The Napier88 Reference Manual

Release 2.0

Ron Morrison
Fred Brown
Richard Connor
Quintin Cutts
Al Dearle
Graham Kirby

Dave Munro

Contents

5

7

8

INtroducCtion. e 5
Context Free Syntax Specification...................oooiiit. 8
Types and Type RUIES....cociiiiiiiii s 9
3.1 Universe Of DiSCOUISE.......ccuuiiiiiiuiieaiiiiiaeeeiineeeenennn 9
3.2 TheTypeAlgebra.......coviiiiii e 10
3.2, ANBENG c.eeiieee e 10

3.2.2 Recursive Definitions.........cccceevveeviinieeeinnnnnnn. 10

3.2.3 TYPEOPErAOrS. ...t 11

3.2.4 RecUrSVE OpEraorS.ovveiieiiieiieeieaaeannn 11

3.3 TypeEquivAence..........coooiiiiii 12
34 Type RUIES ..o 12
3.5 FrstClassCitizenshipccooiiiiiiiiiiee 13
LiteralS. . o 14
4.1 Integer LiteralS...o.oviniiiiee 14
42 Rea Litaras....coovieiiii 14
4.3 Boolean LiteralS.......cooviuiiiiiiiii 14
4.4 SiNGLItEralSo 14
45 Pixel Literals......ccocoiiiiiiiiiiiii e, 15
4.6 Picture Literal......cccooviiiiiiiiiiiiiie e 15
4.7 Null Literal.....coooiiiiiiii e 15
4.8 Procedure LiteralS.......cooooiiiiiiiiiiiiiiiiiiiieiiiieieeeen 16
4.9 Image Literal......cooooiiiiiiiiiiiiiie e 16
4.10 FileLiteralooeieiii i 16
Expressions and OperatorsSvuvuininiiananananannnnnn. 17
5.1 Evauaion Orderc.ovveiiiiiiiiiieieee e 17
5.2 Bo0Olean EXPreSSioNS.c.vviviiiiiiiiiiiiie e 17
5.3 CompariSon OPEratorScouvueueeiiaeieieaiiaaenaananes 18
5.4 Arithmetic EXPreSSionS...........coovevevneeiiiineeeiineeennnn. 19
5.5 Arithmetic PrecedenceRuleScooiiiiiiiiiiiinnnnn, 20
5.6 String EXPresSiONnS.......ccc.oeieuieiiieiiniiiiieeiieeiaeineeeens 20
5.7 Picture EXPresSionsS.........coooeeiieiiiieiiiniiiiaiiiieenneeenn 21
5.8 PiXel EXPressionS.ouveiiiiiiiiiiieeii e 22
5.9 TheParsistent Store.......c.covviviiiiiiiiiiiiiieieeeeeene 23
5.10 Precedence Table.......coccoiiiiiiiiiiiiiiiiiiiiec e 23
DeClarations.ouii i 24
6.1 Identifiers.....cccoiiii 24
6.2 Variables, Congtants and Declaration of Data Objects........ 24
6.3 Declaration of TYPeS......ccooiiiiiiiiiiiiiiiiiieeiiiiiieeeeeennn, 25
6.4 SEOUENCES......etiie ittt 25
6.5 BracketS.....ccooiiiiii i 26
6.6 SCOPERUIES ... 26
6.7 Recursve Object Declarations.............ccovviiiiiiinennn.. 26
6.8 RecursveTypeDeclarationS..........cocevvveiiiiiiiiinennnn.. 27
ClaUSES. . ittt e 28
7.1 ASSgNMENt ClalSeovvieiiieiiiie e 28
7.2 0f ClauSe....ccoivieiiii 28
7.3 CARCIAUSE ... 29
7.4 repeat .. while...doClause..........cocooviiiiiiiinnnnn. 29
7.5 forClause.....coiviii 30
ProOCEAUN ES. ... e 31
8.1 Declarationsand Calls...........ccooveiiiiiiiiiiiiien 31

8.2 RecursveDeclarations............cooeveiiiiiiiiiiiiin 32

8.3 Polymorphism.......ccoooiiiiiii 32

8.4 Equdityand Equivalence..............cooiiiiiiiiiiiii 33

O AQOr AL ES . ..ttt e 34
0.1 VOO et 34

9.1.1 Creation Of VECIOIS......cviviiiiiiiiiieieaean, 34

9.1.2 upbandIwb ... 35

9.1.3 INAEXING...cuiuiiiiiiiiiee e 36

9.1.4 Equdity and Equivdlence..............cccveiieinnnnnn. 36

0.2 SHUCKUIES. ... e ees 36

9.2.1 Creation of SIFUCIUIES.......ccovvviiiiiiiiiiieeeen, 36

9.2.2 INAEXING.. it 37

9.2.3 Equdity and Equivdlence..............coviiiininnnn. 37

0.3 IMAGES. .. e 38

9.3.1 Creation oOf IMAagES.......ccevvvviiiiiiiiiiiieeiiiinnn, 38

9.3.2 Raster OperationS........c.oovieiuiiiiiiiiiiiiaieneans 38

9.3.3 INAEXING...cuitiiiiiiiiii e 40

9.3.4 Depth Selection........cccoccueviiiiiiiiiiiiiiieiinees 40

9.3.5 Equdity and Equivdlence..............cocviiiininnnn. 41

10 VariantS .ot e 42
10.1 Variant TYPeS...ccuiiuiii e 42

10.2 Variant ValUeS......coviuiniieiii i 42

10.3 0SANA IS . .ueie i 42

10.4 Projection out of Variants...........cocevieviiiiiiiiinnnnn. 43

105 Variant USagevieiiiiieiiie e 44

10.6 Equdityand Equivalencecoooiiiiiiiiiiiiien 44

11 Abstract Data TYPeS.vueiiiii i 45
11.1 Abstract Data Type Definition..........ccooeovieiiiiiiiinnnnns 45

11.2 Creation of Abstract Data Objects..........ccvvieiviieininnnnns 45

11.3 Useof Abstract Data ObjectS........ocovveieiiiiiiiiiianns 46

11.4 Equdityand EQuivAlenCecooviiiiiiiiiiea 47

12 FilES. i 48
121 FleLitera ..o 48

12.2 Equdityand EQuivalencecoeiiiiiiiiiii 48

13 TYPE ANY o 49
13.1 InjectionintO TYPEaNYcuvviiie e ee e 49

13.2 Projection from Typeany........cooeiuiiiiiiiiiiiiiieaenen, 49

13.3 Equdityand Equivalencec.cooiieiiiiiiiiin 50

14 ENVIFONMENTS . ..t 51
14.1 Creating a New Environment................ccooeeeiiiiiinnnns 51

14.2 Adding Bindingsto an Environmentooo.ees 51

14.3 Using Bindingsin ENvironments..............cooeeeiviinennn. 52

14.4 Removing Bindings from Environments....................... 53

145 ThecontaiNSClaUSEcoviviuiiiiiiiiei e 53

14.6 Equdityand Equivalence...........coooveieiiiiiiiiia . 53

15 REfEIBNCES .. it e e 54
APPENIX | 57
APPENIX Tl o e 62
AppPendixX Tl o 66
Appendix LV 67

John Napier (1550-1617)

John Napier was born in Merchiston, Edinburgh in 1550. He matriculated at
St Salvator's College, University of St Andrews in 1563. Very little is known about
him during this period although he did study in Paris and travel in Italy and Germany
before returning to Scotland to marry in 1571.

This was the period of the Scottish Reformation and Napier was very committed to the
Protestant cause. In 1594, he wrote his Plaine Discovery of the whole Revelation of
Saint John which he addressed to King James VI in aletter. This was the first Scottish
book on the interpretation of scripture and has a significant place in the history of
theology in Scotland.

John Napier is best known as the inventor of Logarithms. While important stepsin the
theory had been taken in the sixteenth century, notably by Burgi, it was Napier who
first brought the subject, in any large way, to the attention of mathematicians. Thiswas
in his Mirifici logarithmorum canonis descripto (1614), the first important work on
mathematics produced in Great Britain, and one which inspired Briggs, the professor
of geometry at Gresham College, London, to develop the system of common
logarithms with the decimal base. Napier also invented Napier rods or bones for usein
multiplication, a development of a well-known Oriental method, and a number of
formulae in trigonometry relating to circular parts. His other mathematical works
include De arte logistica (1573 but not published until 1839), Rabdoligee seu
numerationis per vigulas libri duo (1617), in which the rods are described, and Mirifici
logarithmorum canonis constructio, published two years after his death.

Napier was also a great advocate of the decimal fraction system invented by Stevinusin
1585. Indeed, it appears that Napier introduced the decimal point into common usage
and eliminated the use of notation to indicate fractional position.

1 Introduction

The Napier88:persistent programming system provides the following facilities:

. Orthogonal persistence
— models of dataindependent of longevity
. Type completeness
— norestrictions on constructing types
. Higher-order procedures
— procedures are data objects
. Parametric polymorphism

— generic forms which may be specialised for use

. Abgtract (existential) data types
— for sophisticated protection and viewing

. Collections of bindings
— for name space control, incremental system construction and
system evolution

. A strongly typed stable store
- apopulated environment of typed data objects that may be
updated atomically

. Graphical datatypes
— for line drawings and raster images

. Concurrent execution and data access
— using threads, semaphores and transactions

. Support for reflective programming
— for system evolution

The Napier88 system consists of the language and its persistent environment. The
persistent store is populated and, indeed, the system uses objects within the persistent
store to support itself. The implication of orthogonal persistence is that the user need
never write code to move or convert data for long or short term storage [ABC+83]. The
model of persistence in Napier88 is that of reachability from a root object. The
persistent store is also stable, that is, it is transformed from one consistent state to the
next. Stabilisation must be invoked explicitly by the user to preserve data except that
programs which terminate normally generate an automatic stabilise operation. Execution
against the persistent store is always restarted from the last stabilised state.

Concurrency is provided by threads and semaphores [Mun93] for co-operative
concurrency and by the CACS system [SM92] for competitive concurrency and
designer transactions. Thus the notions of stability and visibility in commitment are
orthogonal [Kra85, AMP86, MBB+89]. The entire computation including the state of
the programs, threads and transactions is stable and recoverable after a system crash.

The Napier88 language is in the algol tradition as were its predecessors S-algol
[Mor79] and PS-algol [PS88]. Following the work of Strachey [Str67] and Tennant
[Ten77] the languages obey the principles of correspondence, abstraction and type
completeness. This makes for languages with few defining rules allowing no

exceptions. It is the belief of the designers that such an approach to language design
yields more powerful and less complex languages.

The Napier88 type system was evolving at the same time as Cardelli and Wegner
[CW85] published their work. Many of the ideas are related to theirs and some have
been borrowed from them. The philosophy is that types are sets of values from the
value space. The type system is mostly statically checkable, a property we wish to
retain wherever possible. However, some dynamic projection out of unions for types
any and env [DeaB9], as well as variant selection, allows the dynamic binding required
for orthogonal persistence [ABC+83] and system evolution [MCC+93].

The type system is polymorphic, like ML [Mil78, MTH89], Russell [DD79] and Poly
[Mat85] and uses the existentially quantified types of Mitchell & Plotkin [MP88,
CMM91] for abstract data types. There is deliberately no type inference, to allow for
explicit specidisation of polymorphic forms from the persistent store. A unique design
feature of the implementation of the typed objects is that their storage format may be
non-uniform [MDC+91]. The type system also includes graphical types for line
drawing in an infinite two-dimensional real space and for manipulating raster images.

The type equivalence rule in Napier88 is by structure and both recursive and
parameterised types are allowed in the type algebra, which in general leads to
undecidable type checking. This is dealt with in Napier88 by a syntactic convention
which alows the type checking to be sound, complete and co-complete [Con90].

The Napier88 system is designed as a layered architecture [Bro89] consisting of a
compiler [DeaB88, Con90, Cut92, Kir92], the Persistent Abstract Machine (PAM)
[BCC+88, CBC+90] and persistent storage architecture [Bro89, BM92, Mun93]. All
the Napier88 architectural layers are virtual in that, in any implementation, they may be
implemented separately or together as efficiency dictates. Thus, they are definitional
rather than concrete. In the current release the stable storage is provided by an after-
look shadow paging mechanism [Bro89, BM92, Mun93]. The architecture is shown

below:

Distribution

Concurrency User Transactions

_/

Persistent Abstract Machine)

(Local Heap)
Protection Mechanism
Stable Heap of Persistent Objects
(Stable Storage }
[Non Volatile Storage]

Napier88 programs are executed in a strict left to right, top to bottom manner except
where the flow of control is altered by one of the language clauses. On encountering an
error state, the PAM generates acall to a standard error procedure held in the persistent
store. These error procedures may be redefined by the user. The Persistent Abstract
Machine also monitors interaction with the operating system in which Napier88 resides.
When an asynchronous interrupt occurs the PAM records it and causes the appropriate
procedure call to a standard event procedure in the persistent store. Again, the user may
redefine the procedures used to intercept asynchronous interrupts.

