
The Napier88 Reference Manual

Ron Morrison
Fred Brown

Richard Connor
Al Dearle

This document should be referenced as:
"The Napier88 Reference Manual
Universities of Glasgow and St Andrews, PPRR-77-89".

2

Contents

Chapter

1 Introduction
1.1 Napier88 Overview

2 Syntax Specification

3 Types and Type Rules
3.1 Universe of Discourse
3.2 Type Rules
3.3 Type Equivalence Rule
3.4 First Class Citizenship

4 Literals
4.1 Integer Literals
4.2 Real Literals
4.3 Boolean literals
4.4 String Literals
4.5 Pixel Literals
4.6 Picture Literal
4.7 Null literal
4.8 Procedure Literals
4.9 Image Literal
4.10 File Literal

5 Primitive Expressions and Operators
5.1 Evaluation Order
5.2 Boolean Expressions
5.3 Comparison Operators
5.4 Arithmetic Expressions
5.5 Arithmetic Precedence Rules
5.6 String Expressions
5.7 Picture Expressions
5.8 Pixel Expressions
5.9 Precedence Table

6 Declarations
6.1 Identifiers
6.2 Variables, Constants and Declaration of Data Objects
6.3 Declaration of Types
6.4 Sequences
6.5 Brackets
6.6 Scope Rules
6.7 Recursive Object Declarations
6.8 Recursive Type Declarations

7 Clauses
7.1 Assignment Clause
7.2 if Clause
7.3 case Clause
7.4 repeat ... while ... do ... Clause
7.5 for Clause

3

8 Procedures
8.1 Declarations and Calls
8.2 Recursive Declarations
8.3 Polymorphism
8.4 Equality and Equivalence

9 Aggregates
9.1 Vectors

9.1.1 Creation of Vectors
9.1.2 upb and lwb
9.1.3 Indexing
9.1.4 Equality and Equivalence

9.2 Structures
9.2.1 Creation of Structures

 9.2.2 Indexing
9.2.3 Equality and Equivalence

9.3 Images
9.3.1 Creation of Images
9.3.2 Indexing
9.3.3 Depth Selection
9.3.4 Equality and Equivalence

10 Variants
10.1 Variant Types
10.2 Variant Values
10.3 is and isnt
10.4 Variant Usage
10.5 Projection out of Variants
10.6 Equality and Equivalence

11 Abstract Data Types
11.1 Abstract Data Type Definition
11.2 Creation of Abstract Data Objects
11.3 Use of Abstract Data Objects
11.4 Equality and Equivalence

12 Parameterised Types

13 Files
13.1 File Literal
13.2 Persistence
13.3 Equality and Equivalence

14 Type any
14.1 Injection into Type any
14.2 Projection from Type any
14.3 Equality and Equivalence

15 Environments
15.1 Creating a New Environment
15.2 Adding Bindings to an Environment
15.3 Using Bindings in Environments
15.4 Removing Bindings from Environments
15.5 The contains Operator
15.6 Persistence
15.7 Equality and Equivalence

4

16 The Standard User Environment
16.1 The Root Environment
16.2 System Environment
16.3 Time Environment
16.4 Device Environment
16.5 User Environment
16.6 Vector Environment
16.7 String Environment
16.8 IO Environment

16.8.1 Primitive IO Environment
16.8.2 The IO Environment

16.9 Format Environment
16.10 Arithmetical Environment
16.11 Graphical Environment

16.11.1 Outline Environment
16.11.2 Raster Environment

16.12 Font Environment
16.13 Error Environment

16.13.1 Arithmetical Errors Environment
16.13.2 Graphical Errors Environment
16.13.3 String Errors Environment
16.13.4 Structure Errors Environment
16.13.5 Vector Errors Environment
16.13.6 Variant Errors Environment
16.13.7 Environment Errors Environment
16.13.8 IO Errors Environment
16.13.9 Format Errors Environment

16.14 Event Environment

17 References

Appendices

I Napier88 Syntax
II Napier88 Type Rules
III Program Layout
IV Reserved Words
V Running the Napier88 System
VI Installing the Napier88 System

5

John Napier (1550-1617)

John Napier was born in Merchiston, Edinburgh in 1550. He matriculated at St
Salvator's College, University of St Andrews in 1563. Very little is known about him
during this period although he did study in Paris and travel in Italy and Germany before
returning to Scotland to marry in 1571.

This was the period of the Scottish Reformation and Napier was very committed to the
Protestant cause. In 1594, he wrote his Plaine Discovery of the whole Revelation of Saint
John which he addressed to King James VI in a letter. This was the first Scottish book
on the interpretation of scripture and has a significant place in the history of theology in
Scotland.

John Napier is best known as the inventor of Logarithms. While important steps in the
theory had been taken in the sixteenth century, notably by Burgi, it was Napier who first
brought the subject, in any large way, to the attention of mathematicians. This was in his
Mirifici logarithmorum canonis descripto (1614), the first important work on
mathematics produced in Great Britain, and one which inspired Briggs, the professor of
geometry at Gresham College, London, to develop the system of common logarithms
with the decimal base. Napier also invented Napier rods or bones for use in
multiplication, a development of a well-known Oriental method, and a number of
formulas in trigonometry relating to circular parts. His other mathematical works include
De arte logistica (1573 but not published until 1839), Rabdoligæ seu numerationis per
vigulas libri duo (1617), in which the rods are described, and Mirifici logarithmorum
canonis constructio, published two years after his death.

Napier was also a great advocate of the decimal fraction system invented by Stevinus in
1585. Indeed, it appears that Napier introduced the decimal point into common usage
and eliminated the use of notation to indicate fractional position.

6

1 Introduction

This version of the reference manual corresponds to release 1.0 of the Napier language.
We refer to this language from now on as Napier88.

The Napier88 language was originally developed as part of the PISA project [AMP86].
However, as the name of this version suggests, there has been at least one year's work on
the system since the end of PISA. The language itself is intended as a testbed for our
experiments in type systems, programming environments, concurrency, bulk data
objects and persistence. At the present time, we do not have implementations of all of
our ideas in Napier88 but we have prototyped a number of them in PS-algol [PPR88]
and intend to develop them in Napier88 and its derivatives. The form of the language
was first conceived by Ron Morrison and Malcolm Atkinson but these early ideas have
been greatly extended by Fred Brown, Richard Connor, Alan Dearle and Ron Morrison.

The prototype Napier88 system is almost entirely built by Fred Brown, Richard Connor
and Alan Dearle [DEA88] with a little help from Ron Morrison. These four were the
main architects of the evolved design of the language, the supporting abstract machine
[BCC88, CBC89] and persistent storage architecture [BRO89]. Quintin Cutts is assisting
with the Napier88 in Napier88 bootstrap. Both Quintin and Graham Kirby must be
thanked for their extensive proof reading of this manual and their thorough testing of the
Napier88 system. Our Visiting Fellows at St Andrews, Chris Marlin and John
Rosenberg, also improved the quality of this document by their proof reading.

The Napier88 type system was evolving at the same time as Cardelli and Wegner
[CW85] published their work. Many of the ideas are related to theirs and some have
been borrowed from them. The philosophy is that types are sets of values from the value
space. The type system is mostly statically checkable, a property we wish to retain
wherever possible. However, some dynamic projection out of unions for types any and
environment [DEA89], as well as variant selection, allows the dynamic binding required
for orthogonal persistence [ABC83]. The type system is polymorphic, like ML [MIL79,
MIL83], Russell [DD79] and Poly [MAT85] and uses the existentially quantified types
of Mitchell & Plotkin [MP88] for abstract data types. A unique design aim of the
implementation of the typed objects is that store may be non-uniform in object
representation.

The language is persistent and is supported by a layered architecture designed by Fred
Brown [BRO89]. This means that the user need never write code to move or convert
data for long or short term storage. The form of persistence differs from that of PS-algol
and is based on the idea of Krablin [KRA85] that commit algorithms can be built on top
of a synchronisation primitive. We add to that the concept of a stable store, therefore
separating the notions of stability and visibility in commitment [AMP86, MBB89].

The system is at present without bulk data objects, concurrency and exceptions. Work
continues on these ideas.

The Napier88 system consists of the language and its persistent store. This persistent
store is populated and, indeed, the system uses objects within the persistent store to
support itself. A description of the structure and contents of the persistent store is given
in Chapter 16.

Many people have contributed to the Napier88 design. Malcolm Atkinson played a
major role [AM85, MBC87, MBB89], as did his research assistants Richard Cooper,
Francis Wai & Paul Philbrow. At STC Technology Ltd., John Scott, John Robinson,
Dave Sparks and Michael Guy aided, abetted and often criticised constructively. Nick
Capon managed the PISA project and Graham Pratten directed it with Ron and
Malcolm.

7

1.1 Napier88 Overview

The Napier88 system consists of the language and its persistent store. The system is
supported by a layered architecture which contains, among other things, the Persistent
Abstract Machine Layer and the Stable Persistent Storage Layer. All the Napier88
Architectural Layers are virtual in that, in any implementation, they may be
implemented separately or together as efficiency dictates. Thus, they are definitional
rather than concrete.

The Persistent Abstract Machine Layer provides the ability to execute Napier88
programs. Napier88 programs are executed in a strict left to right, top to bottom manner
except where the flow of control is altered by one of the language clauses. On
encountering an error state, the Persistent Abstract Machine (PAM) generates a call to a
standard error procedure held in the persistent store. These error procedures may be
redefined by the user. The Persistent Abstract Machine also monitors interaction with
UNIX on which Napier88 resides. When an asynchronous interrupt occurs the PAM
records it. Four of these events are made available to the user. When they occur, they act
like an unexpected procedure call to a standard event procedure in the persistent store.
Again, the user may redefine these procedures.

The persistent store is populated when the system is installed and, indeed, as we have
seen the persistent store is used by the PAM itself for error and event procedures. The
structure of the persistent store is described in this manual. The objects within the
released persistent store are referred to as standard objects and it is hoped that users will
add to the contents of the store. The persistent store may be stabilised, that is, it is
transformed from one consistent state to the next. This must be performed by the user to
preserve data in the persistent store. The store is always restarted from the last stabilised
state. Programs which terminate normally generate an automatic stabilise operation.

There may be many incarnations of the stable persistent store and many activations of
the PAM. However, only one PAM incarnation may work on one persistent store at any
one time.

Before reading the rest of this manual, the user is referred to Appendix III on the layout
of Napier88 programs.

8

2 Syntax Specification

It is important that a programming language can be formally defined since it gives
implementors a reference model. There are two levels of definition, syntactic and
semantic. This section deals with the formal syntactic rules used to define the context
free syntax of the language. Later, informal semantic descriptions of the syntactic
categories will be given. The formal rules define the set of all syntactically legal
Napier88 programs, remembering that the meaning of any one of these programs is
defined by the semantics.

To define the syntax of a language another notation is required which is called a meta
language and in this case a variation of Backus-Naur form is used.

The syntax of Napier88 is specified by a set of rules or productions as they are normally
called. Each production specifies the manner in which a particular syntactic category
(e.g. a clause) can be formed. The syntactic category name is enclosed in the meta
symbols < and >, thus distinguishing it from names or reserved words in the language.
These syntactic categories can be mixed in productions with terminal symbols which are
actual symbols of the language itself. Thus, by following the productions until terminal
symbols are reached, the set of legal programs can be derived.

Other meta symbols include | which allows a choice in a production. The square brackets
[and] are also used in pairs to denote that an object is optional. When used with a *, a
zero or many times repetition is indicated. The reader should not confuse the meta
symbols |,<, >, *, [and] with the actual symbols in Napier88 and care will be taken to
keep the two concepts completely separate in this description.

For example,

<identifier> ::= <letter>[<letter> | <digit> | _]*

indicates that an identifier can be formed as a letter, optionally followed by zero or many
letters, digits or underbars.

As may be expected with any reasonably powerful programming language, the
productions for Napier88 are recursive which means that there are an infinite number of
legal Napier88 programs. However, the syntax of Napier88 can be described in about 80
productions.

The full context-free syntax of Napier88 is given in Appendix I.

9

3 Types and Type Rules

The Napier88 type system is based on the notion of types as sets of objects from the
value space. These sets may be predefined, like integer, or they may be formed by using
one of the predefined type constructors, like structure. The constructors obey the
Principle of Data Type Completeness [MOR79]. That is, where a type may be used in a
constructor, any type is legal without exception. This has two benefits. Firstly, since all
the rules are very general and without exceptions, a very rich type system may be
described using a small number of defining rules. This reduces the complexity of the
defining rules. The second benefit is that the type constructors are as powerful as is
possible since there are no restrictions to their domain. This increases the power of the
language.

3.1 Universe of Discourse

There are an infinite number of data types in Napier88 defined recursively by the
following rules:

1. The scalar data types are integer, real, boolean, string, pixel, picture, file and
null.

2. The type image is the type of an object consisting of a rectangular matrix of
pixels.

3. For any data type t, *t is the type of a vector with elements of type t.

4. For identifiers I1,...,In and types t1,...,tn, structure(I1: t1,...,In: tn) is the type of a
structure with fields Ii and corresponding types ti, for i = 1..n.

5. For identifiers I1,...,In and types t1,...,tn, variant(I1: t1,...,In: tn) is the type of a
variant with identifiers Ii and corresponding types ti, for i = 1..n.

6. For any data types t1,...,tn and t, proc(t1,...,tn → t) is the type of a procedure
with parameter types ti, for i = 1..n and result type t. The type of a resultless
procedure is proc(t1,...,tn).

7. For any procedure type, proc(t1,...,tn → t) and type identifiers T1,...,Tm,

proc[T1,...,Tm] (t1,...,tn → t) is the type proc(t1,...,tn → t) universally
quantified by types T1,...,Tm. These are polymorphic procedures.

8. env is the type of an environment.

9. For any type identifiers W1,...,Wm, identifiers I1,...,In and types t1,...,tn, abstype
[W1,...,Wm] (I1: t1,...,In: tn), is the type of an existentially quantified data type.
These are abstract data types.

10. The type any is the infinite union of all types.

11. For any user-constructed data type t and type identifiers, T1,...,Tn, t[T1,...,Tn] is
the type t parameterised by T1,...,Tn.

In addition to the above data types, there are a number of other objects in Napier88 to
which it is convenient to give a type in order that the compiler may check their use for
consistency.

12. Clauses which yield no value are of type void, as are procedures with no result.

10

The world of data objects is defined by the closure of rules 1 and 2 under the recursive
application of rules 3 to 12.

3.2 Type Rules

The type rules form a second set of rules to be used in conjunction with the context free
syntax to define well-formed programs. The generic types that are required for the
formal definition of Napier88 can be described by the following:

type aa rr ii tthh is iinn tt | rreeaa ll

type oorrddeerreedd is aa rr ii tthh | ss tt rr iinngg

type ll ii tt eerraa ll is oorrddeerreedd | bbooooll | pp iixxee ll | pp iicc |
nnuull ll | pprroocc| ff ii ll ee

type nnoonnvvooiidd is ll ii tt eerraa ll | iimmaaggee | ss tt rruucc ttuurree |
vvaarr iiaanntt | eennvv | aannyy | aabbss ttyyppee |
ppaarraammeetteerr ii sseedd | ppoollyy | **nnoonnvvooiidd

type ttyyppee is nnoonnvvooiidd | vvooiidd

In the above, the generic type aa rr ii tt hh can be either an iinn tt or a rr ee aa ll, representing the types
integer and real in the language. In the type rules, the concrete types and generic types
are written in shadow font to distinguish them from the reserved words. Each of the type
categories given above corresponds to one of the type construction rules and will be
described later in this manual.

To check that a syntactic category is correctly typed, the context free syntax is used in
conjunction with a type rule. For example, the type rule for the two-armed if clause is

tt :: ttyyppee, if <clause> :: bbooooll then <clause> :: tt else <clause> :: tt ==>> tt

This rule may be interpreted as follows: tt is given as a ttyyppee from the table above. It can
be any type including void. Following the comma, the type rule states that the reserved
word if may be followed by a clause which must be of type boolean. This is indicated by
:: bboooo ll. The then and else alternatives must have clauses of the same type tt for any tt .
The resultant type, indicated by == >>, of this production is also tt , the same as the
alternatives.

The type rules will be used throughout this manual, in conjunction with the context-free
syntax rules, to describe the language. A complete set of type rules for Napier88 is given
in Appendix II.

3.3 Type Equivalence Rule

Two data objects have the same type if they are structurally equivalent, that is the types
represent the same set of values. Thus, even if a type identifier is aliased, for example,

type ron is int

the fact that objects of type ron are integers cannot be hidden. Abstract data types can be
used for this purpose. The meaning of structural equivalence for two types is that they
represent the same set. For scalar types, the construction of these sets is obvious. For

11

constructed types, it is not so obvious and is defined as part of the semantics of the
constructor.

For example, the types,

type man is structure (age : int ; size : real)

and

type house is structure (size : real ; age : int)

have the same type since they both represent the same set of objects.

3.4 First Class Citizenship

The application of the Principle of Data Type Completeness ensures that all data types
may be used in any combination in the language. For example, any data type may be a
parameter to or returned from a procedure. In addition to this, there are a number of
properties that all data types possess that constitute their civil rights in the language and
define first class citizenship. All data types in Napier88 have first class citizenship.

The additional civil rights that define first class citizenship are:

1 the right to be declared,
2 the right to be assigned to and to be assigned,
3 the right to have equality defined over them, and,
4 the right to persist.

12

4 Literals

Literals are one of the basic building blocks of a program and allow values to be
introduced. A literal is defined by:

<literal> ::= <int_literal> | <real_literal> | <bool_literal> |
<string_literal> |

<pixel_literal> | <picture_literal> | <null_literal> |
<proc_literal> | <image_literal> | <file_literal>

4.1 Integer Literals

These are of type integer and are defined by:

<int_literal> ::= [<add_op>]<digit>[<digit>]*
<add_op> ::= + | -

<int_literal> ==>> iinntt

An integer literal is one or more digits optionally preceded by a sign. For example,

1 0 1256 -8797

4.2 Real Literals

These are of type real and are defined by

<real_literal> ::= <int_literal>.[<digit>]*[e<int_literal>]

<real_literal> ==>> rreeaa ll

Thus, there are a number of ways of writing a real literal. For example,

1.2 3.1e2 5.e5
1. 3.4e-2 3.4e+4

3.1e-2 means 3.1 times 10 to the power -2 (i.e. 0.031)

4.3 Boolean Literals

There are only two literals of type boolean. They are the symbols true and false. They
may be used with obvious meaning when a boolean literal is required.

<bool_literal> ::= true | false

<bool_literal> ==>> bbooooll

4.4 String Literals

A string literal is a sequence of characters in the character set (ASCII) enclosed by
double quotes. The syntax is

<string_literal> ::= <double_quote>[<char>]*<double_quote>
<char> ::= any ASCII character except " |

<special_character>
<special_character> ::= <single_quote><special_follow>
<special_follow> ::= n | p | o | t | b | <single_quote> | <double_quote>

13

<string_literal> ==>> ss tt rr iinngg

The empty string is denoted by "". Examples of other string literals are:

"This is a string literal", and,
"I am a string"

The programmer may wish to have a double quote itself inside a string literal. This
requires using a single quote as an escape character and so if a single or double quote is
required inside a string literal it must be preceded by a single quote. For example,

"a'"" has the value a", and,
"a''" has the value a'.

