on disk page table

] shadow page] modified page

Figure 3.3: Layout of after-look shadow paging

The principal function of shadow paging is to make sure that there is aways a
recoverable consistent version of the virtual memory. To establish a new
consistent state when the user melds, the shadow paging must first write out all
modified pages to their shadows and then provide a mechanism that replaces the

stable disk page table with the transient disk page table in a single atomic action.

Most operating systems do not support the requirements for a shadow paged
virtual memory system outlined above and hence an implementation strategy
must adopt its own mechanisms. A problem in describing implementation issues
for shadow paging arises because the extent to which facilities of the paging
systems can be accessed or manipulated by user program varies amongst
operating systems. For example in Mach control of paging can be directed from a
user-written external pager. SunOS takes a different approach by allowing some
degree of paging control through memory-mapped files. An implementation
strategy will be heavily influenced by what access and control to paging and
system page tables is permitted by the operating system. For example an

operating system may inform the process when a page in main store is being

50

written back to disk. This would allow the shadow paging implementation to
delay the alocation of a shadow block until it is needed. This functionality could
be exploited by an implementation to perform the commit batching optimisation

outlined in 2.6.3.

Regardless of the accessibility to the system’'s page management an
implementation of shadow paging in a traditional virtual memory operating
system requires not only a main memory page table but also, as a direct
consequence of the shadow pages, the maintenance of a disk page table. As
stated above this disk page table must be stable and the implementation must

provide a mechanism for atomically updating it.
3.3 Stable Virtual Memory I mplementation in SunOS
331 Introduction

An overview of the generic layered architecture used to support Napier88 was
given in chapter 1. One of the strengths of this layering is that it allows
experimentation whereby different implementations of a layer may be
interchanged without the need to alter the layers above or below. This section is
concerned with the stable virtual memory layer and its interaction with the non-

volatile storage.

The stable virtual memory (SVM) provides a contiguous range of addresses for
use by the stable heap that can aways be restored after a soft failure to a self-
consistent state. Data in the SVYM can be read and written through the interface
functions along with a mechanism for establishing a new consistent state. One of
functions of this layer is to maintain a mapping between the SYM and non-
volatile store. The combination of the SVM and the non-volatile storage layersis

referred to as the stable store.

51

The flexibility of this architecture has led to a number of implementations of the
layers, in particular the stable virtual memory layer. This is not surprising since
this is the level which interacts closely with the operating system for the

provision of non-volatile storage and stable virtual memory.

Currently, there are three versions of the stable store. They can be summarised as

follows :-

* The original store implementation by Brown [Bro89] uses block reads and
writes for the movement of data between the SYM and the non-volatile
storage and performs all the address trandations. It employs a before-look
shadowing scheme to ensure that a consistent store state is recoverable after a

soft crash. Thisisthe most portable and the least efficient of the versions.

* Brown aso produced a second implementation of a before-look shadow-
paged stable store. This version utilises the memory-mapping facilities of the
SunOS operating system described below to implement the paging

mechanisms.

* A new after-look shadow-paged stable store based on the Shrines [Ros83]
model has been implemented as part of this thesis. This also uses the SUnOS

memory-mapping features.

The next section gives an overview of the SunOS memory-mapping facilities.
The rest of the chapter then describes in detail the implementation of this third
version, the new after-look shadow-paged stable store, how it makes use of the
memory-mapping features of SUNOS and gives some comparisons with Brown’s
second implementation. The discussion of these stores centres around the issues

of :-
» Stable virtual memory and non-volatile address space layout

» Format of the root pages

52

» Stable store creation

» Stable store startup

» Stable store access

» Stable store checkpointing

o Stable store recovery

332 SunOS Memory-M apping Facilities

The memory-mapping functions of SUNOS are a set of system calls that alow the
establishment of a mapping and a degree of control over the movement of data

between pages in the virtual address space and blocks of afile.

start VA Process virtual address space

mmap

Unix file

Figure 3.4: SunOS memory-mapping

The mmap function sets up a mapping between the given contiguous blocks of a
file and the process virtual address space and returns the starting virtual address
of the mapping (figure 3.4). An option of mmap alows the caller to determine
where in the process virtual address space to place the mapping. Otherwise the
system chooses an appropriate value. The whole file need not be mapped in one
chunk. The function is flexible in that it allows the mapping of individual blocks

of afileto specific pagesin the virtual address space.

53

In addition to the mmap function there are related functions. msync writes all
modified pages in the main store in the specified range of the virtual address
space to their permanent storage locations. It can optionally invalidate any pages
so that further references will force the pages to be read from their permanent
locations. The mprotect function changes the access protections for a given
address range to the specified protection. Protection options are read, write,

execute or none. The munmap system call removes the mappings.

The main reason for using this memory-mapping facility is the gain in
performance. Performance of the store is greatly enhanced since it uses the
operating system’s page-replacement mechanism and utilises the Sun memory

management hardware to perform the address trangdlations.

However the SunOS memory-mapping does not provide all the facilities needed

to implement shadow paging. For example :-

* The memory-mapping does not provide access to the page-replacement
mechanism. This means that the operating system has total control of the
movement of pages between the main store and virtual memory and the user
process cannot determine when and which pages are written back to disk. As
a consequence the operating system requires that before a page is accessed in
the virtual address space the page must have an associated disk block to write
out to. This effectively eliminates many of the shadow paging recovery

optimisations, such as commit batching.

» The memory-mapping functions do not alow access to the main memory
page tables. The user then cannot determine which pages of process virtual
address space are in main store at any given time or which pages have been
modified. This implies that the stable store implementation needs to keep

track of which pages have been modified.

* In memory-mapping disk blocks to virtual memory pages the SunOS
operating system is effectively maintaining a disk page table. This table is
maintained by the operating system on a per-process basis. The disk page
table istransient not only because it is not maintained through soft failures but
also because the mappings it contains are discarded when a process
completes. The memory-mapping does not allow the user access to the disk
page tables. Although the memory-mapping alows the user to create
mappings between pages in the virtual address space and backing store it does
not provide any facility to enable the user to query the operating system to
find what the mappings are. This means that the stable store implementation
needs to maintain its own transient disk page table as well as a stable disk

page table.

333 After-look Stable Store I mplementation

The stable store implementation uses memory-mapping to control and
manipulate the pages of the process virtual address space and the non-volatile
storage such that the state of the virtual address space can always be restored to a
consistent state. The performance gains in using the memory-mapping features
are so compelling that the after-look mechanism used in this implementation

works round the limitations outlined in the previous section.

Non-volatile storage is provided through a Unix file where the blocks of thisfile
are mapped into the virtual memory using the mmap call. Thisfile is referred to
as the stable store file. The after-look shadowing mechanism in this
implementation effectively involves detecting the first modification to a page in
the SVM, finding an unused disk block in the stable store file and establishing a
new mapping between this block and the page. When the operating system pages
out this page, it will be written to the new block thereby leaving the old block

with an image of the page before it was first modified.

55

root pages

Y

disk pagetable data pages

Figure 3.5: Layout of SVM address space

The layout of the stable virtual memory is given in figure 3.5. The first two
pages are the root pages whose structure and function are described below. The
data pages define the area of the address space that is used by the stable heap.
The disk page table is used to record the current mappings between the disk
blocks of the stable store file and the data pages. The format of a disk page table
entry is given in figure 3.6. The disk page table entries are organised as an array
of 32-bit words with one entry for each data page such that the ith entry of the
table contains the entry for the ith data page. Each disk page table entry (PTE)
records the block offset in the non-volatile storage that is mapped to the page or
zero if no mapping exists. Each PTE also has a number of flags which record
state information for the page. The disk page table is included in the SVYM
address range so that pages of disk page table are subjected to the same shadow
paging scheme as the data pages. A secondary disk page table which islocated in
the root pages keeps an array of disk page table entries for each of the pages of
the disk page table.

31 24 0
flags block offset

Figure 3.6: A disk page table entry

The number of data pages and hence the address space of the SVM s fixed at
store creation time. The SUnOS system imposes an upper limit on the number of
pages that can be memory-mapped by a process. This limit is dependent on the

operating system version and machine type. By experimentation the SVM

56

address range has been calculated and set to the maximum that can be used

across the range of machines.

An illustration of the layout of the non-volatile store and how it is mapped into
the SVM is given in figure 3.7. The root pages are mapped to fixed locations in
non-volatile store as shown. For the rest of the SVYM the system does not
associate a disk block in non-volatile store with a page until the page is first
accessed. Since these mappings are created on demand then the order of pagesin

the SVM address space is independent of the order of disk blocks of the non-

volatile storage.
root pages
// L ayout of SVM address space
01 disk pagetable data pages
0|1 R
I:l unused
Layout of non-volatile store block
root blocks

Figure 3.7: Stable store layout

The shaded areas in figure 3.7 represent unused disk blocks. On startup or after a
checkpoint the system can establish that some of the mappings are no longer
required and hence the disk blocks associated with these mappings can be re-
used. If there is a request to access a previously unused data page a free block
must be found. One of the features of this implementation is that if there are no
free disk blocks available then the Unix file that is being used to represent the
non-volatile storage layer can be extended to accommodate the request. A free
space bitmap is constructed in local memory at start up to record which disk

blocks are unused. The bitmap has a bit for each page of the SVYM address space

57

rather than a bit for each disk block so that as the file expands the free list does
not need to be thrown away and recreated. Hence in this implementation the size
of the SVM address space is determined and fixed at store creation time whilst
the non-volatile storage is variable in size and grows on demand as new data

pages are accessed.

3.3.3.1 Root page layout

As shown in figure 3.7 above the disk page table resides in the stable virtual
memory address space along with the data pages. Therefore the disk page table
itself is paged and hence the architecture is required to maintain a disk page table
for the disk page table pages. This secondary disk page table is recorded in the
root page (figure 3.8) with one entry for each page of the primary disk page
table. Each entry uses the same format as the primary disk page table entries
shown in figure 3.6. The mappings of the entire stable store can therefore be

found by atraversal of the secondary disk page table in the root page.

date agesize| store secondary pagetable date
stamp pagesiz length Yy P stamp

Figure 3.8: Theroot page layout

The implementation uses two root pages to achieve atomicity. Details of this
checkpointing mechanism are given in section 3.3.3.5. The term checkpointing is
used in the description of this implementation since in a single-user shadow-
paged store it is identical to a meld operation as described in section 2.6.3. The
date stamps on the root page are incremented when the page is written back on
checkpoint. The date stamps are then used on startup to discover which root page
was used in the most recent checkpoint. The two date stamps on the root page are

there to detect if any root page corruption occurred when the page was written

58

back to disk. If the two date stamps on a root page are identical then it is

assumed that the page was successfully written to disk.

The page size field records the size of a page in this store implementation and the
store length field records the size in bytes of the data pages area of the SVM
address space. The size of the primary disk page table areais not recorded since
it can be easily calculated from the size of the data pages area. Similarly the size
of the secondary disk page table in the root page can also be calculated from the
length of the primary disk page table. The current length of the non-volatile
storage file is not recorded in the root page since the size of a Unix file can

readily be obtained through a system call.

3.3.3.2 Stablestorecreation

A new stable store is created by a program outwith the Napier88 system. Stable
store creation involves creating the Unix file to be used for non-volatile storage,
initialising the two root pages and writing them out to the file. The date stamps
and the secondary disk page table entries are al set to zero. In the
implementation the page size is 8192 bytes and the store length which records
the maximum size of the data pages area is set to 384Mb. This means the data
area has 49152 pages. The disk pages tables thus need 49152 disk page table
entries each of 4 bytes so the disk page tables area is 24 pages long. The
secondary disk page table in the root page therefore has 24 entries.

3.3.3.3 Storestartup

The startup procedure begins by memory-mapping the root blocks of stable store
file into the virtual address space. The date fields of the root pages are then
interrogated to find which root page is the most recent. This root page is then
copied into local memory, that is memory outwith the SVM. The root page in
local memory, the current root page, will be modified as changes are made to the

secondary disk page table between startup and checkpoint. Because the SVM has

59

no control over when the pages are written out the root page on disk, the root
block, must not be overwritten until a checkpoint. In using a local copy of the
root page the SVM can prevent the root block from being overwritten until

checkpoint.

From the current root page the SVM is reconstructed to the state it was at the last
checkpoint by re-establishing the mappings between pages in the SVM address
gpace and their disk blocks. This is done by a traversal of the secondary disk
page table. Each non-zero entry in this table specifies the block offset in the
stable store file of a primary disk page table page. Each primary disk page table
page is then memory-mapped, using the mmap system call, into the SVM from
this block offset. Each primary disk page table page that is restored contains an
array of disk page table entries for the data pages. These disk page table entries
specify the block offsets in the stable store file for the data pages and hence this
is used to map, again using the mmap call, the data pages into the SVM.

The free space list referred to in section 3.3.3 is created in local memory on store
startup as a bitmap. For each disk block that is memory-mapped into the SVM at
startup the free space list sets the appropriate bit to indicate an allocated disk

block in the storefile.

Thelast action of the startup processisto designate all the restored pages as read

only using the mprotect function.

3.3.34 Storeaccess

One of the conventions of the SVM interface is that the stable heap must
“allocate” space from the SVM before using it for the first time. When the stable
heap layer requests the use of a range of virtual addresses the page boundaries
for this range are calculated. The SVM then ensures that each page in the range

has an associated disk block to write back to. This then satisfies the requirements

60

of the SunOS memory-mapping facility that every page accessed in the process

virtual address space must have a block to page out to.

If any of the pages in the request have no associated block then the free list is
searched for an unused disk block. If there are no free blocks in the stable store
file the store file is extended by writing a disk block to the end of the file. This
new block is then memory-mapped with mmap to the requested page and the
disk page table entry associated with this page updated.

When updating the disk page table entry a similar check must be made to ensure
that the page that encompasses this disk page table entry also has an associated
disk-block.

The after-look shadow paging mechanism requires that a shadow copy is created
the first time a page is about to be modified since a checkpoint. To do this the
SVM first searches the free space list for an unused block. If there is one, the
page that is about to be modified iswritten out to this block otherwise the page is
written out to the end of the stable store file. Either way a copy of the page is
written out to its shadow. This block is then memory-mapped to the page and the
disk page tables updated to reflect the new mapping. The disk page table entry
records the new mapping of the page. The flags field of the disk page table entry
records that the page has been shadowed so that any further modifications to this

page will not create another shadow.

Updating the disk page table to record the new mapping of the shadow page of
course modifies the disk page table entry’s page. If thisis the first modification
to this page then it too must be shadowed. This shadow paging of the disk page
table page is performed exactly as for a data page and causes an update to the
secondary disk page table in the current root page. This of course is not

shadowed and therefore the process stops here.

61

This is the essence of after-look shadow paging where changes to a page will be
written out to a new disk block with the previous state of the page left intact in

the old disk block.

The state at the last checkpoint can always be traced from the root page on disk

whilst the current state can be traced from the local root page copy.

a
d \ SVM address space

o

D1

non-volatile store

Figure 3.9: After-look shadow paging mechanism

The sequence of events, lettered ato d, that happen when a page is shadowed is
illustrated in figure 3.9. Initially the disk block D is memory-mapped to page P
and the disk page table entry for P residesin page Q.

a) A request is made to modify page P. If thisisthe first modification to P then a
shadow copy of P must be taken. The free space list is searched for a free
block in the stable store file extending the file if necessary. A free block D’ is

found.

b) Page Piswritten out to disk block D’.

¢) Disk block D is unmapped from P using the munmap call. Disk block D’ is
then memory-mapped to P. There are two reasons why step b is performed
before step ¢ can be done. Firstly the mmap system call establishes a map

between a disk block and a page, not the other way round. After the

62

unmapping and remapping the operating system may decide that page P must
be overwritten with D’. Step b ensures that D’ has a copy of P before
establishing the mapping. Secondly the mapping of D’ to P must happen
before P is modified. The stable store has no way of detecting when the
operating system may page out P and must ensure that disk block D is not

overwritten.

d) The disk page table entry for page P is updated to record that P has been
modified and shadowed and that D’ is nhow mapped to P.

If thisisthe first update to the page Q, the page containing the disk page table
entry for P, then Q is also shadowed following exactly the steps ato c. The
new mapping for Q is recorded in the secondary disk page table in the current

root page.

3.3.35 Checkpointing

In an idea situation a checkpoint would begin by writing out all modified pages
in main store to disk. The only interface provided by the operating system to
write back modified pages is the msync function cal. The function is
parameterised by the process virtual address range of pages to be written out to
disk. Since, as stated earlier, the stable store cannot determine which pagesin the
SVM are currently in main store, the checkpoint mechanism must either msync
the entire SVM range or individually msync each modified page. However many
of the pages of the SVM have not been allocated disk blocks to write back to
since they have never been accessed. An msync on the entire SVM first checks
that each page has somewhere to write back to before deciding if the page needs
written back and hence will fail. So the checkpoint mechanism works by finding

all the modified pages and using msync call to write it back to disk.

Starting with the secondary disk page table in the current root page the SVM is
traversed as before and each modified page is written back to disk. The date

63

stamps of the current root page are then incremented. The SVM then copies the
current root page from local memory into one of the root pages in the SVM
address space and flushes that root page to disk. On checkpoint the current root
page is not copied back to the root page it was read from but is always copied to
the “other” root page. In other words the root page holding the information about

the previous checkpoint is preserved and the other root page is overwritten.

Because of the after-look mechanism no block in the non-volatile storage
involved in the checkpoint is overwritten. The atomicity of the checkpoint is
therefore only dependent on the atomic update of the root block. It is assumed
that any error encountered in writing the root page to disk will be detected and
can be acted on immediately. As a further precaution the date stamps at the
beginning and end of the root blocks can be compared. Any difference in these

indicates that the root block is corrupt.

Now that a consistent state has been established the original disk blocks that
were mapped to pages that were shadowed at the checkpoint can now safely be
re-used. For example the disk block D in the example shown in figure 3.9 can
safely be overwritten after the checkpoint since page P has been flushed to D’
and the disk page tables and root pages updated. Finding such disk blocks is
done by designating all the disk blocks unused by clearing out the free list and
then reconstructing the ones that survived the checkpoint by traversing the store
from the current root page. Note that thisis exactly what happens when the store
is started up. From the root page the disk page tables are traversed and the pages
mapped to their recorded disk blocks.

3.3.3.6 Storerecovery

Since the after-look mechanism ensures that nothing is overwritten there is
always a consistent state of the store on non-volatile storage. After a soft-failure

the recovery mechanism finds the most recent, consistent root block and from

there reconstitutes the mappings between the SYM and the non-volatile store.
Note that this is exactly the same procedure as used for store startup. Because
recovery from soft failure is identical to store startup this mechanism can be

described as being no-undo/no-redo.

3.3.3.7 Optimisations

A number of optimisations have been made to the stable store implementation
just described. The main changes are designed to reduce the cost of checkpoint.
The checkpoint operation in the original implementation can be costly for two
reasons. Firstly finding the modified pages that need to be written out to disk
involves a lengthy traversal of the store through the secondary and primary disk
page tables. Secondly, as each modified page is found it is written out to its
associated disk block using the msync call. This operation may incur a heavy
seek time cost since the order of modified pages in the SVM is independent of
the disk block order. Both these issues are tackled using a block list which is

effectively alog of pages that are modified between checkpoints.

The new layout of the SVYM and non-volatile store is given in figure 3.10. As
before there are two root pages at the start of the SVM that are mapped to
specific disk blocks. The disk page tables are again located in the SVM after the
root pages. This is followed by the block list which is the same size as the disk

page tables.

65

Layout of SVM address space

o| 1 |disk page block data pages

table list

Ld \

o 1| PTEO| PTE1 block | data

list pages

L ayout of non-volatile store

Figure 3.10: Stable store layout

Each time a page is shadowed it is allocated an unused disk block and the
address of this page is added to the end of the block list. The block list can be
thought of as a log of SVM addresses of modified pages. Finding an unused
block involves alinear search of the free list and if none are found by extending
the stable store file. Since this is in block order the block lists record a block-
order mapping of modified pages that need to be written to disk on a checkpoint.
It is sufficient on a checkpoint to use this block list to determine which pages
need to be written out. Because the pages are written out in increasing block
order the disk seek time should be minimised. The checkpoint procedure
employs a further optimisation by using a form of run length encoding. Rather
than just write out one modified page at a time the block list is inspected for a
sequence of contiguous pages which can be written out in one system call. So a
sequence of say five contiguous modified pages will be written out with one

system call of five page lengths rather than five system calls of one page length.

When the stable storefileis created disk blocks are allocated and reserved for the
root pages and for the pages of the disk page table. A second set of disk blocksis
also alocated to accommodate shadow copies of these disk page table pages.

Space on the stable store fileis also reserved for the pages of the block list.

66

In this optimised implementation shadow copying data pages is done as before
but a different mechanism is used for shadow copying disk page table pages.
When a data page is first modified a new, unused block is allocated for the
shadow copy and mapped to the page. The disk page table entry for this data
page then records the block offset that the page is now mapped to.

Each disk page table page has two disk blocks associated with it. The ith disk
page table page is either mapped to the ith disk block in the first disk page table
(marked PTE 0) or to the ith disk block of the second disk page table (marked
PTE 2). As before the secondary disk page table in the root page records the
mapping between the disk page table page and its disk block. When a disk page
table pageisfirst modified its entry is looked up in the secondary disk page table
of the current root page. This determines which disk block the page is currently
mapped to. The disk page table page is then shadow copied to its disk block in
the other disk page table and the secondary disk page table updated to reflect
this. The advantage of this method is that the blocks for the disk page table pages
are pre-allocated and reasonably localised.

date | page | store | average modified secondary date
stamp | size |length mggégsed PTE bitmap | pagetable | stamp

Figure 3.11: Root page

The format of the root page in this optimised implementation is given in
figure 3.11. Two extra fields have been added. The modified disk page table
entry bitmap is used to determine which of the disk page table pages have been
modified between checkpoints. This bitmap has one bit for each of the pages of
the disk page table. This is used when doing a checkpoint to limit the search for

modified pages.

67

The average number of pages that were modified between checkpoints is
recorded in the root page at each checkpoint. At store startup time the system
ensures that the stable store file has this number of free blocks available for
shadow copies extending the stable store file if necessary. This can speed up the
store access time since a search for a free block in the stable store file is almost
always going to be satisfied and hence there is seldom any need to extend the
stable storefile.

334 Before-look Stable Store Implementation

This section gives a short description of the stable store designed and built by
Brown [BR91]. This stable store is a before-look shadow-paged store built using

the same layered architecture and using the same interface functions.

root pages
// Layout of SVM addr ess space
0 1 active space shadow space
O 1
L ayout of non-volatile store
root blocks

Figure 3.12: Layout of Brown’s stable store

There are two main differences between Brown's store and the after-look store
described above. The first is the layout of the SYM and non-volatile address

space and the second is the before-look shadow paging mechanism.

The layout of this store is given in figure 3.12. The root pages in this
implementation are used in the same fashion as in the after-look store. The

remainder of the SYM address space is divided between active and shadow

68

space. The active space defines the range of the address space that is used by the
stable heap and the shadow space is used as an area for shadow copies of pages.
In this implementation the entire physical resource needed to support this SVM
is pre-allocated. When the stable store is created the user must specify the size of
the active area and the size of the shadow area. The Unix file, which is used as
non-volatile storage, allocates disk blocks not only for the two root pages but
also for each page of the active and shadow areas. The stable store file is thus
identical in size to the SVM address space and there is therefore a 1-1
correspondence between pages of the SVM address space and disk blocks of the
non-volatile storage. In this implementation the stable store file does not grow in
size and hence the active and shadow size specified by the user determines the
maximum size of the stable store. The position of the static division between the
active and shadow areas is recorded in the root pages. On store startup the entire
stable store file is memory-mapped into the virtual address space. Because there
isa1-1 correspondence between the pages of the SVM and the disk blocks of the
non-volatile storage there is no need for the stable store to maintain its own disk

page tables.

With before-look shadow paging the original page is copied to another location
and updates to the page are done in place. The before-look mechanism has to
ensure before the update in place is alowed to proceed there must be a copy of
the original page on non-volatile storage. Furthermore this copy of the original
must be recoverable from the non-volatile storage in the event of a soft failure.
The shadow area of the SVM is used to store the shadow copies of pages that are
about to be modified. This area effectively forms a sequential log of before-
images of pages that have been modified. The root page maintains a
corresponding array, the copied pages array, that records the address of each
page that has been shadowed. So the ith entry of this array gives the address of
the page that has been copied to the ith page of the shadow area.

