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Abstract

This paper briefly and selectively reviews the experience gained in designing and
implementing the orthogonally persistent programming languages PS-algol and Napier88. A
major design issue is how much is built into the support system and how much is built on top
of the language itself. The PS-algol and Napier88 systems provide at the system or language
level: a persistent store with root(s), reachability and referential integrity; code as data; an
infinite union type with dynamic injection and projection; and two type magic procedures,
one to find a type representation of a value, and one to convert a sequence of bytes into a
language value. Within a strongly typed system this provision allows the programming
techniques of strongly typed linguistic reflection, hyper-programming and persistent schema
evolution, the last two of which are especially significant since they are new paradigms that
are only available in orthogonally persistent systems. The essence of the paper is to suggest
how the above facilities may be provided in Java to enable these new persistent programming
paradigms.

1 Introduction

In the early days of persistence research, it was hypothesised "that it should be possible to
add persistence to an existing language with minimal change to the language" [ABC+83].
While the statement turned out to be true, it was not true in the manner that was first
expected. That is, "an existing language" turned out to be existentially quantified rather than
the intended universal quantification. The subtlety is that to support persistence the language
environment must provide a basic number of facilities either within the language itself or
within its run-time support system. Since then many persistent languages have been
developed including Abstract Data Store [Pow85], Amber [Car86], Fibonacci [ABG+93],
Flex [Cur85], Galileo [ACO85], Napier88 [MBC+94], PS-algol [PS88], TI Persistent
Memory System [Tha86], Trellis/Owl [SCW85] and Tycoon [MS92].

Here we selectively draw on the PS-algol/Napier88 experience which developed a strongly
typed orthogonally persistent programming environment. We show how, by providing a basic
number of facilities at the system support level, the programming techniques of strongly
typed linguistic reflection [SSS+92], hyper-programming [KCC+92] and persistent schema
evolution [CAB+93] may be programmed within the language. The last two of these are
especially significant since they are new paradigms that are only achievable in orthogonally
persistent systems. The essence of the paper is to demonstrate how these basic facilities may
be provided in Java with the same attendant benefits.

2 The Joys of Persistence

2.1 PS-algol (Mk 1)

The first successful attempt to provide orthogonal persistence was PS-algol (Mk 1) [ACC82].
This took the language S-algol [Mor79] and added a persistent store. The language had a
small number of base types int, real, bool, string and picture as well as two constructor types
vector and structure. Thus, the universe of discourse was infinite since the constructors could
contain any types, by the principle of type completeness [Str67], and therefore graphs of any
complexity could be constructed and stored.
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Programs were prepared and compiled outside the persistent store and could access the roots
of persistent objects through databases which were implemented at the top level by directory
structures called tables. Figure 1 shows a number of programs accessing the database
directories in the persistent store and, by following pointers, the objects within the stored
graphs.

The problem of how to identify which objects persisted after program execution was
alleviated by the fact that S-algol was garbage collected. This easily extended to persistence
by reachability which is now the common method employed by others.

int, real, bool, string, picture
vector, structure

program programprogram

Figure 1: PS-algol (Mk 1) Persistent Store

The use of S-algol as a starting point was not, however, a random choice since it supports an
infinite union type of all structures, called pntr 1. This allows the directories to return pntr
types when indexed by a name and for this type to be projected onto the particular type that
was asserted by the program and checked by the compiler. Thus, this dynamic bind and type
check allowed the rest of the program using that type to be statically checked. Furthermore it
allowed the data and programs to be evolved separately since these points of dynamic
checking could be extended to the object graph. Programs accessing the data needed only to
specify the part of the graph of interest accurately.

In Figure 1, the shaded area depicts the points at which the programs dynamically bind to the
persistent store through the database directories.

The advances of PS-algol (Mk 1) were a persistent store with roots and reachability together
with an infinite union type supporting dynamic injection and projection operations. While
this huge advance was very exciting in 1983, and indeed is the model of persistence presented
by many language/OODBMS systems today, e.g. [Deu91], it soon became clear that the next
step was to remove the artificial difference between code and data and put the code within the
persistent environment.

2.2 PS-algol (Mk 2)

PS-algol (Mk 2) added higher order procedures to its universe of discourse [AM85]. The
procedures were first class and could be assigned to variables, nested, passed as parameters
and returned as results of other procedures. This allowed programming of modules, abstract
datatypes, partial application, views, code libraries, and separate compilation.

