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Abstract

The problems of shared access to large bodies of information raise difficulties

in the understanding and semantics of concurrency, distribution and stability. When

the information is held in a persistent object store, these difficulties of understanding

are extended to the interaction of the concepts of persistence and store with those

above. Some of the difficulty is in deciding at what level the architecture or language

operates, be it hardware or software. Other difficulties arise in the complexity of the

problems of concurrency.

In this paper we identify these difficulties and clarify them with regard to

database programming language design. We propose a model of concurrency that

may be used as a solution to the problems. It is based on the rendezvous of Ada and

integrated with a polymorphic type system with inheritance. This yields a process-

oriented approach to system construction that has much in common with the object-

oriented approach. We will demonstrate the facilities of the language Napier which

allows the integration of these two methodologies along with a persistent

environment to provide concurrently accessed object-oriented databases.
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1. Introduction

In our attempts to design and build a persistent information space architecture

(PISA) [1] we have identified a number of interacting and sometimes conflicting

problems with regard to persistence, stores, concurrency, distribution, transactions

and stability. Some of the difficulty is in deciding at what level the persistent

architecture operates, be it a hardware or software architecture. Other difficulties

arise in the complexity of the problems of concurrency. Our goal is to identify these

difficulties, clarify them and to design a programming language based on our new

understanding. Here we report on our work in designing such a language, often called

a database programming language. In particular we identify the issues of locality and

acces through context, process creation and the independence of process from

procedures and demonstrate how a polymorphic type system with inheritance may be

used along with a process type to integrate the notions of object-oriented and

processes-oriented programming. In a persistent environment this allows the

programming of object-oriented databases.

2. A Persistent Information Space Architecture

2.1 Persistence

The persistence of data has been defined to be the length of time for which the

data exists and is useable[2]. In a persistent system the use of all data is independent

of its persistence. Here we extend this notion of persistence to abstract over all the

physical attributes of data, for example where data is kept, how long it is kept and in

what form it is kept. The advantage of persistence is that it eliminates the artifical

differences between programming language models of data and environment models

of data. A persistent system will automatically control the movement of data to where

it is required and the programmer is therefore freed from the burden of organising

this movement. This results is a significant saving in the amount of code to be written

and maintained in an application. It also has intellectual benefits in that the



3
programmer is presented with one mapping of the data from the real world to the data

model instead of the three mappings amongst the real world, the program model and

the environment model. The final advantage of persistent systems is that they can

present a uniform protection mechanism, such as a type system, so often lacking

between programming languages and their environment. The advantages of

persistence are discussed at greater length elsewhere [3,15,16] and will not labour

them further here. It is sufficient to say that by ensuring that all data objects are

persistent and that the persistence of data is invisible to the programmer, then this

level of abstraction yields powerful software engineering gains in the life of large

systems[2].

At this level of abstraction all physical properties of the data are invisible to the

user since persistence is a concept that abstracts over them. It is important to

distinguish between the conceptual and physical problems of building and using

persistent spaces in order to identify the areas on which we need to concentrate to

achieve true persistence. In the following discussion we will pursue this theme,

separating the conceptual or logical properties of the persistent information space

from the physical ones. This is not always an easy task especially with regard to

concurrency.

We wish to build a total system capable of providing for all programming

activity. Our traditional view of the persistent information space is that it will

subsume the functions of a plethora of mechanisms currently supported by

components such as command languages, editors, file systems, compilers and

interpreters, linkage editors and binders, debuggers, DBMS sublanguages and

graphics libraries[1]. The information space is composed of objects, which may be

simple or highly structured, defined by the universe of discourse of the type system

of the PISA architecture. The major conceptual requirement is that the information

space must be unbounded. That is, the user has the facility to create persistent objects

forever. Most modern programming languages, database systems and operating
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systems provide this facility and if we are to unify these mechanisms then the

persistent space must also provide it.

Our previous work[2] has shown that one of the main difficulties in using an

unbounded space is in remembering an unbounded number of names. Traditional

solutions to this problem have included block structure in programming languages,

hierarchal file directories in operating systems and data dictionaries in database

systems. None of these solutions is totally satisfactory and often other mechanisms,

such as those for module construction to augment block structure in programming

languages, have arisen. Mechanisms for controlling and using this unbounded name

space must be made available to the user.

We define context to be the manner in which the persistent information space

controls the unbounded number of names but will defer discussion of how context

may be defined in the architecture language until later. The important point is that the

unbounded name space and the ability to impose context are identified as conceptual

requirements of the persistent information space.

2.2 Stores

In all our work so far the persistent information space has been built in the

form of a store[5,7] for which we have identified the following desirable properties:

a an unbounded capacity to store objects

b infinite speed

c stability

There are, of course, a number of problems in building and using a persistent

store with the properties above. The conceptual problems of persistent stores arise out

of how the store is used and the physical problems arise from the engineering

difficulties in building the store. We will look at each of the requirements on the

persistent store given above to identify these conceptual and physical problems.
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2.2.1 Unbounded capacity to store objects

The need for unbounded capacity comes from the unbounded nature of the

modelling performed by the programmer in the persistent store. The conceptual

problems of using an unbounded store are the same as for an unbounded persistent

space. That is, we must contend with an unbounded number of storage identifiers.

