
This paper should be referenced as:

Morrison, R., Baker, C., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. & Munro, D. “Delivering the Benefits of
Persistence to System Construction and Execution”. In Proc. 17th Australasian Computer Science Conference,
Christchurch, New Zealand (1994) pp 711-719.

2

Delivering the Benefits of Persistence to System Construction and
Execution

R. Morrison, C. Baker, R.C.H. Connor, Q.I. Cutts, G.N.C. Kirby and D.S. Munro

Department of Mathematical and Computational Sciences, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SS, Scotland.

Phone: +44 334 63254
Internet: {ron, craigb, richard, quintin, graham, dave}@dcs.st-andrews.ac.uk

Abstract

Persistent programming systems are generally
recognised as the appropriate technology for the
construction and maintenance of large, long-lived
application systems. Many successful prototypes
have been constructed, and a large body of applica-
tion building experience is emerging. However, all
persistent systems to date have been provided
within an operating system environment, and the
services provided by the operating system have been
relied upon to give the necessary support for pro-
gram tasks such as editing and linking. Only the
execution of persistent programs has occurred
within the persistent environment.

Here we examine some of the consequences of pro-
viding all the support required for program construc-
tion within the same environment as the persistent
data. We show how having the construction, com-
pilation, and execution processes all operating
within a single environment leads to some powerful
new techniques. This new power is achieved by the
sharing of persistent data across the hitherto en-
closed boundaries of these processes.

1 Persistent Systems

In recent years considerable research has been de-
voted to the investigation of the concept of persis-
tence and its application in the integration of
database systems and programming languages
[Atk78, ABC+83]. As a result a number of persis-
tent systems have been developed including PS-al-
gol [PS88], Napier88 [MBC+89], Flex [Cur85,
Sta86], Ten15 [CF86], Galileo [ACO85], TI
Persistent Memory System [Tha86], Amber
[Car85] and Trellis/Owl [SCW85]. In each of these
systems persistence has been used to abstract over
the physical properties of data such as where it is
kept, how long it is kept and in what form it is
kept, thereby simplifying the task of programming.
The benefits of orthogonal persistence have been
described extensively in the literature [ACC82,
ABC+84, AM85, AMP86, AB87, Dea87,
MBC+87, Wai87, AM88, Dea88, Bro89,

MBC+89, Con90, MBC+90]. These can be sum-
marised as

• improving programming productivity from
simpler semantics;

• removing ad hoc arrangements for data transla-
tion and long term data storage; and

• providing protection mechanisms over the
whole environment.

The persistence abstraction has long been recog-
nised as the appropriate underlying technology for
long lived, concurrently accessed and potentially
large bodies of data and programs. Typical examples
of such systems are CAD/CAM systems, office au-
tomation and CASE tools. Object-Oriented
Database Systems such as GemStone [BOP+89]
and O2 [BBB+88] have at their core a persistent ob-
ject store and are particular examples of persistent
systems within a particular paradigm. The goal of
persistence research is to allow these socially and
economically important persistent application sys-
tems to become more sophisticated and more eco-
nomically viable.

2 Moving into the Persistent
Environment

All persistent systems developed to date are sup-
ported within standard operating systems. Programs
which operate over persistent data are written using
operating system facilities, such as text editors,
linkers and compilers, and are then executed against
the persistent environment. This is in conflict with
the concept of persistence, as that part of an appli-
cation which consists of source code, version in-
formation, etc. is held in a different data store with
different characteristics from the rest of the data,
which in many cases includes the executable code.

Although there are clear pragmatic reasons for this
approach the existence of the two separate worlds
has been observed to add complexity to application
systems. Even in persistent systems which support
first class code in the form of procedure values,
complex conventions are required to map between

3

the source of this code in the operating system en-
vironment and the executable version in the persis-
tent environment.

