
Incremental Garbage Collection of a Persistent
Object Store using PMOS

 David S. Munro‡, Alfred L. Brown†, Ron Morrison‡ & J. Eliot B. Moss¥

‡School of Mathematical and Computational Sciences,
University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, Scotland

Email: {ron, dave}@dcs.st-and.ac.uk

†Department of Computer Science, University of Adelaide,
South Australia 5005, Australia
Email: fred@cs.adelaide.edu.au

¥Department of Computer Science, University of Massachusetts,
Amherst, MA 01003, U.S.A.
Email: moss@cs.umass.edu

Abstract

PMOS is an incremental garbage collector designed specifically to reclaim space in a
persistent object store. It is complete in that it will, after a finite number of
invocations, reclaim all unreachable storage. PMOS imposes minimum constraints on
the order of collection and offers techniques to reduce the I/O traffic induced by the
collector.

Here we present the first implementation of the PMOS collector called PMOS#1. The
collector has been incorporated into the stable heap layer of the generic persistent
object store used to support a number of languages including Napier88. Our main
design goals are to maintain the independence of the language from the store and to
retain the existing store interface. The implementation has been completed and tested
using a Napier88 system.

The main results of this work show that the PMOS collector is implementable in a
persistent store and that it can be built without requiring changes to the language
interpreter. Initial performance measurements are reported. These results suggest
however, that effective use of PMOS requires greater co-operation between language
and store.

1 Introduction

Automatic storage management provides an abstraction over physical storage that
enables the programmer to manipulate space without the need to consider the low level
details of placement and reuse. Garbage collection is that part of storage management
that is concerned with identifying referenced data from unreferenced data, allowing
space to be reorganised and reused.

Numerous garbage collectors for main-memory programming languages and
systems have been designed, built, and measured (see Wilson [Wilson92] for a survey
of these techniques). Extending garbage collection to a persistent store raises additional
concerns:

• The size of many persistent stores suggests that semi-space techniques will be
unworkable because they approximately double space requirements. Likewise,
"stop-the-world" style collection would result in prohibitively long pauses.

• Object movement in copying or compacting garbage collectors may cause updates
to persistent pointer locations. Where these locations are held in persistent objects
on secondary storage, the updates may incur high overhead.

• Persistent stores exhibit some notion of stability whereby a consistent state can
always be reconstructed after a crash. Most existing collector algorithms are not

inherently atomic and are thus unsuitable in this context. The work of Kolodner
[Kol89, Kol92] and Detlefs [Det89] are notable exceptions.

The PMOS [MMH96] (Persistent Mature Object Space) collector is concerned with the
collection of space from a persistent object system and is tailored to address the above
issues.

This paper reports on the first implementation of the PMOS collector, named
PMOS#1. The implementation validates the PMOS algorithm and demonstrates that it
can be built in a simple and straightforward manner. The paper also clarifies what
requirements the algorithm places on the mutator’s manipulation of pointers. We
discuss the details of the design and policy decisions adopted and describe the
incorporation of PMOS into the generic persistent object store used to support a number
of languages including Napier88 [MBC+93], Galileo [ACO+85], Quest [Car89], and
Mozzie [HRH97]. One of the main attributes of this store is that its architectural
layering reflects the persistence abstraction by ensuring that the programming language
levels of the architecture are separate from the details of how objects are stored. Our
principal design aim of the implementation is to retain this flexible store interface thus
preserving the independence of the store from the language.

The collector has been built and tested using a standard release Napier88 system.
At the time of writing our implementation is just complete and the results of initial
sample test runs are included.

2 The PMOS Collector

PMOS is one of a family of incremental collectors targeted at reclamation of different
levels of the storage hierarchy. The Mature Object Space (MOS) algorithm [HM92]
(colloquially known as “the Train Algorithm”) is an incremental main-memory copying
collector specifically designed to collect large, older generations of a generational
scheme in a non-disruptive manner. In MOS the address space is partitioned into a
number of areas that can be collected independently. The DMOS collector [HMM+97]
is a complete, non-blocking, incremental collector for distributed object systems that
does not require global tracing. The common features of these collectors are:

• Safety: the collector does not collect live (reachable) objects.

