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Abstract

Software that cannot evolve is condemned to atrophy:
it cannot accommodate the constant revision and re-
negotiation of its business goals nor intercept the poten-
tial of new technology. To accommodate change in soft-
ware systems we have defined an active software archi-
tecture to be: dynamic in that the structure and cardinal-
ity of the components and interactions are changeable
during execution; updatable in that components can be
replaced; decomposable in that an executing system may
be (partially) stopped and split up into its components
and interactions; and reflective in that the specification
of components and interactions may be evolved during
execution.

Here we describe the facilities of the ArchWare archi-
tecture description language (ADL) for specifying active
architectures. The contribution of the work is the unique
combination of concepts including: a -calculus based
communication and expression language for specifying
executable architectures; hyper-code as an underlying
representation of system execution that can be used for
introspection; a decomposition operator to incrementally
break up executing systems; and structural reflection for
creating new components and binding them into running
systems.

1 Introduction

Software architectures [1, 2] describe systems in terms
of their components and interactions between compo-
nents. We define an active software architecture to be:
dynamic in that the structure and cardinality of the com-
ponents and interactions are changeable during execution;
updatable in that components can be replaced dynami-
cally; decomposable in that an executing system may be
(partially) stopped and split up into its components and

interactions; and reflective in that the specification of
components and interactions may be evolved during exe-
cution.

Active architectures address problems of co-evolution
in dynamically changing commercial environments where
business changes create pressures on the software to
evolve, and at the same time technology changes create
pressures on the business to evolve. The business effects
of introducing, or changing, such software systems are
often emergent and require their software architecture
models to accommodate their demands by being dynami-
cally evolvable themselves.

Often evolution is achieved by taking the system off-
line, editing and re-compiling the source code, and finally
rebinding or starting up the new system. In many cases,
especially in long-lived systems, such an approach is in-
feasible since: the source code may no longer be available;
there may be valuable data encapsulated in the closure of
executing components; the cost of assembly may be pro-
hibitive; or down-time may not be an option. Examples
of such systems include: continuously running business
process models; autonomic systems; GRID applications;
self-adapting/tuning systems; peer-to-peer routing sys-
tems; control systems; and pervasive computing applica-
tions.

Figure 1 shows an evolving system. At the initial
stage (a), the system is composed of three components of
one kind (say clients) interacting with one component of
another kind (say server) that has access to some data. At
stage (b), this system has been decomposed to yield the
individual components with the server still maintaining
its access to the data. The next stage (c) sees the compo-
nents evolved so that we have three clients and two serv-
ers both of which maintain the access to the shared data.
Finally at stage (d) a new evolved system is formed by
composing the five components so that one client inter-
acts with one server and the other two clients interact with
the other server.



Figure 1. An evolving system

The essence of an active architecture is that it encom-
passes the evolution of the architectural specification
(model) as well as the evolution of the enacted system.
Our claim is that active architectures require a paradigm
shift in ADLs.

This paper describes the ArchWare Architecture De-
scription Language [3], which is sufficiently rich to pro-
vide executable specifications of active systems. We de-
fine a core language on which architectural styles can be
layered and on which a construction methodology can be
applied. Our focus is on the base technologies required to
support dynamic and evolvable systems including: a -
calculus based communication and expression language
for specifying executable architectures; hyper-code as an
underlying representation of system execution that can be
used for introspection; a decomposition operator to in-
crementally break up executing systems; and structural
reflection for creating new components and binding them
into running systems. The contribution of the work is the
unique combination of these concepts.

2 Related work

Hitherto researchers have proposed many formal ADLs
for representing and analysing architectural designs. Ad-
age [4] supports the use of architectural frameworks in the
avionics industry; Aesop [5] has architectural styles;
MetaH [6] has specific guidance for real-time avionics
control software; SADL [7] provides a formal basis for
architectural refinement; C2 [8] supports the description
of user interface systems; Wright [9] supports the specifi-
cation and analysis of interactions and UniCon [10] sup-
ports a mixture of heterogeneous component and connec-
tor types.

