
This paper should be referenced as:

Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A. & Atkinson, M.P.
“Polymorphism, Persistence and Software Reuse in a Strongly Typed Object Oriented
Environment”. Software Engineering Journal, December (1987) pp 199-204.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment

R.Morrison, A.Brown, R.Carrick, R.Connor, A.Dearle & M.P.Atkinson+

Department of Mathematical and Computational Sciences
University of St Andrews

North Haugh
St Andrews

Scotland
KY16 9SS.

+ Department of Computing Science,
University of Glasgow,

Lilybank Gdns.,
Glasgow,

Scotland G12 8QQ.

Abstract
The major requirements of a system for software reuse are that it must provide an

abstraction mechanism for adequately describing the components; a
mechanism for naming and storing the components; and a mechanism for
composing new objects out of existing components.

In this paper we describe a polymorphic type system that may be used to describe
generic components and a persistence mechanism that may be used to name,
store and compose components. By integrating the two, we obtain a strongly
typed persistent environment that is an ideal base as a system for software
reuse.

1 Introduction
The most cost effective way to build a system is to construct it out of existing components[5].
This has been a major motivation in our efforts to design and implement a persistent
information space architecture[4] which can be viewed as an enabling technology for Integrated
Project Support Environments[15]. The persistent store can be used as a place to deposit
system components which can be reused later in the construction of new systems.

There are three major issues that we will focus on in this paper with regard to software reuse in
a persistent environment. They are

• a powerful type system to describe all system components,

• a mechanism for controlling the naming of objects, and

• a method of binding, for composing systems out of reusable components.

A powerful type system is required so that all the data objects in the system can be represented
by a type. The advantage of this is that there is one mechanism, the type checker, used to
ensure the legal use of all compositions of system components. The type system must also
have powerful abstraction mechanisms which allow specialisation for a particular reuse. In this
way the abstraction is only written once, while specialisation may be used many times with the
resultant saving in software costs.

The second facility for reusability is a mechanism for controlling the use of names in a system.
Components are identified by name, and the ease of use of a system partly depends on finding
the correct name. In a system with a large number of names it should be possible to interrogate
the system so that the correct component can be found.

Finally, the method of composing systems out of reusable components should be simple and,
if possible, one of the binding mechanisms already used in the language. This binding

mechanism is necessarily dynamic since we wish to construct systems incrementally out of
components of a live system. The only major difficulty with this is in integrating it with a
strong type checker.

Here we describe our work with the language Napier[2,17], which combines a powerful
polymorphic type system with persistence to provide the above mechanisms for a strongly
typed object oriented environment.

2. Types
The Napier type system is loosely based on one suggested by Cardelli & Wegner[7]. All data
objects in the system can be described by the following rules

1. The scalar data types are integer, real, boolean, string, pixel, picture, file and null.

2. The type image is the type of an object consisting of a rectangular matrix of pixels.

3. For any data type t, *t is the type of a vector of with elements of type t.

4. For identifiers I1,...,In and types t1,...,tn, structure(I1:t1,...,In:tn) is the type of
a structure with fields Ii and corresponding types ti, for i = 1..n.

5. For identifiers I1,...,In and types t1,...,tn, variant(I1: t1,...,In: tn) is the type of a
variant with options Ii and corresponding types ti, for i = 1..n.

6. For any data types t1,...,tn and t, proc(t1,...,tn -> t) is the type of a procedure
with parameter types ti, for i = 1..n and result type t. The type of a resultless
procedure is proc(t1,...,tn).

7. For any procedure type, proc(t1,...,tn -> t) and type identifiers T1,...,Tm, proc[
T1,...,Tm] (t1,...,tn -> t) is the type proc(t1,...,tn -> t) universally quantified by
types T1,...,Tm. These are polymorphic procedures.

8. For identifiers I1,...,In and types t1,...,tn, env is the type of an environment with
fields Ii and corresponding types ti, for i = 1..n.

9. For any type identifiers W1,...,Wm, identifiers I1,...,In and types t1,...,tn,
abstype [W1,...,Wm] (I1: t1,...,In: tn), is the type of an existentially quantified
data type. These are abstract data types.

10. The type any is the infinite union of all types.

11. For any user-constructed data type t and type identifiers, T1,...,Tn, t[T1,...,Tn] is
the type t parameterised by T1,...,Tn.

The universe of discourse of the language is defined by the closure of rules 1 and 2 under the
recursive application of rules 3 to 11.