• Completeness: the collector reclaims all garbage within a finite number of
invocations.

• Non-disruptiveness: the collector bounds the amount of collection work,
thereby bounding the time and space requirements, for each invocation.

• Incrementality : the collector reclaims space incrementally.

The specific attributes of PMOS are

• It is a copying collector and naturally supports compaction and clustering without
the need for semi-space techniques.

• It can be implemented on stock hardware and does not require special operating
systems support such as pinning or external pager control.

• The collector does not impose any constraints on the order of collection of the
areas thus allowing the implementor to provide a policy appropriate to the
application.1

• It provides techniques to reduce the I/O impact of pointer updates and object
movement.

• Atomicity is provided without binding it to a particular recovery mechanism.

1 Work by Cook, Wolf, and Zorn [CWZ94] suggests that a flexible selection policy that allows a

collector to choose which partition to collect can significantly reduce I/O and increase the amount
of space reclaimed.

The PMOS collector is described using the metaphor of trains made up of cars. The
address space of the store is divided into a number of disjoint blocks (cars). One car (or
more) is collected in each invocation of the collector, by copying its potentially
reachable objects into other cars. Since only potentially reachable data is copied, all
unreachable structures contained within the one car will be collected immediately.

To collect cyclic garbage that spans more than one car, cars are grouped together
into trains. By ensuring that all the cars in a train are collected by copying the potentially
reachable data into other trains, cyclic garbage will be left behind and can be collected,
once it is marshalled into the same train. It is shown in [MMH96] that to guarantee
completeness it is sufficient to order the trains in terms of the (logical) time they are
created. Hence we will refer to trains being older or younger than other trains.

The PMOS collector uses the following rules for copying data from a car during
collection:

1 Data locally reachable2 from roots is copied to a younger train, adding a car to
that train if required.

2 Data locally reachable from younger trains is copied to those trains, adding a car
if required. If an object is reachable from more than one younger train, it may be
copied to any younger train from which it is reachable.

3 Data locally reachable from older trains is copied to any other car of its current
train, adding a car if required.

4 Data locally reachable from other cars of the same train is copied to any other car
of the train, adding a car if required.

5 The remaining data is unreachable and is reclaimed immediately.

It should be noted that the above rules are followed in order. To complete the collection
of cyclic garbage one more rule is required. This rule can be applied at any time:

If no object in a train is reachable from outside the train, reclaim the entire train.
If necessary, create another train to ensure that there are always at least two
trains.

The algorithm allows any car from any train to be selected for collection and to ensure
completeness requires that every car is eventually collected.

Figure 13 illustrates the algorithm, showing a sequence of four collections, which
collects intra-train and inter-train cycles of garbage, and reclusters the live objects.

2 Object Y is locally reachable from pointer X if X refers to Y, or there is a chain of pointers that

leads from X to Y where the referents of these pointers al lie within the same car.

3 Note this drawing is adapted from a similar one found in [HMM+97]

Train 2

Train 1

Y X

R

D E

S

F

T

freed Car m Car n Car o

Car k

root
C

root

Train 3

Train 1

R

D E

S

F

T

freed Car n Car o Car q

Car p

C

Train 3

Train 1

R

D E

S

F

T

freed Car o Car q new Car r

Car p

root
C

Sequence of four collections with a starting
configuration of two trains, a reachable chain of
objects R,S,T, an intra-train garbage cycle C, D,
E, F and an inter-train cycle of garbage X,Y. In
this example there is a maximum of three
objects per car.
1 Car m is chosen for collection and moves R

and X to a younger train. Object C moves
into car o.

2 Car k is chosen for collection and moves R
into a newly created younger train. Note that
train 2 is now free.

3 Collection of car n moves S into train 3.
4 Finally after car o is collected, R, S and T are

in the same train and train 1 can be discarded
since there are no pointers into it.