1 It was also serendipitous that the S-algol implementation technology was so amenable to persistent overtures.
Earlier attempts with Pascal and algol 68 were less successful.
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Initially the programs were composed and compiled outside the store. When they were run,
however, it was possible to assign a procedure to a location within a persistent data structure
and thus over time code and data were freely intermixed in the persistent graphs. This yielded
a single view of the total computation space, a concept which recurs throughout this research.
Given that the procedures were now within the store it was also possible for them to access
data without going through the directory structure. For example, a procedure having accessed
a data object through the database route could then store the pointer to the object within its
closure for future use. This was exploited to increase static binding within the system and is
the basis of hyper-programming which was developed later.

Realising that the compiler, which was written in PS-algol, was a procedure and could be
placed in the store yielded the ability to prepare, compile and run programs completely within
the persistent environment. The PS-algol compiler type is given in Figure 2.

structure rons.proc (proc (string -> int) rons)
! This declares a structure class (type) called rons.proc which has one field called rons
! which is a procedure that takes a string parameter and yields an integer result

let compiler = proc (string source ; pntr  proc.holder -> pntr )
! The compiler is a procedure that takes the source as a string and a value of a structure
! class. It returns the compiled source as a procedure wrapped up in the structure class

Figure 2: PS-algol Compiler Type

The compiler compiles the procedure found in source and type checks it against the single
procedure field of proc.holder. If successful a structure is returned containing the compiled
procedure. The structure will be the same structure class as proc.holder and therefore may be
projected by the user using this definition. If the compilation fails a linked list of error
messages is returned.

For the compiler to be written in PS-algol it must have access to two system magic functions.
The first takes an object and returns a description of its type. This is required for type
checking the procedure type that is supplied and for ensuring that the compiler and the
program calling it share the same structure class definition while not in the same scope. Thus
in Figure 2, the compiler can produce a value that has the structure class rons.proc which can
be used by the calling program. The second function takes a sequence of characters that have
been produced by the compiler and performs a type coercion so that they may now be
considered as a procedure value. For convenience we will call these typeOf and
coerceToValue respectively.

int, real, bool, string, picture
image, vector, structure, proc

proc proc proc

compiler

Figure 3: PS-algol (Mk 2) Persistent Store
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Figure 3 depicts the PS-algol (Mk 2) persistent store with the compiler as a persistent data
object.

The presence of the compiler within the persistent environment provides the ability for the
programming technique of linguistic reflection [SSS+92] which is defined as the ability of a
running program to generate new program fragments and to integrate these into its own
execution. The advance of PS-algol (Mk 2) is the integration of this style of reflection with a
compiled, strongly typed language.

An example of such a linguistic reflective program is a persistent object store browser [DB88,
DCK90] which displays a graphical representation of any value presented to it. The browser
may encounter values in the persistent store for which it does not have a static type
description. This may occur, for example, for values that are added to the store after the time
of definition of the browser program. For the program to be able to denote such values, they
must belong to an infinite union type, such as pntr .

Before any operations may be performed on a value of an infinite union type it must be
projected onto another type with more type information. This projection typically takes the
form of a dynamic check of the value’s type against a static type assertion made in the
program that uses it. The browser program takes as parameter an infinite union type, a pntr ,
to allow it to deal with values whose types were not predicted at the time of implementation.
However the program cannot contain static type assertions for all the types that may be
encountered as their number is unbounded. There are two possibilities for the construction of
such a program: it may either be written in a lower-level technology [KD90] or else be
written using linguistic reflection.

To allow a reflective solution the program must be able to discover dynamically the specific
type of a value of the union type. Such functionality may be provided by one of the two
magic functions defined above, typeOf.

The generic browser takes a specification of the object type and generates the source of a
procedure to browse over it. This procedure is compiled and may be applied to perform the
browsing. The browser then stores the procedure in the persistent store for future use should
it encounter an object of the same type. The browser repeats this action for every new type it
discovers.

All the system functionality required to invent the new persistent programming paradigms of
hyper-programming and persistent schema evolution was now available. Historically, they
had to wait until Napier88 was invented, designed and implemented. We will return to that
story and to the joys of hyper-programming and persistent schema evolution. For the present
we will concentrate on how the functionality to support these techniques may be provided in
Java.