Gerel [11] accommodates changes that are robust to
system evolution. It supports the definition of generic
programmed changes and provides for changes that are
only applied when a precondition is satisfied by the cur-
rent configuration.

LEDA [12] is an ADL based on the -calculus which
aims to address problems of refinement and validation by
combining formal methods with object-oriented concepts.
Systems can be checked for compatibility before being

composed. Re-use is encouraged by polymorphism of
behaviours, which allows architectures to be parameter-
ised.

Containment Units [13] provide a mechanism for deal-
ing with anticipated change. ArchStudio [14] is a tool
suite that supports architecture-based development.
Changes are made to an architectural model and then rei-
fied into implementation by a runtime architecture infra-
structure. In [15], specific component managers identify
external architecture changes by listening to events, and
then react in order to preserve architecture constraints. The
constraints themselves cannot be evolved.

Darwin [16] is a declarative binding language for
building distributed systems, which is based on the -
calculus. It has a similar structure to the ArchWare ADL
but a more limited approach to evolution. In Darwin,
evolution is restricted to the creation of new bindings
between components and the instantiation of new compo-
nents. Dynamic instantiation is either lazy or direct. In
lazy instantiation, instances of a component are created, as
they are needed in the computation.  In direct instantia-
tion, a component’s context is statically defined, but the
component itself can be defined in a ‘meta-level configu-
ration’, essentially a Darwin script, and instantiation
driven by interpreting this script at run-time.

ArchJava [17] is an extension to Java that unifies a
system’s software architecture and implementation. The
type system ensures that implementation code conforms
to architectural constraints. It provides for dynamic archi-
tectures only in that statically defined components can be
dynamically instantiated and connected.

Each ADL has its own focus according to needs and
taste with little integration of the overlapping ADL con-
cepts. ACME [18] is an attempt at such integration but
does it at the level of a lowest common denominator.

Most work on ADLs concentrates on the specification
and enactment model where the formal properties of the
system are specified, analysed and then executed. Where
dynamic evolution is considered, its scope is limited and
it is treated as distinct from the initial system develop-
ment. The focus of the ArchWare project [19] is in evolv-
ing systems, with emergent properties, where the system
is executing continuously. The model specification and
the model enactment are both regarded as part of a single
executing state. At any point in time the model specifica-
tion will be an accurate description of the model execu-
tion.

Our work on hyper-code intersects Intentional Pro-
gramming [20], which creates a programming environ-
ment based on a graph representation of the program.
Compilation invokes generators that operate over the
graph to assemble the program.

3 Change in active architectures

We have identified three architectural kinds of change
in active architectures. These are:

Evolve

Compose

Decompose

(a)

(b) (c)

(d)



• Dynamic change: allows the topology of the compo-
nents and interactions to be changed dynamically.
New components and interactions may be created
during execution.

• Update change: allows components to be replaced.
•  Evolutionary change: allows the specification of the

components and interactions to be changed during
execution.

There are three main stages involved in evolving active
architectures:
•  deciding when changes are required; all changes are

made in response to some stimulus
• deciding what changes are required in reaction to the

stimulus and the environment
•  applying the change via an appropriate change

mechanism
Taken from the field of control systems, Figure 2

shows how application knowledge, obtained by measure-
ment perhaps, is used to achieve a goal, causing a reac-
tion. The reaction may be to continue execution or to
initiate some change mechanism.

Figure 2. Change mechanisms

In an active architecture the specification of the archi-
tectural model changes with the model execution. Thus
changes during execution will change the specification
and changes to the specification will affect the execution.
However at any time in the execution of the model the
specification is dynamically up-to-date.

In the ArchWare ADL we have provided a number of
change mechanisms reflecting our estimate of the fre-
quency of the expected type of change. Dynamic change
and update change are made using mechanisms built into
the specification language. For example, this may be add-
ing more components to execute in parallel or passing
components to other components through connections
(dynamic change) or replacing a component from a library
of parts by assignment (update change).

Evolutionary change is characterised by changing
specifications and requires a reflective system. That part
of the system to be changed is stopped, its specification
altered and the new specification enacted in the executing
model. Evolutionary change may be implemented using
introspection on the component to be changed to yield its

specification, and reflection to rebind the new specifica-
tion. The reflection itself can use existing specifications
to make the alterations. In the limit user input may be
necessary to accommodate unpredicted emergent behav-
iour.