1

2

4

3

root

Train 2

Y

X C

R

D E

S

F

T

Car m Car n Car o

Car k

Train 1

new Train 3

R

Car p

root

D E

S

F

T

Car n Car o

C

Freed Car k leaving
Train 2 empty

Train 1

Figure 1: Example Sequence of Mature Object Space Collection

2 . 1 Remsets, ∆ref and ∆loc sets

To facilitate the independent collection of individual cars, PMOS defines a per-car
remembered set (remset) which is used to record which cars have pointers into a given
car. In a persistent system cross-car references must be preserved over system crashes
and hence remsets must be recoverable. The size of the remsets is obviously application
dependent and there are a number of implementation choices. At one extreme the
remsets for all the cars could be kept together in some contiguous area of the store.
Alternatively there may be some performance gains to be made by storing the remsets
with their associated cars potentially allowing for efficient loading. However, as such,
maintaining complete and accurate remset information may be expensive as this requires
fetching, updating and writing back a remset any time there is a pointer creation or
deletion to an object in a car on secondary storage.

The PMOS collector suggests a compromise whereby remsets are stored with their
cars but changes to the remsets can be applied opportunistically. When a pointer to an
object in a non-resident car is created or deleted, this event is recorded in a set (ideally
held in-memory) we call the ∆ref set and the update to the remset is deferred. The
remset is only fetched when its car is faulted in (e.g., when an object in the car is
accessed). The ∆ref set is examined at this point for entries indicating that there have
been new or deleted references to the car whilst it was on secondary memory. Any such
entries are applied to the remset and removed from the ∆ref set. Thus the ∆ref set
records pointer changes that have not been recorded in a car’s remset.

A further observation made in the PMOS description is that pointer updates do not
need to be recorded immediately in the ∆ref set. The claim is that ∆ref set entries can be
written when a modified car is written back to secondary memory. As a car is read in its
outgoing references (i.e., cross-car references) are summarised into a table. If the car
has been modified and is about to be written back, its outgoing references are
summarised again and the differences recorded in the ∆ref set.

PMOS also defines another in-memory set, the ∆loc set, which plays a similar role
to the ∆ref set. As a copying collector, PMOS moves potentially reachable objects from
one car to another. Any pointers that reference an object that is moved need to be
updated. Cars containing such pointers can be found by scanning the remset entries of
the car being collected. Rather than fetch these cars to update the pointer values, the
∆loc set records entries with the old and new locations of objects that have moved and
which cars point to those objects. When a car is fetched into memory it scans the ∆loc
set and applies any relevant pointer updates, removing the entry from the ∆loc set.

In essence the effects of pointer update and object movement are constrained to the
object itself and the ∆ref and ∆loc sets. The number of entries in the ∆ sets is again
implementation dependent but can be controlled by the collector. If these sets grow
large then the collector can fetch in a number of cars to update their remsets and pointers
and hence reduce the ∆ set sizes. The challenge for the implementor is to balance the
trade-off of ∆ref and ∆loc sizes against the cost of importing and updating remsets.

3 Target Object Store

We chose to incorporate PMOS into the generic persistent object store used to support
Napier88 partly because of the authors’ knowledge of its design and implementation but
also because the abstractions provided by the architectural layering simplified the task.
The persistent object store is founded on an open layered architecture. The architecture
is generic whereby different implementations of a layer may be interchanged without the
need to alter the layers above or below. This divides the architecture between the
architectural layers that provide the persistent object store and those facilities that may
be programmed by a supported programming language. Thus, a data format can be
altered by the compiler without the need to alter the persistent store. The design of the
architecture and the initial implementation of each layer are described in detail by Brown
and Morrison [BM92].

Abstract Machine

Stable Heap

Stable Virtual Memory

Non Volatile Storage

Figure 2: The Napier88 persistent object store layered architecture

In the open architecture design a programming language’s abstract or target machine
communicates with the object store through the stable heap layer (Figure 2). The stable
heap interface provides a set of persistent object management functions that allow
objects to be created, read and written, along with a checkpoint mechanism that ensures
that all reachable objects from a stable root are saved atomically onto the non-volatile
storage. The stable heap also provides interface functions to invoke both a stop-the-
world garbage collection and an incremental collector, but until now only an offline
mark-compact collector has been implemented.

