An Approach to Compliance in Software Architectures

Ron Morrisoan, Dharini BalasubramaniamT, Mark Greenwood¥, Graham KirbyT,
Ken MayesY, Dave Munro™ & Brian Warboys¥

TSchool of Computer Science, University of St Andrews
¥Department of Computer Science, University of Manchester
¥ Department of Computer Science, University of Adelaide

Abstract

Conventional software architectures are designed to meet the average
predicted needs of the majority of applications that use them. By
contrast, a compliant software architecture can accommodate the needs
of a particular application. As the application evolves, its requirements
change and the supporting software components, if compliant, change
accordingly to meet these new requirements. The degree of
compliance can be measured by the goodness of fit of the supporting
architecture to the evolved application.

In this paper we introduce the concept of compliance and show how it
may be useful in software systems. We illustrate some component
technologies that form the basis for implementing compliance and
finish with an example of compliance in operation.

1 Introduction

Software that cannot evolve is condemned to atrophy. Despite this, the most successful
approach to constructing software systems has been to use components that are
irrevocably glued together by some binding mechanism. Once bound, the constructed
system cannot easily evolve unless the user has specifically programmed in facilities for
evolution and even then these facilities cannot accommodate circumstances unanticipated
at the time of construction.

Of course, evolution may always be achieved by retaining the source code and evolving
it by editing, re-compiling and re-binding. Thus components may be re-defined,
compiled and linked into a new version of the software. However, this may not always
be acceptable especially in large or long-running systems nor indeed where the source
code is no longer available or perhaps not compatible with the running system. Perhaps
more importantly local encapsulated data generated during the computation may be lost
by this approach of evolution. Examples of this style of software construction are
systems made up of CORBA [1] or DCOM [2] components, and applications that use a
fixed database interface which in turn uses a fixed programming language interface built
upon a fixed operating system interface. Systems constructed from MS Access/Visual
Basic/Windows NT or Oracle/C/Unix fall into this latter category.

The success in this conventional approach to constructing software is in its re-use
capabilities. CORBA and DCOM components may be used multiple times in different
applications and the Unix and Windows NT interfaces have been the basis of stable
application platforms. By a strange coincidence these stable interfaces, which provide the
levels of abstraction, also hide the very information that may be required for evolution.
For example, a user of a database system may be able to construct new indexes over the
data but is unlikely to be able to change the indexing algorithm used by the database
system, should that be a requirement of the application evolution. Thus there is a tension
between the manner in which we use components for reuse and the way in which we use
them for evolution.



Another view of our traditional approach to software construction is gained by
considering the separation of policy and mechanism. The interfaces that components
provide for users define their mechanisms. Thus the mechanisms in Unix are the system
calls and the mechanisms for a programming language are the programs that may be
written. The components also have policy that is hidden behind the interface, such as a
page replacement algorithm in an operating system or the scheduling mechanism for
threads in a programming language.

Each of the components in a conventional architecture is designed to meet the average
predicted needs of the majority of uses. Thus the policy algorithms of a component will
be tuned according to the benchmarks designed to predict the profile of programs
commonly using the component. As a consequence, different architectural components
will contain repetition and duplication of both mechanism and policy. The repetition
occurs when the same policies/mechanisms are implemented in different components;
duplication occurs when the policies/mechanisms in different components are different
and may interact in an undesirable manner. For example, the persistent store manager
policies of an operating system and a database that runs on the operating system may
move pages in conflict with one another. The complexity arising from repetition and
duplication makes it difficult to predict how the system will perform, particularly in
terms of failure semantics and run-time efficiency.

We define a compliant architecture as one that accommodates the needs of a particular
application [3]. The degree of compliance can be measured by the goodness of fit of the
application to the architecture, under any specific criteria. The question is: can we do this
without losing the powerful abstraction mechanism of defining components with
interfaces which is so useful for re-use?