There are a number of other special characters which may be used inside string literals.
They are:

'b backspace ASCII code 8
't horizontal tab ASCII code 9
'n newline ASCII code 10
'p newpage ASCII code 12
'o carriage return ASCII code 13

4.5 Pixel Literals

A pixel literal is defined by:

<pixel_literal> ::= on | off

<pixel_literal> ==>> ppiixxee ll

4.6 Picture Literal

There is only one picture literal. It is used to define a picture with no points.

<picture_literal> ::= nilpic

nilpic ==>> ppiicc

4.7 Null Literal

There is only one literal of the type null. It is used to ground recursion in variant types.

<null_literal> ::= nil

nil ==>> nnuull ll

4.8 Procedure Literals

Procedures are introduced into programs by their literal value. They are defined by:

<proc_literal> ::= proc[<type_parameter_list>]
([<named_param_list>][<arrow><type_id>]);<clause>

<type_parameter_list> ::= <lsb><identifier_list><rsb>
<named_param_list> ::= [constant] <identifier_list>:<type_id>

[;<named_param_list>]

tt :: ttyyppee, proc [<type_parameter_list>]([<named_param_list>]

14

[<arrow><type_identifier> :: tt]);<clause> :: tt

For example,

proc [t] (n : t → t) ; n

is a procedure literal.

The meaning and use of procedures is described in Chapter 8.

4.9 Image Literal

There is only one image literal. It is used to define the image with no pixels. It has
dimensions 0 by 0 and depth 0.

<image_literal> ::= nilimage

nilimage ==>> iimmaaggee

4.10 File Literal

There is only one file literal. It is used to denote a file value that is not bound to a file in
the file system.

<file_literal> ::= nilfile

nilfile ==>> ff ii ll ee

15

5 Primitive Expressions and Operators

5.1 Evaluation Order

The order of execution of a Napier88 program is strictly from left to right and top to
bottom except where the flow of control is altered by one of the language clauses. This
rule becomes important in understanding side-effects in the store. Parentheses in
expressions can be used to override the precedence of operators.

When an error occurs in the system, a standard error procedure is called automatically.
The standard error procedures are stored in the standard environment and may be altered
by the user using the Napier88 facilities for updating environments.

An event may also occur during the execution of a Napier88 program. An event acts like
an unexpected procedure call. Events are also defined in the standard environment and
may be manipulated in the same manner as errors. Further details of events and errors
may be found in Chapter 16.

5.2 Boolean Expressions

Objects of type boolean in Napier88 can have the value true or false. There are only two
boolean literals, true and false, and three operators. There is one boolean unary
operator, ~, and two boolean binary operators, and and or. They are defined by the truth
table below:

 a b ~a a or b a and b

true false false true false
false true true true false
true true false true true
false false true false false

The precedence of the operators is important and is defined in descending order as:

~
and
or

Thus,

~a or b and c

is equivalent to

(~a) or (b and c)

This is reflected in the syntax rules which are:

<expression> ::= <exp1>[or<exp1>]*
<exp1> ::= <exp2>[and<exp2>]*
<exp2> ::= [~]<exp3>...

<expression> :: bbooooll or <expression> :: bbooooll ==>> bbooooll
<expression> :: bbooooll and <expression> :: bbooooll ==>> bbooooll
[~]<expression> :: bbooooll ==>> bbooooll

The evaluation of a boolean expression in Napier88 is non-strict. That is, in the left to
right evaluation of the expression, no more computation is performed on the expression
than is necessary. For example,

16

true or <expression>

gives the value true without evaluating <expression> and

false and <expression>

gives the value false without evaluating <expression>.

5.3 Comparison Operators

Expressions of type boolean can also be formed by some other binary operators. For
example, a = b is either true or false and is therefore boolean in nature. These operators
are called the comparison operators and are

< less than
<= less than or equal to
> greater than
>= greater than or equal to
= equal to
~= not equal to
is is a member of a variant (see Chapter 10)
isnt is not a member of a variant (see Chapter 10)

The syntactic rules for these are:

<exp2> ::= <exp3>[<rel_op><exp3>]
<rel_op> ::= is | isnt | < | <= | > | >= | = | ~=

tt :: nnoonnvvooiidd , <expression> :: tt <eq_op> <expression> :: tt ==>> bbooooll
wwhheerree <eq_op> ::= = | ~=

tt :: oorrddeerreedd,<expression> :: tt <co_op> <expression> :: tt ==>> bbooooll
wwhheerree <co_op> ::= < | <= | > | >=

<expression> :: vvaarr iiaanntt <type_op><identifier> ==>> bbooooll
wwhheerree <type_op> ::= is | isnt

Note that the operators <, <=, > and >= are defined on integers, reals and strings whereas
= and ~= are defined on all Napier88 data types. The interpretation of these operations is
given with each data type as it is introduced. The operators is and isnt are for testing a
variant identifier and are defined in Chapter 10.

Equality in Napier88 is defined as identity.

5.4 Arithmetic Expressions

Arithmetic may be performed on data objects of type integer and real. The syntax of
arithmetic expressions is:

<exp3> ::= <exp4>[<add_op><exp4>]*
<exp4> ::= <exp5>[<mult_op><exp5>]*
<exp5> ::= [<add_op>]<exp6>
<mult_op> ::= <int_mult_op> | <real_mult_op> | <string_mult_op> |

<pic_mult_op> | <pixel_mult_op>

tt :: aa rr ii tthh , <expression> :: tt <add_op> <expression> :: tt ==>> tt
tt :: aa rr ii tthh , <add_op> <expression> :: tt ==>> tt

17

<expression> :: iinn tt <int_mult_op> <expression> :: iinn tt ==>> iinn tt
wwhheerree <int_mult_op> ::= <star> | div | rem

<expression> :: rreeaa ll <real_mult_op><expression> :: rreeaa ll ==>> rreeaa ll wwhheerree
<real_mult_op> ::= <star> | /

The operators mean:

+ addition
- subtraction
* multiplication
 / real division
div integer division throwing away the remainder
rem remainder after integer division

In both div and rem the result is negative only if exactly one of the operands is negative.

Some examples of arithmetic expressions are

a + b 3 + 2 1.2 + 0.5 -2.1 + a / 2.0

The language deliberately does not provide automatic coercion from integer to real, but
the transfer may be explicitly invoked by the standard procedure float and the standard
procedure truncate is provided to transfer from real to integer. These are described in
Chapter 16.

The evaluation of an arithmetic expression may cause the standard error procedures
unaryInt, Int, unaryReal and Real to be called.

5.5 Arithmetic Precedence Rules

The order of evaluation of an expression in Napier88 is from left to right and based on
the precedence table:

* / div rem
+ -

That is, the operations *, /, div, rem are always evaluated before + and -. However, if
the operators are of the same precedence then the expression is evaluated left to right.
For example,

6 div 4 rem 2 gives the value 1

Brackets may be used to override the precedence of the operator or to clarify an
expression. For example,

 3 * (2 - 1) yields 3 not 5

5.6 String Expressions

The string operator, ++, concatenates two operand strings to form a new string. For
example,

"abc" ++ "def"

results in the string

18

"abcdef"

The syntax rule is:

<exp4> ::= <exp5>[<string_mult_op><exp5>]*

<expression>:: ss tt rr iinngg <string_mult_op><expression>:: ss tt rr iinngg ==>>ss tt rr iinngg
wwhheerree <string_mult_op> ::= ++

A new string may be formed by selecting a substring of an existing string. For example,
if s is the string "abcdef" then s(3 | 2) is the string "cd". That is, a new string is formed
by selecting 2 elements from s starting at character 3. The syntax rule is:

<exp6> ::= <expression>(<clause><bar><clause>)

<expression>:: ss tt rr iinngg (<clause>:: iinn tt <bar> <clause> :: iinn tt) ==>> ss tt rr iinngg

For the purposes of substring selection the first character in a string is numbered 1. The
selection values are the start position and the length respectively.

The characters in a string are ordered according to the ASCII character code. Thus,

"a" < "z"

is true.

To compare two strings, the characters are compared in pairs, one from each string, from
left to right. Two strings are considered equal only if they have the same characters in
the same order and are of the same length, otherwise they are not equal.

The null string is less than any other string. Thus the less-than relation can be resolved
by taking the characters pair by pair in the two strings until one is found to be less than
the other. The other relations can be defined by using = and <.

The evaluation of a string expression may cause the standard error procedures
concatenate and subString to be called.

5.7 Picture Expressions

The picture drawing facilities of Napier88 allow the user to produce line drawings in
two dimensions. The system provides an infinite two dimensional real space. Altering
the relationship between different parts of the picture is performed by mathematical
transformations, which means that pictures are usually composed of a number of sub-
pictures.

In a line drawing system, the simplest picture is a point. For example, the expression,

[0.1, 2.0]

defines the point (0.1, 2.0).

Points in pictures are implicitly ordered. A binary operation on pictures operates
between the last point of the first picture and the first point of the second. The resulting
picture has as its first point, the first point of the first picture, and as its last, the last
point of the second.

There are two infix picture operators. They are ^, which forms a new picture by joining
the first picture to the second by a straight line from the last point of the first picture to

19

the first point of the second. ++ also forms a new picture by including all the subpictures
of both the operand pictures. The other transformations and operations on pictures are:

shift The new picture consists of the points obtained by adding the x
and y shift values and the x and y co-ordinates of the points in the old picture. The
ordering of the points is preserved.

scale The new picture consists of the points obtained by multiplying the
x and y scale values with the x and y co-ordinates of the points in the old picture,
respectively. The ordering of the points is preserved.

rotate The new picture consists of the points obtained by rotating the x
and y co-ordinates of the points in the old picture clockwise about the origin by the
angle indicated in degrees. The ordering of the points is preserved.

colour The new picture is the old one in a new colour.

text Form a picture consisting of the text string. The two points
represent the base line of the string, which will be scaled to fit.

A text expression may cause the standard error procedure Text to be called while the
picture is being drawn.

The full syntax of picture expressions is:

<exp4> ::= <exp5>[<pic_mult_op><exp5>]*
<pic_mult_op> ::= ^ | ++

<expression> :: pp iicc <pic_mult_op><expression> :: pp iicc ==>> ppiicc

<value_constructor> ::= <picture_constr> | <picture_op> | ...

<picture_constr> ::= <lsb><clause>,<clause><rsb>

<picture_op> ::= shift<clause>by<clause>,<clause> |
scale<clause>by<clause>,<clause> |
rotate<clause>by<clause> |
colour<clause>in<clause> |

text<clause>from<clause>,<clause>to<clause>,<clause>

<lsb><clause> :: rreeaa ll,<clause> :: rreeaa ll <rsb> ==>> ppiicc

shift<clause> :: pp iicc by<clause> :: rreeaa ll,<clause> :: rreeaa ll ==>> ppiicc
scale<clause> :: pp iicc by<clause> :: rreeaa ll,<clause> :: rreeaa ll ==>> ppiicc
rotate<clause> :: pp iicc by<clause> :: rreeaa ll ==>> ppiicc
colour<clause> :: pp iicc in<clause> :: pp iixxee ll ==>> ppiicc
text<clause> :: ss tt rr iinngg from<clause> :: rreeaa ll ,<clause> :: rreeaa ll

to<clause> :: rreeaa ll,<clause> :: rreeaa ll ==>> ppiicc

5.8 Pixel Expressions
Pixels may be concatenated to produce another pixel of a greater depth using the
operator ++.

<exp4> ::= <exp5>[++<exp5>]*

<expression> :: pp iixxee ll ++<expression> :: pp iixxee ll ==>> ppiixxee ll

20

For example,

let b = on ++ off ++ off ++ on

A pixel has depth representing the number of planes in the pixel. The planes are
numbered from 0 and new pixels can be formed from subpixels of others. The syntax is

<exp6> ::= <expression>(<clause><bar><clause>)

<expression> :: pp iixxee ll (<clause> :: iinn tt <bar><clause> :: iinn tt) ==>> ppiixxee ll

For example, assuming the declaration of b above,

b (1 | 2) is the pixel off ++ off

This last expression is interpreted as the pixel formed by starting at plane 1 in b and
selecting 2 planes.

The evaluation of a pixel expression may cause the standard error procedures
pixelOverflow and subPixel to be called.

5.9 Precedence Table

The full precedence table for operators in Napier88 is:

/ * div rem ^
+ - ++
~
= ≠ < ≤ > ≥ is isnt
and
or

21

6 Declarations

6.1 Identifiers

In Napier88, an identifier may be bound to a data object, a procedure parameter, a
structure field, a variant label, an abstract data type label or a type. An identifier
may be formed according to the syntactic rule

<identifier> ::= <letter>[<id_follow>]
<id_follow> ::= <letter>[<id_follow>] |

<digit> [<id_follow>] |
_[<id_follow>]

That is, an identifier consists of a letter followed by any number of underscores,
letters or digits. The following are legal Napier88 identifiers:

x1 ronsObject look_for_Record1 Ron

Note that case is significant in identifiers.

6.2 Variables, Constants and Declaration of Data Objects

Before an identifier can be used in Napier88, it must be declared. The action of
declaring a data object associates an identifier with a typed location which can hold
values. In Napier88, the programmer may specify whether the value is constant or
variable. A constant may be manipulated in exactly the same manner as a variable
except that it may not be updated.

When introducing an identifier, the programmer must indicate the identifier, the
type of the data object, whether it is variable or constant, and its initial value.
Identifiers are declared using the following syntax:

let <identifier><init_op><clause>
<init_op> ::= = | :=

let<identifier> <init_op> <clause> :: nnoonnvvooiidd ==>> vvooiidd

For example,

let a := 1

introduces an integer variable with initial value 1. Notice that the compiler deduces
the type.

A constant is declared by

let <identifier> = <clause>

For example,

let discrim = b * b - 4.0 * a * c

introduces a real constant with the calculated value. The language implementation
will detect and flag as an error any attempt to assign to a constant.

6.3 Declaration of Types
Type names may be declared by the user in Napier88. The name is used to represent
a set of objects drawn from the value space and may be used wherever a type
identifier is legal. The syntax of type declarations is:

22

<type_decl> ::= type<type_init>
<type_init> ::= <identifier>[<type_parameter_list>]is<type_id>

<type_parameter_list> ::= <lsb><identifier_list><rsb>
<type_id> ::= int | real | bool | string | pixel | pic |

file | null | any | env | image |
<identifier>[<parameterisation>] |

<type_constructor>

<parameterisation> ::= <lsb><type_identifier_list><rsb>
<type_identifier_list> ::= <type_id>[,<type_identifier_list>]
<type_constructor> ::= <vector_type> | <structure_type> | <variant_type>

| <proc_type> | <abstype>

<vector_type> ::= <star><type_id>
<structure_type > ::= structure([<named_param_list>])
<named_param_list> ::= [constant] <identifier_list>:<type_id>

[;<named_param_list>]
<variant_type> ::= variant([<variant_fields>])
<variant_fields> ::= <identifier_list>:<type_id>[;<variant_fields>]

<proc_type> ::= proc[<type_parameter_list>]([<parameter_list>]
[<arrow><type_id>])

<parameter_list> ::= <type_id>[,<parameter_list>]
<abstype> ::=
abstype<type_parameter_list>(<named_param_list>)

Thus,

type al is bool

is a type declaration aliasing the identifier al with the boolean type. They are the
same type and may be used interchangeably. Examples of type declarations will be
given in later chapters.

6.4 Sequences

A sequence is composed of any combination, in any order, of declarations and
clauses. The type of the sequence is the type of the last clause or declaration in the
sequence. If there is more than one clause in a sequence then all but the last must
be of type void.

<sequence> ::= <declaration>[;<sequence>] | <clause>[;<sequence>]

tt :: ttyyppee, <declaration> :: vvooiidd ;<sequence> :: tt ==>> tt
tt :: ttyyppee, <clause> :: vvooiidd ;<sequence> :: tt ==>> tt
tt :: ttyyppee, <clause> :: tt ==>> tt

6.5 Brackets

Brackets are used to make a sequence of clauses and declarations into a single
clause. There are two forms, which are:

begin
< sequence >

end

{ < sequence > }

23

tt :: ttyyppee, begin<sequence> :: tt end ==>> tt
tt :: ttyyppee, {<sequence> :: tt } ==>> tt

The {} method is there to allow a clause to be written clearly on one line. For
example,

let i := 2
for j = 1 to 5 do { i := i * i ; writei (i) }

However, if the clause is longer than one line, the first alternative should be used for
greater clarity. Nonvoid blocks are sometimes called block expressions.

6.6 Scope Rules

The scope of an identifier is limited to the sequence following the declaration. This
means that the scope of an identifier starts immediately after the declaration and
continues up to the next unmatched } or end. If the same identifier is declared in an
inner sequence, then while the inner name is in scope the outer one is not.

6.7 Recursive Object Declarations

It is sometimes necessary to allow objects to be defined recursively. The recursive
declarations are particularly useful and necessary in defining recursive procedures.
For example, the following defines a recursive version of the factorial procedure:

rec let factorial = proc (n : int → int)

The effect of the recursive declaration is to allow the identifier to enter scope
immediately. That is, after the <init_op>s and not after the whole declaration
clause, as is the case with non-recursive declarations. Thus, the identifier factorial
used in the literal is the same as, and refers to the same location as, the one being
defined. Chapter 8 gives an example of mutually recursive procedures.

Where there is more than one identifier being declared, all the identifiers come into
scope at the same time. That is, all the names are declared first and then are
available for the clauses after the <init_op>'s.

The initialising clauses for recursive declarations are restricted to literal values to
avoid ambiguities in evaluation order.

The full syntax of object declarations is:

<object_decl> ::= let<object_init> |
rec let<rec_object_init>[&<rec_object_init>]*

<object_init> ::= <identifier><init_op><clause>
<rec_object_init> ::= <identifier><init_op><literal>
<init_op> ::= = | :=

<declaration> ==>> vvooiidd
wwhheerree<object_decl> ::= let<object_init> |

rec let<rec_object_init>
 [&<rec_object_init>]*

wwhheerree <object_init> ::= <identifier><init_op><clause> :: nnoonnvvooiidd
wwhheerree<rec_object_init> ::= <identifier><init_op><literal> :: nnoonnvvooiidd

24

wwhheerree <init_op> ::= = | :=

6.8 Recursive Type Declarations

The full syntax of type declarations is:

<type_decl> ::= type<type_init> | rec type<type_init>[&<type_init>]*

For example, the following

rec type int_list is variant (cons : structure (hd : int ; tl : int_list) ; empty :
null)

defines a type for a list of integers.

Further examples of recursive type definitions are given in later chapters.

25

7 Clauses

The expression is a clause which allows the operators in the language to be used to
produce data objects. There are other statements in Napier88 which allow the data
objects to be manipulated and which provide control over the flow of the program.

7.1 Assignment Clause

The assignment clause has the following syntax:

<clause> ::= <name>:=<clause>

tt :: nnoonnvvooiidd , <name> :: tt :=<clause> :: tt ==>> vvooiidd

For example,

discriminant := b * b - 4.0 * a * c

gives discriminant the value of the expression on the right. Of course, the identifier
must have been declared as a variable and not a constant. The clause alters the value
denoted by the identifier.