69

On checkpoint a new consistent state is saved by flushing all the modified pages
of the active areato disk. The copied pages array of the current root page is set to
zero and the root page is aso flushed to disk. This signifies that the before-
images in the shadow area are no longer required since a new consistent state has
been saved on non-volatile store. The same conditions for the atomic update of

the root page that were described in the after-look store are used here.

a
b

current root page SVM address space i

4 | 1#

p

I :

non-volatile store

Figure 3.13 : Before-look shadow-page mechanism

Figure 3.13 illustrates the sequence of events, lettered ato e, that are involved in
the before-look shadow paging mechanism. The area to the right of the broken

vertical line represents the shadow area.

a) A request is made to modify page P. If thisisthe first modification to P then a

shadow copy of the page must be taken.

b) The page P is copied to the SVM shadow area. The offset in the shadow area
that the page is copied to is found in the current root page (offset 3 in this

case).

70

¢) This shadow copy is forced onto non-volatile store by writing the page onto
its corresponding disk block. This ensures that a copy of the origina is on

non-volatile storage before the update takes place.

d) The current root page records that another page has been shadowed and saves
its address in copied pages array. In this example the root page records that

the fourth page that has been shadowed is page P.

e) Finally the current root page is written back to non-volatile storage. After this

has completed the update to page P can proceed.

This final step of writing the root page back to disk is necessary so that after a
soft failure the state of the SVM can be reconstructed from non-volatile store.
The before-look mechanism effects this reconstruction after a crash using a
undo/no-redo algorithm. On store startup the most recent root page is copied into
local memory from the stable store file. If there are any entries in the copied
pages array then it is assumed that there was a soft failure before a new
consistent state was established. The undo mechanism reconstructs the last
consistent state by overwriting the pages in the active area specified in the copied

pages array with the originals from the shadow area.

3.35 Comments

Brown'’s store has a number of possible advantages over the after-look store :-

» All the physical resource required to support the store is available before the
store is accessed. This has enabled a number of run-time checks and error

handling mechanisms to be avoided.

» Thereisno requirement to maintain separate disk page tables because there is
a 1-1 correspondence between the pages of the SVM and disk blocks of the
non-volatile storage despite having no access to the operating system's page

tables. This store may expect some performance gains since al the memory-

71

mapping of disk blocks to pages is performed at store startup. These

mappings are not altered during store access.

» The before-look mechanism performs update in place and hence preserves
clustering. The contiguity of large objects or objects which cross page

boundaries will be preserved.

However there are a number of possible drawbacks with thisimplementation :-

» The size of stable store is permanently fixed at creation time with no facility
for expanding. The user must determine at store creation time the maximum
size of the store. If the store is found to be too small for its intended use then
the only available option isto throw it away and alocate a new larger store. If

storeis created too large then it suffers from internal fragmentation.

« Statically defining the active and shadow areas at creation time determines the
maximum number of changed pages that can be shadowed between

checkpoints.

» The before-look shadow-paging mechanism used effectively involves a
checkpoint of the log of shadowed pages. When a range of pages is being
shadowed a disk write is required for each page and a disk write for the root

page.

The design of the after-look store tries to address some of the possible

shortcomings of Brown'’s store implementation. The main differences are that :-

* it separates the store address space from the non-volatile address space. The
user is not required to statically define the maximum size of the store when it
is created. The SVM uses as large an address space as can be memory-
mapped by the operating system. The Unix file created to support the non-

volatile storage is created to aminimal size and is grown on demand.

72

» The after-look shadow paging mechanism ensures that a modified page is
written back to a different disk block. The state of the last checkpoint is
therefore always on non-volatile storage and hence recoverable after a soft
failure. This implementation thus employs a no undo/no redo recovery
algorithm. Shadowing a page then just requires one disk write to copy the

page to its new location.

One optimisation that has not been explored in either implementation is pinning.
In the after-look store pinning could be used to implement commit batching by
holding a page in main memory until a checkpoint then flushing these pages out
in a sequential write. The SunOS memory-mapping features allow pages to be

locked in main memory. However thisfacility is restricted to privileged users.

34 Conclusions

Traditional demand-paged virtual memory systems maintain a main memory
page table to record the mapping of pages to main store page frames. The pages
of the virtual memory reside on contiguous disk blocks on backing store and do
not move during the lifetime of the process. In an after-look shadow paging
system modified pages are never written back to backing store to the same place
they were read from and hence the one-to-one correspondence of pages to disk
blocks is broken. As a consequence such systems require an additional table, the
disk page table, to record the mappings between the pages of the virtual memory
and the disk blocks of non-volatile store. The main reason for a shadow paged
system is to ensure that a consistent version of the address space can always be
recovered, even after a soft failure. This implies that the shadow-paging system
maintains a stable disk page table on non-volatile store which records the
mappings from the last consistent state and a transient disk page table which
reflects the current state of the mappings. The shadow paging scheme must

provide a mechanism that allows the atomic update of the stable disk page table.

73

The implementation strategy of a shadow paged system built on a typical virtual
memory system relies on the extent to which control and access to the paging
mechanisms are afforded by the target operating system. Aspects of an
implementation are thus chiefly concerned with how it makes use of the
available operating system facilities and how it compensates for the lack of

others.

This chapter has documented a particular implementation of an after-look
shadow paged virtual memory system under SunOS. The SunOS operating
system offers the user a degree of control over the paging process through the
memory-mapping functions. These allow the user to effectively control the
mappings between the pages of virtual memory and the disk blocks on non-
volatile store. Of interest in this implementation are the mmap, msync, mprotect
and munmap functions. The mmap function establishes mappings between the
blocks of a file and pages of the process virtual address space. The msync
function flushes al modified pages in the specified range from main store to
their permanent storage locations. The mprotect function changes the access
protections for a given address range to the specified protection. Protection

options are read, write, execute or none. The munmap system call removes the

mappings.

The SunOS stable virtual memory implementation uses these facilities for
performance gain since the memory-mapping functions use the operating
systems page-replacement mechanism and memory management hardware to
effect address trandations. Non-volatile store is implemented through a Unix file
where the blocks of this file are mapped to the pages of the stable virtual
memory. When a page is about to be modified for the first time the
implementation finds an unused disk block in this file and changes the mappings
so that the modified page will be written out to a different block thereby

effecting an after-look scheme. The SVM maintains a disk page table which

74

records the disk block to pages mappings. On a checkpoint all modified pages
are flushed to their shadows using the msync call and a new consistent state is

established by atomically writing the page table to non-volatile store.

75

4 Concurrency
4.1 Introduction

Many models of concurrency have been designed and implemented [Dav73,
Dav78, EGL+76, M0s81, NZ92, Hoa74, Hoa75, Bri75, Mi80] yet it is not clear
which model, if any, is best suited in a persistent context or how concurrency
should be incorporated into the persistent architecture framework. Most of the
previous work in this area has concentrated on particular models [MBC+88,
Wai88, KB92] which may only be useful for a particular set of problems. One
exception is CPS-algol [Kra87] which allows the user to specify a number of
models in the language. The incorporation of concurrency into the Napier88

system presented here has some similarities to the CPS-algol approach.

The interpretation of concurrency presented here is as a spectrum of
understandability (figure 4.1) where points on this spectrum denote the extent to
which the user can perceive and manipulate concurrent activities. The points on
this scale can be thought of as levels of abstraction over the exposition and

control of concurrent operation.

| solation Co-operation

< >

Figure 4.1: Spectrum of understandability

At one extreme is isolation where the concurrent activity is hidden from the user
and concurrent activities work without knowledge of or interaction with each
other. At the other end is co-operation where the conceptual interaction of
concurrent activities is under complete user control. Specific models of
concurrency lie on points within this spectrum. For example the atomic

transaction model [EGL+76] could be thought of as lying towards the isolation

76

end of the spectrum whilst models based on semaphores lie towards the co-

operation end (figure 4.2).

A different interpretation of this spectrum can be formed by making the
observation that concurrency models residing towards the isolation extreme are
typically found in the database paradigm whilst the co-operating models tend to
belong in the programming languages world. One of the principal aims of the
persistence model is to avoid the impedance mismatch between these two worlds
by providing the user with a uniform view of data. The problem of integrating
concurrency and persistence can then be seen as one of incorporating this

spectrum into the persistence framework.

Atomic
transactions

| solation Co-operation

—

/Progr amming
Databases L anguages

Figure 4.2: Alternate view of the spectrum

Incorporating the complete concurrency spectrum in a persistent system then
enables any particular model to be built. Since it is not yet clear which level of
concurrency abstraction, if any, is best suited in a persistent context this

approach provides a flexible basis for experimentation and usage.

This chapter begins with a discussion of some background issues of concurrency
and broadly categorises styles of concurrency in terms of the bounds of cohesion.
The second section presents a persistent architecture that has been designed to
provide al styles of concurrency by capturing this spectrum into Napier88. This
is achieved by the provision of threads and semaphores at the language level to
enable the expression of concurrent activity and a supporting architecture which

is a marriage between an extended form of shadow paging and the CACS

77

concurrency control specification system [SM92]. Concurrency schemes,
designed using CACS, are directly mapped into these threads. The interaction of
the threads on data is then controlled by the dictates of the specification and

maintained by the architecture.

4.2 Concurrent Architecture

The basic properties of any model of concurrency can be described in terms of :-

» Concurrent Activity - The system provides support for the expression and

management of logically separate activities executing at the same time.

» Shared Information - A fundamental requirement of any concurrency model

is aspecification of how information is communicated among activities.

* Understandability - It is essential that the programmer can reason about the
behaviour of the model’s execution. This means that the system supporting

the model must maintain the model in a state that is explainable to the user.

Implementation strategies for concurrency models broadly speaking take the

following approach to realising these intrinsics.

» Concurrent activity is usually represented by processes or threads of control
[HR73, Ras86]. The term process will be used in the rest of this chapter to

denote a separate activity.

» Information sharing is achieved using either a shared memory mechanism or

message passing [Dij65, Bri70].

* Understandability is derived from process synchronisation techniques,

melding and stability mechanisms [Hoa74, Lor77].

A particular model of concurrency can be defined in terms of the specification

and interaction of these mechanisms. The model’s position on the spectrum of

78

understandability is therefore set by the extent to which the user can determine
and control the mechanisms and their interaction. A persistent architecture that

incorporates the entire concurrency spectrum must provide :-

the user with amethod of specifying concurrency models.

amethod of executing concurrency models.

anumber of concurrency primitives.

interfaces to these primitives that allow the system to relinquish and retain

control of their interaction as determined by the user’s model.

To shed some light on how such an architecture might be constructed the next
three sections provide some background by describing three different styles of
concurrency that represent different levels of concurrent abstraction and
emphasise the organisational support they require from a concurrent system.

They are :-

« Co-operating concurrency

» Conflict concurrency

 Designer concurrency

421 Co-operating Concurrency

At the co-operating end of the spectrum, the programmer is responsible for
maintaining global cohesion. Models in this category have complete freedom to
organise the concurrent activities and their interaction. The constraints on
patterns of behaviour are imposed by co-operation and the preservation of

understandability is by agreement.

Typicaly processes within this framework organise themselves by

communication and synchronisation to achieve understandability.

79

Synchronisation is provided through a system primitive such as a semaphore
[Dij65] or critical region [Hoa72]. The important point of this organisation is that
the various concurrent activities are completely defined and controlled by

agreement between processes.

The major variations with models in this category centre around how processes
communicate and how they synchronise. In essence there are two approaches.
The shared variable model where processes share a common address space

through which they communicate or by message passing.

4.2.2 Conflict Concurrency

In contrast to co-operating concurrency, global understandability may be
enforced. The underlying system may hide much of the concurrent operation and
present the user with a very limited view of concurrent activity by imposing an
organisation that completely controls the interaction of processes. This type of
concurrency is needed in situations where processes work in isolation and whose
interactions with the system may interfere with other processes. The system

provides a framework that ensures that the separate activities do not conflict.

The system is responsible for ensuring the understandability of process execution
and, in executing the separate activities concurrently, must take appropriate
action to ensure a serializable schedule of component parts from a number of
processes. The system must also ensure that when a process completes its effects
are made permanent. One widely documented model that fits well with this

scheme is the atomic transaction model [EGL +76].

The required components necessary to construct a system with imposed

organisation are :-

» A concurrency control mechanism is required to ensure that processes do not

interfere with each other. More precisely the concurrency control mechanism

80

determines which processes have access to data and the type of access.
Common concurrency control mechanisms include locking, timestamp

ordering and optimistic concurrency.

* A mechanism that implements atomicity. In particular it must ensure that the
effects of an aborted process or one that failed to complete due to system

failure must be undone.

* A mechanism that provides permanence of effect. The changes made by a
committed process must be persistent and recoverable after system failure. A

detailed discussion of recovery techniquesis given in chapter 2.

4.2.3 Designer Concurrency

Strictly speaking any concurrency scheme where the operation is not completely
system controlled can be considered to be co-operative. If the system does not
impose al the constraints outlined in the previous section then an activity that
causes inconsistency can always be constructed. However there is a need to
identify a middle ground and recognise that there are a growing number of
concurrency models which require a level of global cohesion in which conflicts

can occur but that the imposition of total system control istoo restrictive.

The reason for the rise in the number of such models is that for a large class of
applications the constraints imposed by the atomic transaction model are too
heavy. For many of these applications the issue is purely one of performance
where the restrictions enforced by atomic transactions can often stifle potential
concurrency and hence overall throughput. This is particularly true when
transactions are long lived. Techniques such as semantic-based concurrency
[Gar83] and the Sagas model [GS87] have been proposed as methods of

alleviating this problem.

81

Many applications that have sprung from work on CAD databases, multi-media,
interactive systems and software engineering find that, in addition to stifling
performance, the conflict concurrency is unsuitable from a modelling
perspective. Tasks in these applications often split naturally into a hierarchy of
highly inter-dependent subtasks that are required to interact with each other in a
structured way. Total co-operation may not be suitable since groups of subtasks
may require to work in isolation from other groups. These so-called design
transactions are often open-ended in that they are interactive and iterative in

nature and cannot always be completely specified when they start.

A variety of concurrency models [FZ89, NSZ91, NZ92, Sut91, EG90] that relax
the serializability constraint have come from these application areas. In these
models the separate activities do not work in total isolation or in complete
agreement with each other. Conflict is either avoided or the effects compensated
by following the convention of the model. The processes agree to follow the
conventions of the model but not necessarily with each other. In this sense then
the system abdicates responsibility to the model for maintaining correct
concurrent operation. The level of concurrent abstraction in the designer
concurrency range varies from one model to the next. Such models often employ
ad-hoc methods to provide a level of understandability. These models are not
generally applicable but are only workable in situations where the problem can

be expressed within the limitations of the model.

The architectural requirements for designer concurrent systems are difficult to
pin down since the models are so diverse. The architecture of each of these
systems tends to be specifically tailored to supporting its particular concurrency

control mechanism.

82

4.3 Concurrency in Napier 88
43.1 Introduction

The integration of concurrency into Napier88 was directed by a number of

designams:-
» Themodel must be able to support the range of concurrency models.
» Concurrency should be incorporated without changes to the language model.

» The existing layered architecture should be retained and the integration

should build in as few primitives as possible to the system.

The crux of the approach taken is to define understandability in terms of data
visibility between concurrent activities. This is reflected in the design of a
conceptual concurrent layered architecture in which visibility is defined and
controlled by the movement of data between a hierarchy of conceptual address
spaces. The architecture provides global cohesion at one end of the spectrum by
constraining data accessed by one activity to a separate address space from all
others. Concurrency models using this architecture define their point on the
spectrum in terms of data visibility through the sharing of address spaces and the

control of movement between these spaces.

The motivation for this design comes from Stemple and Morrison’'s CACS
system [SM92]. The CACS system provides a framework in which concurrency
control schemes can be specified. The CACS system is a generic utility for
providing concurrency control for other applications. The system does not
actualy manipulate any objects, but instead maintains information about their
pattern of usage. In order for the system to collate this information, the attached

applications must issue signals regarding their intended use of their objects. In

83

return the CACS system replies indicating whether or not the operation would

violate the concurrency rules.

A particular concurrency control scheme is defined by giving a set of rules for
the behaviour of the CACS abstract machine. The CACS language is a formal
design language supporting mechanical theorem proving. The conceptual
framework of CACS may be explained in terms of the components used to
specify concurrency control schemes. These are actions, objects, events, and

visibility control.

* Actions

An action is a sequence of operations on shared data that has some sense of
cohesion; it is a unit of computation that needs some isolation from

concurrent users of shared data.

Actions perform their computations by executing programs which are
algorithms annotated by markers. The algorithms specify the manipulations of
the data whereas the markers, called events in CACS, specify the points at
which the actions must interact with the control system to operate correctly

over the shared data.

* Objects

The data consists of uniquely identified objects.

e Events

In CACS there are two categories of events. action events and object/visibility
events. All events are requests by an action to the control system to proceed
and any particular concurrency control scheme will include al the events

necessary to control the use of shared data.

Action events include action initiation and termination. Other events, such as
spawning subtransactions in the nested transaction model are action eventsin
particular concurrency control schemes. Action events and their semantics are
defined as part of concurrency control schemes. The semantics of these events
is defined by rules that specify the effects of actions on the visibility and

dependencies.

Object/visibility events include object operations and object commits.

. Visiility

The model of computation that forms the CACS abstraction is designed to
focus on the visibility of data from different actions. The semantics of CACS
control over visibility is expressed in terms of the database, which comprises
the globally visible data, and conceptual stores called access sets. Each action
is associated with a local access set and may use other shared access sets in
order to effect communication between actions without using the database.
When using CACS to specify a concurrency control scheme and when
explaining the semantics of a particular control scheme the access sets may be
thought of simply as stores holding data. When actions operate on shared data
thisismodelled in CACS by the effects of the operations being kept in shared
access sets. Movement of data from access sets to the database, which is the
semantics of object commit, is the way changes to visibility are made global

in CACS. Movement among local and shared access sets occurs explicitly.

The basic components of the architecture of CACS are shown in figure 4.3.

85

Database

Event 11 Event, 4 Eventn 1
Event, , Event, , Event,, >
EventLm Eventz,p Eventn,r
v ' Event Stream v
-

Figure 4.3: The CACS Basic Components

CACS then presents a model that is based on data-centred invariance. Thisisin
contrast to the approach taken by forma models such as CCS [Mi80] and p-
calculus [Mi92] which build abstractions from a co-operative concurrency base.
In these models the programmer must be aware of the total code body of the
system because of the local cohesiveness of the synchronisation primitives. This
can add considerable complexity in defining and building concurrency models

especialy in an evolving system of some scale.

From the conceptual layered design a concurrent persistent architecture has been
constructed that supports the CACS model in the Napier88 system. The
persistent store is used as the model for the CACS database with a concurrent
shadow-paging scheme corresponding to the access sets of CACS. Actions in
this system are defined as collections of lightweight threads and semaphores

which are used as a way of expressing concurrent activity. A multithreading and

86

semaphore package has been added to Napier88 and its language design and

interface are described in appendix A.

The advantages of dovetailing CACS and Napier88 with a concurrent shadow-

paged persistent store are seen as :-

* a system which is capable of supporting any model of concurrency with

CACS controlling the movement of data between access sets.

« adliance of access sets with shadow paging. It was argued in chapter 2 that the
coarse granularity of shadow paging was seen as an advantage in systems
which exhibit locality. The shadow paging scheme does not employ page-

level locking.

» The resulting architecture enhances the existing Napier88 layered architecture

rather than re-defining it.

The rest of this chapter is concerned with the details of the conceptual layered
architecture, the concurrent shadow-paged store derived from it and the
incorporation of CACS and the Napier88 architecture. The chapter concludes
with an example of how one concurrency model, the atomic transaction model,

can be designed and built in this system.

87

/\\

Distribution

Concurrency User Transactions

-

Persistent Abstract Machine

Local Heap

Protection Mechanism ‘
Stable Heap of Persistent Objects

(Stable Virtua Memory

[Non Volatile Storage]

Figure 4.4: The Napier88 Concurrent Persistent Layered Architecture

The implementation of CACS can be thought of as a whiteboard architecture
[Cut92] that enables communication from different levels of the Napier88 system
(figure 4.4). At the top level the CACS system regards Napier88 programs as
event generators. A Napier88 program will observe a concurrency control
protocol when written and present itself to the CACS protocol generator. This

transforms the program with the correct CACS communication built in.

For example in an atomic transaction model the protocol will communicate with
CACS when a significant event occurs such as starting a transaction, committing
or aborting a transaction and reading and writing data. CACS then can maintain
information that enablesit to check for read or write conflicts when a transaction
commits. On a commit CACS will inform the paging system to meld thereby
establishing a new consistent state on non-volatile store. Once the changes made
by the transaction become permanent they must be made visible to the other
transactions. The meld involves writing the pages to disk changed by the
transaction and atomically modifying the stable disk page table so that it reflects
these changes thereby creating a new consistent recoverable global state. The

differences between the shadowed pages modified by the transaction are then

88

propagated to any other transaction working on a copy of the same original

4.3.2 Conceptual Concurrent Layered Architecture

The conceptual concurrent architecture is layered in such a way that it separates
the concurrency control mechanism, the atomicity and the persistence. These
layers are described in terms of conceptual address spaces together with a
protocol that controls the movement of data between these address spaces. By
unbundling and distributing the concurrency intrinsics in this hierarchy the
architecture provides a generic layered store capable of supporting a number of

different models of concurrency.

Figure 4.5 gives a diagram of the architectural hierarchy shown as a layer of
conceptual address spaces. Each layer implements a separate and independent
property of concurrency. This permits any particular concurrency model the

flexibility to choose a desired combination of intrinsics.

89

Concurrency
control address

actions

Action address
space

< Per sistent aox ress space)

Figure 4.5: Conceptual Concurrent Architecture

At the top level is alogical address space that contains a full definition of the
concurrency control mechanism. No assumptions are made by the lower layers
about the concurrency control and hence this leaves the implementor freedom to
choose any desired scheme. For example this may be redised in an
implementation as a heap of objects incorporating two-phase locking or

aternatively by CACS.

An action, in this architecture, is an isolated thread of control that communicates
with the concurrency control address space and whose state is defined by the
action address space. The action address space layer is a set of private and group
address spaces. Each action has a private address space (marked “L” in
figure 4.5) which is analogous with the local access set of CACS. In addition the
action address space may house a number of group address spaces that are shared
by a combination of actions (marked “S’ in figure 4.5) which reflects the CACS
shared access sets. Group address spaces can be hierarchic. The CACS database
ismodelled by the persistent address space.

90

The operations available at the interface allow the concurrency control schemeto
create actions, abort actions and move data between address spaces. There is no
in-built communication, synchronisation or serializability between actions and
hence the concurrency control must define the movement of data between the
group and local address spaces. The architecture ensures that all data movement
isatomic. Movement of data from an action’s private address space or a group of
actions' group address space to the persistent address space is through a meld
operation. The architecture supports the atomic update of the persistent address
space so that its data is permanent, recoverable and consistent. The meld
operation, under the control of the concurrency control, makes sure that data
movement to the persistent address space becomes visible to all other actions.
The effect of an action abort is to release the action’s private address space. The
relationship between action abort and group address space is determined by the

concurrency control.

This architecture framework enables the separation of concurrency intrinsics into
logical address spaces. Concurrency control is defined and contained within the
concurrency control address space. Isolated and group actions operate within the
action address space. Atomicity is provided by the action address space layer and
permanence is handled by the persistent address space layer. This then provides

the versatility to support a complete range of concurrency models. For example:-

» Support for atomic transactions can be provided in this architecture through a
concurrency control specification that constrains each action’ s updates to their
private address space thereby isolating their effects. Transaction commit
involves the atomic update of the transient and persistent address space
making the transaction’s changes permanent and globally visible. Transaction

abort isatrivial matter of discarding the private address space.

» Co-operative concurrency is viewed in this architecture as a single action

since the interaction of co-operative activities do not require isolation control.

91

» Designer transactions models can be accommodated by a combination of
private and group address spaces and a concurrency control specification that
defines their creation, interaction and movement. Thus the effects of
operations may be shared among actions without their objects being

committed to the persistent address space.

4.3.2.1 Concurrent shadow paged store

It may be difficult to produce an efficient implementation of an architecture,
especially on stock hardware, that involves the maintenance of a range of
separate address spaces and the control of data movement between them. One
possible solution arises from the observation that each layer need only maintain
copies of the portions of the underlying layer’s address space that it has changed
along with a table which provides a mapping between the origina and the copy.
Applying this strategy down the layers, the resulting architecture collapses into
one flat address space with a hierarchy of mappings. This address space can then
be implemented as a recoverable paged virtual address space using an extended

form of after-look shadow paging.

The shadow paging scheme works much as described before in section 2.5.1
whereby the virtual address space is mapped to non-volatile storage through a
disk page table. Modified pages are shadowed and the transient disk page table
reflects the current global state of the address space. In addition a separate disk
page table is created for each private and group action address space used. Each
action has its own private address space and so a disk-page table is created for
each action. Similarly a disk page table is created for each group address space
required by the model. Entries to the disk page tables are added for each page
modified by the action. When an action first modifies a page a shadow copy is
made and the action works on the copy. The concurrency control specification
dictates whether the update is a private or group one. Hence the changes made by

an action to its private address space are totally isolated from other actions

92

private address spaces. Also the group address spaces are isolated from each

other and from the private address spaces.

