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Abstract. Persistent programming systems are designed to provide technology
for the construction and maintenance of large, long-lived object-based application
systems. Many successful prototypes have been constructed and a large body of
application building experience is emerging. Three common attributes of
persistent systems are persistent linkage, strong typing and the referential integrity
of data. Persistent linkage allows persistent objects to be included in the binding
process. Strong typing guarantees that objects are only manipulated in a manner
consistent with their type system descriptions. Referential integrity ensures that
once a link (reference) to an object is established, its identity is unique and it
persists over time. As a consequence no object can be deleted while another refers
to it. Here we examine some of the advantages of providing software engineering
environments within a persistent object system with strong typing and referential
integrity. It is shown how the integration of system specifications, programs,
configuration management tools and documentation all within a single persistent
environment leads to powerful new techniques. This new power is achieved by
sharing structured persistent data across the hitherto enclosing boundaries of
system components.
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1 Introduction

In recent years considerable research has been devoted to the investigation of the
concept of persistence and its application in the integration of database systems
and programming languages (Atkinson, 1978; Atkinson, Bailey et al., 1983). As a
result a number of persistent systems have been developed including Abstract Data
Store (Powell, 1985), Amber (Cardelli, 1985), Fibonacci (Albano, Bergamini et
al., 1993), Flex (Currie, 1985), Galileo (Albano, Cardelli et al., 1985), Napier88
(Morrison, Brown et al., 1994), PS-algol (PS-algol, 1988), TI Persistent Memory
System (Thatte, 1986), Trellis/Owl (Schaffert, Cooper et al., 1985) and Tycoon
(Matthes and Schmidt, 1992). In each of these systems persistence is used to
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abstract over the physical properties of data such as where it is kept, how long it
is kept and in what form it is kept, thereby simplifying the task of programming.
The benefits of orthogonal persistence have been described extensively in the
literature (Atkinson, Chisholm et al., 1982; Atkinson, Bailey et al., 1984;
Atkinson and Morrison, 1985; Atkinson, Morrison et al., 1986; Atkinson and
Buneman, 1987; Dearle, 1987; Morrison, Brown et al., 1987; Wai, 1987;
Atkinson and Morrison, 1988; Dearle, 1988; Brown, 1989; Connor, 1990;
Cooper, 1990a; Cooper, 1990b; Morrison, Brown et al., 1990). These can be
summarised as:

• improving programming productivity as a consequence of simpler semantics;

• avoiding ad hoc arrangements for data translation and long term data storage;
and

• providing protection mechanisms over the whole computational environment.

The persistence abstraction is designed to provide an underlying technology for
long-lived, concurrently accessed and potentially large bodies of data and programs.
Typical examples of such systems are CAD/CAM systems, office automation,
CASE tools and software engineering environments (Morrison, Bailey et al.,
1985; Morrison, Brown et al., 1987). Others include Object-Oriented Database
Systems such as GemStone (Bretl, Otis et al., 1989) and O2 (Bancilhon,
Barbedette et al., 1988), which have at their core a persistent object store, and
process modelling systems, which use a persistent base to preserve their modelling
activities over execution sessions (Bruynooghe, Parker et al., 1991; Curtis,
Kellner et al., 1992; Han and Welsh, 1993).

Some persistent programming systems allow software engineering environments
to be completely supported within the persistent system (Currie, 1985; Bretl, Otis
et al., 1989; Morrison, Brown et al., 1994). Thus each software environment
component or activity, including process modelling, can take advantage of the
persistent system. This paper focuses on the combination of three particular
advantages, those of persistent linkage, strong typing and referential integrity.
Although other integrated programming environments have been developed
(Teitelbaum and Reps, 1981; Reiss, 1984; Teitelman and Masinter, 1984; Sweet,
1985; Habermann and Notkin, 1986; Dowson, 1987; O’Brien, Halbert et al.,
1987; Akima and Ooi, 1989; Bott, 1989; Thomas, 1989), the authors do not
know of any that use persistent linkage, strong typing and referential integrity to
gain the benefits described here.

The hypothesis presented in this paper is that persistent linkage (which allows
persistent objects to be included in the binding process, thereby increasing the
range of binding times), strong typing (which ensures type security), and
referential integrity (which preserves identity) may be used in combination to
improve both the construction and use of software engineering environments.
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To illustrate the power of the combination of persistent linkage, strong typing
and referential integrity in a persistent environment the following examples will
be used:

• the construction, editing, compilation, linking and execution of programs;
• the versioning of application components;
• the configuration of applications from component programs and data; and
• the documentation of application components.

This paper is concerned with a style of programming environment which is to a
large extent closed: it is either single-language or it places a stringent discipline of
usage on the systems to which it may be interfaced. This runs contrary to much
current work on open systems and inter-operability. The purpose of the paper is to
highlight what may be gained by imposing the discipline of persistent linkage,
strong typing and referential integrity on a programming system.

2 Persistent Linkage

Binding mechanisms present the user with a trade-off between safety and flexibility
(Atkinson, Buneman et al., 1988; Morrison, Brown et al., 1988; Morrison, Brown
et al., 1990). Dynamic binding is the most flexible as the binding is delayed until
the latest possible time at which a choice can be made. In contrast, static binding
is safer, in that static checking may be used to eliminate run-time binding errors.
The programmer has to choose the mechanism most suitable for a particular
application from the range of binding available within the construction system.
Persistent systems present the user with the possibility of using persistent objects
during the construction of an application. This increases the range of binding
times over traditional systems. The focus of interest here is the exploitation of
this increased binding range within software engineering environments.

2.1 Referential integrity

The referential integrity of a link means that, once a link to an object in the
persistent environment has been established, the object will remain accessible via
that link for as long as the link exists. Furthermore, the identities of the objects
are unique, and comparison of identity yields the same result independently of
when it is performed. In a strongly typed persistent environment this also means
that the type correctness of all such links is maintained, i.e. once a link has been
established the type of the object linked to will not change.