3 Persistence in Java

The joys of persistence can be delivered by building the mechanisms into the interpreter or
building on top of the language facilities. The PS-algol/Napier88 experience built the
programming environment on top of the language but required the following support within
the system:

• an infinite union type with injection and projection operations using structural
type equivalence for separately prepared programs and data

• the compiler as a persistent object, with functions coerceToValue and typeOf,
for linguistic reflection

• a persistent store with root(s), reachability and referential integrity

• code as data, including the ability to store references to objects in the code
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We now turn our attention to providing these facilities in Java in order to obtain the same
benefits as the PS-algol/Napier88 experience.

3.1 An Infinite Union Type

The class Object is an infinite union type. All objects have this class and injection is implicit,
however, care should be taken to use wrappers with primitive classes. Projection is by casting
onto a subclass, for example:

Object ron = ...

Person me = (Person) ron // Coerce (project, cast) the value onto the class
Person

For this to work in Java’s explicit single inheritance hierarchy, the exact class of ron must be
the same as or an extended class of Person. If the cast is not valid a ClassCastException is
thrown. In order to avoid handling exceptions a cast can be tested before being executed. If it
is valid true is returned and false otherwise. For example

if (ron instanceof Person) { // Would return true if the exact class of ron is the
// same as or an extended class of Person.

The null reference, which is not an instance of any class, will always result in a false result in
an instanceof test.

The class Object can therefore be used in a manner similar to that of the types pntr  in PS-
algol and env and any in Napier88.

Java uses name equivalence rather than structural equivalence. A discussion of the trade-offs
in these mechanisms in persistent systems is given in [CBC+90].

3.2 Type Magic and a Persistent Compiler

Each Java class has a unique object of class which is a partial description of the class. Arrays
share class objects with others of the same element class and number of dimensions. The
definition of Object provides a method to obtain the class object.

public class Object {
public final Class getClass ();
...

The class Class provides one of the basic needs for linguistic reflection. It is defined in
Figure 4.
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public final class Class {
public String toString ();
public String getName ();
public boolean isInterface ();
public Class getSuperclass ();
public Class[] getInterfaces ();
public Object newInstance()

throws InstantiationException, IllegalAcesssExecption;
public ClassLoader getClassLoader ();
public static Class forName (String className)

throws ClassNotFoundException;
}

Figure 4: The class Class

Instances of the class Class represent the class in such a way that it can be manipulated by a
running Java program. Objects of class Class cannot be created by the user since there is no
public constructor for the class. Instead the Java Virtual Machine constructs such objects
when classes are loaded.

The description of the class given by the class object is only partial since it does not include
the class description of the class members. It is clear, however, that such functionality would
not endanger the class security of Java since it is a representation that is being returned rather
than the value itself. The member descriptions are required to write linguistically reflective
programs such as the browser described above. Thus we propose an additional method for the
class Class called getMembers which is defined as follows:

public String[] getMembers ();

The getMembers method returns an array of strings, one for each member, that describes the
access specifiers, return and parameter class names for each method in the class and the
access specifiers and class names for each field. Given this the typeOf magic function can
now be implemented as follows:

• The getClass method of the class Object returns an object of the class Class.
This class has methods to decompose the structure of the class representation,
for example, getName, getSuperClass, getInterfaces. This can also be found
from its name using Class.forName (“myClass”). The getMembers method
returns the description of the class under inspection. The getSuperClass
method returns the class object for the superclass. It is therefore possible to
recursively construct the complete description of the object.

Once the functionality of typeOf can be implemented it is possible to write linguistically
reflective programs within the persistent environment, given that all the other functionality
described in this section is also in place. We now turn our attention to making the compiler a
persistent object for which we require, in addition to typeOf, the coerceToValue function.

Central to making the compiler a persistent object is the mechanism for loading classes. Each
class provides its own class loader which can be obtained from the class object using the
getClassLoader method. The class loader class is defined in Figure 5.
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public abstract class ClassLoader {
protected ClassLoader () throws SecurityException;
protected abstract Class loadClass (String name, boolean resolve)

throws ClassNotFoundException;
protected final Class defineClass (byte[] data, int offset, int length)

throws NullPointerException, IndexOutOfBoundsException, ClassFormatError;
protected final void resolveClass (Class c) throws NullPointerException;
protected final Class findSystemClass (String name) throws

ClassNotFoundException;
}

Figure 5: The class ClassLoader

It should be noted that three of the ClassLoader methods are final  and therefore may not be
overridden in an extended class and that one method is abstract. At present the compiler
produces a class file for each class which is then loaded using the class loader. During the
loading of the class the interpreter creates an object of class Class for the class.