The stable virtual memory (SVM) provides a contiguous range of addresses for use
by the stable heap that can always be restored after a soft failure to a self-consistent
state. The interface provides functions for reading and writing to the SVM along with a
stabilise mechanism that atomically establishes a new consistent state.

This architectural layering demands that the collector is implemented entirely in the
stable heap layer and that any data structures used by the collector that are required to
persist can simply be allocated from the SVM. Thus no extra mechanism is needed to
provide collector atomicity.

4 Design Considerations

The description of the PMOS algorithm in [MMH96] concentrates on the collector
mechanism leaving a range of policy decisions that must be defined by the implementor,
such as car size, number of trains etc. These are discussed in Section 5. In designing
PMOS#1, however, a number of important issues came to light that are not explicitly
covered in the PMOS description. These are issues that form the foundation of any
PMOS implementation.

The first of these stems from the recognition that PMOS handles in-memory cars
differently from cars on secondary storage. For example a cross-car pointer update
results in a remset update if the referent car is resident; otherwise a ∆ref set entry is
recorded. Similarly ∆loc entries are only recorded for each pointer from a non-resident
car to a moved object; otherwise the pointer update is immediately applied. In PMOS,
then, every pointer manipulation and dereference results in a residency check. The
management of the space of cars in memory and the space of cars on secondary storage
and movement of cars between these spaces is fundamental to any PMOS
implementation.

Secondly, any incremental collector that partitions the address space needs to use
some method of keeping track of the graph of reachable objects in the face of changes
made by the mutator. In particular the collector must build a conservative approximation
of the set of pointers into the partition being collected. Write-barrier algorithms
[HMS92], commonly used in partitioned collectors, trap pointer updates in order that
the collector is informed of these updates. In the context of PMOS, the collector must
have some technique for tracking cross-car pointers into the car being collected.

Thirdly, in PMOS the use of the ∆ref and ∆loc sets and the deferring of remset
updates helps reduce the I/O impact of the collector. In addition, the technique of
summarising a car’s outgoing references as it is fetched and written back allows the
deferred update to the ∆ref set. The implication then is that this technique can track all
pointer updates without the need of adding write barrier techniques to the mutator.
However this is not quite the case. Summarising outgoing references and updating

remsets as a car is written back ensures that a car on secondary memory has an accurate
remset with respect to other cars on secondary memory. In contrast if a car in memory
creates a pointer to an on-disk object this assignment is unnoticed until the car is written
back and hence a reachable object may be regarded as unreachable. To ensure that a
resident car always has an accurate remset, new or deleted references to that car must be
eagerly located.

In essence the PMOS collector implicitly assumes an underlying architecture as
shown in Figure 3. In this architecture the language interpreter utilises a transient heap
for newly created and cached objects. Objects are faulted in from the persistent store on
demand and are written out to the store on checkpoint or promotion. More importantly,
PMOS assumes that there is some communication, such as an upcall function invoked
by the collector, with the interpreter to identify the roots for collection.

transient heap

in-memory

upcall

Interpreter

Persistent Store

checkpoint
&

promotion

Figure 3: PMOS Implicit Architecture

In PMOS#1, one of our overriding design aims is to implement the collector
without requiring changes to the interpreters using the store. The existing store interface
does not provide an upcall function as described above and hence the collection roots
cannot be readily obtained. This also implies that pointer updates to resident cars cannot
be trapped as they occur. The solution we adopt is to designate cars as either imported
or exported. Imported cars are “logically” in memory, their remsets are regarded as
inaccurate and they form part of the roots for collection. Exported cars are logically on
secondary memory and have accurate remsets with respect to other cars on secondary
memory and are not involved in collection. An invocation of the collector selects one or
more cars for evacuation and imports it/them if they are not in memory. Each imported
car, including the car(s) being evacuated, has its remset entries scanned. Any remset
entry that records a pointer from an exported car is added to the roots for the collection.
In doing this only pointers to objects in imported cars are followed. Since all pointers
from exported cars into the imported cars have already been designated as roots for the
collection then pointers to objects in exported cars need not be followed. The reachable
objects in the car(s) being evacuated are then found by traversing pointers from the
roots.

