
ProcessBase Reference Manual

Version 1.0.6

August 1999

Ron Morrison†

Dharini Balasubramaniam†

Mark Greenwood¥

Graham Kirby†

Ken Mayes¥

Dave Munro*

Brian Warboys¥

†School of Mathematical and Computational Sciences,
University of St Andrews

¥Department of Computer Science,
University of Manchester

*Department of Computer Science,
University of Adelaide

Contents

1 Introduction .. 4

2 Context Free Syntax Specification.. 6

3 Types and Type Rules .. 7

3.1 Universe of Discourse .. 7
3.2 The Type Algebra.. 8

3.2.1 Aliasing.. 8
3.2.2 Recursive Definitions.. 8

3.3 Type Equivalence.. 8
3.4 The Syntax of Types .. 9
3.5 Typing Rules .. 9
3.6 First Class Citizenship...10

4 Literals... 11

4.1 Integer Literals...11
4.2 Real Literals..11
4.3 Boolean Literals...11
4.4 String Literals..11
4.5 View Literals...12
4.6 Procedure Literals ..12

5 Expressions and Operators.. 13

5.1 Evaluation Order ..13
5.2 Parentheses ...13
5.3 Boolean Expressions ...13
5.4 Comparison Operators...14
5.5 Arithmetic Expressions..15
5.6 Arithmetic Precedence Rules ..16
5.7 String Expressions..16
5.8 Precedence Table ...17

6 Locations ... 18

6.1 Equality and Equivalence...18

7 Declarations .. 19

7.1 Identifiers ...19
7.2 Declaration of Value Identifiers...19
7.3 Declaration of Types...20
7.4 Sequences ...20
7.5 Brackets ...20
7.6 Scope Rules ..21
7.7 Recursive Value Declarations ...21
7.8 Recursive Type Declarations ..22

8 Clauses... 23

8.1 Assignment Clause ...23
8.2 if Clause ...23
8.3 while ... do Clause ..24
8.4 for Clause ...24

9 Procedures... 26

9.1 Procedure Calls..26
9.2 Recursive Declarations ..26
9.3 Equality and Equivalence...27

10 Aggregates... 28

10.1 Vectors ...28
10.1.1 Creation of Vectors..28
10.1.2 upb and lwb..29
10.1.3 Indexing ..29
10.1.4 Equality and Equivalence..29

10.2 Views...30
10.2.1 Creation of View ...30
10.2.2 Indexing ..30
10.2.3 Equality and Equivalence..31

11 Type any.. 32

11.1 Injection into Type any ..32
11.2 Projection from Type any ...32
11.3 Equality and Equivalence ...33

12 Exceptions, Interrupts and Down-calls .. 34

12.1 Exceptions...34
12.2 Interrupts ..36
12.3 Down-calls ..38

13 References ... 39

Appendix I: Context Free Syntax .. 41

Appendix II: Typing Rules ... 43

Appendix III: Program Layout.. 48

Appendix IV: Reserved Words .. 49

Index ... 50

ProcessBase Manual 4

1 Introduction
ProcessBase is the simplest of a family of languages and support systems designed for
process modelling. It consists of the language and its persistent environment. The persistent
store is populated and, indeed, the system uses objects within the persistent store to support
itself. The implication of orthogonal persistence is that the user need never write code to
move or convert data for long or short term storage [ABC+83]. The model of persistence in
ProcessBase is that of reachability from a root object. The persistent store is stable, that is, it
is transformed atomically from one consistent state to the next. Execution against the
persistent store is always restarted from the last stable state.

The ProcessBase language is in the algol tradition as were its predecessors S-algol [Mor79],
PS-algol [PS88] and Napier88 [MBC+96]. Following the work of Strachey [Str67] and
Tennent [Ten77] the languages obey the principles of correspondence, abstraction and type
completeness. This makes for languages with few defining rules allowing no exceptions. It is
the belief of the designers that such an approach to language design yields more powerful
and less complex languages.

The ProcessBase type system philosophy is that types are sets of values from the value space.
The type system is mostly statically checkable, a property we wish to retain wherever
possible. However, dynamic projection out of unions for type any allows the dynamic
binding required for orthogonal persistence [ABC+83] and system evolution [MCC+93].

The type system contains the base types integer, real, boolean and string. Higher-order
procedures allow code to exist in the value space. Aggregates may be formed using the
vector and view types. Both of these allow information hiding without encapsulation. Finally
there is an explicit constructor to provide locations.

The type equivalence rule in ProcessBase is by structure and both aliasing and recursive
types are allowed in the type algebra.

ProcessBase programs are executed in a strict left to right, top to bottom manner except
where the flow of control is altered by one of the language clauses.

The ProcessBase persistent programming system was originally planned as part of the
Compliant Systems Architecture Project. It is supported by the EPSRC under grant
GR/L32699 at the University of St Andrews and GR/L34433 at the University of
Manchester.

The ProcessBase programming system provides the following facilities:

• Orthogonal persistence
– models of data independent of longevity

• Type completeness
– no restrictions on constructing types

• Higher-order procedures
– procedures are data objects

• Information hiding without encapsulation
– views of data that hide detail

• A strongly typed stable store
– a populated environment of typed data objects that may be

updated atomically

ProcessBase Manual 5

• Hyper-code
– one representation of a value throughout its lifetime [KCC+92]

• Linguistic reflection
– to allow reflective programming [Kir92]

• Exceptions
– for recovering from exceptional conditions

• Interrupts and down-calls
– for communication between the ProcessBase language and the

implementation level

The ProcessBase language consists of a core part and a system dependent part. The core part
of the language must be provided by all implementations whereas the system dependent part
may be implemented in different ways depending on the host system. The system dependent
part includes persistence, IO, threads, strings, semaphores and mathematical functions.
Libraries that implement these components on various platforms are supplied with the
ProcessBase system, and are known as the Standard Libraries. They are described in a
separate manual, the ProcessBase Standard Library Reference Manual.

Three sets of rules are used to define ProcessBase. The context free syntax of the languages
is captured by using extended BNF. This context free syntax is then constrained by type rules
into only allowing context sensitive constructions. The BNF and types are used in this
manual. The meaning of every legal ProcessBase language construct is defined in terms of a
set of code generation rules that describe the effect of the construct as a sequence of
instructions to an abstract machine. The code generation rules are given in the ProcessBase
Abstract Machine Manual.

As mentioned above, ProcessBase is the first in a family of languages. The reflective
compiler is defined in terms of ProcessBase and implemented in it. Using that the hyper-code
system will be added. The conceptual approach is that any language in the compliant
architecture will be implemented by reflecting into ProcessBase itself. Thus a process
modelling language or a language allowing polymorphic definition of code may be added as
higher layers of the compliant architecture.

ProcessBase Manual 6

2 Context Free Syntax Specification
The formal definition of a programming language gives programmers a precise description
from which to work as well as providing implementors with a reference model. There are two
levels of definition, syntactic and semantic. This section deals with the formal syntactic rules
used to define the context free syntax of the language. The context free syntactic rules are
further qualified by a set of context sensitive type rules, given in Appendix II. Later, informal
semantic descriptions of the syntactic categories will be given. The formal rules define the
set of all syntactically legal ProcessBase programs, remembering that the meaning of any one
of these programs is defined by the semantics.

To define the syntax of a language another notation, called a meta language, is required and
in this case a variation of Backus-Naur form is used.

The syntax of ProcessBase is specified by a set of rules called productions. Each production
specifies the manner in which a particular syntactic category (e.g. a clause) can be formed.
Syntactic categories have names which are used in productions and are distinguished from
names and reserved words in the language. The syntactic categories can be mixed in
productions with terminal symbols which are actual symbols of the language itself. Thus, by
following the productions until terminal symbols are reached, the set of legal programs can
be derived.

The meta symbols, that is those symbols in the meta language used to describe the grammar
of the language, include | which allows a choice in a production. The square brackets [and]
are used in pairs to denote that an term is optional. When used with a *, a zero or many times
repetition is indicated. The reader should not confuse the meta symbols |, *, [and] with the
actual symbols and reserved words in ProcessBase. To help with this reserved words will
appear in bold and symbols of ProcessBase will appear in outline bold. The names of the
productions will appear in italics.

For example,

identifier ::= letter [letter | digit | _]*

indicates that an identifier can be formed as a letter, optionally followed by zero or many
letters, digits or underbars.

The productions for ProcessBase are recursive, which means that there are an infinite number
of legal ProcessBase programs. However, the syntax of ProcessBase can be described in
about 45 productions.

The full context-free syntax of ProcessBase is given in Appendix I.

ProcessBase Manual 7

3 Types and Type Rules
The ProcessBase type system is based on the notion of types as a set structure imposed over
the value space. Membership of the type sets is defined in terms of common attributes
possessed by values, such as the operations defined over them. These sets or types partition
the value space. The sets may be predefined, like int, or they may be formed by using one of
the predefined type constructors, like view.