In systems with explicit deletion, an object is physically deleted only when the
last link to the object is removed (cf Unix hard links). Thus although the object
may not be available for new links to be made to it, all extant links to it remain
valid. In systems without explicit deletion, garbage collection may be used to
determine when an object may be finally removed.
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Using links with referential integrity can improve the safety of a system. Instead
of referring to objects by some naming convention, anonymous links can be used.
Once a link to an object is obtained, access to the object is guaranteed for as long
as the link exists. For example, the configuration management tool make
(Feldman, 1979) and the version control tools SCCS (Rochkind, 1975) and RCS
(Tichy, 1985) all rely on a name space to identify the components of an
application. If the conventions of the name space are improperly used the tool will
fail; such improper use includes changing the name of a file from a different
context. This possibility could be prevented if the tools used links instead of
names. For example, the Vesta configuration management system achieves this by
implementing its own file system and ensuring that the file descriptors have the
referential integrity property (Chiu and Levin, 1993; Levin and McJones, 1993).

A further advantage of using links instead of names is that since access to
objects is independent of the naming scheme, any number of naming schemes
(including zero) may be layered on top of the linking graph for user convenience.
As stated earlier, object access mechanisms involve a trade-off between safety and
flexibility. Where names are replaced by links to give greater safety, flexibility is
reduced since decisions about which particular objects to access are taken earlier. In
applications where such flexibility is required it may be provided through user
naming schemes.
When naming conventions are replaced by links, the representations of the
software components become non-flat. This is because the representations
themselves contain links to other components rather than symbolic names for
them. In the context of documentation, for example, this leads to hyper-text
(Conklin, 1987; Nielsen, 1990), where documents contain links to other
documents. In the context of programs it leads to the concept of the hyper-program
(Kirby, Connor et al., 1992), where program representations contain links to data
objects of any type, including other program components.

2.2 Persistent type systems

Type systems are normally viewed as providing two aids to the programmer: a
modelling framework to aid the task of data abstraction, and a protection
mechanism which prevents this modelling framework from being improperly used
by a program. The most significant difference between persistent and non-
persistent programming languages is that in a persistent language the long-term
data is type secure. This results in a major shift in the emphasis of type system
protection, from one of a safety mechanism over programs to that of a safety
mechanism over the entire software system, including both programs and data
(Atkinson, Buneman et al., 1988; Connor, 1990; Morrison, Brown et al., 1990).
The assumption is made here that the persistent programming language supports
higher-order procedures. This allows both code and data to persist in the same
object store, subject to the same modes of use.
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A persistent type system models protection over data which escapes from or
originates outside the context of a program’s text. In a non-persistent language the
typechecker is usually invoked during the compilation of each program to check
the consistent use of data modelling. Any data accessed externally, for example
from a file or database system, is explicitly converted into the type system
framework. In a persistent system, however, the program text may contain
expressions which access external values in persistent storage. Before any program
statement which uses such data is executed, a check must have been made that it
will not violate any type system constraints placed on the data at the time it was
created. A programming system that enforces such checking is termed strongly
typed.

If type system constraints are checked dynamically there is no extra typechecking
problem. When values are created their type system attributes are associated with
them in such a way that they may be dynamically accessed whenever a check is
required.

Dynamically checked type systems however lead to unreliable code as type errors
are not detected until execution. In static type systems, type errors may always be
detected before the execution of a program has commenced. Static type systems are
well known to be achievable in non-persistent languages; the challenge is to
achieve static typechecking within a persistent system. This seems at first to be an
intractable challenge, as persistent programs require the ability to access typed data
which is external to the program context. Recent research however has
demonstrated an approach to achieving purely static typechecking within a fully
integrated persistent programming environment (Connor, Atkinson et al., 1993;
Connor, Cutts et al., 1995).

2.3 Persistent linkage

Programming languages support a number of different mechanisms for
establishing persistent links from programs to values, locations and types. The
degrees of freedom include linking to L-values (locations) or R-values (immutable
values), and the time at which the linking takes place (Morrison, Brown et al.,
1990). The focus here is on the range of linking times, for which some
possibilities are: during program composition, during compilation, during a
separate linking phase, and during execution. However it should be remembered
that a link can be made to an R-value and will always refer to that value, or it can
be made to a location (L-value), in which case the value within the location can be
changed to give the effect of dynamic binding.

Figure 1 illustrates the traditional method of using persistent data in a file
system or database. Programs are prepared independently of the data and linked to
the data during program execution. The programs contain the names or pathnames
of the objects that they require. These are translated into object references for the
duration of the program execution. There is also usually a separate linking phase
in order to link program fragments. The programs are shown lying outside the file
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system or database in this example; they may of course be held inside but this
does not affect the method of data access.

program

persistent
data

dynamically checked
access points

file system /
database boundary

program

access point
specification

Fig. 1. Traditional access to persistent data

Figure 2 illustrates the method of using persistent data in most persistent
programming systems. Programs are held outside the persistent store, commonly
in a file system. The data inside the persistent store is strongly typed and
interconnected by a graph of links. Now the programs contain, in addition to the
names of the objects that they require, type specifications for those objects. The
type specifications are represented in the figure by shaded boxes.
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Fig. 2. Code outside the persistent store.

The programs in Figure 2 may be bound to the persistent store with largely static
type checking. The graph of values inside the store may be described by purely
static type definitions; the access points to this graph in the shaded area are the
points of dynamic checking, about which assertions are made in programs which
use the persistent data. These assertions are used by the compiler to provide static
type checking for the program under the assumption that the assertions will be
checked dynamically.

The collective information in the access points may be regarded as the persistent
store schema. The majority of programs which use persistent data are written with
respect to an unchanging partial schema description (access points which are not
used by a program need not be specified). Whenever this is the case, the set of all
required dynamic bindings may be organised as a prelude to the program’s
execution. If the execution of the binding prelude succeeds, then the execution
from that point on cannot fail with a dynamic type error, and the application it
represents can therefore be regarded as statically typed.

