
This paper should be referenced as:

Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Dearle, A.,
Rosenberg, J. & Stemple, D. “Protection in Persistent Object Systems”. In Security and
Persistence, Rosenberg, J. & Keedy, J.L. (ed), Springer-Verlag (1990) pp 48-66.

Protection in Persistent Object Systems

Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A.†,
Kirby, G., Rosenberg, J.‡ and Stemple, D. ¥

University of St Andrews, Scotland
† University of Adelaide, Australia
‡ University of Newcastle, Australia
¥ University of Massachusetts, USA

Abstract

Persistent programming is concerned with the creation and manipulation of data
with arbitrary lifetimes. This data is often valuable and therefore protected to
ensure that it is free from misuse. The mechanisms used to protect the data vary
with a tradeoff between static expression of the protection and the flexibility in
modelling it. In this paper we explore the full range of protection mechanisms
in persistent systems from static to dynamic checking and contrast it with the
corresponding balance between safety and flexibility in the system. Protection
by capabilities, dynamic universal union types, encapsulation, subtype
inheritance, existential quantification and predicate defined invariants will be
explored with reference to manipulating long lived data.

1 . Introduction

Persistent object systems support large collections of data that have often been constructed
incrementally by a community of users [ABC83]. Such data is inherently valuable and requires
protection from deliberate or accidental misuse. Protection is required to guard against system
malfunction, such as hardware failure, to ensure that users do not misuse the common facilities
such as the operating system and finally to protect users from other users and even themselves.

Before discussing methods of enforcement we will place protection in the context of the total
system function. Protection mechanisms are concerned with conserving the integrity of data.
There are two quite separate ways in which this integrity may be compromised. Firstly, some
kinds of failure, which jeopardise this integrity, such as hardware malfunction, have little to do
with protection and are best dealt with by other techniques such as incremental dumping or
stability strategies [Lor77,RHB90]. That is, periodically the data is copied to a secure device
from which it may be retrieved if a failure occurs. Failures may, of course, occur in all the
multiple copies of the data simultaneously leading to the conclusion that there is no absolute
notion of data integrity. Protection mechanisms are built on the assumption that the underlying
system does not fail. In the case of hardware error this assumption is incorrect. Fortunately an
acceptable level of stability can usually be obtained for an acceptable price but the notion of
absolute integrity no longer exists.

Given an acceptable level of stability, the integrity of the data can still be compromised by
users. A number of mechanisms, such as capability systems, encryption methods, type
systems and database integrity constraints have been used to add protection against data misuse
in persistent systems. All of these mechanisms add security but at some cost and furthermore
there is also a limit to the level of security that can be achieved. For example, once a program
gains access to data it may alter it in a legal but undesirable manner. This can happen because
the constraints placed on the user by the capability system, type system or integrity constraint
system provide rather coarse grain control over the data. This coarse grain control trades
expressiveness for security. The principle of minimum necessary privilege often causes the
protection mechanism to be too fine grained to be enforced efficiently or even expressed
succinctly. For example, the granularity of most type systems allows the user to restrict the use

2

of a variable to a particular type such as integer. A finer grained system may allow the
specification of types that only allow a subrange of the values such as 3..4 on Tuesday and
Wednesday and 2..5 on other days. This is fine grained but neither succinct nor easily
efficiently enforced.

Thus the second problem with integrity is that the checking system may allow the integrity of
the data to be preserved but still contain information that is no longer of real use or is even
erroneous. That is, even when enforced, the protection mechanism will not guarantee that
programs produce desirable transformations on the data. For example, the age recorded for a
particular person may be incorrect. The challenge is to find an acceptable level of security that
can be obtained for a reasonable price in terms of efficient checking and succinct expression.

In protection mechanisms there is always a tension between the time of checking and the
flexibility of the system. Checks that can be performed by static analysis allow the programmer
to state or even prove some properties of the program before it runs. This increases confidence
that the program is correct and explains the desire of most programming language designers to
employ static type checking as one of the mechanisms for protection. The same desire has also
led to capability systems that can be statically checked [JL78] and to proposals for the static
checking of database integrity constraints [SS89] A second aspect of static checking is that
programs so checked are usually more efficient. By performing the checking statically the need
for dynamic checking is reduced making the program execute faster and in less space.

Taken to the extreme statically checked languages are not very interesting since they have a very
limited ability to accommodate change. Flexibility is introduced by dynamic checking.
Constraints placed on the data that depend on the evaluation of the program may only be
checked in this manner. For example, the integrity constraints checked just prior to a
transaction commit usually employ dynamic checks of this kind.

Another dimension of static versus dynamic checking is the ability of the system to support its
own evolution safely. This property is sometimes called reflection [SFS90] and on other
occasions type magic [AM87]. In capability systems, which are usually the most dynamic, the
type magic is the ability to issue and check the validity of capabilities. Capabilities are only
issued by a trusted kernel and may not be manufactured by a user program. Compilers may
generate representations of programs which when given a capability by the kernel become
programs within the system. Since the security checking is always performed by the kernel,
programs may be generated by many different compilers. Thus mixed language facilities are
available up to the constraints imposed by the capability system. An example of such a system
is given in [RA85].

As the checking is made more static the ability to mix languages is lessened. The magic in the
system now lies with the type checkers which can only check languages with related type
systems. The reflection in the system is also restricted by the type systems since only languages
that adhere to the type system can be checked by the type checker. This is usually less general
than a capability system. Example of systems displaying high level reflection at the type system
level are [PS87,MBC88].

The semantics of failure is another dimension of protection that depends upon the time of
checking. With dynamically checked systems an error such as an invalid capability or type error
may be discovered at run time. An exception mechanism may be used to deal with such errors.
In a statically checked system the errors are discovered at compile time and there is no notion of
an exceptional event for these checks.