The constructors obey the Principle of Data Type Completeness [Str67, Mor79]. That is,
where a type may be used in a constructor, any type is legal without exception. This has two
benefits. Firstly, since all the rules are very general and without exceptions, a very rich type
system may be described using a small number of defining rules. This reduces the
complexity of the defining rules. The second benefit is that the type constructors are as
powerful as is possible since there are no restrictions on their domain.

3.1 Universe of Discourse

The following base types are defined in ProcessBase:

1. The scalar data types are int, real, and bool.

2. Type string is the type of a character string; this type embraces the empty
string and single characters.

3. Type any is an infinite union type; values of this type consist of a value of
any type together with a representation of that type.

The following type constructors are defined in ProcessBase:

4. For any type T, loc [T] is the type of a location that contains a value of type
T.

5. For any type t, *t is the type of a vector with elements of type t.

6. For identifiers I1,...,In and types t1,...,tn, view [I1: t1,...,In: tn] is the type of a
view with fields Ii and corresponding types ti, for i = 1..n and n ≥ 0.

7. For any types t1,...,tn and t, fun (t1,...,tn) → t is the type of a procedure with
parameter types ti, for i = 1..n, where n ≥ 0, and result type t. The type of a
result-less procedure is fun (t1,...,tn).

8. For any types t1,...,tn and t, interrupt (t1,...,tn) → t is the type of an interrupt
with parameter types ti, for i = 1..n, where n ≥ 0, and result type t. The type
of a result-less interrupt is interrupt (t1,...,tn).

9. For any types t1,...,tn and t, opcode [int,...,int](t1,...,tn) → t (where the
square brackets contain m occurrences of type int) is the type of an op-code
with m op-code parameters and stack parameter types ti, for i = 1..n, where
m ≥ 0 and n ≥ 0, and result type t. The type of a result-less op-code is
opcode [int,...,int](t1,...,tn).

The world of data values is defined by the closure of rules 1 to 3 under the recursive
application of rules 4 to 7.

In addition to the above, clauses which yield no value are of type void.

ProcessBase Manual 8

3.2 The Type Algebra

ProcessBase provides a simple type algebra that allows the succinct definition of types within
programs. As well as the base types and constructors already introduced, types may be
defined with the use of aliasing and recursive definitions.

3.2.1 Aliasing

Any legal type description may be aliased by an identifier to provide a shorthand for that
type. For example

type ron is int
type man is view [age : int ; size : real]

After its introduction an alias may be used in place of the full type description.

3.2.2 Recursive Definitions

Further expressibility may be achieved in the type algebra by the introduction of recursive
types. The reserved word rec introduced before a type alias allows instances of that alias to
appear in the type definition. Mutually recursive types may also be defined by the grouping
of aliases with ampersands. In this case, binding of identifiers within the mutual recursion
group takes precedence over identifiers already in scope.

rec type intList is view [head : int; tail : realList]
& realList is view [head: real; tail : intList]

3.3 Type Equivalence

Type equivalence in ProcessBase is based upon the meaning of types, and is independent of
the way the type is expressed within the type algebra. Thus any aliases and recursion
variables are fully factored out before equivalence is assessed. This style of type equivalence
is normally referred to as structural equivalence.

The structural equivalence rules are as follows:

• Every base type is equivalent only to itself.

• For two constructed types to be equivalent, they must have the same
constructor and be constructed over equivalent types.

• The bounds of a vector are not significant for type equivalence.

• For view constructors the labels are a significant part of the type, but their
ordering is not.

• For procedure types, the parameter ordering is a significant part of the type,
but parameter names are not.

ProcessBase has no subtyping or implicit coercion rules. Values may be substituted by
assignment or parameter passing only when their types are known statically to be equivalent.

The types of all expressions in ProcessBase are inferred. There is no other type inference
mechanism; in particular, the types of all procedure parameters and results must be explicitly
stated by the programmer.

ProcessBase Manual 9

3.4 The Syntax of Types

The set of legal type strings in ProcessBase is expressed syntactically by the following
production:

type ::= int | real | bool | string | any | identifier |
loc [type] | *type | view [labelled_type_list] |
fun ([type_list]) [→ type]

type_list ::= type [, type]*
labelled_type_list ::= identifier_list : type [; labelled_type_list]

3.5 Typing Rules

The type rules of ProcessBase are used in conjunction with the context free syntax to
determine the legal set of (type correct) programs. For this a method of specifying the type
rules is required.

Before that, however, the concept of environments is introduced. Two kinds of environments
are used, both of which are sets of bindings: one for value identifiers and one for type
identifiers. π denotes the environments where value identifiers are bound to their types in the
form of <x, T>, where x is an identifier and T is a type. τ stands for the environments in
which type identifiers are bound to type expressions in the form <t, T>, where t is an
identifier and T is a type. A1::b::A2 is used to represent a list A which contains a binding b.
A++B is used to denote the concatenation of two lists of bindings A and B. Both π and τ are
global environments and support block structure.

As introduced above bindings are represented as pairs and the notation < x, T > is used to
denote a pair value consisting of x and T. (b1, . . . , bn) is a list containing bindings b1 to bn.
The meta function typeDecl takes a list of bindings between type identifiers and type
expressions and adds them to the environment τ. Similarly, the meta function idDecl takes a
list of bindings between identifiers and types as its arguments and updates the environment π
with the new bindings.

The typing rules use the structure of proof rules i.e.

A1 A2 . . . An

B

means that if Ai is true for i = 1, . . n then B is true. Each Ai and B may be of the form X ∫ Y
which, in the context of this document, is used to denote that Y is deducible from a collection
of environments X. Thus, the type rule

τ , π h e1 : int τ , π h e2 : int
τ , π h e1 + e2 : int

is read as "if expression e1 is deduced to be of type int from environments τ and π and
expression e2 is deduced to be of type int from environments τ and π then the type of the
expression e1 + e2 can be deduced to be of type int from environments τ and π ".

The typing rules make use of a set Type which is a set of strings defined from the production
type in section 3.4. If a type S can be generated by this definition then S is a member of
Type.

ProcessBase Manual 10

The type rules will be used throughout this manual, in conjunction with the context-free
syntax rules, to describe the language. A complete set of type rules for ProcessBase is given
in Appendix II.

3.6 First Class Citizenship

The application of the Principle of Data Type Completeness [Str67, Mor79] ensures that all
data types may be used in any combination in the language. For example, a value of any data
type may be a parameter to or returned from a procedure. In addition to this, there are a
number of properties possessed by all values of all data types that constitute their civil rights
in the language and define first class citizenship. All values of data types in ProcessBase
have first class citizenship.

The additional civil rights that define first class citizenship are:

• the right to be declared,

• the right to be assigned,

• the right to have equality defined over them, and,

• the right to persist.

ProcessBase Manual 11

4 Literals
Literals are the basic building blocks of ProcessBase programs that allow values to be
introduced. A literal is defined by:

literal ::= int_literal | real_literal | bool_literal | string_literal |
view_literal | proc_literal

4.1 Integer Literals

These are of type int and are defined by:

int_literal ::= [add_op] digit [digit]*
add_op ::= + | -

n ∈ Integer

n : int
[intLiteral]

An integer literal is one or more digits optionally preceded by a sign. For example,

1 0 1256 -8797

4.2 Real Literals

These are of type real and are defined by

real_literal ::= int_literal.[digit]*[e int_literal]

r ∈ Real
r : real

[realLiteral]

Thus, there are a number of ways of writing a real literal. For example,

1.2 3.1e2 5.e5
1. 3.4e-2 3.4e+4

3.1e-2 means 3.1 times 10 to the power -2 (i.e. 0.031)

4.3 Boolean Literals

There are two literals of type bool: true and false. They are defined by

bool_literal ::= true | false

b ∈ Boolean

b : bool
[boolLiteral]

4.4 String Literals

A string literal is a sequence of characters in the character set (ASCII) enclosed by double
quotes. The syntax is

string_literal ::= "[char]*"

ProcessBase Manual 12

s ASCII character set
 :

∈
s string [strLiteral]

The empty string is denoted by "". Examples of other string literals are:

"This is a string literal", and, "I am a string"

The programmer may wish to have a double quote itself inside a string literal. This requires
using a single quote as an escape character and so if a single or double quote is required
inside a string literal it must be preceded by a single quote. For example,

"a'"" has the value a", and, "a''" has the value a'.

