ProcessBase Abstract Machine M anual

Version 2.0.6
August 1999

Ron Morrisont
Dharini Balasubramaniamt
Mark Greenwood¥
Graham Kirbyt
Ken Mayes*

Dave Munro*

Brian Warboys¥

TSchool of Mathematical and Computational Sciences,
University of St Andrews

¥Department of Computer Science,
University of Manchester

*Department of Computer Science,
University of Adelaide

Contents

1 a1 A oo [F ot o o F R SSSTRN 4
11 The PBAM Storage ArChiteCtUNeueee i 5

12 COMCUITEINCY ...t eteee et ettt et ettt et e et et e et e et e e e et e et e e et e ea e e ea e anae e aennnas 6

2 Abstract Machine REQISLENS........ooveiiriinieree e 7
21 OBJECE FOMMELS.......cciiiiiiiiiiiiiiiiiicic i 7
211 TheHEAOEN 7

212 HBSN COUES. .. . ettt 7

2.1.3 The POINter FIelds. 7

22 0T I PP 7

2.3 SP NG PSP.... ittt 8

24 P e e e e 8

25 U SSPPTRSR 8

2.6 RO, et 8
2.6.1 PBAM ROOt ObJECL ...ttt e e e es 8

2.7 EH P e e 8

2.8 THIMISP e e 9

3 (D F 1= B IR/ 0= R R 10
31 SCAlAr DAIA TYPES. .. ettt ettt e et et e aa e 10

0 00 0 O [01" 1= 10

BL2 BOOIBAN ...ttt 10

B L8 REAl . . 10

32 o] 01 (= g - r= B 5/ o= 11

B 0725 I oo 1o o PP 11

32,2 SHIINQ. ettt et e 11

I BV = o (o PP RPPP 11

B2 VBN, e e 12

B.2.5 PrOCEAUIE. ...uiiiiii i 12

B8 ANy oo 14

4 Exceptions, Interruptsand Down-calls..........cccceoveeeveeiecceieenieenen, 16
4.1 (o= o1 Lo ol = a0 = P 16

4.2 INterrupt HaNAIErS. ... e e 16

4.3 DOWN-CAIIS. .. e 18

5 PBAM COE.......oooiieiieeee ettt et 19
51 JUN I e 19

52 ASSIGINIMIENL ..ttt e et e et et e e e et e et e e e e e 20

5.3 SEACK LOBA ...t 21

5.4 2] oo 1q =] PRSPPI 25

55 Procedure ENtry and EXit.........coouiiiiiiii e 25

5.6 Heap OhJECE Creationccue e e ea e e 27
L2 A oo (o o TP PPPIN 28

Lo s 1 oo PSPPI 28

5.B.3 VBCION ... ie it 30

L33 T PP 31

B5.6.5 ENVIFONMENT ... oo 32

BB, AN et e 32

5.7 CoMPATTiSON OPEIELIONS.u ettt e et e et e e e e e e e e e e e et e e eeenaeeeen 33

58 Arithmetic and BOOI€aN OPEratorS........cvuueeeeieiiii i eeei e e e e e e e aeeees 35

59 Exception and Interrupt Handlingoovveviiiiiiiiiieece e 36
5,10 MISCEIIANEOUS. ...t 37

6 REFEN BNCES......eeceee e e 39
Appendix |: PBAM Operation COUES..........ccovevueieeiieeieeseesieeie et esee e 41

Appendix I1: Code File FOrmat.........ccoeeveiieeieeie e 45

1 Introduction

ProcessBase is the simplest of a family of languages and support systems designed for
process modelling. It consists of the language and its persistent environment. The persistent
store is populated and, indeed, the system uses objects within the persistent store to support
itself. The implication of orthogonal persistence is that the user need never write code to
move or convert data for long or short term storage [ABC+83]. The model of persistence in
ProcessBase is that of reachability from aroot object. The persistent store is stable, that is, it
is transformed atomically from one consistent state to the next. Execution against the
persistent store is always restarted from the last stable state.

The ProcessBase language is in the algol tradition as were its predecessors S-algol [Mor79],
PS-algol [PS88] and Napier88 [MBC+96]. Following the work of Strachey [Str67] and
Tennent [Ten77] the languages obey the principles of correspondence, abstraction and type
completeness. This makes for languages with few defining rules allowing no exceptions. It is
the belief of the designers that such an approach to language design yields more powerful
and less complex languages.

The ProcessBase type system philosophy is that types are sets of values from the value space.
The type system is mostly statically checkable, a property we wish to retain wherever
possible. However, dynamic projection out of unions for type any, allows the dynamic
binding required for orthogonal persistence [ABC+83] and system evolution [MCC+93].

The type system contains the base types integer, real, boolean and string. Higher-order
procedures allow code to exist in the value space. Aggregates may be formed using the
vector and view types. Both of these allow information hiding without encapsulation. Finally
thereis an explicit constructor to provide locations.

The type equivalence rule in ProcessBase is by structure and both aliasing and recursive
types are allowed in the type algebra.

ProcessBase programs are executed in a strict left to right, top to bottom manner except
where the flow of control is altered by one of the language clauses.

The ProcessBase persistent programming system was originally planned as part of the
Compliant Systems Architecture Project. It is supported by the EPSRC under grant
GR/L32699 at the University of St Andrews and GR/L34433 at the University of
Manchester.

The ProcessBase programming system provides the following facilities:

. Orthogonal persistence
— models of dataindependent of longevity

. Type completeness
— norestrictions on constructing types

. Higher-order procedures
— procedures are data objects

. Information hiding without encapsulation
— viewsof datathat hide detail

. A strongly typed stable store
— apopulated environment of typed data objects that may be
updated atomically

. Hyper-code
— onerepresentation of avalue throughout its lifetime [K CC+92]

PBAM Manual 4

. Linguistic reflection
— toalow reflective programming [Kir92]

. Exceptions
— for recovering from exceptional conditions
. Interrupts and down-calls

— for communication between the ProcessBase |language and the
implementation level

The ProcessBase |language consists of a core part and an extensible platform-dependent part.
The core part of the language must be provided by all implementations whereas the platform-
dependent part may be implemented in different ways depending on the host platform. At
present 1/0O, threads, semaphores, persistence, and string and arithmetic functions are
considered as platform-dependent. A separate manual, the ProcessBase Standard Library
Reference Manual, describes the platform-dependent part of the language. The library
mechanism may also be used to extend the language and its implementation to support a
particular application.

Three sets of rules are used to define ProcessBase. The context free syntax of the language is
captured by using extended BNF. This context free syntax is then constrained by type rules
into only allowing context sensitive constructions. The BNF and types are used in the
ProcessBase Language Reference Manual. The meaning of every legal ProcessBase language
construct is defined in terms of a set of code generation rules that describe the effect of the
construct as a sequence of instructions to an abstract machine. The code generation rules are
given in this manual.

As mentioned above, ProcessBase is the first in a family of languages. The reflective
compiler is defined in terms of ProcessBase and implemented in it. Using that the hyper-code
system will be added. The conceptual approach is that any language in the compliant
architecture will be implemented by reflecting into ProcessBase itself. Thus a process
modelling language or a language allowing polymorphic definition of code may be added as
higher layers of the compliant architecture.

This manual describes the execution engine for ProcessBase [MBG+99]. The ProcessBase
Abstract Machine (PBAM) is derived from extensive experience in constructing abstract
machines for block-retention, persistent languages such as PS-algol [PS85] and Napier88
[CBC+90]. The storage architecture is a cross between the S-algol abstract machine
[BMM80] and Napier88 PAM [BCC+88]. The heap layout and dynamic tags are from PAM
as are many of the instructions. The two stack architecture derives from S-algol.

For block retention PBAM uses an environment mechanism first described by Davie
[DM8S8]. It uses boxing of variables, in individual heap objects, so that locations may be
shared.

1.1 The PBAM Storage Architecture

The PBAM uses a heap-based storage architecture to share data, together with two
contiguous stacks per thread to facilitate execution. The heap contains data and code, and the
stacks contain the values necessary for the execution of the dynamic call chain.

The heap consists of values in a uniform object format. A garbage collector, which traces
objects starting with the pointers in the root object, is used to reclaim unused space. The
uniform object format allows the garbage collector and persistent object store to operate
without knowing the details of the PBAM.

There are two stacks per thread: one which contains the non-pointer values (main stack) and

one which contains the pointer values (pointer stack). This arrangement facilitates the
identification of root pointers for the marking phase of garbage collection.

PBAM Manual 5

A stack frame, for local storage, is placed on each stack on procedure call and removed on
procedure exit. The stacks are contiguous and reuse the frame space without recourse to the
garbage collector. However, contiguous stacks cannot be used to execute block retention
languages, such as ProcessBase, without making specia arrangement for values whose extent
exceeds their scope.

