
ProcessBase Abstract Machine Manual

Version 2.0.6

August 1999

Ron Morrison†

Dharini Balasubramaniam†

Mark Greenwood¥

Graham Kirby†

Ken Mayes¥

Dave Munro*

Brian Warboys¥

†School of Mathematical and Computational Sciences,
University of St Andrews

¥Department of Computer Science,
University of Manchester

*Department of Computer Science,
University of Adelaide



Contents

1 Introduction........................................................................................... 4
1.1 The PBAM Storage Architecture .................................................................... 5
1.2 Concurrency ............................................................................................... 6

2 Abstract Machine Registers................................................................. 7
2.1 Object Formats............................................................................................ 7

2.1.1 The Header .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Hash Codes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 The Pointer Fields.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 FB and PFB................................................................................................ 7
2.3 SP and PSP................................................................................................. 8
2.4 CP ............................................................................................................ 8
2.5 E .............................................................................................................. 8
2.6 ROP.......................................................................................................... 8

2.6.1 PBAM Root Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 EHSP ........................................................................................................ 8
2.8 IHMSP ...................................................................................................... 9

3 Data Types........................................................................................... 10
3.1 Scalar Data Types.......................................................................................10

3.1.1 Integer.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Boolean .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Real.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Pointer Data Types......................................................................................11
3.2.1 Location .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 String.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Vector .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 View... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.5 Procedure.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.6 Any... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Exceptions, Interrupts and Down-calls............................................. 16
4.1 Exception Handlers .....................................................................................16
4.2 Interrupt Handlers.......................................................................................16
4.3 Down-calls ................................................................................................18

5 PBAM Code......................................................................................... 19
5.1 Jump ........................................................................................................19
5.2 Assignment ...............................................................................................20
5.3 Stack Load ................................................................................................21
5.4 Block Exit .................................................................................................25
5.5 Procedure Entry and Exit..............................................................................25
5.6 Heap Object Creation ..................................................................................27

5.6.1 Location .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6.2 String.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6.3 Vector .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6.4 View... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.5 Environment .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6.6 Any... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.7 Comparison Operations................................................................................33
5.8 Arithmetic and Boolean Operators .................................................................35
5.9 Exception and Interrupt Handling ..................................................................36
5.10 Miscellaneous ............................................................................................37

6 References............................................................................................ 39

Appendix I: PBAM Operation Codes................................................................ 41

Appendix II: Code File Format.......................................................................... 45



Appendix III: Code Generation Rules............................................................... 46

Index ..................................................................................................................... 53



PBAM Manual 4

1 Introduction
ProcessBase is the simplest of a family of languages and support systems designed for
process modelling. It consists of the language and its persistent environment. The persistent
store is populated and, indeed, the system uses objects within the persistent store to support
itself. The implication of orthogonal persistence is that the user need never write code to
move or convert data for long or short term storage [ABC+83]. The model of persistence in
ProcessBase is that of reachability from a root object. The persistent store is stable, that is, it
is transformed atomically from one consistent state to the next. Execution against the
persistent store is always restarted from the last stable state.

The ProcessBase language is in the algol tradition as were its predecessors S-algol [Mor79],
PS-algol [PS88] and Napier88 [MBC+96]. Following the work of Strachey [Str67] and
Tennent [Ten77] the languages obey the principles of correspondence, abstraction and type
completeness. This makes for languages with few defining rules allowing no exceptions. It is
the belief of the designers that such an approach to language design yields more powerful
and less complex languages.

The ProcessBase type system philosophy is that types are sets of values from the value space.
The type system is mostly statically checkable, a property we wish to retain wherever
possible. However, dynamic projection out of unions for type any, allows the dynamic
binding required for orthogonal persistence [ABC+83] and system evolution [MCC+93].

The type system contains the base types integer, real, boolean and string. Higher-order
procedures allow code to exist in the value space. Aggregates may be formed using the
vector and view types. Both of these allow information hiding without encapsulation. Finally
there is an explicit constructor to provide locations.

The type equivalence rule in ProcessBase is by structure and both aliasing and recursive
types are allowed in the type algebra.

ProcessBase programs are executed in a strict left to right, top to bottom manner except
where the flow of control is altered by one of the language clauses.

The ProcessBase persistent programming system was originally planned as part of the
Compliant Systems Architecture Project. It is supported by the EPSRC under grant
GR/L32699 at the University of St Andrews and GR/L34433 at the University of
Manchester.

The ProcessBase programming system provides the following facilities:

• Orthogonal persistence
– models of data independent of longevity

• Type completeness
– no restrictions on constructing types

• Higher-order procedures
– procedures are data objects

• Information hiding without encapsulation
– views of data that hide detail

• A strongly typed stable store
– a populated environment of typed data objects that may be 

updated atomically

• Hyper-code
– one representation of a value throughout its lifetime [KCC+92]



PBAM Manual 5

• Linguistic reflection
– to allow reflective programming [Kir92]

• Exceptions
– for recovering from exceptional conditions

• Interrupts and down-calls
– for communication between the ProcessBase language and the 

implementation level

The ProcessBase language consists of a core part and an extensible platform-dependent part.
The core part of the language must be provided by all implementations whereas the platform-
dependent part may be implemented in different ways depending on the host platform. At
present I/O, threads, semaphores, persistence, and string and arithmetic functions are
considered as platform-dependent. A separate manual, the ProcessBase Standard Library
Reference Manual, describes the platform-dependent part of the language. The library
mechanism may also be used to extend the language and its implementation to support a
particular application.

Three sets of rules are used to define ProcessBase. The context free syntax of the language is
captured by using extended BNF. This context free syntax is then constrained by type rules
into only allowing context sensitive constructions. The BNF and types are used in the
ProcessBase Language Reference Manual. The meaning of every legal ProcessBase language
construct is defined in terms of a set of code generation rules that describe the effect of the
construct as a sequence of instructions to an abstract machine. The code generation rules are
given in this manual.

As mentioned above, ProcessBase is the first in a family of languages. The reflective
compiler is defined in terms of ProcessBase and implemented in it. Using that the hyper-code
system will be added. The conceptual approach is that any language in the compliant
architecture will be implemented by reflecting into ProcessBase itself. Thus a process
modelling language or a language allowing polymorphic definition of code may be added as
higher layers of the compliant architecture.

This manual describes the execution engine for ProcessBase [MBG+99]. The ProcessBase
Abstract Machine (PBAM) is derived from extensive experience in constructing abstract
machines for block-retention, persistent languages such as PS-algol [PS85] and Napier88
[CBC+90]. The storage architecture is a cross between the S-algol abstract machine
[BMM80] and Napier88 PAM [BCC+88]. The heap layout and dynamic tags are from PAM
as are many of the instructions. The two stack architecture derives from S-algol.

For block retention PBAM uses an environment mechanism first described by Davie
[DM88]. It uses boxing of variables, in individual heap objects, so that locations may be
shared.

1.1 The PBAM Storage Architecture
The PBAM uses a heap-based storage architecture to share data, together with two
contiguous stacks per thread to facilitate execution. The heap contains data and code, and the
stacks contain the values necessary for the execution of the dynamic call chain.

The heap consists of values in a uniform object format. A garbage collector, which traces
objects starting with the pointers in the root object, is used to reclaim unused space. The
uniform object format allows the garbage collector and persistent object store to operate
without knowing the details of the PBAM.

There are two stacks per thread: one which contains the non-pointer values (main stack) and
one which contains the pointer values (pointer stack). This arrangement facilitates the
identification of root pointers for the marking phase of garbage collection.



PBAM Manual 6

A stack frame, for local storage, is placed on each stack on procedure call and removed on
procedure exit. The stacks are contiguous and reuse the frame space without recourse to the
garbage collector. However, contiguous stacks cannot be used to execute block retention
languages, such as ProcessBase, without making special arrangement for values whose extent
exceeds their scope.

The PBAM stacks do not have a display mechanism for keeping track of the static
environment. Instead each closure has an environment object which contains all the free
variables for the procedure, local values being contained in the stacks. The closure is
calculated at the point of the procedure literal. The form closure instruction constructs the
environment from an environment template. The template indicates where the environment
values may be found (either in the enclosing environment or the current stack frame). This
may be calculated statically by the compiler and executed dynamically. Some consequences
of this addressing technique are:

• Addressing within a procedure is either to the current stack frame or the
environment.

• Since the environment is copied, the shared loc types must be boxed and the pointers
copied in the environment.

• Since value retention is through the environments, stack frames are only required for
procedure, and not block, entry.

• A contiguous stack may be used since the static environment is not being maintained
by the stacks.