There are a number of other special characters that may be used inside string literals. They
are:

'b backspace ASCII code 8

't horizontal tab ASCII code 9

'n newline ASCII code 10

'p newpage ASCII code 12

'o carriage return ASCII code 13

4.5 View Literals

There is one literal for each view constructor type. It is used to ground recursion in view
types.

view_literal ::= nil (type)

t, [l : T ; . . .; l : T] >:: , : [l : T ; . . .; l : T]1 1 n n 1 1 n nτ τ π1 2::< view view hnil (t)

[viewLiteral]

4.6 Procedure Literals

A procedure is introduced into a program by its literal value. It is defined by:

proc_literal ::= fun ([labelled_type_list]) [→ type]; clause
labelled_type_list ::= identifier_list : type [; labelled_type_list]

τ π π π
τ π

, ::< , T >:: :: . . . ::< x , T >:: e : S
, , : (T , . . . , T) S

1 1 n n n 1

1 n

1 2x +

→ →
h

hfun(x : T . . . , x : T) S ; e1 1 n n fun
[procLiteral]

For example,

fun (n : int) → int ; n

is a procedure literal.

ProcessBase Manual 13

5 Expressions and Operators

5.1 Evaluation Order

The order of execution of a ProcessBase program is strictly from left to right and top to
bottom except where the flow of control is altered by one of the language clauses. This rule
becomes important in understanding side-effects in the store. Parentheses in expressions can
be used to override the precedence of operators.

5.2 Parentheses

In the syntactic description there are two productions:

clause ::= ... | E
E ::= ... | (clause)

τ , π h e : T
τ , π h (e) : T

[brackets]

These rules allow expressions in ProcessBase to be written within parentheses. The effect of
this is to alter the order of evaluation so that the expressions in parentheses are evaluated
first. For example:

3 * (2 - 3)

evaluates to -3 and not 3.

5.3 Boolean Expressions

Values of type bool in ProcessBase can have the value true or false. There are only two
boolean literals, true and false, and three operators. There is one boolean unary operator, ~,
and two boolean binary operators, and and or. They are defined by the truth table below:

a b ~a a or b a and b

true false false true false

false true true true false

true true false true true

false false true false false

The syntax rules for boolean expressions are:

E ::= ~ E | E or E | E and E

τ , π h e : bool
τ , π h ~ e : bool

[negation]

τ , π h e1 : bool τ , π h e2 : bool
τ , π h e1 and e2 : bool

[and]

τ , π h e1 : bool τ , π h e2 : bool
τ , π h e1 or e2 : bool

[or]

ProcessBase Manual 14

The precedence of the operators is important and is defined in descending order as:

~
and
or

Thus,

~a or b and c

is equivalent to

(~a) or (b and c)

The evaluation of a boolean expression in ProcessBase is non-strict. That is, in the left to
right evaluation of the expression, no more computation is performed on the expression than
is necessary. For example,

true or expression

gives the value true without evaluating expression and

false and expression

gives the value false without evaluating expression.

5.4 Comparison Operators

Expressions of type bool can also be formed by some other binary operators. For example, a
= b is either true or false and is therefore boolean. These operators are called the comparison
operators and are:

< less than

<= less than or equal to

> greater than

>= greater than or equal to

= equal to

~= not equal to

The syntactic rules for the comparison operators are:

E ::= E rel_op E
rel_op ::= eq_op | co_op
eq_op ::= = | ~=
co_op ::= < | <= | > | >=

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 = e2 : bool

 [equality]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 ~= e2 : bool

 [nonEq]

ProcessBase Manual 15

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 < e2 : bool

 [less]

where T ∈ { int, real, string }

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 <= e2 : bool

 [lessEq]

where T ∈ { int, real, string }

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 > e2 : bool

 [greater]

where T ∈ { int, real, string }

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 >= e2 : bool

 [greaterEq]

where T ∈ { int, real, string }

Note that the operators <, <=, > and >= are defined on integers, reals and strings whereas =
and ~= are defined on all ProcessBase data types. The interpretation of these operations is
given with each data type as it is introduced.

Equality for types other than base types is defined as identity.

5.5 Arithmetic Expressions

Arithmetic may be performed on data values of type int and real. The syntax of arithmetic
expressions is:

E ::= add_op E |E add_op E | E mult_op E
add_op ::= + | -
mult_op ::= int_mult_op | real_mult_op | ...
int_mult_op ::= * | div | rem
real_mult_op ::= * | /

τ , π h e : T
τ , π h +e : T

[plus]

τ , π h e : T
τ , π h -e : T

[minus]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 + e2 : T

[add]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 - e2 : T

[subtract]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 * e2 : T

[times]

ProcessBase Manual 16

τ , π h e1 : int τ , π h e2 : int
τ , π h e1 div e2 : int

[intDiv]

τ , π h e1 : int τ , π h e2 : int
τ , π h e1 rem e2 : int

[intRem]

τ , π h e1 : real τ , π h e2 : real
τ , π h e1 / e2 : real

[realDiv]

The operators mean:

+ addition

- subtraction

* multiplication

/ real division

div integer division throwing away the remainder

rem remainder after integer division

In both div and rem the result is negative only if exactly one of the operands is negative.

Some examples of arithmetic expressions are

a + b 3 + 2 1.2 + 0.5 -2.1 + a / 2.0

The language deliberately does not provide automatic coercion between integers and reals,
but conversion procedures are defined in the ProcessBase Standard Library «Morrison, 1999
#2234».

5.6 Arithmetic Precedence Rules

The order of evaluation of an expression in ProcessBase is from left to right and based on the
precedence table:

* / div rem

+ -

That is, the operations *, /, div, rem are always evaluated before + and -. However, if the
operators are of the same precedence then the expression is evaluated left to right. For
example,

6 div 4 rem 2 gives the value 1

Brackets may be used to override the precedence of the operator or to clarify an expression.
For example,

3 * (2 - 1) yields 3 not 5

5.7 String Expressions

The string operator, ++, concatenates two operand strings to form a new string. For example,

"abc" ++ "def"

ProcessBase Manual 17

results in the string

"abcdef"

The syntax rule is:

E::= E [++ E]*

τ , π h e1 : string τ , π h e2 : string
τ , π h e1 ++ e2 : string

 [concat]

A new string may be formed by selecting a substring of an existing string. For example, if s
is the string "abcdef" then s (3 | 2) is the string "cd". That is, a new string is formed by
selecting 2 characters from s starting at character 3. The syntax rule is:

E ::= E (clause | clause)

τ π τ π τ π
τ π

, e : , e : , e :
, :

1 2h h h

h

string int int
stringe (e | e)1 2

 [substr]

For the purposes of substring selection the first character in a string is numbered 1. The
selection values are the start position and the length respectively.

To compare two strings, the characters are compared in pairs, one from each string, from left
to right. Two strings are considered equal only if they have the same characters in the same
order and are of the same length, otherwise they are not equal.

The characters in a string are ordered according to the ASCII character code. Thus,

"a" < "z"

is true.

The null string is less than any other string. Thus the less-than relation can be resolved by
taking the characters pair by pair in the two strings until one is found to be less than the
other. When the strings are not of equal length then they are compared as above and then the
shorter one is considered to be less that the longer. Thus,

"abc" < "abcd"

The other relations can be defined by using = and <.

5.8 Precedence Table

The full precedence table for operators in ProcessBase is:

/ * div rem

+ - ++

~

= ~= < <= > >=

and

or

ProcessBase Manual 18

6 Locations
Values may be stored in locations and subsequently retrieved. The constructor loc creates a
location and initialises the value in it. The operator ' (dereference) retrieves the value from
the location. Since locations are values in ProcessBase they may also be stored in locations.
The syntactic rules are:

E::= loc (clause) | 'clause

τ , π h e : T
τ , π h loc(e) : loc[T]

[locValue]

τ , π h e : loc[T]
τ , π h 'e : T

[locDeref]

For example, if a is of type loc [int] with the value loc (3) then 'a has the value 3.

6.1 Equality and Equivalence

Two locations are equal if they have the same identity, that is, the same location. Two
locations are type equivalent if they have equivalent content types. Notice therefore that

loc (3) = loc (3)

will yield the result false.

ProcessBase Manual 19

7 Declarations

7.1 Identifiers

In ProcessBase, an identifier may be bound to a data value, a procedure parameter, a view
field, or a type. An identifier may be formed according to the syntactic rule

identifier ::= letter [id_follow]
id_follow ::= letter [id_follow] | digit [id_follow] | _ [id_follow]

That is, an identifier consists of a letter followed by any number of underscores, letters or
digits. The following are legal ProcessBase identifiers:

x1 ronsValue look_for_Record1 Ron

Note that case is significant in identifiers.

The use of an identifier is governed by the syntactic rule

E ::= identifier

The type rule states that the type of an identifier can be deduced from the value environment
π.

τ , π1::< x, T >::π2 h x : T

[id]

7.2 Declaration of Value Identifiers

Before an identifier can be used in ProcessBase, it must be declared. The action of declaring
a data value associates an identifier with a typed value.