The semantics of assignment is defined in terms of equality. The clause,

a := b

where a and b are both identifiers, implies that after execution a = b will be true.
Thus, as will be seen later, assignment for scalar types means value assignment and
for constructed types it means pointer assignment.

7.2 if Clause

There are two forms of the if clause defined by:

if<clause>do<clause> |
if<clause>then<clause>else<clause>

if <clause> :: bbooooll do <clause> :: vvooiidd ==>> vvooiidd
tt : ttyyppee, if <clause> :: bbooooll then <clause> :: tt else <clause> :: tt ==>> tt

In the single armed version, if the condition after the if is true, then the clause after
the do is executed. For example, in the clause

if a < b do a := 3

the value 3 will be assigned to a, if a is smaller than b before the if clause is
executed.

The second version allows a choice between two actions to be made. If the first
clause is true, then the second clause is executed, otherwise the third clause is
executed. Notice that the second and third clauses are of the same type and the
result is of that type. The following contains two examples of if clauses:

if x = 0 then y := 1 else x := y - 1
let temp = if a < b then 1 else 5

7.3 case Clause
The case clause is a generalisation of the if clause which allows the selection of one
item from a number of possible ones. The syntax is:

26

case<clause>of<case_list>default :<clause>
<case_list> ::= <clause_list>:<clause>;[<case_list>]

 tt :: ttyyppee ;; tt11 :: nnoonnvvooiidd , case <clause> :: tt11 of <case_list>
default : <cla

wwhheerree <case_list> ::= <clause_list>:<clause> :: tt ;
[<case_list>]

wwhheerree <clause_list> ::= <clause> :: tt11 [,<clause_list>]

An example of the use of the case clause is

case next_car_colour of
1,4 : "green"
3 : "red"

default : "any"

During the execution of this clause, the value next_car_colour is compared in strict
order, i.e left to right, top to bottom, with the expressions on the left hand side of
the colon. When a match is found the clause on the right hand side is executed.
Control is then transferred to the next clause after the case clause. If no match is
found then the default clause is executed. The above case clause has result type
string.

7.4 repeat ... while ... do Clause

There are three forms of this clause which allow loops to be constructed with the
test at the start, the end or the middle of the loop. The three forms are encapsulated
in the two production alternatives:

repeat<clause>while<clause>[do<clause>] |
while<clause>do<clause>

repeat <clause> :: vvooiidd while <clause> :: bbooooll
[do <clause> :: vvooiidd] ==>> vvooiidd

while <clause> :: bbooooll do <clause> :: vvooiidd ==>> vvooiidd

In each of the three forms the loop is executed until the boolean clause is false. The
while do version is used to perform a loop zero or many times, whereas the repeat
while is used for one or many times.

7.5 for Clause

The for clause is included in the language as syntactic sugar where there is a fixed
number of iterations defined at the initialisation of the loop. It is defined by:

for<identifier>=<clause>to<clause>[by<clause>]do<clause>

for <identifier>=<clause> :: iinn tt to <clause> :: iinn tt
[by<clause> :: iinn tt]do<clause> :: vvooiidd ==>> vvooiidd

in which the clauses are: the initial value, the limit, the increment and the clause to
be repeated, respectively. The first three are of type int and are calculated only once
at the start. If the increment is 1 then the by clause may be omitted. The identifier,
known as the control constant, is in scope within the void clause, taking on the
range of values successively defined by initial value, increment and limit. That is,

27

the control constant is considered to be declared at the start of the repetition clause.
The repetition clause is executed as many times as necessary to complete the loop
and each time it is, the control constant is initialised to a new value, starting with
the initial loop value, changing by the increment until the limit is reached. An
example of the for clause is:

let factorial := 1 ; let n = 8
for i = 1 to n do factorial := factorial * i

With a positive increment, the for loop terminates when the control constant is
initialised to a value greater than the limit. With a negative increment, the for loop
terminates when the control constant is initialised to a value less than the limit.

28

8. Procedures

8.1 Declarations and Calls

Procedures in Napier88 constitute abstractions over expressions, if they return a
value, and clauses of type void if they do not. In accordance with the Principle of
Correspondence [STR67], any method of introducing a name in a declaration has
an equivalent form as a parameter.

Thus, in declarations of data objects, giving a name an initial value is equivalent to
assigning the actual parameter value to the formal parameter. Since this is the only
type of declaration for data objects in the language, it is also the only parameter
passing mode and is commonly known as call by value.

Like declarations, the formal parameters representing data objects must have a
name, a type and an indication of whether they are variable or constant. A
procedure which returns a value must also specify its return type. The scope of the
formal parameters is from their declaration to the end of the procedure clause.
Procedures are defined as literals with the following syntax:

<proc_literal> ::=
proc[<type_parameter_list>]([<named_param_list>]

[<arrow><type_id>]);<clause>
<type_parameter_list> ::= <lsb><identifier_list><rsb>
<named_param_list> ::= [constant] <identifier_list>:<type_id>

[;<named_param_list>]

tt :: ttyyppee, proc [<type_parameter_list>]([<named_param_list>]
[<arrow><type_identifier> :: tt]);<clause> :: tt

Thus, the integer identity procedure, called int_id, may be declared by:

let int_id = proc (n : int → int) ; n

The syntax of a procedure call is:

<expression>([<application>])
<application> ::= <clause_list>

tt :: ttyyppee ,, <expression> :: pprroocc ([<clause_list>]) ==>> tt
wwhheerree <clause_list> ::= <clause> :: nnoonnvvooiidd [,<clause_list>]

There must be a one-to-one correspondence between the actual and formal
parameters and their types. Thus, to call the integer identity procedure given above,
the following could be used,

int_id (42)

which will evaluate to the integer 42.

The type of int_id is written proc (int → int).

To complete the Principle of Correspondence for procedures, the parameters may
be made constant. Variable parameters may be assigned to, but since they are local
variables this only has local effect. Constant parameters may not be assigned to. For
example, the parameter n in int_id is not assigned to and is more appropriately a
constant. Therefore, the declaration should be:

29

let int_id = proc (constant n : int → int) ; n

Note that the constancy of the parameter is not part of the type, a notion that is
important when deciding type equivalence.

8.2 Recursive Declarations

Recursive and mutually recursive declarations of procedures are allowed in
Napier88. For example,

rec let tak = proc (x, y, z : int → int)
if x ≤ y then z

else tak (tak (x - 1, y, z),
tak (y - 1, z, x),
tak (z - 1, x, y))

declares the recursive Takeuchi procedure.

Mutually recursive procedures may also be defined. For example,

rec let expression = proc ()
repeat exp1 () while have ("or")

& exp1 = proc ()
repeat exp2 () while have ("and")

& exp2 = proc ()
case symb of
"identifier" : next_symbol ()
default : {mustbe ("(") ; expression () ;

mustbe (")")}

declares three mutually recursive procedures.

8.3 Polymorphism

Polymorphism permits abstraction over type. For example,

let id = proc [t] (constant x : t → t) ; x

declares a procedure that is the identity procedure for all types. The square brackets
signify that the procedure type is universally quantified by a type, t, and that once
given that type, the procedure is from type t to t. To call this procedure the
programmer may write,

id [int] (3) which yields 3, or,
id [real] (4.2) which yields 4.2

or the type parameter may be used by itself. For example,

id [int] which yields a procedure equivalent to int_id above.

Thus, one procedure, id, is in fact, an infinite number of identity procedures, one for
each type as it is specialised. The square brackets for type parameters are used to
signify that types are not part of the value space of the language, but are based on
the philosophy that types are sets of values.

The type of id is written as

30

proc [t] (t → t)

in Napier88. Procedures of these polymorphic types are first class and may be
stored, passed as parameters and returned as results, etc.

The advantage of the polymorphic abstraction should be obvious in the context of
software reuse. For example, a procedure to sort a vector of integers may be written
and another procedure to sort a vector of reals. By using the polymorphism in
Napier88, one procedure for all types, instead of a different one for each type may
be written. This greatly reduces the amount of code that has to be written in a large
system.

8.4 Equality and Equivalence

Two procedures are identical in Napier88 if and only if their values are derived
from the same evaluation of the same procedure expression. For the cognoscenti,
this means that they have the same closure.

As with all aggregate objects in Napier88, equality means identity.

Two procedure types are structurally equivalent if they have the same parameter
types in one-one correspondence and the same result type. For polymorphic
procedures, there is the additional constraint that they have the same number of
quantifiers used in a consistently substitutable manner.

In terms of types as sets, the polymorphic procedures are infinite intersections of
types[CW85].

The declaration of a type quantifier acts as if the type is a new base type for type
equivalence purposes. Thus objects of quantifier types are only equal if the type is
derived from the same type identifier.

31

9 Aggregates

Napier88 allows the programmer to group together data objects into larger
aggregate objects which may then be treated as single objects. There are three such
object types in Napier88: vectors, structures and images. If the constituent objects
are of the same type, a vector may be used and a structure otherwise. Images are
collections of pixels. Vectors, structures and images have the same civil rights as
any other data object in Napier88. Both abstract data types (Chapter 11) and
environments (Chapter 15) may also be considered methods of aggregation, but we
have choosen to treat them separately.

All aggregate data objects in Napier88 have pointer semantics. That is, when an
aggregate data object is created, a pointer to the locations that make up the object is
also created. The object is always referred to by the pointer which may be passed
around by assignment and tested for equality. The location containing the pointer
and the constituent parts of the aggregate data object may be independently constant
or variable.

9.1 Vectors

9.1.1 Creation of Vectors

A vector provides a method of grouping together objects of the same type. Since
Napier88 does not allow uninitialised locations, all the initial values of the elements
must be specified. The syntax is:

<vector_constr> ::= [constant] vector<vector_element_init>
<vector_element_init> ::= <range>of<clause> | <range>using<clause> |

@<clause>of<lsb><clause>[,<clause>]*<rsb>
<range> ::= <clause>to<clause>

tt :: nnoonnvvooiidd ,, vector<range>of<clause> :: tt ==>> **tt

tt :: nnoonnvvooiidd ,, vector<range>using<clause> : pprroocc((iinn tt → tt)) ==>> **tt
tt :: nnoonnvvooiidd ,, vector@<clause> :: iinn tt of<lsb><clause> :: tt

[,<clause> :: tt]* <rsb> ==>> **tt
wwhheerree <range> ::= <clause> :: iinn tt to <clause> :: iinn tt

For example,

vector @1 of [1, 2 ,3, 4]

is a vector of integers, whose type is written as *int, with lower bound 1 and
variable locations initialised to 1, 2, 3 and 4. Similarly,

let abc := vector @1 of [1, 2, 3, 4]

introduces a variable abc of type *int and the initial value expressed above.

Multi-dimensional vectors, which are not necessarily rectangular, can also be
created. For example,

let Pascal = constant vector @1 of [constant vector @1 of [1],
constant vector @1 of [1, 1],
constant vector @1 of [1, 2, 1],
constant vector @1 of [1, 3, 3, 1],
constant vector @1 of [1, 4, 6, 4, 1],
constant vector @1 of [1, 5, 10, 10, 5, 1]]

32

Pascal is of type **int. It is constant, as are all its elements. This is a fixed table.

The use of the word constant before vector indicates that the elements are to be
constant. The checking for constancy will be performed when an assignment is
made to the element. The pointer constancy is determined by the <init_op>, which
is = in this case and so indicates that the pointer is also constant.

The above form of vector expression is sometimes very tedious to write for large
rectangular vectors with a common initial value. Therefore another form of vector
expression is available. For example

vector -1 to 3 of -2

produces a five element integer vector with all the elements variable and initialised
to -2. The lower bound of this vector is -1 and the upper bound is 3. The element
initialising expression is evaluated only once and the result assigned to each of the
elements.

A third form of vector initialisation is provided to allow the elements of a vector to
be initialised by a function over the index. For example,

let squares = proc (n : int → int) ; n * n
let squares_vector = constant vector 1 to 10 using squares

In the initialisation, the procedure squares will be called for every index of the
vector in order from the lower to upper bound. The corresponding element is
initialised to the result of its own index being passed to the procedure. In the above
case, the vector squares_vector will have elements initialised to 1, 4, 9, 16, 25, 36,
49, 64, 81, and 100.
The initialising procedure must be of type

proc (int → t)

and the resulting vector is of type *t. This style of initialisation is particularly useful
for vectors with constant elements.

The creation of a vector may call the standard error procedure makeVector.

9.1.2 upb and lwb

Since vectors may be assigned, it is often necessary to interrogate the vector to find
its bounds. The standard procedures upb and lwb are provided in Napier88 for this
purpose. They are of type

proc [t] (*t → int).

9.1.3 Indexing

To obtain the elements of a vector, indexing is used. For vectors, the index is
always an integer value. The syntax is:

<exp6> ::= <expression>(<dereference>)
<dereference> ::= <clause>[,<dereference>]

tt :: nnoonnvvooiidd ,<expression> : ** tt (<clause> :: iinn tt) ==>> tt

For example,

33

a (3 + 4)

selects the element of the vector a which is associated with the index value 7.

Indexing expressions may call the standard error procedure vectorIndexSubs and
assignment to a vector element may call v e c t o r I n d e x A s s i g n and
vectorElementConstant.

9.1.4 Equality and Equivalence

Two vectors are equal if they have the same identity, that is, the same pointer. Two
vectors are type equivalent if they have equivalent element types. Notice that the
bounds are not part of the type.

9.2 Structures

9.2.1 Creation of Structures

Objects of different types can be grouped together into a structure. The fields of a
structure have identifiers that are unique within that structure. The structures are
sets of labelled cross products from the value space. A structure may be created in
two ways, the first of which has the following syntax:

<structure_constr> ::= struct([<struct_init_list>])
<struct_init_list> ::=
<identifier><init_op><clause>[;<struct_init_list>]

struct(<struct_init_list>) ==>> ss tt rruucc ttuurree
wwhheerree <struct_init_list> ::= <identifier><init_op><clause> :: nnoonnvvooiidd

[,<struct_init_list>]

For example,

struct (a = 1 ; b := true)

creates a structure whose first field is a constant integer with the identifier a and
whose second field is a variable boolean with the identifier b.

Structures may also be created using a type identifier. The syntax of structure types
is:

<structure_type > ::= structure([<named_param_list>])
<named_param_list> ::= [constant] <identifier_list>:<type_id>

[;<named_param_list>]

For example, a structure type may be declared as follows:

type person is structure (constant name : string ; sex : bool ; age, height :
int)

This declares a structure class, person, with four fields of type string, bool, int and
int, respectively. The name field is constant. It also declares the field identifiers,
name, sex, age and height.

To create a structure from a type declaration, the type identifier followed by the
initialising values for the fields is used. For example,

let ron = person("Ronald Morrison", true, 42, 175)

34

creates the structure of type person defined above. The initialising values must be in
one-one correspondence with the structure type declaration.

9.2.2 Indexing

To obtain a field of a structure, the field identifier is used as an index. For example,
if ron is declared as above, then,

ron (age)

yields 42. For the indexing operation to be legal, the structures must contain a field
with that identifier. As with vectors, a constancy check is performed on assignment.

Field identifiers, when used as an index, are only in scope within the brackets
following a structure expression. Thus these identifiers need only be unique within
each structure type.

A comma notation may be used for vectors or structures when the elements or fields
are themselves structures or vectors. The indexing of vectors and structures may
therefore be freely mixed. For example, if v is a vector of vectors of persons then
v(i)(j)(name) and v(i,j,name) and v(i,j)(name) are equivalent expressions.

Assignment to a constant field of a structure will cause the standard error procedure
structureFieldConstant to be called.

9.2.3 Equality and Equivalence

Two structures are equal if they have the same identity (pointer).

The type of a structure is the set of the field identifier-type pairs. Thus the structure
person has type:

structure (name : string ; sex : bool ; age : int ; height : int)

Two structures have equivalent types when the types have the same set of identifier-
type pairs for the fields. Note that the order of the fields is unimportant.

9.3 Images

9.3.1 Creation of Images

An image is a rectangular grid of pixels. Images may be created and manipulated
using the raster operations provided in the language. The creation of images is
defined by

<image_constr> ::= [constant] image<clause>by<clause><image_init>
<image_init> ::= of<clause> | using<clause>
<subimage_constr> ::= limit<clause>[to<clause>by<clause>]

[at<clause>,<clause>]

image <clause> :: iinn tt by<clause> :: iinn tt of <clause> :: pp iixxee ll==>>iimmaaggee
image <clause> :: iinn tt by<clause> :: iinn tt using <clause> :: iimmaaggee ==>>iimmaaggee
limit<clause> :: iimmaaggee [to<clause> :: iinn tt by<clause> :: iinn tt]

[at<clause> :: iinn tt ,<clause> :: iinn tt] ==>> iimmaaggee

The integer values following at above must be ≥ 0 and are subjected to an upper
bound check. All other integer values must be > 0. If these conditions are violated,
the standard error procedure makeImage is called.

35

An image is a three dimensional object made up of a rectangular grid of pixels. An
image may be created as follows:

let c = image 5 by 10 of on

which creates c with 5 pixels in the X direction and 10 in the Y direction, all of
them initially on. The origin of all images is 0, 0 and in this case the depth is 1.

Multi-plane images may be formed by the concatenation of the initialising pixels,
such as in,

let a = image 64 by 32 of on ++ off ++ on ++ on

Images are first class data objects and may be assigned, passed as parameters or
returned as results. For example,

let b := a

will assign the existing image a to the new one b. In order to map the operations
usual on bitmapped screens, the assignment does not make a new copy of a but
merely copies the pointer to it. Thus the image acts like a vector or structure on
assignment.

There are eight raster operations which may be used as described in the following
syntax.

<raster> ::= <raster_op><clause>onto<clause>
<raster_op> ::= ror | rand | xor | copy | nand | nor | not | xnor

<raster_op><clause> :: iimmaaggee onto <clause> :: iimmaaggee ==>> vvooiidd

thus, the clause

xor b onto a

performs a raster operation of b onto a using xor. Notice that a is altered in situ and
b is unchanged. Both images have origin 0, 0 and automatic clipping at the
extremities of the destination image is performed.

The raster operations are performed by considering the images as bitmaps and
altering each bit in the destination image according to the source bit and the
operation. The following gives the meanings of the operations, (D stands for
destination and S for source):

ror inclusive or S or D
rand and S and D
xor exclusive or S xor D
copy overwrite S
nand not and ~(S and D)
nor not inclusive or ~(S or D)
not not the source ~S
xnor not exclusive or ~S xor D

Images may also be created by using an intialising image as a background pattern.
For example,

let d = constant image 64 by 512 using abc

36

will create the image d of size 64 x 512 and then copy the image abc onto it as
many times as is necessary to fill it in both directions, starting at 0, 0. This style of
initialisation is particularly useful for setting up images with constant pixels and
images of regular patterns.

Rastering onto an image of constant pixels causes the standard error procedure
imagePixelConstant to be called.

9.3.2 Indexing

The limit operation allows the user to set up aliases to parts of images. For
example,

let c = limit a to 1 by 5 at 3, 2

sets c to be that part of a which starts at 3, 2 and has size 1 by 5. c has an origin of
0,0 in itself and is therefore a window on a.