Clearly an architecture that contains repetition and duplication of policy and mechanism
will be not be very compliant. However, the compliance of an architecture may be
improved by evolving it to the changing requirements of the application. Thus the
underlying strategy for implementing compliance is similar to, if not the same as, that
required for system evolution.

Our goal is to take the next step in the construction of software architectures. This
entails techniques and methodologies that will allow software to evolve to its own and
externally changing requirements — co-evolution in terms of business systems. As such
we will be able to construct software architectures that are compliant to the needs of
individual applications.

2 Composition and Decomposition

An essential property of evolution is the ability to decompose a system and recompose it
in an evolved state. We define the composition of a system S from components P and Q

under rule ® as!
P®Q=S,,,

The = symbol represents the binding mechanism, such as: a #include mechanism, a
symbolic linker or a dynamic binding mechanism. The binding mechanism operates
under the rules ®. For example, a compiler may merge a number of source files with the
program to be compiled. The merging facility is the binder and the rules under which it
operates determines the order and scoping of the included files. Other examples of this
form of composition include the linking of .o files in the C linker and the dynamic
loading of classes in Java [4]. In most current computer systems = is hard wired and ®
implicit.

I This can be generalised in a straight forward way to an arbitrary number of components.



Composition becomes more interesting when the components being combined are
active. In a transaction system we can think of P and Q as being the transactions
themselves, the binding mechanism being the part of the system that allows transactions
to run together and the rules under which they are combined being the ACID properties.

While composition allows for the construction of software architecture it does not
provide the necessary infrastructure for system evolution. For that the composition
process has to be reversible. This we define as

P®Q®S,.,

The & symbol represents a reversible compose/decompose mechanism under the rules
®. The fact that such compose/decompose operators are not common in our
programming systems illustrates the lack of general facilities for evolution. Again
compose/decompose is most interesting when the components are active. For example,
we can think of two long running threads, such as occur in workflow systems, that are
bound together under some synchronisation rules. The threads decide that they wish to
change the synchronisation rules without losing any of their internal or shared data.
With the above compose/decompose mechanism they may separate themselves into the
components and the synchronisation rules, and rebind under a new rules set. We will
see an example similar to this later in the paper.

The need for compose/decompose to support evolution has some unexpected
consequences. It means that in order to evolve an object it may be necessary to break
encapsulation to view its inner components and that active systems must be able to
separate into components without losing local or shared state. The challenge is therefore
to find the form of components, binding rules and compose/decompose operators that
will provide these facilities.

3 Component Technologies for Compliance

From the above arguments we can see that for evolution to be completely flexible the
components, the composition rules ®, and the compose/decompose operation <> must
all have the ability to evolve. While we concentrate here on components, composition
rules and operators we recognise that facilities for introspection are also required. That
is, as well as being able to decompose a system the user needs a concrete representation
for the results of the decomposition. When introspection is combined with the specific
binding mechanism of compilation the technique known as linguistic or structural
reflection results [5].

Since composition and decomposition depend on the form of the components and the
nature of the rules ® we will concentrate on what look like promising technologies for
the latter two. We will assume that introspection in the system is available and that
structural reflection can be used to generate evolved systems. It will become obvious
from our description how decomposition is achieved. We introduce the following
technologies to meet the above requirements:

* Hyper-code for describing components
* The Communicating Action Control System (CACS) for capturing the rules
3.1 Hyper-code

The first requirement of a system description for evolution is the ability to represent
active objects with shared values. Traditional source code cannot do this since it has no
facility to denote shared values or structures. Hyper-programs, which were developed in
the context of persistent systems, do have this facility and therefore show promise in a
solution to the evolution problem.



Traditionally, a program which accesses another potentially shared object during its
execution contains a name for the object. The name may be a file name (or some object
in an object store) to be resolved at run-time by the file (or object) manager, or it may be
as simple as a variable name to be resolved using the scope rules of the language during
computation.