It may however be impossible to execute such programs if interim changes have
been made to the structure of the persistent store and thereby the schema. Such
changes may cause the execution of the binding prelude to fail since some of its
assertions about the schema are no longer valid.
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2.4 Hyper-programming

In contrast to these programming styles, source programs may be considered as
persistent objects. In this case some of the objects accessed by a program may
already be available at the time when the program is composed, so that persistent
links to the objects can be included in the program instead of textual descriptions
which evaluate to the links. Figure 3 shows such an environment with persistent
links from the source code to the persistent data including other program
fragments. Notice that some dynamic bindings may remain for flexibility but that
unnecessary ones are replaced by links. By analogy with hyper-text, this style of
program containing both text and links to objects is called a hyper-program.

Fig. 3. Hyper-program bindings

Figure 4 shows an example of a hyper-program. The links embedded in it are
represented by non-textual tokens to allow them to be distinguished from the
surrounding text. The first link is to a first class procedure value writeString
which writes a prompt to the user. The program then calls another procedure
readString to read in a name, and then finds an address corresponding to that name.
This is done by calling a procedure lookup to look up the address in a table data
structure linked into the hyper-program. The address is then written out. Note that
code objects (readString, writeString and lookup) are denoted using exactly the
same mechanism as data objects (the table). Note also that the object names used
in this description have been associated with the objects for clarity only, and are
not part of the semantics of the hyper-program.
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persistent store

writeString

      ( "enter name: " )

let name =       ()

let address =       (       , name )

      ( "address is: " )

      ( address )

hyper-source

table of names
and addresses

readString

lookup

procedure

procedure

procedure
data

structure

Fig. 4. A hyper-program

Figure 5 shows an example of the user interface which might be presented to the
programmer by a hyper-program editing tool. The editor contains embedded light-
buttons representing the hyper-program links; when a button is pressed the
corresponding object is displayed in a browser window. The browser is also used
to select persistent objects for linking into hyper-programs under construction.

Fig. 5. User interface to a hyper-program editor

The benefits of hyper-programming are discussed in (Farkas, Dearle et al., 1992;
Kirby, 1992; Kirby, Connor et al., 1992), and include:
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• being able to perform program checking early—access path checking and type
checking for linked components may be performed during program
construction;

• being able to enforce associations from executable programs to source
programs—links between source and compiled versions may be used;

• support for source representations of all procedure closures—free variables in
closures may be represented by links, thus allowing hyper-programs to be
used for both source and run-time representations of programs; and

• increased program succinctness—access path information, specifying how a
component is located in the environment, and type information, may be
elided.

The two extremes of programming system identified so far are file-based and
hyper-programming systems. Other possibilities include a persistent system with
code in the store but no persistent links from the code to other persistent objects,
and a compile-time linking system in which the tokens embedded in a program are
associated with data items in the persistent store when the program is compiled
rather than when it is written. The linking times possible in each of these systems
are shown in Table 1. From here on it will be assumed that the hyper-
programming systems under consideration incorporate facilities for compile-time
linking as well as composition-time linking.

Table 1. Comparison of possible linking times in various systems.

S y s t e m Linking Time

composition compilation linking phase execution

program data program data program data program data

file-based /
database

• •

persistent • • • •

compile-time
linking

• • • • • •

hyper-
programming

• • • • • • • •

The entries in the table may be explained as follows:
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• File-based and database systems allow links to existing data to be formed only
at run-time. Links to existing programs are formed during a linking phase by
copying library programs into the main program. Note that this does not
preserve the identity of the library programs.

• In persistent systems with first class procedures a linking phase can be
implemented (Dearle, Cutts et al., 1993). Since these executable programs are
a form of data, linking to both programs and data can be performed either at
link-time or run-time.

• Compile-time linking systems support these same linking times and also
allow linking to programs and data at compilation-time. This entails the
compiler accessing the persistent store to obtain the referenced data and
program fragments. Compiled programs must be retained in the persistent
store to maintain the referential integrity of the links (Atkinson and Morrison,
1989).

• A hyper-programming system supports all the linking times described. The
programmer can specify various linking times as appropriate for different
components of an application. Deciding when components should be linked
into a main program involves trade-offs between program safety, flexibility
and execution efficiency.

Run-time linking gives flexibility since the data (from now on, the term data is
used to denote both programs and other kinds of data) accessed do not have to be
present in the persistent store, file system or database before run-time. Indeed, the
access paths to the data may not be known until run-time. Run-time program
safety is low since the data may not be present when the program is run, causing a
run-time failure. This kind of linking is possible in most programming systems.
Execution overheads are higher than for earlier linking times, particularly in
strongly typed systems where the type of the data must be checked dynamically
(Connor, Brown et al., 1990).

A distinct linking phase occurs between compilation and execution in many file-
based systems, involving the copying of other executable or intermediate programs
into the main executable program. A similar effect can also be achieved in
persistent languages with higher-order procedures, where all types of data may be
linked into an executable program before run-time. This provides improved safety
and efficiency over run-time linking, since checks for the data’s existence and type
are performed before run-time. Flexibility is reduced since its use requires the data
to be present earlier.

Linking at compilation-time increases safety and efficiency, bringing checks
further forward in time, and reduces flexibility correspondingly. With this
mechanism the data linked into an executable program is fixed during compilation.
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Composition-time linking is the least flexible of the options described since the
data linked to must be present at the time that the program is written. However, it
offers the most safety since access to the data is always maintained once it is
linked into the source code. Data access is maintained even if the source code is
edited and re-compiled, which is not true of the other linking styles where editing
of the source code requires all links to be re-established. Efficiency may be
increased since the access path to the data need be followed only once, at
composition-time, and not on every re-compilation. Programmer efficiency may
also be improved since inconsistencies in the programmer’s conceptual model of
the persistent store may be resolved immediately while the programmer’s attention
is focused.