4 ArchWare overview

This work is undertaken within the EC funded Arch-
Ware software architecture framework. The ArchWare pro-
ject takes a holistic view of software development. Its
aims are to advance and integrate research on software
architecture and reflective systems to develop languages,
frameworks and tools for architecting and engineering
dynamic and evolvable software systems. The important
aspects of the ArchWare approach can be described as fol-
lows:
• a formal, style-based, executable architecture descrip-

tion language to describe architectural structure, be-
haviour, qualities and evolution of systems

•  a suite of tools based on the ADL for architecture
design and analysis

•  run-time and environment framework to support the
development and deployment of software systems
and coordination of design and analysis tools

•  generic and customisable process models for evolu-
tionary, architecture-centric development of software
systems

5 The ArchWare Style Language

The ArchWare style language provides a framework for
formalising software architectures based on the concepts
of components and connectors. It is used to define fami-
lies of architectures that have common structure and sat-
isfy the same properties.

The style language makes use of both the underlying
ArchWare ADL (see Section 6) and the ArchWare AAL
(Architecture Analysis Language). The structure and be-
haviour of an architecture family are specified using the
ADL while the constraints on the family are specified
using the AAL.

Styles in ArchWare are defined as property-guarded ab-
stractions that may be applied to yield instances of an
architecture conforming to the style.

A style definition consists of the following parts:
• types
• constituent elements
• constraints
• analysis

Figure 3 shows a specification of a Client-Server style.
Client_Server defines three elements to be used in its
specification. Client and Server are component styles
while PC (procedure call) is a connector style. Three con-
straints are specified for Client_Server:
• a components can only be a Client or a Server
• a Client can only be connected to a Server
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• a Server can only be connected to a Client
In the analysis part, connected checks whether two com-
ponents are connected.

Client_Server is style where {
elements

Client is style extending Component
…
Server is style extending Component
…
PC is style extending Connector
…

constraints
to connectors apply {

forall(c|c in style PC)}.
to components apply {

forall(c|c in style Client
or c in style Server),
forall(c1,c2|c1 connected to c2

implies
  (c1 in style Client and

c2 in style Server) or
  (c1 in style Server and

c2 in style Client)
};

analysis
connected is AAL_property
parameters

c1 in style Component,
c2 in style Component;

property
to connectors apply {

exists(conn | c1 attached to conn
and c2 attached to conn )

}
}

Figure 3: Client/Server Styles

The architecture styles can be used to specify evolution
but can be also be part of the evolution of another com-
ponent. The theorem provers and model checkers that
ensure correctness must be integrated within the evolu-
tionary process to spark change when a constraint is vio-
lated, an issue for current research. Here we concentrate on
the required environment and base technologies within the
ArchWare ADL for dynamic expression and evolution.
These include the following:
• a formal foundation based on higher-order -calculus

[21] for specifying components of architectures with
dynamic structure and cardinality

•  integration of a -calculus based language for com-
munication and an expression based language to
yield executable specifications

•  hyper-code as a representation for system execution
to support reification

•  a decompose operator essential to break up active
systems into their components prior to evolution and
recomposition

• structural reflection to support evolution
The theoretical foundation enables formal analysis of

the architecture and proof of its desired properties. Execu-
table specifications reduce the cost and complexity of

separately implementing the corresponding software sys-
tems. The separation of concerns of co-ordination, com-
munication and computation of components make the
system easier to understand and evolve. Dynamic expres-
sion is built into the constructs of the language. The fa-
cilities for composition and reification together with sup-
port for decomposition and reflection enable evolving
systems.

Formal analysis of architectures in the ADL is per-
formed at the style layer. The styles specify the desirable
properties of the architecture and theorem provers and
model checkers are used to verify these properties. It is
important to note that the formal checking may be applied
to a static description incrementally to a trace of the exe-
cuting system. However, we concentrate here on the facili-
ties for evolution in the ADL.