There may be many incarnations of the stable persistent store and many activations of
the PAM. However, only one PAM incarnation may work on one persistent store at
any onetime.

This version of the reference manual corresponds to release 2.0 of the Napier88
language. The language has only a few changes to that of release 1.0 [MBC+89a,
MBC+89b] but the persistent environment has been significantly enriched and re-
organised. The changes to the language are:

. adynamic abstract witness model for abstract types, and
. type operators

A separate manual, the Napier88 Standard Library Reference Manua [KBC+944]
describes the persistent environment of the release. The main changes are the provision
of a browser, a compiler for reflective programming, threads and semaphores, a new
organisation of the object store to provide a navigation free store, distributed stores
with remote scan and copy, and a hyper-programming system. The environment also
provides a mechanism, through internet, for other sitesto contribute programs and data
which may then be accessed by remote scan and copy from other Napier88 stores. The
mechanism for this is described in the Napier88 Release 2.0 Installation Guide
[KBC+94b].

A third manual, the Napier88 to the Persistent Abstract Machine Compilation Rules
Manual [BBC+94] describes the formal definition of Napier88 together with the rules
to generate code for the Persistent Abstract Machine.

The Napier88 persistent programming system was originally planned as part of the
PISA project [AMP86] and was intended as a testbed for our experiments in type
systems, programming environments, concurrency, bulk data, object stores and
persistence. The form of the Napier88 language was first conceived by Ron Morrison
and Malcolm Atkinson but the main design and first implementation was done by Fred
Brown, Richard Connor, Alan Dearle and Ron Morrison. Release 2.0 constitutes a
major re-engineering, re-organisation and enhancement of the system by, in addition to
the above, Quintin Cutts, Graham Kirby and Dave Munro.

Many people have contributed to the Napier88 design. Malcolm Atkinson played a
major role [MBC+87, AM88, MBB+89], as did his research assistants Richard
Cooper, Francis Wai & Paul Philbrow. At STC Technology Ltd., John Scott, John
Robinson, Dave Sparks and Michael Guy aided, abetted and often criticised
constructively the early designs.

Our Visiting Fellows at St Andrews, John Hurst, Chris Barter, Chris Marlin, John
Rosenberg, Dave Stemple and Robin Stanton also contributed and influenced the
design and the research undertaken in the context of Napier88.

Ron Morrison

2 Context Free Syntax Specification

The formal definition of a programming language gives programmers a precise
description from which to work as well as providing implementors with a reference
model. There are two levels of definition, syntactic and semantic. This section deals
with the formal syntactic rules used to define the context free syntax of the language.
Later, informal semantic descriptions of the syntactic categories will be given. The
formal rules define the set of all syntactically legal Napier88 programs, remembering
that the meaning of any one of these programsis defined by the semantics.

To define the syntax of alanguage another notation is required which is called a meta
language and in this case a variation of Backus-Naur form is used.

The syntax of Napier88 is specified by a set of rules called productions. Each
production specifies the manner in which a particular syntactic category (e.g. aclause)
can be formed. Syntactic categories have names which are used in productions and are
distinguished from names and reserved words in the language. The syntactic categories
can be mixed in productions with terminal symbols which are actual symbols of the
language itself. Thus, by following the productions until terminal symbols are reached,
the set of legal programs can be derived.

The meta symbols, that is those symbols in the meta language used to describe the
grammar of the language, include | which allows a choice in a production. The square
brackets[and] are used in pairs to denote that an term is optiona. When used with a*,
a zero or many times repetition is indicated. The reader should not confuse the meta
symbols |, *, [and] with the actual symbols and reserved words in Napier88. To help
with this reserved words will appear in bold and actual symbols will appear in
outline bald. The names of the productions will appear in italics.

For example,
identifier ::= letter [letter | digit|_]*

indicates that an identifier can be formed as a letter, optionally followed by zero or
many letters, digits or underbars.

The productions for Napier88 are recursive which means that there are an infinite
number of legal Napier88 programs. However, the syntax of Napier88 can be
described in about 80 productions.

The full context-free syntax of Napier88isgiven in Appendix I.

3 Types and Type Rules

The Napier88 type system is based on the notion of types as a set structure imposed
over the value space. Membership of the type sets is defined in terms of common
attributes possessed by values, such as the operations defined over them. In the
absence of polymorphism these sets or types partition the value space; polymorphic
forms, which in Napier88 are polymorphic procedures and abstract data types, allow
values to belong to more than a single type. The sets may be predefined, like integer, or
they may be formed by using one of the predefined type constructors, like structure.

The constructors obey the Principle of Data Type Completeness [Str67, Mor79]. That
is, where atype may be used in a constructor, any typeis legal without exception. This
has two benefits. Firstly, since all the rules are very general and without exceptions, a
very rich type system may be described using a small number of defining rules. This
reduces the complexity of the defining rules. The second benefit is that the type
constructors are as powerful as is possible since there are no restrictions on their
domain.

3.1 Universe of Discourse
The following base types are defined in Napier88:
1. The scalar datatypesareint, real, bool, pixel, file and null.

2. Type string is the type of a character string; this type embraces the
empty string and single characters.

3. Type pic is the type of a conceptual line drawing, modelled in an
infinite 2-D real space; this type embraces single points.

4, Type imageisthe type of avalue consisting of a rectangular matrix
of pixels.
5. Type env is the type of an environment; values of this type consist

of acollection of bindings.

6. Type any is an infinite union type; values of this type consist of a
value of any type together with a representation of that type.

The following type constructors are defined in Napier88:
7. For any typet, *t isthe type of avector with elements of typet.

8. For identifiers I4,...,I, and types ty,...,ty, structure (11: tq,....I5: t)
is the type of a structure with fields I; and corresponding types t;,
fori=1.nandn=0.

9. For identifiers I4,...,I, and types ty,...,t,,, variant (I1: tq,...,.I5: ty) IS
the type of a variant with identifiers I; and corresponding types t;,
fori=1.nandn=0.

10. For any types ti,...,t, and t, proc (ty,...,t, — t) is the type of a
procedure with parameter types tj, for i = 1..n, where n = 0, and
result type t. The type of aresultless procedureis proc (ty,...,t,).

11. proc [Tq,....,Tm] (t1,...,.tq = 1), where the definitions of types
tq,...,th @nd t may include the use of the type variables Ty,...,T\y,, iS

the type of a procedure which is universally quantified over these
type variables for m > 0 and n = 0. These are polymorphic
procedures.

12. abstype [Wq,...,.W] (I7: tq,...,14 ty), where the definitions of
types ty,...,t, may include the use of the type variables Wj,..., Wy,
isthe type of a structure which is existentially quantified over these
type variablesfor m > 0 and n > 0. These are abstract data types.

The world of data values is defined by the closure of rules 1 to 6 under the recursive
application of rules 7 to 12.

In addition to the above, clauses which yield no value are of type void.
3.2 The Type Algebra
Napier88 provides a simple type agebra which allows the succinct definition of types
within programs. As well as the base types and constructors already introduced, types
may be defined with the use of

. aliasing

. recursive definitions

e typeoperaors
3.2.1 Aliasing

Any legal type description may be aliased by an identifier to provide a shorthand or
conceptually meaningful representation for that type. For example

typeronisint
type manisstructure (age: int ; size: real)
type either isvariant (first : ron ; second : man)

After itsintroduction an alias may be used in place of the full type description.
3.2.2 Recursive Definitions

Further expressibility may be achieved in the type algebra by the introduction of
recursive types. Recursive types allow the definition of user-defined types for values
with regular structures. The reserved word rec introduced before a type aias allows
instances of that aias to appear in the type definition. Mutually recursive types may aso
be defined by the grouping of aliases with ampersands. In this case binding of
identifiers within the mutual recursion group takes precedence over identifiers already
in scope.

rec type intList isvariant (cons: intNode ; tip : null)
& intNodeisstructure (head : int ; tail : intList)

10

3.2.3 Type Operators

Type operators allow families of types to be defined; operators may be specialised to
provide particular types. These operators are simple functions over types; note however
that they can always be statically resolved. Type operators are defined by an
overloading of the syntax for type aliasing, with formal parameters being provided in
sguare brackets after the alias. For example,

type heteroPair [a, b] isstructure (first : a; second : b)
type homoPair [t] isstructure (first, second : t)

Operators are applied by the use of the identifier followed by specialising types in
sguare brackets. For example,

type intRealPair is heteroPair [int, real]
type intPair is homoPair [int]

Notice that operator identifiers may not appear without being fully specialised.

Sometimesiit is convenient to define higher-order operators:

type pairOperApplnt [oper [t]] isstructure (first, second : oper [int])

Notice that in this case the t in the inner brackets may not be used as a formal
parameter, and is simply an indication of the arity of the formal parameter oper.
Identifiers used in such contexts have no extent.

3.2.4 Recursive Operators
Napier88 does not distinguish syntactically between recursive type operators and

operators over recursive types. For example the following is a generic description of
the family of list types:

rec type list[g] isvariant (cons: node[s] ; tip : null)
& node [t] isstructure (head : t ; tail : list [t])

The uncontrolled introduction of recursive type operators leads to the ability to describe
types over which no decidable structural equivalence agorithm is known. Thereis a
restriction in Napier88 on the definition of recursive operators as follows:

The specialisation of a recursive operator on the right hand side of its own definition
may not include any types which are constructed over its own formal parameters.

This rule extends through dependencies in sets of mutually recursive definitions; for

example list [*t] would not be allowed on the right hand side in the above example
because of the way the definition of list depends upon the definition of node. Thisrule

11

precludes the description of some useful type operators and types; for example the
following may not be used to describe the type of an array of any dimension:

rec typearray [t] isvariant (simple: t ; higherOrder : array [*t])

The restriction has been introduced to allow fully decidable typechecking in Napier88
while less restrictive schemes are under investigation.

3.3 Type Equivalence
Type equivalence in Napier88 is based upon the meaning of types, and is independent
of the way the type is expressed within the type algebra. Thus any aliases, recursion
variables, and operator applications are fully factored out before equivalence is
assessed. This style of type equivalence is normally referred to as structural
equivaence.
The structural equivalence rules are as follows:

. Every basetypeis equivaent only to itself.

. For two constructed types to be equivalent, they must have the same
constructor and be constructed over equivalent types.

. The bounds of a vector are not significant for type equivalence.

. For structure, variant and abstype constructors the labels are a significant
part of the type, but their ordering is not.

. For procedure and polymorphic procedure types, the parameter ordering is
asignificant part of the type construction.

The definition of type equivalence for types which involve the type variables of
polymorphic procedures and abstract data types is somewhat more subtle, and is
defined in the appropriate sections of this manual.
Napier88 has no subtyping or implicit coercion rules. Values may be substituted by
assignment or parameter passing only when their types are known statically to be
equivalent.
The types of al expressionsin Napier88 are inferred. There is no other type inference
mechanism; in particular, the types of all procedure parameters and results must be
explicitly stated by the programmer.
3.4 Type Rules
The type rules form a second set of rules to be used in conjunction with the context free
syntax to define well-formed programs. The generic types that are required for the
formal definition of Napier88 can be described by the following:

type arith is int | resl

type ordered is arith | string

typeliteral is ordered | bool | pixel | pic | null | proc | file | image

12

type nonvoid is literal | structure [variant | env | any |
abstype | parameterised | poly | * nonvoid

type type is nonveoid | void

In the above, the generic type arith can be either an int or areal, representing the
types integer and real in the language. In the type rules, the concrete types and generic
types are written in shadow face to distinguish them from the reserved words, meta—
symbols and actual symbols. Each of the type categories given above corresponds to
one of the type construction rules and will be described later in this manual.

To check that a syntactic category is correctly typed, the context free syntax isused in
conjunction with atype rule. For example, the type rule for the two-armed if clauseis

t : type, if clause: hool then clause: t elseclause: t => &

Thisrule may be interpreted as follows: t is given as a ftyjpe from the table above. It can

be any type including void. Following the comma, the type rule states that the reserved

word if must be followed by a clause which must be of type boolean. Thisisindicated

by : boal. The then and else alternatives must have clauses of the same type t for

glny t. The resultant type, indicated by =>, of this production is aso t, the same as the
ternatives.