An object of class Class can be created from a sequence of bytes by the defineClass method
of the ClassLoader class. For example,

byte[] buffer = ...; // These are read from the file system
Class newClass = defineClass (buffer, 0, buffer.length);

The defineClass method ensures that the class defined in the buffer is in the correct format
and is therefore a valid Java class. It provides the functionality of coerceToValue. Given this
it is now possible to define a compiler class, an instance of which could reside in the
persistent store.

class Compiler { // A run time callable compiler
public Class compile (Source source) { ...

Thus the compile method takes some source code and produces an instance of the class Class.
Inside the compiler the defineClass method must be used to invoke the type magic by writing
the compiled code into a class file and using defineClass to load it and coerce it to the correct
class. The compiler object is now no different from any other Java object and may be placed
in the persistent store. The compiler would use its own instantiation of ClassLoader to
resolve the file names that it uses.

The use of files in a persistent environment is somewhat unambitious. However we do not
wish to see the class security compromised and we cannot overload defineClass since it is
declared final . To avoid the use of files we define a method in the Compiler class called
compileToBytes which takes the source and returns a byte sequence which is the code for the
compiled class.

class Compiler { // A run time callable compiler
public Class compile (Source source) { ...
private byte[] compileToBytes (Source source) { ...
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The compile method calls the compileToBytes method to obtain the compiled code. It now
uses its own version of the class loader to load the class and return a value of class Class.
Figure 6 outlines the definition of a class loader for the compiler.

public abstract class ClassLoader {
protected abstract Class loadClass (String name, ...

// This is the definition in ClassLoader
...

class CompilerLoader extends ClassLoader { ...
public Class loadClass (byte[] compiledClass) {

result = defineClass (compiledClass, 0, compiledClass.length);...
...
// Within the compile method the code to use this would be
CompilerLoader loader = new CompilerLoader ();
Class result = loader.loadClass (compileToBytes (source));

// and to create an instance of a compiled class
MyType me = (MyType) compile (some source).newInstance (); // create an instance
...

Figure 6: Loading the Compiled Java Code

A class loader is defined by extending the abstract ClassLoader class and providing an
implementation for its loadClass method. The key difference is that it works over a given
sequence of bytes rather than reading bytes from a file. In this case, the concrete class is
called CompilerLoader and the loadClass method is overloaded to enable it use the byte
sequence provided by the compileToBytes method.

3.3 The Persistent Store

PJava
0
 uses the directory method similar to PS-algol:

• Every PJava
0
 store has an object of class PJavaStore which is available to

Java programs and has code to manipulate the persistent store

• It has a method registerPRoot (aName, anObject)

• All values reachable from anObject will be preserved

• These values can be found by subsequent programs using getPRoot (aName)

Object ron = getPRoot (“rons”) // Get the persistent value stored using the index rons

Person me = (Person) ron // Coerce (project, cast) the value onto the class
Person

Reachability and referential integrity are obtained bin PJava
0
 by observing the following

rules [AJD+96]. For reachability these are that any non-persistent class X will be promoted to
the persistent store if:

“1 class X is directly referenced from a persistent object or from an object that
has already been promoted,

2 an instance of the class X is being promoted to the persistent store for the first
time,

3 class X is a superclass of the class being promoted,
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4 an instance of class X is a static or instance variable of the class being
promoted,

5 an instance of class X is a parameter of a method of a class being promoted,

6 an instance of class X is a variable of a method of the class being promoted, or

7 a static variable of class X is used by the class being promoted.”

The top level directory structure of PS-algol and PJava
0
 is not the only possible mechanism.

An alternative technique, used in Napier88, is for each persistent store to be a value of class
Object which can be cast onto the particular class for use. The advantage is that each store
can have its own structure without imposing any predefined system wide rules. Thus stores
can develop independently. Programs accessing the stores can discover the structure by using
the linguistic reflection programming technique shown above.