6 The ArchWare ADL

The ArchWare ADL is the simplest of a family of lan-
guages designed for modelling active software architec-
tures based on the concepts of -calculus, persistent pro-
gramming and dynamic system composition and decom-
position.

The ArchWare ADL is a strongly, and mostly stati-
cally, typed persistent language. The ADL system con-
sists of the language and its populated persistent envi-
ronment and uses the persistent store to support itself. To
model the component and communication algebra, the
ADL supports the concepts of behaviours, abstractions of
behaviours and connections between behaviours. Com-
munication between components, represented by behav-
iours, is via channels, represented by connections. For
expressing data the language also supports a number of
data types: integer, boolean , real, string, locations,
views, sequences and higher order functions. These can
be regarded as syntactic sugar since they can all be en-
coded in the -calculus. The language also supports all
the basic -calculus and expression based operations as
well as composition and decomposition.

The ArchWare ADL is designed using the three princi-
ples of abstraction, correspondence and type completeness
[22-24].
• The principle of abstraction allows abstractions over

every semantically meaningful syntactic category in
the language. Thus functions are abstractions over
expressions.

• The principle of correspondence states that the rules
for introducing and using names should be the same
throughout. In particular there should be a one-to-one
correspondence between introducing names in decla-
rations and as parameters.

•  The principle of type completeness states that the
rules for using data types must be complete with no
gaps. For example, general rules for type construc-
tors should have no exceptions.

The application of these design rules yields languages
that are both small in the number of concepts and power-



ful. They are small in that there are no exceptions to the
rules and powerful since every combination is valid.
These properties are important in the design of hyper-code
and its programmable interface (see later in Section 7).

The ArchWare ADL is designed using a layered ap-
proach with the above-mentioned principles of program-
ming language design guiding the process. Layering the
language helps to separate different concerns. There are
currently three layers in the ArchWare ADL:
• The base layer defines a coordination language with-

out data values corresponding to non-higher-order
monadic -calculus.

• The first order layer adds data values and abstractions
and corresponds to non-higher-order polyadic -
calculus.

•  The higher order layer corresponds to higher-order
polyadic -calculus. We present this layer in this pa-
per.

6.1 The ArchWare ADL type system

The ArchWare ADL type system is based on the no-
tion of types as a set structure imposed over the value
space. Membership of the type sets is defined in terms of
common attributes possessed by values, such as the op-
erations defined over them. These sets or types partition
the value space. They may be predefined, like integer, or
they may be formed by using one of the predefined type
constructors such as view.

The constructors obey the principle of type complete-
ness. That is, where a type may be used in a constructor,
any type is legal without exception. This has two bene-
fits. Firstly, since all the rules are very general and with-
out exceptions, a very rich type system may be described
using a small number of defining rules. This reduces the
complexity of the defining rules. Secondly the type con-
structors are as powerful as is possible since there are no
restrictions on their domain.

The universe of discourse of the ArchWare ADL can be
described as follows. The following base types are de-
fined:
1. The scalar data types are integer, real, and boolean.
2. Type string is the type of a character string; this type

embraces the empty string and single characters.
3 .  Type any is an infinite union type; values of this

type consist of a value of any type together with a
representation of that type.

4. Type behaviour is the type of an executing process.

The following type constructors are defined:

5. For any type t, location [t] is the type of a location
that contains a value of type t.

6. For any type t, sequence[t] is the type of a sequence
with elements of type t.

7 .  For identifiers I1,...,In and types t1,...,tn, view[I1:
t1,...In: tn] is the type of a view with fields Ii and cor-
responding types ti, for i = 1..n and n  0.

8. For any types t and t1,...,tn, function[t1,...,tn]  t is
the type of a function with parameter types ti, for
i = 1..n, where n  0, and result type t . Functions
abstract over expressions.

9. For types t1, …, tn, connection[t1, …, tn] is the type
of a connection (channel in -calculus) which can
send or receive values of types t1,…,tn where n  0.

10.  For any types t1,...,tn, abstraction[t1,...,tn]  is the
type of an abstraction with parameter types ti, for
i = 1..n, where n  0. Abstractions abstract over be-
haviours.