• There is no frame space allocation on procedure entry. A procedure closure (CV,
ENVIRONMENT) is calculated once at the point of expression. The stack is then
used for local values. Where a procedure is called many times this should reduce the
work of the heap management system.

1.2 Concurrency
To support concurrency the abstract machine provides lightweight threads. Threads may be
created using a thread creation operation, which is supplied with a void procedure and returns
an integer identifier. The new thread executes the supplied procedure in parallel with the
invoking thread. Operations such as suspend, resume and kill can be performed on any thread
provided its thread identifier is known. A thread can be in any of the states runnable,
suspended or killed. Threads are not part of the core language and are therefore
implementation dependent; they are described in the ProcessBase Standard Library
Reference Manual.

Interaction between threads that share data is controlled by the abstract machine. All abstract
machine operations are executed as atomic operations. Thus, conflicting operations on shared
data appear to be performed one at a time in some arbitrary order.

Semaphores are provided as a primitive for user-level concurrency control. They are not part
of the core language and are therefore implementation dependent; they are described in the
ProcessBase Standard Library Reference Manual.



PBAM Manual 7

2 Abstract Machine Registers
The registers of the PBAM are:

FB main stack local frame base
PFB pointer stack local frame base
SP main stack top
PSP pointer stack top
CP code pointer
E environment pointer
ROP abstract machine root object pointer
EHSP exception handler stack pointer
IHSP interrupt handler stack pointer

2.1 Object Formats
All heap objects are laid out in a consistent manner in order that the system utilities may
operate on them irrespective of their type. Thus all heap objects have the same format, which
is as follows (a word is a 32 bit integer):

word 0 header
word 1 total size in words of the object
word 2..n the pointer fields
word n+1..m the non pointer fields
word m+1 reserved for hash code

2.1.1 The Header

The header word 0 has the following interpretation:

bits 0-23 the number of pointer fields in the object
bit 24-31 reserved for implementation experiments

where bit 0 is the least significant bit of the word.

2.1.2 Hash Codes

The last word in every object is reserved for storing a hash code, to support efficient sorting
of objects. The word is initialised to 0 on object creation, and is filled in by the hashCode
instruction.

2.1.3 The Pointer Fields

The pointer fields within an object are each a single word in length and point to objects in the
heap. Since the heap uses object level addressing, all pointers must address the start of an
object. Thus, a pointer may never directly address the contents of an object. Individual fields
are addressed by a pointer to an object and an index within the object.

2.2 FB and PFB
A stack frame, for local storage, is placed on each stack on procedure call and removed on
procedure exit. The FB register is used to point to the main stack local frame base and PFB to
the pointer stack local frame base for the currently executing procedure (the local frame).



PBAM Manual 8

Both are updated on procedure call and return. Local data is accessed by indexing from either
FB or PFB.

2.3 SP and PSP
The SP register points to the top of the main stack and the PSP register points to the top of
the pointer stack. In fact, the SP and PSP registers point to the word following the last word
on the appropriate stack. The values of SP and PSP are never stored in the heap.

2.4 CP
The next abstract machine instruction to be executed is directly addressed by the CP register.
The CP register is similar to the SP and PSP registers in that it is never stored in the
persistent heap. Its contents are always recalculated whenever the object containing the
abstract machine code is changed (by call or return) or moved (by garbage collection).

2.5 E
The E register points to the environment object for the current procedure. The environment
object contains all the free values necessary for the execution of the procedure. The E register
is updated on procedure call and return.

2.6 ROP
A garbage collection of the persistent heap retains all objects that are reachable, by following
object addresses (pointers), from the root object. The PBAM must arrange for all active data
objects, including its own housekeeping information, to be reachable from the root object.
This is achieved by making the root object of the persistent heap point to a special object
created for the abstract machine. The special object, known as the root object for the abstract
machine, is pointed to by the ROP register. The object contains all the housekeeping
information required by the abstract machine, including the current state of any active
programs (stacks), and a pointer field that is used as the root of persistence for user data.

2.6.1 PBAM Root Object

word 0,1 object header and size
word 2 the view literal nil
word 3,4 the closure for the start-up procedure
word 5 the logical root of persistence
word 6,7 the closure for a procedure to check type equivalence of two anys
word 8 pointer to an object used by library-dependent instructions
word 9 the PBAM magic number
word 10 the compiler magic number
word 11 unused (reserved for hash code but never used since root object

cannot be manipulated directly by user programs)

2.7 EHSP
The EHSP register, exception handler stack pointer, points to the current exception handler
control block on the scalar stack.



PBAM Manual 9

2.8 IHMSP
The IHSP register, interrupt handler stack pointer, points to the current interrupt handler
control block on the scalar stack.



PBAM Manual 10

3 Data Types
The PBAM supports a range of data types that may be classified as scalar data types and
pointer data types. The scalar data types, represented by integer words, are: integer, boolean
and real. The pointer data types, represented by the addresses of data objects (pointers), are:
loc, string, vector, view, procedure and any.

3.1 Scalar Data Types

3.1.1 Integer

Integers are represented by a single 32 bit word using two's complement, i.e. the range of
integer values is -2147483648 to +2147483647. The bits within an integer word are
numbered from 0 to 31 with bit 0 being the least significant and bit 31 the most significant.

The following operations, described in Section 4, are permitted on an integer:

• equals, not equals, less than, less than or equals, greater than, greater than
or equals,

• negate, plus, minus, multiply, quotient on division, remainder on division.

Any arithmetic operation on integers whose result is outwith the supported range of values,
or requires division by 0, is treated as an exception.

3.1.2 Boolean

The boolean data type has two values, true and false. true is represented by the integer value
1 and false is represented by the integer value 0.

The following operations, described in Section 4, are permitted on a boolean:

• equals, not equals, not,

• and, or.

Two booleans are equal if they have the same integer value.

3.1.3 Real

The real data type supports floating point numbers with magnitudes in the range
4.94065645841246544e-324 to 1.79769313486231470e+308. A real is represented as a pair
of integer words that make up a 64 bit floating point number conforming to the IEEE 754
standard. The integer word with the lower address is referred to as word 0, and the other
word as word 1. The address of word 0 is used as the address of the real. Bit 31 of word 0
contains the sign bit, with the signed exponent being held in bits 20 to 30 of word 0. The
remaining 52 bits form the fraction, the higher numbered bits are more significant than the
lowered number bits and the bits of word 0 are more significant than the bits of word 1.

The following operations, described in Section 4, are permitted on a real:

• equals, not equals, less than, less than or equals, greater than, greater than
or equals,

• negate, plus, minus, multiply, divide.

Any floating point operation that causes a floating point overflow or underflow or whose
result is a NaN (not a number) is treated as an exception. All comparison operations on reals
conform to the IEEE standard.



PBAM Manual 11

3.2 Pointer Data Types
All pointer data types are represented by either one or two object addresses.

3.2.1 Location

The location data type is represented by a single pointer to a heap object with the following
object format:

word 0,1 object header and size
word 2..n the value
word n+1 reserved for hash code

The following operations, described in Section 4, are permitted on a location.

• equals, not equals,

• creation,

• dereference (access the value),

• assignment.

3.2.2 String

The string data type is represented by a single pointer to a heap object with the following
object format:

word 0,1 object header and size
word 2 number of characters in the string
word 3..n the characters 1 per byte (4 per word); the last

word is padded with zeros up to a 4 byte boundary
word n+1 reserved for hash code

The following operations, described in Section 4, are permitted on a string.

• equals, not equals, less than, less than or equals, greater than, greater than
or equals,

• concatenate,

• substring selection.

An attempt to select a non-existent section of a string, or a section of negative length is
treated as an exception.

Two strings are equal if they are the same length and all the corresponding characters in each
string are equal. Two characters are equal if they have the same ASCII code. A string, A, is
less than a string, B, if all the characters in A with a corresponding character in B are the
same as the corresponding character in B and A is shorter, or if the first character in A that
differs from the corresponding character in B is less than its corresponding character in B.

3.2.3 Vector

The vector data type is used to implement linear arrays of values with the same type. A
vector value is represented by a pointer to a heap object with the following format:

word 0,1 object header and size
word 2..n the elements
word n+1 lower bound
word n+2 upper bound



PBAM Manual 12

word n+3 reserved for hash code

The following operations, described in Section 4, are permitted on a vector:

• equals, not equals,

• creation, access the lower bound, access the upper bound,

• read an element.

An attempt to use an index outwith the vector bounds or to create a vector with an upper
bound less than the lower bound, are treated as exceptions.

Two values of type vector are equal if they are pointers to the same vector.