In a persistent programming system, programs may be constructed and stored in the
same environment as that in which they will subsequently be executed. This means that
objects accessed by a program may already exist when the program is composed. Direct
links to the objects can be included in the program rather than textual descriptions of the
access paths by which they can be located at execution time. A program containing both
text and links to objects is a hyper-program [6].

The example of persistence may be extended to any run-time system. As such, at any
point in the execution of the system, presumably the point at which evolution is required,
some names (access paths) will have been resolved into values, and can be represented
by links, and other will not. The point is that since the links are pointers different ones
may point to the same values and thus represent sharing. An example of a hyper-
program is given in Figure 1 where there are links to the method Person.marry and the
objects vangelis and mary.

public class MarryExample |

public static void main(String[] args) ¢

|Fcr:cn_ma:ry| { |v=ngclis| mﬂrfl .

Figure 1: An example of a hyper-program

The hyper-program idea has been further developed to that of hyper-code, in which the
distinction between source programs and executable code is completely hidden by a user
interface that presents a single uniform view of all software entities throughout their
lifetimes [7, 8]. That is, the user composes hyper-code and the system executes it. If a
error occurs during this process the user only ever sees a hyper-code representation of
the program, which may be partially executed. There are a number of benefits of hyper-
programming and hyper-code. The most significant here are:

* that it is possible to provide full source representations of all programs, including
those that may, due to the context in which they were defined, contain references
to other existing data;

* and that because of this, it is possible to maintain automatically associations
between all executable programs and the source programs from which they were
derived.

Both of these points are important in relation to decomposition. The automatic
associations mean that the original source code that defined a composition will never be
lost, while the ability of the source code to contain embedded references to extant data
and code makes it possible to fully represent the state of the composed unit at the time
of the decomposition, even if it is during execution.

We will see shortly how hyper-code may be used in defining compose/decompose
operations.

3.2 CACS

The Communicating Actions Control System (CACS) is an abstract operational model
designed to allow the specification of coherency protocols for accessing shared data [9].
The CACS model consists of actions (computations) that access objects (shared data).



A particular coherency protocol, for example atomic (ACID) transactions, is defined by
a set of significant events and a set of rules. The significant events specify the
operations on shared data that need to be coordinated by the protocol. The rules specify
the details of this coordination. For example, consider the atomic transaction protocol:

* The significant events are begin, commit, abort, read and write.

* The rules give an operational specification of how the ACID transaction properties
are to be enforced.

As it runs, each action generates a sequence of significant events, which are handled by
the CACS controller, according to the rules. Each rule specifies what the controller
should do in response to a particular significant event. In addition to performing
arbitrary computation, the controller may suspend and resume actions, and generate
additional, synthetic events that are added to the incoming event stream.

The CACS architecture gives considerable flexibility both in defining new coherency
protocols, and in varying the policy implementing a particular protocol. For example,
both optimistic and pessimistic flavours of atomic transactions could be defined in a
similar way [10]. The significant events would be the same in each case, but the bodies
of the rules would vary. For an optimistic scheme the controller would allow actions to
read and write shared data without restriction, recording which data objects had been
accessed. On a commit event, the controller would test for conflict with other
transactions, and generate an abort event for each conflicting transaction. For
pessimistic transactions the controller would suspend an action on the first attempted
conflicting access to shared data.

In general it is not possible for the CACS system to deduce automatically the points in
an action at which significant events are generated. The source program must thus be
annotated to indicate these. In some special cases, however, this may be done
automatically. For example with atomic transactions the system may deduce where read
and write events occur, but not begin, commit or abort.

CACS specifications, in terms of events and rules, can be written for a wide variety of
coherency protocols. These include traditional schemes such as atomic transactions,
nested transactions [11], monitors [12] and Sagas [13], and more complex application-
specific schemes. The programming involved in the correct implementation of these
schemes can be defined and placed in a library for reuse. The writer of a CACS action
thus does not have to write CACS specifications in cases where standard coherency
protocols are sufficient, but has the flexibility to define new schemes if required.

