Incremental Garbage Collection of a Persistent
Object Store using PMOS

David S. Munré, Alfred L. Brown!, Ron Morrisort & J. Eliot B. Mos¥

*School of Mathematical and Computational Sciences,
University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, Scotland
Email: {ron, dave}@dcs.st-and.ac.uk

TDepartment of Computer Science, University of Adelaide,
South Australia 5005, Australia
Email: fred@cs.adelaide.edu.au

¥Department of Computer Science, University of Massachusetts,
Ambherst, MA 01003, U.S.A.
Email: moss@cs.umass.edu

Abstract

PMOS is an incremental garbagellectordesignedspecifically to reclaim space in a
persistent object store. It is complete in thatwill, after a finite number of
invocations, reclaim all unreachable storage. PMOS imposes minimum constraints on
the order of collection and offers techniques taeducethe 1/O traffic induced by the
collector.

Here we present the first implementation of the PMOS collewtied PMDS#1. The
collector hasbeen incorporateéhto the stableheap layer ofthe generic persistent
object storeused tosupport a number of languages including Napier88. Our main
designgoalsare tomaintain theindependence ahe language from the stoend to
retain the existing storimterface. The iplementation habeen completednd tested
using a Napier88 system.

The main results of this work show that the PM@#lector is implementable in a
persistent storend that it can bebuilt without requiring changes taehe language
interpreter. Initial performancemeasurementsare reported.These results suggest
however, thaeffectiveuse of PMOSrequires greateco-operation between language
and store.

1 Introduction

Automatic sbrage managemenprovides an abstraction over physical storaigat
enables the programmer to manipulate space witheuheed taonsiderthe low level
details of placemerdandreuse.Garbage cdectionis that part ofstoragemanagement
that is concerneavith identifying referencediata from unreferencedlata, allowing
space to be reorganised and reused.

Numerous garbage collectordor main-memory programming languages and
systems have been designed, built, and measured (see Wilson [Wilknn@Z&urvey
of these techniques). Extending garbage collection to a persistent storedditenal
concerns:

» The size of manyersistent stores suggestat semi-space techniques will be
unworkable because they approximately double spagairements. Likewise,
"stop-the-world" style collection would result in prohibitively long pauses.

* Object movement in copying or compacting garbage collectors may cause updates
to persistent pointer locations. Where these locations are held in persistent objects
on secondary storage, the updates may incur high overhead.

» Persistent storesxhibit some notion of stabilityvhereby a consisterdtate can
always be reconstructedter acrash.Most existing collector algorithms are not



inherently atomiand arethus unsuitable in this contexhe work of Kolodner
[Kol89, Kol92] and Detlefs [Det89] are notable exceptions.

The PMOS [MMH96] (Persisterilature ObjeciSpace) collector is concernagth the
collection of space from a persistafjectsystem and is taled toaddresghe above
issues.

This paper reports othe first implementation of the PMOSollector, named
PMOS#1.The implementation validates the PMOS algoritand demonstratethat it
can be built in a simple amstraightforward mannerThe paperalso clarifies what
requirements the algorithm places on the mutator's manipulatiopowiters. We
discussthe details of thedesign and policy decisions adopted and describe the
incorporation of PMOS into the generic persistent object store used to support a number
of languages includintylapier88 [MBC+93], Galileo [ACO+85], Quest [Car89], and
Mozzie [HRH97]. One of the maimattributes of this store ithat its architectural
layering reflects the persistence abstraction by ensthaigheprogramming language
levels of the architecture are sepafaten the details ofhow objects are sred. Our
principal design aim othe implementation is to retathis flexible storeinterfacethus
preserving the independence of the store from the language.

The collectorhasbeen built and testeasing a standarcklease Napier88ystem.
At the time ofwriting our implementation igust completeand theresults ofinitial
sample test runs are included.

2 The PMOS Collector

PMOS is one of a family ahcremental collectors targeted at reclamation of different
levels of the girage hierarchyThe Mature ObjecBpace (MOS) algorithniHM92]
(colloquially known as “the Train Algorithm”) is an incremental main-mentapying
collector specificallydesigned tocollect large, older generations of a generational
scheme in a non-disruptiv@anner. InMOS theaddressspace is partitioned into a
number of areathat can be collectetidependentlyThe DMOS collector [HMM+97]

is a complete, non-blockingncremental collectofor distributedobject systemsthat
does not require global tracing. The common features of these collectors are:

» Safety. the collector does not collect live (reachable) objects.