The type rules will be used throughout this manual, in conjunction with the context-free
syntax rules, to describe the language. A complete set of type rules for Napier88 is
givenin Appendix I1.
3.5 First Class Citizenship
The application of the Principle of Data Type Completeness [Str67, Mor79] ensures
that all data types may be used in any combination in the language. For example, a
value of any data type may be a parameter to or returned from a procedure. In addition
to this, there are a number of properties possessed by all values of all data types that
congtitute their civil rightsin the language and define first class citizenship. All values
of datatypesin Napier88 have first class citizenship.
The additional civil rightsthat define first class citizenship are:

. the right to be declared,

. the right to be assigned to and to be assigned,

. the right to have equality defined over them, and,

. theright to persist.

13

4 Literals

Literals are the basic building blocks of Napier88 programs that allow values to be
introduced. A literal is defined by:

literdl = int_literal | real_literal | bool_literal | string_literal | pixel_literal |
picture literal | null_literal | proc_literal | image literal | file_literal

4.1 Integer Literals
These are of type integer and are defined by:

int_literal = [add_op] digit [digit]*
add op = + |-
int_literal => int

An integer litera is one or more digits optionally preceded by a sign. For example,

1 0 1256 -8797

4.2 Real Literals

These are of type real and are defined by
real_literal z= int_literal.[digit] “[eint_literal]
real_literal => [eal

Thus, there are anumber of ways of writing areal literal. For example,

1.2 3.1e2 5.e5

1. 3.4e-2 3.4et+4

3.1e-2 means 3.1 times 10 to the power -2 (i.e. 0.031)

4.3 Boolean Literals

There are two literals of type boolean: true and false. They are defined by
bool_literal n= true | false
bool_literal => hool

4.4 String Literals

A string literal is a sequence of characters in the character set (ASCII) enclosed by
double quotes. The syntax is

gring_literal = " [char]*”
char = any ASCII character except ™ | special_character
gpecial_character = "special_follow |

14

"if not followed by a special_follow
special_follow = niploft|b]"|"

string_literal => siring
The empty string is denoted by "". Examples of other string literas are:

"Thisisastring literal", and,

"l am astring"
The programmer may wish to have a double quote itself inside a string literal. This
requires using a single quote as an escape character and so if asingle or double quoteis
required inside a string literal it must be preceded by a single quote. For example,

"a"" hasthevauea', and,

"a'"" hasthevauea.

There are anumber of other specia characters which may be used inside string literals.
They are:

'b backspace ASCII code 8
't horizontal tab ASCII code 9
'n newline ASCII code 10
P newpage ASCII code 12
'0 carriage return ASCII code 13

4.5 Pixel Literals

There are two literals of type pixel: on and off. They are defined by
pixel_literal n= on | off
pixel_literal => pixel

4.6 Picture Literal

Thereisonly one picture literal. It is used to define a picture with no points.
picture literal = nilpic
nilpic => pic

4.7 Null Literal

Thereisonly oneliteral of the type null. It is used to ground recursion in variant types.
null_literal n= nil

nil => null

15

4.8 Procedure Literals

A proceduresisintroduced into a program by itsliteral value. They are defined by:

proc literal ::=proc [type_parameter_list] ([named_param list]
[-> type_id]); clause
type parameter_ligt ;.= [identifier_list]
named param list ::= [constant] identifier_list : type id[;
named_param list]

t : type, proc [type_parameter_list] ([named_param list]
[-> type_identifier : &]); clause : t

For example,

proc[t](n:t - t);n

isaprocedure literal.
The meaning and use of proceduresis described in Chapter 8.
4.9 Image Literal

There is only one image literal. It is used to define the image with no pixels. It has
dimensions O by 0 and depth O.

image literal = nilimage
nilimage => imege
4.10 File Literal

Thereisonly onefileliteral. It is used to denote afile value that is not bound to afilein
thefile system.

file literal = nilfile

nilfile => file

16

5 Expressions and Operators
5.1 Evaluation Order

The order of execution of a Napier88 program is strictly from left to right and top to
bottom except where the flow of control is atered by one of the language clauses. This
rule becomes important in understanding side-effects in the store. Parentheses in
expressions can be used to override the precedence of operators.

When an error occurs in the system, a standard error procedure is called automatically.
The standard error procedures are stored in the standard environment and may be
altered by the user using the Napier88 facilities for updating environments.

An event may also occur during the execution of a Napier88 program. An event acts
like an unexpected procedure call. Events are also defined in the standard environment
and may be manipulated in the same manner as errors. Further details of events and
errors may be found in the Napier88 Standard Library Reference Manua [KBC+944].

5.2 Boolean Expressions

Objects of type boolean in Napier88 can have the value true or false. There are only two
boolean literals, true and false, and three operators. There is one boolean unary
operator, ~, and two boolean binary operators, and and or. They are defined by the
truth table below:

a b ~a aorb aandb
true false false true false
false true true true false
true true false true true
false false true false false

The precedence of the operatorsisimportant and is defined in descending order as:

and

or

Thus,

~aor band c

isequivalent to

(~a) or (band c)

Thisisreflected in the syntax ruleswhich are:

expression = expl [or expl]*
expl = exp2 [and exp2]*
exp2 = [~] exp3 ...

17

expl : bool or expl : hool => boaol
exp2 : bool and exp2 : bool => boal
[~] exp3 : bool => bool
The evaluation of a boolean expression in Napier88 is non-strict. That is, in the left to
right evaluation of the expression, no more computation is performed on the expression
than is necessary. For example,
true or expression
gives the value true without evaluating expression and
false and expression
gives the value fal se without evaluating expression.
5.3 Comparison Operators
Expressions of type boolean can aso be formed by some other binary operators. For

example, a= b is either true or false and is therefore boolean. These operators are
called the comparison operators and are:

< less than

<= less than or equa to

> greater than

>= greater than or equd to

= equal to

~= not equal to

is isaparticular member of avariant

isnt is not a particular member of avariant
contains is present in an environment (see 14.5)

The syntactic rules for the comparison operators are:

exp2 = [~] exp3 [rel_op exp3]
rel_op = eq op | co_op|variant_op
eq_op = =|~=

co_op = <|<=|>]| ==
variant_op = is|isnt

tt : nonvoid, exp3 : iteq_op exp3 t => ool
where eq op : =| -=

t : ordered, exp3:tco_opexp3: t=> bool
whereco op = < | <=|>| ==

18

expression : variant variant_op identifier => boaol
wherevariant op = is|isnt

Note that the operators <, <=, > and >= are defined on integers, reals and strings
whereas = and ~= are defined on all Napier88 data types. The interpretation of these
operations is given with each datatype as it isintroduced. The operatorsisand isnt are
for testing avariant identifier and are defined in Chapter 10.

Equality for types other than scalar types and strings is defined as identity.

5.4 Arithmetic Expressions

Arithmetic may be performed on data objects of type integer and real. The syntax of
arithmetic expressionsis:

exp3 = exp4 [add_op exp4]*

expd = exp5 [mult_op exp5]*

exp5s = [add_op] expb6

mult_op = int_mult_op | real_mult_op]| ...
exp6 = ...

it : arith, expd : t add opexpd:t=>1t
tt : arith, add opexp6:ft=>t

exp5 : int int_mult_op exp5 : int => int

whereint_mult op == *|div|rem
exp5 : real real_mult_op exp5 : real => real
wherereal_mult op = *|/
The operators mean:

+ addition

- subtraction

* multiplication

/ rea division

div integer division throwing away the remainder

rem remainder after integer division

In both div and rem the result is negative only if exactly one of the operands is
negative.

Some examples of arithmetic expressions are

a+b 3+2 1.2+ 05 -21+a/20

The language deliberately does not provide automatic coercion from integer to real, but
the transfer may be explicitly invoked by the standard procedure float and the standard

19

procedure truncate is provided to transfer from real to integer. These are described in
the Napier88 Standard Library Reference Manual [KBC+944].

The evaluation of an arithmetic expression may cause the standard error procedures
unarylint, Int, unaryReal and Real to be called.

5.5 Arithmetic Precedence Rules

The order of evaluation of an expression in Napier88 is from left to right and based on
the precedence table:

* / div rem

+ -

That is, the operations *, /, div, rem are always evaluated before + and -. However, if
the operators are of the same precedence then the expression is evaluated left to right.
For example,

6div4drem 2 givesthevalue 1

Brackets may be used to override the precedence of the operator or to clarify an
expression. For example,

3*(2-1) yields 3 not 5
5.6 String Expressions

The string operator, ++, concatenates two operand strings to form a new string. For
example,

"abc" ++ "def"
resultsin the string
" abedef"
The syntax ruleis:
expd = exp5 [string_mult_op exp5]*

exp5 : siring string_mult_op exp5 : string => string
wihere string_mult_op ::= ++

A new string may be formed by selecting a substring of an existing string. For
example, if sisthe string "abcdef" then s (3| 2) isthe string "cd”. That is, anew string
isformed by selecting 2 elements from s starting at character 3. The syntax ruleis:

exp6 = expression (clause | clause)

expression : siring (clause : int | clause: int) => siring

For the purposes of substring selection the first character in astring is numbered 1. The
selection values are the start position and the length respectively.

20

To compare two strings, the characters are compared in pairs, one from each string,
from left to right. Two strings are considered equal only if they have the same
characters in the same order and are of the same length, otherwise they are not equal.

The charactersin a string are ordered according to the ASCI| character code. Thus,
n dl < IIZII
istrue.

The null string is less than any other string. Thus the less-than relation can be resolved
by taking the characters pair by pair in the two strings until oneisfound to be less than
the other. When the strings are not of equal length then they are compared as above and
then the shorter one is considered to be less that the longer. Thus,

"abc" < "abcd"
The other relations can be defined by using = and <.

The evaluation of a string expression may cause the standard error procedures
concatenate and subString to be called.

5.7 Picture Expressions

The picture drawing facilities of Napier88 allow the user to produce line drawings in
two dimensions. The system provides an infinite two dimensional real space. Altering
the relationship between different parts of the picture is performed by mathematical
transformations, which means that pictures are usually composed of a number of sub-
pictures.

In aline drawing system, the simplest pictureis apoint. For example, the expression,
[0.1, 2.0]
defines the point (0.1, 2.0).

Points in pictures are implicitly ordered. A binary operation on pictures operates
between the last point of the first picture and the first point of the second. The resulting
picture has as its first point, the first point of the first picture, and as its last, the last
point of the second.

There are two infix picture operators. They are”, which forms a new picture by joining
the first picture to the second by a straight line from the last point of the first picture to
the first point of the second. ++ also forms a new picture by including all the
subpictures of both the operand pictures. The other transformations and operations on
pictures are:

shift The new picture consists of the points obtained by adding the x
and y shift values and the x and y co-ordinates of the pointsin
the old picture. The ordering of the pointsis preserved.

scale The new picture consists of the points obtained by multiplying
the x and y scale values with the x and y co-ordinates of the
pointsin the old picture, respectively. The ordering of the points
IS preserved.

21

rotate The new picture consists of the points obtained by rotating the x
and y co-ordinates of the points in the old picture clockwise
about the origin by the angle indicated in degrees. The ordering
of the pointsis preserved.

colour Thenew pictureistheold onein anew colour.

text The new picture consists of the text string converted to a picture
representation. The two points represent the base line of the
string, which will be scaled to fit.

A text expression may cause the standard error procedure Text to be called while the
pictureis being drawn.

Thefull syntax of picture expressionsis:

exp4
pic_mult_op

exp5 [pic_mult_op exp5]*
N+

expression : pic¢ pic_mult_op expression : pic => pic

value_congtructor ::
picture_constr
picture op

picture_constr | picture op | ...

| clause, clause]

shift clause by clause, clause |

scale clause by clause, clause |

rotate clause by clause |

colour clausein clause |

text clause from clause, clause to clause, clause

[clause: real , clause: real] => pic
shift clause : pic by clause: rezal, clause : real => pic
scale clause : [pic by clause : real, clause: resl => pic
rotate clause : pic by clause: real => pic
colour clause: pic in clause: pixel => pic
text clause : string from clause: real , clause: real

to clause: real, clause: real => pic

5.8 Pixel Expressions

Pixels may be concatenated to produce another pixel of a greater depth using the
operator ++.

expd = exp5 [++exp5]*
exp5 : pixel ++ exp5 : pixel => pixel

For example,

let b = on ++ off ++ off ++ on

A pixel has depth representing the number of planes in the pixel. The planes are
numbered from 0 and new pixels can be formed from subpixels of others. The syntax
is

22

exp6 = expression (clause | clause)

expression : pixel (clause: int | clause : int) => pixel
For example, assuming the declaration of b above,

b(1]2) isthe pixel off ++ off

This last expression is interpreted as the pixel formed by starting at plane 1 in b and
selecting 2 planes.