One final point is that the system security can be compromised if the type magic can be
impersonated. This is often necessary for maintenance and repair of systems and again yields a
weakness in the security system. It often depends on how difficult it is to break the password
checking for initial access to the system.

We will now explore the full range of protection mechanisms in persistent systems from static
to dynamic checking with the corresponding balance between safety and flexibility. Protection

3

by capabilities, dynamic universal union types, encapsulation, subtype inheritance, existential
quantification, and predicate defined invariants will be explored with reference to manipulating
long-lived data.

2 . Capabilities and Type Systems

Capabilities were first proposed by Dennis and Van Horn [DH66] as a technique for describing
the semantics of controlled access to data. The idea was extended by Fabry who proposed a
computer system based on capabilities [Fab74]. There have been several attempts at
constructing such a capability-based system. Some of these enlisted hardware support and
others were purely software implementations. Although these systems differ greatly the
fundamental principles of capability-based addressing are the same.

The basic idea is that access to objects is controlled by the ownership and presentation of
capabilities. That is, in order for a program to access an object it must possess a capability for
the object. In this sense capabilities may be viewed as keys which unlock the object to which
they refer. Since the possession of a capability gives a right to access an object it is important
that programs are not able to manufacture capabilities, since this would allow a program to
access data which was not supposed to be available to it. Methods of protecting capabilities
include segregation [WLH81,WN79], tagging [Feu73,MB80] and password schemes
[APW86]. A capability for an object can thus only be obtained by creating a new object or by
receiving a capability from another program.

Capabilities have three components. These are a unique name identifying the object, a set of
access rights and some status information as shown in Figure 1. Capability systems use names
for objects which are unique for the life of the system. The name given to an object will never
be re-used, even if the object is deleted. This avoids aliasing problems and provides a means of
trapping dangling references. Such unique names are not difficult to generate and addresses in
the order of 64 bits are sufficient to ensure that the system will never exhaust all possible
names.

Unique
Name

Access
Rights

Status
Information

Figure 1 : A Capability Structure

Although the ownership of a capability guarantees the right to access the corresponding object,
the access rights field may restrict the level of access allowed. The facilities provided by access
rights vary greatly between different capability systems. They may be as simple as read, write
and execute, or they may be based on the semantics of the different objects, for example a list
of procedures for accessing an abstract data type. When a capability is presented in order to
access an object, the system checks that the type of access does not exceed that specified in the
capability. There is usually an operation which allows a new capability to be created from an
existing one with a subset of the access rights allowing for the construction of restricted views.

The third field of a capability contains status information which indicate which operations can
be performed on the capability itself. Again, these vary greatly. The minimum usually provided
is a no copy bit which restricts the copying of the capability, perhaps on a user basis. This may
be used to stop a user from passing a capability on to other users to limit propagation. Other
status bits may include a delete bit which allows the holder of the capability to delete the object.

A final facility provided on some capability systems is the ability to revoke access. That is, after
giving a program a capability it may be desirable at a later time to revoke this capability.
Implementation of revocation may not be easy. The simplest technique is to change the unique
name of the object which will effectively invalidate all existing capabilities. Selective revocation
may be supported by using indirection through an owner controlled table of access rights or by
providing multiple names for the object which can be individually invalidated.

4

Capabilities provide a uniform model for controlling access of data. However, entry to the
system itself, by logging on, must in the end be based on some form of password. An
advantage of capability-based systems is that, even if the password system is broken, there
need not be any single password which provides access to all data of the system. That is, there
need not be a superuser.

Capability systems employ dynamic checking and represent one end of our spectrum of
checking times. Being dynamic they are expensive to implement since the check has to be
performed every time the capability is used. For this reason hardware assistance is usually
employed for efficient implementation. The expense of implementation partially explains why
capabilities have commonly been used to control access to data via the addressing mechanism
rather than to perform more elaborate dynamic type checking. Validating capabilities usually
means comparing two addresses which is a cheap operation that may be implemented
efficiently.

The dynamic nature of the checking means that a mechanism must be provided to allow
recovery from checking failure. An exception handler is one such mechanism. This semantics
of failure allows more flexibility in the system since capabilities can be revoked or altered
dynamically without fear of violating the protection mechanism. Furthermore, a capability
system is required to arbitrate among programs and data that mutually distrust one another.
This distrust may change as the programs are evaluated and eventually wish to communicate. A
capability system is able to deal with these changing needs.

Controlling access to objects in a capability system is achieved by limiting a program to a
subset of the access rights of the object. Capabilities address objects with these access rights.
An analogy has been made with abstract data types where the interface procedures define the
access rights [JL78]. Limiting the interface procedures by a viewing mechanism or a subtyping
mechanism allows the restrictions on access normally found in capability systems to be
extended to type systems.

This analogy also allows an extension of more traditional capability systems. Checking for
equality of capabilities depends upon the system being able to generate unique addresses for
each different access type. This may require a large number of address bits. Alternatively the
checker can employ a more elaborate check to decide the equality of two capabilities; this could
be a full type check. The difference is similar to the difference between name and structural type
equivalence in type systems.

Type systems themselves provide two facilities within programming systems. These are a
modelling ability and a protection mechanism. Type systems may be dynamically checked but
some systems employ static checking. In such systems there is no notion of type failure at run
time and that the checking may be factored out at compile time.

It has long been realised that in supporting independently prepared program and data in a
persistent store, some form of dynamic checking is required to perform the binding [ABM88].
That is, where a program is to be bound to data expressed at run time, the system is required to
support this dynamic bind. Part of this binding involves a check that the type is correct
[MBD88]. Thus some dynamic checking is performed and has many similarities to software
capabilities.

It is interesting to speculate how and where dynamic checking of a capability system may be
made static. It is also interesting to discover how and where statically typed persistent data
requires dynamic binding. We explore both of these issues in the following sections.