3.2.4 View

The view data type supports objects containing an arbitrary collection of data values. A view
value is represented by a pointer to a heap object with the following format:

word 0,1 object header and size
word 2..n the pointer fields
word n+1..m the non-pointer fields
word m+1 reserved for hash code

The following operations, described in Section 4, are permitted on a view:

• equals, not equals,

• creation

• read a field.

Two values of type view are equal if they are pointers to the same view.

3.2.5 Procedure

Procedure is the only pointer data type that is represented by two addresses. The first is a
pointer to an object containing executable code (a code vector) and the other is a pointer to
the procedure’s static environment object. Together the two pointers form the closure of the
procedure. A closure is formed when a procedure literal is executed. The closure is always
addressed by addressing the first pointer.

The following operations, described in Section 4, are permitted on a procedure:

• equals, not equals,

• creation,

• apply.

Two procedure values are equal if the code vectors and the environments are the same
pointer values respectively.

3.2.5.1 Code Vector

A code vector contains the executable code for a procedure, any scalar or pointer literals used
by the procedure and the sizes of the stack frames required when the procedure is executing.
The format of a code vector is as follows:



PBAM Manual 13

Pointer
Literals

Code Non-pointer
Literals

S
i
z
e

H
e
a
d
e
r

U
n
u
s
e
d

F
s
i
z
e

P
f
s
i
z
e

word 0,1 object header and size
word 2..m pointers to objects used by the code vector’s procedure
word m+1..n the code to be executed
word n+1..p non-pointer literals used by the code vector’s procedure
word p+1 the size of the main frame (in words) required when the code

vector’s procedure is applied (Fsize)
word p+2 the size of the pointer frame (in words) required when the code

vector’s procedure is applied (Pfsize)
word p+3 unused (reserved for hash code but never used since hash

codes for procedures are associated with environments)

3.2.5.2 Environment

The environment for a procedure contains the free values necessary for the execution of the
procedure. An environment value is represented by a pointer to a heap object with the
following format:

word 0,1 object header and size
word 2..n free pointer values
word n+1..m free scalar values
word m+1 reserved for hash code

3.2.5.3 Frame

The stack frames contain at their bases the mark stack control word (MSCW), which is the
housekeeping information necessary to ensure correct procedure entry and exit. The first few
elements of the frames that make up the MSCW are laid out as follows:

Main Stack

Dynamic
Link
DL

Pointer
Stack
Link
PSL

Return
Address

RA

Interrupt
Result
Pointer

IRP

Interrupt
Resume
Context

IRC

FB

Only present for startup proce-
dure and interrupt handlers



PBAM Manual 14

Pointer Stack

PFB

@
Code
Vector

CV

@
Env
E

IRP The interrupt result pointer points to the C struct that will
contain the interrupt handler result

IRC The interrupt result context points to the saved C context for
jumping to when the interrupt handler returns

DL The dynamic link is the offset from FB to the main stack local
frame base of the calling procedure

PSL The pointer stack link is the offset from PFB to the pointer
stack local frame base for the corresponding stack frame on
the pointer stack

RA The return address for the frame’s procedure (RA), the saved
offset (in bytes) from the start of the procedure’s code vector

CV A pointer to the code vector for the frame’s procedure
E A pointer to the environment for the frame’s procedure

The respective directions in which the two stacks are laid out in memory are not defined.

3.2.6 Any

A value of type any is represented by a pointer to a heap object with the following format:

word 0,1 object header and size
word 2 pointer to the type of the injected value
word 3..n the injected value
word n+1 the dynamic tag
word n+2 reserved for hash code

The operations permitted on an any are as follows, described in Section 4.

• equals, not equals,

• inject a value into an any, project a value from an any.

Two any values are equal if the injected values are equal, as determined by the dynamic tag,
and the type representations supplied by the compiler are equivalent. It should be noted that
the type checking phase of comparing two any values must be performed by the comparison
procedure held in the abstract machine's root object.

3.2.6.1 Dynamic Tags for Any

The dynamic tag is used to differentiate each of the data types that are supported by the
PBAM. It describes the size of the value, in integer words and pointers, and includes an
additional number to differentiate data types of the same size. The type encoding forms an 8
bit number held in bits 0-7 of the dynamic tag. It is encoded as follows (lower numbered bits
are less significant):



PBAM Manual 15

bit 0,1 number of integer words
bit 2,5 used to distinguish data types of the same size
bit 6,7 number of pointers

This results in the following encoding for the dynamic tags of PBAM objects:

object bit pattern integer code
integer 00000001 1
boolean 00000101 5

real 00000010 2
string 01000100 68

vector, view, loc 01000000 64
procedure 10000000 128



PBAM Manual 16

4 Exceptions, Interrupts and Down-calls
Exception and interrupt handlers are accumulated and discarded dynamically as the program
executes [MBG+99] and so may be recorded on the program stack. A single procedure may
contain multiple nested handlers and conversely a sequence of nested procedure calls may
contain no handlers. Thus the threading of the handlers on the stack is not in direct mapping
to the procedure calling sequence but superimposed upon it. For this reason there are two
registers, EHSP and IHSP, which record the positions on the stack of the current exception
handler and interrupt handler respectively (dynamically). All other handlers may be found
via chains of pointers within the main stack.

When execution enters a clause with a handler defined, the new handler comes into dynamic
scope and a corresponding handler control block is created and placed on the stack(s). It is
removed again on exiting the handled clause. The details differ for exception and interrupt
handlers.

4.1 Exception Handlers
When execution enters a clause with an associated exception handler, the enterEHandled
instruction places an exception handler control block (EHCB) on the main stack. On leaving
the clause the exitEHandled instruction removes the EHCB. The EHSP register points to the
most recent EHCB, or nil if no exception handlers are in scope. Each EHCB contains the
following:

• a link to the next outer EHCB on the main stack (EHL)

• the current value of FB for the frame containing the handler (EHFB)

• the address of the exception handler code (EH@)

• the current value of PSP for the frame containing the handler (EHPSP)

An exception raised explicitly is treated as a jump to the exception handler code. The raise
may occur at a point statically outside a handle clause, either due to the current procedure
having been called within a handle clause, or due to no handlers having been declared at all.
In the first case several frames may have to be discarded, while in the latter case the default
exception handling code is called and the thread halted.

The invokeEHandler instruction executes the raise clause. If EHSP is nil, the default hard-
coded exception handling code is executed. Otherwise, the instruction uses EHSP to identify
the correct EHCB, restores the registers from the EHCB, sets EHSP to point to the next outer
EHCB, and jumps to the exception handler code. Should a new raise be executed inside the
exception handler code then a new invokeEHandler instruction will be executed with the
correct EHCB.

For implicit exceptions, such as divide-by-zero, an appropriate exception view is created in
the heap, a pointer to it is pushed onto the pointer stack, and the invokeEHandler instruction
is executed.

4.2 Interrupt Handlers
When execution enters a clause with an associated interrupt handler, the enterIHandled
instruction places an interrupt handler control block (IHCB) on the stacks. On leaving the
clause the exitIHandled instruction removes the IHCB. The IHSP register points to the most
recent IHCB, or nil if no interrupt handlers are in scope. Each IHCB contains the following:

main stack:

• a link to the next outer IHCB on the main stack (IHL)



PBAM Manual 17

• a link to the pointer elements of the IHCB on the pointer stack (IHPL)

• an integer identifying the interrupt handled by this handler (IHI)

pointer stack:

• a pointer to the interrupt handler code vector (IHCV)

• a pointer to the interrupt handler environment (IHE)

An interrupt may be raised to a particular ProcessBase thread by the associated PBAM
thread, or by a different PBAM thread. The originating PBAM thread must ensure that it is in
a globally consistent state before raising the interrupt. The steps involved in the raise include:

• the originating PBAM thread locates the current corresponding interrupt
handler procedure for the ProcessBase thread, if any;

• if an interrupt handler is found, the interrupt parameters if any are pushed
onto the stacks of the ProcessBase thread, which then executes the interrupt
handler;

• if the originating thread is not the PBAM thread that is executing the
ProcessBase thread, the originating thread blocks until the interrupt handler
returns;

• any result returned by the interrupt handler procedure is returned to the
point at which the interrupt was raised in the originating PBAM thread.

The appropriate interrupt handler is located by traversing the list of IHCBs, starting from
IHSP and comparing the interrupt identifier number in each block with the number of the
interrupt being raised. If a match is found the closure of the interrupt handler is pushed onto
the pointer stack.