The PBAM stacks do not have a display mechanism for keeping track of the static
environment. Instead each closure has an environment object which contains all the free
variables for the procedure, local values being contained in the stacks. The closure is
calculated at the point of the procedure literal. The form closure instruction constructs the
environment from an environment template. The template indicates where the environment
values may be found (either in the enclosing environment or the current stack frame). This
may be calculated statically by the compiler and executed dynamically. Some consequences
of this addressing technique are:

e Addressing within aprocedure is either to the current stack frame or the
environment.

» Since the environment is copied, the shared loc types must be boxed and the pointers
copied in the environment.

» Since value retention is through the environments, stack frames are only required for
procedure, and not block, entry.

» A contiguous stack may be used since the static environment is not being maintained
by the stacks.

» Thereisno frame space allocation on procedure entry. A procedure closure (CV,
ENVIRONMENT) is calculated once at the point of expression. The stack isthen
used for local values. Where a procedure is called many times this should reduce the
work of the heap management system.

1.2 Concurrency

To support concurrency the abstract machine provides lightweight threads. Threads may be
created using athread creation operation, which is supplied with avoid procedure and returns
an integer identifier. The new thread executes the supplied procedure in parallel with the
invoking thread. Operations such as suspend, resume and kill can be performed on any thread
provided its thread identifier is known. A thread can be in any of the states runnable,
suspended or killed. Threads are not part of the core language and are therefore
implementation dependent; they are described in the ProcessBase Standard Library
Reference Manual.

Interaction between threads that share data is controlled by the abstract machine. All abstract
machine operations are executed as atomic operations. Thus, conflicting operations on shared
data appear to be performed one at atime in some arbitrary order.

Semaphores are provided as a primitive for user-level concurrency control. They are not part

of the core language and are therefore implementation dependent; they are described in the
ProcessBase Standard Library Reference Manual.

PBAM Manual 6

2 Abstract Machine Registers
The registers of the PBAM are:

FB main stack local frame base

PFB pointer stack local frame base

SP main stack top

PSP pointer stack top

CP code pointer

E environment pointer

ROP abstract machine root object pointer
EHSP exception handler stack pointer
IHSP interrupt handler stack pointer

2.1 Object Formats

All heap objects are laid out in a consistent manner in order that the system utilities may
operate on them irrespective of their type. Thus all heap objects have the same format, which
isasfollows (aword isa 32 bit integer):

word 0 header

word 1 total size in words of the object
word 2..n the pointer fields

word n+1..m the non pointer fields

word m+1 reserved for hash code

211 TheHeader
The header word 0 has the following interpretation:

bits 0-23 | the number of pointer fields in the object
bit 24-31 | reserved for implementation experiments

where bit O is the least significant bit of the word.

2.1.2 Hash Codes

The last word in every object is reserved for storing a hash code, to support efficient sorting
of objects. The word is initialised to O on object creation, and is filled in by the hashCode
instruction.

2.1.3 ThePointer Fields

The pointer fields within an object are each a single word in length and point to objectsin the
heap. Since the heap uses object level addressing, all pointers must address the start of an
object. Thus, a pointer may never directly address the contents of an object. Individual fields
are addressed by a pointer to an object and an index within the object.

2.2 FBand PFB

A stack frame, for local storage, is placed on each stack on procedure call and removed on
procedure exit. The FB register is used to point to the main stack local frame base and PFB to
the pointer stack local frame base for the currently executing procedure (the local frame).

PBAM Manual 7

Both are updated on procedure call and return. Local datais accessed by indexing from either
FB or PFB.

2.3 SP and PSP

The SP register points to the top of the main stack and the PSP register points to the top of
the pointer stack. In fact, the SP and PSP registers point to the word following the last word
on the appropriate stack. The values of SP and PSP are never stored in the heap.

24 CP

The next abstract machine instruction to be executed is directly addressed by the CP register.
The CP register is similar to the SP and PSP registers in that it is never stored in the
persistent heap. Its contents are always recalculated whenever the object containing the
abstract machine code is changed (by call or return) or moved (by garbage collection).

25 E

The E register points to the environment object for the current procedure. The environment
object contains al the free values necessary for the execution of the procedure. The E register
is updated on procedure call and return.

26 ROP

A garbage collection of the persistent heap retains all objects that are reachable, by following
object addresses (pointers), from the root object. The PBAM must arrange for all active data
objects, including its own housekeeping information, to be reachable from the root object.
This is achieved by making the root object of the persistent heap point to a special object
created for the abstract machine. The specia object, known as the root object for the abstract
machine, is pointed to by the ROP register. The object contains all the housekeeping
information required by the abstract machine, including the current state of any active
programs (stacks), and a pointer field that is used as the root of persistence for user data.

2.6.1 PBAM Root Object

word 0,1 object header and size

word 2 the view literal nil

word 3,4 the closure for the start-up procedure

word 5 the logical root of persistence

word 6,7 the closure for a procedure to check type equivalence of two anys
word 8 pointer to an object used by library-dependent instructions

word 9 the PBAM magic number

word 10 the compiler magic number

word 11 unused (reserved for hash code but never used since root object
cannot be manipulated directly by user programs)

2.7 EHSP

The EHSP register, exception handler stack pointer, points to the current exception handler
control block on the scalar stack.

PBAM Manual 8

28 IHMSP

The IHSP register, interrupt handler stack pointer, points to the current interrupt handler
control block on the scalar stack.

PBAM Manual 9

3 DataTypes

The PBAM supports a range of data types that may be classified as scalar data types and
pointer data types. The scalar data types, represented by integer words, are: integer, boolean
and real. The pointer data types, represented by the addresses of data objects (pointers), are:
loc, string, vector, view, procedure and any.

3.1 Scalar Data Types

3.1.1 Integer

Integers are represented by a single 32 bit word using two's complement, i.e. the range of
integer values is -2147483648 to +2147483647. The bits within an integer word are
numbered from O to 31 with bit O being the least significant and bit 31 the most significant.

The following operations, described in Section 4, are permitted on an integer:

. equals, not equals, less than, less than or equals, greater than, greater than
or equals,

. negate, plus, minus, multiply, quotient on division, remainder on division.

Any arithmetic operation on integers whose result is outwith the supported range of values,
or requires division by 0, istreated as an exception.

3.1.2 Boolean
The boolean data type has two values, true and false. true is represented by the integer value
1 and false is represented by the integer value O.

The following operations, described in Section 4, are permitted on a boolean:

. eguals, not equals, not,
. and, or.

Two booleans are equal if they have the same integer value.

3.1.3 Rea

The real data type supports floating point numbers with magnitudes in the range
4.94065645841246544e-324 to 1.79769313486231470e+308. A real is represented as a pair
of integer words that make up a 64 bit floating point number conforming to the IEEE 754
standard. The integer word with the lower address is referred to as word 0, and the other
word as word 1. The address of word O is used as the address of the real. Bit 31 of word O
contains the sign bit, with the signed exponent being held in bits 20 to 30 of word 0. The
remaining 52 bits form the fraction, the higher numbered bits are more significant than the
lowered number bits and the bits of word 0 are more significant than the bits of word 1.

The following operations, described in Section 4, are permitted on areal:

. equals, not equals, less than, less than or equals, greater than, greater than
or equals,

. negate, plus, minus, multiply, divide.

Any floating point operation that causes a floating point overflow or underflow or whose
result isaNaN (not a number) is treated as an exception. All comparison operations on reals
conform to the |EEE standard.

PBAM Manual 10

3.2 Pointer Data Types
All pointer data types are represented by either one or two object addresses.

3.21 Location
The location data type is represented by a single pointer to a heap object with the following
object format:

word 0,1 object header and size
word 2..n the value
word n+1 reserved for hash code

The following operations, described in Section 4, are permitted on alocation.

. eguals, not equals,

. creation,

. dereference (access the value),
. assignment.

3.22 String

The string data type is represented by a single pointer to a heap object with the following
object format:

word 0,1 object header and size
word 2 number of charactersin the string

word 3..n the characters 1 per byte (4 per word); the last
word is padded with zeros up to a4 byte boundary

word n+1 reserved for hash code

The following operations, described in Section 4, are permitted on a string.

. equals, not equals, less than, less than or equals, greater than, greater than
or equals,

. concatenate,
. substring selection.

An attempt to select a non-existent section of a string, or a section of negative length is
treated as an exception.

Two strings are equal if they are the same length and all the corresponding charactersin each
string are equal. Two characters are equal if they have the same ASCII code. A string, A, is
less than a string, B, if all the charactersin A with a corresponding character in B are the
same as the corresponding character in B and A is shorter, or if the first character in A that
differs from the corresponding character in B is less than its corresponding character in B.