The architecture isillustrated in figure 4.6 and shows that the transient disk page
table and the action disk page tables are accessible from the root page. Asin the
single threaded case the transient disk page table and the stable disk page table
maintain a page table entry for each page of the address space. When a page,
modified by an action, is written out to non-volatile store it is written to its
shadow and the mapping recorded in the per-action page table. The action page
table only has entries for pages modified by that action and not the complete
address space. The illustration in figure 4.6 shows that there are five pages in the
virtual address space and that there are currently two actions A and B. The disk
page table for action A shows that A has modified pages O and 2 in its private
address space and that action B has modified pages O, 1 and 3 in its private
address space. Note that page 0 has been modified by both actions but that the
shadow page mechanism isolates their modifications. The third disk page table
reflects a group address space that shows action A and B are working on a shared

copy of page 2 and 4. CACS will disambiguate action A’s access to page 2.

The scheduler for this concurrent system must ensure that the correct mappings
are established on a page fault. For example when action A accesses a page that
results in a page fault, the system must search A’s disk page table for the page
(or agroup that A is currently in). If there is no entry for the page in A’s disk

page table then the transient disk page table is searched.

93

root page

— | A| BIA/B " action disk
transient disk X age tables
page table 0
0 2
0|12]|3 |4 Vi / /
Y 3 yd

%/T/q/ pages on disk

011213 |4 |« root block

stable disk

page table non-volatile store

L] action A u action B u A/B group
shadow pages shadow pages shadow pages

Figure 4.6. Concurrent shadow-paged architecture

A meld mechanism is provided on a per-action basis so that changes made by an
action can become part of a new recoverable, consistent state and then these
changes are made visible to other actions. It is possible for a number of actionsto
be working on shadow copies of the same page and the meld propagates the
differences between the shadowed pages modified by the action and the originals

through to any other action working on copies of the same original pages.

To establish a new consistent state all pages modified by the action are written to
their shadows. Then the entries for these pagesin the transient disk page table are
updated to record the same mappings. For example, if a melding action had
modified page P and its shadow page was disk block D then the transient disk
page table entry for P must also record that it is mapped to D. To ensure

atomicity of the meld the updating of the transient disk page table will involve

94

shadowing of the page encompassing the transient disk page table entry. Once
the transient disk page table reflects the new consistent state it atomically

replaces the stable disk page table.

4.3.2.2 Concurrency control and per-action melding

The algorithm that meld uses to propagate changes is dependent on the particular
concurrency model in operation. For example suppose that two actions A and B
share a page but modify different objects on that page. Because of the isolation
of the concurrent shadow paging mechanism A can meld without affecting B.
For B to meld it must retain the changes that A made. And so a mechanism is
required for B to ingest the changes made by A. The approach taken is to link
data access and the melding process in with the concurrency control through an

implementation of the CACS system.

There are a number of ways this propagation could be implemented. For each
page in its page table the action could record the address ranges that it has
modified within that page as the changes are made. This could then be used to
copy the modifications to other transactions holding a copy of the same page. An
alternate method is page diffing as suggested by Wilson [SKW92] whereby a
byte-by-byte comparison of a page is made with the original to determine the

changes.

Alternatively logical operations can be used to propagate the changes. Suppose
two actions A and B have changed different objects on the same page P and
action A melds. The changes made by A to page P can be calculated by xor P
onto the original page. These changes can now be xor’d onto action B’s copy of
page P. Thus B’s version of page P now includes the changes made by A. This
will only work provided that two transactions have not modified the same object.

Provided that there is a mechanism elsewhere that prevents or detects such object

95

conflicts then this approach may be reasonably efficient and is the one that is

adopted in the first implementation.
4.3.3 Atomic transactionsin Napier 88

The concurrent shadow paged store just described together with the per-action
melding, threads, semaphores and the CACS system provide sufficient flexibility
to enable a number of concurrency models to be constructed. The Napier88
system and CACS communicate with each other at three levels. At the language
level the Napier88 program contains annotations which signal events, such as
starting an action or committing an action, to the CACS system. The abstract
machine level communicates with CACS to register the object reads and writes
and CACS communicates with the store level to perform the meld. As an

illustration an atomic transaction package has been built in this system.

The package uses a serializable schedule that is based on an optimistic version of

the readers/writers protocol and observes the following :-
* Anobject Oisawaysread by atransaction T; before it iswritten.

* Anobject O modified by T; and read by any T; wherei * j will cause Tj to be
aborted.

The protocol is optimistic in the sense that a transaction performs updates and
only checks for conflicts with other transactions when it commits. If there are
conflicts then the other transactions that have contributed to the conflict are
aborted. This approach is possible because of the passive nature of the CACS
system and the per-action shadow paging which isolates the changes made by

running transactions (figure 4.4).

96

type transactionPack is abstype [tid] (
createTransaction : proc (-> tid);
beginTransaction : proc (tid, proc ());
commitTransaction : proc (tid);
abortTransaction : proc (tid);
readPid : proc (tid, pld);
writePid : proc (tid, pld))
)

Figure 4.7: The transaction package definition

The transaction package generates five events that are significant to the CACS
system. These are begin transaction, commit transaction, abort transaction and
read and write. These events are reflected in the transaction package definition
shown in figure 4.7. The transaction package is declared as an abstract data type
parameterised by the transaction identifier so that its structure cannot be
discovered or impersonated. The createTransaction procedure registers a new
transaction and returns a unique transaction identifier which the user then

provides on calls to the other transaction procedures.

The beginTransaction procedure is also parameterised by a void procedure
which is the code the transaction executes. The beginTransaction will signal the
event to CACS which will communicate with the stable virtual memory system
to create a new per-action shadow page table. Similarly the abortTransaction
procedure will cause CACS to inform the system to discard the shadow page
table.

The only shared data in this model is persistent data and sharing is done at the
object level. Persistent objects in the stable heap are addressed through their
persistent identifiers, or pids. The Napier88 architecture as shown in figure 4.4
uses a local heap as a cache of persistent objects. Both the local heap and the
abstract machine work directly on virtual memory addresses and hence there are
no explicit read and write procedures to move data between the local heap and

the abstract machine. However, a convention is required so that the abstract

97

machine can distinguish local heap addresses from pids. This may arise for
example if the abstract machine was to de-reference a field of a structure in the
local heap that pointed to an object in the stable heap. Such a dereference causes
the object to be copied from the stable heap to the local heap and effects an
address tranglation or swizzle that overwrites its pid with the local heap address.
When objects are written out from the local heap cache they are de-swizzled and
have their local heap addresses replaced with pids and hence local heap objects
carry their pid (figure 4.8).

Pointer Non-pointer

pid Fields Fields

header

Figure 4.8: Format of local heap object

The abstract machine can tell when a swizzle has occurred or when an object has
been modified and can signal these events to the CACS system through the
readPid and writePid procedures. CACS maintains a table of transactions and
pids which can then be used to detect conflicts. When commitTransaction is
communicated to CACS this table is checked for conflicts and any offending
transaction aborted. CACS can then signal the stable virtual memory to perform
a meld and propagate the changes to the other transactions using the double xor

method described above.

Capturing and reporting the shared object accesses from the abstract machine
highlights the most significant difference between this approach and the CPS-
algol model [Kra87]. In CPS-algol the shared objects must be declared when the
program is constructed and are wrapped up in a package of procedures that are
used to monitor access to these objects. In the Napier88 atomic transaction
system the user need not be concerned by shared objects and can access and
manipulate objects normally. The user interface to the transaction package thus
only has procedures for creating, starting, aborting and committing transactions

as shown in figure 4.9.

98

type userTransactionsis structure (
createTransaction : proc (-> any);
beginTransaction : proc (any, proc (any -> proc ()));
abortTransaction, commitTransaction : proc (any))

Figure 4.9: User interface to the transaction package

The createTransaction procedure returns a value of type any which acts as a
handle or key into the transaction package for that particular transaction. The
structure of the any cannot be discovered by the user. This key is a value of the
dynamic witness type for the transactionPack abstract data type injected into an
infinite union. This reflects the way in which Napier88 enables values of witness

types to escape their scope [Cut92].

4.4 Conclusions

The concept of concurrency can be viewed as a spectrum of understandability
where points on the spectrum define levels of abstraction over the exposition of
concurrent operation. The integration between concurrency and persistence is
seen as one of incorporating this spectrum into the persistence model. This
requires a persistent architecture that has the flexibility to support all styles of

concurrency.

In an effort to understand how such an architecture might be constructed three
different styles of concurrency that represent different points on the spectrum
were discussed. The styles were categorised by how they specify and interpret
the concurrency intrinsics of separate activity, sharing and understandability and

how these interpretations inter-relate.

The approach to integrating concurrency into a persistent system presented here
is to view understandability in terms of data visibility between separate actions.

A conceptua concurrent layered architecture was described in which the

99

intrinsics of concurrency were separated into address spaces. In the model the
visibility of data was equated to the sharing of address spaces and the movement
of data between them. The motivation for this architecture arose from the

specification system CACS.

From this design a persistent architecture for Napier88 that can support all styles
of concurrency has been constructed. The system incorporates CACS with the
persistent store acting as the database and uses a correspondence between

concurrent shadow paging and the CACS access sets.

As an example of how the features of this new architecture can be combined the

construction of an atomic transaction package was presented.

100

5 | mplementation of Concurrency
51 Introduction

The issue of integrating concurrency into a persistent framework was seen as one
of the linguistic provision and machine support for a range of styles of
concurrency. In the previous chapter an architecture was presented which has the
flexibility to enable any concurrency model to be built. As examples of this, two
concurrency models in Napier88 which lie on opposite ends of the concurrency

spectrum have been implemented :-

A co-operating concurrency model based on lightweight threads and
semaphores for synchronisation. The language level interfaces for these

packages together with an example program is given in appendix A.

» A competitive concurrency model based on an atomic transaction package.
This package, constructed in Napier88, builds transactions from the threads
and semaphores and relies on a new concurrent shadow paged store to ensure
isolation. The package employed the CACS system to monitor conflicts and
to communicate with the stable store. Appendix B gives an annotated listing

of the Napier88 code for this package.

This chapter is concerned with details of the implementation changes to
Napier88 system to realise an architecture that can support all styles of
concurrency and how these contrasting models were accommodated. The
presentation of the implementation details is divided into two main sections. The
first section deals exclusively with how the Napier88 system was adapted to
provide the multithreading facilities. Because the threads are used as a basis for
co-operating concurrency then there is no requirement to isolate the changes

made by one executing thread from another. Hence the provision of

101

multithreading can be accommodated entirely within the language and abstract

machine.

The second section is concerned with the implementation of the atomic
transaction package and in particular with the concurrent shadow paged store. At
present a full implementation of the CACS system is still being designed. In
particular the area of the primitives and protocols required for CACS to
communicate with the Napier88 system at various architectural levels outlined in
section 4.3.3.4 are yet to be finalised. Towards this goal a new concurrent
shadow paged store that directly supports the atomic transaction package has
been designed and built. The implementation essentially hardwires in the
handling of the significant events that would be passed to CACS. Such an
approach alows for experimentation with the language level atomic transaction
model and hopefully helps to make it clearer how a CACS system might be

constructed.
5.2 Multithreading | mplementation
521 I ntroduction

The implementation strategy in incorporating multithreading into the Napier88
system involves changes to the Persistent Abstract Machine (PAM) [CBC+90].
The Persistent Abstract Machine is primarily designed to support the Napier
programming language. It is closely based on the PS-algol abstract machine
[BCC+88], which in turn evolved from the S-algol abstract machine [BMM80].
As such the PAM isinherently single threaded.

Theissuesinvolved in adding multithreading functionality to PAM centre around

» thedefinition of athread context.

» the creation and deletion of thread contexts.

102

 the scheduling of contexts.

 the abstract machine sinterpretation of user control over threads.

» making threads persist.

The strategy for incorporating multithreading presented here is constrained to
implementations of the abstract machine that operate on single processor
machines. At any one time there is only ever one thread executing. This greatly
simplifies the implementation. The decision to take this approach allowed for
greater experimentation and testing of the language model. With the benefit of
experience of persistent threads and a better feel for the desirable features of a
thread context, future implementations may be designed to fit multiprocessor

machines.

522 Semaphore | mplementation

For experimentation purposes it was decided to implement the semaphore
package in Napier88 in the standard environment rather than implementing a
semaphore abstract machine primitive. This allowed for greater flexibility in that
it is easier to modify its implementation. The package presents a general
semaphore and its implementation is given in figure 5.1. The implementation
uses the Napier88 primitive function modlock to achieve atomic update to the
semaphore value. Details of this function and its implementation are given in

section 5.2.6.

103

use threadPackage as X[Thread] in

begin

rec type SemaphoreQ is variant(entry : SemaphoreStruct; empty : null)
&

SemaphoreStruct is structure(thread : Thread ; next : SemaphoreQ)

let semaphoreGen = proc(initiaValue : int -> SemaphorePack)

begin
let count :=initialValue
let Q := SemaphoreQ(empty : nil)
let wait = proc()
begin
let dontCare = modlock(1) I Atomic update
count := count - 1
if count <0 then
begin
let thisProc = X(getThreadid)()
I Get id of thisthread
I' Add this thread to the end of the SemaphoreQ
I Suspend this thread release modlock atomically
let dontCare = modlock(-1)
X(suspend)(thisProc)
end else{ let dontCare = modlock(-1) }
end
let signal = proc()
begin
let dontCare = modlock(1) I Atomic update
count := count + 1
if count <= 0then
begin
I Now take athread off front of the SemaphoreQ
I Release lock and restart this thread
let dontCare = modlock(-1)
X(restart)(thisProc)
end else{ let dontCare = modlock(-1) }
end
SemaphorePack(wait,signal)
end
end
Figure5.1: Semaphore implementation
523 Persistent Abstract Machine

To understand how multithreading is built into the Napier88 system requires

some background detail of the Persistent Abstract Machine (PAM) [CBC+90].

104

The machine is an integral part of the Napier88 layered architecture and
interfaces cleanly with the persistent store. The abstract machine has the

following distinguishing features :-

» auniform representation of heap objects

ablock retention system

alow-level type system

* aheap-based storage architecture

» asmall number of machine registers

The PAM uses one object format for al heap items. This alows the utility
programs such as garbage collectors and persistent object managers to be built in
a manner that is independent of the programming language types. Heap objects

have the following format :-

word 0 object header (includes the number of pointer fields)

word 1 the size in words of the object

word 2..n the pointer fields

word n+1.. the non pointer fields

The block retention mechanism is required to support higher-order functions.
The Napier language supports first-class procedures with free variables. To
achieve the desired semantics, the locations of these variables may have to be

preserved after their names are out of scope.

A primitive two-level type system within the machine contains enough
information to allow machine instructions whose behaviour depends on the

dynamic type of their operands. In conjunction with the block retention

105

architecture, the type system is used to provide an implementation of
polymorphic procedures, abstract data types, and bounded universal
guantification [MDC+91].

The abstract machine is built entirely upon a heap-based storage architecture.
Although the machine was primarily designed to support a block-structured
language, for which a stack implementation might be the obvious choice, the
heap-based architecture was chosen as a convenient way of supporting the block
retention. The PAM does not maintain its own store using the stable heap
interface to the persistent store instead. This means that there is only one storage

mechanism and one possible way of exhausting it.

Stacks are still used conceptually, and each stack frame is modelled as an
individual data object. Stack frames represent the piece of stack required to
implement each block or procedure execution of the source language. To aid
garbage collection, a stack frame contains two separate stacks, one for pointers

and one for non-pointers. The size of each frame can be determined statically.

The PAM uses five registers :-

* ROP - abstract machine root object pointer

The specia object, known as the root object for the abstract machine, is
pointed to by the ROP register. The object contains, within its closure, all the
housekeeping information required by the abstract machine, including the
current state of any active programs, and a pointer field that is used as the root

of persistence for user data.

 LFB - local frame base

The persistent abstract machine implements a stack using a separate heap
object for each stack frame, described below. A stack frame is created

whenever a procedure is called or a block is executed. The LFB register is

106

used to point to the stack frame for the currently executing procedure or block
(the local frame) and must be updated on every procedure call, procedure
return, block entry and block exit. All local data may be accessed by indexing
the LFB.

LMSP and LPSP - loca frame main and pointer stack tops

In order to conform to a single object format, each object representing a stack
frame actually contains two distinct stacks [Mor79b]. The pointer stack
contains pointers and the main stack contains non-pointers. Within the local
frame, pointed to by the LFB register, the LM SP register points to the top of
the main stack and the LPSP register points to the top of the pointer stack. In
fact the LMSP and LPSP registers point to the word following the last word
on the appropriate stack. It should be noted that the LM SP and L PSP directly
address the contents of a heap object. However, these registers are never
stored in the persistent heap and are always recalculated whenever the LFB
register is updated.

CP - code pointer

The next abstract machine instruction to be executed is directly addressed by
the CP register. The CP register is similar to the LMSP and LPSP registersin
that it is never stored in the persistent heap. Its contents are aways
recalculated whenever the object containing the abstract machine code is

changed or moved.

A stack frame contains a pointer stack, a main stack, the relative positions of the

stack tops with respect to the start of the frame and the relative position of the

next instruction with respect to the start of the code vector. The relative positions

are used to calculate the values of LM SP, LPSP and CP when a frame becomes

the local frame. Similarly, the relative positions are recalculated whenever a

frame ceases to be the local frame or a store operation is performed that may

107

move the local frame or the code vector. The format of a stack frameis shown in

figure5.2.
H D|C]| S
E
Al S| LIV I|L Pointer Main R | M
D| | I | E | Al S
E| Z| N|C|N > > P
Rl E| K K Stack Stack
Figureb5.2: Stack frame

word 0,1 object header and size

word 2 the dynamic link (DLINK)

word 3 apointer to the code vector for the frame's procedure (CV EC)

word 4 the static link for the frame's procedure (SLINK)

word 5.m the pointer stack for the frame's procedure
word m+1..n the main stack for the frame's procedure

wordn+l the resume address for the frame's procedure (RA), the saved
offset (in bytes) of CP from the start of the procedure's code

vector
wordn+2 the saved offset (in words) of the LMSP from the LFB (M SP)
524 Definition of Thread Contexts

The inspiration for the multithreading implementation strategy comes from the
observation that, on a checkpoint, the abstract machine saves the context of the
currently executing procedure in the local frame and a pointer to that frame is
saved in the PAM root object. On system startup the PAM root object and the
local frame are fetched from the store. From the local frame, the machine

registers are re-established and the procedure continues from exactly the point it

108

was at before the checkpoint. The multithreading implementation essentially
generalises this method by the introduction of thread objects, or throbs, in PAM
which capture the context of the executing procedure associated with each

thread.

thread thread
status ID

, next
header size throb Ifb

Figure 5.3: Thread context block

The format of the thread context block is given in figure 5.3 and shows that the

throbs conform to the heap object format.

word 0,1 object header and size

word 2 pointer to next thread context block

word 3 a pointer to local frame base containing the current context for

this thread’ s procedure

word 4 current status of the thread. E.g., suspend, runnable etc.

word 5 integer thread identification

In the initial implementation thread context blocks are held as a single linked list
where the head of the list is stored in a field of the PAM root object. This was
done purely for simplicity to ease the implementation and alow for

experimentation.

5.25 Thread Context Block Creation

A new thread context block is created every time the user starts a new thread.
The user interface is through an abstract data type, ThreadPack, as shown in

figure A.1. The interface allows a user to start a new thread with an associated

109

void procedure, kill, suspend and resume threads and find the id of the current

thread.

The ThreadPack abstract data type is defined in the Napier88 standard
environment where it is specialised to integer. Each of the procedures of the
ThreadPack calls a primitive Napier88 function which executes an appropriate
PAM instruction. Rather than add a new PAM instruction for each procedure of
the thread pack the implementation introduces one new instruction, threadOp,

which is parameterised to distinguish each thread operation.

When a new thread is started, a new stack frame object and a new throb is
allocated from the heap. The static link and code vector for the thread's
procedure are taken from the stack and placed in the corresponding fields of the
new frame. The dynamic link field is set to nil so that the thread can exist
independently of its caller. A pointer to this frame is saved in the new throb and
the thread status is marked as ready to run. The identification number of the
thread is obtained from the root object. The root object then increments this

number.

5.2.6 Context Switching

The multithreading implementation requires a scheduler to control the execution
of separate threads. One possibility would have been to execute the threads as
SunOS lightweight threads and let the target machine perform its own
scheduling. It was felt that initially it would more beneficial for experimentation
to retain full control over scheduling threads by writing a scheduler within the
abstract machine. This avoided problems that might have arisen in the interplay
between the execution of PAM and the SunOS scheduler. For example the
scheduler can easily ensure that a context switch does not happen in the middie

of aPAM instruction.

110

By incorporating a scheduler into the abstract machine the atomicity of PAM
instructions can be preserved. There are however two critical sections in
Napier88 where it is necessary for a sequence of PAM instructions to be

executed indivisibly with respect to context switching :-

» Update of a semaphore value must be done atomically. The semaphore
implementation is written in Napier88, as shown in section 5.2.2, and hence
the semaphore value update may involve the execution of a number of PAM
instructions. Context switching in the middle of this sequence of instructions

must be prevented.

» Similarly the implementation of environmentsis also written in Napier88 and
hence environment updates need to be atomic with respect to context

switching.

Such critical sections are identified by enclosing them in calls to the primitive
function modlock. This function sets a global lock that the scheduler tests before
context switching. The lock is maintained as an integer count rather than a lock
bit and its value is incremented when current executing thread enters a critical
section and decremented when it leaves. The scheduler will not context switch
when the lock count is positive. A lock count is used so that the currently
executing thread can nest through critical sections. It is recognised that the use of
a global lock for the semaphore value update may cause an unnecessary
bottleneck in the store. This approach was taken for simplicity of implementation
to quickly produce a system that could be used to test the language model. Future
implementations will consider alternatives such as using a Unix system

semaphore.

It should be pointed out that the modiock operation is strictly dependent on a
single processor machine. Because there is only one currently executing thread it

will always “get” the lock and never be halted waiting for it. The lock count is

111

held in the PAM root object so that its value will be automatically saved and

restored on a checkpoint.

The scheduler forms part of the PAM instruction decode loop. The decode loop
extracts the next current instruction from the code pointer, increments the code
pointer and calls a procedure to handle that particular instruction. After each
instruction has been executed the decode loop checks to see if an asynchronous
event that needs attention has happened during the execution of the last
instruction, such as input from the keyboard. These events are dealt with before
the next instruction is extracted and dispatched. At this point the scheduler
determines if a context switch should happen. The scheduler can be forced to
context switch or it may decide itself to switch. A forced context switch is
flagged by the last executed instruction setting a thread signal. This will happen
for example when the user suspends the current thread. The scheduler will
undertake a context switch based on time-dlicing and provided the lock count is
zero. Thread execution is time-sliced by the number of PAM instructions it has
executed. Currently the number of instructions, determining the time quantum, is
fixed but experiments and future implementations may make this a persistent

self-modifying variable dependent on execution analysis.

The context switch involves first searching the list of threads for one that is not
suspended. The scheduler employs a round robin algorithm by placing the
current thread on the end of the list and making the first waiting thread found
that is ready to run the current thread. Before placing the current thread on the
end of the queue its context, the code pointer and stack pointers, is saved in the
local frame base and the pointer to this frame is stored in the local frame base
field of the current throb. To complete the context switch the PAM machine
registers are then loaded from the new current thread context block. The decode
loop will now execute the instructions from the code for the procedure associated

with this new thread from the point where it was suspended.

112

When a thread' s procedure completes the thread context block is automatically
removed from the list of threads. This can be detected by the interpreter at the
point where a return instruction is executed and there is no dynamic link. The
scheduler will then switch to another thread. If there are no more threads or if all
existing ones are suspended and not ready to run then the state of the machine,
including the suspended threads, is checkpointed and the current session

terminates.

527 User-control of Threads

As explained above the user can control the threads through suspend, kill and
restart procedures. Calls to these result in the execution of the threadOp

instruction parameterised to indicate which procedure is being called.

A suspend or restart threadOp instruction results in the status of the specified
thread recording the new state. If the specified thread is the currently executing
thread then the instruction sets a flag to inform the scheduler to context switch

immediately.

A kill thread instruction simply removes the specified thread’s context block
from the list of throbs. If the currently executing thread is being killed then the

suicide is reported to the scheduler which then forces a context switch.,

At present no attempt is made to report errors in control of the threads back to
the user. Examples of the kind of errors that can arise include trying to kill a
thread that was already killed or restarting a process that was not suspended. It is
not clear whether it is vital to report such situations or to take the approach here
and just ignore the errors. One suggestion that may help is for each thread to
have the functionality to provide its own error reporting. At present the root
object contains a pointer to a vector of event handling procedures and a pointer
to a structure of error handling procedures. It would not be difficult to provide

these on a per-thread basis.