The CACS specifications are sufficient to define the rules under which components
interact “. As such we can use them in the composition and decomposition of systems.

4 Composition and Decomposition

Using hyper-code to represent system components and the CACS specifications to
determine the binding rules, evolution can be supported by providing the operations
compose and decompose [14, 15]. Software components are initially defined as scripts.
A script is a piece of hyper-code together with a suspended thread, initially suspended at
the start of the code.

The compose operation is used to spark a collection of scripts, returning an activity. As
the script threads execute, the underlying system automatically modifies the
corresponding hyper-code so that it always reflects the current thread states (this
involves replacing textual identifiers by direct references to their values as they come
into scope, updating those values on assignment, and restoring the textual identifiers as
they leave scope and cease to be defined). Compose is defined by

compose : fun (script[], rule[] — activity)

It should be noticed that the activity is composed from both scripts and a CACS rule set.



The decompose operation takes an activity and returns the scripts with their threads
suspended together with the rule set. As outlined above, each script will fully reflect its
current state at the time of decomposition. A compose directly following a decompose
restarts the scripts from their suspension point as if the decompose had never occurred.
It is also possible however to evolve the activity by editing the scripts before reactivating
them. Decompose is defined by

decompose : fun (activity — script[], rule[])

In addition to being able to design coherency protocols suitable for a particular
application from the outset, it is possible to evolve a protocol dynamically. The CACS
specification is supplied, as a first-class entity, to the compose operation when an activity
is initially created. It then forms part of the state of the component scripts: if the activity
is subsequently decomposed, the scripts may be edited in order to replace the initial
protocol specification with a new one. The new protocol will then control the interaction
of the scripts when they are reactivated.

Combining hyper-code, the CACS rules and the compose/decompose functions above
yields the facilities for evolution and thus compliance that we seeking. An active system
may be decomposed into its components. The components, the rule set and even the
compose function may then be evolved to meet the new requirements of the software. All
of this may be achieved without losing local or shared contexts.

5 An Example of Compliance

Our example of compliance concerns two engineers working on a shared document, a
drawing perhaps, but wishing to keep separate all their other calculations and data. In
order to keep their designs consistent the engineers have agreed a protocol that
determines when the shared diagram is in a consistent state and may be committed. The
protocol has been specified as a set of CACS rules2.

As the design is completed the engineers wish to disentangle themselves and operate in
isolation from one another within a system of atomic transactions. The evolution of the
protocol is non-trivial since it entails altering all the read and writes from and to the
persistent data. It also has to redefine the meaning of commit. For our purposes it is
sufficient to know that these protocols can be written and we will assume that they have
been predefined.

The initial state of the system shows two engineers eng/ and eng2 (the components in
hyper-code), a set of CACS rules R for shared commits and the shared document. The
composition illustrates that the activation uses the shared state and the set of rules.
Figure 2 depicts the system.

CACS Sharing and Scn:_rl H engl
R Transaction Rules
A
"’"‘
—
_ I~ Discument "

Figure 2: System composition

2 The rules themselves have been omitted here since the protocol is non-trivial and the details of the

CACS system would have to be described to understand the rules.



After some computation and the completion of the design, Figure 3 depicts the
decomposition of the system into its components: the engineers, the shared state and the
CACS rules.

Scn:_rl' E engl’ engl’ )
T | 1 engl |
‘ (@
R

[

Figure 3: System decomposition

When decomposed the system may be evolved with a different set of rules. For this to
be consistent the hyper-code that represents the engineers will also have to be changed
and the system composed again to complete the evolution. This is shown in Figure 4.

LA

engl' (@) eng?’

= ’
|

CACS Atomic
Trunsaction Rules

Figure 4: System evolution

The final system now only allows access to the design diagram under the ACID
transaction rules. The example shows how the system can evolve using the hyper-code
and CACS technologies thereby making the architecture more compliant to the changing
needs of the application.