In effect the definition of locally reachable given above is changed to “Y is locally
reachable from X if X points to Y or a chain of pointers exists, all within imported cars,
from X to Y”. Thus any object reachable in the imported cars will be found even
although their remsets are not necessarily up-to-date.

The downside to this approach is that all object creation needs to be directly
allocated from the persistent store in order for PMOS to keep track of the collection
roots. Thus a significant number of objects that are (very) transient incur the overhead
of making them recoverable.

Since a car must be in memory for its objects to be accessible, the set of imported
cars will necessarily form part of an application's working set. Thus major policy
decisions for the implementor are how to manage the set of imported cars, choosing
when and which cars to export and choosing which cars to evacuate. The set of
imported cars will have an impact on the size of the root set calculated at each collector
invocation. This consideration must be set against the size of the ∆ref and ∆loc sets
which also occupy main memory and are only reduced by importing cars that
“consume” their entries. This in turn has an impact on the car selection policy.
Choosing which car to evacuate next may have a significant effect not only on how
much space is reclaimed but also on the size of the ∆sets.

5 Initial Design Configuration

Our goal was to build the first working version of the hence a number of the policy
decisions have been chosen to engineer the implementation in order to give a base from
which further measurements can be made. These policies and our design decisions are
itemised in Table 1. The following sections expand on these decisions and outline
some of the data structures used in the implementation.

Policy Decision
Car size 8K, 24K and 56K bytes
Remset size 8176 bytes
Maximum number of trains 32
Collector invocation time After 4Mb of objects created
Object allocation policy Lead car otherwise create new car
Car selection policy All cars from youngest and oldest train
Train creation time After collection of the oldest train
Remset entries No duplicates

Table 1: Policy Decisions

5 . 1 Cars

In PMOS#1, remsets are stored contiguously with their associated cars. 8K is reserved
for remset entries and management fields (Figure 4). We measured three versions of the
collector with varying the car sizes of 8K, 24K and 56K. Space within a car is allocated
contiguously and the FSP field holds a pointer to the start of free space within the car.
The flags indicate if the car has been modified, if outgoing pointers from the car have
been created or deleted and if the remset has been modified. The count field records the
number of remset entries. If the number of cross-car references to objects in this car
exceeds the number of available remset entries then an overflow remset buffer is
allocated from the store and the next field assigned a pointer to the buffer.

F
S
P

C
O
U
N
T

N
E
X
T

F
L
A
G
S

... Car
Remset
Entries . . .

Figure 4: Car and Remset Structure

For objects larger than a single car we adopt a policy whereby cars holding the
large object are marked for evacuation like any others but instead of copying an
evacuated object and leaving a forwarding address the objects are marked and the cars
are linked to the train the object would have been copied to.

T
R
A
I
N

∆

R
E
F

N
E
X
T

C
A
R

∆

L
O
C

O
R
T

Figure 5: Car Table Entry

We maintain a contiguous area in the store called a car table which has one entry
per car and is indexed by car number (Figure 5). Each entry in the car table indicates
the train number that the car belongs to and a pointer to the next car in the train. The
cars of a train therefore form a linked list. Similarly any ∆ref and ∆loc entries associated
with this car are also kept as a linked list with the head stored in the car table. Lastly the
car table holds a pointer to the buffer containing the summary of the car’s outgoing
references (ORT).

5 . 2 Trains

PMOS#1 allocates a contiguous area of store for a trains table. This is an array of
entries, one per train, recording the train number and a pointer to the first car of the
train. Each train table entry also records a pointer to an old root for the train that may be
needed to guarantee progress.4 The train table entry also records an external reference
count for the train, i.e., the number of references from cars of other trains to objects in
this train. If this count goes to zero then the entire train can be reclaimed.