3 . Dynamic Type Checking

Capabilities may be implemented in software and even within type systems. The cost of
software capability checking is high and therefore it is sensible to use it less often than where
hardware checking would be used. Examples of software capabilities are dynamic integrity
checks that occur just prior to a transaction commit and in the projections out of infinite union

5

types found in some programming languages. In the first case the capability being checked is
the capability to allow the transaction to proceed. This capability is very flexible and depends
on the values within the database itself. In the second case, the system is checking that the user
has the correct type with which to use an object.

The difficulty with capabilities described by dynamic types is that all computations in the
system have to be couched in terms of the type algebra. This is usually where the ability for
mixed languages is lost since the system can only describe computations in languages whose
type systems are subsets of the overall one. Furthermore the type systems only provide
controlled access to objects and not protection on how the capability is itself manipulated. There
are usually no type system equivalent operations for no copy, revoke and delete. To implement
such facilities another layer of abstraction must be placed on the capability leading to further
inefficiency.

The difference between dynamically checked type systems and capabilities is in the algebra
used to describe access in capability systems, and therefore the ability to manipulate the object,
and the algebras over types. Capability descriptions are usually more flexible and extensible
than type algebras although this need not be the case. As described above, the capability can be
considered as the access route to an object and the view of the data accessible from that
capability. To obtain two different types of access requires two different capabilities. This is
also true in type systems with the difference being the mechanism used to construct the view.

Type any in the languages Amber [Car85] and Napier88 [MBC88] is an infinite union type that
can contain an object of any type. Type checking is performed on the type at the point of
dynamic projection from the union. An object may be injected into type any where it is then
compatible with any other object of type any. For specific use the object must be projected
from type any onto its exact type. The following example shows how an integer with the
operations read and write may have its access restricted to reading.

type intAccess is structure (read : proc (→ int) ; write : proc (int))
type intReadAccess is structure (read : proc (→ int))

let protectedInt := 0
let Read = proc (→ int) ; protectedInt
let Write = proc (x : int) ; protectedInt := x

let rwobject = intAccess (Read, Write)
let robject = intReadAccess (Read)

let readCapability = any (robject)
let readwriteCapability = any (rwobject)

Figure 2 : Read and Read Write capabilities

In Figure 2, two structure types are declared. The first, intAccess, contains two fields
containing the procedures, read and write and the second, intReadAccess, a procedure field
called read. The declaration of rwobject initialises it to an instance of the type intAccess which
contains the procedures Read and Write. These procedures manipulate the object protectedInt
within their closures.

The object robject is initialised to a structure with the same read procedure as the other structure
rwobject. The objects robject and rwobject have different types for static type checking.
However, by injecting them into the infinite union any they now have the same universal type.
Thus, readCapability and readwriteCapability can be passed around interchangeably. Just like
proper capabilities they are not equal to one another. Notice that in the above example only the
access mechanism is protected not the original data. This could be remedied by using a
procedure with a password parameter to generate it as can be seen later. Figure 3 shows how
the capabilities may be used.

6

let useobject = proc (capability : any)
project capability onto X as

intAccess : ... ! code using read and write
intReadAccess : ... ! code using read only

default : ... ! code for some other activity

useobject (readCapability)
useobject (readwriteCapability)

Figure 3 : Using Capabilities

In Figure 3, the procedure useobject takes an object called capability of type any as a
parameter. The project clause allows the user to match the type against the real one. If a match
is found then the original interface is exposed. No coercion or breaking of the type system is
allowed, merely a dynamic check.

Such a type facility has many similarities to capabilities in that the objects of the universal union
type can be used interchangeably, and expose only the correct interface to an object on
projection. Original data can also be protected by password. More controversially the
mechanism cannot be used directly to revoke an access right. The user of such a dynamic type
must state statically the access they are to be allowed. If the dynamic test of these rights
succeeds they are guaranteed for as long as the user expects to possess the object.

Infinite union types allow partial specification of the schema in persistent systems. That is, to
use the persistent store the type must be described at least to the points where dynamic
resolution will take place. Type any described above can be used for this and the facility allows
incremental evolution of the system since the partial specification can always be extended by a
new object of type any with a different real type. Where programs and data are prepared
separately as in persistent systems there is a requirement to protect the dynamic binding of
them. This involves dynamic protection of the kind described with type any.

One final variation on software capabilities is the module mechanism of the language Pebble
[BL84] where the modules may be protected by a password. Access to a module depends upon
calling it with the correct password which is similar to protection in most capability systems
except that the passwords are explicit. Different access to the same object is achieved by using
different passwords.

All of these methods of software capabilities simulate the access control aspects of capability
systems. None of them controls the distribution of capabilities themselves. This has to be done
by a separate mechanism.

Given the requirement for capabilities in persistent systems, even if implemented by software,
we now turn our attention to what protection can be implemented statically.

4 . Statically Checked Capabilities

Jones & Liskov [JL78] have proposed a system where the checking of access is performed
statically. In this, each object has a type which determines the legal accesses to it. Variables are
used to access objects and are declared to have a subset of the full access rights. Variables have
qualified types which have two parts. A qualified type Q is written T{r1,....rn}, where T is
some type name and {r1,....rn} a subset of the access rights. The two parts of the qualified
type are the base, where base (Q) = T and the access rights, where rights (Q) = {r1,....rn}.

The variables contain capabilities since each different variable potentially provides a different
set of access rights. The problem now is to find a substitution rule where capabilities may be
substituted for one another, that is assigned or passed as parameters, while conserving static
checking.

The substitution,

7

v ← e

where v is a variable of type Tv and e is an expression of type Te is valid if,

Te ≥ Tv

Type Te is greater than or equal to Tv if,

base (Te) = base (Tv) and rights (Te) ≥ (Tv)

That is, a substitution is valid if the new access path provides at most a subset of the old rights.
An example given by Liskov and Jones is the procedure heading,

procedure P (x : T1 {f,g}) returns T2 {k}

and the declarations,

a : T1 {f,g,h}
b : T2 {k}
c : T1 {f,h}

The statement b ← P(a) is legal and statically checkable since Tx ≤ Ta in the call and Tb is the

same as the return type T2{k}. However b ← P(c) is not legal since Tx ≤| Tc. The reason for
disallowing this is that the procedure may make use of the access right g specified in its
interface and that it is not available from the calling parameter expression.