The evaluation of a pixel expression may cause the standard error procedures
pixel Overflow and subPixel to be called.

Two pixelsare equal if they have the same depth and the corresponding planes have the
same value.

5.9 The Persistent Store

There is one predefined procedure in Napier88 and it allows access to the persistent
store. It is defined by

exp6 = PS ()
PS () => any

The structure of the persistent store is described in the Napier88 Standard Library
Reference Manual [KBC+944).

5.10 Precedence Table

Thefull precedence table for operatorsin Napier88 is:

/ * div rem N

+ - ++

= ~= < <= > >= is isnt
and

or

23

6 Declarations

6.1 Identifiers

In Napier88, an identifier may be bound to a data object, a procedure parameter, a
structure field, avariant label, an abstract data type label or atype. An identifier may be
formed according to the syntactic rule

identifier
id_follow

letter [id_follow]
letter [id_follow] | digit [id_follow] | _[id_follow]

That is, an identifier consists of aletter followed by any number of underscores, letters
or digits. Thefollowing are legal Napier88 identifiers:

x1 ronsObject look_for_Recordl Ron

Note that caseis significant in identifiers.

6.2 Variables, Constants and Declaration of Data Objects

Before an identifier can be used in Napier88, it must be declared. The action of
declaring a data object associates an identifier with a typed location which can hold
values. In Napier88, the programmer may specify whether the location is constant or
variable. A constant may be manipulated in exactly the same manner as a variable
except that it may not be updated.

When introducing an identifier, the programmer must indicate the identifier, the type of
the data object which is usually deduced, whether it is variable or constant, and its
initia value. Identifiers are declared using the following syntax:

let identifier init_op clause

init_op = =|:=

let identifier init_op clause : nonvoid => void
A variable is declared by

let identifier := clause

For example,

leta:=1

introduces an integer variable with initial value 1. Notice that the compiler deduces the
type.

A constant is declared by
let identifier = clause

For example,

24

let discrim=b*b-40*a*c

introduces areal constant with the calculated value. The language implementation will
detect and flag as an error any attempt to assign to a constant.

6.3 Declaration of Types
Type names may be declared by the user in Napier88. The nameis used to represent a

set of objects drawn from the value space and may be used wherever atype identifier is
legal. The syntax of type declarationsis:

type_decl = type type_init | rec type type_init [& type_init]*

type init ;.= identifier [type_operator_list] istype id

type operator_list ::= [type_operator [, type_operator]]

type_operator .= identifier | identifier [type_operator]

type_id = int [real | bool | string | pixel | pic | null |
any | env |image | file |
identifier [parameterisation] | type_constructor

parameterisation = [type_list]

type list =type id [, type list]

type_constructor :=*type id | structure_type | variant_type |
proc_type | abstype

structure _type ;.= structure ([named_param _list])

named param list .:= [constant] identifier _list: type id|[;
named_param list]

variant_| m=variant ([variant_fields])

variant_fields .= identifier_list : type id[; variant_fields]

proc_type ::= proc [type_parameter_list] ([parameter_list]

[-> type_id])

parameter list =type id [, parameter_list]

abstype ;.= abstype type _parameter_list (named_param list)

type_parameter_list ;.= [identifier_list]

Thus,
type a is bool

isatype declaration aliasing the identifier al with the boolean type. They are the same
type and may be used interchangeably. Examples of type declarations will be given in
later chapters.

6.4 Sequences
A sequence is composed of any combination, in any order, of declarations and clauses.

The type of the sequence is the type of the last clause in the sequence. Where the
sequence ends with a declaration, which by definition is of type void, the sequenceis

25

of type void. If thereis more than one clause in a sequence then al but the last must be
of type void.

sequence ::=declaration [; sequence] | clause [; sequence]
sequence : void ? => void
it : type, declaration : void ; sequence: t =>t
t : type, clause : void ; sequence: ft =>
ft : type clause: t=>t
6.5 Brackets

Brackets are used to make a sequence of clauses and declarations into a single clause.
There are two forms, which are:

begin
seguence
end
and
{sequence}

t : ftype, begin sequence: tend => t
t : type, {sequence: t} => 1t

{ and} allow asequenceto be written clearly on one line as a clause. For example,

leti:=2
for j=1to5do{i:=i*i;writelnt (i)}

However, if the sequence is longer than one line, the first alternative gives greater
clarity. Nonvoid sequences are sometimes called block expressions.

6.6 Scope Rules

The scope of an identifier is limited to the rest of the sequence following the
declaration. This means that the scope of an identifier starts immediately after the
declaration and continues up to the next unmatched } or end. If the same identifier is
declared in an inner sequence, then while the inner name is in scope the outer oneis
not.

6.7 Recursive Object Declarations

It is sometimes necessary to define values recursively. For example, the following
defines arecursive version of the factorial procedure:

reclet factorial = proc(n:int - int)
if n=0then 1elsen* factoria (n- 1)

The effect of the recursive declaration is to allow the identifier to enter scope
immediately. That is, after theinit_op and not after the whole declaration clause, asis

26

the case with non-recursive declarations. Thus, the identifier factorial used in thelitera
is the same as, and refers to the same location as, the one being defined. Chapter 8
gives an example of mutually recursive procedures.

Where there is more than one identifier being declared, al the identifiers come into
scope at the sametime. That is, al the names are declared first and then are available for
the clauses after the init_op.

Theinitialising clauses for recursive declarations are restricted to literal values.

The full syntax of object declarationsis:

object_decl = let object_init |
reclet rec_object_init [& rec_object_init]*
object_init = identifier init_op clause
rec_object_init = identifier init_op literal
init_op = =|:=

declaration == vaid
wihere object_decl let object_init | rec let rec_object_init
[& rec_object init]*

identifier init_op clause : nonvoid
identifier init_op literal : nonvaeid

wihere object_init
wihere rec_object_init ::
wihere init_op

6.8 Recursive Type Declarations

Thefull syntax of type declarationsis:

type_dec ::= typetype_init | rec type type init [& type init]*
type _init ::= identifier [type_operator_list] istype id

type operator_list ::= [type_operator [, type_operator]]

type_operator ;.= Identifier | identifier [type_operator_list]

For example, the following

rec typeintList isvariant (cons: intNode; tip : null)
& intNodeisstructure (head : int ; tail : intList)

defines atypefor alist of integers.

27

7 Clauses
The expressions described in Chapter 5 are clauses which allow the operators in the
language to be used to produce data objects. There are other kinds of clauses in
Napier88 which allow the data objects to be manipulated and which provide control
over the flow of the program.
7.1 Assignment Clause
The assignment clause has the following syntax:

cdause = name := clause

t : nonveid, name : t := clause : t => void

For example,

discriminant:=b* b-4.0* a* c

gives discriminant the value of the expression on the right. Of course, the identifier
must have been declared as a variable and not a constant. The clause alters the value
denoted by the identifier. Assignments may also be made to vector elements and fields
of structures and abstract data types.
The semantics of assignment is defined in terms of equality. The clause,

a:=b
where a and b are both identifiers, implies that after execution a = b will be true. Thus,
as will be seen later, assignment for scalar types means value assignment and for
constructed types it means pointer assignment.
7.2 if Clause
There are two forms of theif clause defined by:

if clause do clause |
if clause then clause else clause

if clause : bool do clause : void => void
t: type, if clause : boal then clause: ft else clause: t => t

In the single armed version, if the condition after theif istrue, then the clause after the
do is executed. For example, in the clause

ifa<bdoa:=3

the value 3 will be assigned to a, if aissmaller than b before the if clause is executed.

The second version allows a choice between two actions to be made. If the first clause
istrue, then the second clause is executed, otherwise the third clause is executed.

28

Notice that the second and third clauses are of the same type and the result is of that
type. The following contains two examples of if clauses:

if x=0theny:=lelsex:=y-1
let temp =if a<bthen 1else5

7.3 case Clause

The case clause is a generalisation of the if clause which allows the selection of one
item from a number of possible ones. The syntax is:

case clause of case list default : clause
cae lig :=clause list: clause; [case list]

t : type ; tl : nonvoid, case clause: tl of case list
default : clause:t =>t
clause list: clause: t ; [case list]

wihere case list |
clause: tl [, clause list]

where clause list

An example of the use of the case clauseis

case next_car_colour of

6,4 "green”
3-2: "red"
default : "any"

During the execution of this clause, the value next_car_colour is compared in strict
order, i.e left to right, top to bottom, with the expressions on the left hand side of the
colon. When a match is found the clause on the right hand side is executed. Control is
then transferred to the next clause after the case clause. If no match is found then the
default clause is executed. The above case clause has result type string.

7.4 repeat ... while ... do Clause
There are three forms of this clause which allow loops to be constructed with the test at
the start, the end or the middle of the loop. The three forms are encapsulated in the two
production alternatives:

repeat clause while clause [do clause] | while clause do clause

repeat clause : void while clause : bool [do clause : void] => void
while clause : hool do clause : void => vaoid

In each of the three forms the loop is executed until the boolean clause is false. The
while do version is used to perform a loop zero or many times, whereas the r epeat
while is used for one or many times.

An example of the repeat ... while ... do clause is

29

let factorial :=1;leti:=0

repeat

begin
writeString ("Factorial ") ; writelnt (i)
writeString (" is") ; writelnt (factorial)
writeString ("'n")

end

whilei <8do{i:=i+1; factoria := factoria * i}

7.5 for Clause

The for clause is included in the language as syntactic sugar where there is a fixed
number of iterations defined at the initialisation of the loop. It is defined by:

for identifier = clauseto clause [by clause] do clause

for identifier = clause : int to clause: int)]
[by clause: init] do clause : void => void

in which the clauses are: the initial value, the limit, the increment and the clause to be
repeated, respectively. The first three are of type int and are calculated only once at the
start. The by clause may be omitted where the increment is 1. The identifier, known as
the control constant, is in scope within the void clause, taking on the range of values
successively defined by initial value, increment and limit. That is, the control constant
is considered to be declared at the start of the repetition clause. The repetition clause is
executed as many times as necessary to complete the loop and each time it is, the
control constant is initialised to a new value, starting with the initial loop value,
changing by the increment until the limit is reached. An example of afor clauseis:

let factorial :=1;letn=28
for i = 1tondofactorial :=factorial * i

With a positive increment, the for loop terminates when the control constant is
initialised to a value greater than the limit. With a negative increment, the for loop
terminates when the control constant isinitialised to a value less than the limit.

30

8 Procedures
8.1 Declarations and Calls

Procedures in Napier88 constitute abstractions over expressions, if they return avalue,
and clauses of type void if they do not. In accordance with the Principle of
Correspondence [Str67], any method of introducing a name in a declaration has an
equivalent form as a parameter.

Thus, in declarations of data objects, giving a name an initial value is equivalent to
assigning the actual parameter value to the formal parameter. Since thisisthe only type
of declaration for data objects in the language, it is also the only parameter passing
mode and is commonly known as call by value.

Like declarations, the formal parameters representing data objects must have a name, a
type and an indication of whether they are variable or constant. A procedure which
returns avalue must also specify its return type. The scope of the formal parametersis
from their declaration to the end of the procedure clause. Procedures are defined as
literals with the following syntax:

proc literal ::=proc [type_parameter_list] ([named_param list]
[->type_id]); clause

type parameter_list ;= [identifier_list]

named param list .:= [constant] identifier_list: type id|[;
named_param lit]

tt : type, proc [type_parameter_list] ([named_param list]
[->type_id : ©]); clause :

Thus, the integer identity procedure, called int_id, may be declared by:

let int_id=proc (n:int - int);n

The syntax of a procedure call is:

expression ([application])
application n= clause list

t : type, expression : [prog ([clause_list]) => t
wiere clause list ::= clause : nonvoid [,clause list]

There must be a one-to-one correspondence between the actual and formal parameters
and their types. Thus, to call the integer identity procedure given above, the following
could be used,

int_id (42)

which will evaluate to the integer 42.

The type of int_id iswritten proc (int - int).

31

To complete the Principle of Correspondence for procedures, the parameters may be
made constant. Variable parameters may be assigned to, but since they are local
variables this only has local effect. Constant parameters may not be assigned to. For
example, the parameter ninint_id is not assigned to and is more appropriately a
constant. Therefore, the declaration should be:

let int_id = proc (constant n:int - int) ; n

Note that the constancy of the parameter is not part of the type, a notion that is
important when deciding type equivalence.