3 The Software Engineering Context

As stated earlier, the main theme of this paper is to demonstrate the advantages of
persistent linking mechanisms when applied to the software engineering context.
A major issue in software engineering is to keep control of all the various entities
which describe a software system: that is source and executable code, along with
various versions and configurations of these. In this context there are two main
benefits derivable from the kind of bindings which may be used in persistent
systems. Firstly, it is shown in this section how the base model of code may be
simplified using hyper-programming, thereby obviating some of the requirement
for the management of causations, associations, and links within a software
system. It will then be outlined how activities such as version control and
configuration management may be managed by tools which are themselves
constructed using persistent linkage, with an associated benefit over more
traditional methods.

3.1 Causations, associations and links

Several varieties of relationship between the components of a software engineering
environment may be identified. These are causations, associations and links.

Causations are ‘cause and effect’ relationships. A causation between a
component A and another component B is a relationship mediated by some process
having A as input and B as output. This means that a change to A results in a
corresponding but indirect change to B . An example of a causation is the
relationship between a source program and the corresponding compiled version,
mediated by a specific compiler which takes the source program as input and
produces a compiled version. A modification to the source program causes a
corresponding change in the compiled program but only after the process of
compilation.
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source
program

compiled
program

causation

Fig. 6. Example of a causation

Associations are more general relationships between components. An example is
an association between an executable program and the corresponding source
program, maintained by a source level debugging system. This information is not
intrinsic to the associated components themselves but is maintained by an external
mechanism. The accuracy of associations depends on adherence to conventions: if
changes to the components are made outside the control of the external
mechanism, the associations may become invalid. In Figure 7, the source program
could be updated without notifying the debugging system, in which case its
association with the executable program would become invalid.

compiled
program

source
program

association

Fig. 7. Example of an association

A link, as introduced earlier, from a component A to another component B exists
if a change to B can be immediately detected from A without the need for any
intermediate process. In systems that support referential integrity a link from A to
B always remains valid regardless of the operations performed on B. Links may, of
course, be to L-values where the value can change without the link being altered.

component
A

component
B

link

Fig. 8. Example of a link

Software environments are made safer but less flexible whenever an association
can be replaced by a link. The methodology that will be described later is to
replace the associations found in traditional software systems by persistent links
and reverse links. This means that the environment ensures that a given software
component and the objects to which it links remain accessible from one another,
as a consequence of the maintenance of referential integrity.

3.2 Languages with external storage systems

Languages such as Pascal (Wirth, 1971), Ada (ANSI, 1983) and C (Kernighan and
Ritchie, 1978) do not provide orthogonal persistence. Long-term data is
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manipulated differently from transient data, and strong typing and referential
integrity are not enforced. The data is held in a storage system, separate from the
run-time environment, with which programs communicate through an interface.
Examples include the Unix file system and the INGRES database system
(Stonebraker, Wong et al., 1976).

The program entities—such as source programs, intermediate programs and
executable programs—all reside in the external storage system. Source programs
are compiled to produce intermediate programs. Where necessary a linker is then
used to link in existing intermediate and executable programs from a program
library. This linking involves combining the intermediate program with copies of
the library programs to produce a new executable program. At run-time the
resulting executable program is itself copied into the data space of a run-time
environment and evaluated in that context. The running program may create new
data items (values and locations) with persistent links between them. It may also
access existing data in the external storage system and copy data from the run-time
environment to the external storage system. The run-time environment disappears
at the end of execution, along with any new data items created in it.

The relationships are illustrated in Figure 9. Here solid rectangles represent
source programs, rounded rectangles represent intermediate programs, diamonds
represent executable programs and ellipses represent data items that can be denoted
in the programming language.
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persistent
data
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program
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source
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copy of executable code

compilation

copying and
execution

linking
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database
interface

link

causation
association

Key

data item

file system / database

Fig. 9. Relationships in a file-based system

3.3 Hyper-programming environments

The concept of hyper-programming introduced in section 2.4 is relevant to
software engineering environments in two ways. Firstly, an environment may
provide enhanced facilities to support software engineering using hyper-programs
rather than the traditional textual programs, as described in (Kirby, Brown et al.,
1994). Secondly, hyper-program technology may assist in the implementation of
the environment itself.

Each hyper-program may contain links, perhaps hidden to the user, to any
compiled or executable form. The compiled or executable forms may also contain
reverse links to the hyper-program. Thus the source object, the compiled object
and the executable object may be kept in lock-step by a mechanism that ensures
that update-in-place is controlled. Such a mechanism may utilise or be enforced by
the referential integrity of the persistent system. Figure 10 illustrates the
relationships among software components in a hyper-programming system. Notice
that the associations found in a traditional system, as illustrated in Figure 9, have
been replaced by persistent links.
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In the example the software component v1 has been created by the execution of
e1. The component v2 has a persistent link to it from both the source hyper-
program and the executable form of the program. Notice also that the executable
form has a reverse link to the hyper-program, and that all the programs, data and
library components are persistent. The library components need not be copied or
linked, simply referred to directly. Indeed they may themselves refer to other
persistent values, as is shown in the persistent links (from the program library
source and executable values) to v2.

(b)

persistent store

source hyper-program

executable
program

compilation

execution

e1

component

program library
Key

persistent
link

causation

component

source
program

executable
program

v2

v1

Fig. 10. Relationships in a hyper-programming system

Since the system exhibits referential integrity, updating an attribute of one of the
components does not invalidate the links of the others. Changes to either the
hyper-program or the executable form require new versions to be constructed,
leaving the old versions intact. The hidden links from source to executable in a
new version are invalid until established by compilation. Thus a new hyper-
program will not be linked to by the old executable program and new executables
will not be linked to the old hyper-program. Changes to hyper-programs and
executables can therefore only be made in lock-step, at some suitable level of
granularity (Connor, Cutts et al., 1994).