We will describe the more important aspects of this type system by example. The essential
element for software reuse is that there should be a high degree of abstraction. Thus, in the
above, vectors and structures are regarded as store abstractions over all data types, procedures
as abstractions over expressions and statements, abstract data types as abstractions over
declarations and polymorphism as an abstraction over type. The infinite unions env and any
are used to support persistence as well as being a general modeling technique. The types
picture, pixel and image are used for graphics.

Allowing such abstract forms in the object space enables the programmer to store them and to
specialise them on reuse. This reduces the total amount of code required in any system, since
we only have to write them once and may reuse them many times. We will return to a
discussion of the power of these abstractions when we have studied the other aspects of the
type system.

The underlying philosophy of the Napier type system is that types are sets of values[7], and
therefore type equivalence is decided by structure. We will assume that readers are familiar

with most aspects of such a type system and concentrate on the parts relevant to software
reuse, starting with polymorphism[12].

2 . 1 Polymorphism

Polymorphism is a mechanism whereby we can abstract over type. It is perhaps best explained
by an example; in Napier

let int_id = proc (x : int -> int) ; x

This defines a procedure called int_id that takes an integer as a parameter and returns it as the
result. This is easily recognised as the identity procedure for integers. The type of the
procedure is written in Napier as proc (int -> int).

We may also wish such an identity procedure for reals and which we could write as

let real_id = proc (x : real -> real) ; x

Polymorphism allows us to combine the above two procedures into one by abstracting over the
type. This can be written in Napier as

let id = proc [t] (x : t -> t) ; x

The square brackets signify that the procedure is parameterised by a type and that once given
that type, the procedure is from type t to t. To call this procedure we may write

id [int] (3) which yields 3 or
id [real] (4.2) which yields 4.2

or we may use the type parameter by itself

id [int] which yields the equivalent procedure to int_id above.

Thus we have written one procedure, id, which in fact is an infinite number of identity
procedures, one for each type as it is parameterised. We use square brackets for type
parameters to signify that types are not part of the value space of the language but are based on
the philosophy that types are sets of values.

The type of id may be written as ∀ t.proc (t -> t) since for every type t, it acts as a procedure
that will take a parameter of type t and return a value of that type. The procedure is said to be
universally quantified by t. ∀ t.proc (t -> t) is written as proc [t] (t -> t) in Napier.
Procedures of these polymorphic types are first class and may be stored, passed as parameters
and returned as results. This method of polymorphism, sometimes called parametric
polymorphism, first appeared in the language ML [13], and later in Russell [8] and Poly [11].

The advantage of the polymorphic abstraction should be obvious in the context of software
reuse. We may, for example, write a procedure to sort a vector of integers and another
procedure to sort a vector of reals. By using the polymorphism in Napier we can write one
procedure for all types, instead of a different one for each type. This greatly reduces the
amount of code that has to be written in a large system.

Experienced Ada users will recognise that the generic facility has similar properties[10]. There
are, however, some important differences between generics and the type polymorphism
described above and we will return to this later in this paper. For the moment we will develop
our argument by the use of an example to construct an index from integers to objects of any
type.

First we will write an index from integers to strings. The index is implemented by a binary tree
where each leaf contains the integer key and the string value, as well as its left and right
subtrees. There are three procedures concerned with maintaining the index, one to create the
initial index, one to enter values by key, and one to retrieve values by key. They may be
written as in Figure 1.

rec type s_index is variant (s_node : S_Node ; tip : null)
& S_Node is structure (key : int ; value : string ; left, right : s_index)

let s_create = proc (-> s_index) ; s_index (tip : nil)
!Return the empty index by injecting the nil value into the variant

rec let s_enter = proc (k : int ; v : string ; i : s_index -> s_index)
!Enter the value into the binary tree indexed by key

if i is tip then s_index (s_node : S_Node (k, v, s_create (), s_create ())) else
case true of

k < i's_node (key) : { i's_node (left) := s_enter (k, v, i's_node (left)) ; i }
k > i's_node (key) : { i's_node (right) := s_enter (k, v, i's_node (right)) ; i }

default : { i's_node (value) := v ; i }

let s_lookup = proc (k : int ; fail_value : string ; i : s_index -> string)
!lookup the value in the binary tree

begin
let head := i
while head is s_node and k ≠ head's_node (key) do
head := if k < head's_node (key) then head's_node (left)

 else head's_node (right)
if head is s_node then head's_node (value) else fail_value

end

Figure 1 An integer to string index

For convenience we will package the two procedures, enter and lookup, into a structure
together with an index that they can operate on. The type of this package is

type s_index_pack is structure (
Ind : s_index,
Enter : proc (int, string, s_index -> s_index),
Lookup : proc (int, s_index -> string))