3.2.3 Vector

The vector data type is used to implement linear arrays of values with the same type. A
vector value is represented by a pointer to a heap object with the following format:

word 0,1 object header and size
word 2..n the elements

word n+1 lower bound

word n+2 upper bound

PBAM Manual 11

[wordn+3 | reserved for hash code |

The following operations, described in Section 4, are permitted on a vector:

. equals, not equals,
. creation, access the lower bound, access the upper bound,
. read an element.

An attempt to use an index outwith the vector bounds or to create a vector with an upper
bound less than the lower bound, are treated as exceptions.

Two values of type vector are equal if they are pointersto the same vector.

3.24 View

The view data type supports objects containing an arbitrary collection of data values. A view
value is represented by a pointer to a heap object with the following format:

word 0,1 object header and size
word 2..n the pointer fields
word n+1..m the non-pointer fields
word m+1 reserved for hash code

The following operations, described in Section 4, are permitted on a view:

. eguals, not equals,
. creation
. read a field.

Two values of type view are equal if they are pointers to the same view.

3.25 Procedure

Procedure is the only pointer data type that is represented by two addresses. The first is a
pointer to an object containing executable code (a code vector) and the other is a pointer to
the procedure’'s static environment object. Together the two pointers form the closure of the
procedure. A closure is formed when a procedure literal is executed. The closure is always
addressed by addressing the first pointer.

The following operations, described in Section 4, are permitted on a procedure;
. eguals, not equals,
. creation,
. apply.

Two procedure values are equal if the code vectors and the environments are the same
pointer values respectively.

3.25.1 CodeVector

A code vector contains the executable code for a procedure, any scalar or pointer literals used
by the procedure and the sizes of the stack frames required when the procedure is executing.
The format of a code vector is asfollows:

PBAM Manual 12

H Pl U
e| S . . Fl ot n
al j Pointer Code Non-pointer S| s | u
d| 2 Literals Literas | i S
e e z z e
r €l e | d
word 0,1 object header and size
word 2.m pointers to objects used by the code vector’s procedure
word m+1..n the code to be executed
word n+1..p non-pointer literals used by the code vector’ s procedure
word p+1 the size of the main frame (in words) required when the code
vector’s procedureis applied (Fsize)
word p+2 the size of the pointer frame (in words) required when the code
vector’s procedure is applied (Pfsize)
word p+3 unused (reserved for hash code but never used since hash
codes for procedures are associated with environments)

3.25.2 Environment

The environment for a procedure contains the free values necessary for the execution of the
procedure. An environment value is represented by a pointer to a heap object with the
following format:

word 0,1 object header and size
word 2..n free pointer values
word n+1.m | free scalar values
word m+1 reserved for hash code

3.25.3 Frame

The stack frames contain at their bases the mark stack control word (MSCW), which is the
housekeeping information necessary to ensure correct procedure entry and exit. The first few
elements of the frames that make up the MSCW are laid out as follows:

Main Stack

Only present for startup proce-
dure and interrupt handlers

Interrupt | Interrupt - Pointer
Result | Resume D{?ﬁlr(nlc Stack E(%lrjgs L >
Pointer | Context DL Link RA
IRP IRC PSL

-

PBAM Manual 13

Pointer Stack

Code
Vector

PFB

IRP | Theinterrupt result pointer pointsto the C struct that will
contain the interrupt handler result

IRC | Theinterrupt result context pointsto the saved C context for
jumping to when the interrupt handler returns

DL The dynamic link is the offset from FB to the main stack local
frame base of the calling procedure

PSL The pointer stack link is the offset from PFB to the pointer
stack local frame base for the corresponding stack frame on
the pointer stack

RA The return address for the frame’ s procedure (RA), the saved
offset (in bytes) from the start of the procedure’s code vector

CcVv A pointer to the code vector for the frame's procedure
E A pointer to the environment for the frame’s procedure

The respective directions in which the two stacks are laid out in memory are not defined.

3.26 Any
A value of type any is represented by a pointer to a heap object with the following format:

word 0,1 object header and size

word 2 pointer to the type of the injected value
word 3..n the injected value

word n+1 the dynamic tag

word n+2 reserved for hash code

The operations permitted on an any are as follows, described in Section 4.

. eguals, not equals,
. inject a value into an any, project a value from an any.

Two any values are equal if the injected values are equal, as determined by the dynamic tag,
and the type representations supplied by the compiler are equivalent. It should be noted that
the type checking phase of comparing two any values must be performed by the comparison
procedure held in the abstract machine's root object.

3.2.6.1 Dynamic Tagsfor Any

The dynamic tag is used to differentiate each of the data types that are supported by the
PBAM. It describes the size of the value, in integer words and pointers, and includes an
additional number to differentiate data types of the same size. The type encoding forms an 8
bit number held in bits 0-7 of the dynamic tag. It is encoded as follows (lower numbered bits
are less significant):

PBAM Manual 14

bit 0,1 [number of integer words
bit 2,5 | used to distinguish data types of the same size
bit 6,7 | number of pointers

Thisresultsin the following encoding for the dynamic tags of PBAM objects:

object bit pattern integer code
integer 00000001 1
boolean 00000101 5
red 00000010 2
string 01000100 68
vector, view, loc 01000000 64
procedure 10000000 128

PBAM Manual

4 Exceptions, Interruptsand Down-calls

Exception and interrupt handlers are accumulated and discarded dynamically as the program
executes [MBG+99] and so may be recorded on the program stack. A single procedure may
contain multiple nested handlers and conversely a sequence of nested procedure calls may
contain no handlers. Thus the threading of the handlers on the stack is not in direct mapping
to the procedure calling sequence but superimposed upon it. For this reason there are two
registers, EHSP and IHSP, which record the positions on the stack of the current exception
handler and interrupt handler respectively (dynamically). All other handlers may be found
viachains of pointers within the main stack.

When execution enters a clause with a handler defined, the new handler comes into dynamic
scope and a corresponding handler control block is created and placed on the stack(s). It is
removed again on exiting the handled clause. The details differ for exception and interrupt
handlers.

4.1 Exception Handlers

When execution enters a clause with an associated exception handler, the enterEHandled
instruction places an exception handler control block (EHCB) on the main stack. On leaving
the clause the exitEHandled instruction removes the EHCB. The EHSP register points to the
most recent EHCB, or nil if no exception handlers are in scope. Each EHCB contains the
following:

. alink to the next outer EHCB on the main stack (EHL)

. the current value of FB for the frame containing the handler (EHFB)

. the address of the exception handler code (EH@)

. the current value of PSP for the frame containing the handler (EHPSP)

An exception raised explicitly is treated as a jump to the exception handler code. The raise
may occur at a point statically outside a handle clause, either due to the current procedure
having been called within a handle clause, or due to no handlers having been declared at all.
In the first case several frames may have to be discarded, while in the latter case the default
exception handling code is called and the thread halted.

The invokeEHandler instruction executes the raise clause. If EHSP isnil, the default hard-
coded exception handling code is executed. Otherwise, the instruction uses EHSP to identify
the correct EHCB, restores the registers from the EHCB, sets EHSP to point to the next outer
EHCB, and jumps to the exception handler code. Should a new raise be executed inside the
exception handler code then a new invokeEHandler instruction will be executed with the
correct EHCB.

For implicit exceptions, such as divide-by-zero, an appropriate exception view is created in
the heap, a pointer to it is pushed onto the pointer stack, and the invokeEHandler instruction
is executed.

4.2 Interrupt Handlers

When execution enters a clause with an associated interrupt handler, the enterlHandled
instruction places an interrupt handler control block (IHCB) on the stacks. On leaving the
clause the exitiHandled instruction removes the IHCB. The IHSP register points to the most
recent IHCB, or nil if no interrupt handlers are in scope. Each IHCB contains the following:

main stack:

. alink to the next outer IHCB on the main stack (IHL)

PBAM Manual 16

. alink to the pointer elements of the IHCB on the pointer stack (IHPL)
. an integer identifying the interrupt handled by this handler (IHI)

pointer stack:

. apointer to the interrupt handler code vector (IHCV)
. apointer to the interrupt handler environment (IHE)

An interrupt may be raised to a particular ProcessBase thread by the associated PBAM
thread, or by adifferent PBAM thread. The originating PBAM thread must ensure that it isin
aglobally consistent state before raising the interrupt. The steps involved in the raise include:

. the originating PBAM thread |ocates the current corresponding interrupt
handler procedure for the ProcessBase thread, if any;

. if an interrupt handler isfound, the interrupt parametersif any are pushed
onto the stacks of the ProcessBase thread, which then executes the interrupt
handler;

. if the originating thread is not the PBAM thread that is executing the
ProcessBase thread, the originating thread blocks until the interrupt handler
returns,

. any result returned by the interrupt handler procedure is returned to the
point at which the interrupt was raised in the originating PBAM thread.