Since the initial design and implementation of the
Napier88 language environment, however, much
support has subsequently been developed in the
form of application building tools normally pro-
vided at the operating system level. This has made
possible the development of applications within the
persistent environment itself. This support consists
of the following tools, all of which have been de-
veloped in Napier88 itself and then provided within
the Napier88 persistent store environment:

• a window manager

• a text editor, written to work within the win-
dow manager

• a persistent store browser

• a Napier88 compiler, which compiles Napier88
programs into a form suitable for execution
within the persistent environment

Although the building of such support is clearly a
significant task, once it has been established it is
possible to build persistent application systems in a
single environment. This avoids the unnecessary
complexity caused by the artificial interaction be-
tween the operating system and the persistent envi-
ronment. However, although achieving this conti-
nuity was the initial motivation of building these
tools, the provision of such support turns out to
lead to further new advantages. In this paper we
concentrate on two of these:

• the provision of new paradigms for system
construction, and

• new possibilities to perform optimisation of
persistent code

The ability to provide the new techniques is a con-
sequence of all phases of the software development
process being integrated into the same environment.

The presence of persistent data in the software con-
struction environment allows the introduction of
new binding paradigms, in particular the ability to
bind persistent values directly into both source and
executable code. This allows programs that contain
links to persistent values within their source code,
instead of textual denotations of these links which
must be evaluated and bound to the program code
during or immediately before its execution. This
structured form of a program bears a similar rela-
tionship to purely textual programs as hyper-text

does to ordinary text, and so the new style of pro-
gram is known as a hyper-program [KCC+92].
Hyper-programming is not possible unless the
source and executable forms of programs reside in
the same persistent space as the rest of the applica-
tion data.

The optimisation architecture described relies upon
source and executable forms of programs being resi-
dent in the execution environment along with the
compiler. In many situations more efficient code
may be generated by the compiler where some
knowledge of the way in which code is used dynam-
ically is available. In the integrated environment,
dynamic information gathering may be tied to op-
timisation processes by which the source code is re-
compiled automatically and incrementally according
to the use of its executable equivalent. Thus the ini-
tial static trade-offs made by the compiler on the
execution profile of the program may be dynami-
cally re-evaluated in the light of execution experi-
ence. Again, this style of optimisation is not pos-
sible where the compilation and execution envi-
ronment are divorced.

3 New Paradigms for System
Construction

3 . 1 Hyper-programming

The traditional representation of a program as a lin-
ear sequence of text forces a particular style of pro-
gram construction to ensure good programming
practice. Persistent systems have the ability to al-
low the persistent environment to participate in the
program construction process. This raises the pos-
sibility of allowing the representations of source
programs to include direct links to values that al-
ready exist in the environment, giving hyper-pro-
grams.

Figure 1 shows an example representation of a hy-
per-program. The hyper-program contains both text
and links which denote data items in the persistent
store. The first link is to a procedure to write out a
string; this is called to write a prompt to the user.
The program then calls another procedure to read in
a name, and then finds an address corresponding to
the name. This is done by calling a lookup proce-
dure which is one of the components of a table
package linked into the hyper-program. The address
is then written out. Note that code objects
(readString and writeString) are treated in exactly
the same way as data objects (the table).

4

persistent store

writeString

hyper-program

 ("enter name: ")

let name = ()

let address = (lookup)(name)

 ("address is: ")

 (name)

table of names
and addresses

readString

Figure 1: A hyper-program

Many programs may share links and the graph of
program components can become highly intercon-
nected. Other benefits of hyper-programming are
discussed in [Kir92]. They include:

• being able to perform program checking early;

• support for source representations of all proce-
dure closures;

• being able to enforce associations from exe-
cutable programs to source programs;

• increased program succinctness; and

• increased ease of program composition.

While hyper-programming provides composition
time binding, it does not disallow other binding
times. Early static binding trades flexibility for
safety whereas dynamic binding does the opposite.
Hyper-programming systems can provide both
within the same framework by allowing hyper links
to both values and locations (R-values and L-val-
ues). Thus although the locations are strongly typed
they may change their values providing the flexibil-
ity of dynamic binding.
The principal requirement for supporting a hyper-
programming system is a persistent store to contain
the program representations and the data items de-
noted by the links in the programs. The persistent
store is stable and supports referential integrity.
Hence when a reference to a data item in the store
has been established, the data item will remain ac-
cessible for as long as the reference exists.