We can now write a procedure to generate different instances of this package. That is the same
procedures, s_enter and s_lookup, but with different indexes. This generating procedure can
be written as

let s_index_pack_generator = proc (-> s_index_pack)
s_index_pack (s_create (), s_enter, s_lookup)
!s_create is called to provide the initial value

The generator may now be used to create specific instances of the index. For example

let X = s_index_pack_generator ()

Thus X is a structure with three fields. One is of type s_index and the other two are
procedures. We can use this structure by, for example

X (Ind) := X (Enter)(5, "ron", X (Ind))

This uses the enter procedure in X to associate the value "ron" with the key 5 and to overwrite
the old index with the new value. We will see later that this generator procedure may be stored
away for subsequent reuse in the persistent store.

The first improvement, in the context of software reuse, over this solution is to generalise the
type of the stored value. That is, instead of just being an index of strings we wish to have a

pack that will give us an integer index to any type. We will begin, in Figure 2, by making the
procedures polymorphic.

rec type index [t] is variant (node : Node [t] ; tip : null)
& Node [s] is structure (key : int ; value : s ; left, right : index [s])

let create = proc [t] (-> index [t]) ; index [t] (tip : nil)
!Return the empty index by injecting the nil value into the variant

rec let enter = proc [t] (k : int ; v : t ; i : index [t] -> index [t])
!Enter the value into the binary tree indexed by key
if i is tip then index [t] (node : Node [t] (k, v, create [t] (), create [t] ())) else
case true of

k < i'node (key) : { i'node (left) := enter [t] (k, v, i'node (left)) ; i }
k > i'node (key) : { i'node (right) := enter [t] (k, v, i'node (right)) ; i }

default : { i'node (value) := v ; i }

let lookup = proc [t] (k : int ; fail_value : t ; i : index [t] -> t)
!lookup the value in the binary tree

begin
let head := i
while head is node and k ≠ head'node (key) do
head := if k < head'node (key) then head'node (left)

else head'node (right)
if head is node then head'node (value) else fail_value

end

Figure 2 An integer to any type index

Thus each of the procedures will now act on binary trees of any type. We will again write a
generator procedure to produce indexes of a specific type. The type of the new pack is a
parameterised type.

type index_pack [t] is structure (
Ind : index [t],
Enter : proc (int, t, index [t] -> index [t]),
Lookup : proc (int, index [t] -> t))

The generating procedure can be written as

let index_pack_generator = proc [t] (-> index_pack [t])
index_pack [t] (create [t] (), enter [t], lookup [t])

The generator may now be used to create specific instances of the index. For example

let X = index_pack_generator [string] ()
X (Ind) := X (Enter)(5, "ron", X (Ind))

Another index of integers to pictures could be generated by

let Y = index_pack_generator [pic] ()

Thus, this polymorphic generating procedure may be used to generate many instances of the
index which can vary by type. Again this procedure may be stored for later reuse in the

persistent store but before we describe how that is done we will turn our attention to abstract
data types.

2.2 Abstract Data Types
There is a second type of abstraction that we require over our indexes. We may, for example,
wish to change the representation of the index and then construct programs that will work for
indexes of all representations. To do this consistently we must be able to hide the
representation of the index. At present this cannot be done since we use structural equivalence
and may discover a type by merely writing it down. We now require the power of abstract data
types.

We return to our index of strings. An abstract data type for such an object can be defined in
Napier by

type abs_s_index is abstype [S_index] (
Ind : S_index ;
Enter : proc (int, string, S_index -> S_index) ;
Lookup : proc (int, string, S_index -> string))

All we know about an object of this type is that it is a structure with fields Ind, Enter and
Lookup corresponding to the above description for the same type S_index. Outside the abstract
data we cannot see the representation of the index and thus we have abstracted over the witness
type S_index. This type of object is an existentially quantified type[14],

∃ S_index.abs (Ind : S_index
Enter : proc (int, string, S_index -> S_index)
Lookup : proc (int, S_index -> string))