Rastering sections of images on to sections of other images may be performed by,
for example,

xor limit a to 1 by 4 at 6, 5 onto
limit b to 3 by 4 at 9, 10

Automatic clipping on the edges of the limited region is performed. If the starting
point of the limited region is omitted, then 0,0 is used and if the size of the region is
omitted then it is taken as the maximum possible. That is, it is taken from the
starting point to the edges of the host image. Limited regions of limited regions may
also be defined.

If the source and destination images overlap, then the raster operation is performed
in such a manner that each bit is used as a source before it is used as a destination.

The evaluation of the limit operation may cause the standard error procedures
limitAt and limitAtBy to be called.

9.3.3 Depth Selection

All the operations that have already been seen on images (raster, limit and
assignment) work more generally with depth. Thus the raster operations perform the
raster function plane by plane in one to one correspondence between source and
destination. Automatic depth clipping at the destination is performed, and if the
source is too small to fill all the destination's planes, then these planes will remain
unaltered. The limit operation also works with the depth of the image.

The depth of the image may be restricted by the depth selection operation. For
example, assuming the earlier definition of a

let b = a(1|2)

yields b which is an alias for that part of a which has the two depth planes 1 and 2.
b has depth origin 0 and dimensions 64 by 32.

The full syntax of the depth selection operation is

<exp6> ::= <expression>[(<clause><bar><clause>)]

37

<expression> :: iimmaaggee (<clause> :: iinn tt <bar><clause> :: iinn tt) ==>> iimmaaggee

This indexing expression may call the standard error procedure subImage.

9.3.4 Equality and Equivalence

Two images are equal if they have the same pointer.

All images have equivalent types.

38

10 Variants

10.1 Variant Types

Variants are sets of labelled disjoint sums from the value space. A variant value has
one of these identifier-value pairs. A variant type may be defined by

<variant_type> ::= variant([<variant_fields])
<variant_fields> ::= <identifier_list>:<type_id>[;<variant_fields>]

For example,

type this_variant is variant (a : int ; b : real)

declares a variant this_variant which may be an a : int or a b : real.

10.2 Variant Values

A variant value may be formed by naming the variant type and injecting the
identifier-value pair into it. The syntax is:

<variant_creation>::=<identifier>[<lsb><expression><rsb>](<identifier>:<expressi
on>)

For example

let A = this_variant (b : 3.912)

declares a variant A of type:

variant (a : int ; b : real)

with the value of value 3.912 injected with the identifier b. The variant type must
contain the identifier-type pair that is used in the initialisation.

10.3 is and isnt

A variant object can be tested for having a particular identifier. The syntax is:

<exp2> ::= <exp3>[<type_op><identifier>]
<type_op> ::= is | isnt

<exp3> :: vvaarr iiaanntt <is | isnt> <identifier> ==>> bbooooll

Thus,

A is b

is legal and will yield a boolean value. A syntax error will occur if the variant type
does not contain the correct identifier tag.

10.4 Variant Usage

The value of variants may be projected by using the single quote (') notation. The
syntax is

<expression>'<identifier>

39

For example, assuming the definition given for A above,

A'b

yields the value 3.912 of type real.

It should be noted, however, that to assign to a variant, the full syntax must be used.
For example, to assign a new variant value to A, the following may be written:

A := this_variant (b : 3.159)

The scope of the variant identifiers is such that they may only be used after the
symbols is, isnt and '.

Variants are particularly useful when used in conjunction with recursive types. For
example, the type definition for a list of integers might be:

rec type int_list is variant (cons : structure (hd : int ; tl : int_list) ; empty :
null)

The first element of the list is formed by

let first = int_list (empty : nil)
let next := int_list (cons : struct (hd = 2 ; tl := first))

and a procedure to reverse an integer list might be

let reverse_list = proc (list : int_list → int_list)
begin

let temp := int_list (empty : nil)
while list isnt empty do
begin

temp := int_list (cons : struct (hd = list'cons (hd), tl := temp))
list := list'cons (tl)

end
temp

end

The evaluation of the ' operation may cause the standard error procedure varProject
to be called.

10.5 Projection out of Variants

In order to facilitate static type checking, a value injected into a variant is rebound
to a constant location by the project clause. The syntax is:

project<clause>as<identifier>onto<project_list>default : <clause>
<project_list> ::= ... | <variant_project_list>
<variant_project_list> ::= <identifier> : <clause>;

 [<variant_project_list>]

40

 tt :: ttyyppee, project <clause> :: vvaarr iiaanntt as <identifier> onto
<variant_project_list> default : <clause> :: tt ==>> tt

wwhheerree <variant_project_list>::=<identifier>:<clause>
:: tt ;[<variant_project_list>]

The projected value is given a constant binding to the identifier following the as.
The scope of the identifier is the clauses on the right hand side of the colons. This
mechanism prevents side effects on the projected value inside the evaluation of the
right hand side clauses and allows for static type checking therein. For projection,
the variant is compared to each of the labels on the left hand side of the colons. The
first match causes the corresponding clause on the right hand side to be executed.
Within the clause, the identifier has the type of the projected value. Control passes
to the clause following the project clause.

Thus, the example above may be expressed as:

let reverse_list = proc (list : int_list → int_list)
begin

let temp := int_list (empty : nil) ; let done := false
while ~done do

project list as X onto
cons : begin

temp := int_list (cons : struct (hd = X (hd), tl :=
temp))

list :=X (tl)
 end

default : done := true
temp

end

10.6 Equality and Equivalence

Two variant types are equivalent if they have the same set of identifier-type pairs.

Two variants are equal if they have equivalent types, the same identifier tags and
equal values.

41

11. Abstract Data Types

Abstract data types may be used where the data object displays some abstract
behaviour independent of representation type. Thus it is a second mechanism for
abstracting over type.

11.1 Abstract Data Type Definition

Abstract data types may be introduced by the following syntax:

<abstype> ::= abstype<type_parameter_list>(<named_param_list>)

Thus,

type TEST is abstype [i] (a : i ; constant b : proc (i → i))

declares the type TEST as abstract. The type identifiers that are enclosed in the
square brackets are called the witness type identifiers and are the types that are
abstracted over.

A comparison can be made with polymorphic procedures which have universally
quantified types. These abstract types are existentially quantified and constitute
infinite unions over types [MP88].

The abstract data type interface is declared between the round brackets. In the above
case, the type has two elements, a field a with type i and a constant procedure b
with type

proc (i → i).

There an infinite number of such objects in the Napier88 type system.

11.2 Creation of Abstract Data Objects

To create an abstract data object, the following syntax is used:

<expression><lsb><specialisation><rsb>(<clause_list>)

For example,

let inc_int = proc (a : int → int) ; a + 1

let inc_real = proc (b : real → real) ; b + 1.0
let this = TEST [int] (3, inc_int)

declares the abstract data object this from the type definition TEST, the concrete (as
opposed to abstract) witness type int, the integer 3 and procedure inc_int. In the
creation, the values must be in one-one type correspondence with the type
definition.

Once the abstract data object is created, the user can never again tell how it was
constructed. Thus this has type:

abstype [i] (a : i ; b : proc (i → i))

and the user can never discover that the witness type is integer.

let that = TEST [int] (-42, inc_int)

42

creates another abstract data object. Although it is constructed using the same
concrete witness type, this information is abstracted over, therefore this and that
have the same type, namely,

abstype [i] (a : i ; b : proc (i → i))

as does also below:

let also = TEST [real] (-41.99999, inc_real)

Thus a vector of the objects can be formed by:

let abs_TEST_vec = constant vector @1 of [this, that, also]

since they have the same type.

11.3 Use of Abstract Data Objects

Since the internal representation of an abstract data object is hidden, it is
inappropriate to mix operations from one with another. That is, the abstract data
object is totally enclosed and may only be used with its own operations.

A second requirement in our system is that the type checking on the use of these
objects is required to be static.

To achieve the above aims, the use clause is introduced to define a constant binding
for the abstract data object. This constant binding can then be indexed to refer to the
values in a manner that is statically checkable. The syntax of the use clause is

use<clause>as<identifier>[<witness_decls>]in<clause>

use<clause> :: aabbss ttyyppee as <identifier>[<witness_decls>]
in<clause> :: vvooiidd ==>> vvooiidd

For example,

use abs_TEST_vec (1) as X in
begin

X (a) := X (b) (X (a))
end

which will apply the procedure b to the value a, storing the result in a, for the
abstract data object referred to by abs_TEST_vec (1). X is declared as a constant
initialised to abs_TEST_vec (1).

This could be generalised to a procedure to act on any of the elements of the vector.
For example,

let increment = proc (this_one : TEST)
use this_one as X in
begin

X (a) := X (b) (X (a))
end

let lower = lwb [TEST] (abs_TEST_vec)
let upper = upb [TEST] (abs_TEST_vec)

for i = lower to upper do increment (abs_TEST_vec (i))

43

The scope of the identifiers in the interface is restricted to within the brackets
following the constant binding identifier.

In the use clause, the witness types may be named for use. For example,

use this as X [B] in
begin

let id = proc [t] (x : t → t) ; x
let one := X (a)
one := id [B] (one)

end

which renames the witness type as B and allows it to be used as a type identifier
within the use clause.

11.4 Equality and Equivalence

An abstract data object is only equal to itself, that is equality means identity.

Two abstract data types are equivalent if they have the same identifiers with
equivalent types in the interface and the same number of witness types used in a
substitutable manner.

The declaration of a witness type acts, which occurs in a type declaration or a use
clause, as if the type is a new base type for type equivalence purposes. Thus objects
of witness types are only equal if the type is derived from the same type identifier.

44

12 Parameterised Types

Type parameterisation is allowed within the type space. It is performed by
qualifying the type identifier with another type in square brackets. An example of a
parameterised type declaration is:

type pair [t] is structure (a : t ; b : t)

There are no objects of this type but it may be used as a shorthand for denoting
other types. For example,

type int_pair is pair [int]

is equivalent to the type

structure (a : int ; b : int).

Parameterised types are most useful when used with recursive variants. For
example, the generic type for lists could be:

rec type list [t] is variant (cons : structure (hd : t ; tl : list [t]) ; empty : null)

or,

rec type list [t] is variant (cons : node [t] ; empty : null)
& node [s] is structure (hd : s ; tl : list [s])

if an identifier is required for the structure type.

45

13 Files

The file data type is used to access the I/O devices that are available to the host
environment in which the Napier88 system is implemented. A file may refer to
either a disk file, a terminal, a mouse, a tablet or a raster graphics display. There are
certain operations that are specific to each kind of file and a range of operations
applicable to all files. A value of type file is implemented as a pointer to an object
that describes the I/O device and its associated state. A set of standard procedures is
provided to create and manipulate both file descriptors and the I/O devices they
refer to. The operation of each of the standard procedures is fully described in
Chapter 16.

13.1 File Literal

The is only one literal of type file, nilfile. See Section 4.10.

13.2 Persistence

When a stabilise operation is performed, the current state of each open file is
recorded in the persistent store. When the Napier system is initialised it uses this
state information to re-open those files that were open during the previous stabilise.
For disk files the recorded state is used to set the position of the next read or write
operation on the file, for terminal files the input mode of the terminal is reset and
for raster files the image on the display is restored. If, for some reason, a file cannot
be re-opened, it is marked as closed.

13.3 Equality and Equivalence

Two values of type file are equal if they are the same file.

All values of type file have equivalent types.

46

14 Type any

Type any is the type of the union of all values in Napier88. Values must be
explicitly injected into and projected from type any. Both of these operations are
performed dynamically and, in particular, the projection from any to another type
involves a dynamic type check. We have argued elsewhere [ABC83] that such a
type check is required to support the binding of independently prepared programs
and data in a type secure persistent object store.

14.1 Injection into Type any

Values may be injected into type any by the following syntax:

any (<clause>)

tt :: nnoonnvvooiidd ,, any(<clause> :: tt) ==>> aannyy

For example,

let int_any = any (-42)

which declares int_any to be the integer value -42 injected into type any.

Values of type any may be passed as parameters. For example, the following is an
identity procedure for type any.

let id_any = proc (x : any → any) ; x

Thus polymorphic procedures may be written by using type any and injecting the
parameters into any before the call and projecting the results after the call. This
possibility becomes more interesting with the use of projection.

14.2 Projection from Type any

Values may be projected from type any by use of the project clause.

project<clause>as<identifier>onto<project_list>default : <clause>
<project_list> ::= <any_project_list> |

<variant_project_list>
<any_project_list> ::= <type_id> : <clause>;[<any_project_list>]

 tt :: ttyyppee ,, project <clause> :: aannyy as <identifier> onto <any_project_list>
default : <clause> :: tt ==>> tt

wwhheerree <any_project_list> ::=<type_id>:<clause> :: tt ;
[<any_project_list>]

The projected value is given a constant binding to the identifier following the as.
The scope of the identifier is the clauses on the right hand side of the colons. This
mechanism prevents side effects on the projected value inside the evaluation of the
right hand side clauses and allows for static type checking therein. For projection,
the type is compared to each of the types on the left hand side of the colons. The
first match causes the corresponding clause on the right hand side to be executed.
Within the clause, the identifier has the type of the projected value. After execution
of the project clause, control passes to the clause following the project clause.

An example of projection is:

47

let write_type = proc (x : any → string)
project x as X onto

int : "type is integer"
real : "type is areal"

default : "type is neither integer
nor real"

14.3 Equality and Equivalence

Two values of type any are equal if and only if they can be projected onto
equivalent types and the projected values are equal.

All values of type any are type equivalent.

48

15 Environments

Environments [DEA89] are the infinite union of all labelled cross products.
Environments differ from structures in that bindings may be added to or removed
from environments dynamically. This mechanism is used in Napier88 to provide a
method for dynamically composing block structure and thus controlling the name
space. Environments also provide a method of storing and composing
independently prepared programs and data, and thus control of the persistent object
store in which the language resides.

A binding in Napier88 has four components: an identifier, a type, a value and a
variable/constant location indicator.

The type environment is written as env in Napier88.

15.1 Creating a New Environment

A new environment may be created by using the standard procedure environment. It
has type:

proc (→ env)

Calling this procedure creates an environment with no bindings.

15.2 Adding Bindings to an Environment

Bindings are added to environments by means of declarations. The syntax is:

<env_decl> ::= in <clause> let <object_init> |
in <clause> rec let <rec_object_init>

[<rec_object_init>]*

<object_init> ::= <identifier> <init_op> <clause>
<rec_object_init> ::= <identifier> <init_op> <literal>

Thus the program segment,

let this = environment ()
in this let a = 3

creates an environment this. In the environment, it creates the binding with
identifier a, value 3, type integer and constant, i.e. {a,3,int,constant}. The binding is
added to the environment this, but not to the local scope. The standard error
procedure envRedeclaration is called if the binding to be added does not have a
unique identifier within the environment.

Another binding may be added by writing:

in this rec let fac := proc (n : int → int)
 if n = 0 then 1 else n * fac (n-1)

after which this now has the form {a,3,int,constant} {fac, proc..., proc (int → int),
variable}

Non-recursive declarations of bindings are added to environments one at a time.
Recursive declarations are added simultaneously, although in the above case there is

49

only one. This corresponds to the scoping rules for non-recursive and recursive
declarations in blocks.

An example of mutually recursive procedures in an environment is given by the
following:

rec type list [t] is variant (cons : node [t] ; tip : null)
& node [s] is structure (hd : s ; tl : list [s])

rec type object is variant (ron : bool ; fred : list [object])

in this rec let show = proc (this : object → string)
project this as X onto

ron : if X then "true" else "false"
fred : "[" ++ showlist (X) ++ "]"

default : ""

& showlist = proc (this : list [object] → string)
if this is tip then ""
else show (this'cons (hd)) ++ "," ++ showlist (this'cons (tl))

Notice that although both show and showlist refer to each other, neither appears in
the local scope. It would seem that none of the calls on these procedures are bound
at all. To achieve the desired bindings for mutually recursive procedures in
environments, the rule is that the identifiers bind to the environment's objects being
declared.

15.3 Using Bindings in Environments

The bindings in an environment may be brought into scope by the use clause. The
syntax is:

<clause> ::= use <clause> with <signature> in clause
<signature> ::= [constant]<identifier_list>:<type_id>[;<signature>]

tt :: ttyyppee, use <clause> :: eennvv with <signature> in <clause> :: tt ==>> tt

For example, to use fac declared earlier, the programmer may write:

use this with fac : proc (int → int) in <clause>

The effect of the use clause is to bring the name fac into scope at the head of the
clause after in. fac binds to the location in the environment. Therefore, local
assignment to fac will alter the value in the environment.

Notice that only a partial match on the signature of the environment is necessary.
For every binding, the identifiers in the use must be the same as in the environment
binding and the types equivalent. The constancy is determined by the original
binding although it may be separately specified as constant in the use clause. No
update to a constant value is allowed at run time and the compiler will flag as a
syntax error any assignment to a binding specified as constant. Bindings in the
environment that are not specified in the signature of the use clause are not in scope
in the clause following in and may not be used.

The standard error procedure envProject is called if the signature in the use clause
cannot be matched by the environment.

50

15.4 Removing Bindings from Environments

Bindings may be removed from environments by the drop clause. The syntax is:

<clause> ::= drop <identifier> from <clause>

drop <identifier > from <clause> :: eennvv ==>> vvooiidd

For example,

drop fac from this

The effect of the above is that the binding no longer reachable from the
environment. It does not imply the destruction of any object or any dangling
reference, since other bindings to the value in the dropped binding will still be valid.
The standard error procedure envDrop is called if the dropped identifier does not
exist in a binding in the given environment.

15.5 The contains Clause

An environment may be tested by the infix operator contains to determine if it
contains a binding with certain characteristics. The syntax is

<exp6> ::= <clause> contains [constant] <identifier> [:<type_id>]

<clause> :: eennvv contains [constant] <identifier> [:<type_id>] ==>> bbooooll

There are several forms of this which allow testing of an identifier in an
environment binding, an identifier-type pair, an identifier constancy binding and an
identifier constancy type binding. Thus, using the environment this given earlier:

this contains a
 this contains a : int

this contains constant a
this contains constant a : int

all yield true; but,

this contains b

yields false.

15.6 Persistence

In accordance with the concept of orthogonal persistence, all data objects in
Napier88 may persist. For each incarnation of the Napier88 object store there is a
root of persistence which may be obtained by calling the predefined procedure PS
which has type:

proc (→ env)

Thus, the distinguished root of the persistent store graph is of type environment.
When a program is activated, the distinguished root will contain all the bindings for
that universe. The standard bindings are defined in Chapter 16, one of these
procedures, the procedure to create environments is bound to the identifier
environment. The following program illustrates the use of this procedure:

51

let ps = PS ()
use ps with environment : proc (→ env) in
begin

let new_env = environment ()
...

end

This program binds the root of persistence to the local identifier ps. The use clause
binds the identifier environment to the environment creation procedure in the root
environment. Inside the body of the use clause this procedure is called to create a
new (empty) environment. The reader should note that the environment bound to
new_env is not yet persistent. Objects that persist beyond the activation of the unit
that created them are those which the user has arranged to be reachable from the
root of persistence. To determine this the system computes the transitive closure of
all objects starting with the root. Thus, in order to store objects in the persistent
store, the user has to alter or add bindings that can be reached from the
distinguished root. In order to make the environment new_env persist, the above
example may be rewritten as:

let ps = PS ()
use ps with environment : proc (→ env) in
begin

in ps let new_env = environment ()
end

The environment will only persist if the standard procedure stabilise is called before
the program terminates or the program terminates normally, as this causes an
automatic call of stablise.