This notion of type is a simplified version of what has more recently become known as
inclusion polymorphism [CW85] in that Te is considered as a subtype of Tv for the binding to
be valid. Apart from the inequality symbol being reversed the semantics are the same.

Jones and Liskov also found the semantic anomaly later described in [Car89,AGO89] for
structured types containing references. Consider their example,

procedure P (a : array [T {f}]{all} ; x : T {f})
begin

a [1] := x
end ;

The array declaration specifies that the elements are restricted to T{f} and that all the operations
on arrays are available. The procedure appears to be type correct since in the assignment the
value x has the same type as the elements of the array, namely T{f}. However, consider the
declarations,

b : array [T{f,g}] {all}
y : T {f}
z : T {g}

and the call

P (b,y)

This call also appears correct since Tb ≤ Ta, since rights (Tb) ≥ rights (Ta), and Ty ≤ Tx. The
problem is with the assignment,

z := b (1)

The value b (1) which is updated in the procedure to the value y has by this assignment the
access right f only. The variable z has the access right g only. However the array has access

8

rights f and g and the assignment should be legal since it would have been had it been
performed before the procedure call. This anomaly is not statically checkable.

To overcome this anomaly and preserve static type checking Jones and Liskov propose ?types
which are now more commonly known as bounded universal quantifiers. The substitution rule
for objects of this type is the same as proposed in Napier88 to overcome the same subtyping
difficulty. That is, that two such types are only substitutable if they known to have exactly the
same access rights. It should be noted that two types with different ?types names but the same
set of access rights cannot be guaranteed to have the exactly the same type.

For example the above would now be written as

procedure P [t ≤ Τ {f}] (a : array [t] {all}; x : t)
begin

a [1]:=(x)
end

The assignment is legal since the elements of a and x have the same type t. However the call

P (b,y)

is not legal since t would have to have rights {f,g} and {f} simultaneously. While either one is
acceptable, both are not simultaneously. This rule also overcomes a simpler but similar
semantic anomaly specified by Cardelli for inclusion polymorphism.

5 . Information Hiding

A higher level method of protecting data within software systems is the use of information
hiding. This is defined as any programming method which limits the computation allowed by
the type system upon data, by restricting either the access or type interface to it. It may also be
possible to provide abstractions over the basic operations defined by the type system, including
complex and dynamically evaluated constructs. Where such abstractions have type system
support they are usually referred to as abstract data types. It is important to note that
information hiding may only be relied on as a protection mechanism within the context of a
strong type system, since if arbitrary address arithmetic is allowed data may always be accessed
from outside the programmed interface.

Programming language type systems themselves operate by the use of information hiding over
the operating system and hardware operations available to them. This abstraction is at a lower
level, and is not necessarily available to the programmer. For example the integer type is
defined in most type systems not as a mathematical integer but instead as a restricted interface
over its hardware implementation. In strongly-typed languages the user is prevented from using
operations such as rotate and xor on these values, and extra functionality such as conversion to
and from equivalent character strings is also provided. Similarly, in a system which does not
use hardware capabilities, it is only the use of information hiding which may prevent the use of
arithmetic on address values.

There are three well-known mechanisms which allow the programming of information hiding
within a strong type system. These are subtype inheritance, procedural encapsulation (1st-
order information hiding) and existential data types (2nd-order information hiding).
Subtype inheritance achieves protection by removing type information, causing the static failure
of programs which may try to perform undesirable accesses. 1st-order information hiding
prevents the protected data from being named by an untrusted program, allowing access only
through a procedural interface. 2nd-order hiding is somewhere between these two, allowing
access mainly through procedures, but also allowing the protected data to be named. This data
is, however, viewed through a mechanism which causes type information loss, which allows
only a limited set of operations to be performed on it. These mechanisms may also be used
effectively in combination.

9

5.1 Subtype Inheritance

In general, systems which allow subtype inheritance allow any data object to be used in place
of one with less functionality. One type is a subtype of another if it defines all, and perhaps
some more, of its operations. In the most general form of subtyping, known as inclusion
polymorphism, it is type correct for the use of any value to be replaced by the use of any of its
subtypes.

Subtype inheritance is usually viewed as a general modelling technique. In particular it allows
the declaration of procedures which operate over any type with at least a set of required
properties. However, using an object as one of its supertypes is also equivalent to hiding some
of the functionality which the object possesses. For example, the following introduces the
names employee and person as record types:

type employee is structure (name,address : string ; salary : int)
type person is structure (name,address : string)

In the above, two structure types are declared. The first, called employee, has three fields called
name, address and salary with types string, string and integer respectively. The second, called
person, has two fields called name and address both of type string. Type employee is a subtype
of type person using implicit structural equivalence and an object of type employee may be used
in any context where an object of type person is expected. This would have the effect of hiding
the salary field by the loss of type information. If another user is only to be allowed this
restricted access to employee objects, this view of the object may be exported, for example by
use of an explicit type coercion:

let joe = employee ("Joe Doe","1 Assignment Boulevard",100000)
let exportJoe : person = joe

In this joe is declared to be an object of type employee with the given field values. exportJoe is
of type person, denoted by the type after the : symbol, but has the value joe. This means that a
user of the value exportJoe will now have the value of the original record. However, it is not
possible to express an operation to access the salary field of this value due to the restrictions of
the static type system. That is, the salary field cannot be used with the object exportJoe since
such a program would not type check, even although it would be able to execute without error.

This mechanism allows only simple information hiding compared with the other methods of 1st
and 2nd order information hiding. Its advantages are that it is simple and elegant to use, and is
easy to understand.