Secondly, all hyper-program representations, both
source and executable, must consist of denotable
values within the persistent programming language
environment. Thus the compiler can arrange for

compiled programs to contain links to their source
representations which are themselves values in the
persistent store. A further consequence is that the
compilation process itself must also be supported
within this same environment. One mechanism par-
ticularly well suited to realise this is known as
type-safe linguistic reflection, as described in
[SSS+92].

A third requirement is for tools which provide the
programmer with a graphical representation of the
persistent store. The representation shows the val-
ues, locations and types in the persistent store and
the links between them. The programmer can point
to the representations of specific data items and ob-
tain tokens for them to be incorporated into hyper-
programs.

A hyper-programming system also has to support
additional facilities for ‘programming in the large’,
that is, building large applications from smaller
components. These include facilities for controlling
the sharing of components between applications,
for limiting the visibility of some components for
protection reasons, and for imposing a degree of
partitioning on the persistent store to aid intellec-
tual manageability and execution efficiency. A
model to support these facilities is the hyper-world.

3 . 1 . 1 Hyper-worlds

There are a number of facilities that a persistent
programming environment should support if it is to
provide for the software engineering process as a
whole. These include:

• program composition, compilation and execu-
tion;

5

Hyper-world

Hyper-world Hyper-world

Persistent store

Figure 2: A persistent store with hyper-worlds

• storing of source and compiled versions of pro-
grams;

• debugging;

• documentation;

• decomposition of large application programs
into components, and organisation of those
components;

• navigating the persistent store to locate pro-
grams and other data with given attributes;

• querying of the types of programs and data in
the persistent store;

• facilities for exporting completed application
systems once development has been completed;
these should allow implementation details to
be hidden, and allow control over whether the
identity of components linked to by the appli-
cation should be preserved.

The model of hyper-programming allows source
programs to contain links to any other data in the
persistent store. In large scale systems this general-
ity may lead to several problems. Firstly, the store
may become intellectually unmanageable as the
number of links increases. Secondly, evolution of
application programs by substituting new versions
of their components becomes difficult to manage if
unrestricted linking to the components is permit-
ted—it may be necessary to locate each data item
linked to the component being substituted and de-
termine whether a new version of the data item is
required in turn. In addition the model must provide
a uniform framework for storing meta-data about
application components.

A research topic is the provision of additional struc-
ture over a basic hyper-programming system to ad-
dress these needs. The hyper-world model offers the
programmer a loose coupling mechanism to offset
the disadvantages of the tight coupling made possi-
ble by hyper-programming. In this model, based in
part on that described in [WA86], the persistent
store is partitioned into a number of application
spaces or hyper-worlds. Each hyper-world contains
the program components and data used by an appli-
cation, and a schema that describes their relation-
ships. Each hyper-world has a single visible com-
ponent which may be linked to from outside the
hyper-world.

The schema includes documentation information, a
type description and hyper-program source for each
component. It also includes a representation of the
component linking topology, and a list of type def-
initions local to the hyper-world. This allows the
programmer to perform various queries over the
components and to determine the implications of
replacing a component with a changed version.

The partitioning supported by hyper-worlds will re-
duce to a manageable scale the complexity of prob-
lems such as keeping track of inter-component
links. This may be done by restricting the region of
interest from the entire persistent store to the hyper-
world. The partitioning may also allow type-check-
ing to be performed more efficiently and act as the
unit of optimisation for store operations such as
garbage collection. Figure 2 shows a representation
of a persistent store containing nested hyper-worlds
and linked components.