* Completeness the collector reclaimsll garbage within a finite number of
invocations.

* Non-disruptiveness the collectorboundsthe amount of collectiowork,
thereby bounding the time and space requirements, for each invocation.

* Incrementality : the collector reclaims space incrementally.
The specific attributes of PMOS are

» Itis a copying collector and naturally supports compaction and clustering without
the need for semi-space techniques.

* It can be implemented cstock hardware and does metjuire special operating
systems support such as pinning or external pager control.

* The collectordoes not impose any constraints tbie order of collection of the
areasthus allowing the implementor tgrovide a policy appropriate to the
applicationt

» It provides techniques teeduce thd/O impact of pointer updates andbject
movement.

» Atomicity is provided without binding it to a particular recovery mechanism.

1 Work by Cook, Wolf, andZorn [CWZ94] suggests that a flexible selection policy that allows a
collector to choose which partition to collezzn significantly reducel/O andincreasethe amount
of space reclaimed.



The PMOS collector is describeding the metaphor ofrains made up ofcars The
address space of the store is divided into a number of disjoint blocks (@agsgar (or
more) is collected in each invocation of theollector, by copying itspotentially
reachable objects into othears. Since onlypotentially reachable data copied, all
unreachable structures contained within the one car will be collected immediately.

To collect cyclicgarbage thaspans rare than onear, carsare groupedtogether
into trains. By ensuring that all the cars in a train are collected by copying the potentially
reachable data into other traimyclic garbage will be lefbehind and can be collected,
once it is marshalled into the sarmain. It is shown ifMMH96] that to guarantee
completeness it is sufficient to ordée trains in terms of the (logicatine they are
created. Hence we will refer to trains beoider or youngerthan other trains.

The PMOS collectousesthe following rules for copyingdatafrom a car during
collection:

1 Datalocally reachabkefrom roots iscopied to a youngerain, adding aar to
that train if required.

2 Data locally reachable from younger trains is copied to those trains, adding a car
if required. If an object is reachable from more than one younger train, it may be
copied to any younger train from which it is reachable.

3 Data locally reachabligom older trains is copied to any othear of its current
train, adding a car if required.

4 Data locally reachable from other cars of the same train is copied to any other car
of the train, adding a car if required.

5 The remaining data is unreachable and is reclaimed immediately.

It should be noted that the above rules are followestder. Tocomplete the collection
of cyclic garbage one more rule is required. This rule can be applied at any time:

If no object in a train is reachable from outsidettlaén, reclaim the entirgrain.
If necessarygcreateanother train taensurethat there aralways atleast two
trains.
The algorithm allows any cdrom any train to beselectedor collection and taensure
completeness requires that every car is eventually collected.
Figure B illustrates thealgorithm, showing @&equence ofour collections, which
collects intra-train and inter-train cycles of garbage, and reclusters the live objects.

2 Object Y is locallyreachablérom pointer X if X refers to Y, orthere is a chain gbointers that
leads from X to Y where the referents of these pointers al lie within the same car.

3 Note this drawing is adapted from a similar one found in [HMM+97]



fSequence of four collections with a start

configuration of two trains, a reachable chafi

objects R,S,T, an intra-train garbage cycle

E, F and an inter-train cycle of garbage X,Y.

this example there is a maximum of th

objects per car.

1 Car mis chosen for collection and move
and X to a younger train. Object C mo
into car o.

2 Car k is chosen for collection and move
into a newly created younger train. Note
train 2 is now free.

3 Collection of car n moves S into train 3.

4 Finally after car o is collected, R, Sand T

in the same train and train 1 can be disoa

since there are no pointers into it.

new Train 3

root Freed Car k leaving
Train 2 empty

C
freed Carm Carn Caro Carn Caro
Train 1 Train 1
Carp _ Carp
Train 3 Train 3
R S R T
S

F C D E
root root
T
freed Car n Caro Carq freed Car o Carq new Car r
Train 1 Train 1