Two C data structures are then created and pointers to them are pushed onto the main stack.
The first, the interrupt result pointer (IRP) is used to store any result returned by the interrupt
handler where it may be accessed by the PBAM code following the interrupt. The second, the
interrupt resume context (IRC) records the current execution context at the point that the
interrupt is raised, so that control may be resumed there when the interrupt returns.

IRC is an instance of the array type jmp_buf, while IRP is an instance of the struct type
interrupt_result:

typedef struct {

psptr *p1; // first pointer
psptr *p2; // second pointer
psint w1; // first scalar
psint w2; // second scalar

} interrupt_result;

The mark stack control word is completed by pushing nil for the dynamic link and pointer
stack link, and a dummy value for the return address, onto the main stack. Any interrupt
parameters are converted to ProcessBase format and pushed on the appropriate stacks. An
apply instruction is executed. Interpretation of ProcessBase code then continues as normal
until the interrupt handler procedure returns and the nil dynamic link is encountered. Finally,
the return instruction copies the procedure result, if any, into the result structure and
transfers control back to the stored context.



PBAM Manual 18

To enable the same procedure return mechanism to work on thread completion, IRP and IRC
pointers are also pushed onto the main stack on thread initialisation. In this case IRP is set to
nil, since any result is discarded, and IRC is set to the context following the instruction
decode loop.

4.3 Down-calls
The ProcessBase down-call mechanism allows a user program to invoke a PBAM instruction
directly. This does not affect the design of the PBAM, except that the core instructions are
categorised into safe and unsafe instructions. A safe instruction is one that may be invoked
safely in any context in the PBAM code stream, subject only to the condition that its
expected stack parameters have been correctly placed on the appropriate stacks. Safety
means that the instruction has no net effect on the stacks other than to pop its stack
parameters and to push its result if any. If there is a result value, it must have a fixed
ProcessBase type.



PBAM Manual 19

5 PBAM Code
The PBAM instructions fall naturally into groups.

Typed instructions have an encoded name with the following convention:

IB integer or boolean
I integer
R real
S string
P vector, view, loc
Pr procedure
any any

Non type-dependent instructions are encoded according to the size of the objects on which
they operate and on which stack they operate, using the following convention:

w word on main stack
dw double word on main stack
p word on pointer stack
dp double word on pointer stack

The length and interpretation of instruction parameters is as follows:

byte 8 bits an 8 bit integer, unsigned unless used with
the literal integer instruction

short 2 bytes an unsigned 16 bit integer, the first byte most
significant

All instruction codes are one byte long.

5.1 Jump
All the jump offsets are relative to the location following the jump offset. The jump offset is
measured in bytes.

Instruction Op-Code Description
fJump (n:short) 0 Jump forwards n bytes.

Instruction Op-Code Description
bJump (n:short) 1 Jump backwards n bytes.

Instruction Op-Code Description
jumpF (n:short) 2 if the top main stack element is false

do Jump forwards n bytes.
Pop the main stack.

Instruction Op-Code Description
jumpFF (n:short) 4 if the top main stack element is false

then Jump forwards n bytes
else Pop the main stack.



PBAM Manual 20

Instruction Op-Code Description
jumpTT (n:short) 5 if the top main stack element is true

then Jump forwards n bytes
else Pop the main stack.

Instruction Op-Code Description
forTest (n:short) 6 The for loop increment is on top of the main

stack. The for loop limit is below the
increment on the main stack and the control
constant is below the limit on the main stack.
if the increment is negative and the control
constant is less than the limit or the
increment is positive and the control constant
is greater than the limit
do Pop the top 3 stack elements and jump

forwards n bytes

Instruction Op-Code Description
forStep (n:short) 7 The for loop increment is on top of the main

stack. The for loop limit is below the
increment on the main stack and the control
constant is below the limit on the main stack.
Add the for loop increment to the for loop
control constant. Jump backwards n bytes,
(to the forTest instruction).

5.2 Assignment
Assignments in ProcessBase may only be made to locations. The value to be assigned is
always found at the top of the appropriate stack. Once the value is popped off the stack, the
address of the location to be assigned to is always on the top of the pointer stack. A different
form of the instruction is used for each different kind of assignment. The assignment
instructions are:

Instruction Op-Code Description
assign

wAssign
dwAssign
pAssign
dpAssign

10
11
12
13

atomic [
if the instruction is wAssign or dwAssign
then the location pointer is on the top of

the pointer stack.
else the location pointer is under the value

on the pointer stack.
if the instruction is dwAssign or dpAssign
do Pop a word from the appropriate stack

and copy it to word 3 of the location.
Pop a word from the appropriate stack and
copy it to word 2 of the location.
]
Pop the location pointer from the pointer
stack.

A special instruction is used to initialise the elements of a vector in the using clause.



PBAM Manual 21

Instruction Op-Code Description
Vassign

wVassign
dwVassign
pVassign
dpVassign

14
15
16
17

atomic [
Pop the word w1 from the appropriate stack.
if the instruction is dwVassign or dpVassign
do Pop the word w2 from the appropriate

stack.
Pop the vector index from the main stack.
Pop the pointer to the vector from the pointer
stack.
Calculate the word offset n of the vector
element within the vector.
if the instruction is dwVassign or dpVassign
then Copy the value of w2 to word n of the

vector.
Copy the value of w1 to word n+1 of
the vector.

else Copy the value of w1 to word n of the
vector.

]
(There is no need to check the bounds of the
vector, since the index is generated by the
compiler).

5.3 Stack Load
The stack load instructions are used to push a value onto the top of a stack. The value may be
contained in the root object, local frame, a location, a vector, a view, the procedure
environment, an any or the code vector. Variations of the load instruction exist depending on:
whether the object pointer is kept in a register or on the pointer stack; where the displacement
(in words) of the field from the base of the object is found; and the type of value being
loaded. These are outlined below:

Source Object Pointer Location Displacement (d)
root object
local frame

location
vector
view

environment
any

code vector

ROP
FB or PFB
Top of PS
Top of PS
Top of PS

E
Top of PS

PS location pointed at by PFB

Instruction
Instruction
Implicit
On main stack
Instruction
Instruction
Implicit
Instruction

A separate instruction exists for each form with different instructions used for the separate
stacks and value sizes.

The stack load instructions are as follows:



PBAM Manual 22

Instruction Op-Code Description
root (d:short)

wRoot
dwRoot
pRoot
dpRoot

20
21
22
23

atomic [
Push word d of the root object onto the
appropriate stack.
if the instruction is dwRoot or dpRoot
do Push word d+1 of the root object onto

the appropriate stack.
]

Instruction Op-Code Description
local (d:short)

wLocal
dwLocal
pLocal
dpLocal

24
25
26
27

atomic [
Push word d of the local frame onto the
appropriate stack.
if the instruction is dwLocal or dpLocal
do Push word d+1 of the local frame onto

the appropriate stack.
]

Instruction Op-Code Description
deref

wDeref
dwDeref
pDeref
dpDeref

28
29
30
31

atomic [
Pop the pointer to the location from the
pointer stack.
Push word 2 of the location onto the
appropriate stack.
if the instruction is dwDeref or dpDeref
do Push word 3 of the location onto the

appropriate stack.
]

Instruction Op-Code Description
subVector

wSubVector
dwSubVector
pSubVector
dpSubVector

32
33
34
35

atomic [
Pop the vector index from the main stack.
Pop the pointer to the vector from the pointer
stack.
Compare the index with the lower and upper
bounds of the vector.
if index is outwith the bounds
then raise vector exception
else Calculate the word offset of the

indexed element.
Push the first word of the indexed
element onto the appropriate stack.
if the instruction is dwSubVector or
dpSubVector
do Push the second word of the

indexed element onto the
appropriate stack.

]



PBAM Manual 23

Instruction Op-Code Description
subView (d:short)

wSubView
dwSubView
pSubView
dpSubView

36
37
38
39

atomic [
Pop the pointer to the view from the pointer
stack.
Push word d of the view onto the appropriate
stack.
if the instruction is dwSubView or

dpSubView
do Push word d+1 of the view onto the

appropriate stack.
]

Instruction Op-Code Description
env (d:short)

wEnv
dwEnv
pEnv
dpEnv

40
41
42
43

atomic [
Push word d of the environment onto the
appropriate stack.
if the instruction is dwEnv or dpEnv
do Push word d+1 of the environment

onto the appropriate stack.
]

Instruction Op-Code Description
project

wProject
dwProject
pProject
dpProject

44
45
46
47

atomic [
Pop the pointer to the any from the pointer
stack.
Push word 3 of the any onto the appropriate
stack.
if the instruction is dwProject or dpProject
do Push word 4 of the any onto the

appropriate stack.
]

Instruction Op-Code Description
loadAnyType 48 atomic [

Pop the pointer to the any from the pointer
stack.
Push word 2 of the any onto the pointer
stack.
]

Instruction Op-Code Description



PBAM Manual 24

literal ( p:short
d:short)

wLiteral
dwLiteral
pLiteral
dpLiteral

50
51
52
53

atomic [
p is the displacement of the appropriate
literal area from the start of the code vector.
Push word d of the appropriate literal area
onto the appropriate stack.
if the instruction is dwLiteral or dpLiteral
do Push word d+1 of the appropriate

literal area onto the appropriate stack.
]

There are two other instructions used to load the value of a literal onto the appropriate stack.
They are:

Instruction Op-Code Description
lLInt (n:byte) 54 Push the signed integer value n onto the main

stack.
The byte is an 8 bit twos complement
number.