When introducing an identifier, the programmer must indicate the identifier and its value.
Identifiers are declared using the following syntax:

value_decl ::= let identifier ← clause

τ , π h e : T
τ , π h let x ← e : void idDecl((< x, T >))

[valueDecl]

An identifier is declared by

let identifier ← clause

For example,

let a ← 1

introduces an integer identifier with value 1. Notice that the compiler deduces the type.

Identifiers can also be declared for locations, for example,

ProcessBase Manual 20

let discrim ← loc (b * b - 4.0 * a * c)

introduces a real number location with the calculated value. The value in the location may be
updated by assignment.

7.3 Declaration of Types

Type names may be declared by the user in ProcessBase. The name is used to represent a set
of values drawn from the value space and may be used wherever a type identifier is legal.
The syntax of type declarations is:

type_decl ::= type type_init | rec type type_init [& type_init]*
type_init ::= identifier is type

τ h T ∈ Type
τ h type t is T : void typeDecl((< t, T >))

[typeDecl]

Thus,

type al is bool

is a type declaration aliasing the identifier al with the boolean type. They are the same type
and may be used interchangeably.

7.4 Sequences

A sequence is composed of any combination, in any order, of declarations and clauses. The
type of the sequence is the type of the last clause in the sequence. Where the sequence ends
with a declaration, which by definition is of type void, the sequence is of type void. If there is
more than one clause in a sequence then all but the last must be of type void.

sequence ::= declaration [; sequence] | clause [; sequence]

τ , π h A1 : void Decl1 τ + +Ω1, π + +Ψ1 h A2 : T
τ , π h A1 ; A2 : T

[seq]

where Decl1 stands for typeDecl(Ω1) and idDecl(Ψ1), and A1 and A2 stand for any constructs
in the language

7.5 Brackets

Brackets are used to make a sequence of clauses and declarations into a single clause. There
are two forms, which are:

begin
sequence

end

and

{sequence}

ProcessBase Manual 21

τ , π h s : T
τ , π h begin s end : T

[beginEnd]

τ , π h s : T
τ , π h { s } : T

[{}]

{ and } allow a sequence to be written clearly on one line as a clause. For example,

let i ← loc (2)
for j ← 1 to 5 do {i := 'i * 'i ; writeInt ('i)}

However, if the sequence is longer than one line, the first alternative gives greater clarity.
Non-void sequences are sometimes called block expressions.

7.6 Scope Rules

The scope of an identifier is limited to the rest of the sequence following the declaration.
This means that the scope of an identifier starts immediately after the declaration and
continues up to the next unmatched } or end. If the same identifier is declared in an inner
sequence, then while the inner name is in scope the outer one is not.

7.7 Recursive Value Declarations

It is sometimes necessary to define values recursively. For example, the following defines a
recursive version of the factorial procedure:

rec let factorial ← fun (n : int) → int
if n = 0 then 1 else n * factorial (n - 1)

The effect of the recursive declaration is to allow the identifier to enter scope immediately.
That is, before the declaration clause and not immediately after it, as is the case with non-
recursive declarations. Thus, the identifier factorial used in the procedure is the same as, and
refers to, the one being defined.

Where there is more than one identifier being declared, all the identifiers come into scope at
the same time. That is, all the names are declared first and then are available for the
initialising clauses.

The initialising clauses for recursive declarations are restricted to literal values.

The full syntax of value declarations is:

value_decl ::= let value_init |
rec let rec_value_init [& rec_value_init]*

value_init ::= identifier ← clause
rec_value_init ::= identifier ← literal

τ , π' h e1 : T1 τ , π' h e2 : T2
τ , π h rec let x1 ← e1 & x2 ← e2 : void Decl

[recValDecl]

where π' stands for π1::< x1, T1 >::π2::< x2, T2 >::π3 and Decl stands for idDecl((<x1, T1 >,
< x2, T2 >))

ProcessBase Manual 22

7.8 Recursive Type Declarations

The full syntax of type declarations is:

type_decl ::= type type_init | rec type type_init [& type_init]*
type_init ::= identifier is type

τ h T1 ∈ Type τ h T2 ∈ Type
τ ' h rec type t1 is T1 & t2 is T2 : void typeDecl((< t1,T1 >,< t2 ,T2 >))
where τ' stands for τ1::< t1, T1 >::τ2::< t2, T2 >::τ3 [recTypeDecl]

For example, the following recursive type definition:

rec type intList is view [head : int; tail : realList]
& realList is view [head: real; tail : intList]

defines types for lists whose head elements are either integer or real and whose tail elements
are the other type of list.

ProcessBase Manual 23

8 Clauses
Expressions are clauses which allow the operators in the language to be used to produce data
values. There are other kinds of clauses in ProcessBase which allow the data values to be
manipulated and which provide control over the flow of the program.

8.1 Assignment Clause

The assignment clause has the following syntax:

clause ::= name := clause

τ , π h e2 : T τ , π h e1 : loc[T]
τ , π h e1 := e2 : void

[assign]

For example,

let discriminant ← loc (0.0)
discriminant := b * b - 4.0 * a * c

gives discriminant the value of the expression on the right. The clause alters the value in the
location denoted by the identifier.

The semantics of assignment is defined in terms of equality. The clause,

a := b

where a and b are both identifiers, implies that after execution 'a = b will be true. Thus, as
will be seen later, assignment for scalar types means value assignment and for constructed
types it means pointer assignment.

8.2 if Clause

There are two forms of the if clause defined by:

if clause do clause |
if clause then clause else clause

τ , π h e : bool τ , π h e1 : void
τ , π h if e do e1 : void

[ifDo]

τ , π h e : bool τ , π h e1 : T τ , π h e2 : T

τ , π h if e then e1 else e2 : T
[ifThen]

In the single armed version, if the condition after the if is true, then the clause after the do is
executed. For example, in the clause

if 'a < b do a := 3

the value 3 will be assigned to a, if the value in a is smaller than b before the if clause is
executed.

ProcessBase Manual 24

The second version allows a choice between two actions to be made. If the first clause is
true, then the second clause is executed, otherwise the third clause is executed. Notice that
the second and third clauses are of the same type and the result is of that type. The following
contains two examples of if clauses:

if 'x = 0 then y := 1 else x := 'y - 1
let temp ← if a < b then 1 else 5

8.3 while ... do Clause

The while clause allows loops to be constructed with the test at the start of the loop. The
syntax is:

while clause do clause

τ , π h e : bool τ , π h e1 : void
τ , π h while e do e1 : void

[while]

The loop is executed until the boolean clause is false and is used to perform a loop zero or
many times.

An example of the while ... do clause is

let factorial ← loc (1) ; let i ← loc (0)
while 'i < 8 do
begin

writeString ("Factorial "); writeInt ('i); writeString (" is ")
writeInt ('factorial); writeString ("'n")
i := 'i + 1 ; factorial := 'factorial * 'i

end

8.4 for Clause

The for clause is included in the language as syntactic sugar where there is a fixed number of
iterations defined at the initialisation of the loop. It is defined by:

for identifier ← clause to clause [by clause] do clause

τ π π τ π τ π τ π
τ π

, ::< i, >:: e : , e : , e : , e :
, :

1 2 31 2int void int int int
void

h h h h

h for to by do i e e e e1 2 3←
[for]

in which the clauses are: the initial value, the limit, the increment and the clause to be
repeated, respectively. The first three are of type int and are calculated only once at the start.
The by clause may be omitted where the increment is 1. The identifier, known as the control
constant, is in scope within the void clause, taking on the range of values successively
defined by initial value, increment and limit. That is, the control constant is considered to be
declared at the start of the repetition clause. The repetition clause is executed as many times
as necessary to complete the loop and each time it is, the control constant is initialised to a
new value, starting with the initial loop value, changing by the increment until the limit is
reached. An example of a for clause is:

ProcessBase Manual 25

let factorial ← loc (1) ; let n ← 8
for i ← 1 to n do factorial := 'factorial * i

With a positive increment, the for loop terminates when the control constant is initialised to a
value greater than the limit. With a negative increment, the for loop terminates when the
control constant is initialised to a value less than the limit.

ProcessBase Manual 26

9 Procedures

9.1 Procedure Calls

Procedures in ProcessBase constitute abstractions over expressions, if they return a value,
and over clauses of type void if they do not. In accordance with the Principle of
Correspondence [Str67], any method of introducing a name in a declaration has an
equivalent form as a parameter.

Thus, in declarations of data values, giving a name an initial value is equivalent to assigning
the actual parameter value to the formal parameter. Since this is the only type of declaration
for data values in the language, it is also the only parameter passing mode and is commonly
known as call by value.