This inheritance is more flexible than the scheme described by Jones and Liskov, which defines
essentially the same subtyping rule but allows it only for values of a particular type. In their
scheme, an object is created with a finite set of operations of which restricted views may be
passed around. In this scheme arbitrary types may be used, so long as they contain the
common functionality.

5.2 1st-Order Information Hiding

Access to data can also be restricted by only allowing access to procedures which are defined
over the data, and not allowing the data itself to be visible. This is a common model for abstract
data types, and is known as 1st-order information hiding. It may be achieved in a number of
ways but we will describe it in terms of a language which has first-class procedure values and
block-style scoping. Access to the original data may then be removed simply by its name
becoming unavailable. This allows a much more flexible interface to be constructed. For
example, the following type defines a Person as a record containing procedures which define
three operations:

10

type Person is structure (getName, getAddress : proc (→ string) ; putAddress : proc
(string))

This allows a finer restriction than that above in that the name and address may be read, but
only the address may be changed. Access to the data may be removed by placing its declaration
in a block which is retracted immediately after the Person object has been constructed and
exporting procedures with the data encapsulated within their closures, as shown in Figure 4.
Again, this relies upon the static properties of the system to prevent the access since a program
which attempts direct access to joe will fail statically.

let exportJoe =
begin

let joe = employee ("Joe Doe","1 Assignment Boulevard",100000)
Person (proc (→ string) ; joe (name),

proc (→ string) ; joe (address),
proc (new : string) ; joe (address) := new)

end

Figure 4 : Hiding the Data Representation

In Figure 4, exportJoe is declared to have the value obtained by executing the block. This is a
structure of type Person with three procedure fields. Each procedure uses the object joe which
is inaccessible by any other means on exit from the block. Notice that a number of different
interfaces may be programmed like this, and exported from the original data, rather than just a
single one as here. This allows the construction of multiple views on the same data.

Further flexibility is possible using encapsulation in that dynamic properties may be specified,
and access may be denied dynamically if required. For example, perhaps there exists an
integrity constraint that an address may not be more than 100 characters long. This can be
programmed in the procedural encapsulation, as shown in Figure 5. The only difference here is
that the putAddress procedure checks the dynamic constraint, and raises an exception if it is not
met.

let exportJoe =
begin

let joe = employee ("Joe Doe","1 Assignment Boulevard",100000)
Person (proc (→ string) ; joe (name),

proc (→ string) ; joe (address),
proc (new : string) ;

if length (new) ≤ 100 then joe (address) := new
else raise longAddress (new))

end

Figure 5 : Refining the Interface

A particular example of a dynamic constraint allows access to the original data to be protected
by password, or by a software capability. A procedure can be provided in the interface which
will return the access to a user with sufficient privilege. To prevent unrequired noise in this
example we will use subtyping as above for users who do not expect to require this privilege,
allowing most users not to even be aware of its existence. Figure 6 shows the extended
definition required, with an extra procedure in type extraPerson which returns the raw data only
if it is supplied with a string equivalent to the password used to create it. Now whoever is
responsible for the construction of the view will have enough information to extract the
representation. Alternatively, it is possible to arrange system-wide capabilities which would
decide whether access is allowed or not.

11

type extraPerson is structure (getEmployee : proc (string → employee) ;
getName,
getAddress : proc (→ string) ;
putAddress : proc (string))

let exportJoe = proc (password : string → extraPerson)
begin

let joe = employee ("Joe Doe","1 Assignment Boulevard",100000)
extraPerson (proc (s : string → employee)

if s = password then joe else failValue,
proc (→ string) ; joe (name),
proc (→ string) ; joe (address),
proc (new : string) ; joe (address) := new)

end

Figure 6 : Protection by Password

Since extraPerson is a subtype of Person an object of this type may be used where an object of
the supertype Person is specified.

5.3 2nd-order Information Hiding

2nd-order information hiding does not restrict access to the protected values, but instead
abstracts over the type of the protected value to restrict operations allowed on it. Thus the
protected values may be manipulated for some basic operations, such as assignment and
perhaps equality, but their normal operations are not allowed due to the type view. This allows
the representation objects themselves to be safely placed in the interface along with the
procedures which manipulate them.

This power can almost be achieved using a combination of subtyping and 1st-order hiding. For
example, Figure 7 shows how a reference to the representation may be safely placed in the
interface by effectively removing all type information from it. The representation may be
accessed as a value, but only a highly restrictive access is possible as there is very little type
information available. It may be assigned and tested for equality, but none of its fields may be
accessed due to the static typing restrictions.

type Person is structure (absPerson : structure ();
getName,
getAddress : proc (→ string);
putAddress : proc (string))

let exportJoe =
begin

let joe = employee ("Joe Doe","1 Assignment Boulevard",100000)
Person (joe,

proc (→ string) ; joe (name),
proc (→ string) ; joe (address),
proc (new : string) ; joe (address) := new)

end

Figure 7 : Removing the Type Information

In Figure 7, within the block joe is used to initialise one of the fields of type structure (). joe is
of type employee, which is a subtype of structure () and the initialisation is legal. However, the
fields of joe may not be accessed by this route.

Using this technique it is not possible to know that two such abstracted values are the same
type, which may be desirable for some applications. For example, a Person may also have a

12

father and mother in the interface, along with a field for a favourite parent which changes
between them. This technique does not provide enough information to allow this. For example,
if the definition is:

type Person is structure (absPerson,mum,dad,favourite : structure () ;
getName,getAddress : proc (→ string) ;
putAddress : proc (string))

then it is not in general allowable to write

exportJoe (favourite) := exportJoe (mum)

as there is no way of telling that mum and favourite are indeed the same type.