Instruction Op-Code Description
lLChar (n:byte) 55 atomic [

Lookup the vector of single character strings
in the library dependent root object.
Use n as an index into the vector.
Push the indexed string element onto the
pointer stack.
]



PBAM Manual 25

5.4 Block Exit

Instruction Op-Code Description
retract ( ms:short,

ps:short)
wRetract
dwRetract
pRetract
dpRetract

retract

60
61
62
63
64

atomic [
if the instruction is not retract
do Pop the word w1 from the appropriate

stack.
if the instruction is dwRetract or dpRetract
do Pop the word w2 from the appropriate

stack.
Pop ms words from the main stack.
Pop ps words from the pointer stack.
if the instruction is dwRetract or dpRetract
do Push the value of w2 onto the

appropriate stack.
if the instruction is not retract
do Push the value of w1 onto the

appropriate stack
]

5.5 Procedure Entry and Exit
The instruction sequence to call a procedure is: load the procedure, markStack, evaluate the
parameters, and apply.

Instruction Op-Code Description
markStack 70 Place the values of FB (DL) and PSP - 2

(PSL) on the main stack.
Leave space for the return address (RA) on
the main stack.



PBAM Manual 26

Instruction Op-Code Description
apply ( ms:short,

ps:short)
71 atomic [

The main stack parameters start at word ms
in the current frame.
The code vector for the procedure being
applied, the new code vector, is at (ps - 2) in
the current frame.
The environment pointer for the procedure
being applied, the new environment, is above
the new code vector on the pointer stack.
Check that there is sufficient stack space for
the procedure being applied; the sizes are
held in the new code vector (in words).
Increment the pointer count in the header of
the stack object by the size of the new
pointer frame.
Save the offset (in bytes) of CP from the
start of the current code vector, in the main
frame (the return address (ms - 1)).
Set E to the new environment.
Set FB to the new frame base (ms - 3).
Set PFB to the pointer frame base (ps - 2).
Set CP to the start of the abstract machine
code in the new code vector.
]



PBAM Manual 27

Instruction Op-Code Description
return

wReturn
dwReturn
pReturn
dpReturn

return

74
75
76
77
78

atomic [
Decrement the pointer count in the header of
the stack object by the size of the current
pointer frame.
if the dynamic link is nil
then The IRP at (FB-2) points to a C struct

containing 2 pointers followed by 2
scalars.
The IRC at (FB-1) points to a C
jmp_buf array containing the resume
context.
Copy the result of the procedure, if
any, from the top(s) of the appropriate
stack(s) into the appropriate words of
the C struct.
Copy the jmp_buf array into temporary
memory.
De-allocate the jmp_buf array.
Perform a longjmp to the copied
resume context.

else Copy and pop the result of the
procedure at the top of the appropriate
stack.
Copy RA from the main stack (FB+2).
Set PSP to PSL (FB+1).
Set SP to FB.
Set FB to the dynamic link of the
current frame.
Set PFB from the PSL in the resumed
frame.
Set E from ENV in the resumed frame.
Push the result of the procedure onto
the appropriate stack.
Set CP to the start of the resumed code
vector + the RA saved earlier.

]

5.6 Heap Object Creation
These instructions create heap objects. The objects are then initialised from the stacks and a
pointer to them left on the top of the pointer stack. Heap objects are created for locations,
strings, vectors, views, procedure environments and anys.



PBAM Manual 28

5.6.1 Location

Instruction Op-Code Description
makeLoc

wMakeLoc
dwMakeLoc
pMakeLoc
dpMakeLoc

80
81
82
83

atomic [
Create a heap location of the appropriate
size.
Set the last word of the location to 0.
if the instruction is dwMakeLoc or
dpMakeLoc
do Pop the word from the appropriate

stack and copy it to word 3 of the
location.

Pop the word from the appropriate stack and
copy it to word 2 of the location.
Push the pointer to the new object onto the
pointer stack.
]

5.6.2 String

Instruction Op-Code Description
concatenate 84 atomic [

Pop the second string from the pointer stack.
Pop the first string from the pointer stack.
if the total length of the two strings is greater
than the longest possible string
then raise string exception
else Create a new string whose length is the

sum of the lengths of the two strings.
Copy the characters of the first string
into the new string, followed by the
characters of the second string.
Set the last word of the new string to
0.
Push the new string onto the pointer
stack.

]



PBAM Manual 29

Instruction Op-Code Description
subString 85 atomic [

Pop the new length from the main stack.
Pop the starting position of the new string
from the main stack.
Pop the string from the pointer stack.
Compare the new string’s start and length
with the length of the sub-scripted string.
if the new string is not a substring of the sub-
scripted string or has a negative length
then raise string exception
else if the new string is shorter than the

subscripted string
then Create the new string and copy

its characters from the sub-
scripted string, starting at the
start position.
Set the last word of the new
string to 0.
Push the new string onto the
pointer stack.

else Push the original string onto the
pointer stack.

]



PBAM Manual 30

5.6.3 Vector

Instruction Op-Code Description
makeVector (n:short)

wMakeVector
dwMakeVector
pMakeVector

dpMakeVector

88
89
90
91

There are n initialising elements for the vector
on the appropriate stack.
Calculate the size of the vector in words.
atomic [
Create a vector object of the calculated size.
for i = n to 1 by -1 do
begin

if the instruction is dwMakeVector or
dpMakeVector
then Pop the word from the appropriate

stack and copy it to word 2i+1 of
the vector.
Pop the word from the appropriate
stack and copy it to word 2i of the
vector.

else Pop the word from the appropriate
stack and copy it to word i+1 of
the vector.

end
Pop the lower bound from the main stack and
place it in the vector.
Calculate the upper bound and place it in the
vector.
Set the last word of the vector to 0.
Push the pointer to the new object onto the
pointer stack.
]



PBAM Manual 31

Instruction Op-Code Description
makeEvec

wMakeEvec
dwMakeEvec
pMakeEvec
dpMakeEvec

92
93
94
95

Pop the upper bound for the vector from the
main stack.
Pop the lower bound for the vector from the
main stack.
if the lower bound is greater than the upper
bound
then raise vector exception
else Calculate the size of the vector in

words.
atomic [
Create a vector object of the
calculated size.
Initialise the elements of the vector to
0 or nil as appropriate.
Place the lower and upper bounds in
the vector.
Set the last word of the vector to 0.
Push the pointer to the new object
onto the pointer stack.
]

5.6.4 View

Instruction Op-Code Description
makeView (m:short,

n:short )
96 atomic [

Create an object of size m+3 words with n
pointer fields.
Set the last word of the view to 0.
Pop an address map vector containing m
integer elements from the pointer stack.
Each element of the address map indicates
the offset in the view object to which the
corresponding stack word should be copied.
Element 1 maps the pointer stack value
below the address map, element n maps the
bottom pointer stack value, element n+1
maps the top main stack value and element m
maps the bottom main stack value.
Pop n words from the pointer stack and m-n
words from the main stack, placing them in
the view object at the offsets indicated by the
corresponding elements of the address map.
Push the pointer to the new object onto the
pointer stack.
]



PBAM Manual 32

5.6.5 Environment

Instruction Op-Code Description
formClosure
(m:short, n:short)

98 atomic [
Create an object of size m+3 words with n
pointer fields.
Set the last word of the environment to 0.
Pop an address map vector containing m
integer elements from the pointer stack.
The first n elements of the vector indicate
where the environment pointer values are to
be found (on the pointer stack or in the
current environment). The addresses are
offsets from PFB if positive and E if
negative.
Elements n+1 to m of the vector indicate
where the non-pointer values are to be found
(on the main stack or in the current
environment). The addresses are offsets from
FB if positive and E if negative.
Use the map to copy the values from the
stacks or the current environment, placing
them in the new environment object.
Push the pointer to the new object onto the
pointer stack.
]

5.6.6 Any

Instruction Op-Code Description
makeAny (m:short)

wMakeAny
dwMakeAny
pMakeAny
dpMakeAny

100
101
102
103

atomic [
Create a heap location of the appropriate
size.
if the instruction is dwMakeAny or
dpMakeAny
do Pop a word from the appropriate stack

and copy it into word 4 of the any.
Pop a word from the appropriate stack and
copy it into word 3 of the any.
Copy m into the second last word of the any.
Pop a type representation from the pointer
stack and copy it into word 2 of the any.
Set the last word of the any to 0.
Push the pointer to the new object onto the
pointer stack.
]



PBAM Manual 33

5.7 Comparison Operations
The comparison operations act on the top two elements of the appropriate stack. They are
compared and removed. The boolean result true or false is left on the main stack.