The appropriate interrupt handler is located by traversing the list of IHCBs, starting from
IHSP and comparing the interrupt identifier number in each block with the number of the
interrupt being raised. If a match is found the closure of theinterrupt handler is pushed onto
the pointer stack.

Two C data structures are then created and pointers to them are pushed onto the main stack.
The first, the interrupt result pointer (IRP) is used to store any result returned by the interrupt
handler where it may be accessed by the PBAM code following the interrupt. The second, the
interrupt resume context (IRC) records the current execution context at the point that the
interrupt is raised, so that control may be resumed there when the interrupt returns.

IRC is an instance of the array type jmp_buf, while IRP is an instance of the struct type
interrupt_result:

typedef struct {
psptr *pl; /I first pointer
psptr * p2; I/ second pointer
psint wl; /I first scalar
psint w2; /Il second scalar

} interrupt_result;

The mark stack control word is completed by pushing nil for the dynamic link and pointer
stack link, and a dummy value for the return address, onto the main stack. Any interrupt
parameters are converted to ProcessBase format and pushed on the appropriate stacks. An
apply instruction is executed. Interpretation of ProcessBase code then continues as normal
until the interrupt handler procedure returns and the nil dynamic link is encountered. Finally,
the return instruction copies the procedure result, if any, into the result structure and
transfers control back to the stored context.

PBAM Manual 17

To enable the same procedure return mechanism to work on thread completion, IRP and IRC
pointers are also pushed onto the main stack on thread initialisation. In this case IRP is set to
nil, since any result is discarded, and IRC is set to the context following the instruction
decode loop.

4.3 Down-calls

The ProcessBase down-call mechanism allows a user program to invoke a PBAM instruction
directly. This does not affect the design of the PBAM, except that the core instructions are
categorised into safe and unsafe instructions. A safe instruction is one that may be invoked
safely in any context in the PBAM code stream, subject only to the condition that its
expected stack parameters have been correctly placed on the appropriate stacks. Safety
means that the instruction has no net effect on the stacks other than to pop its stack
parameters and to push its result if any. If there is a result value, it must have a fixed
ProcessBase type.

PBAM Manual 18

5 PBAM Code

The PBAM instructions fall naturally into groups.

Typed instructions have an encoded name with the following convention:

IB integer or boolean
I integer

R real

S string

P vector, view, loc
Pr procedure

any any

Non type-dependent instructions are encoded according to the size of the objects on which
they operate and on which stack they operate, using the following convention:

w

word on main stack

dw

double word on main stack

P

word on pointer stack

dp

double word on pointer stack

The length and interpretation of instruction parametersis as follows:

byte 8 hits

an 8 bit integer, unsigned unless used with
the literal integer instruction

short 2 bytes

an unsigned 16 bit integer, the first byte most
significant

All instruction codes are one byte long.

5.1 Jump

All the jump offsets are relative to the location following the jump offset. The jump offset is

measured in bytes.

Instruction Op-Code Description [
fJump (n:short) Jump forwards n bytes. [
Instruction Op-Code Description |
bJump (n:short) Jump backwards n bytes. |
Instruction Op-Code Description
jumpF (n:short) if the top main stack element isfalse
do Jump forwards n bytes.
Pop the main stack.
Instruction Op-Code Description
jumpFF (n:short) if the top main stack element isfalse
then Jump forwards n bytes
else Pop the main stack.

PBAM Manual

19

Instruction

Op-Code

Description

jumpTT (n:short)

if the top main stack element istrue
then Jump forwards n bytes
else Pop the main stack.

Instruction

Op-Code

Description

forTest (n:short)

The for loop increment is on top of the main
stack. The for loop limit is below the
increment on the main stack and the control
constant is below the limit on the main stack.

if the increment is negative and the control
constant is less than the limit or the
increment is positive and the control constant
is greater than the limit

do Pop thetop 3 stack elements and jump
forwards n bytes

Instruction

Op-Code

Description

forStep (n:short)

The for loop increment is on top of the main
stack. Thefor loop limit is below the
increment on the main stack and the control
constant is below the limit on the main stack.
Add the for loop increment to the for loop
control constant. Jump backwards n bytes,
(to the for Test instruction).

5.2 Assignment

Assignments in ProcessBase may only be made to locations. The value to be assigned is

aways found at the top of the appropriate stack. Once the value is popped off the stack, the

address of the location to be assigned to is always on the top of the pointer stack. A different

form of the instruction is used for each different kind of assignment. The assignment

instructions are:

Instruction Op-Code Description
assign atomic [
WASsIgn 10 if theinstruction iswAssign or dwAssign
dwAssign 11 then thelocation pointer is on the top of
pAssign 12 the pointer stack.
dpAssign 13 else thelocation pointer is under the value

on the pointer stack.
if theinstruction isdwAssign or dpAssign

do Pop aword from the appropriate stack
and copy it to word 3 of the location.

Pop aword from the appropriate stack and
copy it to word 2 of the location.

]

Pop the location pointer from the pointer
stack.

A special instruction is used to initialise the elements of avector in the using clause.

PBAM Manual

20

Instruction Op-Code Description

Vassign atomic [
wVassign 14 Pop the word w1 from the appropriate stack.
dwVassign 15 if the instruction is dwVassign or dpVassign
pVassign 16 do Pop the word w2 from the appropriate
dpVassign 17 stack.

Pop the vector index from the main stack.
Pop the pointer to the vector from the pointer
stack.
Calculate the word offset n of the vector
element within the vector.
if the instruction isdwVassign or dpVassign
then Copy the value of w2 to word n of the
Vector.
Copy the value of w1l to word n+1 of
the vector.

else Copy the value of wl to word n of the
vector.
]

(Thereis no need to check the bounds of the
vector, since the index is generated by the
compiler).

5.3 Stack Load

The stack load instructions are used to push a value onto the top of a stack. The value may be
contained in the root object, local frame, a location, a vector, a view, the procedure
environment, an any or the code vector. Variations of the load instruction exist depending on:
whether the object pointer is kept in aregister or on the pointer stack; where the displacement
(in words) of the field from the base of the object is found; and the type of value being
loaded. These are outlined below:

Sour ce Object Pointer Location Displacement (d)
root object ROP Instruction
local frame FB or PFB Instruction
location Top of PS Implicit
vector Top of PS On main stack
view Top of PS Instruction
environment E Instruction
any Top of PS Implicit
code vector PS location pointed at by PFB | Instruction

A separate instruction exists for each form with different instructions used for the separate
stacks and value sizes.

The stack load instructions are as follows:

PBAM Manual 21

Instruction Op-Code Description
root (d:short) atomic [
wRoot 20 Push word d of the root object onto the
dwRoot 21 appropriate stack.
pRoot 22 if the instruction is dwRoot or dpRoot
dpRoot 23 do Pushword d+1 of the root object onto
the appropriate stack.
]
Instruction Op-Code Description
local (d:short) atomic [
wLoca 24 Push word d of the local frame onto the
dwL ocal 25 appropriate stack.
pLocal 26 if theinstruction isdwLocal or dpLocal
dpL ocal 27 do Pushword d+1 of the local frame onto
the appropriate stack.
]
Instruction Op-Code Description
deref atomic [
wDeref 28 Pop the pointer to the location from the
dwDeref 29 pointer stack.
pDeref 30 Push word 2 of the location onto the
dpDeref 31 appropriate stack.
if the instruction is dwDeref or dpDer ef
do Pushword 3 of the location onto the
appropriate stack.
]
Instruction Op-Code Description
subV ector atomic [
wSubV ector 32 Pop the vector index from the main stack.
dwSubV ector 33 Pop the pointer to the vector from the pointer
pSubV ector 34 stack.
dpSubV ector 35 Compare the index with the lower and upper

bounds of the vector.

if index is outwith the bounds

then raise vector exception

else Cadculate the word offset of the
indexed element.
Push the first word of the indexed
element onto the appropriate stack.
if the instruction is dwSubVector or
dpSubVector

do Push the second word of the
indexed element onto the
appropriate stack.

22

Instruction Op-Code Description

subView (d:short) atomic [
wSubView 36 Pop the pointer to the view from the pointer
dwSubView 37 stack.
pSubView 38 Push word d of the view onto the appropriate
dpSubView 39 stack. o _
if the instruction is dwSubView or
dpSubView

do Pushword d+1 of the view onto the
appropriate stack.
]

Instruction Op-Code Description
env (d:short) atomic [
wWEnv 40 Push word d of the environment onto the
dwEnv 41 appropriate stack.
pEnv 42 if the instruction is dwEnv or dpEnv
dpEnv 43 do Pushword d+1 of the environment

onto the appropriate stack.
]

Instruction Op-Code Description
project atomic [
wProj ect 44 Pop the pointer to the any from the pointer
dwProject 45 stack.
pProject 46 Push word 3 of the any onto the appropriate
dpProject 47 stack.

if the instruction is dwProject or dpProject

do Pushword 4 of the any onto the
appropriate stack.
]

Instruction Op-Code Description
loadAnyType 48 atomic [
Pop the pointer to the any from the pointer
stack.
Push word 2 of the any onto the pointer
stack.