A mechanism which allows 2nd-order information hiding is the existential data type described
by Mitchell & Plotkin [MP88]. This allows the definition of interface types which are
abstracted over. As names for these types are declared before the existential type definition,
different parts of the definition may be bound to the same type. As before, only the basic
operations defined on all types are allowed over these, but values which are abstracted by the
same name are statically known to be compatible. Person as above may be redefined as:

type Person is existentialType [absPersonType] (
absPerson,mum,dad,favourite : absPersonType ;
getName,getAddress : proc (→ string) ;
putAddress : proc (string))

The name in square brackets before the body of the type declaration declares a name for a type
which is abstracted over. This allows a tighter definition of such types, as it can now be seen
where the same type appears in the interface. For example,

exportJoe (favourite) := exportJoe (mum)

may now be statically determined to be type correct, as the favourite and mum fields must be
type compatible to allow the object to be created.

This static binding of equivalent types may also be used to allow the interface procedures to be
defined over the type of the hidden representation. A more flexible definition which allows the
name and address operations to be performed on any of the people in the interface would be:

type Person is existentialType [absPersonType] (
absPerson,mum,dad,favourite : absPersonType ;
getName,getAddress : proc (absPersonType → string) ;
putAddress : proc (absPersonType,string))

This allows the definition of n-ary operations over the hidden representation type. For example,
a procedure may be placed in the interface which tests if two people have the same address:

type Person is existentialType [absPersonType] (
absPerson,mum,dad,favourite : absPersonType ;
getName,getAddress : proc (absPersonType → string) ;
putAddress : proc (absPersonType,string) ;
sameAddress : proc (absPersonType,absPersonType → bool))

This example illustrates a major difference in power between 1st-order and 2nd-order
information hiding. With 2nd-order, a type is abstracted over, and procedures may be defined
over this type. With 1st-order hiding, it is the object itself which is hidden within its procedural
interface. Procedures which operate over more than one such object may not be defined
sensibly within this interface. Therefore any operations defined over two instances must be
written at a higher level, using the interface. At best this creates syntactic noise and is inefficient
at execution time. It also means that such operations are defined in the module which uses the

13

abstract objects, rather than the module which creates them. Some examples are not possible to
write without changing the original interface. The power of such existential types is discussed
fully in [CDM90].

6 . Database Constraints

Capabilities and type-oriented protection are mechanisms based on interfaces, signatures, or
access rights to objects. Another approach to protection is based on predicates stating invariants
that must hold over changes to persistent objects. The simplest example of this is probably the
sub-range types from most programming languages, e.g. ADA's subtypes with range
constraints. Such types lead to notoriously difficult type-checking problems, which are
normally resolved by dynamic checking. In databases, such protection is the domain of
integrity constraint maintenance and can involve both static and dynamic checking.

The basic idea is quite simple: any type can be refined by adding a predicate on values of the
type; only values obeying the predicate are in the new subtype. In databases, functional
dependencies and referential integrity can be expressed in this way. A functional dependency is
a predicate added to a relational type. Referential integrity is captured as a predicate stating that
a column of one relation (a "foreign key" column) is contained in a key column of another (or
the same) relation. This predicate, like other interrelational constraints, must be added to the
database type itself. The problem is that non-trivial theorem proving is now required as part of
static type-checking in order to avoid very expensive dynamic checks, and for quite simple
predicate and manipulation languages static type-checking is either computationally intractable
or undecidable. One response to this difficulty is to limit the constraint and manipulation
languages as well as raising their level of abstraction. With limited languages some effective
theorems can be used to design procedures for checking computations and generating optimized
run-time checks [BB81,BBC80,HI85,MH89,SS89]. Redundant data and special run-time
integrity subsystems can be used to speed up checking. Most approaches in the literature work
independently of a type system.

It is possible to integrate a theorem prover into the type checker in order to maximize the
amount of static type checking achievable in the presence of predicates. The setting in which
this appears to be feasible consists of high level languages limited in expressiveness and with
the same formal base for the predicate and update languages. It is also possible that static
predicative type checking will only be effective with small programs such as typical
teleprocessing database transactions.

One benefit of a theorem prover embedded in a type checker is that a broader range of
conditions could be used in specifying bounded universal quantification. Normally the
conditions on the instantiating types of bounded universally quantified types only specify the
existence of operators. This is easy to check. If a theorem prover is available, further predicates
on the operators can be added. These conditions need to be proved from the properties of any
instantiating type. This can be expensive and even incomplete, though it typically needs to be
done in response to a compile-time resolvable declaration, not a run-time action.

Significant effort has gone into building an efficient, though necessarily incomplete, type
checker for the set-oriented database programming (or specification) language ADABTPL
[SS89]. Efficient proofs of integrity constraint maintenance have been achieved in ADABTPL
by limiting the set of constraints and update primitives and by building a set of generic
theorems about the interaction of the primitives.

Many of the ADABTPL theorems are higher order theorems, and engineering effective ways to
use them is crucial to achieving efficiency. It is quite difficult to characterize the limits of the
current ADABTPL techniques. It is, in effect, an expert system with heuristics coded in Lisp
and rules that are all proved theorems. It can be improved by adding to its heuristics or to its
theorems. The incompleteness of the reasoning is one of the aspects that is most troubling
about this approach. Failing to prove that predicates are not maintained is ambiguous in this
setting. It means either that the program can produce invalid data or it is too difficult to prove
that it obeys the predicates.

14

There are several responses to a failed proof. The first is to add the unproved residue of the
theorem to the transaction as a precondition. In many cases this is the proper response,
indicating that the designer forgot the precondition. In other cases, the residue indicates that
certain updates were left out. A simple case illustrates this. Suppose a database includes
employees and dependents, and each dependent is constrained to relate to an employee. If we
attempt to prove that a transaction consisting solely of a delete of an employee preserves the
constraint, then an unprovable residue will be left at the end of the unsuccessful try. The
residue will be the predicate stating that there are no dependents related to the employee being
deleted. This predicate could be added as a precondition of the transaction, indicating that the
transaction was only intended for use in deleting employees with no dependents. However, it
may be the case that the designer forgot to include the deletion of the dependents in the
transaction. In this case, the transaction is rewritten to include the deletions and the proof is
attempted on the new transaction.