15.7 Equality and Equivalence

Two values of type environment are equal if they refer to the same environment.

All objects of type environment have equivalent types.

52

16 The Standard User Environment

The root of persistence may be accessed by calling the predefined procedure:

PS : proc (→ env)

The environment obtained as a result of executing this procedure is called the root
environment. The Napier88 system consists of the language and its persistent store.
The structure and content of this persistent store is described in this Chapter. It is
hoped that as the Napier88 user community grows this environment will grow with
it. Users with code that they feel would contribute to this environment should
contact one of the authors of this manual.

16.1 The Root Environment

The root environment supplied with the Napier88 release contains the following
items, each of which is a constant:

environment : proc (→ env)
scan : proc (env, proc (string, typeRep, bool))
System : env
Time : env
Device : env
User : env
Vector : env
String : env
IO : env
Format : env
Arithmetical : env
Graphical : env
Font : env
Error : env
Event : env

Each of these is now described in turn.

environment : proc (→ env)

This procedure yields a new (empty) environment every time it is called.

scan : proc (e : env ; id : proc (string, typeRep, bool))

This procedure calls the procedure supplied as a parameter once for every binding
in the environment e. Each invocation of the procedure is passed the name of the
identifier in the binding, a representation of its type and a boolean to indicate
whether or not the location is constant. The representation of the type contains a
canonical string representation and a flag to indicate if the type contains any
unbound quantifiers. typeRep is defined as follows:

type typeRep is structure (unboundQuantifiers : bool ; representation :
string)

The environments listed above are described in the following sections. It should be
noted that all the items contained in the following environments are constants unless
otherwise stated.

53

16.2 System Environment

The system environment contains the following procedures:

stabilise : proc ()

This procedure records the entire state of the Napier88 system on non-volatile
storage. The system may be restarted from the most recently stabilised point.
stabilise is called automatically on normal program termination.

diskgc : proc ()

This procedure performs an explicit garbage collection of the entire persistent store.

abort : proc ()

This procedure shuts down the Napier88 system. No stabilisation is performed.

16.3 Time Environment

date : proc (→ string)

This procedure gives the date and time in the following format:

Wed Apr 26 17:32:54 BST 1989

time : proc (→ int)

This procedure returns the CPU time used by the Napier88 system since it was
initialised. The time is measured in 60 Hz clock ticks.

16.4 Device Environment

getScreen : proc (fd : file → image)

If the file fd is a raster device, this procedure returns the image associated with that
device. If the file is not a raster file, a call will be made to the error procedure
named getScreen in the error environment with the parameter supplied to the
original call.

locator : proc (fd : file ; data : *int)

If the file f d is a mouse or tablet device, this procedure copies the locator
information into the vector supplied as a parameter.

If the file is not a mouse or tablet device, a call will be made to the error procedure
named locator in the error environment with the parameters supplied to the original
call.

The elements of the vector are filled in as follows:

1 if the file is a tablet, this element is its X dimension, otherwise 0,
2 if the file is a tablet, this element is its Y dimension, otherwise 0,
3 the locator X position,
4 the locator Y position,
5 the state of button 1,
6...n the state of button n - 4.

54

If the vector has more elements than the information available, the extra elements
are not filled in. If it has too few elements, only the ones supplied are filled in. If the
device is a mouse, the X and Y positions are relative to the last locator instruction.
If the device is a tablet, the X and Y positions are absolute.

colourMap : proc (fd : file ; p : pixel ; i : int)

For the device specified by fd, provided that it is a raster device, set the colour map
entry for the pixel p to be the integer i. The interpretation of i is device dependent.

If the file is not a raster file, a call will be made to the error procedure named
colourMap in the error environment with the parameters supplied to the original
call.

colourOf : proc (fd : file ; p : pixel → int)

If the file fd is a raster device, this procedure returns the colour map entry
associated with pixel p in the device specified by fd.

If the file is not a raster file, a call will be made to the error procedure named
colourOf in the error environment with the parameters supplied to the original call
to obtain the integer result.

getCursor : proc (fd : file → image)

If the file specified by fd is a raster device, the procedure returns the cursor
associated with that device.

If the file is not a raster file, a call will be made to the error procedure named
getCursor in the error environment with the parameters supplied to the original call
to obtain the image.

setCursor : proc (fd : file ; curs : image)

If the file specified by fd is a raster device, the cursor is set to be a copy of the
image curs.

If the file is not a raster file, a call will be made to the error procedure named
setCursor in the error environment with the parameters supplied to the original call.

getCursorInfo : proc (fd : file ; data : *int)

If the file specified by fd is a raster device, this procedure provides the cursor
information for the device fd.

If the file is not a raster file, a call will be made to the error procedure named
getCursorInfo in the error environment with the parameters supplied to the original
call.

The elements of the vector are filled in as follows:

element 1: the cursor's X position,
element 2: the cursor's Y position,
element 3: the rasterop rule used to display the cursor

The interpretation of the rasterop rule may be found in the description of rasterOp
in this Chapter.

55

If the vector has more than three elements, the extra ones are ignored. If the vector
has less than three only the ones supplied are filled in.

setCursorInfo : proc (fd : file ; data : *int)

If the file specified by fd is a raster device, this procedure alters the cursor
information for the device fd according to the contents of the vector.

If the file is not a raster file, a call will be made to the error procedure named
setCursorInfo in the error environment with the parameters supplied to the original
call.

The elements of the vector are interpreted as follows:

element 1: specifies the cursor's X position,
element 2: specifies the cursor's Y position,
element 3: specifies the rasterop rule used to display the cursor.

The interpretation of the rasterop rule may be found in the description of rasterOp
in this Chapter.

If the vector has more than three elements, the extra ones are ignored. If the vector
has less than three only the ones supplied are filled in.

16.5 User Environment

This environment is empty, it is hoped that users will store their environments here.

16.6 Vector Environment

lwb : proc [t] (V : *t → int)

This procedure returns the lower bound of the vector V.

upb : proc [t] (V : *t → int)

This procedure returns the upper bound of the vector V.

16.7 String Environment

length : proc (s : string → int)

This procedure returns the number of characters in the string s.

asciiToString : proc (i : int → string)

This procedure returns the single character string corresponding to the ASCII code
of i rem 128.

stringToAscii : proc (s : string → int)

This procedure returns the ASCII code for the single character string s(1|1).

letter : proc (s : string → bool)

This procedure returns true if the first character of the string s is a letter. The test
performed is:

56

s >= "a" and s <= "z" or s >= "A" and s <= "Z"

digit : proc (s : string → bool)

This procedure returns true if the first character of the string s is a decimal digit.
The test performed is:

s >= "0" and s <= "9"

16.8 IO Environment

The IO environment contains the following values:

PrimitiveIO : env
...

The remainder of this environment is described in 16.8.2.

16.8.1 PrimitiveIO Environment

This environment maps the I/O facilities of UNIX onto the Napier88 system.

create : proc (f : string ; m : int → file)

This procedure creates a file with name f in mode m, m is the decimal value of the
(Unix) file protection bitmap.

If the create fails, nilfile is returned.

open : proc (f : string ; m : int → file)

This procedure opens the file with name f in mode m. Legal modes are:

0 - read only,
1 - write only, and,
2 - read and write.

If the open fails, nilfile is returned.

close : proc (f : file → int)

This procedure closes the file associated with file descriptor f. The integer returned
is 0 if the operation was successful and -1 otherwise.

seek : proc (f : file; offset, key : int → int)

This procedure sets the position of the next read or write from file f to be the
position offset. The position to which the offset is relative is determined by key,
which may have the following values:

0 - start of file,
1 - current position, or
2 - end of file.

The procedure returns the position in the file if the operation was successful and -1
otherwise.

57

ioctl : proc (fd : file ; data : *int ; command : int → int)

The ioctl commands for the first UNIX implementation correspond exactly to those
supported by the UNIX ioctl system call. The ioctl instruction will not execute the
specified command unless it is applicable to a 4.2BSD compatible terminal and the
vector of integers contains sufficient integer elements to hold the parameters or
results of the specified command. The supported commands (fully described in
Section 4 of the 4.2BSD manual set) are:

TIOCSETP, TIOCSETN, TIOCSETC, TIOCSLTC, TIOCSETD, TIOCFLUSH,
TIOCSTI, TIOCSPGRP, TIOCLBIS, TIOCLBIC, TIOCEXCL, TIOCNXCL,
TIOCHPCL, TIOCSBRK, TIOCCBRK, TIOCSDTR, TIOCCDTR, TIOCSTOP,
TIOCSTART, TIOCGETP, TIOCGETC, TIOCGLTC, TIOCGETD, TIOCGPRG,
TIOCOUTQ, FIONREAD and FIONBIO.

In order to preserve the state of a terminal over a checkpoint, the terminal file
descriptor records the 4 state structures used by 4.2BSD. These are the sgttyb
structure, the tchars structure, the ltchars structure and a word of local flags.
Whenever a specified command updates one of these state structures, the change is
also recorded in the file descriptor.

readBytes : proc (fd : file ; buffer : *int ; start, length : int → int)

This procedure reads at most length bytes from the file fd into the vector of integers
at position start. The position start specifies the byte offset from the start of the
vector's elements. If the operation completes successfully, the procedure returns the
number of bytes read and -1 otherwise.

writeBytes : proc (fd : file ; buffer : *int ; start, length : int → int)

This procedure writes at most length bytes to the file fd from the vector of integers
at position start. The position start specifies the byte offset from the start of the
vector's elements. If the operation completes successfully, the procedure returns the
number of bytes written and -1 otherwise.

getByte : proc (word, index : int → int)

This procedure returns the byte at position index from the integer word. This
procedure will call the getByte procedure in the error environment if an illegal index
is used.

setByte : proc (word, index, value : int → int)

The result of this procedure is the integer formed by taking the integer word and
replacing the byte at position index by value. This procedure will call the setByte
procedure in the error environment if an illegal index is used.

errorNumber : proc (→ int)

This procedure returns the error number of the last primitive I/O operation. The
error numbers are those returned by the last Unix I/0 operation and may be found in
intro(2) in the SUNOS 4.0 Unix Manual.

16.8.2 The IO Environment

The rest of the I/O environment contains the following:

58

stdOut : file

This is a file variable that is initially connected to the Unix control terminal for the
Napier88 system.

writeByte : proc (i : int)

This procedure writes bitwiseAnd (i,255) as a byte to the file stdOut. This
procedure may call the writeByte error procedure in the error environment if an
error occurs.

writeString : proc (s : string)

This procedure writes the string s to the file stdOut. This procedure may call the
writeString error procedure in the error environment if an error occurs.

writeBool : proc (b : bool)

This procedure writes the boolean b to the file stdOut. This procedure may call the
writeBool error procedure in the error environment if an error occurs.

writeInt : proc (i : int)

This procedure writes the integer i to the file stdOut. This procedure may call the
writeInt error procedure in the error environment if an error occurs.

writeReal : proc (r : real)

This procedure writes the real r to the file stdOut. This procedure may call the
writeReal error procedure in the error environment if an error occurs.

integerWidth : int

Integers written out using writeInt will be displayed, left justified, in this number of
characters. If the number does not fit within this space, the exact number of
characters is used. integerWidth is a variable with an initial value of 12.

realWidth : int

Reals written out using writeReal will be displayed, left justified, in this number of
characters. If the number does not fit within this space, the exact number of
characters is used. realWidth is a variable with an initial value of 14.

spaceWidth : int

spaceWidth spaces are written out after any integer or real number written using
writeInt or writeReal. spaceWidth is a variable with an initial value of 2.

makeWriteEnv : proc (f : file → env)

This procedure creates an environment that contains the procedures writeByte,
writeString, writeBool, writeInt and writeReal, each of which operates on the file f
instead of the file stdOut. Each procedure may call the error procedures described
above. The environment also contains the variables integerWidth, realWidth and
spaceWidth, to control the operation of writeInt and writeReal on the file f. The
initial values of the three variables are 12, 14 and 2 respectively.

stdIn : file

59

This is a file variable that is initially connected to the Unix control terminal for the
Napier88 system.

endOfInput : proc (→ bool)

This procedure reads one 8 bit byte as an integer from the file stdIn. If the read is
successful, false is returned. If an I/O error occurs this procedure will call the
endOfInputIOE procedure in the IO Errors environment. If the end of input is
encountered, this procedure will return true. The byte read is made available to the
next endOfInput, readByte, readChar, peekByte, peekChar, readString, readLine,
readBool, readInt or readReal operation. If the byte cannot be made available, a
call is made to the endOfInputUnread procedure in the IO Errors environment. The
result obtained from any of the error procedures is returned as the result of the
endOfInput procedure.

readByte : proc (→ int)

This procedure reads one 8 bit byte as an integer from the file stdIn. If an I/O error
occurs this procedure will call the readByteIOE procedure in the IO Errors
environment. If the end of input is encountered, this procedure will call the
readByteEOI procedure in the IO Errors environment. The result obtained from
either of the error procedures is returned as the result of the readByte procedure.

readChar : proc (→ string)

This procedure reads one character from the file stdIn. If the end of input is
encountered during this operation, this procedure will call the readCharEOI
procedure in the IO Errors environment. If an I/O error occurs, this procedure will
call the readCharIOE procedure in the IO Errors environment. The result obtained
from either of the error procedures is returned as the result of the readChar
procedure.

peekByte : proc (→ int)

This procedure reads one 8 bit byte as an integer from the file stdIn. If an I/O error
occurs this procedure will call the peekByteIOE procedure in the IO Errors
environment. If the end of input is encountered, this procedure will call the
peekByteEOI procedure in the IO Errors environment. The byte read is made
available to the next endOfInput, readByte, readChar, peekByte , peekChar,
readString, readLine, readBool, readInt or readReal operation. If the byte cannot
be made available, a call is made to the peekByteUnread procedure in the IO Errors
environment. The result obtained from any of the error procedures is returned as the
result of the peekByte procedure.

peekChar : proc (→ string)

This procedure reads one character from the file stdIn. If the end of input is
encountered during this operation this procedure will call the peekCharEOI
procedure in the IO Errors environment. If an I/O error occurs, this procedure will
call the peekCharIOE procedure in the IO Errors environment. The character read is
made available to the next endOfInput, readByte, readChar, peekByte, peekChar,
readString, readLine, readBool, readInt or readReal operation. If the character
cannot be made available, a call is made to the peekByteUnread procedure in the IO
Errors environment. The result obtained from any of the error procedures is returned
as the result of the peekChar procedure.

readString : proc (→ string)

60

This procedure ignores the layout characters " ","'t" and "'n" and reads a string
literal (a string in quotes) from the file stdIn.

If the first character after any layout characters is not a double quote, this procedure
will call the readStringBadChar procedure in the IO Errors environment. The
erroneous character will have been read. If an I/O error occurs, this procedure will
call the readStringIOE procedure in the IO Errors environment. If the end of input
is encountered during this operation, this procedure will call the readStringEOI
procedure in the IO Errors environment. The result obtained from any of the error
procedures is returned as the result of the readString procedure.

readLine : proc (→ string)

This procedure reads from the file stdIn up to and including a newline character. It
concatenates and returns the characters as a string without the newline character. If
the end of input is encountered during this operation, this procedure will call the
readLineEOI procedure in the IO Errors environment. If an I/O error occurs, this
procedure will call the readLineIOE procedure in the IO Errors environment. The
result obtained from either of the error procedures is returned as the result of the
readLine procedure.

readBool : proc (→ bool)

This procedure ignores the layout characters " ","'t" and "'n" and reads one boolean
from the file stdIn. If the characters after any layout characters do not form a
boolean, this procedure will call the readBoolBadChar procedure in the IO Errors
environment. The file stdIn will have been read up to and including the first
erroneous character. If an I/O error occurs, the procedure readBool will call the
readBoolIOE procedure in the IO Errors environment. If the end of input is
encountered during this operation this procedure will call the readBoolEOI
procedure in the IO Errors environment. The result obtained from any of the error
procedures is returned as the result of the readBool procedure.

readInt : proc (→ int)

This procedure ignores the layout characters " ","'t" and "'n" and reads one integer
from the file stdIn. If the first character after any layout characters is not a digit or a
sign which is followed by a digit, this procedure will call the readIntBadChar
procedure in the IO Errors environment. The erroneous character will have been
read. If the end of input is encountered before the first digit, this procedure will call
the readIntEOI procedure in the IO Errors environment. If an I/O error occurs, the
procedure readInt will call the readIntIOE procedure in the IO Errors environment.

This procedure reads characters from the file stdIn until it has parsed an integer. The
parsing may involve reading the first character following the integer. When this
occurs the extra character is made available to the next endOfInput, readByte,
readChar, peekByte , peekChar, readString, readLine, readBool, readInt or
readReal operation. If the character cannot be made available, a call is made to the
readIntUnread procedure in the IO Errors environment.

When an integer has been successfully parsed it is converted into an integer value.
If an arithmetic error occurs during the conversion, a call is made to the
readIntOverflow procedure in the IO Errors environment.

The result obtained from any of the error procedures readIntBadChar, readIntEOI,
readIntIOE, readIntUnread or readIntOverflow is returned as the result of the
readInt procedure.

61

readReal : proc (→ real)

This procedure ignores the layout characters " ","'t" and "'n" and reads one real from
the file stdIn. If the first character after any layout characters is not a digit or a sign
which is followed by a digit, this procedure will call the readRealBadChar
procedure in the IO Errors environment. The erroneous character will have been
read. If the end of input is encountered before the first digit, this procedure will call
the readRealEOI procedure in the IO Errors environment. If an I/O error occurs, the
procedure readReal will call the readRealIOE procedure in the IO Errors
environment.

This procedure reads characters from the file stdIn until it has parsed a real. The
parsing may involve reading the first character following the real. When this occurs
the extra character is made available to the next endOfInput, readByte, readChar,
peekByte, peekChar, readString, readLine, readBool, r e a d I n t or readReal
operation. If the character cannot be made available, a call is made to the
readRealUnread procedure in the IO Errors environment.

When a real has been successfully parsed it is converted into a real value. If an
arithmetic error occurs during the conversion, a call is made to the
readRealOverflow procedure in the IO Errors environment.

The result obtained from any of the error procedures readRealBadChar,
readRealEOI, readRealIOE, readRealUnread or readRealOverflow is returned as
the result of the readReal procedure.

makeReadEnv : proc (f : file → env)

This procedure creates an environment that contains the procedures endOfInput,
readByte, readChar, peekByte, peekChar, readString, readLine, readBool, readInt
and readReal, each of which operates on the file f instead of the file stdIn. Each of
these procedures may call the error procedures described above.