8.2 Recursive Declarations

Recursive and mutually recursive declarations of procedures are allowed in Napier88.
For example,

reclet tak = proc (x,y, z: int - int)
if x<=ythenzelsetak (tak (x - 1,Y, 2),
tak (y - 1, z, x),
tak (z-1,%,Y))

declares the recursive Takeuchi procedure.

Mutually recursive procedures may also be defined. For example,

rec let expression = proc () ; repeat expl () while have ("or")
& expl =proc () ; repeat exp2 () while have ("and")
& exp2 =proc ()
case symb of
"identifier" : next_symbol ()
default : {mustbe ("(") ; expression () ; mustbe (")")}

declares three mutually recursive procedures.
8.3 Polymorphism

Polymorphism permits abstraction over type. For example,

let id=proc [t] (constant x:t - t); X

declares a procedure that is the identity procedure for al types. The square brackets
signify that the procedure type is universally quantified by atype, t, and that once given
that type, the procedureis from typet tot. To call this procedure the programmer may
write,

id [int] (3) which yields 3, or,

32

id [real] (4.2) whichyields4.2
or the type parameter may be used by itself. For example,
id [int] which yields a procedure equivalent to int_id above.

Thus, one procedure, id, isin fact, an infinite number of identity procedures, one for
each type asit is specialised. The square brackets for quantifier type variables are used
to signify that types are not part of the value space of the language, but are based on the
philosophy that types are sets of values.

Thetypeof id iswritten as
proc[t] (t - t)

in Napier88. Procedures of these polymorphic types are first class and may be stored,
passed as parameters and returned as results, etc.

The advantage of the polymorphic abstraction should be obvious in the context of
software reuse. For example, a procedure to sort a vector of integers may be written
and another procedure to sort a vector of reals. By using the polymorphism in
Napier88, one procedure for all types, instead of a different one for each type, may be
written. This greatly reduces the amount of code that has to be written in a large
system.

8.4 Equality and Equivalence

Two procedures are equal in Napier88 if and only if their values are derived from the
same evaluation of the same procedure expression. For the cognoscenti, this means that
they have the same closure.

In common with all aggregate objectsin Napier88, equality means identity.

Two procedure types are structurally equivalent if they have the same parameter types
in one-one correspondence and the same result type. For polymorphic procedures,
thereisthe additional constraint that they have the same number of quantifiersusedin a
consistently substitutable manner.

In terms of types as sets, the polymorphic procedures are infinite intersections of types
[CW85].

The declaration of a quantifier type variable acts as if the type is a new base type for
type equivalence purposes. Thus quantifier type variables are only equivalent if they are
derived from the same instantiation of the same type variable (identifier). As a
consequence, avalue of aquantifier type variable that has been injected into an infinite
union may only be projected onto the same quantifier type variable.

33

9 Aggregates

Napier88 allows the programmer to group together data objects into larger aggregate
objects which may then be treated as single objects. There are three such object typesin
Napier88: vectors, structures and images. If the constituent objects are of the same
type, avector may be used and a structure otherwise. Images are collections of pixels.
Vectors, structures and images have the same civil rights as any other data object in
Napier88. Both abstract data types (Chapter 11) and environments (Chapter 14) may
also be considered methods of aggregation, but we have chosen to treat them

Separately.

All aggregate data objects in Napier88 have pointer semantics. That is, when an
aggregate data object is created, a pointer to the locations that make up the object isaso
created. The object is aways referred to by the pointer which may be passed around by
assignment and tested for equality. The location containing the pointer and the
congtituent parts of the aggregate data object may be independently constant or variable.

9.1 Vectors

9.1.1 Creation of Vectors

A vector provides a method of grouping together objects of the same type. Since
Napier88 does not alow uninitialised locations, all the initial values of the elements
must be specified. The syntax is:

vector_constr
vector_eement_init

[constant] vector vector_element_init
range of clause | range using clause |
@clause of [clause [, clause]*]
clauseto clause

range

t : nonvoid, vector range of clause : tt => *t

t 2 monvaoid, vector range using clause : proc (int -> t) => *t

t : nonvoid, vector @ clause : int of [clause: & [, clause: t]*] => *t
wihere range ::= clause : inft to clause : init

For example,

vector @1 of [1,2,3,4]

isavector of integers, whose type is written as *int, with lower bound 1 and variable
locationsinitialised to 1, 2, 3and 4. Similarly,

let abc ;= vector @1 of [1, 2, 3,4]

introduces avariable abc of type *int and the initial value expressed above.

Multi-dimensional vectors, which are not necessarily rectangular, can also be created.
For example,

34

let Pascal = constant vector @1 of |
constant vector @1 of
constant vector @1 of

[1],

[1,1
constant vector @1 of [1,2, 1],
constant vector @1 of [1, 3,3, 1],
constant vector @1 of [1,4, 6,4, 1],
constant vector @1 of [1, 5, 10, 10,5, 1]]

Pascal isof type**int. It is constant, asare all its elements. Thisisafixed table.

The use of the word constant before vector indicates that the elements are to be
constant. The checking for constancy will be performed when an assignment is made to
the element. The pointer constancy is determined by the init_op, which is=in this case
and so indicates that the pointer is also constant.

The above form of vector expression is sometimes very tedious to write for large
rectangular vectors with a common initial value. Therefore another form of vector
expression is available. For example

vector -1to 3 of -2

produces afive element integer vector with al the elements variable and initialised to -2.
The lower bound of this vector is -1 and the upper bound is 3. The element initialising
expression is evaluated only once and the result assigned to each of the elements.

A third form of vector initialisation is provided to allow the elements of a vector to be
initialised by afunction over the index. For example,

let squares=proc (n:int - int);n* n
let squares vector = constant vector 1to 10 using squares

In the initialisation, the procedure squares is called for every index of the vector in
order from the lower to upper bound. The corresponding element is initialised to the
result of its own index being passed to the procedure. In the above case, the vector
squares vector has elementsinitialised to 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100.
The initialising procedure must be of type

proc (int - t)

and the resulting vector is of type *t. This style of initialisation is particularly useful for
vectors with constant elements.

The creation of avector may call the standard error procedure makeVector.
9.1.2 upb and lwb
It is often necessary to interrogate a vector to find its bounds. The standard procedures

upb and Iwb are provided in Napier88 for this purpose. They are defined in the
Napier88 Standard Library Reference Manua [KBC+94a] and are of type

35

proc [t] (*t - int).
9.1.3 Indexing

To obtain the elements of a vector, indexing is used. For vectors, the index is aways
aninteger vaue. The syntax is:

exp6
dereference

expression (dereference)
clause [, dereference]

t : nonvoid, expression : *t (clause : int) => t
For example,
a(3+4)

selects the element of the vector a which is associated with the index value 7. Multi-
dimension vectors may be indexed by using commas to separate the indices.

Indexing expressions may call the standard error procedure vectorIndexSubs and
assignment to a vector element may call vectorIndexAssign and vector ElementConstant.

9.1.4 Equality and Equivalence

Two vectors are equal if they have the same identity, that is, the same pointer. Two
vectors are type equivaent if they have equivaent element types. Notice that the bounds
are not part of the type.

9.2 Structures

9.2.1 Creation of Structures

Objects of different types can be grouped together into a structure. The fields of a
structure have identifiers that are unique within that structure. The structures are sets of
labelled cross products from the value space. A structure may be created in two ways,
the first of which has the following syntax:

structure_constr
struct_init_list

struct ([struct_init_list])
identifier init_op clause[; struct_init_list]

struct (struct_init_list) => struciure]
where struct_init_list ::= identifier init_op clause : nonveid [; struct_init_list]

For example,

struct (a=1; b:=true)

creates a structure whose first field is a constant integer with the identifier a and whose
second field is a variable boolean with the identifier b.

Structures may also be created using atype identifier. The syntax of structure typesis:

structure_type ::=structure ([named_param list])
named_param list ::= [constant] identifier_list: type id [; named param list]

36

For example, a structure type may be declared as follows:

type person is structure (constant name : string ; age, height : int)

This declares a structure type, person, with three fields of type string, int and int,
respectively. The namefield is constant. It aso declares the field identifiers, name, age
and height.

To create a structure from a type declaration, the type identifier followed by the
initialising values for the fieldsis used.

structure creation = identifier [[specialisation]] ([clause_list])

For example,

let ron = person("Ronald Morrison", 42, 175)

creates a structure of type person defined above. The initiaising values must be in one-
one correspondence with the structure type declaration.

9.2.2 Indexing

To obtain afield of a structure, the field identifier is used as an index. For example, if
ron is declared as above, then,

ron (age)

yields 42. For the indexing operation to be legal, the structure must contain afield with
that identifier. As with vectors, a constancy check is performed on assignment.

Field identifiers, when used as indices, are only in scope within the brackets following
astructure expression. Thus these identifiers need only be unique within each structure

type.

A comma notation may be used for vectors or structures when the elements or fields are
themselves structures or vectors. The indexing of vectors and structures may therefore
be freely mixed. For example, if v isavector of vectors of persons then v(i)(j)(name)
and v(i,j,name) and v(i,j)(name) are equivalent expressions.

Attempted assignment to a constant field of a structure will cause the standard error
procedure structureFieldConstant to be called.

9.2.3 Equality and Equivalence
Two structures are equal if they have the same identity (pointer).

Thetype of astructure isthe set of the field identifier-type pairs. Thus the structure ron
has type:

structure (name: string ; age: int ; height : int)

37

Two structures have equivalent types when the types have the same set of identifier-
type pairs for the fields. Note that the order of the fields is unimportant.

9.3 Images
9.3.1 Creation of Images

Animageisarectangular grid of pixels. Images may be created and manipulated using
the raster operations provided in the language. The creation of imagesis defined by

image_constr "
image_init "
subimage_constr :

constant] image clause by clause image init
of clause | using clause
limit clause [to clause by clausg]

[at clause, clause]

image clause : init by clause: int of clause: pixel => image
image clause: int by clause: int using clause : image => image
limit clause : image [to clause : int by clause : ini]

[at clause: int, clause: int] => image

The integer values following at above must be > 0 and are subjected to an upper bound
check. All other integer values must be > 0. If these conditions are violated, the
standard error procedure makelmageis called.

Animageisatwo dimensiona object made up of arectangular grid of pixels. Animage
may be created asfollows:

let c =image 5 by 10 of on

which creates c with 5 pixelsin the X direction and 10 in the Y direction, all of them
initiallised to on. The origin of al imagesis 0, 0 and in this case the depth is 1.

Multi-plane images may be formed by using multi-plane pixels, such asin,

let a=image 64 by 32 of on ++ off ++ on ++ on

Images are first class data objects and may be assigned, passed as parameters or
returned as results. For example,

letb:=a

will assign the existing image a to the new one b. In order to map the operations usual
on bitmapped screens, the assignment does not make a new copy of a but merely copies
the pointer to it. Thus the image acts like a vector or structure on assignment.

9.3.2 Raster Operations

There are eight raster operations which may be used as described in the following
syntax.

38

raser .= raster_op clause onto clause
raster_op =ror |rand | xor | copy | nand | nor | not | xnor

raster_op clause : ifmage onto clause : image => void

thus, the clause

Xor bonto a

performs a raster operation of b onto a using xor. Notice that ais altered in situ and b
is unchanged. Both images have origin 0, 0 and automatic clipping at the extremities of
the destination image is performed.

The raster operations are performed by considering the images as bitmaps and altering
each bit in the destination image according to the source bit and the operation. Multiple
plane raster operations are discussed in 9.3.4. The following gives the meanings of the
operations (D stands for destination and S for source):

Operation Interpretation Result
ror inclusive or SorD
rand and SandD
xor exclusive or Sxor D
copy overwrite S
nand not and ~(Sand D)
nor not inclusive or ~(SorD)
not not the source ~S
xnor not exclusive or ~Sxor D

Images may also be created by using an initialising image as a background pattern. For
example,

let d = constant image 64 by 512 using abc

will create the image d of size 64 x 512 and then copy the image abc onto it as many
times as is necessary to fill it in both directions, starting at 0, 0. This style of
initialisation is particularly useful for setting up images with constant pixels and images
of regular patterns.

Rastering onto an image of constant pixels causes the standard error procedure
imagePixel Constant to be called.

39

9.3.3 Indexing

The limit operation allows the user to set up aliases to parts of images. For example,

let c=limitatolby5at 3,2

sets ¢ to be that part of a which starts at 3, 2 and has size 1 by 5. ¢ has an origin of 0,0
initself and istherefore awindow on a.