113

528 Persistent Threads

When a checkpoint is initiated the state of the machine must be saved onto non-
volatile store and restored on startup. By including a pointer to the list of threads
in the root object the checkpoint will automatically save their state since it forms
part of the closure of the root object. On startup the list of throbs must be pulled

from the store for the scheduler to resume execution.

It is rather easy for the user to construct either deliberately or inadvertently a
runaway thread for which the user has no handle or to create suspended threads
that cannot be awoken through mismatch of wait and signals on a semaphore.
These threads however will persist since they are still in the closure of the root
object. One possible solution is to make provision for a “super-user” or system
control that supplies a handle on all threads hanging off the root thus allowing
unwanted threads to be killed. This implies that such threads can be identified
and that it may also be useful to record in the throb statistical information such as
date and time started, number of context switches and number of instructions

executed. All this of course tends to fatten the lightweight thread.

529 Threadsand |I/O

Textbook lightweight threads usually operate with minimum context and
independently of their parents. It is often in the area of inherited features from
parents that distinguishes heavyweight from lightweight threads. One particular
area concerns the problem of whether files or devices opened by a parent can be
accessed by a child thread. There are essentially two options; either a thread
inherits its parent’s open file descriptors or it doesn’t. The problem in this
Napier88 thread implementation is that control over access to such file
descriptors is determined by the closure of the procedure the thread is executing.
The program fragment Figure 5.4 illustrates the problem. A file is opened in an

outer scope of a procedure which will executed by a thread. The thread can

114

correctly reference the file descriptor sinceit isin its closure and hence can close
the file. If the semantics define that a thread inherits the parent’s open file
descriptors then the success of the read procedure call is dependent on whether it

is executed before or after the close call in the threadProc procedure.

If the semantics are the opposite so that a thread does not inherit the open file
descriptors of its parent then there is a dilemma. The close of the file descriptor
in the threadProc will cause an exception since that thread never opened the file
yet the program is still perfectly valid Napier88. If threadProc were called as a
procedure rather than executed as a separate thread then there would be no

exception.

let f = open(“AFile”, 0)
let threadProc = proc()
begin

close()
end

aThread(start)(threadProc)
let noOfBytes=read(f, ...)

Figure5.4: Threadsand file /O

5210 Comments

Future implementations will be based on a thread object format shown in
figure 5.5. This format has been formed in collaboration with Casper project at
the University of Adelaide [KSD+91]. The Casper project is a system which
provides a shared persistent store in a distributed environment where client
processes execute separate threads against the shared store. The system is
described in more detail in chapter 6. Thread context blocks will be kept in a

vector structure with a pointer to the vector from the root object. The threads will

115

have the capacity to define their own event handler and error handler procedures

but will default to the system-provided procedures.

Throb =
begin
eventProc I per process pointer to event handler routines
errorProc I per process pointer to error handler routines
openFiles I per process pointer to open files
savel FB I save LFB on context switch
semaphore ! pointer to semaphore the process is currently blocked on
copyout I Casper use, pointer to Casper special data structs
throbld I thread 1d
lastiO I'last 1/O error
numberObj ! Casper use, number of objectsin heap
IlheapStart I Casper use, VM addr of start of local heap
IheapEnd I Casper use, VM addr of end of local heap
lheapP I Casper use, VM addr of heap alloc pointer
remSetBase ! Casper use, VM addr of end of remembered set
remSetP I Casper use, VM addr of alloc pointer of rem set.
end
Figure5.5: New thread object format
53 Concurrent Persistent Object Store I mplementation
531 I ntroduction

One of the principal aims in implementing the concurrently accessible persistent
object store was to preserve as much of the existing Napier88 store technology as
possible. This is evident in that the same architectural abstractions of a stable
heap of objects operating on top of a stable virtual memory (SVM) are preserved
as are the magjority of the interface functions. The general model of the
architecture was shown figure 4.4 where the Napier88 layered architecture
communicated with CACS in three different levels. At the language level the
annotated Napier88 programs were seen as CACS event generators. The abstract
machine informed CACS of read/write operations on objects. The store provided

the CACS vishility structures with the persistent store acting as the CACS

116

shared database and a collection of shadow pages representing the CACS access

sets. Figure 4.6 illustrated the resulting architecture.

Ideally the store implementation would have been built with a flexible paging
strategy and meld mechanism that communicated with an implementation of the
CACS system for support. However in the absence of a full CACS
implementation, the store has been constructed with explicit support for the
transaction model discussed in section 4.3.3. The transaction package is written
in Napier88 (appendix B) which implements a version of conflict serializability
as concurrency control. The abstract machine traps reads on pid translation and
writes on local heap updates. The store has a built-in melding mechanism based
on the double xor function described in 4.3.2.2. The transactions operate over a
shared shadow paged stable virtual memory address space. At the language level
the transactions are constructed using the Napier88 threads and thus the
interleaving of transaction execution is controlled by the same scheduler as the

one described in section 5.2.5.

The implementation described here is one that was produced under the SUunOS
operating system and makes extensive use of the memory-mapping facilities
detailed in chapter 3. Hence it is subject to the same benefits and drawbacks of
the operating system’s memory-mapping facilities as the store implementation

described in chapter 3.

532 Overview

The concurrent after-look shadow paging scheme works on a per-transaction
basis. For each page that is shared by a number of transactions there may be, at
any time, a number of shadows of that page residing in different disk blocks.
Figure 5.6 shows three shadow pages mapped to a page P in the SVM.
Transactions T1 and T2 have modified the page and hence have their own

shadows and there is also a version of the page on non-volatile store that reflects

117

the last consistent state of the page. For each running transaction a shadow page
is created when the transaction modifies a page and each transaction maintains
its own mapping table (the per-transaction mapping table) that describes which
pages the transaction has modified and where these pages are in the backing

store.

P Stable virtual memory

Non-volatile store

Tq Stable To

Figure 5.6: Shared page mapped to different shadows

When the scheduler is context switched to athread of a different transaction, i.e.,
a transaction context switch, the PAM informs the store which then uses the
mapping table for the incoming transaction to map the modified pages of this
transaction back from the shadow pages into the SVM. In the SunOS
implementation it is necessary to write back all pages of the outgoing transaction
that were modified during a time dlice to their shadows at a context switch. This
is because the memory-mapping does not provide access to the page-replacement

mechanism.

The per-transaction shadowing thus provides a method for isolating the changes
made by transactions without the necessity to resort to page-level locking.
Transaction abort is a trivial matter in this scheme because of the isolation of
changes. Transaction commit first establishes a new consistent state through a
transaction-based meld and then ensures that the changes made by the
transaction are propagated to other active transactions. Establishing a new
consistent state effectively involves the atomic update of the stable disk page

table to reflect the changes made by the committing transaction. For example if

118

transaction T1 in figure 5.6 committed then the stable disk page table would be
modified to reflect that page P was now mapped to T1's shadow disk block.
Because the atomic transaction implementation is hardwired into this store the
changes made by the committing transaction are propagated to other transaction
using the double xor mechanism outlined in section 4.3.3.2. It is aso assumed
that conflicts arising where two transactions have modified the same object on a

page are resolved by CACS conflict serializability.

The motivation for considering a concurrent shadow paged store is based on the
belief that shadow paging is a better method than the aternatives for persistent
systems that are expected to exhibit a high degree of locality and regard code as
data. The design and implementation of this particular store was derived from the
single-threaded store design presented in chapter 3. One of the features of that
implementation was the introduction of disk page tables to record the mappings
between the SVM and the non-volatile store. These mappings were created on
demand and hence the order of pages in the SVM address space is independent
of the order of disk blocks on the non-volatile storage. The concurrent
implementation essentially generalises this approach by maintaining a mapping

table per transaction.

533 Concurrent Shadow-paged Stable Virtual Memory

Much of the SVM layout is similar to the single-threaded store. Figure 5.7
illustrates the layout. The root pages, disk page table, data pages and block list
al perform the same functions as before. The stable store file which is used to

provide the disk blocks of non-volatile store is again one that grows on demand.

119

Layout of SVM address space

disk page| block per-transaction

01 1 Yable list data pages | mapping tables
0 1 block data

pte 0 pte 1 list pages — >

Layout of non-volatile store

Figure5.7: Layout of the stable store

At the end of the SVM, space is reserved for the per-transaction mapping tables.
The SVM isinformed through its interface when a new transaction is created by
the user. The SVM alocates a page in this area which is then used as a table for
the mappings of the shadows of pages modified by the transaction. This page is
thus an array of per-transaction mapping entries. Each entry is a two word
structure where the first word records the SVM address of the modified page and
the second word records the disk block where the page is written out to. The
entry also records status information about the page and its shadow in the flags
field (figure 5.8).
31 24 0

SVM page address flags block offset

Figure 5.8: Per-transaction mapping table entry

In addition to the fields used in the single-threaded store the root page records
the next transaction identification number and the current transaction id and
maintains a free list for the pages of the per-transaction mapping tables. It aso
houses the disk page table entries for the pages of the per-transaction mapping
tables. The format of the new fields of the root page and the disk page tables for

the pages of the per-transaction mapping tables pagesis shown in figure 5.9.

120

date current| next disk page table for date
stamp| tid tid transaction stamp
mapping tables
31 24 0
transaction id flags block offset

Figure 5.9: Root page

The page size and data area size is the same as the single-threaded store. With
the new additions the root page has sufficient space to accommodate a page table

for 960 pages of per-transaction mapping tables.

5.3.3.1 Storeaccess

Unlike the previous implementation the mappings between the disk blocks of
non-volatile store and the pages of the SVM are established on demand. This

allows for a much cheaper context switching as explained in section 5.3.3.2.

The SVM traps a signal from the operating system when an address is accessed
for a page that is not mapped to a disk block. To resolve such a signal the SVM
page-fault handler must first check the per-transaction mapping table of the
currently executing transaction to determine if that address liesin a page that has
been modified by the transaction. If an entry is found then the table is used to
establish a mapping between the disk block which contains the transaction’s
copy of the page and the SVM page. If there is no entry for that page in the per-
transaction mapping table the mapping from the transient disk page table is used
instead.

The first time a page is modified a shadow page is found from an unallocated

disk block in the stable store file. If none are found then the store file is

121

extended. The page is then copied to its shadow page and the shadow page
memory-mapped to the page. The per-transaction mapping table for this
transaction then records the mapping in a new table entry. The flags field of this
mapping table entry records that the page has been modified and shadowed. The
shadow flag determines if a page has been modified since the start of the
transaction whereas the modified flag indicates if the page has been modified
during the current time slice. The address of the page is added to the block list

which records the block order mappings for pages modified by the transaction.

5.3.3.2 Transaction context switch

The scheduler in the abstract machine informs the store when a transaction
context switch is about to happen. Because the SunOS memory-mapping does
not allow access to the page-replacement mechanism then all the pages modified
by the transaction during its time dlice are written back to their shadows and the
mapping table entries for these pages are then marked as unmodified. These
pages are easily found since the block list records the modified pages in block
order. To complete the context switch the block list is cleared and the pages that
were memory-mapped in during the time dice have their mappings

disestablished.

When the next transaction starts to execute the store will have no mappings
established for any of the data pages and the SVM page fault handler will map

these in on demand.

5.3.3.3 Transaction abort

The SVM traverses the aborting transaction’s disk mapping table entries. The
disk blocks in non-volatile store used for the transaction’s shadows are marked
as unallocated. Finally the page containing the mapping table entries for the

transaction is marked as available.

122

5.3.34 Transaction commit

The commit mechanism is performed in two stages. The first stage establishes a
new consistent, recoverable state on non-volatile store and the second stage
handles the propagation of changes made by the committing transaction to other

transactions.

To establish a new consistent state the SVM first writes out all pages modified
by the transaction to their shadows. Then the entries for these pages in the
transient disk page table are updated to record the same mappings. For example,
if the committing transaction had modified page P and its shadow page was disk
block D then the transient disk page table entry for P must also record that it is
mapped to D. To ensure atomicity of the commit the updating of the transient
disk page table will involve shadowing of the page encompassing the transient
disk page table entry. This shadow is recorded in the secondary page table in the
root page. Once this has been done for all pages modified by the transaction a

new consistent state is established by atomically writing back the root page.

Now that a consistent state is safely on non-volatile store the original disk
blocks, that were mapped to the pages which were shadowed by the transaction,
would usually be marked for re-use. However each of these disk blocks contains
an image of the pages as they were before the transaction modified them. These
are needed to propagate the changes to other transactions that are sharing pages.
With the after-look mechanism there are always two recoverable consistent states
on the non-volatile store immediately after a meld. From the most recent root
block the new consistent state can be traversed and the previous consistent state

can be found from atraversal of the other root block.

123

=X

Xor

[<}}
Ie)
-
o}

DoId Dnew Dt

Figure 5.10: Propagating the changes

The sequence of events that are used to propagate are illustrated in figure 5.10.
Page P has been modified by the committing transaction. Dqg is the disk block
that holds the previous consistent state of P and Dye, holds the new consistent
state of P. For each page P modified by the transaction the propagation proceeds

as follows :-

a) Dgq isfound by traversing the secondary and primary page from the old root

block. Dg|g is then mapped into an unused page T in the SVM.

b) Page P isthen xor'd onto T. T now contains the differences to page P made

by the transaction.

For each transaction that has also modified P :-

c) Its shadow, Dy, is found from the per-transaction mapping table and mapped

into P.

d) T isthen xor’d onto P. Page P now has incorporated the changes made by the

committing transaction.

€) Page P iswritten back to its shadow, D;.

124

534 Stable Heap | mplementation

In making the persistent store concurrently accessible, changes have been made
to the stable heap layer. The stable heap layer maintains a heap of persistent
objects that is visible to the programming language level. The interface provides
a number of persistent object management functions that enable the
programming language access to the persistent store. These functions include the
ability to create and delete objects, a checkpointing procedure to stabilise the

persistent store and a procedure to invoke a garbage collector.

data index
free free
Page
A B C D E
. Indirection
Objects >>> <<< Table

Figure 5.11: The stable heap layout.

The address range of the stable heap is defined by the data area of the SVM and
its layout is shown in figure 5.11. The stable heap is split into two distinct areas -
an object area and an indirection table. The object area, which contains heap
objects, starts at the low address end of the heap and grows towards the high
address end. For each object in the heap there is a corresponding two word entry
in the indirection table. Entries in this table start at the high address end of the

heap and grow towards the low address end.

125

- k bit
. object mar
obj ect &
address mark stack
Objects >>> <<<< Indirection Table

Figure5.12: Object allocation

The heap isimplemented using indirect addressing. When a new object is created
it is alocated space from the object area aong with two words from the
indirection table. The first word of the entry is set to point to the object as shown
in figure 5.12. The logical address of this entry is called the object's key and is
the address used by the abstract machine to refer to the object. Indirect
addressing ssimplifies the compacting garbage collection since all referencesto an
object are indirect. The second word of each entry in the indirection table is used

during the marking phases of the garbage collection.

The main problem in adding concurrency to the stable heap concerns the strategy
for allocating new objects. The stable heap occupies the data area of the shared
paged SVM. With the context switching mechanism described above the state of
the stable heap, at any one time, reflects the view of the currently executing
transaction. The data_free and index_free pointers are held on a global basis and
new objects are allocated from the ends of these variables. This avoids
introducing conflicts where the allocation of new objects might lead to
transactions modifying the same areas on the same page. Thisimplies that from a
transaction point of view the allocation of new objects is not contiguous. This
leads to a situation as shown in figure 5.13 where from the point of view of the
current transaction there are a number of “holes “which, in fact, are objects on

the page that have been allocated to other transactions.

126

data index

free free
Page
A B C D E
|:| tranasction T1's new objects
|:| tranasction T2's new objects
l tranasction T3's new objects

Figure 5.13: Allocation of new objects

Allocating new objects using this mechanism leads to a difficulty in designing a
compacting garbage collector. At any one time the heap contains the state for the
current transaction. Thisimpliesthat marking all reachable objects, not just those
of the current transaction, and then compacting can only be performed at the
heap level if it takes into account all running transactions. A suitable collector is
still being designed and the present implementation uses the compacting
collector that existed in the single-threaded store but only performs this off-line

when there are no outstanding transactions.

5.35 Conflict Resolution

The atomic transaction model outlined in section 4.3.4 used an optimistic
concurrency control based on conflict serializability. A transaction could commit
first and then check for conflicts with other transactions. Any transaction found
that conflicted was aborted. In the model the only shared data would be
persistent data The abstract machine detected when a transaction read an object
in from the stable heap by trapping when the object was swizzled to alocal heap

address. The abstract machine trapped a transaction write of a persistent object

127

by detecting when an object with a persistent id (pid) was modified on the local
heap. These events were reported to CACS which could be queried on a
transaction commit for conflicts. For the present this package can be considered
as being CACS and hence the detection and resolution of conflicts must be

implemented as part of the package.

The PAM operates over alocal heap that has two main purposes. The first isto
gain some efficiency by providing a cache of persistent objects. The second isto
provide an area of storage where new objects can be created. Hence one of the
local heap's principal functions is to control the movement of data to and from
the stable heap. All new objects are created in the local heap. These objects only
migrate to the stable heap after a meld has determined that they are reachable
from the root of persistence. This then prevents the overhead of unnecessarily
allocating whatever resources are required in creating objects in the stable heap.
The local heap is constructed in such a way that it can be garbage collected
independently of the stable heap and since a great many new objects are transient

they can be efficiently collected on the local heap.

The local heap is divided into two areas. Objects are alocated space
contiguously from the low address end growing to the high end address. A
mapping table is used to map the addresses of stable heap objects, known as pids
or keys, that have been cached to their local heap addresses. The entries in this
mapping table start at the high address and grow towards the low end. An entry
is added to this table for each object cached in the local heap. Thistableis called
the key to RAM address table or KRT.

128

Objects >>> <<< Mapping table

Key Object -

L ocal heap address

Figure 5.14: The layout of the local heap

The layout of the local heap is shown in figure 5.14. When an object is brought
into the local heap from the stable heap an extra word is allocated. This extra
word prefixes the object and is used to hold the object's key. This provides the
reverse mappings from local heap addresses to keys. This is used when objects
are copied back to the stable heap.

With the introduction of concurrency the transactions work over a shared local
heap and thus may cache objects with the same key. There is therefore a need to
isolate the changes made by one transaction on an object in the local heap from
the changes made by another. One approach is to cache the objects in on a per-
transaction basis hence potentially duplicating objects in the local heap. This
effectively involves parameterising the KRT entries by transaction id.

Figure 5.15 illustrates the idea.

129

L ocal Heap

y Y |
o’ 0 T1| T2 krt
(@)
Stable Heap

Figure 5.15: Per-transaction caching

The atomic transaction implementation at the language level maintains it own
record of objects that have been read and written to and from the stable heap.
The current set of transactions is kept as a cons list and within each transaction
two binary trees are constructed that record the persistent objects that have been
read or written. Entries in the binary tree are indexed by the object’s key

(figure 5.16).

typepldisint

rec type pidindex isvariant(node : Node; tip : null)
& Nodeisstructure(key : pld ; left,right : pidindex)

typetldisint

typetransactionis structure(tid : tid ; thread : any ;
readPids,writePids : pidindex)

rec typetransactionList isvariant(cons: Cons; tip : null)
& Consisstructure(hd : transaction ; tl : transactionList)

Figure 5.16: Transaction data structure

Entries to the transaction’s trees of persistent object accesses are through two

procedures readPid and writePid which use a mutual exclusion semaphore to

130

ensure an atomic update to the binary trees (figure 5.17). These procedures must
be called from the abstract machine when it detects a swizzle or write of a
persistent object. In the current implementation this is done by adding these two

procedures to the events vector in the events environment.

let readPid = proc(tid,pid : pld)

begin
wait()
let this = getTransaction(transactionsList,tid)
if this? emptyTransactionList do
thiscons (hd,readPids) := pidEnter(pid,thiscons(hd,readPids))
signal()
end

let writePid = proc(tid,pid : pld)

begin
wait()
let this = getTransaction(transactionsList,tid)
if this? emptyTransactionList do
thiscons (hd,writePids) := pidEnter(pid,thiscons(hd,writePids))
signal()
end

Figure 5.17: Recording persistent object accesses

After acommit the pidindex binary trees of each transaction can be interrogated

to look for read and write conflicts.

Appendix B gives acomplete listing of the transaction package.

5.3.6 Comments

One of the drawbacks of the transaction implementation just described is that it
involves object duplication in the local heap and page duplication in the stable
store. This seems alittle excessive. The problem arises since the transactions and
PAM operate over a shared local heap and local heap is a cache for a shared
stable heap. The movement of data between these heapsis also of significance to
the atomic transaction model. There are two possible ways of avoiding this

duplication :-

131

The first is to use a single-threaded store like the one described in chapter 3
and to devise a competitive concurrency scheme that exists only in the local
heap. This could be achieved provided data only moved from the local heap
to the stable heap when a transaction committed. This would restrict the
computation and data of transactions to the size of the local heap. This
approach would also not take advantage of the perceived benefits of using
shadow paging for a concurrent orthogonally persistent system and could not

employ the fast xor mechanism for propagating changes.

This would alter the relationship between the local heap and stable heap. The
local heap would no longer act as merely a cache and an area for new data.
The persistent object store architecture has always provided a stable heap that
can operate independently of alocal heap. Many of the languages that use the
existing store such as Staple, Galileo and Quest do not use alocal heap and so

would gain nothing from this approach.

The second solution is to abandon Napier88's use of the local heap and to
operate the PAM directly on top of the stable heap. This requires a significant
rewrite of the abstract machine since it expects to manipulate direct virtual
memory addresses and not object keys. Much of the performance of the PS-
algol/CPOMS system was believed to be derived from the address trandlation

mechanisms that minimises the number of checks required.

However this approach is worth pursuing - even if to provide some basis for
comparing two approaches. It is difficult to quantify the benefit of using a
local heap. The advantage of an area to create new objects that can be
independently garbage collected may be offset by the cost of memory-to-

memory copies from one heap to another.

132

54 Conclusions

The incorporation of two different models of concurrency into the Napier88
system has required a number of changes to the abstract machine and object
store. The support for a co-operating concurrency model based on threads and
semaphores was provided through the creation and manipulation of thread
context blocks. Each context block can be thought of as an abstract machine root
object for the procedure the thread is executing. The thread context block is then
a small structure that contains a pointer to the stack frame for the thread's
procedure and a unique identifier for the thread. These threads are autonomous

and can be nested to any depth.

The scheduling of threads is handled within the decode loop of the abstract
machine and is constrained to executing only one thread at a time. This allowed
for an implementation to be fairly readily constructed and enables

experimentation with the threads and semaphores language model.

Providing support for the atomic transaction model has meant a significant
change to the operation of the object store. In essence the transactions operate
over an after-look shared stable virtual memory. Each transaction has its own
mapping table which is used to keep shadows of pages it has modified. Thus the
effects of one transaction are isolated from another. On a commit the changes are
propagated to other transactions sharing a page using bitwise logical operations
on the page. The implementation presented here uses the same scheduler as the
threads package and is subject to the constraint of only being able to execute one

transaction at any one time.

The design and implementation of the threads and concurrent shadow pages store
has shown up a number of possible enhancements. With persistent threads there
is a need to be able to identify and remove runaway and permanently suspended

threads. This may be provided by allowing some sort of privileged access to the

133

thread queue structures. The concurrent shadow page store and its relationship to
the local heap has meant a duplication of effort to ensure isolation of
transactions. One proposed solution is to implement a Napier88 system that

works directly on top of the stable heap.

134

6 Distribution
6.1 I ntroduction

To maintain the illusion of an unbounded data space, persistent stores must
eventually be distributed. However, there is a tension between the conceptual
ideals of orthogonal persistence and the technological realities of distribution that
make their integration difficult. This gives rise to a spectrum of possible
solutions that balance the ease of user programming and conceptual modelling

with the ease of implementation of the underlying system.

At one end of the spectrum, distribution is introduced to enhance the
performance of the overall system and the ideal behaviour, as far as ease of
programming is concerned, is where the distributed system may be programmed
asif it were non-distributed. All other models of distribution expose some aspect
of the underlying distribution to the user. To this extent distributed systems can
be categorised by the manner in which they hide the underlying distribution
mechanisms from the user. This concept is called transparency and has been

shown to have a number of dimensions.

In [ANS89] the dimensions of transparency are given in relation to object-
oriented systems. The situation is somewhat different for persistent systems; the

dimensions of distribution transparency may be refined to the following:-

» operation transparency means that there is a uniform mechanism for invoking
operations of both local and remote values, concealing any ensuing network

related communications;

* location transparency means that the user cannot tell the location of avaluein

the network from its name;

135

e migration transparency means that an object may be moved from node to

node by the system while maintaining its identity;

 replication transparency means that, wherever an object is replicated by the
system for greater availability or efficiency, the intricacies of replica

consistency maintenance are concealed;

* recovery transparency means that the semantics of any recovery mechanism

isindependent of the way the data it governs may be distributed.