Instruction Op-Code Description
equals
eqIB
eqR
eqS
eqP
eqPr

eqAny

110
111
112
113
114
115

atomic for eqS, eqP, eqPr, eqAny [
Pop two elements from the appropriate stack.
if the two elements are equal
then Push the boolean value true onto the

main stack.
else Push the boolean value false onto the

main stack.
]

Equality of the stack elements is defined as follows:

eqIB The elements are single words on the main stack; they must have the
same integer value.

eqR The elements are pairs of words on the main stack; they must be
compared by the floating point implementation.

eqS The elements are pointers to strings on the pointer stack; they must be
the same pointer or they must have exactly the same characters.

eqP The elements are single words on the pointer stack; they must have the
same integer value.

eqPr The elements are pairs of words on the pointer stack, their first words
are the code vectors for the procedures being compared and their
second words are the corresponding environments. The code vectors
and the environments must have the same integer value.

eqAny The dynamic tags of the injected values must be equal. The types of
two anys must be equal as checked by the eqAny procedure in the root
object. Finally the values must be equal as defined above.

Instruction Op-Code Description
not.equals

neqIB
neqR
neqS
neqP
neqPr

116
117
118
119
120

atomic for neqS, neqP, neqPr [
Pop two elements from the appropriate stack.
if the two elements are equal
then Push the boolean value false onto the

main stack.
else Push the boolean value true onto the

main stack.
]

It should be noted that there is no neqAny instruction. The comparison is implemented by
performing an eqAny followed by a not instruction.



PBAM Manual 34

Instruction Op-Code Description
lessThan

ltI
ltR
ltS

122
123
124

atomic for ltS [
Pop element B from the appropriate stack.
Pop element A from the appropriate stack.
if element A is less than element B
then Push the boolean value true onto the

main stack.
else Push the boolean value false onto the

main stack.
]

Less than between two stack elements A and B is defined as follows:

ltI: The elements A and B are single words on the main stack; element A
must have a smaller integer value than element B.

ltR: The elements A and B are pairs of words on the main stack; element A
must have a smaller floating point value than element B.

ltS: The elements A and B are pointers to strings on the pointer stack.
The characters in A’s string are compared with the characters at the
same position in B’s string until either all the characters in one string
have been compared or two characters being compared differ.
If all of a string’s characters have been compared A’s string must be
shorter than B’s string.
If two characters differ the character from A’s string must have a
smaller ASCII code than the character from B’s string.

Instruction Op-Code Description
lessThanOrEqual

leI
leR
leS

126
127
128

atomic for leS [
Pop element B from the appropriate stack.
Pop element A from the appropriate stack.
if element A is less than or equal to element
B
then Push the boolean value true onto the

main stack.
else Push the boolean value false onto the

main stack.
]

Instruction Op-Code Description
greaterThan

gtI
gtR
gtS

130
131
132

atomic for gtS [
Pop element B from the appropriate stack.
Pop element A from the appropriate stack.
if element A is less than or equal to element
B
then Push the boolean value false onto the

main stack.
else Push the boolean value true onto the

main stack.
]



PBAM Manual 35

Instruction Op-Code Description
greaterThanOrEqual

geI
geR
geS

134
135
136

atomic for geS [
Pop element B from the appropriate stack.
Pop element A from the appropriate stack.
if element A is less than element B
then Push the boolean value false onto the

main stack.
else Push the boolean value true onto the

main stack.
]

5.8 Arithmetic and Boolean Operators
These instructions operate on the data types real and integer. The top two elements of the
stack are replaced by the result. The real (floating-point) operations are preceded with the
letter f. Note that each real number is two stack words long.

Instruction Op-Code Description
plus
fPlus

140
150

Pop values A and B from the main stack.
Add A and B.
if an arithmetic error occurs
then raise arithmetical exception
else Push the result onto the main stack.

Instruction Op-Code Description
times

fTimes
141
151

Pop values A and B from the main stack.
Multiply A and B.
if an arithmetic error occurs
then raise arithmetical exception
else Push the result onto the main stack.

Instruction Op-Code Description
minus
fMinus

142
152

Pop value B from the main stack.
Pop value A from the main stack.
Subtract B from A.
if an arithmetic error occurs
then raise arithmetical exception
else Push the result onto the main stack.

Instruction Op-Code Description
div 143 Pop integer value B from the main stack.

Pop integer value A from the main stack.
Divide A by B.
if an arithmetic error occurs
then raise arithmetical exception
else Push the quotient of A divided by B

onto the main stack.



PBAM Manual 36

Instruction Op-Code Description
fDivide 153 Pop floating point value B from the main

stack.
Pop floating point value A from the main
stack.
Divide A by B.
if an arithmetic error occurs
then raise arithmetical exception
else Push the floating point value of A

divided by B onto the main stack.

Instruction Op-Code Description
neg
fNeg

144
154

Pop value A from the main stack.
Negate A.
if an arithmetic error occurs
then raise arithmetical exception
else Push the result onto the main stack.

Instruction Op-Code Description
rem 145 Pop integer value B from the main stack.

Pop integer value A from the main stack.
Divide A by B.
if an arithmetic error occurs
then raise arithmetical exception
else Push the remainder of A divided by B

onto the main stack.

Instruction Op-Code Description
not 146 Pop boolean value A from the main stack.

if A is true
then Push the boolean value false onto the

main stack.
else Push the boolean value true onto the

main stack.

5.9 Exception and Interrupt Handling

Instruction Op-Code Description
enterEHandled (n:short) 160 Push the value of EHSP onto the main stack.

Push the value of FB onto the main stack.
Push n onto the main stack. n is the offset of
the handler clause from the start of the
current code vector (in bytes).
Push the value of PSP onto the main stack.
Put the value SP – 4 in EHSP.
The main stack now contains the EHCB for
this clause and EHSP points to it.



PBAM Manual 37

Instruction Op-Code Description
exitEHandled 161 Place the value on the main stack pointed at

by EHSP (EHL) in EHSP.

Instruction Op-Code Description
invokeEHandler 162 atomic [

Pop a pointer to an exception view from the
pointer stack.
if EHSP is nil
then Print the exception name and

description to the standard output.
Exit the current thread.

else Place the value pointed at by EHSP + 3
(EHPSP) in PSP.
Push the exception view pointer onto
the pointer stack.
Place the value pointed at by EHSP + 1
(EHFB) in FB.
Place the value pointed at by FB + 1
(PSL) in PFB.
Place the value pointed at by EHSP + 2
(EH@) in CP and add the code vector
base into CP. This can be found at PFB.
Place the environment pointer at PFB +
1 in E.
Set SP to EHSP.
Place the value pointed at by EHSP
(EHL) in EHSP.

]

Instruction Op-Code Description
enterIHandled

(n:short)
163 The closure for the interrupt handler

procedure is on the pointer stack.
Push n, the identifier for the handled
interrupt, onto the main stack.
Push the value of IHSP onto the main stack.
Push the value pointed at by IHSP + 1
(IHPL) onto the main stack.
Place the value SP – 3 in IHSP.
The stacks now contain the IHCB for this
clause and IHSP points to it.

Instruction Op-Code Description
exitIHandled 164 Place the value pointed at by IHSP (IHL) in

IHSP.

5.10 Miscellaneous



PBAM Manual 38

Instruction Op-Code Description
lwb 170 atomic [

Pop the pointer to a vector from the pointer
stack.
Push the lower bound of the vector onto the
main stack.
]

Instruction Op-Code Description
upb 171 atomic [

Pop the pointer to a vector from the pointer
stack.
Push the upper bound of the vector onto the
main stack.
]

Instruction Op-Code Description
hashCode 172 atomic [

Pop a pointer to an any from the pointer
stack.
Read the dynamic tag from the last word of
the any and calculate the number of pointers
in the injected value.
if the number of pointers is 0
then Push 0 onto the main stack.
else if the number of pointers is 1

then Read the object at word 3 of the
any.

else Read the object at word 4 of the
any (a procedure environment).

if the last word of the object is 0
do Generate a non-zero pseudo-random

integer and assign it to the last word
of the object.