The use of non-textual program representations raises a number of issues
regarding the publishing of programs and transferring them to contexts outside the
programming environment in which they were constructed. How, for example, to
publish a program listing in a journal article? If a hyper-program is copied to
another persistent environment, are the objects linked into it also copied, or are
new links established to corresponding objects in the new environment? Some
approaches are discussed in (Kirby, 1992; Farkas and Dearle, 1993).
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4 Exploiting Persistent Linkage In Software
Engineering Environments

Previous sections introduced the concept of the hyper-program, containing links to
persistent objects and made possible by the provision of strong typing and
referential integrity. The use of such links to persistent objects whose referential
integrity is guaranteed has a number of applications in software engineering
environments. Four examples are given in this section relating to:

• simplifying the programming model;
• version control;
• configuration management; and
• documentation.

By using similar methods, the same advantages accrue to other activities supported
by software environments which are not discussed here, such as debugging,
profiling and optimisation (Cutts, 1992).

The hyper-programming system underlying the following examples has been
implemented and is in extensive use. The hyper-code, version control,
configuration management and documentation systems have been prototyped. The
reader should regard all of these examples as illustrative of how the mechanisms
can be improved rather than as definitional in how they should be constructed. In
particular, the examples make heavy use of user interfaces for illustrative
purposes. The user interfaces are again prototypes and should not be confused with
the application of the persistent linkage mechanisms.

4.1 Hyper-code

One of the advantages of hyper-programming listed earlier is the ability to use the
hyper-program representation for both source and run-time representations of
programs. At program composition time, the user may construct a hyper-program
using a tool which is a combination of an editor and a browser (the editor part was
illustrated in Figure 5). The editor allows text to be entered and the browser allows
the persistent store to be explored for component parts of the hyper-program.
When found, the components may be linked into the hyper-program, perhaps by
some user gesture such as drag-and-drop. Again this saves writing code and
enhances safety by early linking. Other tools may also be used to aid the
construction of hyper-programs, especially where repetitive actions are frequent
(Kirby, Connor et al., 1994).

At run-time the hyper-program may also be used to represent an active
computation. This is possible due to the non-flat nature of the hyper-program
representation. Free values, that is non-local references, in objects and procedures
may be represented as persistent links and the inherent sharing of values and
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locations referred to by links is preserved. This is not possible with textual
representations of programs since the sharing is lost.

The following fragment of Napier88 code creates two procedures, inc and get,
which share an integer location i:

let i := 0
let inc = proc() ; i := i + 1
let get = proc( →  int ) ; i

The first line declares the variable i with an initial value of 0. The second line
declares the constant inc which is a procedure that takes no parameters, returns no
result, and the effect of which is to increment i. The third line declares the
procedure get which returns the current value of i.

Figure 11 shows the persistent links between the procedures, their hyper-
program source representations and the shared location. These links are
automatically created by the hyper-programming environment during execution of
the code fragment.

incexecutable
procedure

typed
location

executable
procedure

get

i : int

proc( → int ) ;

source hyper-program

proc() ;      :=       + 1

source
hyper-program

persistent store

Fig. 11. Hyper-program procedure representations with a shared location

In this example the hyper-program representations are created by the underlying
system. Now that the location i exists, it is possible for the programmer to
construct a new hyper-program representation with a link to that location, and
from that representation to create a new procedure value which also shares the
location. In the prototype Napier88 hyper-programming system, the user interface
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allows the programmer to select a graphical representation of the location i and
then link it into a hyper-program under construction. Figure 12 shows the objects
and links present after the programmer has constructed the hyper-program
representation of a new procedure dec, and then evaluated it to create the procedure.
Notice that although the representation of inc was created by the underlying
system and that of dec by the programmer, they now have exactly the same form.

inc

get

i : int

proc( → int ) ;

proc() ;      :=       + 1

persistent store

proc() ;      :=       - 1

dec

Fig. 12. New hyper-program and procedure sharing the same location

The availability of hyper-program source representations allows browsing and
debugging tools to display meaningful representations of procedure closures,
showing both source code and persistent links to other components. This aids
software re-use since documentation in the form of the original source code and
documentation text—see later—can be made available for every procedure value in
the persistent environment. More importantly the unification of program
representation allows a conceptual simplification of the programming activity.

The hyper-code abstraction allows a single program representation form, the
hyper-program, to be presented to the programmer at all stages of the software
development process. In constructing a program, the programmer writes hyper-
code. During execution, during debugging, when a run time error occurs or when
browsing existing programs, the programmer is presented with, and only sees, the
hyper-code representation. Thus the programmer need never know about those
entities that the system may support for reasons of efficiency, such as object code,
executable code, compilers and linkers. These are maintained and used by the
underlying system but are merely artefacts of how the program is stored and
executed, and as such are completely hidden from the programmer. This permits
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concentration on the inherent complexity of the application rather than that of the
underlying system.

In a hyper-code system it is possible to regard the source in one of two ways. In
the first view of hyper-code, all values are source in the form of hyper-text and
their execution appears to be that of source code interpretation. Thus the
simplicity of source code interpretation may be supported by the efficiency of
statically typed compiled code that is hidden from the user. In the second view of
hyper-code, source code is treated not as a fundamental building block within the
programming system, but instead as a transient text-based view of any value. The
source does not have a conceptual permanent existence within the system, but is
apparently generated from any value that may be browsed.

Figure 13 shows an example of a user interface displaying the relevant hyper-
code after a run-time error or exception has occurred. The window highlights the
source code expression corresponding to the point where the error occurred: in this
case an attempt has been made to create a vector whose upper bound was less than
its lower bound. The hyper-code displayed has exactly the same form as that which
was written down when the program was constructed. If desired the programmer
may press the button vecSize which denotes the link to a persistent store location,
causing the browsing system to display the offending value. Since the hyper-code
represents an existing program it is read-only; however it is possible to copy it to
create a new version, or for example to write a fragment of code to assign a new
value to the location vecSize.

Fig. 13. Run-time errors in hyper-code

The implementation of the hyper-code model relies on the referential integrity
property of the underlying persistent environment to ensure that the source hyper-
program can always be obtained by traversing a persistent link from any given
executable program. The hyper-code model could also be used to support source-
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level debugging, with the addition of facilities for setting and removing break-
points etc.
The conceptual simplicity of unified programming systems usually breaks down
for one of three reasons:

• the programmer is aware of the transformations since errors are detected and
reported during them;

• the programmer is aware of the transformations since they take time to
perform; or

• the transformations may have to be understood in order to develop code in one
context and then move it to a new context, rebinding it with the code already
existing in that context.