In addition to the above and in order that the distributed stores be considered as
part of one system there must be some underlying mechanism to allow them to
work in unison. This is provided by the concurrency control mechanism which
may be co-operative and controlled by synchronisation, competitive and
controlled by atomic transactions or in between as in designer transactions. Thus
the concurrency control ensures both synchronisation and isolation across the
network. Implementation of this is non-trivial and may involve system wide

semaphores and two phase commit protocols.

Where the distribution mechanism is completely transparent the user is presented
with a single large persistent space, the one-world model. This approach fits in
well with the concept of orthogonal persistence since all the physical properties
of the data are hidden from the user including the placement of data, replication
of data and the failure of nodes. The system is free to move, copy and replicate
data to optimise its utility and is responsible for abstracting over any failure due
to distribution. Applications need no modification to operate in different

distributed environments.

While the one-world model is conceptually simple, there are a number of
technological issues that make it difficult to deliver in scale. The management of
very large stores involves problems which are well known to cause

implementation difficulties. This chapter provides some background on these

136

problems and the effects of exposing levels of distribution transparency. The

chapter discusses :-

Mechanisms for providing transparency and the problems of totaly

transparent distribution.

Alternate models of distribution that relax some of the transparencies.

Particular models built for persistent systems.

A distribution model that has been constructed in the Napier88 system as part

of thisthesis.

an extension to the model that effects a two-phase commit of Napier88 atomic

transactions over a number of nodes.

an example application that uses the two-phase commit in a networked

software distribution scheme.

6.2 Distribution Modéds

6.2.1 Transparency Provision

A number of mechanisms have been used as solutions or partial solutions to the

problems of transparency provision :-

operation transparency may be provided by an implementation of distributed
shared virtual memory or aternatively through a mixture of procedure call
and remote procedure call (RPC) [Nel81] depending of the locality of the
called procedure. Thisisthe basis of the Newcastle Connection [BMR82] and
Amoeba [MRT+90] systems.

Location transparency requires uniform naming and mapping tables from
logical names to physical addresses. These mapping tables may also be used

in the implementation of migration transparency.

137

Replication transparency requires a more complex set of mapping tables and a

coherency mechanism.

Recovery transparency should ensure that the system can recover after a

failure due to distribution.

The provision of a universal address space with total transparency on anything

other than a small number of nodes is beset by technical problems. These are

outlined by Dearle [DRV91] asinvolving :-

the generation of unique addresses. In a flat shared address space objects are
typically designated a unique address. When a collection of nodes are sharing
this space then the address space must be large enough to ensure the unique
identification of any object. Research into support for persistent stores over a
large virtual address space [KR90, Coc89, Coc90] has focused on the

development of specialist hardware which is not particularly widespread.

Moss [M0os89] examines the cost of providing a large flat address space. He
suggests that the provision of wide addresses could have an adverse price-
performance effect on the CPU, cache and main store and backing store.
Instead he favours a contextual naming scheme such as that designed in
Mneme [MS88] where the address space is separated into distinct localities.
Each locality has considerable autonomy in the management of free space,
clustering strategies, object formats, recovery methods and concurrency
control. Typically the locality of data is such that programs usually need only
manipulate short addresses. The problem, however, with contextual
addressing is that there is little or no hardware support and it requires
considerable overhead in managing the localities. In addition, the availability
of larger address space architectures is rapidly becoming more widespread

and a number of Moss's objections to large address spaces have been

138

diminished by recent research in addressing and address trandation

techniques [SKW92, VD92].

free space management. The structures used by a system to keep track of free
space can be large. This overhead may be exacerbated by an increased
address space. Coupled with this is the cost of alocation and freeing of
secondary storage. A further consideration is distributed garbage collection.
Garbage collection mechanisms that are time-independent of the size of the
address space [Kol92, ELA88] can be complex. The complexity is increased
when the address space is distributed over several nodes. A review of
distributed collectors in [AMR92] highlights the problems and indicates that

very few fault-tolerant collectors exist.

distributed stability and recovery. The issues of distributed stability are
similar to the problems of distributed garbage collection. In a one-world store
pointers can “leak” across nodes and hence an interdependence of nodes is
constructed so that they must be stabilised together. Recovery transparency
may have to capture the entire state of the persistent stores at a checkpoint for
co-operative concurrency models, and the partial but interrelated states for

transaction models.

Detecting such causal relationships in distributed systems has been the subject
of much research [CL85, Jef85, SY85]. The algorithms for achieving
distributed synchronisation and recovery are non-trivial and may result in
cascade rollbacks. Rollback propagation can happen when a node X has
become dependent on another node Y because they share a copy of the same
modified object. If node Y were to crash and be restored to its last checkpoint
state then, in order that the store on Y does not appear to travel backwards in
time with respect to X, node X is aso rolled back to it last consistent state.
This may start a domino effect since the rollback of X may cause other nodes,

including Y, to aso rollback.

139

Algorithms for such stability often involve some form of two-phase commit
[Gra78]. By using two phase commit protocols over a high bandwidth local
area network, a modest number of reliable machines may be stabilised
together. However, it is unlikely that such protocols would be successful
when applied to large numbers of machines in geographically distributed

|ocations.

6.2.2 Non-transparency

In light of these issues it is clear that persistent systems that wish to
communicate over a wider-area distribution must consider alternative models.
For scalability it may be prudent to relax the ideal of complete transparency by
partitioning the persistent store into regions and making these regions visible at
the language level. This relaxes location, migration and replication
transparencies. The movement of datais now explicit and objects may be moved
and replicated by the user. The potentia advantages are for enhancing the
performance of the system by user controlled paralelism and replication. This
comes at some programming cost since, as the placement is no longer
transparent, then programs may not work for all configurations of the system. In
such models there is a need to define the semantics of failure so that the user can

understand and react to it.

The relaxation of any of the transparencies is governed by a set of design
decisions that gives the user more control and flexibility at the cost of
complexity in the model. Where the system is not totally transparent there are a
number of degrees of relaxation. A transparency may be available but in a
restricted number of operations (CIR), it may be visible (V), visible but with a
restricted number of operations (VR) or not available at all (X). An example of
the last is where a distributed system does not allow migration of objects. Two
visibilities are introduced in order to categorise non-transparent systems. They

are .-

140

» side effect visibility. This means that operations may cause visible side effects

in remote stores.

» structure visibility. This means that the structure of data and its internal
sharing will not be preserved over operation invocation, migration and

replication.

There are two broad models of distributed systemsthat allow different degrees of
visibility. With the federated model, the persistent stores are known to be
independent but obey some laws (transparencies) of the federation whereas the
confederated model is aloose association of non-interfering stores only acting in

unison by ad hoc agreement and disallowing side effects.

In a federated model some operations are made available to the user that
explicitly refer to remote stores. Typically these operations dea with remote
execution or remote data manipulation, such as RPC, and as such require the user
to have knowledge of data location. This then makes location, migration and
replication visible. The model has an overall protocol that governs data
movement so that the referential integrity is maintained. The movement of data
across store boundaries that preserves sharing can lead to pointer “leaking”
where the closure of an object may reside on a number of stores. To preserve
integrity then these stores become dependent on each other and hence must be

synchronised together.

In the confederated model a restricted set of operations is provided, the stores do
not make any attempt to act together and stabilising the stores is performed
independently. For example the Stacos store, described below, is confederated
and provides the user with a restricted store interface to interrogate a remote
store and copy objects from it. Faillure may occur between or during
interrogations. The advantage of the confederated approach is that there are no

remote pointers or inter-store dependency through side-effect. The stores can

141

then stabilise and perform garbage collection without regard to one another. The
stores may however take part in a distributed commit by a two phase protocol

and may synchronise within transactions by convention.

A magjor disadvantage of the confederated approach is the potential loss of
referential integrity. This refers to a situation where two roots of a graph are
independently moved or replicated in a store and these refer directly or indirectly
to a common sub-graph. In a system which maintains referential integrity, only
one copy of the common sub-graph is moved or replicated. Confederation by
definition does not alow pointers to span stores therefore copies of data
structures must be propagated between stores. Such copying may (and often

does) violate referential integrity.

Figure 6.1 summarises the transparency/distribution model matrix using the

notation described above.

Transparency One-world Federated Confeder ated

Operation O OR OR
Location O \Y VR
Migration O Vv X

Replication O Vv X
Recovery O O VR
Visibility

Side-effect N/A Vv X
Structure N/A O \Y

Figure 6.1: Transparency/Model matrix

142

6.2.3 One-world models

One approach to complete distribution transparency has been through the
provision of distributed shared virtual memory [Li86, LH89, WF90]. The
architecture typically comprises of a number of loosely connected computers
each with their own local memory, no shared physical memory and a protocol
that presents a uniform shared virtual address space to all the nodes. Each node
maps local memory into the shared virtual address space with pages moving not
only between main store and disk but also between the physical memories of the
nodes. Severa nodes may contain copies of the same page and hence the

mechanism employs a coherency protocol to preserve data integrity.

The versatility of the coherency mechanism is usually the distinguishing feature
between implementations. Wu and Fuchs [WF90] present a scheme that allows
the virtual memory to be recoverable without cascade rollbacks. Their approach
involves automatic node checkpointing and recovery that limits the rollback
propagation. The solution proposed by Wu and Fuchs limits the rollback
propagation by insisting that a process always checkpoints before sending a

modified page to another node.

Two different distributed persistent systems, the Casper model [KSD+91] and
the Monads system [HR91] have been designed and built using the distributed

shared memory approach and are discussed below.

6.23.1 Casper

Casper (Cached Architecture Supporting Persistence) is of particular interest in
this thesis as it is a distributed architecture designed to support Napier88
programs. The architecture, as shown in figure 6.2, is based on a client-server
model where a client is a Napier88 thread operating on a page cache of objects
from a single stable virtual memory. The central heap manager in the server

allocates unused pages to clients requesting free space. The backing store for the

143

shared memory is provided by the server which employs a shadow paging
mechanism to ensure that a consistent state is always recoverable.

Client A Client n

| PAM interpreter | | PAM interpreter |

page cache | local heap page cache | local heap

Client Client
Request Request
external pager Handler external pager Handler

Server Requ_est Handler

v b

Stable Store «@———+ Heap Manager

Stable Medium

Figure 6.2: The Casper architecture

A coherency protocol is used that guarantees data integrity. The protocol allows
multiple clients to read the most up-to-date copy of a page using a single writer

with multiple readers mechanism.

» All read/write requests are channelled through the server. If the server does
not hold a copy of the most recently modified state of a page the request is

forwarded to the client that does.

» Clients become dependent on each other because they have seen the same
modified page with respect to the server. The set of mutualy dependent
clientsis called an association. Any client initiating a meld requires al other
clients in its association to meld also. This allows several independent melds

to bein progress at the same time.

144

* The server maintains the list of associations. If a client fails then all members

of the client's association must return to their previous consistent state.

The Casper system has been implemented using the multi-threading and external

pager features of the Mach operating system.

6.2.3.2 Monads

The Monads project has produced a new computer architecture that was designed

to support :-

» alarge single-level persistent store through a stable, paged virtual address

space based on shadow paging.

» auniform and secure protection scheme based on capabilities.

» separate address spaces within the virtual address space that can be used as

independent information-hiding modules.

The resulting research led to the construction of a new microprocessor, the
Monads-PC, which implemented these ideas. Further work on the project [HR91]
resulted in the extension of the virtual memory address space to a distributed
shared virtual memory across a network of Monads-PCs. Unlike the Casper
model there is no central server and each node provides it own backing store for
a portion of the address space. This complicates the coherency protocol in that
the mechanisms such as stability and free-space management are then necessarily

de-centralised.

The virtual addresses of the distributed shared virtual memory are unique
network-wide and are never re-used. Figure 6.3 illustrates the partitioning of a

Monads virtual address.

145

Offset

Node No. Volume No. Address Space No. within
Address Space

Figure 6.3: A Monads virtual memory address

* The node number uniquely identifies a host. All addresses therefore have an

explicit owner node.

» The volume number corresponds to adisk or logical disk partition on the host.

» The address space number corresponds to an in-volume address space that
typically contains related sets of data such as a program, an information-
hiding module, or process stack. Address spaces are divided into segments

and accessed by segment capabilities.

Each node maintains an exported pages table (XPT) and an imported pages table
(IPT) which are used in the single writer/multiple readers coherency scheme.
When a page-fault occurs the node number of the address is checked to seeif the
page is local or remote. A page-fault for a local page must first check the
exported page table to ensure that no other node has a writeable version of the
page. If there is such a node, it is requested to return the page and mark the page
as read-only in its imported page table. The page-fault is then resolved from the
network rather than the local disk. On a page fault of a remote page, a copy of
the page is requested from the owner node. Pages are always exported read-only.
The remote node must explicitly request promotion to write status. Unlike the
Casper model if there is a single writer then no other writers or readers have a
copy of that page. In other words nodes do not form associations. However, if a
node fails and is restarted from the point of its last consistent state then any node
that has write access to a page from the crashed node must aso rollback to its

previous state.

146

6.24 Federated Models

6.24.1 DPS-algol

DPS-algol [Wai88] is a persistent system derived from PS-algol that supports a
model of distribution through the provision of a universal address space that
gpans severa nodes. Other extensions to the language include a facility for
expressing and manipulating separate concurrent activities and a remote
procedure call mechanism that enables inter-process communication and

synchronisation.

Through the provision of a universal address space DPS-algol presents a one-
world model where all the transparency dimensions are supported. However an
assertion is made that it may not always be desirable for efficiency reasons to
completely abstract over locality. DPS-algol provides a facility that allows the
explicit naming of remote nodes and the discovery of object locality. Remote
nodes are named as values of a new type locality and are spaces where processes
may be executed. Two language constructs transcopy and assign enable the

atomic data movement between localities. Figure 6.4 illustrates the ideas.

let presto = locality selectCuts
I presto is ahandle on the locality (node) where the object selectCuts resides

let prestoBrekkies := transcopy brekkiesto presto
I Thistransfers a copy of the object brekkiesto the presto locality

assign newlmprovedBrekkiesto prestoBrekkies

I The value of the variable prestoBrekkies is re-assigned to the value

I of the object newl mprovedBrekkies

I The assign will effectively transcopy the object to prestoBrekkies locality

Figure 6.4: Using localitiesin DPS-algol

The semantics of the copying are dependent on the type of the object being

copied and effectively involves a top-level copy of the object’s closure rather

147

than a deep copy. The idea is to reduce the quantity of data transferred between
localities and avoid the inadvertent copying of the complete store without the
programmer’s knowledge. As a consequence of this method an object graph can

be spread across several nodes.

With this notion of locality a process can be executed on a remote store or a
remote procedure called via the RPC mechanism. The example in figure 6.5
shows how a process can be executed on a remote machine. The second
expression of the start construct, shopping, determines the name that the process

is registered with on the remote store.

let shopping = “shoppingProcess’
let goShopping = process
begin

end
let processHandle = start goShopping as shopping at presto

Figure 6.5: Starting a process on a different locality

Theillusion of a universal address space is provided through a uniform treatment
of object reference. This is supported by the DPS-algol abstract machine which
distinguishes pointers to local and remote data. References to remote objects are
through heap objects called remote pointers which use contextual addressing to
uniquely define the object. An instance of the abstract machine running over a
local store generates a remote pointer when there is an external reference to an
object in that store. Each process maintains an export table of remote pointers it
has exported. The coherency of the distributed address space is thus dependent
on the consistency between the export table on a store and the use of remote

pointers by a process.

The essence of DPS-algol is that it provides, by default, a one-world model

where a user can manipulate data and execute threads without knowledge of

148

locality. The programmer can make use of constructs that expose locality

allowing the explicit movement of data or placement of process execution.

6.24.2 Argus

The Argus [Lis84] system is an archetypal example of a federated system that
allows a programmer to construct programs into a collection of modules that are
executed on different nodes. A guardian is the Argus abstraction for an stable
store and encapsul ates data and a set of processes that operate on the data. A data
object in Argus wholly resides within one guardian and the sharing of objects
between guardians is not permitted. Instead guardians communicate through

handlers which are defined in the body of a guardian definition.

An Argus program is structured as an atomic action that is recoverable,
seridlizable and total. As a program execution progresses it accesses and
modifies data at severa other guardians through handler calls. The system
employs a two-phase commit protocol that ensures that when an action
completes it either commits all the changes made at all the visited guardians or
aborts at every guardian. The commits are to stable storage and are hence

recoverable.

Argus uses a remote procedure call mechanism to pass data between guardians.
Pointer leaking between guardians is avoided by (deep) copying objects between
the sender and receiver. These copies are considered to be separate and hence

referential integrity islost. The Argus model thus exhibits structure visibility.

Figure 6.6 summarises the models described. The DPS-algol can function as a
one-world model but has the transcopy and assign operations that control the

visibility.

149

Transparency | Casper/Monads DPS-algol Argus

Operation O OR OR
L ocation 0 OR \
Migration O OR X

Replication 0 OR X
Recovery O 0 U
Visibility

Side-effect N/A Vv \Y
Structure N/A O \Y

Figure 6.6: Classification of models
6.3 Stacos

6.3.1 I ntroduction

Stacos (St Andrews Confederated Object Store) is a confederated model that
extends the Napier88 name space to include other global address spaces. The
model is confederated in that the distribution is constrained to services that do
not side-effect these other spaces. Two stores then can communicate with each
other but at no time become inter-dependent and hence can meld and garbage

collect independently. Figure 6.7 shows where the Stacos model lies within the

transparency classifications.

150

Transparency Stacos

Operation OR
Location VR
Migration X

Replication X
Recovery VR
Visibility

Side-effect X
Structure \%

Figure 6.7 Stacos classification

Whilst this is a fairly restrictive form of distribution the architecture design to
support confederate distribution can be used as a framework for building other

models. The features of Stacos presented in this section are :-

* a base model that incorporates a smple extenson to the Napier88
environment that allows a program to browse remote object stores and specify

and deep copy objects from these stores in a type-safe manner.

* an implementation level communication based on a protocol layered on
TCP/IP sockets. This abstraction was chosen instead of a higher-level
mechanism, such as Sun's RPC implementation, principaly for the
widespread availability on a range of platforms and world-wide connectivity.
This enables any Napier88 persistent object store residing on a machine on

the internet to be accessible.

* an extension to the model that enables user-written services in addition to the
scan/copy functionality. These services can define there own store-to-store

protocol with the restriction that they do not side-effect the remote store.

151

» the provision of support in the model for two-phase commit of Napier88

atomic transactions across stores.
6.3.2 Base M odel

In the base model remote Napier88 stores can be named and communication
established that alows the remote stores to be browsed and have objects copied
from them. A Napier88 program still has its own stable store with one
distinguished persistent root but has the ability to import objects from other
stores. Once an object has been copied it then behaves and can be manipulated

like any other Napier object.

Figure 6.8 illustrates the architecture with the distribution at the Napier88 level.
The user converses with another store using a package of communications
procedures that provides clean failure semantics so that the user can understand

and react to failure.

(Napier88 H Napier88)

Abstract Machine Abstract Machine

Local Heap

)
)
Stable Heap)
)

(

(Local Heap)
(Stable Heap)
(

Stable Virtua M emory)

Stable Virtua Memol

Y Y Y)

Figure 6.8: Stacos architecture

The model is inherently confederated since browsing and copying do not cause
side-effects on the remote store. Objects can only be copied in one direction -
i.e., 'pulled from a remote store and because the objects are copied by transitive
closure there is no possibility of “pointer leaking” across stores. Note that thisis

in stark contrast to the transcopy construct of DPS-algol. However there is a

152

consequential loss of referential integrity since the object identities are forfeited
and hence a loss of replication transparency. If two objects on the remote store
that point to the same object are copied to the local store then they will no longer

share the object in common. Each will have a copy of the object.

Remote objects are specified by pathname through environments. For each
connection to a remote store an instance of a browser procedure and a copy
procedure is supplied that allows remote environments to be scanned and objects
copied. Each scan returns a list of name-type tuples for the specified pathname.
Using this information the calling program can traverse the remote store's
hierarchy. The copy function names an object in a specified environment that is

to be deep copied to the local store.

6.3.2.1 Languageinterface

An addressing convention in this model uniquely identifies a remote store by a
combination of the host’s internet domain name or number and the full pathname
of the stable store file. The user references a remote store by assigning a
symbolic name to the remote store’s address. A database is provided that allows
the user to add, list and delete these names. The interface functions to this

database are given in figure 6.9.

type RemoteStore is structur e(hame,host,storeDir : string)

addEntry : proc(string, string, string® string)
listEntries: proc(® Listf RemoteStore])
removeEntry : proc(string® string)

Figure 6.9: Remote store database interface functions

» addEntry : proc(string, string, string® string)

153

This procedure adds a new entry to the remote stores database. The
parameters are the entry name, the name of the remote host and the pathname
of the store at the remote host. The host name may be specified as a local
machine name, a full Internet host name or an Internet number. If an entry
with the given name aready exists the addition fails and an error message is

returned, otherwise the null string is returned.

» listEntries: proc(® List[RemoteStore])

This procedure returns alist of the entries in the remote stores database. Each
element of the list is a structure containing an entry name, a host name and a

store pathname.

* removeEntry : proc(string® string)

This procedure takes the name of an entry in the remote stores database and
removes the entry from the database. If an entry with the given name does not

exist an error message is returned, otherwise the null string is returned.

The symbolic name for a remote store is used in the openRemoteStor e procedure
call to establish a new remote connection. Figure 6.10 shows the definition of the

procedure and its associated types.

type EnvEntry is structure(entryName: string ; entryType : TypeRep)
type ScanResult is variant(successful : List[EnvEntry] ; error : string)
type CopyResult is variant(successful : any ; error : string)
type RemotePack is structur e
scan: proc(string® ScanResult) ;
remoteCopy : proc(string,string® CopyResult) ;
closeRemotePack : proc())
type ConnectionResult is variant(successful : RemotePack ; error : string)

openRemoteStore : proc(string ® ConnectionResult)

Figure 6.10: Remote store communication language interface

154

openRemoteStore : proc(string ® ConnectionResult)

This procedure takes the name of an entry in the remote stores database and
attempts to open the remote store for scanning and copying. If the open
operation is unsuccessful the result is a string giving an explanatory error
message, otherwise it is a structure containing the following operations on the

remote store: -

scan : proc(string® ScanResult)

This procedure takes a string pathname describing an environment in the
remote store and attempts to scan it. A pathname is relative to the persistent
root and should consist of an initial slash followed by environment names

separated by slashes, for example: "/Library/Distribution”.

If the pathname is not well formed or if a communication error has occurred
during the scan the result is a string describing the error. Otherwise the result
isalist of structures containing one element for each of the bindings present
in the remote environment at the time of the scan. Each element contains the

name of the binding as a string and a representation of the type of the binding.

remoteCopy : proc(string, string® CopyResult)

This procedure takes the name of a binding in a remote environment and a
string pathname describing the location of the remote environment, and
attempts to make a deep copy of the binding. The pathname is described in
the same way as for scan above. If the pathname is not well formed or no
binding with the given name is present, or a communications error occurred
the result is a string describing the error. Otherwise the result is a copy of the

remote binding injected into any.

155

» closeRemotePack : proc()

This procedure closes the connection to the remote store. Further calls to the
procedure have no effect. Subsequent calls to scan and remoteCopy result in

messages stating that the connection is closed.

personData : env

N

ey

face : image

[e}eNeNe]
O OO0

Figure 6.11: Example remote store

For example consider the remote storeillustration in figure 6.11 and suppose that
a Napier88 program running on a local store wants a copy of the object facein
the remote store. The code to initiate the connection and scan the path to the

environment containing face and copy the object is shown in figure 6.12.

156

let connect = openRemoteStore(myNameforRemoteStore)
if connect isnt successful then writeString(connect’ error) else
begin
let scan = connect’ RemotePack(scan)
let remoteCopy = connect’ RemotePack(remoteCopy)
let closeConnection = connect’ RemotePack(closeRemotePack)
I' Now scan the root environment
let currentEnv :=*/"
let scanResult := scan(currentEnv)
if scanResult isnt successful then writeString(scanResult’ error) else
begin
I' Look through the return list of name-type tuples for personData

currentEnv := currentEnv ++ “personData’

scanResult := scan(currentEnv)

if scanResult isnt successful then ... else

begin

I Look through the return list of name-type tuples for face

let copyResult = remoteCopy(currentEnv, “face”)
if copyResult isnt successful then ...else
project copyResult’ successful as X onto
image : writeString(“ Successful copy”)
default : writeString(“Oops”)
end
end

Figure 6.12: Program to scan and copy remote object

To simplify accessing remote stores a graphica interface was developed and
incorporated into the Napier88 programming environment. This is described in

Appendix C.