Rastering sections of images on to sections of other images may be performed by, for
example,

xor limit ato1lby 4at 6, 5onto
limitbto3by4at9, 10

Automatic clipping on the edges of the limited region is performed. If the starting point
of the limited region is omitted, then 0,0 is used and if the size of the region is omitted
then it is taken as the maximum possible. That is, it is taken from the starting point to
the edges of the host image. Limited regions of limited regions may a so be defined.

If the source and destination images overlap, then the raster operation is performed in
such amanner that each pixel is used as a source beforeiit is used as a destination.

The evaluation of the limit operation may cause the standard error procedures limitAt
and limitAtBy to be called.

9.3.4 Depth Selection

All the operations that have already been seen on images (raster, limit and assignment)
work more generally with depth. Thus the raster operations perform the raster function
plane by plane in one - one correspondence between source and destination. Automatic
depth clipping at the destination is performed, and if the source has fewer planes than
the destination, then the extra planes will remain unaltered. The limit operation works
over all the planes of animage.

The depth of the image may be restricted by the depth sel ection operation. For example,
assuming the earlier definition of a

let b=a(12)

yieldsb which isan aliasfor that part of a which has the two depth planes1 and 2. 1 is
the start plane and 2 is the number of planes. b has depth origin 0 and dimensions 64
by 32.
The full syntax of the depth selection operation is

exp6 = expression (clause | clause)

expression : image (clause : int | clause : int) => image

40

Thisindexing expression may call the standard error procedure sublmage.
9.3.5 Equality and Equivalence
Two images are equa if they have the same pointer.

All images have equivalent types.

41

10 Variants
10.1 Variant Types

Variants are sets of labelled digoint sums from the value space. A variant value has one
of these identifier-value pairs. A variant type may be defined by

variant_| m=variant ([variant_fields])
variant_fields = identifier_list : type id[; variant_fieldg]
For example,

type this variant isvariant (a:int; b: real)

declares atypethis variant whichmay beana: intor ab: real.
10.2 Variant Values

A variant value may be formed by naming the variant type and injecting the identifier-
vauepairintoit. The syntax is:

variant_creation ::= identifier [[specialisation]] (identifier : clause)

For example

let A :=this variant (b: 3.912)

declaresavalue A of type:

variant (a:int; b:real)

with the value of value 3.912 injected with the identifier b. The variant type must
contain the identifier-type pair that is used in the initialisation.

10.3 is and isnt

A variant object can be tested for having aparticular identifier. The syntax is:

exp2 = exp3 [type_op identifier]
type op = is|isnt
expression : variani type op identifier => hool
wihere type op ::= is|isnt
Thus,
Aisb

42

is legal and will yield the boolean value true. A compilation error will occur if the
variant type does not contain the identifier tag.

10.4 Projection out of Variants

Variants are particularly useful when used in conjunction with recursive types. For
example, the type definition for alist of integers might be:

rec typeintList isvariant (cons: intNode ; tip : null)
& intNodeisstructure (head : int ; tail : intList)

Thefirst element of the list isformed by

let first = intList (tip : nil)
let next :=intList (cons: struct (hd = 2; tl :=first))

In order to facilitate static type checking, avalue injected into a variant is rebound to a
constant location by the project clause. The syntax is.

project clause asidentifier onto project_list default : clause
project_list 1= . | variant_project_list
variant_project list = identifier - clause; [variant_project list]

it 2 type, project clause : veriaint asidentifier onto variant_project_list
default : clause : t => 1
where variant_project_list ;= identifier : clause: t ; [variant_project_list]

The projected value is given a constant binding to the identifier following the as. The
scope of the identifier is the clauses on the right hand side of the colons. This
mechanism prevents side effects on the projected value inside the evaluation of the right
hand side clauses and allows for static type checking therein. For projection, the variant
is compared to each of the labels on the left hand side of the colons. The first match
causes the corresponding clause on the right hand side to be executed. Within the
clause, the identifier has the type of the projected value. Control passes to the clause
following the project clause. Within the default clause, the constant identifier is
bound to the original variant value.

For example, a procedure to reverse alist might be:

43

rec typeintList isvariant (cons: intNode ; tip : null)
& intNodeisstructure (hd: int ; tl : intList)

let reverselist = proc (list : intList — intList)
begin
let temp :=intList (tip : nil) ; let done :=false
while ~done do
project list as X onto
cons: begin
temp :=intList (cons: struct (hd = X (hd); tl :=temp))
list:= X (th)
end
default :done:=true
temp
end

10.5 Variant Usage

The value of a variant may be projected by using the single quote (') notation. The
syntax is

expression’identifier
For example, assuming the definition given for A above, A'b yields the value 3.912 of
type real. The scope of the variant identifiers is such that they may only be used in
variant injections and after the symbolsis, isnt and .

The above procedure to reverse an integer list might be written as

let reverselist = proc (list : intList — intList)
begin

let temp :=intList (tip : nil)

while list isnt tip do

begin
temp :=intList (cons: struct (hd = list'cons (hd); tl :=temp))
list :=list'cons (tl)

end

temp

end

The evaluation of the ' operation may cause the standard error procedure var Project to
be called.

10.6 Equality and Equivalence
Two variant types are equivaent if they have the same set of identifier-type pairs.

Two variants are equal if they have equivalent types, the same identifier tags and equal
values.

44

11 Abstract Data Types

Abstract data types may be used where the data object displays some abstract behaviour
independent of representation type. Thusit is a second mechanism for abstracting over

type.
11.1 Abstract Data Type Definition

Abstract data types may be introduced by the following syntax:
abstype ::= abstypetype_parameter_list ([named_param list])
Thus,

type TEST isabstype[i] (a:i; constant b: proc (i - i))

declares the type TEST as abstract. The type identifiers that are enclosed in the square
brackets are called the witness type identifiers and are the types that are abstracted over.

A comparison can be made with polymorphic procedures which have universally
quantified types. These abstract types are existentially quantified and constitute infinite
unions over types [MP88].

The abstract data type interface is declared between the round brackets. In the above
case, the type has two elements, afield a with typei and a constant procedure b with

type
proc (i — i).

11.2 Creation of Abstract Data Objects

To create an abstract data object, the following syntax is used:
abstype creation ::= expression [specialisation | ([clause_list])

For example,

let inc_int=proc (a:int - int) ;a+1
let this= TEST [int] (3, inc_int)

declares the abstract data object this from the type definition TEST, the concrete (as
opposed to abstract) witness type int, the integer 3 and procedure inc_int. In the
creation, the values must be in one-one type correspondence with the type definition.

Once the abstract data object is created, the user can never again tell how it was
constructed. Thusthis has type:

abstypeli] (a:i;b:proc(i - i))

and the user can never discover that the witness type isinteger.

45

let that = TEST [int] (-42, inc_int)

creates another abstract data object. Although it is constructed using the same concrete
witness type, thisinformation is abstracted over, therefore this and that have the same
type, namely,

abstypeli] (a:i;b:proc(i - i))

as does al so below:

let inc_real =proc(b:real - real) ;b+ 10
let also = TEST [real] (-41.99999, inc_real)

Thus a vector of the objects can be formed by:

let abs TEST vec = constant vector @1 of [this, that, also]

since they have the same type.

11.3 Use of Abstract Data Objects

Since the internal representation of an abstract data object is hidden, it is inappropriate
to mix operations from one with another. That is, the abstract data object is totally
enclosed and may only be used with its own operations.

A second requirement in the system is that the type checking on the use of these objects
isstatic.

To achieve the above aims, the use clause is introduced to define a constant binding for
the abstract data object. This constant binding can then be indexed to refer to the values
inamanner that is statically checkable. The syntax of the use clauseis

use clause asidentifier [witness_decls] in clause

use clause : abstype as identifier [witness decls] in clause : void => vaid

For example,

use abs TEST vec (1) asX in
begin

X (@) =X (b) (X (3a)
end

46

which will apply the procedure b to the value a, storing the result in a, for the abstract
data object referred to by abs TEST vec (1). X is declared as a constant initialised to
abs TEST vec (1).

This could be generalised to a procedure to act on any of the elements of the vector. For
example,

let increment = proc (this_one: TEST)
use this oneas X in
begin
X (@) =X (b) (X (a))
end

let lower = lwb [TEST] (abs TEST_vec)
let upper = upb [TEST] (abs TEST _vec)

for i = lower to upper doincrement (abs TEST vec (i))

The scope of the identifiersin the interface is restricted to within the clause following
the constant binding identifier.

In the use clause, the witness types may be named for use. For example,

usethisas X [B] in

begin
letid=proc(x:B - B); x
let one:=X (a)
one:=id[B] (one)

end

which renames the witness type as B and allows it to be used as a type identifier within
the use clause.

11.4 Equality and Equivalence

An abstract data object is only equal to itself, that is equality means identity.

Two abstract data types are equivalent if they have the same identifiers with equivalent
types in the interface and the same number of witness types used in a substitutable
manner.

Two witness types are only equivalent if they derive from the same instance of the
abstract datatype. Thus avalue of awitnesstype that has been injected into an infinite

union may only be projected onto the corresponding witness of the same abstype
instance.

47

12 Files

The file data type is used to access the I/O devices that are available to the host
environment in which the Napier88 system isimplemented. A file may refer to either a
disk file, a terminal, a mouse, a tablet, an X-window, a socket, a shell or a raster
graphics display. There are certain operations that are specific to each kind of fileand a
range of operations applicable to all files. A value of type file is implemented as a
pointer to an object that describes the I/O device and its associated state. A set of
standard procedures is provided to create and manipulate both file descriptors and the
I/O devices they refer to. The operation of each of the standard procedures is fully
described in the Napier88 Standard Library Reference Manua [KBC+944].

12.1 File Literal

Thereisonly one literal of typefile, nilfile. See Section 4.10.
12.2 Equality and Equivalence

Two values of typefile are equd if they are the samefile.

All values of type file have equivaent types.

48

13 Type any
Type any is the type of the union of all valuesin Napier88. Vaues must be explicitly
injected into and projected from type any. Both of these operations are performed
dynamically and, in particular, the projection from any to another type involves a
dynamic type check. We have argued elsewhere [ABC+83] that such atype check is
required to support the binding of independently prepared programs and datain atype
secure persistent object store.
13.1 Injection into Type any
Values may be injected into type any by the following syntax:

any (clause)

t : nonveid, any (clause : t) => any

For example,

let int_any = any (-42)

which declaresint_any to be the integer value -42 injected into type any.

Values of type any may be passed as parameters. For example, the following is an
identity procedure for type any.

let id_any = proc (x : any — any) ; X

Thus polymorphic procedures may be written by using type any and injecting the
parameters into any before the call and projecting the results after the call.

13.2 Projection from Type any
Values may be projected from type any by use of the project clause.

project clause as identifier onto project_list default : clause
project_list = any project_list| ...
any project list ::=type id: clause; [any project list]

ft : type, project clause : any asidentifier onto any project list
default : clause : t => 1
wihereany project list ::= type id: clause: t ; [any _project list]

The projected value is given a constant binding to the identifier following the as. The
scope of the identifier is the clauses on the right hand side of the colons. This
mechanism prevents side effects on the projected value inside the evaluation of the right
hand side clauses and allows for static type checking therein. For projection, the typeis
compared to each of the types on the left hand side of the colons. The first match causes
the corresponding clause on the right hand side to be executed. Within the clause, the
identifier has the type of the projected value. After execution of the project clause,
control passes to the clause following the project clause.

49

An example of projectionis:

let write_type = proc (x : any - string)
project x as X onto

int : "typeisinteger"
real "typeisarea"
default : "type is neither integer nor real"

13.3 Equality and Equivalence

Two values of type any are equal if and only if they can be projected onto equivalent
types and the projected values are equal.

All values of type any are type equivalent.

50

14 Environments

Environments [Dea89] are the infinite union of all labelled cross products.
Environments differ from structures in that bindings may be added to or removed from
environments dynamically. This mechanism is used in Napier88 to provide a method
for dynamically composing block structure and thus controlling the name space.
Environments also provide a method of storing and composing independently prepared
programs and data, and thus control of the persistent object store in which the language
resides.

A binding in Napier88 has four components: an identifier, a type, a value and a

variable/constant location indicator [AM88]. The type environment iswritten asenv in

Napier88.

14.1 Creating a New Environment

A new environment is created by using the standard procedure environment of type:
proc (— env)

Calling this procedure creates an environment with no bindings. The procedure is fully
described in the Napier88 Standard Library Reference Manual [KBC+944] .