6

In the hyper-world, the hyper-programming model
can be re-used to yield new facilities. For example,
in traditional version control and configuration
management systems, a naming convention is used
to identify the system components. In the hyper-
world the components can be identified by direct
link, either R-value or L-value, and the need for a
naming convention is eliminated and along with it
the source of many errors.

The open questions for the construction and utilisa-
tion of a hyper-world are:

• What are the required set of tools to support de-
sign, construction, maintenance and operation?

• How can incremental change be accommodated?

• How can hyper-worlds be exported and im-
ported to other persistent environments?

• What requirement does a hyper-world place on
the supporting languages and stores?

3 . 2 Optimisation of Persistent
Systems

The second aspect to supporting the entire software
life cycle within the persistent environment is to
improve system performance by utilising the ubiq-
uitous availability of the persistent store. This
yields a unique opportunity for optimisation by us-
ing the persistent store as a cache for information
that can be shared by all system components. Of
particular interest is the symbiotic relationship of
the compiler, run-time system and object store in a
persistent environment.

Compilers use static analysis to generate code
which is intended to be, by some measure, efficient.
Compilers can also pass on hints to the run-time
system and the object store as to the probable dy-
namic use of the system. For example, the com-
piler may detect that certain groups of objects are
always required together. This information can be
used by the object store to cluster objects.

In traditional systems, the compilation system is
forced to make efficiency decisions under a priori
rules. There is usually no mechanism for dynamic
information to be re-introduced into the compilation
system. In persistent systems, however, the run-
time system can record dynamic profile information
in the persistent store. The compiler can then be
called to recompile programs using this information
where it is advantageous to do so. For example,
code generation usually entails a trade off between
the execution speed of the generated code and its
size. Where this statically calculated trade-off is
shown to be disadvantageous to the overall system
performance, the run-time system can invoke the
compiler to produce more efficient code according to
the dynamic profile.

Here we outline a general system architecture for
optimisation within persistent systems and concen-
trate on two examples of the technique. The first is
that of discovering locality in persistent systems
and the second is generating efficient implementa-
tions of polymorphic code.

3 . 2 . 1 A System Architecture for
Optimisation

The general optimisation architecture enhances the
operation of some aspect of system behaviour by
using the persistent environment as a cache to
record the dynamic behaviour of the system associ-
ated with that aspect. The information is then anal-
ysed by enhancement programs and used as the ba-
sis for possible optimisations. Recording, analysis
and optimisation take place in four stages:

• The executing program records information
about its dynamic execution in the persistent
store.

• Using the cached information the enhancer pro-
gram determines whether a potential optimisa-
tion exists. Optimisation involves altering
trade-offs associated with the implementation.

• If an optimisation exists then the enhancer de-
termines whether the optimisation should be
performed. The decision is made using a cost
function that may operate over both static and
dynamic information and determines whether
the benefits of the optimisation outweigh the
cost of making it. The enhancer may invoke
the compilation system.

• The optimisation is applied to the persistent
environment if the cost function returns a posi-
tive result.

Subsequent executions will benefit from any opti-
misation that is made.

It should be pointed out that this general technique
has to be applied with some care. The cost of
recording dynamic profile information and invoking
the enhancer may outweigh the benefits of the op-
timisation. There are, however, many fairly obvi-
ous places that the technique will work, and indeed
where it will not, and working experience is re-
quired to discover other areas of applicability.

One dimension of the architecture is when the op-
timisation is performed. Dynamic optimisation in
database systems is not usual and the conventional
wisdom is to recompile/optimise when some excep-
tional event occurs, such as dropping an index.
Such circumstances are accommodated within this
framework but it is also interesting to note that a
spectrum of possible optimisation times exists
thereby tempting experimentation.

7

Optimisations may be made to both code and data
within the persistent store. Below two examples
will be used to illustrate the architecture. The two
examples are discovering locality, and therefore op-
timising data utilisation, and the code generation of
polymorphic functions as an example of code opti-
misation. Such optimisations can also be applied
by this technique to any data or meta-data within
the persistent store.