Like declarations, the formal parameters representing data values must have a name and a
type. A procedure which returns a value must also specify its return type. The scope of the
formal parameters is from their declaration to the end of the procedure clause.

The integer identity procedure, called int_id, may be declared by:

let int_id ← fun (n : int) → int; n

The syntax of a procedure call is:

expression ([clause_list])

∀ ∈ →i { 1...n } (, e : T) , e : (T , . . . , T S
, : S

 i i 1 nτ π τ π
τ π

h h

h

fun)
e(e , . . . , e)1 n

[procApp]

There must be a one-to-one correspondence between the actual and formal parameters and
their types. Thus, to call the integer identity procedure given above, the following could be
used,

int_id (42)

which will evaluate to the integer 42.

The type of int_id is written fun (int) → int.

9.2 Recursive Declarations

Recursive and mutually recursive declarations of procedures are allowed in ProcessBase. For
example,

rec let tak ← fun (x, y, z : int) → int
if x <= y then z else tak (tak (x - 1, y, z),

tak (y - 1, z, x),
tak (z - 1, x, y))

declares the recursive Takeuchi procedure. Mutually recursive procedures may also be
defined. For example,

ProcessBase Manual 27

rec let expression ← fun () ; while have ("or") do exp1 ()
& exp1 ← fun () ; while have ("and") do exp2 ()
& exp2 ← fun ()

if symb = "identifier" then next_symbol ()
else {mustbe ("(") ; expression () ; mustbe (")")}

declares three mutually recursive procedures.

9.3 Equality and Equivalence

Two procedures are equal in ProcessBase if and only if their values are derived from the
same evaluation of the same procedure expression. For the cognoscenti, this means that they
have the same closure.

In common with all aggregate values in ProcessBase, equality means identity.

Two procedure types are structurally equivalent if they have the same parameter types in
one-one correspondence and the same result type.

ProcessBase Manual 28

10 Aggregates
ProcessBase allows the programmer to group together data values into larger aggregate
values which may then be treated as single values. There are two such value types in
ProcessBase: vectors and views. If the constituent values are of the same type, a vector may
be used and a view otherwise. Vectors and views have the same civil rights as any other data
value in ProcessBase.

All aggregate data values in ProcessBase have pointer semantics. That is, when an aggregate
data value is created, a pointer to the aggregate that make up the value is also created. The
value is always referred to by the pointer which may be passed around by assignment and
tested for equality.

10.1 Vectors

10.1.1 Creation of Vectors

A vector provides a method of grouping together values of the same type. Since ProcessBase
does not allow uninitialised locations, all the initial values of the elements must be specified.
The syntax is:

vector_constructor ::= vector vector_element_init
vector_element_init ::= clause to clause using clause |

@clause of [clause [, clause]*]

τ , π h e1 : int τ , π h e2 : int τ , π h e : fun(int) → T
τ , π h vector e1 to e2 using e : * T

[vecValue1]

τ , π h e : int ∀ i ∈ { 1...n } (τ , π h ei: T)
τ , π h vector @ e of [e1, . . . , en] : * T

[vecValue2]

For example,

let abc ← vector @1 of [1, 2, 3, 4]

declares abc to be a vector of integers, whose type is written as *int, with lower bound 1 and
elements initialised to 1, 2, 3 and 4.

Multi-dimensional vectors, which are not necessarily rectangular, can also be created. For
example,

let Pascal = vector @1 of [
vector @1 of [1],
vector @1 of [1, 1],
vector @1 of [1, 2, 1],
vector @1 of [1, 3, 3, 1],
vector @1 of [1, 4, 6, 4, 1],
vector @1 of [1, 5, 10, 10, 5, 1]]

Pascal is of type **int.

ProcessBase Manual 29

A second form of vector initialisation is provided to allow the elements of a vector to be
initialised by a function over the index. For example,

let squares ← fun (n : int) → int; n * n
let squares_vector ← vector 1 to 10 using squares

In the initialisation, the procedure squares is called for every index of the vector in order
from the lower to upper bound. The corresponding element is initialised to the result of its
own index being passed to the procedure. In the above case, the vector squares_vector has
elements 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100.

The initialising procedure must be of type

fun (int) → t

and the resulting vector is of type *t.

10.1.2 upb and lwb

It is often necessary to interrogate a vector to find its bounds. The operations upb and lwb are
provided in ProcessBase for this purpose:

τ π
τ π

, e : * T
, :

h

h lwb(e) int
[lwb]

τ π
τ π

, e : * T
, :

h

h upb(e) int
[upb]

10.1.3 Indexing

To obtain the elements of a vector, indexing is used. For vectors, the index is always an
integer value. The syntax is:

E ::= E (clause_list)

τ π τ π τ π
τ π

, e : * . . . * T , e : . . . , e :
, : T

1 n h h h

h

int int
e(e , . . . , e) 1 n

[vecProj]

For example,

a (3 + 4)

selects the element of the vector a which is associated with the index value 7. Multi-
dimensional vectors may be indexed by using commas to separate the indices.

10.1.4 Equality and Equivalence

Two vectors are equal if they have the same identity, that is, the same pointer. Two vectors
are type equivalent if they have equivalent element types. Notice that the bounds are not part
of the type.

ProcessBase Manual 30

10.2 Views

10.2.1 Creation of View

Values of different types can be grouped together into a view. The fields of a view have
identifiers that are unique within that view. The views are sets of labelled cross products
from the value space. Views are created using a type identifier. The syntax of view types is:

type ::= view [labelled_type_list]
labelled_type_list ::= identifier_list : type [; labelled_type_list]

For example, a view type may be declared as follows:

type person is view [name : string ; age, height : int]

This declares a view type, person, with three fields of type string, int and int, with labels:
name, age and height respectively.

A view may be created by the following syntax:

E ::= view (value_init_list)

value_init_list ::= value_init [, value_init]

value_init ::= identifier ← clause

∀ ∈
← ←

i { 1...n } (, e : T)
, (l e , . . ., l e) : T

 i i

n n

τ π
τ π

h

h view 1 1

where T stands for view[l1 : T1, . . . , ln : Tn] [viewValue]

For example,

let ron ← view (name ← "Ronald Morrison", age ← 42, height ← 175)

creates a view with field labels name, age and height and with field values “Ronald
Morrison”, 42 and 175 respectively.

10.2.2 Indexing

To obtain a field of a view, the field identifier is used as an index. The syntax is

E ::= clause.identifier

τ π
τ π

, e : [. . .; l : T; . . .
, : T

h

h

view]
e.l

[viewDeref]

For example, if ron is declared as above, then,

ron.age

yields 42. For the indexing operation to be legal, the view must contain a field with that
identifier.

ProcessBase Manual 31

Field identifiers, when used as indices, are only in scope after the dot following a view
expression. Thus these identifiers need only be unique within each view type.

10.2.3 Equality and Equivalence

Two views are equal if they have the same identity (pointer).

The type of a view is the set of the field identifier-type pairs. Thus the view ron has type:

view [name : string ; age : int ; height : int]

Two views have equivalent types when the types have the same set of identifier-type pairs
for the fields. Note that the order of the fields is unimportant.

ProcessBase Manual 32

11 Type any
Type any is the type of the union of all values in ProcessBase. Values must be explicitly
injected into and projected from type any. Both of these operations are performed
dynamically and, in particular, the projection from any to another type involves a dynamic
type check. We have argued elsewhere [ABC+83] that such a type check is required to
support the binding of independently prepared programs and data in a type secure persistent
object store.

11.1 Injection into Type any

Values may be injected into type any by the following syntax:

any (clause)

τ , π h e : T
τ , π h any(e) : any

 [anyInj]

For example,

let int_any ← any (-42)

which declares int_any to be the integer value -42 injected into type any.

Values of type any may be passed as parameters. For example, the following is an identity
procedure for type any.

let id_any ← fun (x : any) → any ; x

Thus polymorphic procedures may be written by using type any and injecting the parameters
into any before the call and projecting the results after the call.

11.2 Projection from Type any

Values may be projected from type any by use of the project clause.

project clause as identifier onto project_list default : clause
project_list ::= type_id : clause ; [project_list]

τ , π h e : any T1, . . . , Tn ∈ Type ∀ i ∈ { 1...n } (τ , π' h ei : T)
τ , π h project e as x onto project_list ; default en+1 : T

where π' stands for π1::< x, Ti >::π2 and project_list stands for T1 : e1 ; . . . ; Tn : en
[anyProj]

The projected value is bound to the identifier following the as. The scope of the identifier is
the clauses on the right hand side of the colons. This mechanism prevents side effects on the
projected value inside the evaluation of the right hand side clauses and allows for static type
checking therein. For projection, the type is compared to each of the types on the left hand
side of the colons. The first match causes the corresponding clause on the right hand side to
be executed. Within the clause, the identifier has the type of the projected value. After
execution of the project clause, control passes to the clause following the project clause.