]

Instruction Op-Code Description

PBAM Manual

literal (p:short
d:short)
wLitera
dwL.iteral
pLiteral
dpLiteral

50
51
52
53

atomic [

p is the displacement of the appropriate

literal areafrom the start of the code vector.

Push word d of the appropriate literal area

onto the appropriate stack.

if the instruction isdwLiteral or dpLiteral

do Pushword d+1 of the appropriate
literal area onto the appropriate stack.

]

There are two other instructions used to load the value of aliteral onto the appropriate stack.

They are:

I nstruction

Op-Code

Description

ILInt (n:byte)

54

Push the signed integer value n onto the main
stack.

The byteis an 8 bit twos complement
number.

I nstruction

Op-Code

Description

ILChar (n:byte)

55

atomic [

L ookup the vector of single character strings
in the library dependent root object.

Use n as an index into the vector.

Push the indexed string element onto the
pointer stack.

]

PBAM Manual

24

5.4 Block Exit

Instruction Op-Code Description
retract (ms:short, atomic [
ps:short) if the instruction is not retract

WRetract 60 do Pop theword w1l from the appropriate
dwRetract 61 stack.

pRetract 62 if the instruction is dwRetract or dpRetract
dpRetract 63 do Pop the word w2 from the appropriate

retract 64 stack.

Pop ms words from the main stack.

Pop ps words from the pointer stack.

if the instruction is dwRetract or dpRetract

do Pushthe value of w2 onto the
appropriate stack.

if theinstruction is not retract

do Pushthevaue of wl onto the
appropriate stack

]

5.5 Procedure Entry and Exit

The instruction sequence to call a procedure is: load the procedure, markStack, evaluate the
parameters, and apply.

Instruction Op-Code Description
markStack 70 Place the values of FB (DL) and PSP - 2
(PSL) on the main stack.

L eave space for the return address (RA) on
the main stack.

PBAM Manual 25

I nstruction

Op-Code

Description

apply (ms:short,

ps:short)

71

atomic [

The main stack parameters start at word ms
in the current frame.

The code vector for the procedure being
applied, the new code vector, isat (ps- 2) in
the current frame.

The environment pointer for the procedure
being applied, the new environment, is above
the new code vector on the pointer stack.
Check that there is sufficient stack space for
the procedure being applied; the sizes are
held in the new code vector (in words).
Increment the pointer count in the header of
the stack object by the size of the new
pointer frame.

Save the offset (in bytes) of CP from the
start of the current code vector, in the main
frame (the return address (ms - 1)).

Set E to the new environment.

Set FB to the new frame base (ms - 3).

Set PFB to the pointer frame base (ps - 2).
Set CP to the start of the abstract machine
code in the new code vector.

]

PBAM Manual

26

Instruction Op-Code Description

return atomic [
wReturn 74 Decrement the pointer count in the header of
dwReturn 75 the stack object by the size of the current
pReturn 76 pointer frame.
dpReturn 77 if the dynamic link is nil
return 78 then ThelRP at (FB-2) pointsto aC struct
containing 2 pointers followed by 2
scalars.

The IRC at (FB-1) pointstoaC
jmp_buf array containing the resume
context.

Copy the result of the procedure, if
any, from the top(s) of the appropriate
stack(s) into the appropriate words of
the C struct.

Copy the jmp_buf array into temporary
memory.

De-allocate the jmp_buf array.

Perform a longjmp to the copied
resume context.

else Copy and pop the result of the
procedure at the top of the appropriate
stack.

Copy RA from the main stack (FB+2).
Set PSP to PSL (FB+1).

Set SPto FB.

Set FB to the dynamic link of the
current frame.

Set PFB from the PSL in the resumed
frame.

Set E from ENV in the resumed frame.
Push the result of the procedure onto
the appropriate stack.

Set CP to the start of the resumed code
vector + the RA saved earlier.

5.6 Heap Object Creation

These instructions create heap objects. The objects are then initialised from the stacks and a
pointer to them left on the top of the pointer stack. Heap objects are created for locations,
strings, vectors, views, procedure environments and anys.

PBAM Manual 27

5.6.1 Location

Instruction Op-Code Description
makel.oc atomic [
wMakelL oc 80 Create a heap location of the appropriate
dwMakel oc 81 Size.
pMakeloc 82 Set the last word of the location to O.
dpMakeloc 83 if the instruction is dwMakel.oc or
dpMakelLoc
do Pop the word from the appropriate
stack and copy it to word 3 of the
location.
Pop the word from the appropriate stack and
copy it to word 2 of the location.
Push the pointer to the new object onto the
pointer stack.
]
5.6.2 String
Instruction Op-Code Description
concatenate 84 atomic [

Pop the second string from the pointer stack.
Pop the first string from the pointer stack.

if the total length of the two stringsis greater
than the longest possible string

then raise string exception

else Create anew string whose length isthe

sum of the lengths of the two strings.
Copy the characters of thefirst string
into the new string, followed by the
characters of the second string.

Set the last word of the new string to
0.

Push the new string onto the pointer
stack.

PBAM Manual

28

Instruction

Op-Code

Description

subString

85

atomic [
Pop the new length from the main stack.
Pop the starting position of the new string
from the main stack.
Pop the string from the pointer stack.
Compare the new string’ s start and length
with the length of the sub-scripted string.
if the new string is not a substring of the sub-
scripted string or has a negative length
then raise string exception
else if the new string is shorter than the
subscripted string
then Create the new string and copy
its characters from the sub-
scripted string, starting at the
start position.
Set the last word of the new
string to 0.
Push the new string onto the
pointer stack.
else Push the origina string onto the
pointer stack.

PBAM Manual

29

5.6.3 Vector

Instruction Op-Code Description
makeV ector (n:short) There are ninitialising elements for the vector
wM akeV ector 88 on the appropriate stack.
dwM akeV ector 89 Cadlculate the size of the vector in words.
pMakeV ector 90 atomic [
dpMakeV ector o1 Create a vector object of the calculated size.
fori=ntolby-1do
begin
if the instruction is dwMakeVector or
dpMakeVector

then Pop the word from the appropriate
stack and copy it to word 2i+ 1 of
the vector.
Pop the word from the appropriate
stack and copy it to word 2i of the
Vector.
else Pop the word from the appropriate
stack and copy it to word i+1 of
the vector.
end
Pop the lower bound from the main stack and
placeit in the vector.
Calculate the upper bound and placeit in the
vector.
Set the last word of the vector to O.
Push the pointer to the new object onto the
pointer stack.

]

PBAM Manual

Instruction Op-Code Description
makeEvec Pop the upper bound for the vector from the
wMakeEvec 92 main stack.
dwM akeEvec 93 Pop the lower bound for the vector from the
pMakeEvec 94 main stack. _
dpM akeEvec 95 if the lower bound is greater than the upper
bound
then raise vector exception
else Caculate the size of the vector in
words.
atomic [
Create a vector object of the
calculated size.
Initialise the elements of the vector to
0 or nil as appropriate.
Place the lower and upper boundsin
the vector.
Set the last word of the vector to 0.
Push the pointer to the new object
onto the pointer stack.
]
56.4 View
Instruction Op-Code Description
makeView (m:short, 96 atomic [
n:short) Create an object of size m+3 words with n
pointer fields.

Set the last word of the view to O.

Pop an address map vector containing m
integer elements from the pointer stack.
Each element of the address map indicates
the offset in the view object to which the
corresponding stack word should be copied.

Element 1 maps the pointer stack value
below the address map, element n maps the
bottom pointer stack value, element n+1
maps the top main stack value and element m
maps the bottom main stack value.

Pop n words from the pointer stack and m-n
words from the main stack, placing themin
the view object at the offsets indicated by the
corresponding elements of the address map.
Push the pointer to the new object onto the
pointer stack.

]

PBAM Manual

31

5.6.5 Environment

Instruction Op-Code Description
formClosure 98 atomic [
(m:short, n:short) Create an object of size m+3 words with n
pointer fields.

Set the last word of the environment to O.

Pop an address map vector containing m
integer elements from the pointer stack.
Thefirst n elements of the vector indicate
where the environment pointer values are to
be found (on the pointer stack or in the
current environment). The addresses are
offsets from PFB if positive and E if
negative.