Because of the incompleteness of non-trivial, efficient theorem proving, the residue may in fact
be true in all valid databases, but unprovable by the static checker. There are three ways of
handling this case open to a designer.

• Allow the check to be made anyway, since the informal proof that convinced the designer
that the residue was a theorem may be faulty.

• Simplify the transaction or integrity constraints specification without changing their
meaning or change the transaction or constraints if consideration of the precondition
reveals that they did not have the intended semantics and retry the proof.

• Tell the system that the check need not be made, thus overriding the checking in this case.

A description of the kind of theorem proving that is needed in assuring the maintenance of
predicate-based integrity will clarify some of its limits and costs. The following theorem is the
kind that needs to be proved to show that a transaction T leaves a database in a consistent state
if it was consistent before the transaction. IC is the single predicate collecting all the different
predicates constituting the specification of database integrity. I stands for the input to the
transaction. (The input needs to be checked to see that it obeys its type constraints. This is a
dynamic check, of course.)

IC(DB) → IC(T(DB,I))

A form of theorem that is quite useful in proving such theorems is the following:

CONSTR(UPDATE(D)) = SIMPLER(D) & CONSTR(D)

The idea behind this form is that the integrity of an updated database will be expressed in terms
of constraint predicates (CONSTR) on updated data elements (D), the lefthand side of the
equation. The righthand side form, which will replace expressions like the lefthand side during
a proof, is a good form since the latter part (CONSTR(D)) will occur in the antecedent of the
theorem, expressing the assumption that the database is initially consistent. This allows
CONSTR(D) to be removed immediately from the proof obligation. Thus we are left with
SIMPLER(D) where CONSTR(UPDATE(D)) appears in the theorem. An example will make
this clear.

A theorem (assuming i is not in R) that is useful in maintaining a key constraint on a relation is:

key(insert(i,R),K) = i.K ε| project(R,K) & key(R,K)

This states that the condition of a column K being a key of a relation R after a new tuple i has
been inserted is equal to the K component of the new tuple not being in the K projection of R
and R being keyed on K. This is useful in proving that a particular insert does not violate the
key constraint. Since the second term in the righthand side is assumed to be true, the proof of
the key property in the updated relation has been reduced to a check for non-membership in a

15

projection. Further proving may verify that the insert only occurs in a position in which the
non-membership is assured, in which case this part of the overall theorem has been proven. If
the non-membership cannot be proven, it can be added to the transaction as a dynamic check.
This case is quite simple but indicates the basic approach to using theorem proving to assure
that predicates are invariants of transactions.

There are two further points to be made. The first is that the SIMPLER predicate should be
better than the constraint on the updated data in some sense, either by having less computational
complexity or in facilitating further reduction, in order for this approach to be effective. The
second point is that a uniform formal base and limitations on the integrity constraints and
update functions are probably necessary in order to build a set of effective theorems (and
heuristics) for this application of theorem proving. This approach embodies both static
checking, in the form of the theorem proving, and dynamic checking, in the form of the
reduced integrity constraints executed at run-time. Other than the cost of the theorem proving,
which in ADABTPL currently runs to less than half a minute for six hundred term theorems on
modern workstations, and the cost of the run-time checks, this approach requires building
effective theorem bases for different styles of databases, limiting language expressiveness, and
formalizing constraint and update languages in a uniform manner.

7 . Conclusions

We have presented a number of mechanisms that are used to preserve the integrity of data in
persistent systems. In statically checked systems, these mechanisms range from the integrity
constraints of the language ADATPBL, through the statically enforced existentially quantified
types of Napier88, encapsulation by scoping, subtype inheritance and the software capabilities
of Jones & Liskov. In dynamically checked systems, the universal union type any of Amber
and Napier88 may be used as software capabilities as may dynamically checked database
integrity constraints. Hardware enforced capability systems form the most primitive but most
efficiently implemented form of the techniques.

A major goal in system design is the ability to describe the properties of a system without
having to execute it. However, as we have seen, this ability conflicts with the flexibility of
dynamic checking. At any level of abstraction, the requirement is for static checking that is
commensurate with the expressiveness needed for a particular application.

Not all constraints on data may be captured statically. Employing a theorem prover allows more
powerful static checking but it may not be possible to prove all the theorems. This could be
because they are in error or because the theorem prover is not sophisticated enough
computationally to prove them in a reasonable time. A solution is to provide a more dynamic
check where this occurs in a system.

A strategy, similar to the ones found in the ADAPTBL and DIADA [SWB89] projects, may be
developed where all the constraints on data are specified in the one language. A theorem prover
is then employed to capture as many of these constraints as it can statically. Where it cannot, a
second, but less expensive in terms on technology, level of checking may be provided by a
type system. Where the type system cannot enforce the constraint statically, a dynamic check is
produced. This check may be enforced by hardware or software.

ACKNOWLEDGEMENTS

This work was undertaken during a period of study leave by John Rosenberg at the University
of St Andrews which was supported by SERC grant GR/F 28571 and a visit to St Andrews by
David Stemple.

REFERENCES

[ABC83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison,
R."An Approach to Persistent Programming". The Computer Journal 26,4
(November 1983), pp. 360-365.

16

[ABM88] Atkinson, M.P., Buneman, O.P. & Morrison, R. "Binding and Type Checking in
Database Programming Languages". The Computer Journal. 31,2 (1988), pp. 99-
109.

[AM87] Atkinson, M.P. & Morrison, R. "Polymorphic Names, Types, Constancy and
Magic in a Type Secure Persistent Object Store". 2nd International Workshop on
Persistent Object Systems, Appin, (August 1987), pp. 1-12.