ProcessBase Manual 33

An example of projection is:

let get_type ← fun (x : any) → string
project x as X onto

int : "type is integer"
real : "type is a real"

default : "type is neither integer nor real"

11.3 Equality and Equivalence

Two values of type any are equal if and only if they can be projected onto equivalent types
and the projected values are equal.

All values of type any are type equivalent.

ProcessBase Manual 34

12 Exceptions, Interrupts and Down-calls

12.1 Exceptions

When an error occurs during execution of a ProcessBase program, an exception is raised and
control is passed to an exception handler. The system supplies a default exception handler;
additional application-specific handlers may be defined as required. Exceptions may be
raised either automatically, due to an error arising during the execution of a built-in
ProcessBase operation (a standard exception), or explicitly due to an application-specific
error condition. The action of the default exception handler is to abort the thread in which it
occurs, and to print the name and description of the exception to the standard output if
supported on the current platform.

The table below shows the standard exceptions that may be raised:

name description circumstances
"arithmetical" description of the attempted operation

and parameters
if an arithmetical error occurs

"dereference" description of the attempted operation
and parameters

if an attempt is made to
dereference a null view

"string" description of the attempted operation
and parameters

if an error occurs during a
string operation

"vector" description of the attempted operation
and parameters

if an error occurs during a
vector operation

Exceptions are represented by instances of the view type Exception, defined in the Exception
Standard Library:

type Exception is view [name, description : string]

The default exception handling behaviour may be over-ridden by specifying an explicit
exception handler for a clause. The reserved words handle exception introduce a local name
for the exception instance, which is in scope for the exception handler clause. The syntax is:

clause ::= handle exception identifier using clause in clause

τ π π τ π
τ π

, x, Exception >:: e : T , e : T
, : T

1 21 2::< h h

h handle exception using in x e e1 2

[handleException]

An exception may also be raised explicitly using a raise clause:

clause ::= raise clause

τ π
τ π

, e : Exception
, :

h

h raise e void
[raise]

The example below shows both exception handling and raising:

ProcessBase Manual 35

handle exception e using
if e.name = "arithmetical" then

writeString ("arithmetical error: " ++ e.description) else
if e.name = "vector" then

writeString ("vector error: " ++ e.description)
else raise e

in
begin

let index ← a + 3
result := vec (index)

end

When any exception is raised, either explicitly by a program or by the run-time system,
control is transferred to the inner-most exception handler associated with the clause in which
the exception occurs. In the example above this handler is the outer if clause. The identifier e
is introduced to denote the exception instance (of type Exception); its fields may be accessed
to determine the nature of the exception. The result of the exception handling clause, if any,
is substituted as the result of the clause in which the exception was raised, and control flow
resumes following that clause. In the example, an error message is written out if the name of
the exception is "arithmetical" or "vector", otherwise the exception is raised again.

If an exception is raised at a point in a program without a corresponding exception handling
clause, ProcessBase searches the dynamic procedure call chain for a handling clause. Thus if
a non-handled exception is raised within a procedure body, the exception is handled by the
handling clause corresponding to the point of the procedure call, if any. If no handling clause
is found anywhere in the call chain, the default exception handler is used. This is illustrated
in the following example:

let A ← fun (x : int) → int
begin

if x < 0 do raise Exception ("negative", "fun A requires positive arg")
x + 2

end

let B ← fun (y : int) → int
handle exception e1 using

if e1.name = "negative" then { writeString ("negative arg "); -1 }
else { raise e1; 0 }

in A (y - 3)

let C ← fun () → int
handle exception e2 using {writeString ("exception occurred"); 0 }
in B (2)

writeInt (C ())

The flow of control in this example is as follows. Function C is called; its body contains a
call to B with a corresponding exception handling clause. During the execution of B a call to
A is made, with the argument -1, leading to the raising of an exception with the name
"negative" within the body of A. Since there is no corresponding exception handling clause at
that point, the handling clause corresponding to the point of the call of A (in the body of B) is
executed. This writes out a message and returns the value -1, which in turn forms the return
value of B. Thus from the point of view of C, the call to B completes normally, and the value

ProcessBase Manual 36

-1 is returned. If some other exception were to be raised during the execution of A or B, the
handling clause in the body of C would be executed and the value 0 returned.

Since procedures are first class values, common exception handling behaviour may be
defined within a procedure and used repeatedly, as illustrated below:

let voidHandler ← fun (e : Exception)
begin

writeString ("The exception " ++ e.name ++ " occurred.'n")
writeString ("Description: " ++ e.description ++ "'n")
abort ()

end

handle exception e using voidHandler (e)
in x := A (31)

handle exception e using voidHandler (e)
in y := B (4)

12.2 Interrupts

ProcessBase interrupts allow communication between the ProcessBase implementation and
the ProcessBase language. An event occurring at the implementation level may cause the
immediate invocation of a user-defined interrupt handler, written in ProcessBase, with the
result returned to the implementation level. From the ProcessBase level this can be thought
of as an unexpected procedure call.

Interrupts are similar to standard exceptions in that user-defined handler code may be
executed in response to a condition arising at the implementation level. The significant
difference is that exception handlers are invoked in response to situations that must be dealt
with: exceptions cannot be ignored, and program flow of control is always altered when an
exception is raised. In contrast, an interrupt handler may choose to do nothing, in which case
the interrupt has no net effect other than the delay involved in invoking the handler. After
execution of an exception handler, program flow resumes following the definition of the
handler, whereas after execution of an interrupt handler, execution resumes from the point at
which the interrupt occurred.

Another difference is that arbitrary new exceptions may be defined and raised by user
programs. To accommodate this, exception handlers are generic, in that a single handler
handles all kinds of exception occurring in the corresponding clause. In contrast, for any
given implementation of ProcessBase the interrupts that may be raised are fixed. Each
interrupt handler is specific to one of these statically known interrupts. This design decision,
rather than supporting generic handlers, was made on pragmatic grounds: interrupt handling
is more likely to be time-critical than exception handling, hence the motivation to avoid the
per-interrupt overhead of resolving which interrupt occurred.

The interrupts defined by a particular ProcessBase implementation are specified in the
ProcessBase Standard Library [MBG+99c], represented as instances of interrupt types. For
example, in the following the identifier clock represents a hypothetical interrupt that takes a
single parameter of type int and returns no result:

clock : interrupt (int) ! The type of clock is interrupt (int).

ProcessBase Manual 37

An interrupt handler for a particular clause may be introduced with the reserved words
handle interrupt. The syntax is:

clause ::= handle interrupt interrupt_identifier using proc_literal in clause

T ,T Type , i : (T , ,T S , h : (T , ,T S , e : T
, : T

1 n 1 n 1 n,))… ∈ … → … →τ π τ π τ π
τ π
h h h

h

interrupt fun
handle interrupt using in i h e

[handleInterrupt]

The production interrupt_identifier in the above signifies that an interrupt identifier defined
in the ProcessBase Standard Library must be used. Thus a user-defined alias cannot be used
in this context. This restriction is imposed by implementation considerations that require the
interrupt being handled to be known statically.

If the specified interrupt occurs during execution of the clause, the handler procedure is
called, and control then returns to the point at which the interrupt occurred. If an interrupt
occurs at a point where no matching handler is in scope, the dynamic call chain is searched.
The first matching handler to be found is called, and again control returns to the point at
which the interrupt occurred. Finally, if no handler is found the interrupt is discarded.

There is no analogue to the raise clause for interrupts, since interrupts are raised solely by
the ProcessBase implementation level.

In the following example the procedure timedA uses a handler for the clockTick interrupt to
accumulate a count of the number of clock ticks that occur during a call of A. It is assumed
that clockTick is raised at regular intervals.

let A ← fun ()
begin

! Do something useful...
end

let timedA ← fun () → int
begin

let ticks ← loc (0)

! clockTick is an interrupt of type interrupt ().

handle interrupt clockTick using fun () ; ticks := 'ticks + 1
in A ()

'ticks
end

…
let noTicks ← timedA ()
writeInt (noTicks)

Here any clockTick interrupts occurring before the call to A within timedA are ignored. From
the point of the call to A, until A returns, each clockTick interrupt results in a call to the
anonymous handler procedure, incrementing the variable ticks. After the return from A,
further interrupts are again ignored.

ProcessBase Manual 38

There is no built-in interrupt masking mechanism. If a further interrupt is raised during
execution of a handler procedure, a further call is made to the corresponding handler for the
new interrupt. Handler calls may be arbitrarily nested in this way.

The interruptOp down-call allows simple policy to be passed down to the implementation
level for specific interrupts. See section 12.3 and the ProcessBase Library Manual
[MBG+99c] for details. One possible use is to temporarily disable and re-enable the raising
of specific interrupts.