The world of data values is defined by the closure of
rules 1 to 4 under the recursive application of rules 5 to
10.

6.2 Control constructs in the ArchWare
ADL

The ArchWare ADL provides all of the usual control
structures associated with expression-based languages,
namely sequence, choice, iteration, and function call in-
cluding recursion. To allow update change the ADL uses
locations and assignment. Any data type may be stored in
a location and be updated by a value of the same type.

Since the ArchWare ADL is formally based on the
higher-order -calculus it provides constructs analogous
to those provided by the -calculus for specifying control
flow, communication and dynamic topology. The default
execution pattern for behaviours in the ADL is parallel. In
addition the ADL provides a rich set of control con-
structs.

Replication of a behaviour, indicated by ! in the -
calculus, is equivalent to a potentially infinite number of
copies of that behaviour executing in parallel. This allows
the specification of dynamic structure since replication
generates copies as they are required. In Figure 4, the
shown behaviour is replicated each time a value is re-
ceived on connection in_channel. The behaviour waits at
its reduction limit

1
 for input. Upon receiving input it

creates a clone of itself waiting at the reduction limit, and
sends twice the received value on the out_channel. Many
clones of the behaviour may be executing in parallel thus
capturing dynamic topologies in the architecture, and
supporting dynamic change.

replicate{
via in_channel receive num ;
via out_channel send 2 * num

} ;

Figure 4. Replication

The choose clause, denoted by + in the -calculus, al-
lows the non-deterministic selection of one behaviour

                                                
1 A behaviour reaches its reduction limit when it is wait-

ing to communicate with another behaviour.



from two or more behaviours. In Figure 5, one of behav-
iours client1, client2 or client3 will be chosen at random
by the run-time system.

value client1 = … ;
value client2 = … ;
value client3 = … ;
choose { client1

or client2
or client3

} ;

Figure 5. Choice

Sequence, indicated by “.” or then in the -calculus, is
denoted by “;” in the ADL. Therefore in Figure 4, num
will be received on in_channel by the behaviour before
the output value is sent on out_channel.

The -calculus also provides the facility to restrict
names to processes. In the ArchWare ADL this restriction
is enabled partly by block structured programming scope
rules and partly by an explicit free construct that specifies
the values to be available for further binding.

6.3 Components

Software architectures describe systems in terms of
their components and their interactions. Components are
units of structure and functionality. In the ArchWare ADL
components can be modelled by behaviours that are
analogous to processes in the -calculus. The code in
Figure 4 specifies a server component that receives a
number and sends back twice its value.

In order to facilitate design and reuse, the ADL allows
the definition of abstractions that abstract over behav-
iours. Applying an abstraction results in a behaviour as
illustrated in Figure 6.

value server = abstraction()
replicate
{ via in_channel receive num ;

via out_channel send 2 * num } ;

server() ; ! applies the abstraction to yield a behaviour

Figure 6. Abstraction

There are two aspects to the interaction between com-
ponents: coordination and communication. The former is
concerned with synchronisation of components and the
latter with exchange of data between components. Con-
nections, analogous to channels in the -calculus, are
used for both aspects.

Behaviours can communicate, i.e. send and receive
values, via connections if they share connections or if
their connections have been explicitly unified. Empty
messages via connections are used for coordination alone.

So far we have seen how to implement dynamic
change through replicate, and update change through loca-
tions and assignment. We now turn our attention to the
facilities for unexpected evolutionary change: hyper-code,
decomposition, reflection and reification.

7 Hyper-code

The hyper-code abstraction was introduced in [25] as a
means of unifying the concepts of source code, executable
code and data in a programming system. The motivation
is that this may ease the task of the programmer, who is
presented with a simpler environment in which the con-
ceptually unnecessary distinction between these forms is
removed. In terms of Brooks’ essences and accidents, this
distinction is an accident resulting from inadequacies in
existing programming tools; it is not essential to the con-
struction and understanding of software systems [26]. In a
hyper-code system the user composes hyper-code and the
system executes it. When evolving the system, for exam-
ple because an error has occurred, the user only ever sees a
hyper-code representation of the program, which may now
be partially executed. The hyper-code source representa-
tion of the program is structured and contains text and
links to extant values.