Figure 1: Example Sequence of Mature Object Space Collection



2.1 Remsets,Aref and Aloc sets

To facilitate theindependent collection of individuaars, PMOSdefines a per-car
remembered set (remset) which is used to record which cars have pointers into a given
car. In a persistent system cross-car references must be preserved over system crashes
and hence remsets must be recoverable. The size of the remsets is olayiplicyion
dependent and there are a numberingblementationchoices. At oneextreme the
remsets forll thecars could be kept together in some contiguangs of thestore.
Alternatively there may beome performance gains to bade bystoringthe remsets

with their associated capmotentially allowingfor efficient loading. However, asuch,
maintaining complete and accurate remset information may be expensive as this requires
fetching, updating and writingack a remset anfyme there is a pointer creation or
deletion to an object in a car on secondary storage.

The PMOS collector suggests a compromise whereby rearsst®red withtheir
cars but changes tberemsetscan be appliedpportunistically. When a pointer to an
object in a non-resident car is createdleleted, this event is recorded in a (gdally
held in-memory) wecall the Aref set and the update to the remsetéferred. The
remset is only fetchedhen itscar is faulted in(e.g., when anobject in the car is
accessed)The Aref set is examined #his pointfor enties indicating that there have
been new or deleted references to the car whilst it was on secondary ményosych
entries are applied to the remset and remdv@ah the Aref set. Thusthe Aref set
records pointer changes that have not been recorded in a car’'s remset.

A further observation made in the PMOS descriptiothas pointerupdates do not
need to be recorded immediately in flref set. The claim is thdfref set entries can be
written when a modified car is written back to secondary memory. As a car is read in its
outgoing reference@.e., cross-careferences) are summarised inttable. Ifthe car
has been modified and is about to be writtback, its outgoing references are
summarised again and the differences recorded ifirdfeset.

PMOS also defines another in-memory set/tloe set, which plays aimilar role
to theAref set. As a copying collector, PMOS moyedentially reachable objects from
one car toanother.Any pointersthat reference an object that is moved need to be
updated. Cars containing such pointeas befound by scanninghe remset entries of
the car being collected. Rather than fetch thezse to updat¢he pointervalues, the
Aloc set records entries with the old amelv locations of objects that have moved and
which cars point to those objectshéh a car is fetched into memonsdansthe Aloc
set and applies any relevant pointer updates, removing the entry fréiodieet.

In essence the effects of pointer update and object movement are constrained to the
object itself and théref andAloc sets. The number of entries in th® sets is again
implementation dependebut can be controlled by theollector. If thesesets grow
large then the collector can fetch in a number of cars to update their remsets and pointers
and hence reduce tlesetsizes.The challengdor the implementor is to balance the
trade-off ofAref andAloc sizes against the cost of importing and updating remsets.

3 Target Object Store

We chose to incorporate PMOS into the genpeisistenbbjectstore used to support
Napier88 partly because of the authors’ knowledge of its design and implementation but
also because the abstractigmevided bythe architectural layering simplified thask.

The persistent object store is founded on an dggsred architecture. The architecture

is generic whereby different implementations of a layer may be interchanged without the
need to alter théayers above obelow. This dividesthe architecture between the
architectural layerghat provide the persistenbbjectstore and thostacilities that may

be programmed by a supported programming languBges, a dta format can be
altered by the compiler withotite need to alter theersistensstore. The design of the
architecture and the initial implementation of each layer are described in deBaib\w

and Morrison [BM92].



[ Abstract Machine ]

[ Stable Heap ]

( Stable Virtual Memory )

[ Non Volatile Storage J

Figure 2: The Napier88 persistent object store layered architecture

In the openarchitecturedesign a programming language’s abstractaoget machine
communicates with the object store through the stable heap(kigere 2). The stable
heap interfaceprovides a set of persistenbject managemerfunctions that allow
objects to be created, read and written, along with a checkpoint mechbaigmsures
that all reachablebjects from astable rootare savedatomically onto the non-volatile
storage.The stable heaplso provides imrfacefunctions to invoke both a stop-the-
world garbage collectiorand anincrementalcollector, but untilnow only anoffline
mark-compact collector has been implemented.