12.3 Down-calls

Corresponding to the up-calls from implementation level to ProcessBase provided by
interrupts, ProcessBase also provides down-calls from the language to the implementation
level. This is achieved by allowing ProcessBase programs to invoke specific lower level
instructions (op-codes) directly.

The op-codes defined by a particular ProcessBase implementation are specified in the
ProcessBase Standard Library [MBG+99c], represented as instances of opcode types. For
example, in the following the identifier op1 represents a hypothetical op-code that takes two
op-code parameters (described below) plus a single stack parameter of type real, and returns
a result of type string:

op1 : opcode [int, int] (real) → string
! The type of op1 is opcode [int, int] (real) → string

Two different kinds of parameters to a down-call are distinguished:

• The op-code parameters, appearing in square brackets in the op-code type, are those
that would normally follow the op-code in the code stream. Whatever their expected
size, these parameters are always typed as integers.

• The stack parameters are assumed by the instruction implementation to have been
pushed onto the stack(s) in the order that they appear between round brackets in the op-
code type. Thus the last stack parameter is at the top of the appropriate stack.

The op-code result, if any, is left on the appropriate stack at the end of the instruction,
forming the result of the downcall clause. Down-calls are written using the following syntax:

clause ::= downcall opcode_identifier [[int_literal_list]] ([clause_list])

∀ ∈ < ∀ ∈ … … →
… …

i {1...n} (, p ,R >:: p :) j {1...m} (, e : T) , op : [R , ,R](T , ,T S

, op , , , , : S

 i i i j j 1 n 1 mτ π π τ π τ π
τ π

1 2::)h h h

h

int opcode

downcall [p p] (e e)1 n 1 m

 [downcall]

The production opcode_identifier in the above signifies that an op-code identifier defined in
the ProcessBase Standard Library must be used. Thus a user-defined alias cannot be used in
this context. This restriction is imposed by implementation considerations that require the op-
code being down-called to be known statically.

The op-code parameter values are enclosed in square brackets and the stack parameter values
in round brackets. The example below shows a down-call to the op-code op1. Although all
parameters are manifest in this example, in general the stack parameters may be computed
dynamically. The stack parameter values are pushed onto the appropriate stacks before the
op-code is executed.

ProcessBase Manual 39

let aString ← downcall op1[23, 48716](3.1)

The downcall operation is type-safe for some op-codes and unsafe for others. A set of safe
op-codes is defined in the ProcessBase Standard Library; any program that restricts its down-
calls to these op-codes is guaranteed to be type-safe. For some applications this may be too
restrictive; down-calls may also be made to op-codes defined in other libraries, with the
possibility that incorrect use will contravene type-safety.

ProcessBase Manual 40

13 References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R. “An
Approach to Persistent Programming”. Computer Journal 26, 4 (1983) pp 360-365.

[KCC+92] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. & Morrison,
R. “Persistent Hyper-Programs”. In Persistent Object Systems , Albano, A. &
Morrison, R. (ed), Springer-Verlag, Proc. 5th International Workshop on Persistent
Object Systems (POS5), San Miniato, Italy, In Series: Workshops in Computing,
van Rijsbergen, C.J. (series ed), ISBN 3-540-19800-8 (1992) pp 86-106.

[Kir92] Kirby, G.N.C. “Persistent Programming with Strongly Typed Linguistic
Reflection”. In Proc. 25th International Conference on Systems Sciences, Hawaii
(1992) pp 820-831, Technical Report ESPRIT BRA Project 3070 FIDE
FIDE/91/32.

[MBC+96] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby, G.N.C.
& Munro, D.S. “Napier88 Reference Manual (Release 2.2.1)”. University of St
Andrews (1996).

[MBG+99c] Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C., Mayes, K.,
Munro, D.S. & Warboys, B.C. “ProcessBase Standard Library Reference Manual
(Version 1.0.1)”. Universities of St Andrews and Manchester (1999).

[MCC+93] Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. & Stemple, D.
“Mechanisms for Controlling Evolution in Persistent Object Systems”. Journal of
Microprocessors and Microprogramming 17, 3 (1993) pp 173-181.

[Mor79] Morrison, R. “On the Development of Algol”. Ph.D. Thesis, University of St
Andrews (1979).

[PS88] “PS-algol Reference Manual, 4th edition”. Universities of Glasgow and St
Andrews Technical Report PPRR-12-88 (1988).

[Str67] Strachey, C. “Fundamental Concepts in Programming Languages”. Oxford
University Press, Oxford (1967).

[Ten77] Tennent, R.D. “Language Design Methods Based on Semantic Principles”. Acta
Informatica 8 (1977) pp 97-112.

ProcessBase Manual 41

Appendix I: Context Free Syntax
Session:

sequence ::= declaration [; sequence] | clause [; sequence]

declaration ::= type_decl | value_decl

Type declarations:

type_decl ::= type type_init | rec type type_init [& type_init]*

type_init ::= identifier is type

Type descriptors:

type ::= int | real | bool | string | any | identifier |
loc [type] | *type | view [labelled_type_list] |
fun([type_list]) [→ type]

type_list ::= type [, type]*
labelled_type_list ::= identifier_list : type [; labelled_type_list]

Object declarations:

value_decl ::= let value_init |
rec let rec_value_init [& rec_value_init]*

value_init ::= identifier ← clause

rec_value_init ::= identifier ← literal

Clauses:

clause ::= if clause do clause |
if clause then clause else clause |
while clause do clause |
for identifier ← clause to clause [by clause] do clause|
project clause as identifier

onto project_list default : clause |
try clause handle identifier using clause |
raise clause |
name := clause |
E

project_list ::= type_id : clause ; [project_list]

Expressions:

E ::= E or E | E and E | [~] E rel_op E | E add_op E |
E mult_op E | add_op E |
literal | vector_constructor | (clause) |
begin sequence end | {sequence} |
E (clause | clause) |

ProcessBase Manual 42

E ([clause_list]) | view (value_init_list) |
identifier (clause_list) |
'clause | loc (clause) |
clause.identifier |
any (clause) |
upb (clause) | lwb (clause) |
name

name ::= identifier | expression (clause_list) [(clause_list)]*

clause_list ::= clause [, clause_list]

value_init_list ::= value_init [, value_init]

vector_constructor ::= vector vector_element_init

vector_element_init ::= clause to clause using clause |
@clause of [clause [, clause]*]

Literals:

literal ::= int_literal | real_literal | bool_literal | string_literal |
view_literal | proc_literal

int_literal ::= [add_op] digit [digit]*

real_literal ::= int_literal.[digit]*[e int_literal]

bool_literal ::= true | false

string_literal ::= "[char]*"

view_literal ::= nil (type)
proc_literal ::= fun ([labelled_type_list]) [→ type]; clause
labelled_type_list ::= identifier_list : type [; labelled_type_list]

Miscellaneous and microsyntax:

add_op ::= + | -
mult_op ::= int_mult_op | real_mult_op | string_mult_op
int_mult_op ::= * | div | rem
real_mult_op ::= * | /
string_mult_op ::= ++
rel_op ::= eq_op | co_op
eq_op ::= = | ~=
co_op ::= < | <= | > | >=
identifier_list ::= identifier [, identifier_list]
identifier ::= letter [id_follow]
id_follow ::= letter [id_follow] | digit [id_follow] | _[id_follow]
letter ::= a | b | c | d | e | f | g | h | i | j | k | l | m |

n | o | p | q | r | s | t | u | v | w | x | y | z |
A | B | C | D | E | F | G | H | I | J | K | L | M |
N | O | P | Q | R | S | T | U | V | W | X | Y | Z

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
char ::= any ASCII character

ProcessBase Manual 43

Appendix II: Typing Rules
Sequence

τ , π h A1 : void Decl1 τ + +Ω1, π + +Ψ1 h A2 : T
τ , π h A1 ; A2 : T

[seq]

where Decl1 stands for typeDecl(Ω1) and idDecl(Ψ1) and A1 and A2 stand for any
constructs in the language

Declarations

τ h T ∈ Type
τ h type t is T : void typeDecl((< t, T >)) [typeDecl]

τ h T1 ∈ Type τ h T2 ∈ Type
τ ' h rec type t1 is T1 & t2 is T2 : void typeDecl((< t1,T1 >,< t2 ,T2 >))
where τ' stands for τ1::< t1, T1 >::τ2::< t2, T2 >::τ3 [recTypeDecl]

τ π
τ π

, e : T
, : idDecl((< x, T >))

 h

h voidlet x e←
[valueDecl]

τ , π' h e1 : T1 τ , π' h e2 : T2
τ , π h rec let x1 ← e1 & x2 ← e2 : void Decl

where π' stands for π1::< x1, T1 >::π2::< x2, T2 >::π3 and Decl stands for
idDecl((< x1, T1 >, < x2, T2 >)) [recValDecl]