6.3.3 I mplementation

The implementation strategy for supporting Stacos involved the following :-

* incorporation of an interface to the Unix socket abstraction in Napier88.

o definition of communication establishment protocol and store-to-store

copy/scan protocol.

» a mechanism for transferring the transitive closure of an object across a

virtual circuit.

157

The socket-based connect/accept primitives were incorporated into the Napier88
primitivel O environment. The procedures in this environment provide a mapping
between the 1/0 facilities of Unix and Napier88. The socket-to-socket
communication is seen at the language level as file or device 1/0. Once a
connection is established the user can then perform I/O in the same fashion as

reading and writing disk files.

6.3.3.1 Connection establishment

Connection establishment between two stores using sockets is complicated by
the internet address binding mechanisms. Communicating processes between
sockets on the internet are bound by an association. An association is composed
of local and foreign addresses (hosts) and local and foreign ports. Associations
are always unique and no duplicate <protocol, local port, local address, foreign
port, foreign address> tuples exist network-wide. On a connection set-up the
sender is alocated the local port and local address dynamically by the operating
system and uses the internet number of the receiving host to form the foreign
address The problem for the sender is knowing what the foreign port number is.
Typicaly a TCP/IP Unix application such as telnet uses a fixed port number that
is agreed by convention. The internet daemon process on Unix listens on that
port on behalf of the application for incoming requests. For each connect
received the daemon accepts the call on behalf of the application and forks a
process that executes the application binary. The application binary is started

with its standard input and standard output descriptors bound to the socket.

There are a number of reasons why this approach does not blend well with the

Napier88 to Napier88 communications model :-

» The application binary in the Napier88 case is an instance of the abstract
machine interpreter running Napier88 programs against a store. This implies

that an instance of the interpreter would be executed for each incoming

158

connect request and aso that each interpreter would be limited to one
connection. This then places a heavy restriction on the functionality of the

Stacos moded!.

» Having an instance of the interpreter that is bound to the standard input and

standard output will again restrict the functionality of the model.

» Having a number of Napier88 interpreters, spawned by a connection, running
against a single store does not fit the concurrency models outlined in

chapter 4.

The implemented solution was to create a front-end program, outwith the
Napier88 system, that acted as an interface between the connection establishment
procedures of Unix and the Napier88 requirements. The front-end program is
called by the internet daemon every time a connect request for access to a
Napier88 store arrives at the host. The solution effectively defines a protocol
between any running Napier88 interpreters on a host and an incoming connect
and a protocol between the program and the abstract machine of the caller. The
sequence of eventsis portrayed in figure 6.13. When a Napier88 session begins a
Napier88 thread is executed that allocates a free port number from the operating
system using a primitive 1/O socket function. The thread then registers its port
number and the pathname of the store that this interpreter is running against with
the front-end program. The front-end program maintains a table of <store
pathname, port number> tuples for each running Napier88 system on that host.
When the client program issues an openRemoteSore the abstract machine issues
a connect request on a known port number to the server host. The internet
daemon sees the connect and accepts the call on behalf of the front-end program

and forks a process which then executes the front-end program.

At this point the interpreter of the client and the front-end program enter into a

dialogue. The client will have received the accept of the call by the server's

159

internet daemon and so sends back a string containing the pathname of the
remote store that it wishes to access. The front-end program matches that string
against its table entries and if one is found the port number of the entry is
returned to the client. If no match is found, indicating that the requested store
either does not exist or is not currently available for access, the front-end

program closes the connection.

The client then closes the first connection and makes a new connection call using
the returned port number. At this point the thread of the Napier88 program
running on the server is resumed. The thread first removes its entry from the
listening table, accepts the call and starts a new listening thread. The Napier88-

to-Napier88 communication has now been established.

160

Client on host X

/

Napier 88 Store P

OpenRemoteStore to /stores/Q or
host Y

Abstract Machine

Socket connection to host
on Napier88 port

Is“/stores/Q” available?

Socket connection to host
on port A

\

Server on host Y

- N

Napier 88 Store Q

Start new thread
Get free port number (A) from
system

Register store directory (/stores/Q
and port number with host Y

Suspend while waiting for
connects

Front-end program

L ook up table for
/stores/Q

Reply -- yescall it on
port A

"~
W

/

Thread wakes up. De-register
/stores/Q from lookup table.

Start new listening thread as

-

N

_

above and accept call

N

Figure 6.13: Connection establishment

6.3.3.2 Remote object copying

Once a connection is established then communication between the stores is

controlled through the Napier88 programs at either end of the connection

following a simple protocol. The client sends scan/copy requests to the server by

constructing a string with the desired command (scan or copy) and the

parameters as quoted strings. This string is then written to the socket. The client

then waits for areply.

The server is a thread which runs a loop looking for scan/copy commands from

the client. On a scan request the parameters are read from the network and a list

161

of the bindings in the specified environment are constructed using the scan
procedure from the standard Napier88 user environment. The list is then
transferred across the connection using a mechanism described below. A copy
request similarly checks to see if the requested object does in fact reside in the
specified environment. The object is then injected into an any and copied across

the network.

The server thread is suspended by the scheduler if it is blocked waiting for a
command from the client. The scheduler keeps track of all threads that are
blocked waiting on an external event and periodically checks for data pending on

any open file descriptors.

It should be noted that the server copy and scan functions are written in Napier88
and compiled using the bootstrap compiler. As such they have access to
primitive functions not generally available to the user. For example one of
primitive functions allows a value of type env to be decomposed into its internal
structure which includes its name as a string. This function is used by the
scan/copy functions to match the string pathname parameters passed by the user

with environments in the store.

Two new primitive functions were constructed to enable the transfer of Napier88
objects across a socket. One to flatten an object and write it to the socket and
another to read from the socket and reconstruct the object. Two functions,
namely importAny and exportAny, already perform such a function and are used
for code planting to the file system and reconstituting code from a Napier88
object file. However the implementation of exportAny performs a recursive
traversal of an object ‘s closure writing out each object’s header as it traverses
and then back patching the pointer fields with file offsets using file seeks. These
procedures keeps a list of objects already checked to handle circular references.
Seek operations cannot be performed on a socket stream and so two similar

functions, exportAnyStream and importAnyStream, were written to perform the

162

same job but without seeks. The exportAnyStream procedure recursively
traverses an object’ s closure and assigns each object with a unique object number
which is written out along with the object header. As an object is traversed its
pointer fields are written to the socket with either the object number assigned to
the object pointed at if it has been written out already or a new object number.
The importAnyStream function reads the data from the input stream socket and
builds the objects as they are read. From the object numbers in the pointer fields
a table of pending objects, that is objects that are still to be read in, is
constructed. For each entry in the pending table a list of objects is kept that
“point” to the pending object. When a pending object is read from the socket this
construct is used to resolve the pointers and the object’s entry is removed from

the table.

6.34 Transaction Processing and Two-phase Commit

Whilst the scan/copy service is limited in its functionality it can provide a
valuable service as a passive data server to a number of Napier88 clients. The
functionality of the model can be enhanced by developing a more complicated
underlying protocol. The communications framework of the virtual circuit, the
object copying facility and the connection establishment procedure can be used
as a base for developing different services. The connection establishment
protocol discussed in section 6.3.3.1 described how a server thread displays its
willingness to accept calls by registering the port number and store pathname
with the front-end program. By adding an extra parameter to the handshaking
protocol a number of threads can be started by the server, each of which listen on
adifferent port number and perform a different service. For example, in addition
to the scan/copy facility, alistener thread may be written that provides a network

“talk” service between two users using different stores.

Any service can be developed provided it does not rely on the availability of a

connection or side effect the data on the server. These services can be thought of

163

as the equivalent of the guardians of Argus. By developing services that
communicate with other services a controlled two-way communication can be
created. For example node X may call a service of node Y that asks Y to copy a
procedure from X and execute it. This then could form the basis of a RPC
mechanism or a remote evaluation model [SG90]. In addition a model could be
constructed where a node transfers source to another node where it is then
compiled and executed. In particular the source may be the code for a new
service and by using the callable compiler of Napier88 one node could be asked

to transfer the code.

Building more complex models from these basic services inevitably leads to a
position where a store may want to synchronise changes with a number of
remote stores. By encompassing the facility in the transaction package described
in chapter 4 a two-phase transactional commit can be constructed to provide

distributed synchronisation.

In atwo-phase commit protocol one of the transactions acts as a co-ordinator and
the other transactions involved act as participants. Both the co-ordinator and the
participants have a preparing phase and a committing phase. Since the
participants are running as Napier88 transactions then no permanent change will
have been made to the store until a meld is executed. It is the synchronisation of
each participant’s meld that is the subject of this model’s two-phase commit.
Figure 6.14 shows the amended language interface with a prepare and result
procedure added to the RemotePack. Note also that the RemotePack has been

altered to cater for a number of different services.

164

type ScanCopyPack is structur e

scan: proc(string® ScanResult) ;
remoteCopy : proc(string,string® CopyResult))

type OtherPack is structure(...)

type ServicePack is variant(scanCopy : ScanCopyPack ;

otherServices: OtherPack ...

type RemotePack is structur e

servicePack : ServicePack ;

prepare : proc(® bool) ;

I' true reply means “prepared” ; falseis “abort”

result : proc(bool ® booal) ;

I send true meansthat all the participants are prepared

I'and should now commit

I Reply boolean should always be tr ue except to indicate network errors
closeRemotePack : proc())

type ConnectionResult is variant(successful : RemotePack ; error : string)

openRemoteStore : proc(string,string ® ConnectionResult)

Figure 6.14: Amended Remote store communication language interface
prepare : proc(® bool)

The co-ordinator calls this procedure for each remote connection to signal to
the participants that they should prepare to commit. If a participant replies
that it has successfully prepared then a true value is returned. All other

responses result in afalse being returned.
result : proc(bool ® bool)

This is issued by the co-ordinator to each open connection to inform them of
the outcome of the “vote” on the prepare call. If all the participants involved
acknowledged that they had prepared the result procedure is parameterised by
true telling them to commit now. Otherwise an abort is signalled using false

as the parameter value.

If the participants were instructed to commit then when this has been done the

result procedure returns true. This should aways be the return value of such

165

a call since the protocol demands that a co-ordinator, once it has sent a
commit request to each participant, must continue sending messages to the

participant until it getsareply.

To support two-phase commit requires a change to the concurrent store to

accommodate a “prepared” transaction state that is recoverable. Thisis described

in the sequence of actions of the two-phase commit below :-

Co-ordinator Actions

Prepar e phase. Each participant is sent a prepare-to-commit message. If each
participant replies “prepared” the co-ordinator enters the completion phase. If
any participant replies “abort” the co-ordinator sends abort to each

participant.

Completion phase. The co-ordinator transaction executes a meld. The meld
signifies that the transaction has committed and that that state cannot be
revoked even in the face of network or participant failures. The program state
of transaction forms part of the meld so in the event of a subsequent crash of
the co-ordinator node the transaction would automatically be restored and
continue from that point. As a consequence it is essential that the meld
includes sufficient information to alow communications to be re-established
on system restart. This is achieved by retaining the remote hosts and remote
store pathname information as part of the open files vector which is in the
PAM root object written back on a meld. This can be interrogated on start-up

and a socket connection for each store re-connected.

Committing messages are now sent to each participant and the transaction
waits for committed replies from each participant. Once it has received these

it again melds and the transaction is complete.

166

Participant Actions

Prepar e phase. This requires that a transaction saves its state in the persistent
store so that it is recoverable but without committing changes. To
accommodate this a “prepare” function has been added to the transaction
interface. This function writes back all pages modified by the transaction to
their shadow pages. The stable disk page table is not updated at this point as
would happen in a commit. Instead the current root page records that the
transaction isin a prepared state by setting a flag in the secondary transaction
disk-page table for that transaction. The root page is then written back
atomicaly and a prepared message returned to the co-ordinator. The

participant enters the completion phase.

Should the system crash at this point then on restart any prepared but
incompl ete transactions can be found from an inspection of the root page. The
running state of the transaction will not have been saved with the crash since
it did not form part of the last meld and so the system spawns special purpose-
built transactions that listen for a committing or abort messages from the co-

ordinator.

Completion phase. The participant waits for either a commit or abort
message from the co-ordinator. On a commit the transaction melds, sends a
completed message to the co-ordinator and completes. On an abort the

transaction aborts and releases its shadowed pages.

6.3.5 Softwar e Distribution with Two-phase Commit

As an example of the kind of functionality a confederated model can provide, a
software distribution scheme has been built into the Stacos model. The model
involves a Napier88 program informing a number of remote stores that it has a

new version of a piece of software and where it is stored. The remote stores can

167

then copy the software to their own stores. The distribution scheme is
constructed as a set of transactions that communicate across nodes and then

synchronise using the two-phase commit.

In this software distribution scheme two listening transactions are spawned when
a Napier88 system is started. One is for the copy/scan communication as before
except that the other transaction listens on a different port for any news of new
software from any other Napier88 system. This transaction registers with the
front-end program giving a port number, store pathname and a service name of
“software distribution”. As part of the TCP/IP socket abstraction a receiver of a
connect can aways ascertain from the incoming information the remote address
of the caller. The handshaking protocol and the Napier88 accept primitives have
been amended so that when a listener thread receives a connection it is provided

with the internet address and store pathname of the caller.

When a machine wishes to connect to aremote store it must now also specify the
service it wants to talk to. The changes to the connection interface are given in
figure 6.15. The RemotePack returned by a connect uses the variant ServicePack
which contains the pack of procedures specific to the particular service
connection. As new services are added to this system their interface functions

can be added to the ServicePack.

168

type EnvEntry is structure(entryName: string ; entryType : TypeRep)
type ScanResult is variant(successful : List[EnvEntry] ; error : string)
type CopyResult is variant(successful : any ; error : string)

type SoftDistResult is variant(successful : null ; error : string)

type ScanCopyPack is structur e
scan: proc(string® ScanResult) ;
remoteCopy : proc(string,string® CopyResult))

type SoftDistPack is structurg(
newObjects: proc(*string® SoftDistResult))

type ServicePack is variant(scanCopy : ScanCopyPack ;
softDist : SoftDistPack)

type RemotePack is structur e
servicePack : ServicePack ;
prepare : proc(® bool) ;
result : proc(bool ® booal) ;
closeRemotePack : proc())

type ConnectionResult is variant(successful : RemotePack ; error : string)

openRemoteStore : proc(string,string ® ConnectionResult)

Figure 6.15: New Remote store communication language interface

The software distribution protocol begins with a Napier88 system sending a
remote Napier88 system a connect request for the software distribution service.
If this is accepted then the caller receives an instance of the SoftDistPack
structure with the newObjects procedure. The caller then uses this procedure to
tell the remote store where the new objects are. This is specified as a vector of
strings where each string is a pathname for the objects the caller wishes to be
copied. The caller then waits for a reply. A successful reply indicates that the
remote store has successfully copied objects. Otherwise a string with an

explanatory message is returned.

At the remote end a transaction listens for software distribution service
connection requests. When such arequest arrives the transaction reads the vector
of pathnames from the socket after accepting the call and then calls the caller's

copy/scan service. Using the pathnames it was provided with the remote store

169

pulls the objects over to its store and then closes the connection. The caler’'s

newODbjects procedure returns successfully.

Since the participants are running as transactions then no permanent change will

have been made to the store until ameld is executed.

The co-ordinator in this model is the transaction that initiates the distribution.
Once each of the participants has replied that the software updates have been
successfully transferred then the two-phase commit can begin. The co-ordinator
will issue a*“ prepare” to each participant and wait for replies. If al thereplies are
successful then the co-ordinator melds and requests each participant to do
likewise. The co-ordinator then waits for the acknowledgement from the
participants. On receiving a prepare message a participant transaction enters its
prepare phase which effectively terminates the transaction execution. The
Napier88 system writes all pages modified by the transaction to its shadow
blocks and records the transaction prepared state in the root page. The “ prepared”
message is then sent to the co-ordinator and the system will either effect a meld

or an abort dependent on the outcome of the commit.

6.4 Conclusions

The one-world model where the distribution is completely transparent to the user
is undoubtedly the ideal model for orthogonally persistent systems. This
approach preserves the persistence abstraction of hiding al the physical
properties of data from the user. A number of distributed persistent systems have
been designed and built using such a model. These systems effect a one-world
model through the provision of a uniform address space across a number of

nodes. Such schemes require a coherency protocol to guarantee data integrity.

The problems of maintaining the universal address space illusion were discussed.
One particular problem that affects distributed systems is the detection of causal

relationships between nodes that derives from the absence of aglobal clock. Ina

170

distributed persistent system this can be seen in recovery and garbage collection
techniques across nodes. Fault-tolerant distributed collectors and network-wide
recovery procedures can suffer from a cascade of rollback propagation. The
technical solutions to providing complete distribution transparency suffer from a

lack of scalability that constrains such systems to only a handful of nodes.

Distribution models that relax any of the transparencies can be categorised as
being either federated or confederated. In these models the user is made aware of
other address spaces and is provided with a mechanism for communicating with
them. A federated model is one where each store operates on alogically separate
address space but the stores conform to a global convention. In a confederated
model there is no convention and interaction between stores is limited to

functions that do not side-effect across store boundaries.

In view of the scale limitation of the one-world model and the plethora of non-
transparently distributed alternatives, a persistent system that has the flexibility

and infrastructure to support arange of models may be the optimum strategy.

The Stacos store is atypical example of a confederated model. The model allows
a remote store to be scanned and objects copied from it. It was shown how this
model could be enhanced to provide a synchronised update service to a number
of participants. This then can be viewed as providing a base on which models of
distribution can be constructed and integrated into Napier88. There are a number
of issues of the Stacos store which warrant further investigation. For example
techniques that can reduce the amount of data transferred in a deep copy could be
improved. It is hoped that the advent of hyperworlds [Kir92] will help reduce the
size of an object’ stransitive closure. The export/import functions used to transfer
the data across the virtua circuit may benefit from some compression/de-

compression filters.

171

7 Conclusions

The motivation for the work presented in this thesis is the integration of the
concepts of concurrency and distribution with the persistent abstraction. The
principal contribution presented is the development of a flexible persistent
architecture for Napier88 in which any model of concurrency and distribution

can be constructed and supported. The key areas in this study are :-
* Integration of concurrency with persistence.
* Integration of distribution with persistence.

» Design and implementation strategy for the construction of the supporting

architecture.
7.1 I ntegrating Concurrency

The concept of concurrency has been viewed here as a spectrum of
understandability. Concurrency models lie on points on the spectrum and are
distinguished by the extent to which the programmer or the system is responsible
for the maintenance of global cohesion. By capturing this spectrum into the
Napier88 persistent architecture a framework is provided in which all models of

concurrency can be built and supported.

A conceptual layered architecture was developed that separated the intrinsics of
concurrency into separate address spaces. The concurrency control address space
specifies and controls the interaction of the separate actions and directs the
movement of data between the address spaces. Each action has a private address
space in the action address space layer and may also belong to a group address
gpace shared with other actions without the data being globaly visible. The
concurrency control can commit actions through a meld operation by transferring

the local or group address spaces to the persistent address space. Data in the

172

persistent address space is visible to all actions. The movement of al data is

atomic.

Concurrency in this architecture is defined in terms of the sharing of address
spaces and the movement of data between them rather than by a description of
the behaviour and interaction of processes. The motivation for this approach is
derived from the CACS specification system. The address spaces reflect the
CACS vishility structures with the persistent address space corresponding to

CACS database and the action address spaces equated with the access sets.

The conceptual architecture led to the design of a concurrent shadow-paged store
which conforms to the Napier88 layered architecture design and supports the
CACS view of data visibility. In this store the stable virtual memory acts as the
CACS shared database with a form of shadow paging being used to support the

access sets.

The implementation of this concurrent store provides a basis for supporting
CACS in the Napier88 system. The incorporation of CACS into Napier88 is
completed with the provision of communication paths between the two systems
at strategic points in the architecture. These channels which enable CACS to

control and get feedback from the execution of any concurrency model involve:-

» At the language level annotations in the model’s code to inform CACS of the

significant events such as action begin or action commit.

» Object events such as read and write communicated to CACS from the

abstract machine’ s detection of swizzling and object update.

» CACS communicating events to the store to perform melding, aborting and

the per-action shadow paging.

A number of issues concerning the complete integration of CACS into the

Napier88 system still need investigation and are outlined in section 7.4. As a step

173

towards this, an instance of the concurrent architecture was constructed that
directly supports an atomic transaction package written in Napier88. The atomic
transaction package effectively acts as CACS and handles the transaction events
and detects and resolves conflicts. A transaction commit results in an action meld
where the propagation procedure for making changed objects globally visible is
hardwired into the store using the double xor agorithm. From this
implementation, and future implementations of different concurrency models, it
is hoped that a clearer idea how a CACS system might be constructed will

emerge.
7.2 Integrating Distribution

Maintaining the illusion of a uniform persistent address space transparently
distributed across a number of nodes is beset with technological difficulties. The
approach here is to tackle distribution from the opposite end of the transparency
spectrum and provide a basic communication primitive in which objects can
move between stores. The primitive can then be used as a building block on
which any model can be constructed and so provides a high-level testbed in

which hybrid schemes can be devel oped.

At the base level the distribution primitive makes al the transparency
dimensions visible. The programmer can construct abstractions over this
primitive to form desired transparencies for a particular model. At one extreme
the architecture may be used to create a one-world model, admittedly at some
cost, which could then be used for experimenting with the problems of a large

scale fully-transparent distribution.

At the machine level the implementation is based on the widely-available
TCP/IP protocol and thus offers an infrastructure that can be used to unite

Napier88 stores across the internet.

Two example models of the concept were constructed :-

174

A client/server style model that enables a user to browse remote stores and
copy objects from these stores in a type-safe manner. The copy involves the

transfer of the object’ s transitive closure to prevent pointer leaking.

A model that provides atwo-phase commit protocol that enables the Napier88
atomic transactions to perform a distributed synchronise across a number of

nodes.

7.3 Building the Architecture

Engineering the integration of concurrency and distribution into the Napier88

architecture has required significant changes at all levels to the vanilla system.

One of the important achievements in this work is that the implementation

strategy used to realise the integration :-

did so without the introduction of new language constructs.

preserved the overal layering of the standard Napier88 architecture by
augmenting the interfaces rather than altering them. Thisisreally a testament

to the genericity of the original layered design.

probably, most importantly, protected the investment in Napier88 by ensuring
that the large body of existing applications, software tools, compilers etc. all

work as before.

Producing an integrated system has resulted in a number of innovative

implementation components :-

an after-look shadow paging scheme that is designed to get performance
benefits within the limitations of the memory-mapping features of the SUnOS

system.

an extended after-look scheme to handle concurrent access.

175

 incorporation of persistent threads and semaphores together with a process

scheduler in the abstract machine.

e an atomic transaction package that dovetails into the architecture at the
language level, the abstract machine for pid translation to capture object reads
and writes and the store level to effect the per-action shadow paging and the

double xor melding function.

» a socket abstraction that fits into Napier88's device 1/0O interface together
with a mechanism for flattening and expanding an object’s closure for

transferring across a stream interface.

* a connection establishment protocol that interfaces between the Unix

convention and the requirements of Napier88.

» enhancements to the atomic transaction package to enable a distributed two-

phase commit between nodes.

7.4 FutureWork

The provision of this architecture should really only be regarded as an initia
result which forms a sound basis on which models of concurrency and
distribution can be constructed. The specific research areas and experiments that

follow from this work are itemised below.

741 Concurrency

CACS provides a system in which models of concurrency can be specified in an
abstract, operational way that aids their implementation. The ultimate goal is to
provide a system in which different concurrency schemes can be specified,
constructed and compared in a meaningful way. There are still a number of open
issues regarding the completion of CACS within the Napier88 architecture that

need to be researched and developed. These include :-

176

A delivery vehicle for turning CACS specifications into Napier88. This
involves firstly the provision of a process to automatically (or semi-
automatically) generate the annotations of a Napier88 program with the
CACS events through program transformation. Secondly, using the Napier88
reflection technology [Kir92] to turn the annotations into code. For example
these may be provided as procedure calls to CACS or aternatively as in-line

code.

A persistent architecture that can support the completed CACS. The work
presented here provides an initial framework but the support for a complete

CACS as awhiteboard architecture remains an issue. In particular :-

At the abstract machine level the mechanism for reporting object reads and
writes to CACS needs generalising. One possible approach may be to extend
the thread context block to enable CACS-specific event handler procedures to

be dynamically assigned to an action.

At the store level the provision of a generic melding mechanism for
propagating the changes made by a committing action to other actions. The
double xor of the shadow pages only works in the cases where no two actions

have modified the same object.

Specific experiments to evaluate the reference model will be carried out. These

will produce hardwired instances of the architecture to support specific

concurrency models. Building architectures to support models such as Sagas,

transaction groups and nested transaction will give afuller examination of issues

of attaining a generic architecture to support CACS.