5 . 3 Roots

All reachable data can always be found by traversing the stable heap root object and we
could have used this as the only root for collection. However we recognise that
Napier88 defines a number of objects that are heavily referenced such as the abstract
machine root object, nil, nullstring etc. These objects are essentially immortal since they
will never become unreachable and will also incur large remsets because of their
popularity. Copying such objects from car to car could impact on performance and
disruptiveness. Our solution is to define a root train whose cars contain objects that
form the roots for collection. The cars of this train are never collected and since the
objects in these cars never move then there is no need to maintain their remsets.

There is a problem, though, in preserving the language/store independence as these
immortal objects are language specific and need to be identified to the store. To solve
this we introduce a convention whereby all objects created upto the first stabilise of a
newly created store are considered as roots and allocated in cars of the root train. This
convention allows any language using the store to declare its statically known popular
objects.

5 . 4 Allocation and Invocation

The allocation policy adopted always creates objects in the lead car of the youngest
train. In other words a new car is created if there is insufficient room in the current car
and the cars of the train are not searched for a best fit. The Napier88 interpreter invokes
the collector after allocating at least 4Mb of objects.

The collector policy in this initial implementation evacuates all cars in the youngest
train and all cars from the oldest train at each invocation.5 The expectation is that by
always choosing the youngest train then a significant amount of space from temporary
objects is reclaimed quickly. A new train is created at the end of a collection invocation

4 Seligmann and Grarup [SG95] found a problem in the original MOS algorithm which can be

avoided by recording a reference from a car of a another train to a car in this train.

5 We are aware that this impacts on our claim of non-disruptiveness. With inaccurate remset
information it is difficult to accurately detect empty trains and hence by always evacuating the
oldest train we can guarantee progress.

and subsequent objects are allocated in cars of this train. A maximum of 32 trains is
used and hence every 32 collections the entire store will have been collected.

6 Test Runs and Measurements

A version of the OO1 benchmark [CS92] written in Napier88 was run and measured on
a Sparc10 with a 60 MHz SuperSparc CPU, 1MB of external cache, 96MB of RAM,
384MB swap space and a 4GB Seagate Hawk which held the store. The OO1
benchmark executes on three sizes of database consisting of small parts and connections
between them. Each part has eight fields: a part id, a type, an (x,y) integer pair, a build
date and three out-going connections to other parts. Each connection has a type and a
length. To provide some notion of locality the connections to other parts are chosen so
that each connection has a 90% chance of referencing a nearby part. A 20 MB database
containing 20000 interconnected parts is used along with the queries:

lookup : A set of 1000 random part identifiers is generated. 10 transactions are
then executed; each of which fetches the set of parts from the
database.

scan : All parts in the database are fetched once in index order.

traverse : 10 transactions are executed. Each transaction selects a part at random
and recursively traverses the connected parts, down to a depth of 7
(total of 3280 parts, with possible duplicates). A null procedure is
called for each part traversed.

insert : 10 transactions are executed. Each transaction enters 100 new parts
into the database and commits. Each new part is connected to 3 other
(randomly selected) parts.

insert100 : Generates the same workload as insert, except that 100 transactions
are executed.

update : 500 update transactions are executed. Each transaction reads and
updates 10 parts chosen at random from a contiguous range of 10%
of the parts in the database. The index of the first part in each range is
chosen at random for each transaction.

The benchmark suite, comprising of a set of separately executed Napier88 programs,
one for each query, was run over a store with the PMOS collector and a standard
release store. The elapsed times for each were obtained from the store profiling code
using the Unix getrusage and getitimer library functions. Note that the abstract machine
of a standard Napier88 release employs a small separate cache of objects from the stable
heap, called the local heap. The idea of this cache is effect essentially a first generation
for newly created objects. The local heap incorporates several optimisations not yet
employed in PMOS that aid its efficiency. The standard release store uses an offline
stop-the-world collector and allocates objects from a contiguous heap.