Figure 7 shows an example of a hyper-code representa-
tion in the ArchWare ADL. The links embedded in it are
represented by underlined tokens to allow them to be dis-
tinguished from the surrounding text. The first link is to
an integer location value count that is used as a parameter
in the application of the server_abs abstraction. The pro-
gram also has two links to a previously defined abstrac-
tion client_abs. Hyper-code models sharing by permitting
a number of links to the same value. Note that code val-
ues (client_abs) are denoted using exactly the same
mechanism as data values (count). Note also that the
value names used in this description have been associated
with the values for clarity only, and are not part of the
semantics of the hyper-code.

Figure 7. ADL hyper-code

The importance of hyper-code in active architectures is

value server_abs = . . . ;

value server1 = server_abs(    count    ) ;

value client1 =    client_abs   () ;

value client2 =    client_abs   () ;

count

client_abs



that it is rich enough to represent executing code. Thus as
the program executes, the hyper-code changes in line with
the semantics of the language. Since hyper-code can repre-
sent closure, through sharing links, it may be used as a
representation for introspection of the executing system.
Hyper-code provides the basic facility of preserving con-
sistent state information across the system as it evolves.

There are a number of possible views of the concept of
hyper-code. Most relevant to active architectures is the
notion that hyper-code is an active executing graph with a
programmable interface. In software engineering terms
there is always a way of reverse engineering the executing
computation so that it may be seen and programmed over.

8 Composition and decomposition

An essential property of evolutionary systems is the
ability to decompose a running system into its constitu-
ent components, and compose evolved or new compo-
nents to form a new system, while preserving any state or
shared data if desirable.

The ArchWare ADL provides a compose operator
which operates over a number of behaviours (components)
and returns a single handle to these behaviours executing
in parallel. The result of this composition is also a behav-
iour. Thus hierarchical systems may be modelled by
components that are made up of other components. Figure
8 illustrates composition.

Behaviours client and server are composed to give sys-
tem. The as construct permits meaningful labels to be
associated with behaviours. As the details of client and
server are not of interest in this example, the result value
position sent by server is shown as a hyper-link which
has previously been defined.

value channel_1 = connection() ;
value channel_2 = connection( string ) ;
value client = replicate{

via channel_1 send ;
via channel_2 receive pos : string } ;

value server = replicate{
via channel_1 receive ;
via channel_2 send   position   } ;

value system = compose{ pos_client as client
 and pos_server as server }

Figure 8. Composition

The ADL also provides a decompose operator that
breaks up a behaviour into its constituent behaviours.
Decomposing a composite behaviour will undo any unifi-
cation associated with the corresponding composition. On
decomposition each constituent behaviour will eventually
reach its reduction limit. Figure 9 illustrates the use of

the decomposition operator on the composition from
Figure 8.

Decomposition returns a sequence of views consisting
of behaviours and their labels (if any) in the order that
they were composed. All the behaviours are at their reduc-

tion limit for that composition. Figure 9  shows how
these behaviours and their labels may be accessed from
the sequence. These behaviours can be returned to the user
as hyper-code, modified and recomposed.

value pos_seq = decompose system ;

value client_val = pos_seq::1.bhvr ;
value server_val = pos_seq::2.bhvr ;
value comp1_label = pos_seq::1.label

Figure 9. Decomposition

Explicit composition is not always required since two
behaviours will communicate if they share the same con-
nection and communication is ready. Composition gives
a handle to the new composed behaviours. The higher
order nature of the language means that two behaviours
that have been sent to a third may wish to communicate
but do not share the same connection value. The compose
operation has a variant that allows the unification of con-
nection values during composition to facilitate communi-
cation in these circumstances. Figure 10 shows an exam-
ple of unification.