The stable virtual memory (SVM) provides a contiguous range of addresses for use
by the stable heap that catways be restoredfter asoft failure to a self-consistent
state. The interface provides functions for reading and writiriget&&VM along with a
stabilise mechanism that atomically establishes a new consistent state.

This architectural layering demands that the collector is implemented entirely in the
stable heap layer artdat any datastructures used bihe collector that areequired to
persistcan simply beallocatedfrom the SVM. Thus noextra mechanism is needed to
provide collector atomicity.

4 Design Considerations

The description of the PMOS algorithm in [MMH96] concentrates on thectay
mechanism leaving a range of policy decisions that must be defined by the implementor,
such ascar size, nurber of trains etcThese araliscussed irSection 5. Indesigning
PMOS#1, however, a nuar of importanissuescame to light that araot explicitly
covered in the PMOS@escription. Thesare issuesthat form the foundation of any
PMOS implementation.

Thefirst of these stems frorie recognition that PMOBandles in-memory cars
differently from cars on secondasforage. Forexample across-car pointeupdate
results in a remset updatetlife referent car is residerdtherwise aAref set entry is
recorded. SimilarhAloc entries ar@nly recordedor each pointefrom a non-resident
car to a moved objectitherwisethe pointer update is imediatelyapplied. INPMOS,
then, every pointer manipulation and dereferemesults in a residency check. The
management of the space of cars in memory and the space of cars on secondary storage
and movement ofcars between these spaces fimdamental to any PMOS
implementation.

Secondly,any incremental collector that partitions thddresspace needs to use
some method of keeping track thie graph ofreachable objects in the face afanges
made by the mutator. In particular the collector must build a conservative approximation
of the set ofpointers intothe partition being collected. Write-barrier algorithms
[HMS92], commonlyused inpartitionedcollectors, trap pointer updates in ordieat
the collector is informed of thesgdates. Irthe context oPMOS, the collector must
have some technique for tracking cross-car pointers into the car being collected.

Thirdly, in PMOSthe use ofthe Aref andAloc sets andhe deferring of remset
updates helps redudbe 1/0 impact of thecollector. In additionthe technique of
summarising a car’s outgoing references as fetehed and written bacéllows the
deferred update to th&ref set. The implication then is thahis techniquecan track all
pointer updates withouhe need of adding write barrier techniques to ringtator.
However this is nofjuite thecase. Summarising outgoing refeces and updating



remsets as a car is written back ensures that a car on secondary masnamccurate

remset with respect to other cars on secondary memocgninast if a car in memory

creates a pointer to an on-disk object this assignment is unnoticed until the car is written
back and hence a reachable object may be regardedreachable. To ensutkbat a

resident car always has an accurate remset, new or deleted references to that car must be
eagerly located.

In essenceghe PMOS collector implicithassumes an underlyingrchitecture as
shown in Figure 3. In thiarchitecture the language interpreter utilises a transient heap
for newly created and cached objects. Objects are faulted intfiepersistent store on
demand and are written out to the store on checkpoiptarnotion. More importantly,

PMOS assumethat there isome communication, such asgwcall function invoked
by the collector, with the interpreter to identify the roots for collection.

transient heap
L
Interpreter checkpoint
&
upcall promotion
Persistent Ster in-memory <

Figure 3: PMOS Implicit Architecture

In PMOS#1,0ne of our overriding desigaims is to implement the collector
without requiring changes to the interpreters using the store. The existingnsdeee
does not provide aapcall function as described above and hencectiiection roots
cannot be readily obtained. This also implies that pointer updates to resident cars cannot
be trapped as they occdihe solution we adopt is to designate carsiiserimported
or exported Imported carsare “logically” in memory,their remsetsare regarded as
inaccurate and they form part of thaots for collectionExported carsre logically on
secondary memory and hasiecurateremsets with respect to other cars on secondary
memory and are not involved in collection. An invocation of the collector selects one or
more cars for evacuation and impdttthem if they arenot in memory Each imported
car, including thecar(s) being evacuatetas its rerset entriesscanned Any remset
entry that records a pointer from an exported car is added todtseforthe collection.

In doing this only pointers to objects in imported canesfollowed. Sinceall pointers
from exported cars into the imported cars have already been designatedsa®r the
collection then pointers to objects in exported cars need natlbered. The reachable
objects in thecar(s) beingevacuated are thelound by traversing pointers from the
roots.