In the concurrent store the operation of using a local heap as a cache for the

stable heap led to a duplication of effort to ensure the isolation of actions and

detracted somewhat from the expected benefits of using shadow-paging. One

future experiment will be to redesign the PAM so that it runs directly from the

177

stable heap. This will involve identifying the points where PAM assumes its
working on virtual memory addresses rather than checking for persistent
addresses. This change will also require a alternate method to swizzling for
trapping when an action has been read or written. With all objects, new and
transient as well as stable objects, being created on the stable heap an efficient
stable heap garbage collector is required. This will lead investigations into
generation and incremental collectors with the work of Kolodner [Kol92] on the
concurrent tracking of newly stable objects of some interest. With two
functionally equivalent Napier88 systems, one with alocal heap and one without,

agood basis would be available for measurement experiments.

742 Distribution

The provision of the distribution primitive provides a building block for
constructing any models. Investigations will be undertaken into designing
models for examining the problems of a distributed universal address space.
These models may implement specific transparencies or combinations of
transparencies to isolate a particular issue such as recovery or migration
visibility. One interesting idea would be to develop a CACS equivalent for

distribution in which models could be formally specified and constructed.

Specific implementations of known models such as RPC on top of the primitive
will eventually lead to the provision of alarge-scale fully-transparent distribution

model.

Work on increasing node-to-node throughput will include investigations into
minimising the depth of an objects closure and exploring the usefulness of

employing compression to the object flattening.

178

743 Rdiability

The provision of shadow-paging enables an atomic update to the store and
ensures recoverability after a system crash. Future work in reliability will include
investigations into making the object store resilient from media failure through

mirroring or RAID technology.

It has been argued here that shadow paging may suit persistent systems which
exhibit locality. It is worth investigating the validity of this claim through the
provision of a framework in which shadow-paging implementations may be
measured against logging alternatives. This will involve the design of a platform

for building and comparing models of shadow-paging and logging models.

7.4.4 M easur ement

Much of the work that has been implemented as part of this thesis has not yet
been sufficiently analysed and measured. Future work will include research into
how concurrency models and distribution models can be quantitatively
compared. Similarly methods of comparing and measuring shadow paging and

logging will be investigated.

It is not clear exactly what metrics would be used but past experiments, such as
the Predator project [KGCB85], provide valuable pointers. In addition to
measuring performance based on transaction throughput and mean response
times, the Predator project also compared the cost of building recovery managers
and measured the crash recovery time. Their results were derived from a

purpose-built testbed.

The work of Atkinson [ABJ93] in the measurement of persistent systems
should be valuable in these experiments. Atkinson has developed a range of
benchmarks in Napier88 that have been run under the single-threaded Napier88

system and offers some insights into the interpretation of measurement results.

179

7.5 Finale

This thesis has presented an attempt to integrate the notions of concurrency and
distribution into a persistent framework in a flexible manner. The resulting
architecture enables models of concurrency and distribution to be designed,
constructed and executed in a persistent system. Providing concurrency and
distribution as an add-on facility instead of building it into the system challenges
the convention of related work. Whether or not this approach is superior is highly
subjective but is founded on a conviction that a high-level solution delivers
increased expressive power, safety and simplicity in the production of complex

models.

It is hoped that providing this functionality has increased the expressive and
modelling potential of a persistent system and that the work may broaden the
appeal of persistence to a wider audience. However what metrics can one use to
determine if such an approach is successful? Even if the work here becomes
adopted, adapted and widely used, an argument based on popularity must by the
same token decide if Cobol and C and systems such as Unix and MS-DOS
should be considered successful. Whatever the outcome, the effort will not have
been fruitless since the personal rewards gained from undertaking this research
and the production of this thesis have finally convinced the author that there is a
more interesting life beyond the System Manager’s Guide [Mor85-93]. A case of
WTFM superseding RTFM.

180

Appendix A Multithreading in Napier 88

The provision of co-operating concurrency in Napier88 requires a way of
expressing concurrent activity at the language level, a synchronisation primitive
and a scheduler to control concurrent operation. An important point to note is
that because the concurrent activities in this model interact by agreement rather
than in conflict there is no need to isolate the effects of one action on the store
from another. This means that the introduction of co-operating concurrency into
the Napier88 system has no bearing on the object store architecture and can be

fully implemented within the language and abstract machine.

Concurrent expression in this model is provided through an abstract data type
that provides a package of procedures that allow the creation and manipulation of
separate threads of control. The thread package is not built into the language but
is obtained through the standard environment. The standard environment is a
special Napier88 environment that contains many packages of standard

functions. The specification of the thread packageis givenin figure A.1.

type ThreadPack isabstype] Thread] (
start proc(proc() ® Thread) ;
getThreadld proc(® Thread) ;
kill,
restart,
suspend : proc(Thread)
)

Figure A.1: Thread Package

This abstract data type contains procedures to operate on threads. For some

witness type Thread the operations are :-

o start: proc(proc() ® Thread)

181

This procedure creates a new thread to execute the given void procedure, adds
the thread to the list of threads, marks the thread as runnable, and returns an
identifier for the thread. The thread completes when the given procedure

completes.

e getThreadld : proc(® Thread)

This procedure returns the identifier of the currently executing thread.

o Kkill : proc(Thread)

This procedure removes the thread denoted by the given identifier from the

list of threads. If the thread is currently executing it is terminated.

* restart: proc(Thread)

This procedure marks the thread denoted by the given identifier as runnable.

If the thread is currently executing the procedure has no effect.

» suspend : proc(Thread)

This procedure marks the thread denoted by the given identifier as suspended.
If the thread is currently executing it isimmediately suspended.

The thread package enables any number of void procedures to be executed
concurrently without a change to the Napier88 language model. Threads can be
nested to any depth and a thread will execute in the same environment as its
parent. However there is no implicit dependency between a parent and child
process; suspension or termination of one does not affect the other. The thread
package is not dissimilar to the dynamic processes used in CPS-agol [Kra87].
One novelty of this approach is that in using an abstract data type the witness

type cannot be discovered and hence thread ids are unforgable.

182

Synchronisation of Co-operating Threads

The facility for synchronisation of the threads is provided through a semaphore

package shown in figure A.2.

type Semaphoreis structure(wait,signal : proc())
semaphoreGen : proc(int ® Semaphore)

Figure A.2: Semaphore Package
» semaphoreGen : proc(int ® Semaphore)

This procedure takes an initial value for the semaphore and returns a structure

containing procedures to operate on the semaphore.
e wait: proc()

The value of the semaphore is decremented. If the new value is less than zero
then the current thread is suspended and its dependency on the semaphore is
recorded.

e signal : proc()

The value of the semaphore is incremented. If the new value is less than or
equal to zero, one of the threads suspended on the semaphore is selected and

re-activated.
Dining Philosophersin Napier 88 threads

As an example of how the threads are programmed the following listing gives a

solution to the dining philosophers problem.

type ThreadPack is abstype| Thread] (
start : proc(proc() ® Thread) ;

183

getThreadld : proc(® Thread) ;
kill restart,suspend : proc(Thread)
)

type SemaphorePack is structure(wait,signal : proc())
type messageis bool

use PS() with Library : envin
use Library with Concurrency : env in
use Concurrency with threadPackage : ThreadPack ;
semaphoreGen : proc(int ® SemaphorePack) in
begin

let enter = true; let exit = false

let pickup = true; let putdown = false

use threadPackage as X[Thread] in
begin
let Room = semaphoreGen(4)

let room = proc(message : message)
if message = exit then Room(signal)() else Room(wait)()

let forkSemaphore = proc(i : int ® SemaphorePack)
semaphoreGen(1)

let Forks = vector 0 to 4 using forkSemaphore

let forks=proc(i : int ; message : message)
if message = pickup then
Forks(1)(wait)() else Forks(i)(signa)()

let philosopherGenerator = proc(i :int® Thread)
begin
let philosopher = proc()
whiletruedo
begin
I Think
room(enter) ; ! Enter the room
forks(i,pickup) ; ! Get one fork
forks((i + 1) rem5,pickup) ;! Get two forks

| Eat

forks(i,putdown) ; ! Put down one fork
forks((i + 1) rem 5,putdown)

I Put down second fork

room(exit) ! Leave the room
end
I' A new philosopher is born
X(start)(philosopher)
end

let philosophers = vector 0to 4 using philosopherGenerator
end
end

184

Appendix B Atomic Transaction Package

The listing below gives a the full description of the atomic transaction package
hardwired into the system. The listing is split into 5 sections with the following

interpretation :-

a section which maintains a binary tree of objects read and written on a per-

transaction basis.

» asection which maintains the transaction data structures.

* a section which has code to handle the transaction events. This includes the
code that is called from the abstract machine when an object is read or
written. The code for the conflict resolution on a commit uses the conflict

serializability method described in chapter 4.

» asection which describes the language level interface to the package.

» an example program of transactions on a simple bank account.

I Here are the index (binary tree) types for the pids within a transaction
typepldisint

rec type pidindex isvariant (node : Node; tip : null)
& Nodeisstructure (key : pld; left, right : pidindex)

let nilPidindex = pidindex (tip : nil)
rec let pidenter = proc (k : pld; i : pidindex -> pidindex)
IEnter the value into the binary tree indexed by key
if i istip then pidindex (node : Node (k, nilPidindex, nilPidindex)) else
casetrue of
k <i'node (key) . { I'node (Ieft) := pidEnter (K, i'node (left)) ;i }
k > i'node (key) . { i'node (right) := pidEnter (k, i'node (right)) ; i }
default o

let pidLookup = proc (k : pld; i : pidindex -> bool)
Ilookup the value in the binary tree

begin
let head ;=i
while head isnode and k * head'node (key) do
head := if k < head'node (key) then head'node (left)

185

else head'node (right)
head is node
end

I Here are the list types for keeping the transactions

typetldisint

typetransactionis structure (tid : tid ; thread : any ; readPids, writePids :
pidindex)

rec typetransactionList isvariant (cons: Cons; tip : null)

& Consisstructure (hd : transaction ; tl : transactionL.ist)

let mkTransactionList = proc (element : transaction;
tList : transactionList -> transactionList)
transactionList (cons: Cons (element, tList))

let removeTransaction = proc (tList : transactionList ;
element : transaction -> transactionList)
if tLististip then mkTransactionList (element, tList) else

begin
let eqTransaction = proc(a, b : transaction -> bool) ; a (tid) = b (tid)
if egqTransaction (tList'cons (hd), element) then tList'cons (tl) else
begin
let done :=false; let this:=tList
while thiscons (tl) isnt tip and ~done do
if eqTransaction (thiscons (tl)'cons (hd), el ement) then
begin
thiscons (tl) := thiscons (tl)'cons (tl)
done:=true
end else this :=thiscons (tl)
tList
end
end

let getTransaction = proc (tList : transactionList; tid : tld -> transactionList)
begin
let done :=false
whiletList is cons and ~done do
if tList ‘cons (hd, tid) = tid then done :=true
elsetlist :=tList 'cons (tl)
tList
end

let addTransaction = proc (tList : transactionList;
element : transaction -> transactionList)
begin
let geTransaction = proc (a, b : transaction -> bool) ; a (tid) > b (tid)
if tLististip or getTransaction (tList'cons (hd), el ement)
then mkTransactionList (element, tList) else
begin
let done :=false; let this:=tList
while thiscons (tl) isnt tip and ~done do
if geTransaction (thiscons (tl)'cons (hd), el ement) then
begin
thiscons (tl) := mkTransactionList (element,
thiscons (tl))

186

done:=true
end else this ;= thiscons (tl)
if ~done do
thiscons (tl) := mkTransactionList (element, thiscons (tl))
tList
end
end

I Code to handle transaction events
type threadPack is abstype [thread] (start : proc (proc () -> thread) ;
kill, restart, suspend : proc (thread))

type SemaphorePack is structure (wait,signal : proc ())

type transactionPack is abstype [tid] (
createTransaction : proc (-> tid);
beginTransaction : proc (tid, proc ());
commitTransaction : proc (tid);
abortTransaction : proc (tid);
readPid : proc (tid, pld);
writePid : proc (tid, pld))

let createTransactionPack = proc (-> transactionPack)
use PS() with Library : env in
use Library with Concurrency, Transactions. env ; meld : proc () in
use Concurrency with threadPackage : threadPack ;
semaphoreGen : proc (int -> SemaphorePack) in

use Transactions with pidEnter : proc (pld, pidindex -> pidindex);

pidLookup : proc (pld, pidindex -> bool);

addTransaction : proc (transactionList, transaction -> transactionL ist);

removeTransaction : proc (transactionList,

transaction -> transactionList);

getTransaction : proc (transactionList, tld -> transactionList) in
begin

let empty TransactionList = transactionList (tip : nil)

let transactionsList := empty TransactionList

let tid:=0

let mutex = semaphoreGen (1)

let wait = proc () ; mutex (wait) ()

let signal = proc () ; mutex (signd) ()

let startThread = proc (a: proc () -> any)

begin

let this:=any (0)
use threadPackage as X [thread] in

begin
let thisOne = X (start) (a)
this := any (thisOne)

end

this

end

let killThread = proc (a: any)
use threadPackage as X [thread] in
project aasY onto

thread : X (kill) (Y)

187

default : {}
let emptyAny = any (0)

let createTransaction = proc (-> tid)
begin
wait ()
tid:=tid+1
transactionsList := addTransaction (transactionsL.ist,
transactionType (tid, emptyAny, nilPidindex, nilPidindex))
let x = tid
signa ()
X

end

let beginTransaction = proc (tid : tid ; prog : proc ())

begin
wait ()
let this = getTransaction (transactionsList, tid)
if this? emptyTransactionList do
thiscons (hd) (thread) := startThread (prog)
signa ()

end

let stopThis=proc (tid : tid)

begin
let this = getTransaction (transactionsList, tid)
if this? emptyTransactionList do
begin
killThread (thiscons (hd) (thread))
transactionsList := removeT ransaction (transactionsList,
thiscons (hd))
end
end

let abortTransaction = proc (tid : tid)

begin
wait ()
stopThis (tid) ! Let go of all shadows
signal ()

end

rec let overlap = proc (a, b : pidindex -> bool)

aisnt tip and (overlap (anode (l€eft), b) or
pidLookup (anode (key), b) or
overlap (anode (right), b))

let findConflictsandAbort = proc (tid : tid)
begin
let theseWrites = getTransaction (transactionsList, tid)
if theseWrites® emptyTransactionList do
begin
let writes = theseWritescons (hd) (writePids)
let this := transactionsList
whilethisisnt tip and thiscons (hd, tid) * tid do
begin
if overlap (writes, thiscons (hd, readPids)) do

188

abortTransaction(tid)
this := thiscons (tl)
end
end
end

let commitTransaction = proc (tid : tid)

begin
wait ()
meld () I' Assume successful
findConflictsandAbort (tid)
stopThis (tid)
signa ()
end

let readPid = proc (tid, pid : pld) ! Called from PAM
begin
wait ()
let this = getTransaction (transactionsList, tid)
if this? emptyTransactionList do
thiscons (hd, readPids) := pidEnter (pid,
thiscons (hd, readPids))
signa ()
end

let writePid = proc (tid, pid : pld) ! Called from PAM
begin

wait ()

let this = getTransaction (transactionsList, tid)

if this? emptyTransactionList do

thiscons (hd, writePids) := pidEnter (pid,
thiscons (hd, writePids))

signa ()

end

transactionPack [int] (createTransaction, beginTransaction,
abortTransaction,
commitTransaction, readPid, writePid)
end

I User interface to transaction pack

type userTransactionsis structure (createTransaction : proc (-> any),;
beginTransaction : proc (any, proc (any -> proc ()));
abortTransaction, commitTransaction : proc (any))

let userTransactionsPack = proc (-> userTransactions)

begin
let transactionPackage = createTransactionPack ()
let createTransaction = proc (-> any)
begin

let this:=any (0)
use transactionPackage as X [TID] in
this:= any (X (createTransaction) ())

189

this
end

let beginTransaction = proc (tid : any ; a: proc (any -> proc ()))
use transactionPackage as X [TID] in
project tidasY onto
TID: X (beginTransaction) (Y, a(tid))
default : {}

let abortTransaction = proc (tid : any)
use transactionPackage as X [TID] in
project tidasY onto

TID: X (abortTransaction) (Y)
default : {}

let commitTransaction = proc (tid : any)
use transactionPackage as X [TID] in
project tidasY onto

TID: X (commitTransaction) (Y)
default : {}

user Transactions(createT ransaction,beginTransaction
abortTransaction,commitTransaction)
end

I Example Use

let thisTransaction = userTransactionsPack ()

let createTransaction = thisTransaction (createTransaction)

let beginTransaction = thisTransaction (beginTransaction)

let abortTransaction = thisTransaction (abortTransaction)

let commitTransaction = thisTransaction (commitTransaction)

type account is structure (bal, Limit : int)

let withdraw = proc (tid : any -> proc ())
I Withdraw debit pounds from ac.
proc ()
use PS() with Library : env; accounts. *account; upb : proc [t] (*t ->int);
readint : proc (-> int); writeString : proc (string) in
begin
let ac = accounts (upb [account] (accounts))
writeString ("Please input account requested : 'n™)
let debit = readint ()
let result = ac (bal) - debit
if result > ac (Limit) and debit > 0 then
begin
ac (bal) :=result
commitTransaction (tid)
end else abortTransaction (tid)
end
I loop forever preparing transactionsin this style
let tid = createTransaction ()
| beginTransaction (tid, withdraw)

190

Appendix C Stacos user interface

To simplify the interface to accessing remote stores a graphical communications
tool was developed and incorporated into the Napier88 programming
environment [Kir92]. The programming environment is an application written
entirely in Napier88 that supports the interactive development of Napier88
programs. It comprises of a number of tools including a persistent window
manager, an editor, callable compiler and object browser. The programming
environment allows source programs to be constructed, compiled and linked into
the store all within the one environment. The communications tool enables the
connection and remote scan and copy of other stores to be directed by user

gesture.

To explain fully the functionality of the communications tool and its
incorporation into the programming environment requires some background
description of some of the existing tools and in particular the function of the

Local Values window.

The programming environment provides editing tools that can be used to develop
program source. An evaluate button in an editor window compiles the selected
text. Any compilation errors are reported in an Output window. If the
compilation is successful then the resulting code is executed. If the code is non-
void, then the user is prompted for a name for the result and that name is entered
in the Local Values window shown in figure C.1. The names and corresponding
values in the Local Values window are automatically brought into scope in

subsequent compilations.

191

(=] Local Val ues
fred

r oot Env
tenpl
tenp2

w ndowGen

wi ndowivanager

Gelect all) Gemve) Cshow)
l— |

Figure C.1: Local Vaueswindow

The communications tool alows the symbolic naming of remote object stores to
be done using the Remote Stores window shown in figure C.2. When adding a
new entry the user is prompted via a dialogue box for three parameters
corresponding to the fields of the RemoteStore structure, namely the symbolic
name for the remote store, the remote host name and the pathname of the store.

The symbolic name appears in the Remote Stores window.

-'_'|z| Remot e Stores L

fredsStore

d asgow

4
St Andr ews :I

Hanbur g

¢

(add H(@enmove) (show Xconnect/di sconnect)
=

Figure C.2: Remote Stores window

To access aremote store the user selects an entry in the window and then presses
the connect/disconnect button. If the connection is successful then the root

environment of the remote store is browsed and a new window displayed

192

showing the bindings of the remote root environment. This is illustrated in
figure C.3. An unsuccessful connection results in the error string being displayed

in the Output window.

"_'E| Gl asgow 1

Arithmetical : env *
Devi ce : env

Error : env

Event : env

Font : env

O : env *
| C_scan) Ccopy) Cup)

Figure C.3: A remote connection window

The window title displays the symbolic name used to refer to the remote store.
The scan button is used to move down the remote object store graph, displaying
the bindings of the selected entry. Each environment that is scanned resultsin the
window being updated to display the bindings for that remote environment.
Whilst scanning down in this manner, the output window displays the
"pathname" of the environment currently being scanned. The up button has the
same effect as the scan button but is used to move back up the object graph. The
copy button copies the selected object from the remote store to the local store and
makes an entry in the Local Values window where it can then be browsed or

used in subsequent compilations.

Because the remote object store is being used concurrently then each invocation
of the scan, copy or up button must check that the path to the selected
environment or object is still valid and has not been removed since the last
invocation. These functions cope with this type of failure by displaying a

message in the Output Window.

193

Finally the communication to a remote store can be disconnected by selecting the

connect/disconnect button.

194

References

[AB87]

[ABB-+86]

[ABC+83]

[ABC+84]

[ABJ+92]

[ACCS81]

[ACCS3]

Atkinson, M.P. & Buneman, O.P. “Types and Persistencein
Database Programming Languages’. ACM Computing Surveys
19, 2 (1987) pp 105-190.

Acceta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R.,
Tevanian, A. & Young, M. “Mach: A New Kernel Foundation for
Unix Development”. USENIX (1986) pp 93-112.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. &
Morrison, R. “An Approach to Persistent Programming”.
Computer Journal 26, 4 (1983) pp 360-365.

Atkinson, M.P., Bailey, P.J., Cockshott, W.P., Chisholm, K.J. &
Morrison, R. “Progress with Persistent Programming”.
Universities of Glasgow and St Andrews Technical Report PPRR-
8-84 (1984).

Atkinson, M.P., Birnie, A., Jackson, N. & Philbrow, P.C.
“Measuring Persistent Object Systems’ In Proc. 5th International
Workshop on Persistent Object Systems, San Miniato, Italy
(1992). In Persistent Object Systems (Eds. A.Albano &

R.Morrison). Springer-Verlag pp 63-85.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. “PS-algol: An
Algol with a Persistent Heap”. ACM SIGPLAN Notices 17, 7
(1981) pp 24-31.

Atkinson M.P., Chisholm K.J. & Cockshott W.P. CMS - A Chunk
Management System. Software Practice and Experience, vol. 13,

no. 3, 1983 pp 259-272.

195

[ADS54]

[ADSS5b]

[AM85]

[AMS8S]

[AMPS6]

[AMRO2]

[ANSS9]

[Atk78]

Agrawal, R. & DeWitt, D. “Recovery Architectures for
Multiprocessor Database Machines’. In SIGMOD International
Conference on Management of Data, (1985) pp 131-147.

Agrawal, R. & DeWitt, D. “Integrated Concurrency Control and
Recovery Mechansims: Design and Performance Evaluation”.

ACM Transactions on Database Systems, 10,4 (1985) pp 529-564.

Atkinson, M.P. & Morrison, R. “Procedures as Persistent Data
Objects’. ACM Transactions on Programming Languages and

Systems 7, 4 (1985) pp 539-559.

Atkinson, M.P. & Morrison, R. “ Types, Bindings and Parameters
in a Persistent Environment”. In Data Types and Persistence,
Atkinson, M.P., Buneman, O.P. & Morrison, R. (ed), Springer-
Verlag (1988) pp 3-20.

Atkinson, M.P., Morrison, R. & Pratten, G.D. “A Persistent
Information Space Architecture”. In Proc. 9th Australian

Computing Science Conference, Australia (1986).

Abdullahi, S.E., Miranda, E. & Ringwood, G.A. “Collection
Schemes for Distributed Garbage”. In Bekkers, Y. & Cohen, J.
(ed), International Workshop on Memroy Management, LNCS
637, Springer-Verlag, 1992 pp 43-81.

“ANSA Reference Manual Volume A”. ANSA, Poseidon House,
Castle Park, Cambridge, UK (1989).

Atkinson, M.P. “ Programming Languages and Databases’. Proc.
4th 1EEE International Conference on Very Large Databases,
1978 pp 408-419.

196

[Atk92]

[Baco?]

[BCSS5]

[BCC+88]

[BDM+90]

[BF8Y]

[BMMS80]

Atkinson, M.P. “Persistent Foundations for Scalable Multi-
Paradigmal Systems’ ESPRIT BRA Project 6309 FIDE Technical
Report FIDE/92/51 (1992).

Bacon, J. “ Concurrent Systems: An Integrated Approach to
Operating Systems, Database and Distributed Systems’. Addison-
Wesley, Wokingham, 1992.

Brown, A.L. & Cockshott, W.P. “The CPOMS Persistent Object
Management System”. Universities of Glasgow and St.Andrews

PPRR-13, Scotland, 1985.

Brown A.L., Carrick R., Connor R.C.H., Dearle A. & Morrison R.
The Persistent Abstract Machine. Universities of Glasgow and
St.Andrews PPRR-59, Scotland, 1988.

Brown, A.L., Dearle, A., Morrison, R., Munro, D.S., Rosenberg, J.
"A Layered Persistent Architecture for Napier88". International
Workshop on Computer Architectures to Support Security and
Persistence of Information, Universitét Bremen, West Germany,
(May 1990). In Security and Persistence. (Eds. J.Rosenberg &
L.Keedy). Springer-Verlag, 155-172.