The use of hyper-code representations therefore requires a set of tools to overcome
all of these problems.

4.2 Version control

Referential integrity within a persistent system allows the traditional role of
version control (Ambriola, Bendix et al., 1990) to be extended to provide abstract
views of the objects being versioned. One illustrative mechanism for this will
now be described. It should again be emphasised that the purpose of this paper is
to highlight the possibilities that arise from the use of strongly typed persistent
linking with referential integrity, rather than to make a definitive statement on
programming version control, configuration management and documentation. As
such, the basis for any one of these systems could be one well established in the
literature, with the persistent linking mechanisms used to enhance its utility.

The example mechanism involves the concept of a version controller, which is
self contained and solely responsible for the organisation of the versions of a
particular object. Initially an object is registered with a version controller at the
time of creation of the controller. Thereafter copies of versions may be checked out
of the version controller and later checked in again after having being edited, thus
creating new versions. The decision as to what is placed under version control is
left to the version builder but typically only relatively large grained application
components are versioned.

To avoid confusion, the programmer responsible for maintaining the versions of
a component will be referred to as the version builder, and a programmer using the
software component so provided will be referred to as the version user. It should be
emphasised that these roles may well overlap due to the hierarchical nature of most
software systems; thus a component which is versioned may itself be constructed
with the use of other versioned components. In this case the builder of one version
is also the user of others.
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Hyper-code, version controllers, configurations and documentation are all
software components and may therefore be versioned. The definition is recursive in
that hyper-code may have links to version controllers; version controllers may
provide versioning of other version controllers; configurations may be versioned;
configurations may have links to hyper-code and version controllers, etc.

Each version controller presents two interfaces:

• one interface to the version builder, who specifies the initial object to be
versioned and causes the evolution of new versions from existing versions;
and

• another interface to the version user, who is only allowed to access the
versions.

Access to the privileged version builder’s interface is controlled by some
mechanism such as password protection (Connor, Dearle et al., 1990; Morrison,
Brown et al., 1990) and is not discussed here.

A version controller is used to give an abstract view of a software component,
providing a logical grouping of its various concrete versions. For example a
version controller may group together the versions of a compiler component.
There is also a need for abstract views of the versions within a version controller,
so that the user of the version controller may specify which version is required
without knowing about the data structures that allow navigation between versions.
This is provided by an access path mechanism known as a version window, which
allows versions to be specified logically rather than with reference to the temporal
order in which they are created (Reichenberger, 1989).

The version controller provides a number of version windows; these provide
logical views of the versions and they are the only means of access to the versions
for the version user. Each version window views (is mapped to) a particular
version and this mapping is controlled by the version builder. Thus to access a
versioned object the version user links to a version window which corresponds to a
version.

The mapping from version window to version may be frozen, i.e. constant, or
may change through time to provide access to different versions as the versions
evolve. Figure 14 shows the structure of a particular version controller, its
windows and its versions.
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Version Builder's
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Fig. 14. A version controller

In this example the version window called release2.0 is frozen and bound to a
particular fixed version: the version for release 2.0 presumably. The windows
latestReliable3.4.2 and latestExperimental4.2, however, provide access to different
versions as the system evolves.

Note that the names of the concrete versions, v0.0 etc, are visible only to the
version builder. This is an example of a name space being layered on top of the
linking graph for convenience (of the version builder).

Changing the mapping between a version window and its corresponding concrete
version may only be performed by the version builder, through the protected
interface. A graphical user interface could allow this to be done by gesture, by
dragging a window icon from one version icon to another. For example a mapping
change may be performed when a new version is created and a window corresponds
to the latest version, or when some verification of a component has been carried
out and a window corresponds to the latest reliable version. Other change strategies
may also be used by the version builder as appropriate. Some mapping changes
may be performed automatically by the version controller, for example a latest
version window may be automated.

Since the version controllers may be programmed it is possible to ensure that a
consistent set of changes is made over a number of version controllers. This
entails one controller simulating the actions of a version builder on the other
version controllers. Thus for example, changing the latest version to version 2.6
in every version controller may be performed in one atomic step. Note also that
since values of any type may be versioned, a single version controller may
encapsulate a large number of objects so long as they are all accessible from a
single root object which is versioned.

The version controller imposes some restrictions on the way mapping changes
may be performed, in order to preserve type safety. A particular version window
may only ever view versions of one type, so the viewable type is fixed at the time
a version window is created. This ensures type safety without the need for dynamic
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type checking. If a new version has a different type from previous versions, new
version windows must be created to allow access to it by the user.

The ability to create new version windows also allows the version builder to
provide ‘frozen’ version windows. This is done by copying an existing, movable,
version window—here movable means that the mapping from version window to
version may be changed—and then by specifying that its mapping is frozen and
cannot be changed. Users of this version window will now always access the same
version. In contrast, users of a movable version window will access a new version
on the first access after the mapping has been changed.

The version controller gives an abstract view of the versions of a component. A
good analogy for version windows is that of snapshots and views in query
languages (Astrahan, Blasgen et al., 1976; Stonebraker, Wong et al., 1976;
Powell, 1985). The snapshots are analogous to fixed version windows and the
views are analogous to movable version windows that provide different versions as
the system evolves.

The concurrent use of the version control system to ensure atomicity of change
is orthogonal to the design of version controllers. It is provided by a transaction
mechanism and is not part of the version controller.

An essential part of this technology is that versions and version windows can
always identify their version controller via a persistent link, thereby replacing the
associations of traditional application systems and ensuring the lock-step nature of
change. This reliable link may be used later by applications and tools to identify
the versions, configurations and documents from which they were constructed.

4.3 Configuration management

The presence of the persistent environment also allows re-evaluation of application
configuration management. Again the mechanisms described here are illustrative of
the uses of persistent linkage rather than definitive on the issue of configuration
management.