[APW86] Anderson, M., Pose, R.D. & Wallace, C.S. "A Password-Capability System",
The Computer Journal, 29, 1, (1986), pp. 1-8.

[BB81] Bernstein, P. A. & Blaustein, B. T. "A Simplification Algorithm for Integrity
Assertions and Concrete Views". Proc. of the Fifth International Computer
Software and Applications Conference, (1981), pp. 90-99.

[BBC80] Bernstein, P. A., Blaustein, B. T, & Clarke, E. M. "Fast Maintenance of Semantic
Assertions Using Redundant Aggregate Data". Proc. of the Sixth International
Conference on Very Large Databases, (1980), pp. 126-136.

[BL84] Burstall, R. & Lampson, B. "A Kernel Language for Abstract Data Types and
Modules". Proc. international symposium on the semantics of data types, Sophia-
Antipolis, France (1984). In Lecture Notes in Computer Science. 173.
Springer-Verlag (1984).

[Car85] Cardelli, L. Amber. Tech. Report AT7T. Bell Labs. Murray Hill, U.S.A. (1985).

[Car89] Cardelli, L. "Typeful Programming". DEC SRC Report, (May 1989).

[CDM90] Connor, R.C.H., Dearle, A., Morrison, R. & Brown, A.L. "Existentially
Quantified Types as a Database Viewing Mechanism". Advances in Database
Technology - EDBT90, Venice. In Lecture Notes in Computer Science.
416. Springer-Verlag (1990), pp. 301-315.

[CW85] Cardelli, L. & Wegner, P. "On Understanding Types, Data Abstraction and
Polymorphism". ACM Computing Surveys 17,4 (December 1985), pp. 471-523.

[DH66] Dennis, J.B. & Van Horn, E.C. "Programming Semantics for Multiprogrammed
Computations". Comm. A.C.M., 9, 3, (1966), pp 143-145.

[Fab74] Fabry, R.S. "Capability Based Addressing". COMM.ACM, 17,7, (1974), pp.
403-412.

[Feu73] Feustal, E.A. "On the Advantages of Tagged Architecture". IEEE Transactions on
Computers, C-22, 7, (July 1973), pp. 644-656.

[AGO89] Albano, A., Ghelli, G. & Orsini, R. "Types for Databases: The Galileo
Experience". Proc. 2nd International Workshop on Database Programming
Languages, Oregon, (June 1989), pp 196-206.

[HI85] Hsu, T. & Imielinski, T. "Integrity Checking for Multiple Updates". Proc. of the
ACM-SIGMOD International Conference on Management of Data, (1985), pp.
152-168.

[Lor77] Lorie, R.A. "Physical Integrity in a Large Segmented Database". ACM
Transactions on Database Systems, 2, 1, (March 1977), pp. 91-104.

[JL78] Jones, A.K. & Liskov, B. "A language extension for expressing constraints on
data access". Comm.ACM 21, 5 (1978), pp. 358-367.

17

[MBC88] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. "Napier88 Reference
Manual". Persistent Programming Research Report PPRR-77-89, University of St
Andrews. (1989).

[MB80] Myers, G.J. & Buckingham, B.R.S. "A Hardware Implementation of Capability-
Based Addressing". Operating Systems Review, 14, 4, (1980).

[MBD88] Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P. "Flexible Incremental
Binding in a Persistent Object Store". ACM.Sigplan Notices, 23, 4 (April 1988),
pp. 27-34.

[MH89] McCune, W. & Henschen, L. "Maintaining State Constraints in Relational
Databases". Journal of the ACM 36, 1, (January 1989), pp. 46-68.

[MP88] Mitchell J.C. & Plotkin G.D. "Abstract Types have Existential type". ACM
TOPLAS 10,3 (July 1988), pp. 470-502.

[PS87] "The PS-algol Reference Manual fourth edition". Universities of Glasgow and
St.Andrews PPRR-12 (1987).

[RA85] Rosenberg, J. & Abramson, D.A. "A Capability-Based Workstation to Support
Software Engineering". Proceedings of 18th Annual Hawaii International
Conference on System Sciences, (1985), pp. 222-230.

[RHB90] Rosneberg, J., Henskens, F.A., Brown, A.L. & Morrison, R. "Stabilitity in a
Persistent Store based on Large Virtual Memory". Proc of the International
Workshop on Security and Persistence of Information, Bremen, West Germany
(1990).

[SFS90] Stemple, D., Fegaras, L., Sheard, T. & Socorro, A. "Exceeding the Limits of
Polymorphism in Database Programming Languages". Advances in Database
Technology - EDBT90, Venice. In Lecture Notes in Computer Science.
416. Springer-Verlag (1990), pp. 269-285.

[SS89] Sheard, T. & Stemple, D. "Automatic Verification of Database Transaction Safety".
ACM Transactions on Database Systems 12, 3 (September, 1989), pp. 322-368.

[SWB89] Schmidt, J.W., Wetzel, I., Borgida, A. & Mylopoulos, J. "Database Programming
by Formal Refinement of Conceptual Design". IEEE - Data Engineering,
(September 1989).

[WLH81] Wulf, W.A., Levin, R. & Harbison, S.P. "HYDRA/C.mmp: An Experimental
Computer System". McGraw-Hill, New York, (1981).

[WN79] Wilkes, M.V. & Needham, R.M. "The Cambridge CAP Computer and its
Operating System". Elsevier North Holland, Inc., (1979).

18

	Citation
	Title
	Abstract
	1 . Introduction
	2 . Capabilities and Type Systems
	3 . Dynamic Type Checking
	4 . Statically Checked Capabilities
	5 . Information Hiding
	5.1 Subtype Inheritance
	5.2 1st-Order Information Hiding
	5.3 2nd-order Information Hiding

	6 . Database Constraints
	7 . Conclusions
	ACKNOWLEDGEMENTS
	REFERENCES