6 Conclusions

Our goal is to develop software architectures that are compliant to the changing needs of
application systems. We have demonstrated that compliance requires the same
technologies for evolution in software systems. For that, the composition process must
be reversible into the base components and the rules under which the binding took place.
The problem is most interesting when all of the components, the binding rules and the
compose/decompose operations can evolve in the presence of active executions with
shared resources such as data.

To illustrate our ideas we have shown how two technologies: hyper-code and the CACS
system may be used in conjunction to be the basis of dynamic evolution.

7 Acknowledgements

This work is supported by EPSRC Grants GR/M88938 and GR/M88945 both entitled
“Compliant Systems Architecture”.



8 References

[1]

(2]
(3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

“The Common Object Request Broker: Architecture and Specification, Revision
2.3.1”. Object Management Group (OMG) (1999).

Microsoft Corporation “DCOM Technical Overview”. (1996).

Morrison, R., Balasubramaniam, D., Greenwood, R.M., Kirby, G.N.C., Mayes, K.,
Munro, D.S. & Warboys, B.C. “A Compliant Persistent Architecture”. Software
- Practice and Experience, Special Issue on Persistent Object Systems 30, 4
(2000).

Gosling, J., Joy, B. & Steele, G. “The Java™ Language Specification”. Addison-
Wesley (1996).

Kirby, G.N.C., Morrison, R. & Stemple, D.W. “Linguistic Reflection in Java”.
Software - Practice & Experience 28, 10 (1998) pp 1045-1077.

Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S. & Kirby, G.N.C.
“Exploiting Persistent Linkage in Software Engineering Environments”.
Computer Journal 38, 1 (1995) pp 1-16.

Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Moore, V.S. & Morrison, R.
“Unifying Interaction with Persistent Data and Program”. In Interfaces to
Database Systems, Sawyer, P. (ed), Springer-Verlag (1994) pp 197-212.

Zirintsis, E., Kirby, G.N.C. & Morrison, R. “Demonstration of Hyper-
Programming in Java”. In Proc. 25th International Conference on Very Large
Databases (VLDB'99), Edinburgh, Scotland (1999) pp 734-737.

Stemple, D. & Morrison, R. “Specifying Flexible Concurrency Control Schemes:
An Abstract Operational Approach”. In Proc. 15th Australian Computer Science
Conference, Hobart, Tasmania (1992) pp 873-891, Technical Report ESPRIT
BRA Project 3070 FIDE FIDE/92/35.

Eswaran, K.P., Gray, J.N., Lorie, R.A. & Traiger, I.L. “The Notions of
Consistency and Predicate Locks in a Database System”. Communications of the
ACM 19, 11 (1976) pp 624-633.

Moss, J.E.B. “Nested Transaction: An Approach to Distributed Computing”.
MIT Press, Cambridge, Massachusetts (1985).

Hoare, C.A.R. “Monitors: An Operating System Structuring Concept”.
Communications of the ACM 17, 10 (1974) pp 549-557.

Garcia-Molina, H. & Salem, K. “Sagas”. ACM SIGMOD Record 16, 3. Proc.
ACM SIGMOD Annual Conference, San Francisco, California (1987) pp 249-
259.

Warboys, B.C., Balasubramaniam, D., Greenwood, R.M., Kirby, G.N.C., Mayes,
K., Morrison, R. & Munro, D.S. “Instances and Connectors: Issues for a Second
Generation Process Language”. In Lecture Notes in Computer Science 1487,
Gruhn, V. (ed), Springer-Verlag (1998) pp 137-142.

Warboys, B.C., Balasubramaniam, D., Greenwood, R.M., Kirby, G.N.C., Mayes,
K., Morrison, R. & Munro, D.S. “Collaboration and Composition: Issues for a
Second Generation Process Language”. In Lecture Notes in Computer
Science 1687, Nierstrasz, O. & Lemoine, M. (ed), Springer-Verlag (1999) pp 75-
91.