3 . 2 . 2 Locality

In common with all Virtual Memory systems and
Database Management systems it has been observed
that increasing the locality of persistent data can
enhance the overall system performance. Locality is
important for clustering and garbage collection as
well as the exploitation of distribution.

Traditionally the discovery of locality information
by static analysis has yielded only very limited
gains. In long running systems with shared data,
the locality of data changes with time and usage.
Many programs that share data often have conflict-
ing locality profiles. This has led to research into
such areas as dynamic clustering techniques but also
with limited success.

The optimisation architecture may be used to dis-
cover the locality of data and to distributed the data
in the following way. Information on the locality
of data and the pattern of use of data is recorded in
the persistent store and shared among system com-
ponents. Thus a garbage collector may use the lo-
cality information when compacting a store. A dy-
namic clustering mechanism may use the informa-
tion in a similar manner and a scheduler may use it
to distribute programs in both space and time.
Garbage collectors and clustering mechanisms are
examples of enhancement programs.

The above technique for dynamic clustering is al-
ready used in some database systems. Persistent
systems with their close relationship of the com-
piler, run-time system and object store can go fur-
ther.

One approach to locality is to encourage the user to
organise the data in a manner that allows the sys-
tem to discover locality. It is here that the use of
hyper-worlds is important. Where a program is con-
structed as a hyper-program the compiler can dis-
cover which hyper-links are used together. This in-
formation is passed to the run-time system and the
object store. Hyper-programs also encourage the
user to organise programs in localities, the hyper-
worlds. Information on the use of the data in a hy-
per-world is recorded in the hyper-world and again
used by the compiler, run-time system and object
store for optimisation.

Information is also recorded on the use of meta-data.
For example, a particular editing session may al-
ways be followed by a compilation or a particular
data set may always be used in combination with a
version control system. Some of this information
is user specified and some discovered dynamically.
As far as we know no previous attempt has been
made to capture such information and use it to en-
hance system performance.

3 . 2 . 3 Implementing Polymorphism

Polymorphism in a programming language pro-
vides the ability to write programs that are indepen-
dent of the form of the data objects that they ma-
nipulate. Thus it provides an abstraction over the
form of the data which is often categorised by type.

Polymorphism may be expressed at many levels of
abstraction depending on the style of implementa-
tion. The following three categories represent ex-
tremes in the possible range of implementation
techniques [MDC+91]:

• Textual polymorphism. In this category poly-
morphism is only expressed at the source code
level. Different executable code may be pro-
duced for each different specialising type. The
execution efficiency of the equivalent
monomorphic procedure will be achieved using
this technique. This is the optimum speed effi-
ciency. However textual polymorphism may be
expensive in terms of the storage space required
for the specialised forms. An example of this
kind of polymorphism is found in the generics
of Ada [DOD83].

• Uniform polymorphism. Both the source code
and the executable code are independent of par-
ticular specialising types in this category and
so only a single executable version of a poly-
morphic expression is required. This is
achieved using a single representation for all
data. The use of space for polymorphic code
forms is optimal. However, the uniform data
format has efficiency implications for non-
polymorphic data values in terms of both space
and time. This kind of polymorphism is found
in ML [MTH89].

• Tagged polymorphism. In this category uni-
formity is expressed both at the source and exe-
cutable levels but non-uniform data formats are
used. Thus the executable code for a polymor-
phic expression is parameterised in some way
by type information describing the representa-
tion of data values being manipulated.
Effectively every data item is tagged with its
type. Code space is again optimised but all
values have to pay the price of the tagging
which is expensive if performed in software and
is generally not available in hardware. Tagged

8

polymorphism is used in the implementation
of some object-oriented languages [GR83].