3.4 Code as Data and System Evolution

This is the last piece in the jigsaw and perhaps the most difficult since the underlying
philosophy of Java is that of code libraries and files of data for persistent storage. Objects are
updateable in Java and are part of the computational universe of discourse but the code
(methods), which belongs to the classes, are not. Thus, whereas objects may be placed in the
persistent store and freely manipulated, passed around and updated, classes and methods are
quite a different prospect.

The object graph can accommodate arbitrary structural change. However the class hierarchy,
once defined, can only be extended. This makes it impossible to insert an extended class
between two others in the hierarchy even although, since the system has evolved, it would be
safe and advantageous to do so. Furthermore it is also impossible to alter a class definition or
to update the code in initialisers and methods, once they are defined, in order to repair a bug
or implement a smarter algorithm.

The fall back position is to completely rebuild the persistent store in order to accommodate
changes to classes or methods.

Given that there is a security issue about who is allowed to make changes, it should be
possible to update a class or the hierarchy in a manner that is class compatible with the old
definitions without disturbing the semantics of the system. For this we propose that the class
Class provides an updateClass method which checks the user's authority to make the change
and the class compatibility for the change. Any alteration must leave the class in the same
position relative to its superclasses and subclasses. Changes to the hierarchy require the
specification of two class objects between which the new class has to be inserted.

These changes to the class hierarchy do not accommodate arbitrary alteration. An alternative
is to use the schema evolution method developed in Napier88 and described in the next
section. The schema evolution technique utilises hyper-programming and given the basic
facilities described above, it should be possible to programm both persistent programming
techniques in Java.

4 Applications of Persistence Technology

The contribution of Napier88 is to provide a type system that more accurately describes the
computations required for persistent programming. This aids the programming of the
programming environment in Napier88 itself [KBC+96]. The facilities of Napier88 relevant
to this discussion are:

• graphical data types picture and image

• constructors: structure (x), variant (+), and procedure (->)

• type completeness
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• parametric polymorphism (genericity)

• existentially quantified types (views and information hiding)

• infinite unions any and env (dynamic binding and type checking)

• collections of bindings for name space control and incremental system
evolution

• a strongly typed populated store

Figure 7 depicts the Napier88 persistent store in which all the computation is contained
within the store. Notice that the root of persistence is now a single objects of type any and
not directory structures. Given such a system it is now possible to invent hyper-programming.

int, real, bool, string, picture
image, vector, structure, proc, env, any

proc proc proc

compiler

Figure 7: Napier88 Persistent Store

The presence of a persistent environment in which programs are composed, compiled, linked
and run means that persistent objects can be linked into the program source, instead of having
the more traditional textual descriptions of where to find persistent values. The source text
now contains some text and some links to persistent values and as such it is a non-flat
representation of the program. By analogy with hyper-text, a program containing both text
and links to persistent values is called a hyper-program [KCC+92].

persistent store

writeString

      ( "enter name: " )

let name =       ()

let address =       (       , name )

      ( "address is: " )

      ( address )

hyper-source

table of names
and addresses

readString

lookup

procedure

procedure

procedure
data

structure

Figure 8: A Hyper-program

Figure 8, taken from [KCC+92], shows an example of a hyper-program. The first link is to a
first-class procedure value writeString which writes a prompt to the user. The program then
calls another procedure readString to read in a name, and then finds an address corresponding
to that name. This is done by calling a procedure lookup to look up the address in a table data
structure linked into the hyper-program. The address is then written out. Note that code
objects (readString, writeString and lookup) are denoted using exactly the same mechanism



11

as data objects (the table). Note also that the object names used in this description have been
associated with the objects for clarity only, and are not part of the semantics of the hyper-
program.

Figure 9, again taken from [KCC+92], shows an example of the user interface which might
be presented to the programmer by a hyper-program editing tool. The editor contains
embedded light-buttons representing the hyper-program links; when a button is pressed the
corresponding object is displayed in a browser window. The browser is also used to select
persistent objects for linking into hyper-programs under construction.

Figure 9: User Interface to a Hyper-program Editor

The benefits of hyper-programming are discussed in [FDK+92, Kir92, KCC+92] and include:

• being able to perform program checking early — access path checking and type
checking for linked components may be performed during program construction;

• being able to enforce associations from executable programs to source programs —
links between source and compiled versions may be used;

• support for source representations of all procedure closures—free variables in
closures may be represented by links, thus allowing hyper-programs to be used for
both source and run-time representations of programs; and

• increased program succinctness—access path information, specifying how a
component is located in the environment, may be elided.