Push the last word of the object onto
the main stack.

]



PBAM Manual 39

6 References
[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R. “An

Approach to Persistent Programming”. Computer Journal 26, 4 (1983) pp 360-365.
URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1983.html#approach.persistence

[BCC+88] Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A. & Morrison, R. “The
Persistent Abstract Machine”. Universities of Glasgow and St Andrews Technical
Report PPRR-59-88 (1988).

[BMM80] Bailey, P.J., Maritz, P. & Morrison, R. “The S-algol Abstract Machine”. University
of St Andrews Technical Report CS/80/2 (1979).

[CBC+90] Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison, R. “The
Persistent Abstract Machine”. In Persistent Object Systems, Rosenberg, J. &
Koch, D.M. (eds), Springer-Verlag, Proc. 3rd International Workshop on Persistent
Object Systems, Newcastle, Australia, In Series: Workshops in Computing, van
Rijsbergen, C.J. (series ed) (1990) pp 353-366. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1990.html#pam

[DM88] Davie, A.J.T. & McNally, D.J. “CASE - A Lazy Version of an SECD Machine in a
Flat Environment”. University of St Andrews Technical Report Staple/StA/88/2
(1988).

[KCC+92] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. & Morrison,
R. “Persistent Hyper-Programs”. In Persistent Object Systems, Albano, A. &
Morrison, R. (eds), Springer-Verlag, Proc. 5th International Workshop on
Persistent Object Systems (POS5), San Miniato, Italy, In Series: Workshops in
Computing, van Rijsbergen, C.J. (series ed), ISBN 3-540-19800-8 (1992) pp 86-
106. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1992.html#persistent.hyperprograms

[Kir92] Kirby, G.N.C. “Persistent Programming with Strongly Typed Linguistic
Reflection”. In Proc. 25th International Conference on Systems Sciences, Hawaii,
Morrison, R. & Atkinson, M.P. (eds) (1992) pp 820-831, Technical Report
ESPRIT BRA Project 3070 FIDE FIDE/91/32. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1992.html#programming.reflection

[MBC+96] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby, G.N.C.
& Munro, D.S. “Napier88 Reference Manual (Release 2.2.1)”. University of St
Andrews (1996). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1996.html#napier.ref.man.221

[MBG+99] Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C., Mayes, K.,
Munro, D.S. & Warboys, B.C. “ProcessBase Reference Manual (Version 1.0.4)”.
Universities of St Andrews and Manchester (1999). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1999.html#ProcessBase.manual

[MCC+93] Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. & Stemple, D.
“Mechanisms for Controlling Evolution in Persistent Object Systems”. Journal of
Microprocessors and Microprogramming 17, 3 (1993) pp 173-181. URL:
http://www-ppg.dcs.st-and.ac.uk/Publications/1993.html#evolution.mechanisms

[Mor79] Morrison, R. “On the Development of Algol”. Ph.D. Thesis, University of St
Andrews (1979). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1979.html#thesis.rm

[PS85] “PS-algol Abstract Machine Manual”. Universities of Glasgow and St Andrews
Technical Report PPRR-11-85 (1985).

[PS88] “PS-algol Reference Manual, 4th edition”. Universities of Glasgow and St
Andrews Technical Report PPRR-12-88 (1988).



PBAM Manual 40

[Str67] Strachey, C. “Fundamental Concepts in Programming Languages”. Oxford
University Press, Oxford (1967).

[Ten77] Tennent, R.D. “Language Design Methods Based on Semantic Principles”. Acta
Informatica 8 (1977) pp 97-112.



PBAM Manual 41

Appendix I: PBAM Operation Codes
Jumps

fJump (short) 0 bJump (short) 1
jumpF (short) 2
jumpFF (short) 4 jumpTT (short) 5
forTest (short) 6 forStep (short) 7

Assignment

wAssign 10 dwAssign 11
pAssign 12 dpAssign 13

wVassign 14 dwVassign 15
pVassign 16 dpVassign 17

Stack Load and Assignment

wRoot (short) 20 dwRoot (short) 21
pRoot (short) 22 dpRoot (short) 23

wLocal (short) 24 dwLocal (short) 25
pLocal (short) 26 dpLocal (short) 27

wDeref 28 dwDeref 29
pDeref 30 dpDeref 31

wSubVector 32 dwSubVector 33
pSubVector 34 dpSubVector 35

wSubView (short) 36 dwSubView (short) 37
pSubView (short) 38 dpSubView (short) 39

wEnv (short) 40 dwEnv (short) 41
pEnv (short) 42 dpEnv (short) 43

wProject 44 dwProject 45
pProject 46 dpProject 47

loadAnyType 48

wLiteral (short,short) 50 dwLiteral (short,short) 51
pLiteral (short,short) 52 dpLiteral (short,short) 53

lLInt (byte) 54 lLChar (byte) 55

Stack Retract

wRetract (short,short) 60 dwRetract (short,short) 61
pRetract (short,short) 62 dpRetract (short,short) 63
retract (short,short) 64



PBAM Manual 42

Procedure Entry and Exit

markStack 70
apply (short,short) 71

wReturn 74 dwReturn 75
pReturn 76 dpReturn 77
return 78

Locations

wMakeLoc 80 dwMakeLoc 81
pMakeLoc 82 dpMakeLoc 83

Strings

concatenate 84 subString 85

Vectors

wMakeVector (short) 88 dwMakeVector (short) 89
pMakeVector (short) 90 dpMakeVector (short) 91

wMakeEvec 92 dwMakeEvec 93
pMakeEvec 94 dpMakeEvec 95

Views

makeView (short, short) 96

Procedures

formClosure (short, short) 98

Anys

wMakeAny (short) 100 dwMakeAny (short) 101
pMakeAny (short) 102 dpMakeAny (short) 103

Comparison Operations

eqIB 110 eqR 111
eqS 112 eqP 113
eqPr 114 eqAny 115

neqIB 116 neqR 117
neqS 118 neqP 119
neqPr 120

ltI 122 ltR 123
ltS 124

leI 126 leR 127
leS 128

gtI 130 gtR 131



PBAM Manual 43

gtS 132
geI 134 geR 135
geS 136

Arithmetic and Boolean Operators

plus 140 times 141
minus 142 div 143
neg 144 rem 145

not 146

fPlus 150 fTimes 151
fMinus 152 fDivide 153
fNeg 154

Exceptions and Interrupts

enterEHandled (short) 160 exitEHandled 161
invokeEHandler 162

enterIHandled (short) 163 exitIHandled 164

Miscellaneous

lwb 170 upb 171
hashCode 172

Standard Libraries (see ProcessBase Standard Library Manual)

Maths

sin 200 cos 201
exp 202 ln 203
sqrt 204 atan 205
truncate 206 float 207
abs 208 rabs 209

String

code 210 decode 211
length 212

I/O

readOp (short) 214 writeOp (short) 215

openOp 216 createOp 217
closeOp 218

Threads

threadOp (short) 221



PBAM Manual 44

Semaphores

semaphoreOp (short) 222

Interrupts

interruptOp (short) 223



PBAM Manual 45

Appendix II: Code File Format
PBAM Code files consist entirely of valid PBAM objects except for the file header. This
contains the following pieces of information necessary to bootstrap a PBAM system.

1. PBAM magic number
2. Size of the file (bytes)
3. Number of objects in the file
4. Address of the root object
5. Compiler magic number

The size of the file is relative to the end of the header information.

The header information is followed by PBAM objects, each of which is prefixed by a single
word containing 0. This word is used during execution by the heap manager.

All addresses in code files are byte offsets from the end of the header information.

The PBAM magic number in hexadecimal is 0xFC510000, the least significant 16 bits of
which are the PBAM version number.

The code file uses big endian addressing and 32 bit words.

The compiler magic number is the same as in the root object. It is used to compare the
versions of PBAM code in the stable store and in the code file. The two sets of PBAM code
must have the same compiler magic number in order for the code file to be loaded
successfully.