These implementation techniques represent different
trade-offs between run-time efficiency and the space
required for polymorphic code forms. A particular
trade-off is traditionally determined statically during
the code generation phase of compilation and is
therefore fixed for the lifetime of the procedure. In
persistent systems it is possible to mix the imple-
mentation strategies for polymorphism. The run-
time system can record the manner in which the
polymorphic code is used and invoke the compiler
to generate a more efficient form. Thus, for exam-
ple, the uniform implementation may be replaced
by a textual implementation where appropriate.
This, of course, is not always possible but the case
analysis is a known result.

It is also possible for mixed representations of
polymorphic code to co-exist. Indeed the first at-
tempt at using the code may discover that only the
source is available in the store as the compiler de-
cided not to translate it. The compiler could then
generate a more efficient form of the polymorphic
code for initial use. On discovering the pattern of
use of the code even more efficient forms can be
generated [Cut92]. For example, it may be discov-
ered that 90% of the calls of a polymorphic proce-
dure specialise it to a particular type. The concrete
form for that type could be generated and used to
form the 90% of the calls in conjunction with the
polymorphic form that is used for the 10% of the
calls.

The improvement of polymorphic code is an exam-
ple of the enhancement of code generation.

4 Current Status

A prototype version of the hyper-programming sys-
tem exists, supporting the following:

• an integrated compilation, execution and
browsing system;

• hyper-program bindings to values, locations
and types in the persistent store;

• automatic retention of procedure source code as
hyper-programs in the persistent store; and

• the ability to browse procedure closures and to
bind values in them into hyper-programs.

The hyper-world facilities, under construction, will
provide a means of structuring applications con-
structed in the integrated hyper-programming envi-
ronment. They will give flexible control over the
visibility of data, which in turn will support the
protection mechanisms necessary to regulate access
to procedure closures and other data.

The general optimisation architecture has been de-
signed and implemented. The trade-offs, cost func-
tions and optimisation techniques of the architecture
are dependent on the particular optimisation to be
carried out. The architecture has been tested with the
two examples:

• the discovery of locality, and

• the implementation of polymorphism.

The modular structure of the layered Napier88 per-
sistent object store and the compilation system
have been found to minimise the programming ef-
fort required.

5 Conclusions

The consequences of providing support for program
construction within the same environment as the
persistent data have been found greater than initially
expected. Having the construction, compilation, and
execution processes all operating within a single
environment leads to some powerful new techniques
which may be used to facilitate many aspects of the
software development life cycle. This new power is
achieved by the sharing of persistent data across the
hitherto enclosed boundaries of these processes.
Two particular example of this have been shown in
some detail:

• the presence of persistent data within the pro-
gram construction and compilation environ-
ment has been used to achieve new program
construction paradigms that are not otherwise
possible; and

• the presence of the execution and compilation
systems in the same environment as the source
and executable programs has been used to
achieve a new and powerful style of optimisa-
tion architecture.

Both of these new developments are believed highly
significant in themselves. Perhaps even more inter-
esting is the fact that they have both been developed
in a very short time from the establishment of the
completely integrated persistent system, which
suggests that many other possibilities for the im-
provement of software engineering environments
may result from this integration.

6 Acknowledgements

This work was supported by ESPRIT III Basic
Research Action 6309 – FIDE2. The original hyper-
programming research was carried out in conjunc-
tion with Alan Dearle and Alex Farkas of the
University of Adelaide.

Since the development of hyper-programming in
the Napier88 environment, we have discovered that

9

the concept, if not the name, was present in the
Flex system developed at RSRE (DRA) on the ICL
Perq [Sta86]. In subsequent discussions with Ian
Currie, the main designer, it is clear that the same
motivations and outlook were present in his system
which was Algol 68 based.

7 References

[AB87] Atkinson, M.P. & Buneman, O.P.
“Types and Persistence in Database
Programming Languages”. ACM
Computing Surveys 19, 2 (1987) pp
105-190.

[ABC+83] Atkinson, M.P., Bailey, P.J.,
Chisholm, K.J., Cockshott, W.P. &
Morrison, R. “An Approach to
Persistent Programming”. Computer
Journal 26, 4 (1983) pp 360-365.