14.2 Adding Bindings to an Environment

Bindings are added to environments by means of declarations. The syntax is:

env_dec = in clause let object_init |
in clauserec let rec_object_init [& rec_object_init]*
object_init = identifier init_op clause
rec_object_init = identifier init_op literal
init_op = =|:=
Thus the program segment,

let this = environment ()
inthislet a=3

creates an environment this. In the environment, it creates the binding with identifier a,
value 3, type integer and constant, i.e. {a, 3, int, constant}. The binding is added to the
environment this, but not to the local scope. The standard error procedure
envRedeclaration is called if the binding to be added does not have a unique identifier
within the environment.

Another binding may be added by writing:

in thisrec let fac := proc (n:int - int)
if n=0then 1elsen* fac (n-1)

after which this now has the form {a, 3, int, constant} {fac, proc..., proc (int -
int), variable}

51

Non-recursive declarations of bindings are added to environments one at a time.
Recursive declarations are added simultaneously, although in the above case there is
only one. This corresponds to the scoping rules for non-recursive and recursive
declarationsin blocks.

An example of mutually recursive procedures in an environment is given by the
following:

rectypelist [t] isvariant (cons: node[t] ; tip : null)
& node[g] isstructure (hd: s; tl : list[5])

rec type object isvariant (ron : bool ; fred : list [object])

in thisrec let show = proc (this: object - string)
project thisas X onto
ron : if X then "true" else "false"
fred : "[" ++ showlist (X) ++"]"
default : ""

& showlist = proc (this: list [object] - string)
if thisistip then ""
else show (thiscons (hd)) ++ "," ++ showlist (thiscons (tl))

Notice that although both show and showlist refer to each other, neither appearsin the
local scope. It would seem that none of the calls on these procedures are bound at all.
To achieve the desired bindings for mutually recursive procedures in environments, the
rule isthat the identifiers bind to the environment's objects being declared.

14.3 Using Bindings in Environments

The bindings in an environment are brought into scope by a use clause. The syntax is:

clause ::= use clause with signaturein clause
signature :=named _param list
named param list .:= [constant] identifier _list: type id|[;

named_param list]
t : type, use clause : @nv with signaturein clause : t =>

For example, to use fac declared earlier, the programmer may write:

use thiswith fac: proc (int - int)in ... fac ...

The effect of the use clause is to bring the name fac into scope at the head of the clause
after in. fac binds to the location in the environment. Therefore, local assignment to fac
will ater the value in the environment.

Notice that only a partial match on the signature of the environment is necessary. For
every binding, the identifiers in the use must be the same asin the environment binding
and the types equivalent. The constancy is determined by the original binding athough
it may be separately specified as constant in the use clause. No update to a constant
valueisalowed at run time and the compiler will flag as a syntax error any assignment

52

to a binding specified as constant. Bindings in the environment that are not specified in
the signature of the use clause are not in scope in the clause following in and may not
be used.

The standard error procedure envProject is called if the signature in the use clause
cannot be matched by the environment.

14.4 Removing Bindings from Environments

Bindings may be removed from environments by the drop clause. The syntax is:
cdaue = drop identifier from clause
drop identifier from clause : env => vaoid

For example,

drop fac from this

The effect of the above isthat the binding is no longer reachable from the environment.
It does not imply the destruction of any object or any dangling reference, since other
bindings to the value in the dropped binding will still be valid. The standard error
procedure envDrop is called if the dropped identifier does not exist in the environment.

14.5 The contains Clause

An environment may be tested by the infix operator containsto determineif it contains
abinding with certain characteristics. The syntax is

expé = clause contains [constant] identifier [: type_id]|
clause : env contains [constant] identifier [: type_id] => boal
There are several forms of this which alow testing of an identifier in an environment

binding, an identifier-type pair, an identifier constancy binding and an identifier
constancy type binding. Thus, using the environment this given earlier:

this contains a true
this containsa: int true
this contains constant a true
this contains constant a: int true
this contains a: string fase
this contains b fase

14.6 Equality and Equivalence

Two values of type environment are equal if they refer to the same environment. All
environments have equivalent types.

53

15 References

[ABC+83]*

[AMS8S]

[AMPS6]

[BBC+94]*

[BCC+88]

[BM92]*

[Bro89]*

[CBC+90]*

[CMMA1]*

[Con90]*

[Cut92]*

[CW85]

[DD79]

54

Atkinson, M.P., Bailey, P.J.,, Chisholm, K.J., Cockshott, W.P. &
Morrison, R. “An Approach to Persistent Programming”. Computer
Journal 26, 4 (1983) pp 360-365.

Atkinson, M.P. & Morrison, R. “Types, Bindings and Parametersin a
Persistent Environment”. In Data Types and Persistence,
Atkinson, M.P., Buneman, O.P. & Morrison, R. (ed), Springer-Verlag
(1988) pp 3-20.

Atkinson, M.P., Morrison, R. & Pratten, G.D. “Designing a Persistent
Information Space Architecture”. In Proc. 10th IFIP World Congress,
Dublin (1986) pp 115-120.

Balasubramaniam, D., Brown, A.L., Connor, R.C.H., Cutts, Q.l.,
Dearle, A., Kirby, G.N.C., Morrison, R., Munro, D.S. & Scheuerl, S.
“The Napier88 To the Persistent Abstract Machine Compilation Rules’.
University of St Andrews Technical Report CS/94/8 (1994).

Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A. & Morrison,
R. “The Persistent Abstract Machine”. Universities of Glasgow and St
Andrews Technical Report PPRR-59-88 (1988).

Brown, A.L. & Morrison, R. “A Generic Persistent Object Store”.
Software Engineering Journal 7, 2 (1992) pp 161-168.

Brown, A.L. “Persistent Object Stores’. Ph.D. Thesis, University of St
Andrews (1989).

Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison,
R. “The Persistent Abstract Machine”. In Persistent Object
Systems, Rosenberg, J. & Koch, D.M. (ed), Springer-Verlag, Proc.
3rd International Workshop on Persistent Object Systems, Newcastle,
Australia (1990) pp 353-366.

Connor, R.C.H., McNally, D.J. & Morrison, R. “Subtyping and
Assignment in Database Programming Languages’. In Proc. 3rd
International Workshop on Database Programming Languages,
Nafplion, Greece (1991).

Connor, R.C.H. “Types and Polymorphism in Persistent Programming
Systems’. Ph.D. Thesis, University of St Andrews (1990).

Cutts, Q.I. “Delivering the Benefits of Persistence to System
Construction and Execution”. Ph.D. Thesis, University of St Andrews
(1992).

Cardelli, L. & Wegner, P. “On Understanding Types, Data Abstraction
and Polymorphism”. ACM Computing Surveys 17, 4 (1985) pp 471-
523.

Demers, A. & Donahue, J. “Revised Report on Russell”. Cornell
University Technical Report TR79-389 (1979).

[Deass]*

[Deasa]*

[KBC+94a]*

[KBC+94b]*

[Kirg2]*

[Kra85]

[Mat85]
[MBB+89]*

[MBC+87]*

[MBC+89a]*

[MBC+890]

[MCC+93]*

[MDC+91]*

[Mil 78]

Dearle, A. “On the Construction of Persistent Programming
Environments’. Ph.D. Thesis, University of St Andrews (1988).

Dearle, A. “Environments: A flexible binding mechanism to support
system evolution”. In Proc. 22nd International Conference on Systems
Sciences, Hawaii (1989) pp 46-55.

Kirby, G.N.C., Brown, A.L., Connor, R.C.H., Cutts, Q.l., Dearle,
A., Moore, V.S., Morrison, R. & Munro, D.S. “The Napier88
Standard Library Reference Manual Version 2.2". University of St
Andrews Technical Report CS/94/7 (1994).

Kirby, G.N.C., Brown, A.L., Connor, R.C.H., Cutts, Q.l., Dearle,
A., Morrison, R. & Munro, D.S. “The Napier88 Release 2.0
Installation Guide’. University of St Andrews (1994).

Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent
Programming Systems’. Ph.D. Thesis, University of St Andrews
(1992).

Krablin, G.L. “Building Flexible Multilevel Transactions in a
Distributed Persistent Environment”. In Proc. 2nd International
Workshop on Persistent Object Systems, Appin, Scotland (1985) pp 86-
117.

Matthews, D.C.J. “Poly Manual”. University of Cambridge (1985).

Morrison, R., Barter, C.J., Brown, A.L., Carrick, R., Connor,
R.C.H., Dearle, A., Hurst, A.J. & Livesey, M.J. “Language Design
Issues in Supporting Process-Oriented Computation in Persistent
Environments’. In Proc. 22nd International Conference on System
Sciences, Hawaii (1989) pp 736-744.

Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A.
& Atkinson, M.P. “Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment”. Software Engineering
Journal, December (1987) pp 199-204.

Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The
Napier88 Reference Manual”. Universities of Glasgow and St Andrews
Technical Report PPRR-77-89 (1989).

Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “Napier88
Release 1.0”. University of St Andrews (1989).

Morrison, R., Connor, R.C.H., Cutts, Q.l., Kirby, G.N.C. &
Stemple, D. “Mechanisms for Controlling Evolution in Persistent Object
Systems”. Journa of Microprocessors and Microprogramming 17, 3
(1993) pp 173-181.

Morrison, R., Dearle, A., Connor, R.C.H. & Brown, A.L. “An Ad-
Hoc Approach to the Implementation of Polymorphism”. ACM
Transactions on Programming Languages and Systems 13, 3 (1991) pp
342-371.

Milner, R. “A Theory of Type Polymorphism in Programming”. Journa
of Computer and System Sciences 17, 3 (1978) pp 348-375.

55

[Mor79]

[MPSS]

[MTHS9]

[Mun@3]*

[PS88]

[SMO2]*

[Str67]

[Ten77]

Morrison, R. “On the Development of Algol”. Ph.D. Thesis, University
of St Andrews (1979).

Mitchell, J.C. & Plotkin, G.D. “Abstract Types have Existential Type”.
ACM Transactions on Programming Languages and Systems 10, 3
(1988) pp 470-502.

Milner, R., Tofte, M. & Harper, R. The Definition of Standard
ML. MIT Press, Cambridge, Massachusetts (1989).

Munro, D.S. “On the Integration of Concurrency, Distribution and
Persistence”. Ph.D. Thesis, University of St Andrews (1993).

“PS-algol Reference Manual, 4th edition”. Universities of Glasgow and
St Andrews Technical Report PPRR-12-88 (1988).

Stemple, D. & Morrison, R. “ Specifying Flexible Concurrency Control
Schemes: An Abstract Operational Approach”. In Proc. 15th Australian
Computer Science Conference, Hobart, Tasmania (1992) pp 873-891.

Strachey, C. Fundamental Concepts in Programming
L anguages. Oxford University Press, Oxford (1967).

Tennant, R.D. “Language Design Methods Based on Semantic
Principles’. Actalnformatica8 (1977) pp 97-112.