In effect the definition of locally reachable given above is changed to [bcadly
reachable from X if X points to Y or a chain of pointers exists, all within impaaes,
from X to Y”. Thus anyobject reachable in the importezrs will befound even
although their remsets are not necessarily up-to-date.

The downside to thisapproach isthat all objectcreationneeds to bedirectly
allocatedfrom the persistent store in order for PMOS keep track of the collection
roots. Thus aignificant number of objectbat are(very) transient incuthe overhead
of making them recoverable.



Since a car must be in memdoy its objects to be accessibkbe set of imported
cars will necessarily form part of application's working set. Thusiajor policy
decisions forthe implementor areow to manage the set of importedrs, choosing
when and which cars to export and choosing which cars to evadlegeset of
imported cars will have an impact on the size ofrtw setcalculated at each collector
invocation. This consideration must be set agdimstsize of theAref andAloc sets
which also occupymain memoryand areonly reduced by importing carthat
“‘consume” theirentries. This in turn has ampact on the car selectiopolicy.
Choosing whiclcar to evacuate next may have a significant effiettonly on how
much space is reclaimed but also on the size didbés.

5 Initial Design Configuration

Our goalwas tobuild thefirst working version ofthe hence a number of the policy
decisions have been chosen to engineer the implementation in order to give a base from
which further measurements canrbade.These policies andur design decisions are
itemised in Bble 1. The following sections expand on these decisions autiine

some of the data structures used in the implementation.

Policy Decision
Car size 8K, 24Kand 56K bytes
Remset size 8176 bytes

Maximum number of traing 32
Collector invocation time After 4Mb of objects created

Object allocation policy Lead car otherwise create new car
Car selection policy All cars from youngest and oldest traip
Train creation time Atfter collection of the oldest train
Remset entries No duplicates

Table 1: Policy Decisions

5.1 Cars

In PMOS#1, remsets are stored contiguously ¥idr associatedars. 8K isreserved

for remset entries and management fields (Figure 4). We measured three versions of the
collector with varying the car sizes of 8K, 24K and 56K. Space within a edlocated
contiguously and the FSP field holds a pointethto start of free space within toar.
Theflags ndicate if the cahasbeenmodified, if outgoing pointers frorthe car have

been created or deleted and if the remset has been moiitiaount fieldrecords the
number of remsegntries. Ifthe number ofcross-car references to objects in this car
exceeds the number @ivailable remset entries then awerflow renset buffer is
allocated from the store and thextfield assigned a pointer to the buffer.

Remset
Entries - * - Car

nweO>rrm
oTw;mm
—Z2CO00
—XxXm2zZ

Figure 4: Car and Remset Structure

For objects larger than a single car we adopt a palibgreby cars holding the
large object are markefbr evacuation likeany others but instead of copying an
evacuated object and leavindomwarding addresthe objects are marked and the cars
are linked to the train the object would have been copied to.



—Xmz2Z
>0
Z—>»xn-
mTmx DB
=300

oor B

Figure 5: Car Table Entry

We maintain acontiguousarea in thestorecalled acar table which has oneentry
per car and is indexed by car numfieilgure 5). Each entry in the caable indicates
the train numbethat the cabelongs to and a pointer the next car in thérain. The
cars of a train therefore form a linked list. Similarly &ngf andAloc entries associated
with this car are also kept as a linked list with the head stored in thabtsr Lastly the
car tableholds apointer to thebuffer containingthe summary ofthe car’s outgoing
references (ORT).

5.2 Trains

PMOS#1 allocates aeontiguousarea ofstore for a trains table. This is amray of
entries, one per train, recorditige train number and a pointer to thest car of the

train. Each train table entry also records a pointer to an old root for theéhtxaimay be
needed to guarantggogress. The train tableentry also records aexternal reference
count for the train, i.e., the number of references from cars of other trains to objects in
this train. If this count goes to zero then the entire train can be reclaimed.