value client = abstraction()
{ value out_request = connection() ;

value in_reply = connection( string ) ;
replicate{

via out_request send ;
via in_reply receive pos : string }

} ;

value server = abstraction()
{ value in_request = connection() ;

value out_reply = connection(string) ;
replicate{

via in_request receive ;
via out_reply send    position    }

} ;

value system =

compose{ pos_client as client() and
pos_server as server()

where { pos_client::out_request unifies 
pos_server::in_request,

pos_client::in_reply unifies 
pos_server::out_reply } }

Figure 10. Unification



9 Reflection and reification

A hyper-code system may be thought of as operating
within two abstract domains: entities (E) and representa-
tions (R). E contains all the first class values defined by
the language while R contains the concrete representations
of the values in E. Given these domains, four domain
operations over E and R may be defined.
•  reflect maps a representation to its corresponding en-

tity (R E)
• reify maps an entity to a corresponding representation

(E R)
• execute executes an entity, possibly generating a result

(E E)
• transform maps one representation to another (R R)

Reflection and reification are of particular interest since
they play a vital role in evolving systems. Once a system
is decomposed, reification allows us to view representa-
tions of its components. These may be evolved to capture
new requirements. Reflection allows evolved or new
components to be bound back into the system.

The ability of hyper-code to capture closures allows us
to represent parts of a system after decomposition without
losing their context. It provides representations that can
be used for both evolving the components and recompos-
ing them into the new system.

The ArchWare ADL provides specific operations for
reflect and reify. Evolution is effected by decomposing
the selected part of the system, reifying the components,
applying a transformation and finally reflecting the code.
The specific evolutionary process may be abstracted by
writing a style to specify the evolution and the constraints
upon it.

10 An example of evolution

The concepts discussed in earlier sections are now il-
lustrated using a (by necessity simple) example written in
the ArchWare ADL. This example is based on a long run-
ning in silico experiment [27]. The user is a scientist who
wants to run the experiment from a desktop-based client.
The experiment itself runs on a server machine with ac-
cess to a range of resources, e.g. corporate databases. The
scientist’s client will connect to a server that disseminates
data about the status of the experiment. The client also
allows the scientist to control (start and end) the experi-
ment. Initially there will be a single client and a single
server, but later the system will be evolved so that the
functionality of the server is split into two.

The functionality of the server and the client can be
modelled as abstractions in the ArchWare ADL. When
applied, these abstractions yield executing behaviours.
Such behaviours are the components that make up the
client-server system. The repetitive nature of both the
client and the server is captured using replication. Thus
the dynamic nature of the system is already present in that
the server may replicate itself to deal with data from the

experiment and the client may replicate itself in parallel to
react to the data sent by the server.

Since exact details of the experiment are not of interest
to this example, we will assume that values of data type
exp_view provide all necessary information about the ex-
periment. The client abstraction can then be defined as
shown in Figure 11.

! client
value client_abs = abstraction()
{ value c_start = connection() ;

value c_stop = connection() ;
 value c_get = connection( exp_view ) ;

via c_start send ;
replicate

choose{
{ via c_get receive ev : exp_view ;

via   c_display   send ev } or

{ via   user_input   receive ;

via c_stop send } }
}

Figure 11. The client abstraction

The client defines the connections it needs to commu-
nicate on, sends a message to start the experiment and
then on demand replicates itself to choose either to receive
details of the experiment and display it to the user or to
receive a command from the user and send a message to
end the experiment. The former provides the scientist
with an ongoing view of the experiment and the latter
with the means to stop the experiment if its progress is
not satisfactory. c_display and user_input connections are
shown as hyper-links in the code as they have previously
been defined elsewhere.

Figure 12 shows the definition of the server abstrac-
tion. The body of the server mirrors that of the client. It
defines its connections, receives the start message, begins
the experiment and then on demand replicates itself to
choose either to receive the stop message and end the ex-
periment or to receive the current values of the experiment
and send them on. As before connection exp_input and
function stop_experiment are shown as hyper-links.

! server
value server_abs = abstraction()
{ value s_start = connection() ;

value s_stop = connection() ;
value s_put = connection( exp_view ) ;
via s_start receive ;
  start_experiment  () ;

replicate
choose{

{ via s_stop receive ;
  stop_experiment  () } or

{ via   exp_input   receive current_view ;

via s_put send current_view } }
}

Figure 12. The server abstraction



Having defined server and client abstractions, we can
now create a client-server system by composing instances
of the server and the client abstractions with appropriate
unification. Unification ensures that corresponding client
and server connections are matched for communication.
Defining the composition as a value gives us a handle
(CS_system1) to the resulting behaviour. Figure 13 shows
the composition of one client and one server.