16.9 Format Environment

iformat : proc (i : int → string)

This procedure returns the integer i represented as a string.

fformat : proc (r : real ; w, d : int → string)

This procedure returns the string representing r with w digits before the decimal
point and d digits after it. This procedure calls the procedure called fformat in the
error environment if there are more than w digits before the "." or if d is a negative
number. In which case, the value returned by the error procedure is returned by this
procedure.

eformat : proc (r : real ; w, d : int → string)

This procedure returns the string representing r with w digits before the decimal
point and d digits after with an exponent. This procedure calls the procedure called
eformat in the error environment if w or d is a negative number. In which case, the
value returned by the error procedure is returned by this procedure.

gformat : proc (r : real → string)

62

This procedure returns the string representing r in eformat or fformat whichever is
most suitable. It does this by calling one of the procedures eformat or gformat
above.

16.10 Arithmetical Environment

maxint : int

The maximum integer possible in the implementation.

maxreal : real

The maximum real possible in the implementation.

pi : real
The value of π in the implementation.

epsilon : real
The largest value, ε, such that 1.0 + ε = 1.0 in the implementation.

sqrt : proc (x : real → real)

This procedure returns the positive square root of x when x ≥ 0. On an error, this
procedure calls unaryReal in the error environment with x as a parameter. In this
case, the result obtained from the call of unaryReal is used as the result of this
procedure.

exp : proc (x : real → real)

This procedure returns e to the power x. On an error, this procedure calls unaryReal
in the error environment with x as a parameter. In this case, the result obtained from
the call of unaryReal is used as the result of this procedure.

ln : proc (x : real → real)

This procedure returns the logarithm of x to the base e where x > 0.

On an error, this procedure calls unaryReal in the error environment with x as a
parameter. In this case, the result obtained from the call of unaryReal is used as the
result of this procedure.

sin : proc (x : real → real)

This procedure returns the sine of x (given in radians). On an error, this procedure
calls unaryReal in the error environment with x as a parameter. In this case, the
result obtained from the call of unaryReal is used as the result of this procedure.

cos : proc (x : real → real)

This procedure returns the cosine of x (given in radians). On an error, this
procedure calls unaryReal in the error environment with x as a parameter. In this
case, the result obtained from the call of unaryReal is used as the result of this
procedure.

atan : proc (x : real → real)

63

This procedure returns the arctangent of x (given in radians) where - pi / 2 < atan
(x) < pi / 2

On an error, this procedure calls unaryReal in the error environment with x as a
parameter. In this case, the result obtained from the call of unaryReal is used as the
result of this procedure.

truncate : proc (x : real → int)

This procedure returns the integer i such that |i| ≤ |x| < |i| + 1 where i * x ≥ 0.

On an error, this procedure calls unaryReal in the error environment with x as a
parameter. In this case, the result obtained from the call of unaryReal is used as the
result of this procedure.

rabs : proc (x : real → real)

This procedure returns the absolute value of real number x.

abs : proc (x : int → int)

This procedure returns the absolute value of x. On an error, that is if x = -maxint -1,
this procedure calls unaryInt in the error environment with x as a parameter. In this
case, the result obtained from the call of unaryInt is used as the result of this
procedure.

float : proc (x : int → real)

This procedure returns x expressed as a real number.

shiftRight : proc (value, count : int → int)

This procedure returns the first parameter shifted right count bit places bringing in
zeros at the high order end.

shiftLeft : proc (value, count : int → int)

This procedure returns the first parameter shifted left count bit places bringing in
zeros at the low order end.

bitwiseAnd : proc (value1, value2 : int → int)

This procedure returns the logical (bitwise) ‘and’ of value1 and value2.

bitwiseOr : proc (value1, value2 : int → int)

This procedure returns the logical (bitwise) ‘or’ of value1 and value2.

bitwiseNot : proc (value : int → int)

This procedure returns the bitwise not of value.

16.11 Graphical Environment

The graphics environment contains the following objects:

64

Outline : env
Raster : env

These environments are described in the following sections.

16.11.1 Outline Environment

This environment contains the implementation and user procedures for Outline
graphics [MOR82, MBD86b]. The environment contains three entries: Odraw,
makeErase and makeDraw.

Odraw : proc (point : proc (int, int, int) ;
join : proc (int, int, int, int, int) ;
checkColour : proc (pixel → int) ;
defaultColour : int ;
Clipx1, Clipx2, Clipy1, Clipy2 : int ;
t : pic ;
xmin, xmax, ymin, ymax : real)

This procedure implements the Outline graphics. It is used by the Napier88 system.

type drawFunction is variant (imageDraw : proc (image, pic, real, real,
real, real) ;

fileDraw : proc (file, pic, real, real, real, real) ;
fail : null)

makeDrawFunction : proc (devType : string → drawFunction)

This procedure returns an Outline draw function for the device type specified by
devType. If the device specified is unknown to the procedure, the fail branch of the
variant is returned. The devices supported by the first Napier88 release are:

"image" Napier88 raster image
"t4010" Tektronix 4010
"t4006" Tektronix 4006
"t4107" Tektronix 4107
"cx4800" cx4800 printer
"L800" QMS laserprinter
"g6320" colour plotter

The outline draw function returned by makeDraw takes a picture and a bounding
rectangle in the infinite two dimensional real space over which all pictures are
defined. The picture is clipped to the area of the bounding box. The box is then
scaled and shifted to fit the area of the device on which it is drawn.

The four real parameters to the draw function describe the bounding box and
correspond to the xmin, xmax, ymin, ymax parameters to Odraw, respectively. If
the xmin and xmax or ymin and ymax parameters are equal then the bounding box
has a zero dimension, and a call is made to the Draw procedure in the graphical
errors environment.

If the picture being drawn contains a text statement whose end points are
coincident, a call is made to the Text procedure in the graphical errors environment.
The Text procedure may be used to construct a picture to replace the erroneous text
statement.

The mapping of a picture onto a device is performed using real arithmetic which, in
certain circumstances, may result in arithmetic errors. If any arithmetic errors do

65

occur, the appropriate procedure in the arithmetical errors environment will be
called.

type eraseFunction is variant (imageErase : proc (image, pixel) ;
fileErase : proc (file, pixel) ;
fail : null)

makeEraseFunction : proc (devType : string → eraseFunction)

This procedure returns an Outline erase procedure for the device type specified by
devType. If the device specified is unknown to the procedure the fail branch of the
variant is returned, otherwise a procedure is returned that may be used to clear the
display of the device.

16.11.2 Raster Environment

This environment contains the implementation and the user procedures for the
Napier88 raster graphics [MBD86a].

xDim : proc (i : image → int)

This procedure returns the X dimension of the image i.

yDim : proc (i : image → int)

This procedure returns the Y dimension of the image i.

zDim : proc (i : image → int)

This procedure returns the number of planes in the image i.

pixelDepth : proc (p : pixel → int)

This procedure returns the number of planes in the pixel p.

rasterOp : proc (S, D : image ; r: int)

Performs a raster operation from S (source) onto D (destination) using the
combination rule r rem 16 which is interpreted as follows:

0 S and ~S 8 S and D
1 ~ (S or D) 9 ~S xor D
2 ~S and D 10 D
3 ~S 11 ~S or D
4 S and ~D 12 S
5 ~D 13 S or ~D
6 S xor D 14 S or D
7 ~ (S and D) 15 S or ~S

where on maps to true and off maps to false.

line : proc (i : image ; x1, y1, x2, y2 : int ; p : pixel ; r : int)

This procedure draws a line from the point (x1, y1) to the point (x2, y2) on the
image i. The line is drawn with the pixel p which is combined with the image pixels
using the raster rule specified by r. The interpretation of the raster rule may be
found in rasterOp above.

66

getPixel : proc (i : image ; x, y : int → pixel)

This procedure returns the pixel found at position (x, y) in image i. This procedure
calls the procedure of the same name in the error environment if an illegal index is
specified.

setPixel : proc (i : image ; x, y : int ; p : pixel)

This procedure sets the pixel at position (x, y) in image i to be p.This procedure
calls the procedure of the same name in the error environment if an illegal index is
specified.

16.12 Font Environment

The font environment contains the following items:

cmrB14, courR10, screenB14, screenR7,
cmrR14, courR12, screenR11, serifR10,
courB10, courR14, screenR12, serifR11,
courB12, gallantR19, screenR13, serifR12,
courB14, screenB12, screenR14, serifR14,
serifR16 : FontPack

Each of these is of type FontPack which is defined below.

type Font is structure (constant characters : *image;
constant fontHeight : int;
constant descender : int;
constant info : string)

type FontPack is structure (font : Font;
stringToTile, charToTile : proc (string → image))

The fontHeight is the height of the characters in the font. The descender is the
distance from the bottom of an image holding a character to the base line. The
widths of characters in a font may vary, but the programmer may examine these by
taking the x dimension of the appropriate image. For example,

this is the baseline

descender 4 pixels

height 15 pixels

width 8 pixels width 10 pixels

The vector called characters contains font images, so they may be indexed by the
ASCII character code. Information about the font may be found in the string info.

The procedures charToTile and stringToTile found in each FontPack take as a
parameter a string and return a representation of the same string contained in an
image. The procedure charToTile works for single character strings and gives back

67

the actual image kept in the font, rather than a copy of it. This is provided as an
optimisation.

16.13 Error Environment

The Error environment contains the following items:

Arithmetical : env
Graphical : env
String : env
Structure : env
Vector : env
Variant : env
Environment : env
IO : env
Format : env

The procedures that are called in the event of an error are stored in these
environments. Each procedure is a variable and the user may change them by
assignment. By default, all the error procedures write out an appropriate error
message and halt the execution of the Napier88 system.

16.13.1 Arithmetical Errors Environment

unaryInt : proc (rator : string ; rand : int → int)

This procedure may be called during unary minus and abs operations with the rator
parameter being "-" and "abs", respectively. The rand parameter is the integer on
which the original operation was attempted.

Int : proc (rator : string ; rand1, rand2 : int → int)

This procedure may be called during the operations plus, times, minus, div and rem
with the rator parameter being "+", "*", "-", "div" and "rem", respectively. In each
case, the parameters rand1 and rand2 are the integers on which the original
operation was attempted.

unaryReal : proc (rator : string ; rand : real → real)

This procedure may be called during the operations unary minus, sin, cos, exp, ln,
sqrt, atan and truncate with the rator parameter being "-", "sin", "cos", "exp", "ln",
"sqrt", "atan" and "truncate", respectively. In each case, the parameter rand is the
real number on which the original operation was attempted.

Real : proc (rator : string ; rand1, rand2 : real → real)

This procedure may be called during the operations plus, times, minus and divide
with the rator parameter being "+", "*", "-" and "/", respectively. In each case, the
parameters rand1 and rand2 are the real numbers on which the original operation
was attempted.

getByte : proc (index, word : int → int)

This procedure may be called during the execution of the getByte procedure which
may be found in the PrimitiveIO environment. It is called when the byte index
supplied to the getByte procedure is not between 0 and 3. The parameters to this
error procedure are those supplied to the original getByte procedure call.

68

setByte : proc (index, word, byte : int → int)

This procedure may be called during the execution of the setByte procedure which
may be found in the PrimitiveIO environment. It is called when the byte index
supplied to the setByte procedure is not between 0 and 3. The parameters to this
error procedure are those supplied to the original setByte procedure call.

16.13.2 Graphical Errors Environment

Draw : proc (p : pic ; xmin, xmax, ymin, ymax : real)

This procedure is called if either the xmin or xmax parameters to Odraw or the ymin
and ymax parameters to Odraw are equal.

Text : proc (s : string ; x1, y1, x2, y2 : real → pic)

This procedure is called when a picture is created for a text statement whose end
points [x1, y1] and [x2, y2] are coincident.

getPixel : proc (i : image ; x, y : int → pixel)

This procedure may be called during the getPixel procedure which may be found in
the raster graphics environment. It is called whenever the x or y coordinates
supplied to that procedure lie outwith the bounds of the image supplied as a
parameter. The parameters to this error procedure are those supplied to the original
getPixel procedure call.

setPixel : proc (i : image ; x, y : int ; p : pixel)

This procedure may be called during the setPixel procedure which may be found in
the raster graphics environment. It is called whenever the x or y coordinates
supplied to that procedure lie outwith the bounds of the image supplied as a
parameter. The parameters to this error procedure are those supplied to the original
setPixel procedure call.

pixelOverflow : proc (p : pixel → pixel)

This procedure may be called during the pixel concatenation operation ++. It is
called if the pixel depth overflows the implementation size. The parameter is the
first 24 planes.

subPixel : proc (p : pixel ; start, noOfPlanes : int → pixel)

This procedure may be called during the pixel indexing operation. It is called if the
start plane is less than zero, if the start plane is greater than or equal to the pixel
depth, if the number of planes requested are less than 1 or if the planes selected are
not a subset of the original pixel. The original pixel, the start plane and the number
of planes are supplied to the error procedure as parameters.

makeImage : proc (x, y : int ; p : pixel → pixel)

This procedure may be called during the image creation operation. It is called if
either the x or the y dimension is less than 1. The parameters to the error procedure
are the x and y dimension and the initialising pixel.

subImage : proc (i : image ; start, noOfPlanes : int → image)

69

This procedure may be called during the image indexing operation. It is called if the
start plane is less than zero, if the start plane is greater than or equal to the image
depth, if the number of planes requested are less than 1 or if the planes selected are
not a subset of the original image. The original image, the start plane and the
number of planes are supplied to the error procedure as parameters.

limitAt : proc (i : image ; x, y : int → image)

This procedure may be called during the 'limit i at x,y' operation. It is called if x < 0
or x ≥ xDim (i) or y < 0 or y ≥ yDim (i). The image on which the operation was
attempted and the x and y indexing coordinates are supplied as parameters to the
error procedure.

limitAtBy : proc (i : image ; x1, x2, y1, y2 : int → image)

This procedure may be called during the 'limit i to x1 by y1 at x2,y2' operation. It
is called if x2 < 0 or x2 ≥ xDim (i) or y2 < 0 or y2 ≥ yDim (i) or if the sub image
requested is not totally enclosed within the original image. The image on which the
operation was attempted and the indexing coordinates are supplied as parameters to
the error procedure.

imagePixelConstant: proc (i : image)

This procedure is called if an update operation (via a raster operation) is attempted
on an image of constant pixels. The image on which the operation was attempted is
supplied as a parameter to the error procedure.

getScreen : proc (f : file → image)

This procedure is called by the getScreen procedure found in the Device
environment if the file supplied to it is not a raster device. The error procedure is
passed the file on which the original getScreen operation was attempted.

locator : proc (f : file ; vec : *int)

This procedure is called by the locator procedure found in the Device environment
if the file supplied to it is not a raster device. The error procedure is passed the file
and the vector with which the original locator operation was attempted.

colourMap : proc (f : file ; p : pixel, ; i : int)

This procedure is called by the colourMap procedure found in the Device
environment if the file supplied to it is not a raster device. The error procedure is
passed the file, the pixel and the integer passed as parameters to the original
colourMap operation.

colourOf : proc (f : file ; p : pixel → int)

This procedure is called by the colourOf procedure found in the Device
environment if the file supplied to it is not a raster device. The error procedure is
passed the file and the pixel passed as parameters to the original colourOf operation.

getCursor : proc (f : file → image)

This procedure is called by the getCursor procedure found in the Device
environment if the file supplied to it is not a raster device. The error procedure is
passed the file passed as a parameter to the original getCursor operation.

70

setCursor : proc (f : file ; i : image)

This procedure is called by the setCursor procedure found in the Device
environment if the file supplied to it is not a raster device. The error procedure is
passed the file and the image passed as a parameter to the original setCursor
operation.

getCursorInfo : proc (f : file ; vec : *int)

This procedure is called by the getCursorInfo procedure found in the Device
environment if the file supplied to it is not a raster device. The error procedure is
passed the file and the vector passed as a parameter to the original getCursorInfo
operation.

setCursorInfo : proc (f : file ; vec : *int)

This procedure is called by the setCursorInfo procedure found in the Device
environment if the file supplied to it is not a raster device. The error procedure is
passed the file and the vector passed as a parameter to the original setCursorInfo
operation.

16.13.3 String Errors Environment

concatenate : proc (s1, s2 : string → string)

This procedure is called by the ++ operator whenever the new string would exceed
the maximum string length (the maximum string length is maxint characters in this
implementation of Napier88). The error procedure is passed as parameters the two
strings which were to be concatenated.

subString : proc (s : string ; start, length : int → string)

This procedure is called by the substring operator |. It is called if the string to be
dereferenced is a nilstring or if the start position is less than 1 or if the length is less
than 0 or if the finish position is after the end of the string. The error procedure is
passed as parameters the original string, the start position and the substring length.

16.13.4 Structure Errors Environment

structureFieldConstant : proc ()

This procedure is called when an assignment is attempted to a constant field within
a structure.

16.13.5 Vector Errors Environment

vectorElementConstant: proc[t] (vec : *t ; index : int ; value : t)

This procedure is called when an assignment is attempted to a location within a
vector of constant elements. The error procedure is passed as parameters the vector,
the index and the value which was to be assigned to the location.

vectorIndexAssign : proc[t] (vec : *t ; index : int ; value : t)

This procedure is called whenever an assignment is attempted to an illegal address
within a vector. An illegal address could be an address less than the lower bound of
the vector or an address greater than the upper bound of the vector. The error

71

procedure is passed the original vector, the index and the value to be assigned to the
location.

vectorIndexSubs : proc[t] (vec : *t ; index : int → t)

This procedure is called whenever an illegal index is made into a vector. An illegal
index could be an address less than the lower bound of the vector or an address
greater than the upper bound of the vector. The error procedure is passed the
original vector and the index.

makeVector : proc[t] (lwb, upb : int ; initial : t → *t)

This procedure is called whenever a vector creation is attempted with the lower
bound greater than the upper bound. The error procedure is passed the lower bound,
the upper bound and the initialising value.

16.13.6 Variant Errors Environment

varProject : proc (t : typeRep ; expected, was : string)

This procedure is called when a variant is illegally dereferenced. The type typeRep
is defined as follows:

type typeRep is structure (unboundQuantifiers : bool ; representation :
string)

For example, with the variant,

rec type list is variant (cell : structure (hd : int ; tl : list) ; tip : null)

and the value,

let a = list (tip : nil)

then the illegal projection,

a'cell

would result in the following call of this procedure:

varProject (typeRep(false,
"rec type t0 is variant (cell : t1 ; tip : null)
& t1 is structure (hd : int ; tl : t0)"), "cell", "tip")

It should be noted that after this error the Napier88 system cannot continue and will
halt, even if the error handling procedure should return normally.

16.13.7 Environment Errors Environment

envRedeclaration : proc (env, string, typeRep, bool)

This procedure is called if a binding is added to an environment that already
contains the identifier. The procedure is passed the environment being updated, the
name of the identifier being declared, a representation of the new type and a flag to
indicate whether or not the identifier was to be constant.

envProject : proc (env, string, typeRep, bool)

72

This procedure is called if a signature in an environment projection cannot be
matched by the environment. The procedure is passed the environment being
searched, the identifier being searched for, a representation of the expected type and
a flag to indicate whether or not the identifier was expected to be constant.

envDrop : proc (env, string)

This procedure is called if an attempt is made to drop an unbound identifier from an
environment. The procedure is passed the environment being updated and the
identifier that was to be dropped.