That is, we know that such a type S_index exists but nothing more. Once we have created an
object of type abs_s_index we can no longer tell anything about the representation used for
S_index. We can create such an object by

let abs_S_index = abs_s_index [s_index] (s_create (), s_enter, s_lookup)

Here we have used the procedures s_create, s_ enter and s_lookup with the type s_index
defined earlier in Figure 1. Once we have created this object we can no longer tell that it uses a
binary tree to represent the index since it is exactly this information that is abstract in the object.
We may have many index objects all with different representations but all with the same
abstract type. We can write further procedures to work on this abstract type. For example

let abs_s_enter = proc (k : int ; s : string ; i : abs_s_index -> abs_s_index)
begin

use i as X in
begin

X (Ind) := X (Enter) (k, s, X (Ind))
end
i

end

The use clause is a scoping and renaming device. The abstract data type is renamed as X in the
clause following the in. By giving the object a constant name, X, we can ensure statically that
the interface procedures will only be applied to the object of the correct representation. Indeed
it is even stronger than this since objects named by fields can only operate on other fields of the
same X as they are the only ones that we know are of the same representation, whatever it
might be. The procedure, abs_s_enter will work with string indexes no matter how they are

implemented, as long as they are of this abstract type, and it is trivial to write one for lookup.
For example

let abs_s_lookup = proc (k : int ; s : string; i : abs_s_index -> string)
begin

let s1 := ""
use i as X in s1 := X (Lookup)(k, s, X (Ind))
s1

end

The generating procedure for this abstract data type could be

let abs_s_index_generator = proc(-> abs_s_index)
abs_s_index [s_index] (s_create (), s_enter, s_lookup)

The important point about the procedures abs_s_enter and abs_s_lookup is that they will
operate on objects of this abstract types irrespective of their implementation. Thus, if we had
two procedures that operated on B-trees we could package them with an appropriate location
and the object would be applicable to the procedures abs_s_enter and abs_s_lookup. For
example

type B_tree is variant (...)
let B_enter = proc (k : int ; s : string; i : B_tree -> B_tree) ; ...
let B_lookup = proc (k : int ; i : B_tree -> string) ; ...
let abs_B_tree_index = abs_s_index [B_tree] (B_tree (tip : nil), B_enter, B_lookup)

abs_B_tree_index is of the same abstract type as abs_S_index (i.e. abs_s_index) and may be
used as a parameter to abs_s_enter and abs_s_lookup.

We will now combine universal and existential quantification to provide both the abstractions
that we require over indexes. The type of a generalised index may be written

type abs.index [t] is abstype [Index] (
Ind : Index ;
Enter : proc (int, t, Index -> Index) ;
Lookup : proc (int, t, Index -> t))

and we can create such an object by a generator procedure. For example

let general_index = proc [t] (-> abs_index [t])
abs_index [t] [index] (create [t](), enter[t], lookup [t])

Here we have used the polymorphic procedures create, enter and lookup and the type index
from Figure 2. general_index is different from index_pack, which we created earlier in that the
procedures, although still quantified by the same type, now make up an abstract data type.

The type of general_index is

∀ t.proc (-> ∃ Index.abs (Ind : Index
Enter : proc (int, t, Index -> Index)
Lookup : proc (int, Index -> t)))

We can specialise the general index for a particular use. For example

let Y = general_index [string] ()
use Y as X in
begin

X (Ind) := X (Enter) (5, "ron", X (Ind))
write (X (Lookup) (5, X (Ind)))

end

We can, of course, store polymorphic procedures that produce abstract data types and if
necessary general procedures to operate on them as before.

The difference in application between universal and existential quantification is that in universal
quantification we can write one abstract polymorphic form from which we can generate special
cases whereas with existential quantification we describe existing objects by a more general
type and thus allow more general abstraction over that type.

Given that we can now program with these objects we will now show how they can be kept in
the persistent store.

3 . Persistence

We have defined the persistence of data to be the length of time for which data exists and is
usable. Thus it is an abstraction over one of the physical properties of data, that of the length of
time for which we keep it. Elsewhere[1,3,16] we have described the advantages of not having
to explicitly program for the differences in the use of long and short term data and we will not
labour them here. It is sufficient to say that by ensuring the persistence abstraction we obtain
significant gains in the software engineering of large systems. The figure often quoted is 30%
of the total cost of a system throughout its life cycle[1].