[ABC+84] Atkinson, M.P., Bailey, P.J.,
Cockshott, W.P., Chisholm, K.J. &
Morrison, R. “Progress with
Persistent Programming”.
Universities of Glasgow and St
Andrews Technical Report PPRR-8-
84 (1984).

[ACC82] Atkinson, M.P., Chisholm, K.J. &
Cockshott, W.P. “PS-algol: An Algol
with a Persistent Heap”. ACM
SIGPLAN Notices 17, 7 (1982) pp
24-31.

[ACO85] Albano, A., Cardelli, L. & Orsini, R.
“Galileo: a Strongly Typed,
Interactive Conceptual Language”.
ACM Transactions on Database
Systems 10, 2 (1985) pp 230-260.

[AM85] Atkinson, M.P. & Morrison, R.
“Procedures as Persistent Data
Objects”. ACM Transactions on
Programming Languages and Systems
7, 4 (1985) pp 539-559.

[AM88] Atkinson, M.P. & Morrison, R.
“Types, Bindings and Parameters in a
Persistent Environment”. In Data
Types and Persistence, Atkinson,
M.P., Buneman, O.P. & Morrison,
R. (ed), Springer-Verlag (1988) pp 3-
20.

[AMP86] Atkinson, M.P., Morrison, R. &
Pratten, G.D. “A Persistent
Information Space Architecture”. In
Proc. 9th Australian Computing
Science Conference, Australia (1986).

[Atk78] Atkinson, M.P. “Programming
Languages and Databases”. In Proc.
4th IEEE International Conference on
Very Large Databases (1978) pp 408-
419.

[BBB+88] Bancilhon, F., Barbedette, G.,
Benzaken, V., Delobel, C.,
Gamerman, S., Lécluse, C., Pfeffer,
P., Richard, P. & Valez, F. “The
Design and Implementation of O2, an

Object-Oriented Database System”. In
Lecture Notes in Computer
Science 334, Dittrich, K.R. (ed),
Springer-Verlag (1988) pp 1-22.

[BOP+89] Bretl, B., Otis, A., Penney, J.,
Schuchardt, B., Stein, J., Williams,
E.H., Williams, M. & Maier, D.
“The GemStone Data Management
System”. In Object-Oriented
Concepts, Applications, and
Databases, Kim, W. & Lochovsky,
F. (ed), Morgan-Kaufman (1989).

[Bro89] Brown, A.L. “Persistent Object
Stores”. Ph.D. Thesis, University of
St Andrews (1989).

[Car85] Cardelli, L. “Amber”. AT&T Bell
Labs, Murray Hill Technical Report
AT7T (1985).

[CF86] Core, P.W. & Foster, J.M. “Ten15:
An Overview”. RSRE Malvern
Technical Report 3977 (1986).

[Con90] Connor, R.C.H. “Types and
Polymorphism in Persistent
Programming Systems”. Ph.D.
Thesis, University of St Andrews
(1990).

[Cur85] Currie, I.F. “Filestore and Modes in
Flex”. In Proc. 1st International
Workshop on Persistent Object
Systems, Appin, Scotland (1985) pp
325-334.

[Cut92] Cutts, Q.I. “Delivering the Benefits of
Persistence to System Construction
and Execution”. Ph.D. Thesis,
University of St Andrews (1992).

[Dea87] Dearle, A. “Constructing Compilers
in a Persistent Environment”. In Proc.
2nd International Workshop on
Persistent Object Systems, Appin,
Scotland (1987).

1 0

[Dea88] Dearle, A. “On the Construction of
Persistent Programming
Environments”. Ph.D. Thesis,
University of St Andrews (1988).

[DOD83] “Reference Manual for the Ada
Programming Language”. U.S.
Department of Defense Technical
Report ANSI/MIL-STD-1815A
(1983).

[GR83] Goldberg, A. & Robson, D.
Smalltalk-80: The Language
and its Implementation. Addison
Wesley, Reading, Massachusetts
(1983).