Elements n+1 to m of the vector indicate
where the non-pointer values are to be found
(on the main stack or in the current
environment). The addresses are offsets from
FB if positive and E if negative.

Use the map to copy the values from the
stacks or the current environment, placing
them in the new environment object.

Push the pointer to the new object onto the
pointer stack.

]

5.6.6 Any
Instruction Op-Code Description
makeAny (m:short) atomic [
wMakeAny 100 Create a heap location of the appropriate
dwMakeAny 101 Size.
pMakeAny 102 if the instruction is dwMakeAny or
dpMakeAny 103 dpMakeAny

do Pop aword from the appropriate stack
and copy it into word 4 of the any.

Pop aword from the appropriate stack and
copy it into word 3 of the any.

Copy minto the second last word of the any.
Pop atype representation from the pointer
stack and copy it into word 2 of the any.

Set the last word of the any to O.

Push the pointer to the new object onto the
pointer stack.

]

PBAM Manual

32

5.7 Comparison Operations

The comparison operations act on the top two elements of the appropriate stack. They are
compared and removed. The boolean result true or false is left on the main stack.

Instruction Op-Code Description

equals atomic for egS, eqP, egPr, egAny |
eqlB 110 Pop two elements from the appropriate stack.
egrR 111 if the two elements are equal
eqsS 112 then Push the boolean value true onto the
eqP 113 main stack.
eqPr 114 else Push the boolean value false onto the

qu ny 115] main stack.

Equality of the stack elementsis defined as follows:

eqlB The elements are single words on the main stack; they must have the
same integer value.

egR The elements are pairs of words on the main stack; they must be
compared by the floating point implementation.

eqS The elements are pointers to strings on the pointer stack; they must be
the same pointer or they must have exactly the same characters.

eqgP The elements are single words on the pointer stack; they must have the
same integer value.

egPr The elements are pairs of words on the pointer stack, their first words

are the code vectors for the procedures being compared and their
second words are the corresponding environments. The code vectors
and the environments must have the same integer value.

egAny The dynamic tags of the injected values must be equal. The types of
two anys must be equal as checked by the egAny procedure in the root
object. Finally the values must be equal as defined above.

Instruction Op-Code Description
not.equals atomic for negS, negP, negPr |
neqlB 116 Pop two elements from the appropriate stack.
negR 117 if the two elements are equal
negs 118 then Push the boolean value false onto the
negP 119 main stack.
negPr 120 else Push the boolean value true onto the
main stack.
]

It should be noted that there is no negAny instruction. The comparison is implemented by
performing an egAny followed by a not instruction.

PBAM Manual 33

Instruction Op-Code Description
lessThan atomic for ItS|
[tl 122 Pop element B from the appropriate stack.
ItR 123 Pop element A from the appropriate stack.
ItS 124 if element A islessthan element B

then Push the boolean value true onto the
main stack.

else Push the boolean value false onto the
main stack.

]

Less than between two stack e ements A and B is defined as follows:

Itl: The elements A and B are single words on the main stack; element A
must have a smaller integer value than element B.
[tR: The elements A and B are pairs of words on the main stack; element A
must have a smaller floating point value than element B.
ItS: The elements A and B are pointers to strings on the pointer stack.
The characters in A’s string are compared with the characters at the
same position in B’s string until either all the characters in one string
have been compared or two characters being compared differ.
If all of astring’s characters have been compared A’s string must be
shorter than B’s string.
If two characters differ the character from A’s string must have a
smaller ASCII code than the character from B’s string.
Instruction Op-Code Description
lessThanOrEqual atomic for leS|
lel 126 Pop element B from the appropriate stack.
leR 127 Pop element A from the appropriate stack.
leS 128 if element A islessthan or equal to element
B
then Push the boolean value true onto the
main stack.
else Push the boolean value false onto the
main stack.
]
Instruction Op-Code Description
greaterThan atomic for gtS|
otl 130 Pop element B from the appropriate stack.
otR 131 Pop element A from the appropriate stack.
otS 132 if element A islessthan or equal to element
B
then Push the boolean value false onto the
main stack.
else Push the boolean value true onto the
main stack.
]

PBAM Manual

5.8

Instruction Op-Code Description
greater ThanOrEqual atomic for geS|
gel 134 Pop element B from the appropriate stack.
geR 135 Pop element A from the appropriate stack.
gesS 136 If element Aislessthan element B

then Push the boolean value false onto the
main stack.

else Push the boolean value true onto the
main stack.

]

Arithmetic and Boolean Operators

These instructions operate on the data types real and integer. The top two elements of the
stack are replaced by the result. The real (floating-point) operations are preceded with the
letter f. Note that each real number is two stack words long.

PBAM Manual

I nstruction Op-Code Description
plus 140 Pop values A and B from themain stack.
fPlus 150 Add A and B.
if an arithmetic error occurs
then raisearithmetical exception
else Push theresult onto the main stack.
I nstruction Op-Code Description
times 141 Pop values A and B from the main stack.
fTimes 151 Multiply A and B.
if an arithmetic error occurs
then raise arithmetical exception
else Push theresult onto the main stack.
I nstruction Op-Code Description
minus 142 Pop value B from the main stack.
fMinus 152 Pop value A from the main stack.
Subtract B from A.
if an arithmetic error occurs
then raise arithmetical exception
else Pushtheresult onto the main stack.
Instruction Op-Code Description
div 143 Pop integer value B from the main stack.

Pop integer value A from the main stack.
Divide A by B.

if an arithmetic error occurs

then raise arithmetical exception

else Pushthe quotient of A divided by B
onto the main stack.

35

Instruction

Op-Code

Description

fDivide

153

Pop floating point value B from the main
stack.

Pop floating point value A from the main
stack.

Divide A by B.

if an arithmetic error occurs

then raise arithmetical exception

else Push the floating point value of A
divided by B onto the main stack.

Instruction

Op-Code

Description

neg
fNeg

144
154

Pop value A from the main stack.

Negate A.

if an arithmetic error occurs

then raise arithmetical exception

else Pushthe result onto the main stack.

Instruction

Op-Code

Description

rem

145

Pop integer value B from the main stack.
Pop integer value A from the main stack.
Divide A by B.

if an arithmetic error occurs

then raisearithmetical exception

else Push theremainder of A divided by B
onto the main stack.

Instruction

Op-Code

Description

not

146

Pop boolean value A from the main stack.
if Aistrue

then Push the boolean value false onto the
main stack.
else Push the boolean value true onto the
main stack.
5.9 Exception and Interrupt Handling
Instruction Op-Code Description
enterEHandled (n:short) 160 Push the value of EHSP onto the main stack.

Push the value of FB onto the main stack.
Push n onto the main stack. n is the offset of
the handler clause from the start of the
current code vector (in bytes).

Push the value of PSP onto the main stack.
Put the value SP—4 in EHSP.

The main stack now contains the EHCB for

this clause and EHSP points to it.

PBAM Manual

36

Instruction Op-Code

Description ||

exitEHandled 161

Place the value on the main stack pointed at
by EHSP (EHL) in EHSP.

Instruction Op-Code

Description

invokeEHandler 162

atomic [

Pop a pointer to an exception view from the
pointer stack.

if EHSPisnil

then Print the exception name and
description to the standard output.

Exit the current thread.

Place the value pointed at by EHSP + 3
(EHPSP) in PSP.

Push the exception view pointer onto
the pointer stack.

Place the value pointed at by EHSP + 1
(EHFB) in FB.

Place the value pointed at by FB + 1
(PSL) in PFB.

Place the value pointed at by EHSP + 2
(EH@) in CP and add the code vector
base into CP. This can be found at PFB.
Place the environment pointer at PFB +
linE.

Set SPto EHSP.

Place the value pointed at by EHSP
(EHL) in EHSP.

ese

Instruction Op-Code

Description

enterlHandled 163

(n:short)

The closure for the interrupt handler
procedure is on the pointer stack.

Push n, the identifier for the handled
interrupt, onto the main stack.

Push the value of IHSP onto the main stack.
Push the value pointed at by IHSP + 1
(IHPL) onto the main stack.

Place the value SP—3in IHSP.

The stacks now contain the IHCB for this
clause and IHSP points to it.

Instruction Op-Code

Description |

exitiHandled 164

Place the value pointed at by IHSP (IHL) in
IHSP.