In Napier all data is persistent. That is, data is kept for as long as it is usable. This we can
determine from the fact that it is reachable by the computation of the transitive closure of
objects from the persistence root, called PS. When a program terminates all its data objects
may be destroyed except those that the program has arranged to be reachable from PS. It
should be noted that in general the persistent store will be a graph and may be distributed over
many machines.

The distinguished point in the object graph, PS, has the data type env in Napier. Objects of
type env are collections of bindings, that is, typed, name - value pairs. They differ from
structures in that objects of type env belong to the infinite union of all such cross products.
Furthermore we can add bindings to, or delete bindings from, objects of type env.

We will now write program segments to place the data object general_index into the persistent
store and another to retrieve it for reuse.

let e = environment () !create a new empty environment
in e let general_index = proc [t] (-> abs_index [t])

abs_index [t] [index] (create [t](), enter [t], lookup [t])
!Add the general_index to the environment e

in PS let index_env = e
!This new one is the binding index_env : env

Figure 3 Binding to an environment

We now have an arrangement where general_index is contained in the environment index_env
which is itself contained in the environment PS. If the program executing this now terminated
then general_index would be automatically part of the persistent store, since it is reachable
from PS, and therefore retained.

To retrieve general_index for reuse we could write

type abs_index [t] is abstype [Index](
Ind : Index
Enter : proc (int, t, Index -> Index)
Lookup : proc (int, Index -> t))

use PS as index_env : env in
use index_env as general_index : proc[t] (-> abs_index [t]) in
begin

let Y = general_index [string] ()
use Y as X in

begin
X (Ind) := X (Enter) (5, "ron", X (Ind))
write (X (Lookup) (5, X (Ind)))

end
end

Figure 4 Reusing objects in an environment

In this example, there are two distinct uses of the use clause. We have seen the one to bind
abstract data types to constant names before. The second method binds an environment and
some of its field names to the clause following in. For example

use PS as index_env : env in ...

allows us to use the name index_env with type env in the clause following in. The binding
which occurs at run time, and is therefore dynamic, is similar to projecting out of a union. The
difference here is that we only require a partial match on the fields. Other fields not mentioned
in the use are invisible in the qualified clause and may not be used.

This method of dynamic composition or binding to environments allows us to compose
systems while still retaining static type checking. It should be noticed that one of the
advantages of structural equivalence of type is that two types in different programs may be the
same and therefore we can determine type equivalence across program boundaries.

The environment mechanism in Napier also provides a contextual naming scheme. The main
mechanism for controlling the naming of objects is scope. This can be a very powerful device
especially in languages with higher order procedures[3]. The use clause introduces names into
a context in the same manner as declarations in blocks. Blocks, however, are nested statically
whereas the environments can be composed at run time and therefore nested dynamically. This
gives a method of binding commonly found in operating systems and suggests that it is best
used in that type of activity. That is, when we want to compose objects out of already existing
components.

We have chosen this mixture of static and dynamic checking schemes to preserve the inherent
simplicity, safety and efficiency of static checking without insisting that the whole system be
statically bound. The cost of total static binding in an object system is that alteration to any part
of the schema involves total recompilation of the whole system. This is usually an
unacceptably high cost in most systems.

The cost of total dynamic checking is that it is harder to reason about programs statically, it is
less safe in that errors occur later in the life cycle and perhaps at dangerous moments and that it
is less efficient in terms of cost since errors appear later and also in machine efficiency since
we cannot factor out static information.

A judicious mixture of static and dynamic checking is therefore necessary to avoid either of the
above extremes, and we propose the above where dynamic checking is only required on
projection from a union.

Other approaches to solving the problems of software reuse in a manner similar to the above
can be found in SMALLTALK [9], which used inheritence polymorphism and dynamic type
checking; Pebble [6] with dependent types in the value space; and the Abstract Data Store [18]

with persistence and dynamic type checking. All three approaches utilise more dynamic
binding than Napier.

4. Conclusions
We have described, by example, how a powerful polymorphic type system may be used in the
context of software reuse. A type system, for the language Napier, is described with emphasis
on universal and existential types and the type env. Universally quantified types allow objects
to be abstracted over by type. This is similar to and has the same advantages as generics in
Ada. The difference is that Ada requires a compiler and a library system to control the use of
generics. There are no objects of type generic at run time in Ada.

Since the persistent store in Napier subsumes the need for a library, and indeed most of the
functions of an APSE, we can rely on one mechanism, the type checker, to ensure the correct
use of generics.