The as construct allows users to associate meaningful
labels with behaviours being composed. In addition to
aiding the identification of behaviours after decomposi-
tion, this facility also connections to be uniquely identi-
fied for unification.

! client-server system
value CS_system1 =
compose{

client as client_abs() and server as server_abs()
where{ client::c_start unifies server::s_start,

client::c_stop unifies server::s_stop,
client::c_get unifies server::s_put }

 }

Figure 13. The client-server system

Once the system starts executing, we may wish to
change its structure. The scientist may want to share a
view of the in silico experiment with colleagues, or the
experiment may take longer than expected and the scien-
tist may wish to get advice before deciding whether the
server should be stopped, aborting the experiment.

We begin this process by decomposing the system
into its component parts as shown in Figure 14. The re-
sult of this decomposition is a sequence of views contain-
ing the following information about each behaviour of the
system: label, behaviour value and list of connections. In
long-running systems, labels associated with behaviours
may help identify their purpose and identity.

! decompose system
value cs_seq = decompose CS_system1

Figure 14. Decomposition

Necessary changes can then be made by evolving or
redefining some components. In this case we wish to split
the functionality of the server into two by creating two
new servers, one serving status alone, which can be shared
among multiple clients, and the other serving the com-
mand messages, of which the scientist who started the
experiment wants to retain control. Therefore we create
two new abstractions to replace the old server_abs.

Using hyper-code representations of the abstractions
will enable us to define the new abstractions to use the
current values of variables without having to explicitly
store and reinitialise them as shown in Figure 15. Ab-
straction view_server_abs disseminates status information
about the experiment while command_server_abs allows

the experiment to be controlled. Note that start messages
are ignored as the experiment has already been running.

! view server
value view_server_abs = abstraction()
replicate
{ via   exp_input   receive current_view ;

via   s_put   send current_view

}

! command server
 value command_server_abs = abstraction()
replicate

choose{
{  via   s_start   receive }

or
{ via   s_stop   receive ;

  stop_experiment  () }

Figure 15. The new server abstractions

A new client-server system can then be formed by
composing the two new servers with the decomposed
client appropriately as shown in Figure 16.

! make new client-server system
value CS_system2 =
compose{ client as cs_seq::1.bhvr

and view_server as view_server_abs()
and command_server as command_server_abs()
where{

client::c_start unifies command_server::s_start,
client::c_stop unifies command_server::s_stop,
client::c_get unifies view_server::s_put }

} ;

Figure 16. The evolved system

Now the client will communicate with both servers. If
experiment information is required the client will talk to
view_server and if the scientist wishes to control the ex-
periment then the client will talk to command_server.

11 Conclusions

This paper describes the ArchWare Architecture De-
scription Language, which is sufficiently rich to provide
executable specifications of active systems. We define a
core language on which architectural styles can be layered
and on which a construction methodology can be applied.
We focussed on the base technologies required to support
evolvable systems and presented examples of how the
ADL may be used to model active architectures. In par-
ticular, we showed how architectures specified in the ADL
were dynamic, updateable, decomposable and reflective.

We postulate that the need for dynamic evolution of
software architecture definitions is inherent in the descrip-
tion of autonomic systems and will give a paradigm for



architectural transformations. Furthermore we recognise
the role that hyper-code may have in reverse engineering.
For reliability it is important that the architectural defini-
tion of a system is automatically kept consistent with the
state of the system at all times during its execution and
evolution. Our approach to meeting these requirements
involves the combination of a number of technologies:
reflection, reification and representation for closure (hyper-
code).

We have combined these with a variant of the -
calculus that yields dynamic expressions and communica-
tion while providing the basis for formal analysis tools in
the form of theorem provers, type checkers and model
checkers.

These elements provide a core evolutionary support
system. At the time of writing the core ArchWare ADL,
the hyper-code, the decomposition operator and the reflec-
tive mechanism are all implemented and being used to
specify evolvable software architectures.
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