PBAM Manual 46

Appendix III: Code Generation Rules
The code generation rules define the code generated for every legal ProcessBase program. In
the code generation rules, ProcessBase syntactic constructs are written in italics and the code
generated for a construct by using the brackets []. Abstract machine instructions and labels
are written in outline. For example, the rule for the or expression is

Source PBAM Code
E1 or E2 [E1] jumpTT(L)

[E2]
L :

Thus an or expression generates the code for the expression E1, a PBAM jumpTT(L) t o
label L instruction, followed by the code for the expression E2. The value of the label L is
indicated by its position in the code stream but appears as a value in the jumpTT instruction.

Generated Code

The abstract machine code is generated in segments with one segment for every procedure
literal and one for the main program. The order of the generated segments is top to bottom
with the innermost procedure segments first. The main program segment is generated last.

Session:

Source PBAM Code
sequence [declaration] [sequence]

or
[clause] [sequence]

Type declarations:

Source PBAM Code
type_decl no code generated

Object declarations:

Source PBAM Code
let identifier ← clause

rec let identifier1 ← literal1 &
identifier2 ← literal2

...
identifiern ← literaln

[clause]
[ literal1]

[ literal2]
...
[ literaln]



PBAM Manual 47

Clauses:

Source PBAM Code
if clause1 do clause2 [clause1] jumpF(L)

[clause2]

L :

Source PBAM Code
if clause1

then clause2

else clause3

[clause1] jumpF(L)

[clause2] fJump(M)

L: [clause3]

M :

Source PBAM Code
while clause1 do clause2 L: [clause1] jumpF(M)

[clause2] bJump(L)

M :

Source PBAM Code
for identifier ← clause1 to
clause2 by clause3 do clause4

[clause1] [clause2] [clause3]

L: forTest(M)
[clause4] forStep(L)

M :

Source PBAM Code
project clause as identifier
onto type_id1 : clause1

type_id2 : clause2

...
type_idn : clausen

default : clausem

[clause]
for each type_idi do:

markStack
dpRoot( offset of type equivalence

proc in root object)
pLocal ! any type location
loadAnyType ! type representation
pLiteral ! type_idi

apply
jumpF(Li)

project ! particular project instruction
dictated by type_idi

[clausei]

fJump(M)
Li:

[clausem]

M :



PBAM Manual 48

Source PBAM Code
handle exception identifier

using clause1 in clause2

enterEHandled(L)
[clause2]

exitEHandled
retract ! particular retract instruction

dictated by type of clause2

fJump(M)
L: [clause1]

M :

Source PBAM Code
raise clause [clause]

invokeEHandler

Source PBAM Code
handle interrupt

interrupt_identifier using
proc_literal in clause

[proc_literal]
enterIHandled(n) ! int identifier for interrupt
[clause]
exitIHandled
retract ! particular retract instruction

dictated by type of clause

Source PBAM Code
downcall opcode_identifier
[int_literal1, int_literal2, ...,
int_literaln]
(clause1, clause2, ..., clausen)

for each clausei do:

[clausei]

opcode ( int_literal1, int_literal2, ..., int_literaln)
! particular instruction defined by opcode_identifier

Source PBAM Code

name := clause [name]
[clause]
assign ! particular assign instruction

dictated by type of clause

Source PBAM Code
identifier local (local value)

env (free identifier)
! particular instructions dictated by type of
identifier



PBAM Manual 49

Expressions:

Source PBAM Code
E1 or E2 [E1] jumpTT(L)

[E2]

L :

Source PBAM Code
E1 and E2 [E1] jumpFF(L)

[E2]

L :

Source PBAM Code
~E [E ] not

Source PBAM Code
E1 rel_op E2 [E1] [E2] [rel_op]

Source PBAM Code
E1 add_op E2 [E1] [E2] [add_op]

Source PBAM Code
E1 mult_op E2 [E1] [E2] [mult_op]

Source PBAM Code
+E
-E

[E ]
[E ] neg or
[E ] fNeg

Source PBAM Code
literal

int_literal
real_literal
bool_literal
string_literal

view_literal
proc_literal

wLiteral or lLInt
dwLiteral
lLInt(0 or 1 )
pLiteral  (literal) or
pRoot( offset of library dependent root

object in root object)
pSubView( offset of nilstring in library

dependent root object) (nilstring) or
lLChar(character ASCII code ) (single character)
pRoot(offset of nil pointer in root object)
dpLiteral formClosure



PBAM Manual 50

Source PBAM Code
fun (…) → type; clause [clause ]  return ! particular return instruction

dictated by type of clause

Source PBAM Code
vector @clause of [clause1,

clause2, ... clausen]
[clause] [clause1] [clause2], ..., [clausen]

makeVector(n) ! particular makeVector instruction
dictated by type of clause1

Source PBAM Code
vector clause1 to clause2

using clause3

[clause1] [clause2] [clause3]

makeEvec ! particular makeEvec instruction
dictated by return type of procedure

wLocal ! init control constant with clause1

wLocal ! limit clause2

lLInt(1) ! increment
L: forTest(M)
dpLocal ! procedure clause3

wLocal ! control constant
apply
pLocal ! new vector
wLocal ! control constant
Vassign ! particular Vassign instruction

dictated by return type of procedure
forStep(L)
M: pRetract ! remove original

! procedure and bounds

Source PBAM Code
(clause) [clause]

Source PBAM Code
begin sequence end

{sequence}
[sequence]
retract ! particular retract instruction

dictated by type of sequence

Source PBAM Code
clause1(clause2 | clause3) [clause1] [clause2] [clause3]

subString



PBAM Manual 51

Source PBAM Code
clause(clause1, clause2, ...,

clausen)
! procedure call
[clause]
markStack
for each clausei do: [clausei]

apply

Source PBAM Code
clause(clause1, clause2, ...,

clausen)
! vector dereference
[clause]
for i ← 1 to n-1 do:

[clausei]

pSubVector
[clausen]

subVector ! particular subVector instruction
dictated by type of clause

Source PBAM Code
view ( identifier1 ← clause1, 

identifier2 ← clause2, ...,
identifiern ← clausen)

! view creation
for each clausei do:

[clausei]
construct address map
lLInt(lower bound of address map)
for each element of the address map do:

lLInt(address map element)
wMakeVector(n)
makeView

Source PBAM Code
clause.identifier [clause]

subView ! particular subView instruction
dictated by type of field

Source PBAM Code
'clause [clause]

deref ! particular deref instruction
dictated by type of clause

Source PBAM Code
loc (clause) [clause]

makeLoc ! particular makeLoc instruction
dictated by type of clause



PBAM Manual 52

Source PBAM Code
any (clause) [clause]

makeAny ! particular makeAny instruction
dictated by type of clause

Source PBAM Code
upb (clause) [clause] upb

Source PBAM Code
lwb (clause) [clause] lwb



PBAM Manual 53

Index
any, 14
arithmetic instruction, 35
assignment instruction, 20
atomicity, 6
block exit instruction, 25
boolean, 10
code vector, 12
comparison instruction, 33
CP, 8
CV, 14
DL, 14
down-call, 18
dynamic link, 14
dynamic tag, 14
E, 8, 14
EHA, 16
EHFB, 16
EHL, 16
EHPSP, 16
EHSP, 8
enterEHandled, 16
environment, 6, 13
exception, 16
exception handling instruction, 36
exitEHandled, 16
FB, 7
frame. See stack frame
hash code, 7
hash code instruction, 38
IHCV, 17
IHE, 17
IHI, 17
IHML, 16, 17
IHSP, 9
IHPL, 17
instruction

arithmetic, 35

assignment, 20

block exit, 25

comparison, 33

exception handling, 36

hash code, 38

interrupt handling, 37

jump, 19

object creation, 27

procedure entry and exit, 25

stack load, 21

vector bound, 38
integer, 10
interrupt, 16
interrupt handling instruction, 37
interrupt result context, 14
interrupt result pointer, 14
invokeEHandler, 16
IRC, 14
IRP, 14
jump instruction, 19
location, 11
main stack, 13
object creation instruction, 27
object format, 7
object header, 7
PBAM, 5

registers, 7
PFB, 7
pointer, 11
pointer stack, 14
pointer stack link, 14
procedure, 12
procedure entry and exit instruction, 25
ProcessBase, 4

core part, 5

Standard Library Reference Manual, 5, 6

system dependent part, 5
PSL, 14
PSP, 8
RA, 14
real, 10
registers, 7

CP, 8

E, 8

EHSP, 8

FB, 7

IHSP, 9



PBAM Manual 54

PFB, 7

PSP, 8

ROP, 8

SP, 8
return address, 14
root object, 8
ROP, 8
scalar, 10
SP, 8

stack frame, 6, 13
stack load instruction, 21
stacks, 5
string, 11
threads, 6
vector, 11
vector bound instruction, 38
view, 12