16.13.8 IO Errors Environment

writeByte : proc (f : file ; theByte, errorNo : int)

This procedure is called when an error occurs in the writeByte procedure in the IO
environment. The procedure is passed the byte being written, the file being written
to, and the I/O error number indicating the error.

writeString : proc (f : file ; s : string ; next, errorNo : int)

This procedure is called when an error occurs in the writeString procedure in the IO
environment. The procedure is passed the string being written, the file being written
to, the number of characters successfully written and the I/O error number
indicating the error.

writeBool : proc (f : file ; s : string ; next, errorNo : int)

This procedure is called when an error occurs in the writeBool procedure in the IO
environment. The procedure is passed the string representation of the boolean being
written, the file being written to, the number of characters successfully written and
the I/O error number indicating the error.

writeInt : proc (f : file ; s : string ; next, errorNo : int)

This procedure is called when an error occurs in the writeInt procedure in the IO
environment. The procedure is passed the string representation of the integer being
written, the file being written to, the number of characters successfully written and
the I/O error number indicating the error.

writeReal : proc (f : file ; s : string ; next, errorNo : int)

This procedure is called when an error occurs in the writeReal procedure in the IO
environment. The procedure is passed the string representation of the real being
written, the file being written to, the number of characters successfully written and
the I/O error number indicating the error.

endOfInputIOE : proc (f : file ; errorNo : int → bool)

This procedure is called when an error occurs in the endOfInput procedure in the IO
environment. The procedure is passed the file being read and the I/O error number.

readByteIOE : proc (f : file ; errorNo : int → int)

This procedure is called when an error occurs in the readByte procedure in the IO
environment. The procedure is passed the file being read and the I/O error number.

73

readByteEOI : proc (f : file → int)

This procedure is called when end of input is encountered in the readByte procedure
in the IO environment. The procedure is passed the file being read.

readCharIOE : proc (f : file ; errorNo : int → string)

This procedure is called when an error occurs in the readChar procedure in the IO
environment. The procedure is passed the file being read and the I/O error number.

readCharEOI : proc (f : file → string)

This procedure is called when end of input is encountered in the readChar
procedure in the IO environment. The procedure is passed the file being read.

peekByteIOE : proc (f : file ; errorNo : int → int)

This procedure is called when an error occurs in the peekByte procedure in the IO
environment. The procedure is passed the file being read and the I/O error number.

peekByteEOI : proc (f : file → int)

This procedure is called when end of input is encountered in the peekByte procedure
in the IO environment. The procedure is passed the file being read.

endOfInputUnread : proc (f : file ; theByte, errorNo : int → int)

This procedure is called when the byte read by the endOfInput procedure in the IO
environment cannot be made available to the next read operation on the same file.
The procedure is passed the file being read, the byte read and the I/O error number.

peekByteUnread : proc (f : file ; theByte, errorNo : int → int)

This procedure is called when the byte read by the peekByte procedure in the IO
environment cannot be made available to the next read operation on the same file.
The procedure is passed the file being read, the byte read and the I/O error number.

peekCharIOE : proc (f : file ; errorNo : int → string)

This procedure is called when an error occurs in the peekChar procedure in the IO
environment. The procedure is passed the file being read and the I/O error number.

peekCharEOI : proc (f : file → string)

This procedure is called when end of input is encountered in the peekChar
procedure in the IO environment. The procedure is passed the file being read.

peekCharUnread : proc (f : file ; theByte,errorNo : int → string)

This procedure is called when the character read by the peekChar procedure in the
IO environment cannot be made available to the next read operation on the same
file. The procedure is passed the file being read, the byte corresponding to the
character read and the I/O error number.

readBoolIOE : proc (f : file ; readSoFar : string ; errorNo : int → bool)

74

This procedure is called when an error occurs in the readBool procedure in the IO
environment. The procedure is passed the file being read, the characters that had
been read when the error occurred excluding any layout characters and the I/O error
number.

readBoolEOI : proc (f : file ; readSoFar : string → bool)

This procedure is called when end of input is encountered in the readBool
procedure in the IO environment. The procedure is passed the file being read and
the characters that had been read when the end of input was detected excluding any
layout characters.

readBoolBadChar : proc (f : file ; readSoFar : string → bool)

This procedure is called when an erroneous character is read by the readBool
procedure in the IO environment. The procedure is passed the file being read and
the characters that had been read up to and including the erroneous character
excluding any layout characters.

readStringIOE : proc (f : file ; readSoFar : string ; errorNo : int →
string)

This procedure is called when an error occurs in the readString procedure in the IO
environment. The procedure is passed the file being read, the characters that had
been read, excluding the leading double quote, when the error occurred and the I/O
error number.

readStringEOI : proc (f : file ; readSoFar : string → string)

This procedure is called when end of input is encountered in the readString
procedure in the IO environment. The procedure is passed the file being read and
the characters that had been read, excluding the leading double quote, when the end
of input was detected.

readStringBadChar : proc (f : file ; readSoFar : string → string)

This procedure is called when a double quote character is not the first non layout
character found by the readString procedure in the IO environment. The procedure
is passed the file being read and the character that was read instead of the expected
double quote.

readLineIOE : proc (f : file ; readSoFar : string ; errorNo : int → string)

This procedure is called when an error occurs in the readLine procedure in the IO
environment. The procedure is passed the file being read, the characters that had
been read when the error occurred and the I/O error number.

readLineEOI : proc (f : file ; readSoFar : string → string)

This procedure is called when end of input is encountered in the readLine procedure
in the IO environment. The procedure is passed the file being read and the
characters that had been read when the end of input was detected.

readIntIOE : proc (f : file ; readSoFar : string ; errorNo : int → int)

75

This procedure is called when an error occurs in the readInt procedure in the IO
environment. The procedure is passed the file being read, the characters that had
been read when the error occurred excluding any layout characters and the I/O error
number.

readIntEOI : proc (f : file ; readSoFar : string → int)

This procedure is called when end of input is encountered in the readInt procedure
in the IO environment. The procedure is passed the file being read and the
characters that had been read when the end of input was detected excluding any
layout characters.

readIntBadChar : proc (f : file ; readSoFar : string → int)

This procedure is called when a digit or a sign which is followed by a digit, is not
the first non layout character found by the readInt procedure in the IO environment.
The procedure is passed the file being read and the character that was read instead
of the expected digit or sign which is followed by a digit.

readIntUnread : proc (f : file ; theInteger : string ; theByte, errorNo :
int → int)

This procedure is called when an extra character read while parsing an integer in the
readInt procedure in the IO environment cannot be made available to the next read
operation. The procedure is passed the file being read, the characters that form the
integer, the byte corresponding to the extra character that was read and the I/O error
number.

readIntOverflow : proc (f : file ; theInteger : string → int)

This procedure is called when an arithmetic error occurs converting the integer
parsed in the readInt procedure in the IO environment into an integer value. The
procedure is passed the file being read and the characters that form the integer.

readRealIOE : proc (f : file ; readSoFar : string ; errorNo : int → real)

This procedure is called when an error occurs in the readReal procedure in the IO
environment. The procedure is passed the file being read, the characters that had
been read when the error occurred excluding any layout characters and the I/O error
number.

readRealEOI : proc (f : file ; readSoFar : string → real)

This procedure is called when end of input is encountered in the readReal procedure
in the IO environment. The procedure is passed the file being read and the
characters that had been read when the end of input was detected excluding any
layout characters.

readRealBadChar : proc (f : file ; readSoFar : string → real)

This procedure is called when a digit or a sign which is followed by a digit, is not
the first non layout character found by the readReal procedure in the IO
environment. The procedure is passed the file being read and the character that was
read instead of the expected digit or sign which is followed by a digit.

76

readRealUnread : proc (f : file ; theReal : string ; theByte, errorNo : int →
real)

This procedure is called when an extra character read while parsing a real in the
readReal procedure in the IO environment cannot be made available to the next
read operation. The procedure is passed the file being read, the characters that form
the real, the byte corresponding to the extra character that was read and the I/O error
number.

readRealOverflow : proc (f : file ; theReal : string → real)

This procedure is called when an arithmetic error occurs converting the integer
parsed in the readReal procedure in the IO environment into a real value. The
procedure is passed the file being read and the characters that form the real.

16.13.9 Format Errors Environment

fformat : proc (r : real ; ipart, fpart : int → string)

This procedure is called by the fformat procedure in the Format environment. It is
called if there are more than ipart places before the "." or if fpart is a negative
number.

eformat : proc (r : real ; ipart, fpart : int → string)

This procedure is called by the eformat procedure in the Format environment. It is
called if either ipart or fpart is a negative number.

16.14 Event Environment

The Napier88 system recognises a small range of asynchronous events. These are a
hangup signal, an interrupt signal, a quit signal and a timer interrupt. On completion
of a particular event procedure, the procedure will return to the running program.

The Event environment contains the procedures that are called when one of the
above events is detected by the system. These procedures are variables and the user
may change them by assignment. The default procedures are described below.

The Unix signals referred to may be found in §3 of the Unix Manual under Signal.

hangup : proc ()
This procedure is called if the Napier88 system receives a Unix SIGHUP signal.
By default, this procedure stops the Napier88 system.

interrupt : proc ()
This procedure is called if the Napier88 system receives a Unix SIGINT signal.
By default, this procedure does nothing.

quit : proc ()
This procedure is called if the Napier88 system receives a Unix SIGQUIT signal.
By default, this procedure stops the Napier88 system.

timer : proc ()
This procedure gets called 30 times per second. By default, the procedure does
nothing.

77

17 References

[ABC83] Atkinson,M.P., Bailey,P.J., Chisholm,K.J., Cockshott,W.P. &
Morrison,R.
"An approach to persistent programming". Computer Journal 26,4
(November 1983), 360-365.

[AM85] Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment". Proc of
the Appin Workshop on Data Types and Persistence, Universities of
Glasgow and St Andrews, PPRR-16, (August 1985),1-25. In Data
Types and Persistence. Springer-Verlag (1988), 1-20. (Eds Atkinson,
M.P., Buneman, O.P. & Morrison, R.)

[AMP86] Atkinson, M.P., Morrison, R & Pratten, G..
"Designing a persistent information space architecture". 10th IFIP
World Congress, Dublin (September 1986),115-120. North-Holland,
Amsterdam.

[BCC88] Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A. & Morrison, R.
"The Persistent Abstract Machine". PPRR-58-88, Universities of St
Andrews and Glasgow (1988).

[BRO89] Brown, A.L.
"Persistent Object Stores". PhD. Thesis, University of St Andrews
(1988).

[CBC89] Connor, R.C., Brown, A.L., Carrick, R., Dearle, A. & Morrison, R.
"The Persistent Abstract Machine". 3rd International Workshop on
Persistent Object Systems, Newcastle, N.S.W., (January 1989), 80-95.

[CW85] Cardelli, L. & Wegner, P.
"On understanding types, data abstraction and polymorphism".
ACM.Computing Surveys 17, 4 (December 1985), 471-523.

[DD79] Demers, A. & Donahue, J.
"Revised report on Russell". Technical report TR79-389, Cornell
University, (1979).

[DEA88] Dearle, A.
"On the Construction of Persistent Programming Environments". PhD.
Thesis, University of St Andrews (1988).

[DEA89] Dearle, A.
"Environments : A flexible binding mechanism to support system
evolution". 22nd Hawaii International Conference on System Sciences,
Hawaii, U.S.A. (Jan 1989), 46-55.

[KRA85] Krablin, G.L. "Building flexible multilevel transactions in a distributed
persistent environment". proceedings of Data Types and Persistence
Workshop, Appin, (August 1985), 86-117. In Data Types and
Persistence. Springer-Verlag (1988), 213-234. (Eds Atkinson, M.P.,
Buneman, O.P. & Morrison, R.)

[MAT85] Matthews, D.C.J.
"Poly manual". Technical Report 65 (1985), University of Cambridge,
U.K.

[MBB89] Morrison, R., Barter, C.J., Brown, A.L., Carrick, R., Connor, R.C.,
Dearle, A., Hurst, A.J. & Livesey, M.J. "Language Design Issues in

78

Supporting Process-Oriented Computation in a Persistent
Environment". 22nd Hawaii International Conference on System
Sciences, Hawaii, U.S.A. (Jan 1989), 736-745.

[MBC87] Morrison, R., Brown, A.L., Carrick, R., Connor, R.C., Dearle, A. &
Atkinson, M.P.
"Polymorphism, Persistence and Software Reuse in a Strongly Typed
Object-Oriented Environment". Journal on Software Engineering (Dec
1987), 199-204.

[MBD86a] Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P.
"An integrated graphics programming environment". 4th UK
Eurographics Conference, Glasgow (March 1986). In Computer
Graphics Forum 5, 2 (June 1986), 147-157.

[MBD86b] Morrison, R., Bailey, P.J., Davie, A.J.T., Brown, A.L. & Dearle, A.
"A persistent graphics facility for the ICL PERQ computer". Software,
Practice & Experience 16, 4 (April 1986), 351-367.

[MIL79] Milner, R.
"A theory of type polymorphism in programming". JACM 26(4), 792-
818. (1979).

[MIL83] Milner, R.
"A proposal for standard ML". Technical Report CSR-157-83.
University of Edinburgh. (1983).

[MOR79] Morrison, R.
"On the Development of Algol". PhD Thesis, University of St Andrews,
(1979).

[MOR82] Morrison, R.
"Low cost computer graphics for micro computers". Software, Practice
& Experience 12, 8 (August 1982), 767-776.

[MP88] Mitchell, J.C. & Plotkin, G.D
"Abstract types have existential type". ACM.TOPLAS 10, 3 (July
1988), 470-502.

[PPR88] PS-algol Reference Manual - Fourth Edition. Universities of Glasgow
and St Andrews. PPRR-12-88 (1988).

[STR67] Strachey, C.
"Fundamental concepts in programming languages". Oxford University
Press, Oxford (1967).

79

Appendix I

Context Free Syntax

Session:

<session> ::= <sequence>?

<sequence> ::= <declaration>[;<sequence>] |
<clause>[;<sequence>]

<declaration> ::= <type_decl> | <object_decl>

Type declarations:

<type_decl> ::= type<type_init> | rec type<type_init>[&<type_init>]*

<type_init> ::= <identifier>[<type_parameter_list>]is<type_id>

<type_parameter_list> ::= <lsb><identifier_list><rsb>

Type descriptors:

<type_id> ::= int | real | bool | string | pixel | pic | null | any |
env | image | file |

<identifier>[<parameterisation>] | <type_constructor>

<parameterisation> ::= <lsb><type_identifier_list><rsb>

<type_identifier_list> ::= <type_id>[,<type_identifier_list>]

<type_constructor> ::= <star><type_id> | <structure_type> | <variant_type> |

<proc_type> | <abstype>

<structure_ type > ::= structure([<named_param_list>])

<named_param_list> ::= [constant]
<identifier_list>:<type_id>[;<named_param_list>]

<variant_type> ::= variant([<variant_fields>])

<variant_fields> ::= <identifier_list>:<type_id>[;<variant_fields>]

<proc_type> ::= proc[<type_parameter_list>]([<parameter_list>]

[<arrow><type_id>])

<parameter_list> ::= <type_id>[,<parameter_list>]

<abstype> ::= abstype<type_parameter_list>(<named_param_list>)

80

Object declarations:

<object_decl> ::= let<object_init> |

rec let<rec_object_init>[&<rec_object_init>]*

<object_init> ::= <identifier><init_op><clause>

<rec_object_init> ::= <identifier><init_op><literal>

<init_op> ::= = | :=

Clauses:

<clause> ::= <env_decl> |

if<clause>do<clause> |

if<clause>then<clause>else<clause> |

repeat<clause>while<clause>[do<clause>] |

while<clause>do<clause> |

for<identifier>=<clause>to<clause>[by<clause>]do<clause>|

use<clause>with<signature>in<clause> |

use<clause>as<identifier>[<witness_decls>]in<clause> |

case<clause>of<case_list>default :<clause> |

<raster> |

drop<identifier>from<clause> |

project<clause>as<identifier>
onto<project_list>default:<clause> |

<name>:=<clause> |

<expression>

<signature> ::= <named_param_list>

<witness_decls> ::= <type_parameter_list>

<case_list> ::= <clause_list>:<clause>;[<case_list>]

<raster> ::= <raster_op><clause>onto<clause>

<raster_op> ::= ror | rand | xor | copy | nand | nor | not | xnor

<project_list> ::= <any_project_list> | <variant_project_list>

<any_project_list> ::= <type_id>:<clause>;[<any_project_list>]

81

<variant_project_list> ::= <identifier>:<clause>;[<variant_project_list>]

<env_decl> ::= in<clause>let<object_init> |

in<clause>rec let<rec_object_init>[&<rec_object_init>]*

Expressions:

<expression> ::= <exp1>[or<exp1>]*

<exp1> ::= <exp2>[and<exp2>]*

<exp2> ::= [~]<exp3>[<rel_op><exp3>]

<exp3> ::= <exp4>[<add_op><exp4>]*

<exp4> ::= <exp5>[<mult_op><exp5>]*

<exp5> ::= [<add_op>]<exp6>

<exp6> ::= <literal> | <value_constructor> |(<clause>) |

begin<sequence>end | {<sequence>} |

<expression>(<clause><bar><clause>) |

<expression>(<dereference>) |

<expression>'<identifier> |

<expression><lsb><specialisation><rsb> |

<expression>([<application>]) |

<structure_creation> | <variant_creation> |

<clause> contains [constant] <identifier>[:<type_id>] |

any (<clause>) |

<name>

<dereference> ::= <clause>[,<dereference>]

<specialisation> ::= <type_identifier_list>

<application> ::= <clause_list>

<structure_creation> ::=
<identifier>[<lsb><specialisation><rsb>]([<clause_list>])

<variant_creation> ::= <identifier>[<lsb><specialisation><rsb>]
(<identifier>:<expression>)

<name> ::= <identifier> |
<expression>(<clause_list>)[(<clause_list>)]*

<clause_list> ::= <clause>[,<clause_list>]

82

Value constructors:

<value_constructor> ::= <vector_constr> | <structure_constr> | <image_constr> |

<subimage_constr> | <picture_constr> | <picture_op>

<vector_constr> ::= [constant] vector<vector_element_init>

<vector_element_init> ::= <range>of<clause> | <range>using<clause> |

@<clause>of<lsb><clause>[,<clause>]*<rsb>

<range> ::= <clause>to<clause>

<image_constr> ::= [constant]
image<clause>by<clause><image_init>

<image_init> ::= of<clause> | using<clause>

<subimage_constr> ::=
limit<clause>[to<clause>by<clause>][at<clause>,<clause>]

<structure_constr> ::= struct([<struct_init_list>])

<struct_init_list> ::= <identifier><init_op><clause>[;<struct_init_list>]

<picture_constr> ::= <lsb><clause>,<clause><rsb>

<picture_op> ::= shift<clause>by<clause>,<clause> |

scale<clause>by<clause>,<clause> |

rotate<clause>by<clause> |

colour<clause>in<clause> |

text<clause>from<clause>,<clause>to<clause>,<clause>

83

 Literals:

<literal> ::= <int_literal> | <real_literal> | <bool_literal> |
<string_literal> |

<pixel_literal> | <picture_literal> | <null_literal> |

<proc_literal> | <image_literal> | <file_literal>

<int_literal> ::= [<add_op>]<digit>[<digit>]*

<real_literal> ::= <int_literal>.[<digit>]*[e<int_literal>]