5.3 Roots

All reachable data can always be found by traversing the stable heagbjesmtand we
could haveused this aghe only root for collection. However we recogniseat
Napier88 defines a number of objettiat are heavily referencesich asthe abstract
machine root object, nil, nullstring etc. These objects are essemtiallyrtal since they
will never become unreachable and valso incur large remsets because tlodir
popularity. Copying suclobjects fromcar to car couldmpact on performance and
disruptivenessOur solution is to define a root trainhwse carsontain objectghat
form the roots for collection.The cars of this trainare nevercollected andsince the
objects in these cars never move then there is no need to maintain their remsets.
There is a problem, though, in preserving the language/store independence as these

immortal objects are language specditd need to be identified to tkeore. Tosolve
this we introduce a convention whereddl/objects createdpto the first stabilise of a
newly created store are considered@ss andallocated incars oftheroot train. This
convention allows any languagsingthe store todeclareits staticallyknown popular
objects.

5.4 Allocation and Invocation

The allocation policy adoptedlways creates objects in the lead car of gmungest
train. In other words a new cargseated if there is insufficiembom inthe current car
and the cars of the train are not searched for a beEhé&tNapier88 interpreteinvokes
the collector after allocating at least 4Mb of objects.

The collector policy in this initial implementation evacuatgars inthe youngest
train andall cars fromthe oldest train atachinvocation® The expectation is that by
always choosing the youngdgtin then a significant amount of space from temporary
objects is reclaimed quickly. A new traindeeated at thend of acollection invocation

4 Seligmannand Grarup [SG95] found aproblem in the original MOS algorithm whiotan be
avoided by recording a reference from a car of a another train to a car in this train.

5 We are awarehat this impacts on our claim afon-disruptiveness. Witlinaccurate remset
information it is difficult to accurately detecempty trainsand hence byalways evacuating the
oldest train we can guarantee progress.



and subsequent objecge allocated ircars of this train. Anaximum of 32trains is
used and hence every 32 collections the entire store will have been collected.

6 Test Runs and Measurements

A version of the OO1 benchmark [CS92] written in Napier88 was run and measured on

a Sparcl0 with a 6MHz SuperSparcCPU, 1MB of externalcache, 96MB of RAM,

384MB swap space and alGB SeagateHawk which held the store. The OO1
benchmark executes on three sizes of database consisting of small parts and connections
between them. Each part has eight fields: a part id, a type&,\gnintegerpair, abuild

dateand threeout-going connections to othparts.Each connectiohas atype and a

length. To provide some notion laicality theconnections to other parése chosen so

that each connection has a 90% chance of referencing a meatbyA20 MB database
containing 20000 interconnected parts is used along with the queries:

lookup : A set of 1000 random part identifiers is generated. 10 transactions are
then executed; each athich fetchesthe set ofparts from the
database.

scan : All parts in the database are fetched once in index order.

traverse 10 transactions are executed. Each transaction selects a part at random

and recursively traverselse connectegarts, down to alepth of 7
(total of 3280 partswith possible duplicates). Aull procedure is
called for each part traversed.

insert 10 transactions arexecutedEach transactioenters 100 new parts
into the database and commits. Eaehw part is connected to 3 other
(randomly selected) parts.

insertl00 :  Generates the samerkload as insertexcept thatlOO transactions
are executed.

update : 500 update transactions aexecuted.Each transactiorreads and
updates 10 parts chosen at random from a contiguous range of 10%
of the parts in the database. The index of the first paaah range is
chosen at random for each transaction.

The benchmarisuite, comprising of get of separately execut®&thpier88programs,

one foreachquery, was rurover a store witlthe PMOS collector and standard
releasestore. The elapsed timefor eachwere obtained fronthe store profilingcode

using the Unix getrusage and getitimer library functions. Mwiethe abstract machine

of a standard Napier88 release employs a small separate cache of objects from the stable
heap, called the local heap. Tidea ofthis cache is effect essentiallyfisst generation

for newly createdobjects.The local heapncorporates several optimisations not yet
employed in PMOS that aittis efficiency. The standard releasstore uses aoffline
stop-the-world collector and allocates objects from a contiguous heap.