5.10 Miscellaneous

PBAM Manual

37

Instruction Op-Code Description
lwb 170 atomic [
Pop the pointer to a vector from the pointer
stack.
Push the lower bound of the vector onto the
main stack.
]
Instruction Op-Code Description
upb 171 atomic [
Pop the pointer to a vector from the pointer
stack.
Push the upper bound of the vector onto the
main stack.
]
Instruction Op-Code Description
hashCode 172 atomic [

Pop a pointer to an any from the pointer
stack.
Read the dynamic tag from the last word of
the any and cal cul ate the number of pointers
in the injected value.
if the number of pointersis0
then Push 0 onto the main stack.
else if the number of pointersis1
then Read the object at word 3 of the
any.
else Read the object at word 4 of the
any (a procedure environment).
if the last word of the object is0
do Generate a non-zero pseudo-random
integer and assign it to the last word
of the object.

Push the last word of the object onto
the main stack.

PBAM Manual

38

6 References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R. “An
Approach to Persistent Programming”. Computer Journal 26, 4 (1983) pp 360-365.
URL: http://mwww-ppg.dcs.st-
and.ac.uk/Publications/1983.html#approach.persistence

[BCC+88] Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A. & Morrison, R. “The
Persistent Abstract Machine”. Universities of Glasgow and St Andrews Technical
Report PPRR-59-88 (1988).

[BMM80] Bailey, P.J., Maritz, P. & Morrison, R. “The S-algol Abstract Machine’. University
of St Andrews Technical Report CS/80/2 (1979).

[CBC+90] Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison, R. “The
Persistent Abstract Machine’. In Persistent Object Systems, Rosenberg, J. &
Koch, D.M. (eds), Springer-Verlag, Proc. 3rd International Workshop on Persistent
Object Systems, Newcastle, Australia, In Series: Workshops in Computing, van
Rijsbergen, C.J. (series ed) (1990) pp 353-366. URL : http://www-ppg.dcs.st-
and.ac.uk/Publications/1990.html#pam

[DM88] Davie, A.JT. & McNaly, D.J. “CASE - A Lazy Version of an SECD Machinein a
Flat Environment”. University of St Andrews Technical Report Staple/StA/88/2
(1988).

[KCC+92] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. & Morrison,
R. “Persistent Hyper-Programs’. In Persistent Object Systems, Albano, A. &
Morrison, R. (eds), Springer-Verlag, Proc. 5th International Workshop on
Persistent Object Systems (POS5), San Miniato, Italy, In Series. Workshopsin
Computing, van Rijsbergen, C.J. (series ed), ISBN 3-540-19800-8 (1992) pp 86-
106. URL.: http://www-ppg.dcs.st-
and.ac.uk/Publications/1992.html#per sistent.hyper programs

[Kir92] Kirby, G.N.C. “Persistent Programming with Strongly Typed Linguistic
Reflection”. In Proc. 25th International Conference on Systems Sciences, Hawaii,
Morrison, R. & Atkinson, M.P. (eds) (1992) pp 820-831, Technical Report
ESPRIT BRA Project 3070 FIDE FIDE/91/32. URL.: http://www-ppg.dcs.st-
and.ac.uk/Publications/1992.html#programming.reflection

[MBC+96] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.1., Dearle, A., Kirby, G.N.C.
& Munro, D.S. “Napier88 Reference Manual (Release 2.2.1)". University of St
Andrews (1996). URL : http://www-ppg.dcs.st-
and.ac.uk/Publications/1996.html#napier.ref.man.221

[MBG+99] Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C., Mayes, K.,
Munro, D.S. & Warboys, B.C. “ProcessBase Reference Manual (Version 1.0.4)".
Universities of St Andrews and Manchester (1999). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1999.html#ProcessBase.manual

[MCC+93] Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. & Stemple, D.
“Mechanisms for Controlling Evolution in Persistent Object Systems’. Journal of
Microprocessors and Microprogramming 17, 3 (1993) pp 173-181. URL.:
http: //mmww-ppg.dcs.st-and.ac. uk/Publications/1993.html#evol ution.mechanisms

[Mor79] Morrison, R. “On the Development of Algol”. Ph.D. Thesis, University of St
Andrews (1979). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1979.html#thesis.rm

[PS85] “PS-algol Abstract Machine Manual”. Universities of Glasgow and St Andrews
Technical Report PPRR-11-85 (1985).

[PS88] “PS-algol Reference Manual, 4th edition”. Universities of Glasgow and St
Andrews Technical Report PPRR-12-88 (1988).

PBAM Manual 39

[Str67] Strachey, C. “Fundamental Conceptsin Programming Languages’. Oxford
University Press, Oxford (1967).

[Ten77] Tennent, R.D. “Language Design Methods Based on Semantic Principles’. Acta
Informatica 8 (1977) pp 97-112.

PBAM Manual 40

fJump (short)
jumpF (short)
jumpFF (short)
forTest (short)

Assignment

WASssign
pAssign

wVassign
pVassign

Stack Load and Assignment

wRoot (short)
pRoot (short)

wLocal (short)
pLocal (short)

wDeref
pDeref

wSubV ector
pSubV ector

wSubView (short)
pSubView (short)

wEnv (short)
pENv (short)

wProj ect
pProject

loadAnyType

wLiteral (short,short)
pLiteral (short,short)

ILInt (byte)

Stack Retract

wRetract (short,short)
pRetract (short,short)
retract (short,short)

PBAM Manual

20
24
26

28
30

32
34

36
38

40

46
48

50
52

60
64

Appendix I: PBAM Operation Codes
Jumps

bJump (short)

jumpTT (short)
forStep (short)

dwAssign
dpAssign

dwVassign
dpVassign

dwRoot (short)
dpRoot (short)

dwLocal (short)
dpLocal (short)

dwDeref
dpDeref

dwSubV ector
dpSubV ector

dwSubView (short)
dpSubView (short)

dwEnv (short)
dpEnv (short)

dwProject
dpProject

dwL.iteral (short,short)
dpLiteral (short,short)

ILChar (byte)

dwRetract (short,short)
dpRetract (short,short)

21
23

25
29
31

33
35

37
39

41

45

51
53

55

61

41

Procedure Entry and Exit

mark Stack
apply (short,short)

wReturn

pReturn
return

L ocations

wMakel.oc
pMakel oc

Strings
concatenate
Vectors

wMakeV ector (short)
pMakeV ector (short)

wMakeEvec
pMakeEvec

Views

makeView (short, short)
Procedures

formClosure (short, short)
Anys

wMakeAny (short)
pMakeAny (short)

Comparison Operations

eqiB
eqS
egPr
neqlB
negqS
neqPr

[tl
ItS

lel
leS

gtl

PBAM Manual

80
82

84

88
90

92
94

96

98

100
102

110
112
114

116
118
120

122
124

126
128

130

dwReturn
dpReturn

dwMakel oc
dpMakel oc

subString

dwMakeV ector (short)
dpMakeV ector (short)

dwMakeEvec
dpMakeEvec

dwMakeAny (short)
dpMakeAny (short)

egR
egP
egAny

negR
neqP
ItR

leR

gtR

75
77

81
83

85

89
91

93
95

101
103

111
113
115

117

119

123

127

131

42

otS

gel
geS

Arithmetic and Boolean Operators

plus
minus

neg
not

fPlus
fMinus

fNeg

Exceptionsand Interrupts
enterEHandled (short)

invokeEHandler

enterlHandled (short)

M iscellaneous

Iwb
hashCode

Standard Libraries (see ProcessBase Standard Library Manual)

M aths
sin
exp

sgrt
truncate

abs
String

code
length

/O
readOp (short)

openOp
closeOp

Threads
threadOp (short)

PBAM Manual

132
134
136

140
142
144
146
150

152
154

160
162

163

170
172

200
202

206
208

210
212

214

216
218

221

geR

times
div
rem

fTimes
fDivide
exitEHandled

exitiHandled

upb

cos
In

atan
float
rabs

decode

writeOp (short)
createOp

135

141
145

151
153

161

164

171

201
203
205
207
209

211

215
217

43

Semaphores
semaphoreOp (short) 222

Interrupts

interruptOp (short) 223

PBAM Manual

Appendix I1: Code File For mat

PBAM Code files consist entirely of valid PBAM objects except for the file header. This
contains the following pieces of information necessary to bootstrap a PBAM system.

1. PBAM magic number

2. Size of thefile (bytes)

3. Number of objectsin thefile
4. Address of the root object

5. Compiler magic number

The size of thefileisrelative to the end of the header information.

The header information is followed by PBAM objects, each of which is prefixed by a single
word containing 0. Thisword is used during execution by the heap manager.

All addressesin code files are byte offsets from the end of the header information.

The PBAM magic number in hexadecimal is 0XFC510000, the least significant 16 bits of
which are the PBAM version number.

The code file uses big endian addressing and 32 bit words.
The compiler magic number is the same as in the root object. It is used to compare the
versions of PBAM code in the stable store and in the code file. The two sets of PBAM code

must have the same compiler magic number in order for the code file to be loaded
successfully.