The type system of Napier also allows for abstract data types. Ada again has a similar notion in
packages with limited private types. The main difference here is that since packages are not part
of the Ada type system, we cannot parameterise one package by another. This is a simple
matter in Napier. Furthermore neither generics nor packages may be part of a program data
structure.

The search for a richer and more powerful type system is not sufficient to justify the end. In a
persistent system the advantage of such a type structure is that we can use one mechanism,
instead of a plethora, for checking the legal composition of objects. Thus the system is simpler
to use with all the attendant benefits for software costs.

We have included in the type system of Napier the infinite union of typed, name-value
bindings. This yields two advantages. The first is that since it is a union, projection out of the
union can only be performed at run time, thus yielding a dynamic binding. The second
advantage is gained by combining this dynamic check with names to yield a dynamic name
composition technique.

Our skill in component reuse will be in deciding which components are complete and may be
statically frozen and which components are better dynamically composed.

5. Acknowledgements
We acknowledge the many discussions with our collaborators on the PISA project. In
particular, John Scott of STC and Mike Livesey for their many insights into type systems. The
work is supported by SERC grants GR/D 4326.6 and GR/D and a grant from STC.

6. References
1. Atkinson,M.P., Bailey,P.J., Chisholm,K.J., Cockshott,W.P. & Morrison,R. "An

approach to persistent programming". Computer Journal 26,4 (November 1983),360-
365.

2. Atkinson, M.P. & Morrison, R. "Types, bindings and parameters in a persistent
environment". Proc of the Appin Workshop on Data Types and Persistence, Universities
of Glasgow and St Andrews, PPRR-16, (August 1985),1-25

3. Atkinson, M.P. & Morrison, R. "Procedures as persistent data objects". ACM.TOPLAS
7,4 (October 1985),539-559.

4. Atkinson, M.P., Morrison, R & Pratten, G.. "Designing a persistent information space
architecture". 10th IFIP World Congress, Dublin (September 1986),115-120. North-
Holland, Amsterdam.

5. Boehm, B.W. "Understanding and controlling software costs". 10th IFIP World
Congress, Dublin (September 1986), 703-714. North-Holland, Amsterdam.

6. Burstal, R. & Lampson, B. "A kernal language for abstract data types and modules".
Proc. international symposium on the semantics of data types, Sophia-Antipolis, France
(1984). In Lecture Notes in Computer Science. 173 Springer-Verlag (1984).

7. Cardelli, L. & Wegner, P. "On understanding types, data abstraction and
polymorphism". ACM.Computing Surveys 17, 4 (December 1985), 471-523.

8. Demers, A. & Donahue, J. "Revised report on Russell". Technical report TR79-389,
(1979), Cornell University.

9. Goldberg, A. & Robson, D. SMALLTALK-80 The language and its
implementation. Addison-Wesley, London. (1983).

10. Ichbiah et al., The Programming Language Ada Reference Manual. ANSI/MIL-STD-
1815A-1983. (1983).

11. Matthews, D.C.J. Poly manual. Technical Report 65 (1985), University of Cambridge,
U.K.

12. Milner, R. "A theory of type polymorphism in programming". JACM 26(4), 792-818.

13. Milner, R. "A proposal for standard ML". Technical Report CSR-157-83. University of
Edinburgh.

14. Mitchell, J.C. & Plotkin, G.D "Abstract types have existential type". Proc POPL 1985.

15. Morrison, R., Bailey, P.J., Brown, A.L., Dearle, A. & Atkinson, M.P. "A persistent
store as an enabling technology for an integrated project support environment. IEEE 8th
International Conference on Software Engineering, London (August 1985),166-172.

16. Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P. "An integrated graphics
programming environment". 4th UK Eurographics Conference, Glasgow (March 1986).
In Computer Graphics Forum 5, 2 (June 1986),147-157.

17. Morrison, R., Brown, A.L.,Carrick, R. Conner, R.C. & Dearle, A Napier language
reference manual. in preparation

18. Powell, M.S. "Adding programming facilities to an abstract data store". Proc of the
Appin Workshop on Data Types and Persistence, Universities of Glasgow and St
Andrews, PPRR-16, (August 1985),139-160.

	Citation
	Title
	Abstract
	1 Introduction
	2. Types
	2 . 1 Polymorphism
	2.2 Abstract Data Types

	3 . Persistence
	4. Conclusions
	5. Acknowledgements
	6. References