program Standard 64K 32K 16K
Release

populate store|] 625.174 603.83s 599.94s 627.71s
full collect 5.119 137.453 154.49s 148.7Ps

setup 172.765 147.58s 149.04s 138.65s
insert 14.229 49.155 71.06s 38.82s
lookup 10.125 17.475 20.26s 11.97s
scan 15.519 21.66p 20.58s 16.99s
insert100 134.699 525.17s 443.1Ps 366.88s
lookup 10.165 16.875 11.82s 12.43s
scan 23.379 31.18p 23.30s 22.75s
update 199.595 361.66|s 305.6ps 345.92s
lookup 10.99s 13.225k 10.5Ys 11.49s
scan 24.879 29.22B 22.02s 21.08s

Table 2: O0O1 Benchmark results

The results of PMOS#1, our first workimgplementation, areshown in Table 2
giving the elapsed time iseconds for programs foopulate thestandard Napier88
environment,the cost of a full store garbageollection and the timedor the OO1
benchmark suite. Figures for the standard Napiezkfhse arshownalong sidethree
versions of PMOS#1 using car/remset sizes of 64K, 32K and 16K respectively.

In general the lookup, traverse and scan results are not significardg tivan the
standard release btite insert and updafgograms perform badly. This is where we
see thecost ofdirect allocatiorfrom the persistensstore. Inadditiontwo other factors
affect the results, firstly that becauseirmfomplete remset information we selatitthe
cars ofthe oldest and/oungest trains forcollection at each invocation tensure
progress; secondlgach stabilisexportsall cars and re-readsl cars belonging to the
youngest train. These are naive policies that we are actively improving arfthilemge
is to find solutions that provide the atomicity, incrementality aod-disruptiveness. In
addition, this storemplementationusesafter-imageshadow paging as the recovery
mechanism and weuspectthat there is performandess throughthe shadowing of
remsets and imported cars after each stabilise.

7 Conclusions and Future work

PMOS is an incrementalopying garbageollecting algorithm targeted at reclaiming
secondary memory space from persistdjectstores whilstreducing itsl/O impact.
What we have demonstrated here is that the collector can be built into a perbistent
store andmeet thestated goals on stock hardware and withibet needfor special
operatingsystems support. However it ¢ear from our initial resultsthat to make
effective use of PMOS we need to augment the stoeefane toprovide a co-operative
upcall function between thetore andthe language interpreter thatllows the
identification of collection roots.

Now that we have amitial implementation thevork on tuning the collector and
ascertaining efficient policies cdregin. There are any number of choices here but in
particular we are interested on the effects of varytegcarsize,the overhead of thA
sets and efficient data structures to hold them. We wliikddo developgood policies
to determine and control the working set of in-memory cars and measure the tradeoff of
remset sizes andref sets. Experiments with different recovery methods ahdir
performance effects under PMOS should be investigated. It would also be interesting to
try out different car selection polices such as those suggested by Cook [CWZ94].



8 Acknowledgements

This work was carried out when Dave Munro was visiting the University efafst in
May 1998. Prof. C.J. Barter must be acknowledged for his assistance and hospitality.

9 References

[ACO+85] Albano A., Cardelli L. & Orsini R. “Galileo: A Strongly Typed, Interactive
Conceptual Language.” ACM Transactions on Database Systems, vol. 10, no. 2,
1985, pp230-260.

[BC92] Bekkers and Cohen, editors.Pnoceedings of the International Workshop on Memory
ManagementSt. Malo, France, 1992. Published as humber B6&3ture Notes in
Computer Scienc¢é&pringer-Verlag, 1992.

[BDM+90] Brown, A.L., Dearle, A., Morrison, R., Munro, D.S., Rosenberg, J. "A Layered
Persistent Architecture for Napier88". International Workshop on Computer
Architectures to Support Security and Persistence of Information, Universitat Bremen,
West Germany, (May 1990). In Security and Persistence. (Eds. J.Rosenberg &
L.Keedy). Springer-Verlag, 155-172.

[BM92] Brown, A.L. & Morrison, R. "A Generic Persistent Object Store", Software
Engineering Journal, Special Issue on Object-oriented Systems, Vol.7, No.2, (March
1992), 161-168.

[BMM+92] Brown, A.L., Mainetto, G. Matthes, F., Mueller, R. & McNally, D.J. An Open
System Architecture for a Persistent Object Store, Vol. 2: Software Technology, 25th
Hawaii International Conference on System Sciences, Kauaii, Hawaii, (January 1992),
766-776.