*Availableviaftp from: ftp-fide. dcs. st-andrews. ac. uk/

pub/ per si st ence. papers

or via WWW from: http://ww«fide. dcs. st-andrews. ac. uk: 8080/

56

Publ i cati ons. ht n

Appendix |

Context Free Syntax

Session:
session ::= sequence?
sequence ::=declaration [; sequence] | clause [; sequence]
declaration ::=type_decl | object_decl

Type declarations:

type_decl ;= typetype_init | rec type type init [& type_init]*
type init ::= identifier [type_operator_list] istype id

type operator_list ::= [type_operator [, type_operator]]

type_operator ;.= identifier | identifier [type_operator_list]

Type descriptors:

type_id = int |real | bool | string | pixel | pic | null |any |
env | image | file | identifier [parameterisation] |
type_constructor

parameterisation = [type_list]

type list = type id [, type list]

type_constructor :=*type_id | structure_type | variant_type |
proc_type | abstype

sructure_type ::=structure ([named_param list])

named_param list ::=[constant] identifier_list : type id [; named param list]

variant_type ::=variant ([variant_fields])
variant_fields ::=identifier_list: type id[; variant_fieldg]
proc_type ::= proc [type_parameter_list] ([parameter_list] [-> type_id])

parameter_lig ::=type id [, parameter_list]
abstype ;.= abstypetype_parameter_list ([named_param list])
type_parameter_list ;= [identifier_list]

57

Object declarations:

object_decl let object_init |

rec let rec_object init [& rec_object_init]*
object_init

identifier init_op clause

rec_object init identifier init_op literal

init_op
Clauses:

clause::= env_dec! |
if clause do clause |
if clausethen clause else clause |
repeat clause while clause [do clause] |
while clause do clause |
for identifier = clause to clause [by clause] do clauseg]
use clause with signaturein clause |
use clause asidentifier [witness_decls] in clause |
case clause of case list default : clause |
rager |
drop identifier from clause |
project clause as identifier
onto project_list default : clause |
name := clause |
expression

env_decl in clause let object_init |

in clauserec let rec_object_init [& rec_object_init]*

signature named_param list

witness decls ::=type parameter list

cae list =clause list: clause; [case lid]

raser ;= raster_op clause onto clause

raster_op :=ror [rand | xor | copy | nand | nor | not | xnor
project_list =any _project_list | variant_project_list

any project list ::=type id: clause; [any _project list]
variant_project list ;= identifier : clause; [variant_project_list]

Expressions:

expression = expl [or expl]*

expl = exp2 [and exp2]*
exp2 n= [~] exp3 [rel_op exp3]
exp3 = exp4 [add_op exp4]*

58

exp4 =

exp5s

exp6

dereference

specialisation

application

name

clause ligt
Value constructors:

value_congtructor

vector_constr

vector_element_init

range
structure_constr
sruct_init_list
image_constr
image_init

subimage_constr

picture_constr

picture_op

exp5 [mult_op exp5]*

[add_op] exp6

literal | value_constructor | (clause) |

begin sequence end | {sequence} |

expression (clause | clause) |

expression (dereference) |

expression’identifier |

expression [specialisation] |

expression ([application]) |

clause contains [constant] identifier [: type_id]|
any (clause) |

PS (|

name

clause [, dereference]

type parameter_list

clause ligt

identifier | expression (clause_list) [(clause_list)]*

clause[, clause list]

vector_constr | structure_constr | image_constr |

subimage_condgtr | picture_constr | picture_op |
structure _creation | variant_creation |

abstype creation |

[constant] vector vector_element_init

range of clause | range using clause |
@clause of [clause [, clause]*]

clauseto clause
struct ([struct_init_list])

identifier init_op clause [; struct_init_list]

[constant] image clause by clause image _init

of clause | using clause

limit clause [to clause by clause]
[at clause,clauseg]

[clause, clauseg]
shift clause by clause, clause |

scale clause by clause, clause |
rotate clause by clause |

59

sructure _creation
variant_creation

abstype creation

Literals:

literal

colour clausein clause |
text clause from clause, clause to clause, clause

identifier [[specialisation]] ([clause_list])
identifier [[specialisation]] (identifier : clause)

expression [specialisation | ([clause_list])

int_literal | real_literal | bool_literal | string literal | pixel_literal |

picture literal | null_literal | proc_literal | image literal |file _literal

int_literal
real_literal
bool_literal
gring_literal
char
special_character

special_follow
pixel_literal
null_literal

proc_literal

picture literal
image literal
file literal

[add_op] digit [digit]"

int_literal.[digit] “[eint_literal]

true | false

"[char]*"

any ASCII character except ” | special_character

"special_follow |
"if not followed by a special_follow

niplolt|b]|*|”
on | off
nil

proc [type_parameter _list] ([named_param list]
[->type_id]); clause

nilpic
nilimage

nilfile

Miscellaneous and microsyntax:

60

add op := + |-

mult_op ::= int_mult_op | real_mult_op | string_mult_op | pic_mult_op |
pixel_mult_op

int_mult_op n= * | div | rem

real_mult op = |/

string_mult_op ::= + 4+

pic_mult_op
pixel_mult_op
rel_op

€q _op

co_op
variant_op
identifier list
identifier
id_follow

|etter =

digit

= A EF
= ++

= eq_op | co_op | variant_op

= < | <=]>] ==

= is|isnt

= identifier [, identifier_list]

= letter [id_follow]

z= letter [id_follow] | digit [id_follow] | _[id_follow]

al|blc|d|e|lf|lg|h[i[j[k][l]m]
nfolplglr]s|tjulv|iw]|x]|y]|z]|
A|IB|CIDI|EIE|GIH]|I[I|K|L[M]
NJTO|PIQIRI|SITIU[IVIWI[X]|Y]Z
0]1]2]|3|4|5|6|7|8]9

61

Appendix |1
Type Rules
type arith is int | real
type ordered is arith | string
typeliteral is ordered | bool | pixel | pic | null | proc | file | image

type nonvoid is literal | structure [variant | env | any |
abstype | parameterisad | poly | * nonvoid
type type is nonvoid | void
Session :

sequence : void ? => void
t : type, declaration : void ; sequence: t =>t
it : type, clause : void ; sequence: t =>t
ft:type clause:t=>1t

Object Declarations :

declaration => vaoid
wihere object_decl let object_init | rec let rec_object_init
[& rec_object_init]*

identifier init_op clause : nonvaid
identifier init_op literal : nonvaid

wihere object_init
wihere rec_object_init :
wihere init_op

Clausss :

in clause : env letobject_init |=> void
in clause : @nvrec let rec_object_init => void

clause : env contains [constant] identifier [: type id] => bool

if clause : bool do clause : void => void

t 2 type, if clause : bool then clause: tt else clause: t =>

repeat clause : void while clause : bool [do clause : void] => void
while clause : hool do clause : void => void

for identifier = clause: int to clause: int))
[by clause: int] do clause : void => void

t : type, use clause : @nv with signaturein clause : t =>

use clause : abstype asidentifier [witness decls] in clause : void => void

62

ft : type ; tl : nonvoid, case clause : tl of case list

default : clause: t =>t
clause list: clause: ft ; [case list]
clause: tl [, clause list]

wihere case list
where clause list

raster_op clause : image onto clause : image => void

drop identifier from clause : @nv => void

ft : type, project clause : any asidentifier onto any project list
default : clause : t => 1

wihere any project_list ::= type id: clause: t ; [any_project_list]

t : type, project clause : variant asidentifier onto variant_project_list
default : clause : t => 1

wihere variant_project_list ;= identifier : clause : t ; [variant_project_list]

t : nonvoid, name : t:=clause: t => vaoid

Expressions :

expl : bool or expl : hool => boal

exp2 : bool and exp2 : hool => boal

[~] exp3 : hool => hoal

t : nonvoid, exp3 : Tteq op exp3 t => hool
Wh@[r@eq_op = = | ==

it : ordered, exp3 : ft co_op exp3: t => hool
whereco op = < |<=|>| >=

expression : variant variant_op identifier => boaol
where variant_op = is]isnt

t : nonvoid, any (clause) : t => any

expression : @nv contains [constant] identifier [: type id] => hoaol
t 2 arith, exp4 : tadd opexpd:t=>1t

t : arith, add opexp6:t=>t

exp5 : int int_mult_op exp5 : int => int
whereint_mult op = *|div|rem

exp5 : real real_mult_op exp5 : real => real
wherereal_mult op = *|/

exp5 : string string_mult_op exp5 : string => string
wherestring_mult_op = + +

exp5 : pic pic_mult_op exp5 : pic => pﬂ@
wihere pic_mult_op = A+t

63

exp5 : pixel pixel_mult_op exp5 : pixel => pixel
where pixel_ mult op = + %

PS () => any
t: literal, literal : Tt =>t
t : nonvoid, value_constructor : t => t
t: type (clause:) => 1
ft : type, begin sequence: tend => t
t : type, {sequence: t} =>
expression : siring (clause : int | clause : int) => string
expression : image (clause : int | clause : int) => image
expression : pixel (clause: int | clause : int) => pixel
t : nonveid, expression : *t (clause : ink) =>
Velue constructors:
t : nonvoid, vector range of clause: t => *t
t : monvaoid, vector range using clause : proc (int -> t) => *t

t : nonvoid, vector @ clause: int of [clause: t [, clause: i]*] => *t
wihere range ::= clause : int to clause : int

image clause : int by clause: int of clause: pixel => image
image clause : int by clause: int using clause : image => image

limit clause : image [to clause : int by clause: inf])
[at clause: lnit , clause: Int] => image

struct (struct_init_list) => structure)
wihere struct_init_list ::= identifier init_op clause : nenveid [; struct_init_list]

[clause: real , clause: real] => pic

shift clause : pic by clause: real , clause: real => pic
scale clause : pic by clause: real , clause: real => pic
rotate clause : pic by clause: real => pic

colour clause: [pic in clause: pixel => pic

text clause: siring from clause: real , clause: real)
to clause: real , clause: real => pic

literals :

64

[add_op] digit [digit]* => int
int_literal.[digit] [eint_literal] => real
true | false => hool

" [char]* " => siring

on | off => pixel

nil => null

it : type, proc [type_parameter_list] ([named_param list]
[-> type_identifier : t]); clause : t

nilpic => pic
nilimage => image

nilfile => file

65

Appendix I11
Program Layout
Semi-Colons
Asalexica rule in Napier88, a semi-colon may be omitted whenever it is used as a
separator and it coincides with a newline. This allows many of the semi-colonsin a

program to be left out. However, to help the compiler deduce where the semi-colons
should be, it isarule that aline may not begin with abinary operator. For example,

a*
b

isvalid but,

is not.

Thisrule aso applies to the invisible operator between a vector, structure or image and
itsindex list and between a procedure and its parameters. For example,

let b=a(1,2)
isvalid but,
letb=a

D

will be misinterpreted since vectors can be assigned.
Comments

Comments may be placed in a program by using the symbol !. Anything between the'!
and the end of thelineis regarded by the compiler as a comment. For example,

a+b l addaand b

66

Reserved Words

abstype
begin
case
default
else
false
if
let
nand
of
pic
real
scale
text
use
variant
while

Xnor

and

bool

colour

div
end
file
in
limit
nil
of f
pixel
rec
shift
then

using

vector

with

Xor

Appendix 1V

any as at
by

constant contains copy

do drop
env
for from
int image is isnt
nilfile nilimage nor not nilpic
on onto or

proc project

rem repeat ror rand rotate
string struct structure
to true type

null

67

Index

Abstract Data Types
abstract data type creation 45
abstract data type definition 45
equality and equivalence 47
using abstract data types 46
Any
equivalence and equality 50
injection 49
projection 49
arithmetic precedence rules (see Expressions)
assignment clause (see Clauses)
Backus-Naur form 8
brackets 26
case clause (see Clauses)

Clauses
assignment 28
case 29
for 30
if 28
repest 29
while 29
comments (see Program layout)

comparison operators (see Expressions)
constancy 24

context free syntax 57

context free syntax specification 8
Declarations

data objects 24

procedures (see Procedures)

recursive objects 26

recursive types 27

type declarations 25
Environments

adding bindings 51

contains clause 53

creation 51

equality and equivalence 53

removing bindings 53

using bindings 52
Expressions

arithmetic 19

arithmetic precedence rules 20

boolean 17

comparison operators 18

evauation order 17

expressions and operators 17

operator precedence table 23

picture 21

pixel 22

string 20

68

expressions and operators (see Expressions)
Files 48

equality and equivalence 48
for clause (see Clauses)
hyper-programming 7
identifiers 24
if clause (see Clauses)
Images

cregtion 38

depth selection 40

equality and equivalence 41

indexing 40

raster operations 38
isand isnt 42

Literas
boolean 14
file 16
image 16
integer 14
null 15
picture 15
pixel 15
procedure 16
real 14
string 14
Iwb 35
Napier
John 4
Napier88
concurrency 5
layered architecture 6
Release 2.0 Installation Guide 7
semaphores 5

Standard Library Reference Manual 7, 17, 20, 23, 35, 48, 51
The Napier88 to the Persistent Abstarct Machine Compilation Rules 7

threads 5
transactions 5

operator precedence table (see Expressions)
Persistent Abstract Machine 7

Persistent store 23

PISA project 7

polymorphism 32

principle of data type completeness (see Types), 13

Procedures
cal 31
declaration 31
equaity and equivalence 33
polymorphic procedures 32
recursive declarations 32

69

Program layout
comments 66
semi-colons 66
raster operations (see |mages)
repeat clause (see Clauses)
Reserved words 67
scope rules 26
Separators 66
sequences 25

Structures
creation 36, 37
equality and equivalence 37
type rules (see Types), 62
Types
declarations (see Declarations)
first class citizenship 13
principle of datatype completeness 9
recursive definitions 10
recursive operators 11
recursive type declarations (see Declarations)
structural equivalence 12
type algebra 10
type aliasing 10
type equivalence 12
type operators 11
typerules 12
universe of discourse 9
universe of discourse (see types)

upb 35
variables 24

Variants
equaity and equivaence 44
isand isnt 42
projection 43
types 42
variant values 42
Vectors
creation 34
equality and equivalence 36
indexing 36
Iwb 35
upb 35
while clause (see Clauses)

70