program Standard
Release

64K 32K 16K

populate store 625.17s 603.83s 599.94s 627.71s

full collect 5.11s 137.45s 154.49s 148.79s

setup 172.76s 147.58s 149.04s 138.65s

insert 14.22s 49.15s 71.06s 38.82s

lookup 10.12s 17.47s 20.26s 11.97s

scan 15.51s 21.66s 20.53s 16.59s

insert100 134.69s 525.17s 443.19s 366.88s

lookup 10.16s 16.87s 11.82s 12.43s

scan 23.37s 31.18s 23.30s 22.75s

update 199.59s 361.66s 305.66s 345.92s

lookup 10.99s 13.22s 10.57s 11.49s

scan 24.87s 29.22s 22.02s 21.08s

Table 2: OO1 Benchmark results

The results of PMOS#1, our first working implementation, are shown in Table 2
giving the elapsed time in seconds for programs to populate the standard Napier88
environment, the cost of a full store garbage collection and the times for the OO1
benchmark suite. Figures for the standard Napier88 release are shown along side three
versions of PMOS#1 using car/remset sizes of 64K, 32K and 16K respectively.

In general the lookup, traverse and scan results are not significantly worse than the
standard release but the insert and update programs perform badly. This is where we
see the cost of direct allocation from the persistent store. In addition two other factors
affect the results, firstly that because of incomplete remset information we select all the
cars of the oldest and youngest trains for collection at each invocation to ensure
progress; secondly each stabilise exports all cars and re-reads all cars belonging to the
youngest train. These are naive policies that we are actively improving and the challenge
is to find solutions that provide the atomicity, incrementality and non-disruptiveness. In
addition, this store implementation uses after-image shadow paging as the recovery
mechanism and we suspect that there is performance loss through the shadowing of
remsets and imported cars after each stabilise.

7 Conclusions and Future work

PMOS is an incremental copying garbage collecting algorithm targeted at reclaiming
secondary memory space from persistent object stores whilst reducing its I/O impact.
What we have demonstrated here is that the collector can be built into a persistent object
store and meet the stated goals on stock hardware and without the need for special
operating systems support. However it is clear from our initial results that to make
effective use of PMOS we need to augment the store interface to provide a co-operative
upcall function between the store and the language interpreter that allows the
identification of collection roots.

Now that we have an initial implementation the work on tuning the collector and
ascertaining efficient policies can begin. There are any number of choices here but in
particular we are interested on the effects of varying the car size, the overhead of the ∆
sets and efficient data structures to hold them. We would like to develop good policies
to determine and control the working set of in-memory cars and measure the tradeoff of
remset sizes and ∆ref sets. Experiments with different recovery methods and their
performance effects under PMOS should be investigated. It would also be interesting to
try out different car selection polices such as those suggested by Cook [CWZ94].

8 Acknowledgements

This work was carried out when Dave Munro was visiting the University of Adelaide in
May 1998. Prof. C.J. Barter must be acknowledged for his assistance and hospitality.

9 References

[ACO+85] Albano A., Cardelli L. & Orsini R. “Galileo: A Strongly Typed, Interactive
Conceptual Language.” ACM Transactions on Database Systems, vol. 10, no. 2,
1985, pp230-260.

[BC92] Bekkers and Cohen, editors. In Proceedings of the International Workshop on Memory
Management, St. Malo, France, 1992. Published as number 637, Lecture Notes in
Computer Science, Springer-Verlag, 1992.

[BDM+90] Brown, A.L., Dearle, A., Morrison, R., Munro, D.S., Rosenberg, J. "A Layered
Persistent Architecture for Napier88". International Workshop on Computer
Architectures to Support Security and Persistence of Information, Universität Bremen,
West Germany, (May 1990). In Security and Persistence. (Eds. J.Rosenberg &
L.Keedy). Springer-Verlag, 155-172.

[BM92] Brown, A.L. & Morrison, R. "A Generic Persistent Object Store", Software
Engineering Journal, Special Issue on Object-oriented Systems, Vol.7, No.2, (March
1992), 161-168.

[BMM+92] Brown, A.L., Mainetto, G. Matthes, F., Mueller, R. & McNally, D.J. An Open
System Architecture for a Persistent Object Store, Vol. 2: Software Technology, 25th
Hawaii International Conference on System Sciences, Kauaii, Hawaii, (January 1992),
766-776.