[BRI1] Brown, A.L. & Rosenberg, J. “Persistent Object Stores: An Implementation
Technique”. In Dearle, Shaw, Zdonik (eds.), Implementing Persistent Object Bases,
Principles and Practice, Morgan Kaufmann, 1991 pp 199-212.

[Car89] Cardelli, L. “Typeful Programming”. DEC SRC Report, No. 45, May 1989.

[CBC+89] Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison, R. "The
Persistent Abstract Machine". 3rd International Workshop on Persistent Object
Systems, Newcastle, N.S.W., (January 1989), 80-95. In Persistent Object Systems
(Eds. J.Rosenberg & D.Koch). Springer-Verlag, 353-366.

[CS92] Cattell, R.G.G. & Skeen, J. “Object Operations Benchmark”. ACM Transactions on
Database Systems 17,1 (1992) pp 1-31
[CWZ94] Johnathan E. Cook, Alexander L. Wolf, and Benjamin G. Zorn. Partition selection

policies in object database garbage collectiofrbreedings of the 1994 ACM
SIGMOD International Conference on Management of Data (SIGMOD ‘94)
(Minneapolis, MN, May 1994), pp. 371-382.

[Det89] Detlefs, D.L. Concurrent, Atomic Garbage Collection. PhD thesis, Dept of Computer
Science, Carnegie-Mellon (1989)

[HM92] Richard L. Hudson and J. Eliot B. Moss. Incremental garbage collection for mature
objects. In [BC92].

[HMS92] Anthony L. Hosking, J. Eliot B. Moss, and Darko Stefanovi. A comparative
performance evaluation of write barrier implementations. In Object Oriented
Programming : Systems, Languages and Applications (OOPSLA), pages 92-109

[HMM+97] Hudson, R.L., Morrison, R., Moss, J.E.B. & Munro, D.S. "Garbage Collecting the
World: One Car at a Time". Object Oriented Programming : Systems, Languages and
Applications (OOPSLA), Atlanta (October 1997), pp 162-175.

[HRH97] Hollins, M., J. Rosenberg, and M. Hitchens, "Subtyping and Protection in Persistent
Programming Languages", Proceedings of the Hawaii International Conference on
System Sciences, Hawaii, Jan. 1997.



[Kol89]

[Kol92]

[MMHO6]

[MBC+93]

[SGY5]

[uJss]

[Wilson92]

Kolodner, E.K., Liskov, B. and Weihl, W. “Atomic Garbage Collection: Managing a
Stable Heap”. In Proceedings of 1989 ACM SIGMOD International Conference on the
Management of Data, June 1989, pp15-25.

Kolodner, E.K. “Atomic Incremental Garbage Collection and Recovery for a Large
Stable Heap”. Ph.D. Thesis, MIT (1992).

J. Eliot B. Moss, David S. Munro, and Richard L. Hudson. PMOS: A complete and
coarse-grained incremental garbage collector for persistent object stétescdrdings
of the 7th International Workshop on Persistent Object Systgmd440-150, Morgan
Kaufmann, 1996.

Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.l., Dearle, A., Kirby, G.N.C.
& Munro, D.S. “The Napier88 Reference Manual (Release 2.0)", University of St
Andrews technical report CS/93/15, 1993

Jacob Seligmann and Steffen Grarup. Incremental mature garbage collection using the
train algorithm. InProceedings of the European Conference on Object-Oriented
Programming (ECOOP ‘95(Aarhus, Denmark, August 1995), no. 952 écture

Notes in Computer Sciencgpringer-Verlag, pp. 235-252.

Unger D. & Jackson F. “Tenuring policies for generation-based storage reclamation.”,
In Proc of Conference on Object-)Oriented Programming Systems, Languages and
Applications (OOPSLA’88), pp 1-17, 1988

Paul R. Wilson. Uniprocessor garbage collection techniques. In [BC92].



	Title
	Abstract
	1 Introduction
	2 The PMOS Collector
	2 . 1 Remsets, Dref and Dloc sets

	3 Target Object Store
	4 Design Considerations
	5 Initial Design Configuration
	5 . 1 Cars
	5 . 2 Trains
	5 . 3 Roots
	5 . 4 Allocation and Invocation

	6 Test Runs and Measurements
	7 Conclusions and Future work
	8 Acknowledgements
	9 References