[KCC+92] Kirby, G.N.C., Connor, R.C.H.,
Cutts, Q.I., Dearle, A., Farkas, A.M.
& Morrison, R. “Persistent Hyper-
Programs”. In Persistent Object
Systems, Albano, A. & Morrison,
R. (ed), Springer-Verlag (1992) pp 86-
106.

[Kir92] Kirby, G.N.C. “Reflection and Hyper-
Programming in Persistent
Programming Systems”. Ph.D.
Thesis, University of St Andrews
(1992).

[MBC+87] Morrison, R., Brown, A.L., Connor,
R.C.H. & Dearle, A.
“Polymorphism, Persistence and
Software Reuse in a Strongly Typed
Object-Oriented Environment”.
Software Engineering Journal,
December (1987) pp 199-204.

[MBC+89] Morrison, R., Brown, A.L., Connor,
R.C.H. & Dearle, A. “The Napier88
Reference Manual”. University of St
Andrews Technical Report PPRR-77-
89 (1989).

[MBC+90] Morrison, R., Brown, A.L., Connor,
R.C.H., Cutts, Q.I., Kirby, G.N.C.,
Dearle, A., Rosenberg, J. & Stemple,
D. “Protection in Persistent Object
Systems”. In Security and
Persistence, Rosenberg, J. &
Keedy, J.L. (ed), Springer-Verlag
(1990) pp 48-66.

[MDC+91] Morrison, R., Dearle, A., Connor,
R.C.H. & Brown, A.L. “An Ad-Hoc
Approach to the Implementation of
Polymorphism”. ACM Transactions
on Programming Languages and
Systems 13, 3 (1991) pp 342-371.

[MTH89] Milner, R., Tofte, M. & Harper, R.
The Definition of Standard
ML. MIT Press, Cambridge,
Massachusetts (1989).

[PS88] “PS-algol Reference Manual, 4th
edition”. Universities of Glasgow and
St Andrews Technical Report PPRR-
12-88 (1988).

[SCW85] Schaffert, C., Cooper, T. & Wilpot,
C. “Trellis Object-Based Environment
Language Reference Manual”. DEC
Systems Research Center Technical
Report 372 (1985).

[SSS+92] Stemple, D., Stanton, R.B., Sheard,
T., Philbrow, P., Morrison, R.,
Kirby, G.N.C., Fegaras, L., Cooper,
R.L., Connor, R.C.H., Atkinson,
M.P. & Alagic, S. “Type-Safe
Linguistic Reflection: A Generator
Technology”. ESPRIT BRA Project
3070 FIDE Technical Report
FIDE/92/49 (1992).

[Sta86] Stanley, M. “An Evaluation of the
Flex PSE”. RSRE Malvern Technical
Report 86003 (1986).

[Tha86] Thatte, S.M. “Persistent Memory: A
Storage Architecture for Object
Oriented Database Systems”. In Proc.
ACM/IEEE International Workshop
on Object-Oriented Database Systems,
Pacific Grove, California (1986) pp
148-159.

[WA86] Wile, D.S. & Allard, D.G. “Worlds:
An Organizing Structure for Object-
Bases”. In Proc. 2nd ACM
SIGSOFT/SIGPLAN Symposium on
Practical Software Development
Environments, Palo Alto, California
(1986).

[Wai87] Wai, F. “Distribution and
Persistence”. In Proc. 2nd
International Workshop on Persistent
Object Systems, Appin, Scotland
(1987) pp 207-225.

	Title
	Abstract
	1 Persistent Systems
	2 Moving into the Persistent Environment
	3 New Paradigms for System Construction
	3 . 1 Hyper-programming
	3 .1 .1 Hyper-worlds

	3 . 2 Optimisation of Persistent Systems
	3 .2 .1 A System Architecture for Optimisation
	3 .2 .2 Locality
	3 .2 .3 Implementing Polymorphism

	4 Current Status
	5 Conclusions
	6 Acknowledgements
	7 References