[BR91] Brown, A.L. & Rosenberg, J. “Persistent Object Stores: An Implementation
Technique”. In Dearle, Shaw, Zdonik (eds.), Implementing Persistent Object Bases,
Principles and Practice, Morgan Kaufmann, 1991 pp 199-212.

[Car89] Cardelli, L. “Typeful Programming”. DEC SRC Report, No. 45, May 1989.

[CBC+89] Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison, R. "The
Persistent Abstract Machine". 3rd International Workshop on Persistent Object
Systems, Newcastle, N.S.W., (January 1989), 80-95. In Persistent Object Systems
(Eds. J.Rosenberg & D.Koch). Springer-Verlag, 353-366.

[CS92] Cattell, R.G.G. & Skeen, J. “Object Operations Benchmark”. ACM Transactions on
Database Systems 17,1 (1992) pp 1-31

[CWZ94] Johnathan E. Cook, Alexander L. Wolf, and Benjamin G. Zorn. Partition selection
policies in object database garbage collection. In Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data (SIGMOD ‘94)
(Minneapolis, MN, May 1994), pp. 371-382.

[Det89] Detlefs, D.L. Concurrent, Atomic Garbage Collection. PhD thesis, Dept of Computer
Science, Carnegie-Mellon (1989)

[HM92] Richard L. Hudson and J. Eliot B. Moss. Incremental garbage collection for mature
objects. In [BC92].

[HMS92] Anthony L. Hosking, J. Eliot B. Moss, and Darko Stefanovi. A comparative
performance evaluation of write barrier implementations. In Object Oriented
Programming : Systems, Languages and Applications (OOPSLA), pages 92-109

[HMM+97] Hudson, R.L., Morrison, R., Moss, J.E.B. & Munro, D.S. "Garbage Collecting the
World: One Car at a Time". Object Oriented Programming : Systems, Languages and
Applications (OOPSLA), Atlanta (October 1997), pp 162-175.

[HRH97] Hollins, M., J. Rosenberg, and M. Hitchens, "Subtyping and Protection in Persistent
Programming Languages", Proceedings of the Hawaii International Conference on
System Sciences, Hawaii, Jan. 1997.

[Kol89] Kolodner, E.K., Liskov, B. and Weihl, W. “Atomic Garbage Collection: Managing a
Stable Heap”. In Proceedings of 1989 ACM SIGMOD International Conference on the
Management of Data, June 1989, pp15-25.

[Kol92] Kolodner, E.K. “Atomic Incremental Garbage Collection and Recovery for a Large
Stable Heap”. Ph.D. Thesis, MIT (1992).

[MMH96] J. Eliot B. Moss, David S. Munro, and Richard L. Hudson. PMOS: A complete and
coarse-grained incremental garbage collector for persistent object stores. In Proceedings
of the 7th International Workshop on Persistent Object Systems, pp. 140-150, Morgan
Kaufmann, 1996.

[MBC+93] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby, G.N.C.
& Munro, D.S. “The Napier88 Reference Manual (Release 2.0)”, University of St
Andrews technical report CS/93/15, 1993

[SG95] Jacob Seligmann and Steffen Grarup. Incremental mature garbage collection using the
train algorithm. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP ‘95) (Aarhus, Denmark, August 1995), no. 952 in Lecture
Notes in Computer Science, Springer-Verlag, pp. 235-252.

[UJ88] Unger D. & Jackson F. “Tenuring policies for generation-based storage reclamation.”,
In Proc of Conference on Object-)Oriented Programming Systems, Languages and
Applications (OOPSLA’88), pp 1-17, 1988

[Wilson92] Paul R. Wilson. Uniprocessor garbage collection techniques. In [BC92].

	Title
	Abstract
	1 Introduction
	2 The PMOS Collector
	2 . 1 Remsets, Dref and Dloc sets

	3 Target Object Store
	4 Design Considerations
	5 Initial Design Configuration
	5 . 1 Cars
	5 . 2 Trains
	5 . 3 Roots
	5 . 4 Allocation and Invocation

	6 Test Runs and Measurements
	7 Conclusions and Future work
	8 Acknowledgements
	9 References