PBAM Manual 45

Appendix I'11: Code Generation Rules

The code generation rules define the code generated for every legal ProcessBase program. In

the code generation rules, ProcessBase syntactic constructs are written in italics and the code
generated for a construct by using the brackets []. Abstract machine instructions and labels
arewritten in outline. For example, the rule for the or expressionis

Sour ce

PBAM Code

Elor E2

[E1] jumpTT(L)
E

[E2]
L:

Thus an or expression generates the code for the expression E1, a PBAM jumpTT(L) to

label L instruction, followed by the code for the expression E2. The value of the label L is
indicated by its position in the code stream but appears as avalue in the jumpTT instruction.

Generated Code

The abstract machine code is generated in segments with one segment for every procedure

literal and one for the main program. The order of the generated segments is top to bottom

with the innermost procedure segments first. The main program segment is generated | ast.

Session:

Sour ce

PBAM Code

seguence

[declaration] [sequence
or
[clause] [sequence]

Type declarations:

Sour ce PBAM Code |
type_decl no code generated |
Object declarations:
Source PBAM Code
let identifier — clause [clause]
reclet identifier; - literal; & Cliteral]

identifier,, — literal,

literal,]

PBAM Manual

46

Clauses:

Sour ce PBAM Code
if clause; do clause, [clause;] jumpFE(L)
[clause,]
L:
Sour ce PBAM Code
if clause; [clause;] JumplE(L)
then clause, [clause,] fIJump(M)
else clauses L: [clause,]
M:
Sour ce PBAM Code

while clause, do clause, |L: [clause;] jumpF(M)
[clause,] bJump(L)
M :

Source PBAM Code

for identifier — clause; to [clause,] [clause,] [clause;]
clause, by clause; do clausey |1 - forTest(M)

[clause,] forStep(L)

M :
Source PBAM Code
project clause as identifier [clause]
onto type id; : clause; for each type id; do:
type_id, : clause, markStack
dpRoof(offset of type equivalence
type_id, : clause, proc in root object)
default : clause,, pLocal I 'any type location
loadAnyType ! type representation
pLiterél I type_id,
apply
jumpF(L;)
project I particular project instruction
dictated by type id,
[clausg]
fJump(M)
Li:
[clause,

M :

PBAM Manual

Source

PBAM Code

handle exception identifier
using clause, in clause,

enterEHandled(L)

[clause,]
exitEHandled
retract I particular retract instruction
dictated by type of clause,

fIJump(M)
L: [clause,]
M :

Sour ce PBAM Code |

raise clause [clause]

invokeEHandl er

Source PBAM Code

handle interrupt [proc_literal]
interrupt_identifier USNg | e andied() 1 int identifier for interrupt
proc_literal in clause

[clause]
exitlHandled
retract I particular retract instruction

dictated by type of clause

Source

PBAM Code

downcall opcode_identifier
[int_literalq, int_literal,, ...,
int_literal]

(clausey, clause,, ..., clause,)

for each clausg; do:

[clausg]

opcode (int_literal,, int_literal,, ..., int_literal,)

I particular instruction defined by opcode_identifier

Sour ce PBAM Code
name := clause [name]
[clause]
assign I particular assign instruction
dictated by type of clause
Source PBAM Code
identifier local (local vaue)
env (freeidentifier)

I particular instructions dictated by type of
identifier

PBAM Manual

48

Expressions:

Source PBAM Code
E,or E, [Eq] jumpTT(L)
[E)
L:
Source PBAM Code
E,and E, [Eq] jumpFE(L)
[EJ
L:
Sour ce PBAM Code [
~E [E] not |
Sour ce PBAM Code |
E,rel_opE, [Eq) [E5] [rel_op] |
Sour ce PBAM Code |
E,add opE, [E,] [E,] [add_op] |
Sour ce PBAM Code |
E, mult_op E, |Eql [Eo] [mult_op] |
Source PBAM Code
+E [E]
-E [E] neg or
[E] fNeg
Sour ce PBAM Code
literal
int_literal wLiteral or [LInt
real_literal dwlLiteral
bool_literal ILInt(O or 1)
string_literal pLiteral (literal) or
pRoot(offset of library dependent root
object in root object)
pSubView(offset of nilstringin library
dependent root object) (nilstring) or
_ _ | Cher(character ASCII code) (single character)
vi evv_l!teral pRooft(offset of nil pointer in root object)
proc_literal dpLiteral formClosure

PBAM Manual

49

Source PBAM Code
fun (...) - type clause [[clause] return ! particular return instruction
dictated by type of clause
Source PBAM Code
vector @clauseof [clause;, | [clause] [clause;] [clause,], ..., [clause,]
clausey, ... clausey] makeVector(n) ! particular makeVector instruction
dictated by type of clause,
Source PBAM Code
vector clause; to clause, |[clause;] [clause,| [clause;]
using clause makeEvec ! particular makeEvec instruction
dictated by return type of procedure
wl ocel I'init control constant with clause;
wlLocel I'limit clause,
ILInt(2) I increment
L: forTest(M)
dpl ocel I procedure clause;
wlLocal I control constant
apply
pL ocel I new vector
wlLocal I control constant
Vassign I particular Vassign instruction
dictated by return type of procedure
forStep(L)
M: pRetract I remove origina
I procedure and bounds
Sour ce PBAM Code
(clause) [clause]
Source PBAM Code
begin sequence end [sequence]
{ sequence} retract | particular retract instruction
dictated by type of sequence
Sour ce PBAM Code
clause;(clause, | clause;) | [clause,] [clause,] [clauses]
subsString

PBAM Manual

50

Source PBAM Code
clause(clausey, clause,, ..., |! procedure call
clause,) [clause]
markStack
for each clause, do: [clause]
apply
Source PBAM Code
clause(clause,, clause,, ..., |! vector dereference
clause,) [clause]
fori - 1ton-1do:
[clausg]
pSubV ector
[clause,]
subVector I particular subVector instruction
dictated by type of clause
Source PBAM Code
view (identifier; — clause;, |!view creation
identifier, — clause,, ...,| for each clause; do:
identifier,, — clause,) [clause]

construct address map

ILInt(lower bound of address map)

for each element of the address map do:
ILInt(address map element)

wM akeV ector(n)
makeView
Sour ce PBAM Code
clause.identifier [clause]
subView I particular subView instruction

dictated by type of field

Source PBAM Code
‘clause [clause]
deref I particular der ef instruction
dictated by type of clause
Source PBAM Code
loc (clause) [clause]
makel.oc I particular makel oc instruction

dictated by type of clause

PBAM Manual

51

Source PBAM Code

any (clause) [clause]
makeAny I particular makeAny instruction
dictated by type of clause

Sour ce PBAM Code |
upb (clause) [clause] upb |

Sour ce PBAM Code [
lwb (clause) [clause] lwhb |

PBAM Manual

52

| ndex

any, 14 | jump, 19
arithmetic instruction, 35 object creation, 27

assignment instruction, 20)
procedure entry and exit, 25

atomicity, 6
block exit instruction, 25 stack load, 21
boolean, 10 vector bound, 38
code vector, 12 integer, 10
comparison instruction, 33 interrupt, 16
CP, 8 interrupt handling instruction, 37
Cv, 14 interrupt result context, 14
DL, 14 interrupt result pointer, 14
down-call, 18 invokeEHandler, 16
dynamic link, 14 IRC, 14
dynamic tag, 14 IRP, 14
E, 8, 14 jump instruction, 19
EHA, 16 location, 11
EHFB, 16 main stack, 13
EHL, 16 object creation instruction, 27
EHPSP, 16 object format, 7
EHSP, 8 object header, 7
enterEHandled, 16 PBAM, 5
environment, 6, 13 registers, 7
exception, 16 PFB, 7
exception handling instruction, 36 pointer, 11
FB,7 pointer stack link, 14
frame. See stack frame procedure, 12
hash code, 7 procedure entry and exit instruction, 25
hash code instruction, 38 ProcessBase, 4
IHCV, 17 core part, 5
IHE, 17 :
IHI. 17 Standard Library Reference Manual, 5, 6
IHML, 16, 17 system dependent part, 5
IHSP, 9 PSL, 14
IHPL, 17 PSP, 8
instruction RA, 14
arithmetic, 35 red, 10
) registers, 7
assignment, 20
. CP, 8
block exit, 25
. E, 8
comparison, 33
_ _ EHSP, 8
exception handling, 36
FB, 7
hash code, 38
IHSP, 9

interrupt handling, 37

PBAM Manual 53

PFB, 7

PSP, 8

ROP, 8

SP, 8
return address, 14
root object, 8
ROP, 8
scalar, 10
SP, 8

PBAM Manual

stack frame, 6, 13

stack load instruction, 21
stacks, 5

string, 11

threads, 6

vector, 11

vector bound instruction, 38
view, 12