<bool_literal> ::= true | false

<string_literal> ::= <double_quote>[<char>]*<double_quote>

<char> ::= any ASCII character except " | <special_character>

<special_character> ::= <single_quote><special_follow>

<special_follow> ::= n | p | o | t | b | <single_quote> | <double_quote>

<pixel_literal> ::= on | off

<null_literal> ::= nil

<proc_literal> ::= proc[<type_parameter_list>]([<named_param_list>]

[<arrow><type_id>]);<clause>

<picture_literal> ::= nilpic

<image_literal> ::= nilimage

<file_literal> ::= nilfile

84

Miscellaneous and microsyntax:

<lsb> ::= [

<rsb> ::=]

<star> ::= *

<bar> ::= |

<add_op> ::= + | -

<mult_op> ::= <int_mult_op> | <real_mult_op> |
<string_mult_op> |

<pic_mult_op> | <pixel_mult_op>

<int_mult_op> ::= <star> | div | rem

<real_mult_op> ::= <star> | /

<string_mult_op> ::= ++

<pic_mult_op> ::= ^ | ++

<pixel_mult_op> ::= ++

<rel_op> ::= <eq_op> | <co_op> | <type_op>

<eq_op> ::= = | ~=

<co_op> ::= < | <= | > | >=

<type_op> ::= is | isnt

<arrow> ::= →

<single_quote> ::= '

<double_quote> ::= "

<identifier_list> ::= <identifier>[,<identifier_list>]

<identifier> ::= <letter>[<id_follow>]

<id_follow> ::= <letter>[<id_follow>] | <digit>[<id_follow>]
|_[<id_follow>]

<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |

n | o | p | q | r | s | t | u | v | w | x | y | z |

A | B | C | D | E | F | G | H | I | J | K | L | M |

N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

85

Appendix II

Type Rules

type aa rr ii tthh is iinn tt | rreeaa ll

type oorrddeerreedd is aa rr ii tthh | ss tt rr iinngg

type ll ii tt eerraa ll is oorrddeerreedd | bbooooll | pp iixxee ll | pp iicc |
nnuull ll | pprroocc | ff ii ll ee

type nnoonnvvooiidd is ll ii tt eerraa ll | iimmaaggee | ss tt rruucc ttuurree |
vvaarr iiaanntt | eennvv | aannyy | aabbss ttyyppee |
ppaarraammeetteerr ii sseedd | ppoollyy | **nnoonnvvooiidd

type ttyyppee is nnoonnvvooiidd | vvooiidd

SSeessss iioonn ::

<sequence> :: vvooiidd ? ==>> vvooiidd

tt :: ttyyppee, <declaration> :: vvooiidd ; <sequence> :: tt ==>> tt

tt :: ttyyppee, <clause> :: vvooiidd ; <sequence> :: tt ==>> tt

tt :: ttyyppee, <clause> :: tt ==>> tt

OObbjjeecc tt DDeecc llaarraa tt iioonnss ::

<declaration> ==>> vvooiidd

wwhheerree <object_decl> ::= [in<clause> :: eennvv] let<object_init> |
[in<clause> :: eennvv] rec let<rec_object_init>

[&<rec_object_init>]*
wwhheerree <object_init> ::= <identifier><init_op><clause> :: nnoonnvvooiidd
wwhheerree <rec_object_init> ::= <identifier><init_op><literal> :: nnoonnvvooiidd
wwhheerree <init_op> ::= = | :=

86

CCllaauusseess ::

<clause> :: eennvv contains [constant]<identifier>[:<type_id>] ==>> bbooooll

if <clause> :: bbooooll do <clause> :: vvooiidd ==>> vvooiidd

tt : ttyyppee, if <clause> :: bbooooll then <clause> :: tt else <clause> :: tt ==>> tt

repeat <clause> :: vvooiidd while <clause> :: bbooooll [do <clause> :: vvooiidd] ==>> vvooiidd

while <clause> :: bbooooll do <clause> :: vvooiidd ==>> vvooiidd

for <identifier>=<clause> :: iinn tt to <clause> :: iinn tt
[by<clause> :: iinn tt]do<clause> :: vvooiidd ==>> vvooiidd

tt :: ttyyppee, use <clause> :: eennvv with<signature>in<clause> :: tt ==>> tt

use<clause> :: aabbss ttyyppee as <identifier>[<witness_decls>]
in<clause> :: vvooiidd ==>> vvooiidd

tt :: ttyyppee ;; tt11 :: nnoonnvvooiidd , case <clause> :: tt11 of <case_list>
default : <clause> : tt ==>> tt

wwhheerree <case_list> ::= <clause_list>:<clause> :: tt ; [<case_list>]
wwhheerree <clause_list> ::= <clause> :: tt11 [,<clause_list>]

<raster_op><clause> :: iimmaaggee onto <clause> :: iimmaaggee ==>> vvooiidd

drop<identifier>from<clause> :: eennvv ==>> vvooiidd

tt :: ttyyppee, project <clause> :: aannyy as<identifier>onto<any_project_list>
default : <clause> :: tt ==>> tt

wwhheerree <any_project_list> ::= <type_id>:<clause> :: tt ; [<any_project_list>]

tt :: ttyyppee, project <clause> :: vvaarr iiaanntt as<identifier>onto<variant_project_list>
default : <clause> :: tt ==>> tt

wwhheerree <variant_project_list> ::=<identifier>:<clause> :: tt ;
[<variant_project_list>]

tt :: nnoonnvvooiidd , <name> :: tt := <clause> :: tt ==>> vvooiidd

87

EExxpprreessss iioonnss ::

<expression> :: bbooooll or <expression> :: bbooooll ==>> bbooooll

<expression> :: bbooooll and <expression> :: bbooooll ==>> bbooooll

[~]<expression> :: bbooooll ==>> bbooooll

tt :: nnoonnvvooiidd, <expression> :: tt <eq.op> <expression> :: tt ==>> bbooooll
wwhheerree <eq_op> ::= = | ≠

tt :: oorrddeerreedd, <expression> :: tt <co_op> <expression> :: tt ==>> bbooooll
wwhheerree <co_op> ::= < | <= | > | >=

<expression> :: vvaarr iiaanntt<type_op><identifier> ==>> bbooooll
wwhheerree <type_op> ::= is | isnt

tt :: nnoonnvvooiidd ,any (<clause>) :: tt ==>> aannyy

<expression> :: eennvv contains [constant]<identifier>[:<type>] ==>> bbooooll

tt :: aa rr ii tthh , <expression> :: tt <add_op><expression> :: tt ==>> tt

tt :: aa rr ii tthh , <add_op> <expression> :: tt ==>> tt

tt :: iinn tt, <expression> :: tt <int_mult_op> <expression> :: tt ==>> tt
wwhheerree <int_mult_op> ::= <star> | div | rem

tt :: rreeaa ll , <expression> :: tt <real_mult_op> <expression> :: tt ==>> tt
wwhheerree <real_mult_op> ::= <star> | /

tt :: ss tt rr iinngg, <expression> :: tt <string_mult_op> <expression> :: tt ==>> tt
wwhheerree <string_mult_op> ::= ++

tt :: pp iicc, <expression> :: tt <pic_mult_op> <expression> :: tt ==>> tt
wwhheerree <pic_mult_op> ::= ^ | ++

tt :: pp iixxee ll , <expression> :: tt <pixel_mult_op> <expression> :: tt ==>> tt
wwhheerree <pixel_mult_op> ::= ++

tt :: nnoonnvvooiidd , <standard_expression> :: tt ==>> tt

tt :: ll ii tt eerraa ll , <literal> :: tt ==>> tt

tt :: nnoonnvvooiidd , <value_constructor> :: tt ==>> tt

tt :: ttyyppee, (<clause> :: tt) ==>> tt

88

tt :: ttyyppee, begin <sequence> :: tt end ==>> tt

tt :: ttyyppee, { <sequence> :: tt } ==>> tt

<expression> :: ss tt rr iinngg (<clause> :: iinn tt <bar> <clause> :: iinn tt) ==>> ss tt rr iinngg

<expression> :: iimmaaggee (<clause> :: iinn tt <bar> <clause> :: iinn tt) ==>> iimmaaggee

<expression> :: pp iixxee ll (<clause> :: iinn tt <bar> <clause> :: iinn tt) ==>> ppiixxee ll

tt :: nnoonnvvooiidd , <expression> :: ** tt (<clause> :: iinn tt) ==>> tt

89

VVaalluuee ccoonnss tt rruucc ttoorrss ::

tt :: nnoonnvvooiidd , vector<range>of<clause> :: tt ==>> **tt

tt :: nnoonnvvooiidd , vector<range>using<clause> : pprroocc ((iinn tt → tt)) ==>> **tt

tt :: nnoonnvvooiidd , vector@<clause> :: iinn tt of<lsb><clause> :: tt
[,<clause> :: tt]* <rsb> ==>> **tt

wwhheerree <range> ::= <clause> :: iinn tt to <clause> :: iinn tt

image <clause> :: iinn tt by<clause> :: iinn tt of <clause> :: pp iixxee ll ==>>iimmaaggee

image <clause> :: iinn tt by<clause> :: iinn tt using <clause> :: iimmaaggee ==>>iimmaaggee

limit<clause> :: iimmaaggee [to<clause> :: iinn tt by<clause> :: iinn tt]
[at<clause> :: iinn tt ,<clause> :: iinn tt] ==>> iimmaaggee

struct(<struct_init_list>) ==>> ss tt rruucc ttuurree
wwhheerree <struct_init_list> ::= <identifier><init_op><clause> :: nnoonnvvooiidd

[,<struct_init_list>]

<lsb><clause> :: rreeaa ll ,<clause> :: rreeaa ll <rsb> ==>> ppiicc

shift<clause> :: pp iicc by<clause> :: rreeaa ll ,<clause> :: rreeaa ll ==>> ppiicc

scale<clause> :: pp iicc by<clause> :: rreeaa ll ,<clause> :: rreeaa ll ==>> ppiicc

rotate<clause> :: pp iicc by<clause> :: rreeaa ll ==>> ppiicc

colour<clause> :: pp iicc in<clause> :: pp iixxee ll ==>> ppiicc

text<clause> :: ss tt rr iinngg from <clause> :: rreeaa ll ,<clause> :: rreeaa ll
to<clause> :: rreeaa ll ,<clause> :: rreeaa ll ==>> ppiicc

90

ll ii tt eerraa ll ss ::

[<add_op>]<digit>[<digit>]* ==>> iinn tt

<int_literal>.[<digit>]*[e<int_literal>] ==>> rreeaa ll

true | false ==>> bbooooll

<double_quote>[<char>]*<double_quote> ==>> ss tt rr iinngg

on | off ==>> ppiixxee ll

nil ==>> nnuull ll

tt :: ttyyppee, proc [<type_parameter_list>]([<named_param_list>]
[<arrow><type_identifier> :: tt]);<clause> :: tt

nilpic ==>> ppiicc

nilimage ==>> iimmaaggee

nilfile ==>> ff ii ll ee

91

Appendix III

Program Layout

Semi-Colons

As a lexical rule in Napier88, a semi-colon may be omitted whenever it is used as a
separator and it coincides with a newline. This allows many of the semi-colons in a
program to be left out. However, to help the compiler deduce where the semi-colons
should be, it is a rule that a line may not begin with a binary operator. For example,

a *
b

is valid but,

a
* b

is not.

This rule also applies to the invisible operator between a vector, structure or image
and its index list and a procedure and its parameters. For example,

let b = a(1,2)

is valid but,

let b = a
 (1,2)

will be misinterpreted since vectors can be assigned.

Comments

Comments may be placed in a program by using the symbol !. Anything between
the ! and the end of the line is regarded by the compiler as a comment. For example,

 a + b ! add a and b

92

Appendix IV

Reserved Words

abstype and any as at

begin bool by

case colour constant contains copy

default div do drop

else end env

false file for from

if in int image is isnt

let limit

nand nil nilfile nilimage nor not null

of off on onto or output

pic pixel proc project

real rec rem repeat ror rand rotate

scale shift string struct structure

text then to true type

use using

variant vector

while with

xnor xor

93

Appendix V

Running the Napier88 System

There are four commands that control the execution of the Napier88 system. For
convenience, when a program is compiled it may be compiled against a set of pre-
compiled type declarations. For the present release only, these type declarations are
stored in a PS-algol database which must be specified when placing the declarations
in and using them from the database. The four Napier88 commands are: nps, npc,
npr and npd.

1 nps

This command is used to save a set of type declarations for later use by programs
wishing to compile against them. The command is parameterised by the name of a
file containing the type declarations and the database name, password and key under
which the type declarations should be saved. The database must already exist. It
may also be parameterised by other type environments held in PS-algol databases.
When this occurs the type environments provide the outer scoping levels within
which the type declarations are compiled. The first named environment is the
outermost scope and the source file provides the innermost scope. The general form
of the command is:

nps sourcefile dbName dbPassword dbKey [-l] [-t dbN dbP dbK]*

The -l flag produces a source listing.

For example, to save a set of type declarations, given in the file "types.N", in the
database "fred" with password "bloggs" under the key "sometypes", the following
could be used:

nps prog.N fred bloggs sometypes

The Napier88 source file must consist purely of type declarations or the command
will fail.

If a source file is not specified as a parameter, the command enters interactive
mode. First the command will prompt for a list of type environments against which
a source file may be compiled. Each type environment is at an inner scope level
with respect to any previously specified environments. To finish specifying type
environments, enter <return> in response to the command's prompt: database: .

Once any type environments have been specified, the command will prompt for a
source file to be compiled and the database, password and key under which its type
declarations should be saved. The source file is compiled against the complete set of
type environments that have been specified. When the type declarations have been
saved the command will prompt for another source file to compile. To finish saving
new type environments, enter <return> in response to the command's prompt:
Filename: .

To interactively save a set of type declarations, given in the file "types.N", in the
database "fred" with password "bloggs" under the key "sometypes", the following
could be used:

nps ! the command
Source type environment ! request for an environment to compile against
Database: <return> ! none to specify
Filename: types.N ! the source file to compile

94

Destination type environment ! request for where to save the new
environment

Database: fred ! the database name
Password: bloggs ! its password
Name: sometypes ! the new environment's key
Filename: <return> ! no more source files to be compiled

2 npc

This command is used to compile Napier88 programs and is parameterised by the
name of the source file. It may also be parameterised by other type environments
held in PS-algol databases. When this occurs the type environments provide the
outer scoping levels within which these declarations are compiled. The first named
environment is the outermost scope and the source file provides the innermost
scope. The result of the compilation is placed in a file whose name is constructed
from that of the source file. The general form of the command is

npc sourcefile [-l] [-t dbName dbPassword dbKey]*

The -l flag produces a source listing.

For example, to compile a program in a file prog.N, the following could be used:

npc prog.N

The result of this compilation would be placed in a file prog.out. If the source
filename does not end in .N then a filename is constructed by appending .out to the
source filename.

If a source file is not specified as a parameter, the command enters interactive
mode. First the command will prompt for a list of type environments against which
a source file will be compiled. Each type environment is at an inner scope level with
respect to any previously specified environments. To finish specifying type
environments enter, <return> in response to the command's prompt: database: .

Once any type environments have been specified, the command will prompt for a
source file to be compiled. The source file is compiled against the complete set of
type environments that have been specified. When the compilation is complete the
command will prompt for another source file to compile. To finish compiling, enter
<return> in response to the command's prompt: Filename: .

To interactively compile the program in the file "prog.N", against the type
environment held in the database "fred" with password "bloggs" under the key
"sometypes", the following could be used:

npc ! the command
Source type environment ! request for an environment to compile against
Database: fred ! the database name
Password: bloggs ! its password
Name: sometypes ! the environment's key
Source type environment ! request for another environment
Database: <return> ! no more to specify
Filename: prog.N ! the source file to be compiled
Filename: <return> ! no more source files to be compiled

3 npr

This command is used to run the Napier88 system. If the command is
parameterised, it must be given the name of a compiled Napier88 program that will

95

be executed. Otherwise, if no parameters are specified, the Napier88 system will be
restarted from the state preserved by the most recent stabilise operation.

4 npd

This command is used to disassemble a compiled Napier88 program into PAM
code. It is parameterised by the name of a file containing a compiled program and
will display a listing of the program's PAM code one procedure at a time, starting
with the main program. For example, to disassemble a program in a file prog.out,
the following could be used:

npd prog.out

An optional parameter may be supplied to yield a count of how many times each
PAM instruction occurs in the file. For example,

npd prog.out count

96

Appendix VI

Installing the Napier88 System

1 Installing the System

Before installing the Napier88 system read all of sections 1 to 4.

1. If not present, install a PS-algol system.
2. Copy the release tape into file store.
3. Create a shell variable named NPRDIR initialised with the pathname of the

directory containing the release.
4. Add the directory $NPRDIR/bin to your search path. The commands now available
5. Load the Napier88 compiler into its PS-algol database using the command nprloadco
6. Create a new stable store using the command nprformat.
7. Initialise the stable store with the Napier command nprloadstdenv.

2 Directory Information

The release tape contains the following directories:

bin this contains the commands required to use the Napier88 system,
comp this contains the compiled version of the Napier88 compiler written in
PS-algol,
exec this contains the executable programs used by the commands in bin,
stdenv this contains the compiled Napier88 programs to load the standard
environment.

3 Shell Variables

There are several shell variables that allow the Napier system to be dynamically
configured. They are:

NPRDIR - this variable defines the pathname for the release directory.
All the commands held in the bin directory use this variable to construct the
pathnames of the executable programs to be run. If NPRDIR is not defined the
pathname used is /usr/lib/napier88.

NPRSTORE - this variable defines the pathname for the UNIX file containing the
stable store. If NPRSTORE is not defined then the pathname used for the stable store
is the name of the processor prefixed by $NPRDIR/sstore. e.g. on a SUN named regal
the pathname would be $NPRDIR/sstore.regal. If the desired size of stable store is too
large for the disk partition containing the release directory, a symbolic link can be
used to map the store's pathname onto a larger disk partition.

NPRHEAP - this variable defines the size of local heap (in bytes) used by the
Napier88 interpreter, by default this is 1 megabyte.

NPRKEYS - this variable defines the pathname for a UNIX file containing
encrypted machine Identifiers. If not defined the pathname used is
$NPRDIR/exec/PSKEYS.

4 The Napier Commands

The bin directory contains the following commands used to install and run the
Napier88 system:

nprloadcompiler

97

This command runs the compiled PS-algol programs in the comp directory that load
the napier compiler into a PS-algol database. The command does not require any
parameters.

nprformat

This command creates a UNIX file containing an empty stable store. It takes two
parameters, the size of the stable store in 8 kilobyte blocks and the number of blocks
to be used as shadow store. e.g. to create an 8 megabyte store with 1 megabyte of
shadow store the following command would be used:

 nprformat 1024 128

The pathname of the UNIX file is as defined by the shell variable NPRSTORE. Since
the stable store may be a very large file, it may defeat an incremental dumping
strategy. This problem may be overcome by using a symbolic link to relocate the
UNIX file on a different disk partition and employing an alternative dumping
strategy.

nprloadstdenv

This command runs the compiled Napier88 programs in the stdenv directory that
construct the standard user environment for the Napier88 system. The command does
not require any parameters.