There are two different kinds of configuration to deal with in a configuration
management system. One is the logical configuration of an application which
refers to the components used in the application; the other is the physical
configuration which concerns the particular versions of each component. Both the
logical and physical configurations must be recoverable from the system. Again,
the term component refers to all software entities, not just source code.

Persistent applications are built from locations, un-versioned values and version
controllers. Since version controllers and configurations are values, the definition
is again recursive. Within a configuration the specification of the components may
be by name or by link and in this respect the configurations are similar to hyper-
code. There might also be a requirement for procedural specification of
components.

The configuration technique is to develop applications from a target
configuration which is a logical view of the components of the application and
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their inter-relationships. The components are subsequently developed. The target
configuration describes all of the components of the application whereas the
components only contain links to the components that they use directly. Since the
system has referential integrity these links can be used to discover the actual
configuration of a component by inspecting the transitive closure of its hyper-code
representation. Note that in the case of procedure objects, access to the hyper-code
representation permits traversal of the procedure closure by traversal of a language-
level data structure rather than requiring lower-level ‘magic’ to cross the boundary
of the closure. The hyper-code provides a full representation of the closure; this
implies that access to hyper-code representations by the user of the environment
should be carefully controlled, since procedure closures are often used as a
protection mechanism. One method of controlling this access is through a
combination of existentially quantified types and password protection, as
exemplified in the Napier88 standard environment (Connor, Dearle et al., 1990;
Kirby, Brown et al., 1994).

The actual and target configurations, which may have diverged as the component
evolved, can now be compared. This process is described in an example below. It
is also possible to enforce target configurations on the application builders by
disallowing components that do not conform to the target configuration. This may
be appropriate in some circumstances but in general it is too restrictive.

The first step in constructing an application is to specify the target
configuration, which may be constructed textually or by interactive gesture using a
graphical representation. The target configuration is purely a guide to the proposed
configuration of the application and it enforces no restrictions on the actual
construction. The target configuration can be constructed from existing values or it
may contain representations of proposed components. For example, Figure 15
shows the target configuration for a simplified compiler. Diamonds represent
version controllers and rectangles represent un-versioned values. Shaded objects
signify intended objects that do not yet exist or have not yet been linked to, and
unshaded objects are links to existing objects. The arrows represent intended links
only: they do not represent any actual links between components. As the target
configuration develops, it is versioned and some of the shaded (intended) objects
may become unshaded (existing). The intended links, however, remain since the
actual relationships between the components may not be the same as the intended
ones. In this example the compiler uses the standard procedures readString and
writeString; these are un-versioned and exist already. The other major components
are intended to be under version control, and either do not yet exist or links to
them from the diagram have not yet been established.
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Fig. 15. Compiler target configuration

As stated earlier, the target configuration itself may be placed under version control
to cater for refinements to the design. When the compiler component is created it
will contain a persistent link to the version controller of the target configuration,
which may then be used as a guide for further evolution of the compiler. Thus
configuration management and version control information, hyper-code and
applications may be kept in lock-step with each other.

Once the design is created, the hyper-code is written. It may contain text, links
to version controllers, and links to un-versioned values. Figure 16 illustrates the
hyper-code for the compiler.
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Fig. 16. The compiler source

The window has a button to examine the actual configuration. This may then be
compared with the target configuration, either manually or by the system. Notice
that even for a single version of an application its configuration may change
through time. Figure 17 illustrates the stage of development where the type
checker and lexical analyser have not yet been constructed. Where the target
configuration is used to constrain the application construction it may be used to
ensure that components are only constructed in a manner consistent with the target
configuration. This may be accomplished by top-down construction, but using
persistent linkage it may also be enforced during bottom-up construction since the
actual configuration may be calculated and compared to the target.

compiler

code
generator

syntax
analyser

writeString

Fig. 17. The compiler actual configuration
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The novelty of the actual and target configuration approaches is that by using the
persistent links, real rather than intended configurations can be discovered
automatically. This allows the checking that is inevitable in evolving systems to
be performed. Secondly, since all the system components may now be placed
under version control, generic configurations may be constructed from which
families may evolve. The authors know of no other system that allows an
application to discover how it was configured.

4.4 Documentation

One of the most problematic aspects of system documentation is to ensure that it
is consistent with the application that it is supposed to describe. Traditionally
keeping the documentation with the application is done by association. By using
the method described, these associations can be replaced by persistent links and the
relationship between application and documentation enforced by referential
integrity.

Documents may contain links to objects such as target configuration or hyper-
code. In turn the documents are considered as objects and links to the documents
can be placed in the target configurations and hyper-code. Figure 18 illustrates
such a scheme.

The persistent links between documents, version controllers, hyper-code and
configuration information ensure that all are kept in lock-step and consistent with
one another. This does not ensure that documentation is accurate, since that
requires semantic interpretation, but does avoid the possibility of accidental loss
while promoting documents to first class entities.

hyper-code
target

configuration

documentation

persistent link back to documentation

persistent links
to related

hyper-code

persistent
links to

components

another
version

Fig. 18. System documentation with links

5 Related Work

Some of the concepts outlined in this paper have appeared in different forms in
other systems. The Flex system (Currie, 1985; Stanley, 1986; Stanley and
Drummond, 1988) consists of a programming language supported by a persistent
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file store that contains structured data. Thus all the ingredients required for the
exploitation of strongly typed persistent linkage with referential integrity are
present, that is persistent links, capabilities in this case, higher order functions and
strong typing since the language is a semantically complete version of algol-68.
Indeed Flex also has the concept of hyper-links, called cartouches after their user
interface representation. Source code may contain cartouches which point to
persistent objects, in this case typed files. Furthermore the notion of pairing
source with executable so that they can only be updated in lock-step is also present
in Flex. The Flex system only runs on a specially microprogrammed Perq
computer which perhaps explains why the concepts from it have never been
published nor put into widespread use. Indeed the present authors only stumbled
over this important work during the reviewing of a research grant application.