The non-flat nature of the hyper-program allows a single program representation, the hyper-
program, to be presented to the programmer at all stages of the software development
process. In constructing a program, the programmer writes hyper-programs. During
execution, during debugging, when a run time error occurs or when browsing existing
programs, the programmer is presented with, and only sees, the hyper-program
representation. Thus the programmer need never know about those entities that the system
may support for reasons of efficiency, such as object code, executable code, compilers and
linkers. These are maintained and used by the underlying system but are merely artefacts of
how the program is stored and executed, and as such are completely hidden from the
programmer. Only one set of tools is required for manipulating the hyper-program thereby
simplifying the user interface and the complexity of the system implementation. This permits
concentration on the inherent complexity of the application rather than on that of the support
system.

An outline of how hyper-programs may be used to increase the effectiveness of components
in software environments such as version control, configuration management and
documentation systems is given in [MCC+95]. Furthermore, the same advantages accrue to
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other activities supported by software environments such as debugging, profiling and
optimisation [Cut92].

Achieving the full advantage of a hyper-programming system in the Java context requires
further research. However one approach is to consider the getMember method which could
return for each member a hyper-program representation which was a mixture of text and
pointers for the language elements such as types and code. This forms the basis for
constucting hyper-programs around which the rest of the system can be built.

Since all the computation takes place within the persistent environment, it is possible to
evolve the system while it is executing. Changes to program and data with the invariant of
fixed meta-data are normally handled by updates to procedures and data respectively. The
difficult problem is to change the meta-data while keeping all the existing programs and data
consistent with the semantics of the change [CCK+94].

The persistent environment can provide an underlying technology which allows a schema
editor to locate and change, either manually or automatically, all affected program and data.
The advantages of the mechanism are that it provides understandable semantics for evolution
by controlling when the changes are made and by ensuring that changes to schema, program
and data are consistent and made in lock step. Furthermore, these changes may be grouped
together as a transaction within a live system; the accommodation of lazy data changes allows
minimum loss of availability.

As an example, consider that the schema may keep a record of which programs (queries) and
data are associated with particular parts of the schema via secure links. The programs always
have hyper-program source and therefore source code and data translation is possible. The
schema evolution mechanism may thus transform the programs and data affected by a schema
edit. This is achieved as follows:

1. Locate, from the schema, all affected programs and data.

2. For each program which may be affected, obtain its hyper-program.

3. Locate the points in the hyper-program which access the changed part of the
schema and edit the hyper-program to reflect the new logical schema structure.
This will involve establishing new links both to and from the changed part of
the schema.

4. Update the old program with the new one.

5. Update the affected data with new versions.

The extent to which this process can be automated depends upon the complexity of the
schema change incurred. The essential point is that all interrogation and manipulation of
schema, program and data occurs within a single integrated environment, and may therefore
be represented as a meta-level program within that environment.

The mechanism relies heavily upon the self-contained nature of the persistent environment.
As all the data and code is held in the same environment as the schema, it is possible to keep
not only links from the schema to the data it describes but also reverse links from the schema
to programs which bind to particular points of it. The hyper-program concept makes it
possible to map between executable and source representations. The fact that these
representations are themselves values within the persistent environment, along with the
provision of a compiler in the same environment, makes the strategy possible. Transferring
this technology to Java is dependent on providing the basic facilities defined above.

5 Conclusions

From the PS-algol/Napier88 experience we have identified a number of basic facilities that
are required for the provision of orthogonal persistence. These are: a persistent store with
root(s), reachability and referential integrity; code as data; an infinite union type with
dynamic injection and projection; and two type magic procedures, one to find a type
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representation of a value, and one to convert a sequence of bytes into a language value. While
this is not the only manner in which orthogonal persistence can be provided, the approach
allows all the other infrastructure for the persistent programming paradigms of strongly typed
linguistic reflection, hyper-programming and persistent schema evolution to be built within
the language.

In this paper we have discussed how these basic facilities may be provided in Java with the
same attendant benefits. We have proposed getMembers and updateClass methods of the
class Class. The rest is coding ...
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