Brossler, P. & Freisleben B. “Transactions on Persistent Objects’
3rd International Workshop on Persistent Object Systems,
Newcastle, N.SW., (1989). In Persistent Object Systems.(Eds.
J.Rosenberg & D.Koch). Springer-Verlag pp 341-350.

Bailey, P.J., Maritz, P. & Morrison, R. “The S-algol abstract
machine”’. Technical Report CS-80-2 (1980), University of St

Andrews.

197

[BMR82]

[BRO1]

[Bri70]

[Bri75]

[Bro89]

[BT85]

[CAB+81]

[CAB+84]

Brownbridge, D.R., Marshall, L.F. & Randell, B. “The Newcastle
Connection or Unixes of the World Unite!”. Software Practice and

Experience, 12 (1982) pp 1147-1162.

Brown, A.L. & Rosenberg, J. “ Persistent Object Stores: An
Implementation Technique’. In Dearle, Shaw, Zdonik (eds.),
Implementing Persistent Object Bases, Principles and Practice,

Morgan Kaufmann, 1991 pp 199-212.

Brinch Hansen, P. “ The Nucleus of a Multiprogramming System”.

CACM 13,4 (1970) pp 238-241.

Brinch Hansen, P. “ The Programming L anguage Concurrent
Pascal”. |EEE Transactions on Software Engineering, SE-1,2
(1975) pp 199-207.

Brown, A.L. “Persistent Object Stores’. Ph.D. Thesis, University
of St Andrews (1989).

Bates, K. & TeGrotenhuis, M. “ Shadowing Boosts System
Reliability”. Computer Design, 1985.

Chamberlin, D.D., Astrahan, M.M., Blasgen, M.W., Gray, JN.,
King, W.F., Lindsay, B.G., Lorie, R.A., Mehl, JW., Price, T.G.,
Selinger, P.G., Schkolnick, M., Slutz, D.R., Traiger, I.L., Wade,
B.W. & Yost, R.A. “A History and Evaluation of System R”
CACM 24,10 (1981) pp 632-646.

Cockshott, W.P., Atkinson, M.P., Bailey, P.J., Chisholm, K.J. &
Morrison, R. "A persistent object management system". Software,

Practice and Experience 14, 1 (January 1984) pp 49-71.

198

[CBC+89]

[CHT74]

[Cha78]

[CL85]

[Coc89]

[Coc90]

[Con90]

Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison,
R. "The Persistent Abstract Machine". 3rd International Workshop
on Persistent Object Systems, Newcastle, N.S.W., (January 1989),
80-95. In Persistent Object Systems (Eds. J.Rosenberg &

D.Koch). Springer-Verlag, 353-366.

Campbell, R.H. & Habermann, A.N. “ TheSpecification of Process
Synchronisation by Path Expressions’. In Operating Systems,
Springer-Verlag, Berlin (1974).

Challis, M.P. “Data Consistency and Integrity in a Multi-User
Environment”. Databases. Improving Usability and

Responsiveness, Academic Press, 1978.

Chandy, K.M. & Lamport, L. “Distributed Snapshots:
Determining Global States of Distributed Systems’. ACS TOCS
3,1 (1985) pp 63-75.

Cockshott, P. “Design of POMP - A Persistent Object
Management Processor”. 3rd International Workshop on
Persistent Object Systems, Newcastle, N.S.\W., (January 1989),
80-95. In Persistent Object Systems (Eds. J.Rosenberg &
D.Koch). Springer-Verlag pp 367-376.

Cockshott, P. “Implementing 128 Bit Persistent Addresses on
80x80 Processors’. In Security and Persistence, Rosenberg, J. &
Keedy, J.L. (ed), Springer-Verlag (1990) pp 123-136.

Connor, R.C.H. “Types and Polymorphism in Persistent
Programming Systems’. Ph.D. Thesis, University of St Andrews
(1990).

199

[CRW9l] Cooper, R., Roberts, A. & Wai, F. “An Implementation of a Co-
opertaive Locking Scheme for a Persistent Programming
Language’. In Dearle, Shaw, Zdonik (eds.), Implementing
Persistent Object Bases, Principles and Practice, Morgan
Kaufmann, 1991 pp 319-328.

[Cut92] Cutts, Q.1. “Delivering the Benefits of Persistence to System
Construction and Execution”. Ph.D. Thesis, University of St

Andrews (1992).

[Dav73] Davies, C.T. “Recovery semantics for aDB/DC System”, In Proc.
ACM Annua Conference, (1973) pp 136-141.

[Dav78] Davies, C.T. “Data Processing Spheres of Control”, IBM Systems
Journal 17,2 (1978) pp 179-198.

[Dea87] Dearle, A. “Constructing Compilersin a Persistent Environment”.
In Proc. 2nd International Workshop on Persistent Object
Systems, Appin, Scotland (1987).

[Dead8] Dearle, A. “On the Construction of Persistent Programming
Environments’. Ph.D. Thesis, University of St Andrews (1988).

[Dec78] Digital Equipment Corporation. “VAX/VMS Summary
Description”. DEC 1978.

[Dij65] Dijkstra, E.W. “Co-operating Sequential Processes’. Technical
Report EWD-123, Technological University, Eindhoven (1965).

200

[DRV91]

[DVM+92]

[EGO0]

[EGL+76]

[ELASS]

[FZ89]

Dearle, A., Rosenberg, J. & Vaughan, F. “A Remote Execution
Mechansim for Distributed Homogenous Stable Stores’. In
Database Programming Languages: Bulk Types & Persistent Data
(eds P.Kanéllakis & JW.Schmidt). Morgan Kaufmann Publishers
Inc., Palo Alto, Ca, USA, (1992) pp 125-138.

De Francesco, N., Vaglini, G., Mancicn, L.V. & PereiraPaz, A.
“Specification of Concurrency Control in Persistent Programming
Languages’. In Proc. 5th International Workshop on Persistent
Object Systems, San Miniato, Italy (1992). In Persistent Object
Systems (Eds. A.Albano & R.Morrison). Springer-Verlag pp 126-
143.

Ellis, C.A. & Gibbs, S.J. “Concurrency Control in Groupware
Systems’. In Proc. SIGMOD International Conference on
Management of Data. (1990) pp 399-407.

Eswaran, K.P., Gray, JN., Lorie, R A. & Traiger, |.L. “The
Notions of Consistency and Predicate Locks in a Database
System”. CACM 19,11 (1976) pp 624-633.

Ellis, JR., Li, K. & Appel, A.W. “Rea-time Concurrent
Collection on Stock Multiprocessors’. Technical Report 25,

Digital Equipment Corporation (1988).

Fernandez, M.F. & Zdonik, S. B. “ Transaction Groups. A Model
for Controlling Co-operative Transactions’. 3rd International
Workshop on Persistent Object Systems, Newcastle, N.S.W.,
(1989). In Persistent Object Systems.(Eds. J.Rosenberg &
D.Koch). Springer-Verlag pp 341-350.

201

[GAD+92]

[Gar83]

[GMB+8]]

[Gra78]

[GS87]

[Hag87]

[Hoa72]

[Hoa74]

[Hoa75]

Gruber, 0., Amsaleg, L., DaynesL. & Vaduriez, P. * Eos. An
Environment for Object-Based Systems”. In Proc. 25th Hawaii
Conference on System Sciences 1,1 (1992) pp 757-768.

Garcia-Molina, H. “Using Semantic Knowledge for Transaction
Processing in a Distributed Database”. ACM Transactions on

Database Systems, 8,2 (1983) pp 186-213.

Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price,
T., Putzolu, F. & Traiger, |. “The Recovery Manager of the
System R Database Manager”. ACM Computing Surveys, vol. 13,
no. 2, June 1981 pp 223-242.

Gray, J.N. “Notes on Database Operating Systems’. LNCS 60,
Springer-Verlag (1978).

GarciasMolina, H. & Salem, K. “Sagas’. In Proc. SSIGMOD
International Conference on Management of Data. (1987) pp 249-
259.

Hagmann, R.B. “Reimplementing the Cedar file system using
logging and group commit”. In Proc. 11th Symposium on

Operating Systems Principles, 1987 pp 155-162.

Hoare, C.A.R. “Towards a Theory of Parallel Programming”. In
Operating Systems Techniques, Academic Press, London pp 61-
71.

Hoare, C.A.R. “Monitors. An Operating Systems Structuring
Concept”. CACM 17,10 (1974) pp 549-557.

Hoare, C.A.R. “Recursive Data Structures’ International Journal

of Computer and Information Science 4,2 (1975) pp 105-132.

202

[Hoa7§]

[HR73]

[HR91]

[HZ87]

[Jef8s]

[Joh71]

[KB92]

[KGC85]

Hoare, C.A.R. "Communicating sequential processes’'. CACM 21,
8 (1978) pp 666-677.

Horning, J.J. & Randéell, B. “Process structuring”. Computing
Surveys 5,1 (1973) pp 427-430.

Henskens, F.A. & Rosenberg, J. “A Capability-Based Distributed
Shared Memory”. In Proc 4th Australian Computer Science
Conference (1991) pp 29/1-29/12.

Hornick, M. & Zdonik, S. B. “A Shared Segmented Memory
System for an Object-Oriented Database”. ACM Transactions on
Office Information Systems 5,1 (1987) pp 70-95.

Jefferson, D.R. “Virtual Time”. ACM TOPLAS (1985) pp 404-
425,

Johnston, J.B. “The contour model of block structure processes’.
ACM SIGPLAN Notices 6,3 (1971) pp 56-82.

Keedy, L. & Brosder, P. “Implmenting Databases in the Monads
Virtual Memory”. In Proc. 5th International Workshop on
Persistent Object Systems, San Miniato, Italy (1992). In Persistent
Object Systems (Eds. A.Albano & R.Morrison). Springer-Verlag
pp 318-338.

Kent, J., GarciaMolina, H. & Chung, J. “An experimental
evaluation of crash recovery mechanisms’. In Proc.4th ACM
Symposium on Principles of Database Systems (1985) pp 113-
122.

203

[Kirg2]

[Kol87]

[Kol92]

[KR90]

[Kra87]

[KSD+91]

[LH89]

[Lig6]

Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent
Programming Systems’. Ph.D. Thesis, University of St Andrews
(1992).

Kolodner, E.K. “Recovery Using Virtual Memory”. M.Sc. Thesis,
MIT (1987).

Kolodner, E.K. “Atomic Incremental Garbage Collection and

Recovery for aLarge Stable Heap”. Ph.D. Thesis, MIT (1992).

Koch, D. & Rosenberg, J. “A Secure RISC-based Architecture
Supporting Data Persistence”. In Security and Persistence,
Rosenberg, J. & Keedy, J.L. (ed), Springer-Verlag (1990) pp 188-
201.

Krablin, G.L. "Building Flexible Multilevel Transactionsin a
Distributed Persistent Environment”. 2nd International Workshop

on Persistent Object Systems, Appin, (August 1987) pp 213-234.

Koch, B., Schunke, T., Dearle, A., Vaughan, F., Marlin, C.,
Fazakerley, R. & Barter C. “ Cache Coherency and Storage
Management in a Persistent Object System”. in Dearle, Shaw,
Zdonik (eds.), Implementing Persistent Object Bases, Principles
and Practice, Morgan Kaufmann, 1991 pp 103-113.

Li, K & Hudak, P. “Memory Coherence in Shared Virtual
Memory”. ACM TOCS 17,4 (1989) pp 321-359.

Li, K. “Shared Virtual Memory on Loosely Coupled
Microprocessors’, Ph.D. Thesis, Yale University (1986).

204

[Lis84]

[Lor77]

[MBC+87]

[MBC+88]

[MBC+89]

[MBC+90]

Liskov, B.H. “Refinement - From Specification to
Implementation, The Argus Language and System”. Lecture Notes
for the Advanced Course on Distributed Systems - Methods and
Tools for Specification, Institute for Informatics, Technical

University of Munich, 1984.

Lorie, A.L. Physical Integrity in aLarge Segmented Database,
ACM Transactions on Database Systems, 2,1 (1977) pp 91-104.

Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A.
“Polymorphism, Persistence and Software Reuse in a Strongly
Typed Object Oriented Environment”. Universities of Glasgow
and St Andrews Technical Report PPRR-32-87 (1987).

Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H. & Dearle,
A."On the Integration of Object-Oriented and Process-Oriented
Computation in Persistent Environments'. Proc. 2nd International
Workshop on Object-Oriented Database Systems, West Germany
(1988). In Lecture Notes in Computer Science (Ed. K.R.Dittrich),
334. Springer-Verlag, (September 1988) pp 334-339.

Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The
Napier88 Reference Manual”. University of St Andrews Technical
Report PPRR-77-89 (1989).

Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.1., Kirby,
G.N.C., Dearle, A., Rosenberg, J. & Stemple, D. “Protection in
Persistent Object Systems”. In Security and Persistence,
Rosenberg, J. & Keedy, J.L. (ed), Springer-Verlag (1990) pp 48-
66.

205

[MDC+91]

[Mi80]

[Mi92]

[Mor79]

[Mor79b]

[Mor85-93]

[Mos81]

[Mos89]

[MRT+90]

Morrison R., Dearle A, Connor R.C.H. & Brown A.L. "An ad hoc
Approach to the Implementation of Polymorphism".

ACM.TOPLAS. (July 1991) pp 342-371.

Milner, R. “A Calculus of Communicating Systems’. LNCS 92,
Springer-Verlag, 1980.

Milner, R. “Functions as Processes’. Mathematical Structures for
Computer Science, 2 (1992) pp 119-141.

Morrison, R. “On the Development of Algol”. Ph.D. Thesis,
University of St Andrews (1979).

Morrison, R. “S-algol reference manual”. Technical Report CS-
79-1 (1979), University of St Andrews.

Morrison, R. “There is more to life than mucking about with

Unix”. Private Communication.

Moss, J.E.B. “Nested Transactions: An Approch to Reliable
Distributed Computing”. Ph.D. Thesis, MIT (1981).

Moss, J.E.B. “Addressing Large Distributed Collections of
Persistent Objects: The Mneme Project’s Approach”, In Database
Programming Languages. (Eds. R.Hull, R.Morrison &
D.Stemple). Morgan Kaufmann Publishers Inc., Palo Alto, Ca,
USA pp 358-374.

Mullender, S.J., Rossum, G. Van, Tanenbaum, A.S., Renessg, R.
Van & Staveren, H. Van. “Amoeba: A Distributed Operating
System for the 1990s’. IEEE Computer 23,5 (1990) pp 44-53.

206

[MS88]

[Nel81]

[NH82]

[NSZ91]

[NZ92]

[OLS85]

[0S93]

[PB61]

Moss, J.E.B. & Sinofsky, S. “Managing persistent data with
Mneme: Designing areliable shared object interface”. In Dittrich,
K.R. (ed.) Advancesin Object-Oriented Database Systems:
Second International Workshop on Object-Oriented Database
Systems, LNCS 334, Springer-Verlag, 1988 pp 298-316.

Nelson, B.J. “Remote Procedure Call”. Ph.D. Thesis, Carnegie-
Mellon University (1981).

Needham, R.M. & Herbert, A.J. “The Cambridge Distributed
Computing System”. Addison-Wesley, Wokingham (1982).

Nodine, M.H., Skarra, A.H. & Zdonik, S. B. “Synchronisation and
Recovery in Co-operative Transactions’. In Dearle, Shaw, Zdonik
(eds.), Implementing Persistent Object Bases, Principles and
Practice, Morgan Kaufmann, 1991 pp 329-342.

Nodine, M.H. & Zdonik, S. B. “Co-operative Transaction
Hierarchies. Transaction Support for Design Applications’.

VLDB Journal 1,1 (1992) pp 41-80.

Oki, B., Liskov, B. & Scheifler, R. “Reliable Object Storage to
Support Atomic Actions’. In Proc 10th Symposium on Operating
Systems Principles, 1985 pp 147-159.

Orji, C.U & Solworth, JA. “Doubly Distorted Mirrors’. In Proc.
SIGMOD International Conference on Management of Data,
Washington, D.C., (May 1993) pp 307-316.

Peterson & Brown “Cyclic codes for error detection” Proceedings

of the IRE Volume 49 1961.

207

[Ras86]

[RHB+90]

[RO91]

[Ros83]

[RR81]

[SDP91]

[SG90]

[SGK+85]

Rashid, R. “Threads of a New System”. Unix Review 4 (Aug
1986) pp 37-49.

Rosenberg J., Henskens F., Brown A.L., Morrison R. & Munro
D.S. "Stability in a Persistent Store Based on a Large Virtual
Memory.". International Workshop on Computer Architecturesto
Support Security and Persistence of Information, Universitét
Bremen, West Germany, (May 1990). In Security and Persistence.
(Eds. J.Rosenberg & L.Keedy). Springer-Verlag pp 229-245.

Rosenblum, M. & Ousterhout, J.K. “The design and
implementation of alog-structured file system”. In Proc 13th

Symposium on Operating Systems Principles, 1991 pp 1-15.

Ross, G.D.M. “Virtual Files: A Framework for Experimental
Design”. Ph.D. Thesis, University of Edinburgh (1983).

Rashid, R. & Robertson, G. “Accent; A Communication Oriented
Network Operating System Kernel”. In Proc. 8th Symposium on
Operating Systems Principles (1981) pp 64-75.

Shrivastava, S.K., Dixon, G.N. & Parrington, G.D. “An Overview
of the Arjuna Distributed Programming System”. IEEE Software
8, 1 (1991) pp 66-73.

Stamos, JW. & Gifford, D.K. “Remote Evaluation”. ACM
TOPLAS 12,4 (1990) pp 537-565.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D. & Lyon, B.
“Design and Implementation of the Sun Network Filesystem”. In
Proc. USENIX Summer Conference (1985) pp 119-130.

208

[SKW92]

[SMO2]

[SO91]

[Sun90]

[Sut91]

[SY85]

[Thas6]

Singhal, V., Kakkad, S.V. & Wilson, P.R. “Texas. an efficient,
portable persistent store”. In Proc. 5th International Workshop on
Persistent Object Systems, San Miniato, Italy (1992). In Persistent
Object Systems (Eds. A.Albano & R.Morrison). Springer-Verlag
pp 11-33.

Stemple, D. & Morrison, R. "Specifying Flexible Concurrency
Control Schemes: An Abstract Operational Approach”. Australian

Computer Science Conference 15, Tasmania (1992) pp 873-891.

Solworth, JA. & Orji, C.U. “Distorted Mirrors’. ACM Parallel
and Distributed Information Systems, 1991 pp 10-17.

Sun Microsystems Inc. “ SunOS Reference Manual” . Report 800-
3827-10, 1990.

Sutton, S. “A Fexible Consistency Model for Persistent Datain
Software-Process Programming”. In Dearle, Shaw, Zdonik (eds.),
Implementing Persistent Object Bases, Principles and Practice,

Morgan Kaufmann, 1991 pp 305-319.

Strom, R.E. & Yemini, S. “Optimistic Recovery in Distributed
Systems’. ACM TOCS 3,3 (1985) pp 204-226.

Thatte S.M. “ Persistent Memory: A Storage Architecture for
Object Oriented Database Systems’. Proc. ACM/IEEE 1986
International Workshop on Object Oriented Database Systems,
Pacific Grove, CA, September 1986 pp 148-159.

209

[VD92]

[VDD+91]

[Wai87]

[Waiss]

[WF90]

Vaughan, F. & Dearle, A. “ Supporting Large Persistent Stores
using Conventional Hardware”. In Proc. 5th International
Workshop on Persistent Object Systems, San Miniato, Italy
(1992). In Persistent Object Systems (Eds. A.Albano &

R.Morrison). Springer-Verlag pp 34-53.

Velez, F., Darnis, V., DeWitt, D., Futtersack, P., Harrus, G.,
Maier, D., and Raoux, M. “Implementing the O2 object manager:
some lessons’ In In Dearle, Shaw, Zdonik (eds.), Implementing
Persistent Object Bases, Principles and Practice, Morgan
Kaufmann, 1991 pp 131-138.

Wai, F. “Distribution and Persistence’. In Proc. 2nd International
Workshop on Persistent Object Systems, Appin, Scotland (1987)
pp 207-225.

Wai, F.H.W. “Distributed Concurrent Persistent Languages: an
Experimental Design and Implementation” Ph.D. Thesis,

University of Glasgow (1988).

Wu, K.L. & Fuchs, W.K. “Recoverable Shared Virtual Memory”.
|EEE Transactions on Computers, 39,4 (1990) pp 460-469.

210

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Persistent Object Stores
	1.2 Concurrency
	1.3 Distribution
	1.4 Integration
	1.5 Napier88
	1.6 Related Work
	1.6.1 Persistence
	1.6.2 Concurrency
	1.6.3 Distribution

	1.7 Summary
	1.8 Thesis Structure

	2 Recovery Methods
	2.1 Introduction
	2.2 Recovery from Hard Failure
	2.3 Recovery from Soft Failure
	2.4 Logging
	2.4.1 Writeahead Log with Deferred Updates
	2.4.2 Writeahead Log with Immediate Updates

	2.5 Shadow Paging
	2.5.1
After-look Shadow Paging
	2.5.2 Before-look Shadow Paging
	2.5.3 Shadowing using Objects

	2.6 Optimisations
	2.6.1 Optimisations to Logging
	2.6.2 Checkpointing
	2.6.3 Optimisations to Shadow Paging
	2.6.4 Optimisations to After-look Shadow Paging
	2.6.5 Optimisations to Before-look Shadow Paging

	2.7 Concurrency
	2.7.1 Concurrency and Logging
	2.7.2 Concurrency and Shadow Paging

	2.8 Comparing Shadow Paging with Logging
	2.9 Conclusions

	3 Shadow Paging Implementation
	3.1 Introduction
	3.2 Implementation Issues
	3.3 Stable Virtual Memory Implementation in SunOS
	3.3.1 Introduction
	3.3.2 SunOS Memory-Mapping Facilities
	3.3.3 After-look Stable Store Implementation
	3.3.3.1 Root page layout
	3.3.3.2 Stable store creation
	3.3.3.3 Store startup
	3.3.3.4 Store access
	3.3.3.5 Checkpointing
	3.3.3.6 Store recovery
	3.3.3.7 Optimisations

	3.3.4 Before-look Stable Store Implementation
	3.3.5 Comments

	3.4 Conclusions

	4 Concurrency
	4.1 Introduction
	4.2 Concurrent Architecture
	4.2.1 Co-operating Concurrency
	4.2.2 Conflict Concurrency
	4.2.3 Designer Concurrency

	4.3 Concurrency in Napier88
	4.3.1 Introduction
	4.3.2 Conceptual Concurrent Layered Architecture
	4.3.2.1 Concurrent shadow paged store
	4.3.2.2 Concurrency control and per-action melding

	4.3.3 Atomic transactions in Napier88

	4.4 Conclusions

	5 Implementation of Concurrency
	5.1 Introduction
	5.2 Multithreading Implementation
	5.2.1 Introduction
	5.2.2 Semaphore Implementation
	5.2.3 Persistent Abstract Machine
	5.2.4 Definition of Thread Contexts
	5.2.5 Thread Context Block Creation
	5.2.6 Context Switching
	5.2.7 User-control of Threads
	5.2.8 Persistent Threads
	5.2.9 Threads and I/O
	5.2.10 Comments

	5.3 Concurrent Persistent Object Store Implementation
	5.3.1 Introduction
	5.3.2 Overview
	5.3.3 Concurrent Shadow-paged Stable Virtual Memory
	5.3.3.1 Store access
	5.3.3.2 Transaction context switch
	5.3.3.3 Transaction abort
	5.3.3.4 Transaction commit

	5.3.4 Stable Heap Implementation
	5.3.5 Conflict Resolution
	5.3.6 Comments

	5.4 Conclusions

	6 Distribution
	6.1 Introduction
	6.2 Distribution Models
	6.2.1 Transparency Provision
	6.2.2 Non-transparency
	6.2.3 One-world models
	6.2.3.1 Casper
	6.2.3.2 Monads

	6.2.4 Federated Models
	6.2.4.1 DPS-algol
	6.2.4.2 Argus

	6.3 Stacos
	6.3.1 Introduction
	6.3.2 Base Model
	6.3.2.1 Language interface

	6.3.3 Implementation
	6.3.3.1 Connection establishment
	6.3.3.2 Remote object copying

	6.3.4 Transaction Processing and Two-phase Commit
	6.3.5 Software Distribution with Two-phase Commit

	6.4 Conclusions

	7 Conclusions
	7.1 Integrating Concurrency
	7.2 Integrating Distribution
	7.3 Building the Architecture
	7.4 Future Work
	7.4.1 Concurrency
	7.4.2 Distribution
	7.4.3 Reliability
	7.4.4 Measurement

	7.5 Finale

	Appendix A Multithreading in Napier88
	Appendix B Atomic Transaction Package
	Appendix C Stacos user interface
	References