The Vesta configuration management system (Chiu and Levin, 1993; Levin and
McJones, 1993) is based on a file system that does not allow overwriting in place.
Since the system is Unix based, this means that there is no write permission on
any file and that inodes are unique. By this means, configurations are guaranteed to
refer to the same file every time since the file system ensures the integrity of the
inode. To support this, the implementors re-wrote the Unix file system to remove
update-in-place and thereby support configuration management by persistent links
with referential integrity.

6 Conclusions

The provision of orthogonal persistence in a programming language simplifies the
programming task by abstracting over the lifetime and physical location of data.
Most persistent language implementations support the concept of persistence
within a standard operating system environment, by adding commands to compile,
link and execute programs which are represented as files within that system;
executable programs then operate within the closed environment of the persistent
store. This paper describes how three facilities of persistent environments,
persistent linkage, strong typing and referential integrity, may be used in the
construction of software environments. It is clear that the same activities can be
supported by other techniques and indeed other integrated programming
environments exist (Teitelbaum and Reps, 1981; Reiss, 1984; Teitelman and
Masinter, 1984; Sweet, 1985; Habermann and Notkin, 1986; Dowson, 1987;
O’Brien, Halbert et al., 1987; Akima and Ooi, 1989; Bott, 1989; Thomas, 1989).
The stronger hypothesis is that the same activities may be modelled with
advantage to both the user and the system constructor in a strongly typed
environment with referential integrity.

Orthogonally persistent environments are by definition strongly typed, highly
structured, and enforce referential integrity. File systems are traditionally composed
of weakly typed, weakly structured components, and do not generally enforce
referential integrity. The advantages to software environments described here all
rely upon these differences in the objects manipulated by the program editors,
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compilers, linkers, version controllers and configuration managers. Thus hyper-
programs are possible only because the typed links in the programs are guaranteed
to be maintained during and after manipulation by an editor. Hyper-code is
possible only because the compiler can cause source and executable versions of the
same code to be reliably linked to each other, thus enabling them to be presented
as a unified view of the program. The version control and configuration
management strategy outlined is possible only because links placed in versions of
code and data by the version controllers can be reliably interpreted to discover the
dynamically changing configuration of a component. The documentation control
strategy outlined is possible only because reliable links and reverse links can be
inserted between documents and the objects which they describe. For simplicity,
the relationships that have been described are one-to-one. The technique does
however extend to many-to-many relationships.

The combination of these concepts yields a programming environment in which
a programmer need understand only the programming task. Hyper-programming
removes any complexity introduced by an explicit linking mechanism; hyper-code
removes the unnecessary conceptual gap between source and executable code, and
the version control mechanism avoids the description of complex configuration
information by allowing configuration details to be discovered as well as imposed.

The presentation of this work has deliberately not touched on a number of
aspects that are essential to a complete software environment, such as scale,
support for requirements and design, and support for programmer teams. Rather the
message has been illustrative of what can be achieved by using persistent linkage.
The concept of having actual and target configurations can be extended to
requirements and design. For example a requirements document may refer to other
existing objects and other requirements documents and as such may become hyper-
text mixed with hyper-code. The same is obviously true for design documents.
However the utility of the persistent linkage can only be evaluated after
experimentation.

Support for programmer teams and collaborative working requires concurrency
control mechanisms that may be non-serialisable in nature. Much preliminary
work is being undertaken in this area but at present solutions tend to be one-off
rather than general. The Communicating Actions Control System (CACS)
(Stemple and Morrison, 1992) addresses this problem within the context of
persistent systems. The essence of the system is: understandability; the separation
of concurrency control from data; formal capture; and a path to implementation.
Global cohesion of an action in CACS is visualised as the movement of data
among access sets. The visibility of the data to other users then becomes an issue
of synchronisation. Where the visibility coincides with commit time, atomic
transactions may be obtained, and where the visibility is immediate then
synchronisation is being used. By viewing the co-ordination of the use of data as
the co-ordination of the movement of the data among access sets, then the same
data may be used in a different manner at different times. Thus the data may take
part in an atomic transaction (Moss, 1985) one day, a saga (Garcia-Molina and
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Salem, 1987) the next and may be in a co-operative computation (Nodine and
Zdonik, 1992) the next. This work is at an early stage but already utilises hyper-
links to ensure that specifications and implementations of the concurrency control
are kept in lock step.

Scaling the notion of hyper-links is difficult in engineering terms and not
always desirable in conceptual terms. Supporting hyper-links over a distributed
system means that the user may be unaware of the topology of that system and
that failure semantics differ from that of a local system. An obvious application of
this is the use of hyper-links to support the World Wide Web. The WWW links
are written in HTML and are unreliable whereas the persistent links require
reliability. Mixing the descriptive technology of HTML with the reliability of
persistent links provides an interesting research area. The work on structured access
to files by Abiteboul, Cluet & Milo (Abiteboul, Cluet et al., 1993; Abiteboul,
Cluet et al., 1995) provides a possible avenue for solving this problem.

The present use of persistence for constructing programming environments and
software engineering tools is in its infancy but some notable experiments are
being undertaken. The Glasgow Workbench controls the use of a set of software
engineering tools in order to guide the programmer through the construction of
persistent application systems. Present tools include application construction via
design in a conventional data model (Cooper and Qin, 1992), a methodology tool,
SPASM (Sjøberg, Cutts et al., 1994), which tracks the dependencies between
software components accurately and a thesaurus tool (Sjøberg, 1993) which aids
the programmer by recording the use of names within the software system. All of
these tools would benefit from the use of hyper-links to increase their safe use.

At present the hyper-programming system has been constructed, released to other
users and is in regular use. The version control, configuration management and
documentation systems have been prototyped and used internally. It should,
however, be emphasised again that the techniques described in this paper are not
meant to be definitional on how to construct version control, configuration
management and documentation systems. Rather the paper illustrates how strongly
typed persistent linkage with referential integrity may be used to provide new
techniques for their construction and use.
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