Clauses

Conditional

τ , π h e : bool τ , π h e1 : void
τ , π h if e do e1 : void

[ifDo]

τ , π h e : bool τ , π h e1 : T τ , π h e2 : T
τ , π h if e then e1 else e2 : T

[ifThen]

Iteration

τ , π h e : bool τ , π h e1 : void
τ , π h while e do e1 : void

[while]

τ π π τ π τ π τ π
τ π

, ::< i, >:: e : , e : , e : , e :
, :

1 2 31 2int void int int int
void

h h h h

h for to by do i e e e e1 2 3←
[for]

ProcessBase Manual 44

Projection

τ π τ π
τ π

, e : T . . . , T Type i { 1...n } (, e : T)
, : T

1 n i

h h

h

any , '∈ ∀ ∈
project as onto default e project_list ; en+1x

where π' stands for π1::< x, Ti >::π2 and project_list stands for T1 : e1 ; . . . ; Tn : en
[anyProj]

Exception

τ π τ π π
τ π

, e : T , x, Exception >:: e : T
, : T

1 2h h

h
1 2::<

try handle usinge x e1 2

[handle]

τ π
τ π

, e : Exception
, :

h

h raise e void
[raise]

Assignment

τ , π h e2 : T τ , π h e1 : loc[T]
τ , π h e1 := e2 : void

[assign]

Expressions

Booleans

τ , π h e : bool
τ , π h ~ e : bool

[negation]

τ , π h e1 : bool τ , π h e2 : bool
τ , π h e1 or e2 : bool

[or]

τ , π h e1 : bool τ , π h e2 : bool
τ , π h e1 and e2 : bool

[and]

Comparison

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 = e2 : bool

 [equality]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 ~= e2 : bool

 [nonEq]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 < e2 : bool

 [less]

where T ∈ { int, real, string }

ProcessBase Manual 45

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 <= e2 : bool

 [lessEq]

where T ∈ { int, real, string }

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 > e2 : bool

 [greater]

where T ∈ { int, real, string }

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 >= e2 : bool

 [greaterEq]

where T ∈ { int, real, string }

Arithmetic Expressions

In the following type rules, the type denoted by T ranges over integers and reals
i.e. T ∈ { int, real }

τ , π h e : T
τ , π h +e : T

[plus]

τ , π h e : T
τ , π h -e : T

[minus]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 + e2 : T

[add]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 - e2 : T

[subtract]

τ , π h e1 : T τ , π h e2 : T
τ , π h e1 * e2 : T

[times]

τ , π h e1 : int τ , π h e2 : int
τ , π h e1 div e2 : int

[intDiv]

τ , π h e1 : int τ , π h e2 : int
τ , π h e1 rem e2 : int

[intRem]

τ , π h e1 : real τ , π h e2 : real
τ , π h e1 / e2 : real

[realDiv]

τ , π h e1 : string τ , π h e2 : string
τ , π h e1 ++ e2 : string

 [concat]

ProcessBase Manual 46

Literals

n ∈ Integer

n : int
[intLiteral]

r ∈ Real
r : real

[realLiteral]

b ∈ Boolean

b : bool
[boolLiteral]

s ASCII character set
 :

∈
s string [strLiteral]

t, [l : T ; . . .; l : T] >:: , : [l : T ; . . .; l : T]1 1 n n 1 1 n nτ τ π1 2::< view viewhnil(t)

[viewLiteral]

τ π π π
τ π

, ::< , T >:: :: . . . ::< x , T >:: e : S
, , : (T , . . . , T) S

1 1 n n n 1

1 n

1 2x +

→ →
h

hfun(x : T . . . , x : T) S ; e1 1 n n fun
[procLiteral]

Vector Constructors

τ , π h e1 : int τ , π h e2 : int τ , π h e : fun(int) → T
τ , π h vector e1 to e2 using e : * T

[vecValue1]

τ π τ π
τ π

, e : i { 1...n } (, e : T)
, : * T

 ih h

h

int ∀ ∈
vector of@ e e , . . . , e]1 n[

[vecValue2]

Block

τ , π h e : T
τ , π h (e) : T

[brackets]

τ , π h s : T
τ , π h begin s end : T

[beginEnd]

τ , π h s : T
τ , π h { s } : T

[{}]

Substring

τ π τ π τ π
τ π

, e : , e : , e :
, :

1 2h h h

h

string int int
stringe (e | e)1 2

[substr]

Procedure Application

∀ ∈ →i { 1...n } (, e : T) , e : (T , . . . , T S
, : S

 i i 1 nτ π τ π
τ π

h h

h

fun)
e(e , . . . , e)1 n

[procApp]

ProcessBase Manual 47

Vectors

τ π τ π τ π
τ π

, e : * . . . * T , e : . . . , e :
, : T

1 n h h h

h

int int
e(e , . . . , e) 1 n

[vecProj]

Views

∀ ∈
← ←

i { 1...n } (, e : T)
, (l e , . . ., l e) : T

 i i

n n

τ π
τ π

h

h view 1 1

where T stands for view[l1 : T1, . . . , ln : Tn] [viewValue]

Locations

τ , π h e : loc[T]
τ , π h 'e : T

[locDeref]

τ , π h e : T
τ , π h loc(e) : loc[T]

[locValue]

View Operations

τ π
τ π

, e : [. . .; l : T; . . .
, : T

h

h

view]
e.l

[viewDeref]

Infinite Union

τ π
τ π

, e : T
, :

h

h any(e) any
 [anyInj]

Vector Bounds

τ π
τ π

, e : * T
, :

h

h lwb(e) int
[lwb]

τ π
τ π

, e : * T
, :

h

h upb(e) int
[upb]

Identifiers

τ , π1::< x, T >::π2 h x : T

[id]

ProcessBase Manual 48

Appendix III: Program Layout

Semi-Colons

As a lexical rule in ProcessBase, a semi-colon may be omitted whenever it is used as a
separator and it coincides with a newline. This allows many of the semi-colons in a program
to be left out. However, to help the compiler deduce where the semi-colons should be, it is a
rule that a line may not begin with a binary operator. For example,

a *
b

is valid but,

a
* b

is not.

This rule also applies to the invisible operator between a vector or view and its index list and
between a procedure and its parameters. For example,

let b ← a (1,2)

is valid but,

let b ← a
(1)

will be misinterpreted since vectors can be assigned.

Comments

Comments may be placed in a program by using the symbol !. Anything between the ! and
the end of the line is regarded by the compiler as a comment. For example,

a + b ! add a and b

ProcessBase Manual 49

Appendix IV: Reserved Words

and any as

begin bool by

default div do

else end

false for fun

handle

if int is

let lwb loc

nil

of onto or

PS project

raise real rec rem

string

then to true try type

upb using

vector view

while

50

Index
any

equivalence and equality, 34
injection, 33
projection, 33

arithmetic precedence rules. (see
expressions)
assignment clause. (see clauses)
Backus-Naur form, 6
brackets, 21
clauses

assignment, 24
for, 25
if, 24
while, 25

comments. (see program layout)
comparison operators. (see expressions)
context free syntax, 6
declarations

data objects, 20
procedures, 27
recursive objects, 22
recursive types, 23
type declarations, 21

exceptions, 35
default handler, 35
handle, 35
raise, 35
standard exceptions, 35
try, 35

expressions
arithmetic, 15
arithmetic precedence rules, 16
boolean, 13
comparison operators, 14
evaluation order, 13
expressions and operators, 13
operator precedence, 18
string, 17

for clause. (see clauses)
identifiers, 20
if clause. (see clauses)
literals

boolean, 11
integer, 11
procedure, 12
real, 11
string, 11
view, 12

lwb, 30
null values, 12

operator precedence. (see expressions)
principle of data type completeness. (see
types)
procedures

call, 27
declaration, 27
equality and equivalence, 28
recursive declarations, 27

ProcessBase
Standard Library Reference Manual, 5,
16

program layout
comments, 49
semi-colons, 49

recursive declarations
procedures, 27
types, 8, 23
values, 22

reserved words, 50
scope rules, 22
separators, 49
sequences, 21
type rules, 44
types

declarations. (see declarations)
first class citizenship, 9
principle of data type completeness, 7
recursive declarations, 8
structural equivalence, 8
type algebra, 7
type aliasing, 7
type equivalence, 8
type rules, 9
universe of discourse, 7

universe of discourse. (see types)
upb, 30
variables, 20
vectors

bounds, 30
creation, 29
equality and equivalence, 19, 30
indexing, 30
lwb, 30
upb, 30

views
creation, 31
equality and equivalence, 32
indexing, 31

while clause. (see clauses)

51