Of course, we cannot build a store with an infinite capacity. Any attempt to

give the illusion of such a store will be built out of components, which may be of

disparate technologies, and may include software technologies such as stacks and

garbage collectors to reclaim unused space. This is, however, an engineering

constraint and therefore a physical view of the store although it does introduce the

notions of locality and distribution which may not be visible at the persistent space

level.

A data object can be resident in a local store or in a distributed store. Two data

objects reside in the same locality if they live in the same physical store and are

distributed from one another otherwise. By combining locality and distribution we

can compose very large stores. Note, however, that locality and context are not

necessarily equivalent since a context can easily spread over a number of localities or

indeed a locality can contain many whole or partial contexts. Only when an object in

the contextual name space is mapped onto a locality in the physical store do context

and locality coincide. Context is a property of the conceptual persistent space

whereas locality and distribution are properties of the physical store.

In object-oriented programming languages, context and locality are often

identical. Indeed it is this simplification of the universe that gives such systems much

of their appeal.

2.2.2 Infinite speed

An advantage of an infinitely fast store is that it can be operated sequentially

since there is no speed advantage in operating it concurrently. The programmer need
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never take account of where information is stored and multiple copies of objects, for

speed trade offs, are unnecessary since there is no speed advantage to moving the

object closer to its point of use. Therefore the object may always reside in the one

place. It follows that the notion of locality and distribution are unnecessary with

infinitely fast stores. We note, however, that infinite speed does not solve any of our

conceptual problems, only technological ones and still leaves difficulties in

implementing such concepts as atomic transactions.

Again we cannot build this infinitely fast store. The only way we know of

approaching this is to duplicate components and make them operate concurrently.

This again gives rise to locality and distribution but also adds a new dimension at the

physical level - that of concurrency. This form of concurrency, for speed advantage,

is an engineering decision and not fundamental to the operation of the persistent

store. That is, this kind of concurrency is introduced to speed up the store and not to

solve conceptual problems.

We will argue later that there is a second need for concurrency which does

effect the conceptual persistent information space.

2.2.3 Stability

All users of the persistent store would wish it to be stable. That is, in the event

of a system failure no data will be lost. The mechanism ensures that data is always

kept (or copied) on non volatile storage devices. This, of course, is only an illusion

since no system can guarantee that even the non volatile devices are free from

corruption by malice or error. Usually, however, an adequate level of reliability can

be provided for any system.

Stability is a property of the physical store medium and is therefore a physical

property of the information space and hidden from the user. In some systems stability

and transactions are synonymous leading to some confusion of how the concept of

stability arose. We will see in the next section how to separate the two concepts.
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From the above discussion we contend that the main conceptual problem that

we have in using the persistent information space is that of context. That is, how is

the unbounded name space partitioned in order that we can master the complexity of

a potentially unbounded number of names? The physical problems centre around how

to build an infinite stable store. The issues of locality and distribution, that is where

an object lives, allow us to simulate unbounded capacity out of smaller components.

At this level, concurrency allows us to simulate higher speed out of slower

components and stability can be simulated by a number of techniques such as

incremental and total dumping.

2.3 Concurrency

We have argued above that a major motivation for concurrent activity is

execution speed. The need for concurrency increases as machines approach their

theoretical speed limit at the same time as the complexity of the applications becomes

great enough to require even greater power.

There is, however, a second major need for concurrency. Many of the activities

that we wish to model are inherently parallel. One of the major breakthroughs in the

design and understanding of operating systems was gained by modelling the system

as a set of co-operating sequential processes[8]. Since most of the early operating

systems modelled in this manner ran on uni-processor machines this modelling was

not done to simulate infinite speed. It was done to simplify the complexity of the

system being built in order to gain greater insight into its operation. This method of

modelling, first applied to operating systems, has now been applied to database

systems, graphics systems and general problems in computer science[11]. It yields a

new style of program construction and understanding and therefore can no longer be

regarded as a physical property of the store.

 In the process-oriented methodology the system is decomposed into activities

that operate in parallel. Each activity is self contained, communicating with other

activities via messages which are synchronised by some protocol. This style of
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programming is very similar to the object-oriented style except that it does not

usually make use of inheritance mechanisms. For this reason we say that it is more

akin to a data abstraction methodology than an object-oriented one.

In order to accommodate this wish to model using concurrency, a host of

languages have been invented or proposed that include the notion as part of their

universe of discourse. Thus concurrency in the persistent information space sense is

not a conceptual requirement of the space but of the manner in which we wish to

model. This is equivalent to deciding that we wish to use other data objects such as

arrays or functions to model with. However, since we wish to unify the activity of

operating systems and database systems with our information space it would be wise

to have concurrency as a conceptual requirement of the language or languages

supporting the persistent space.

We therefore make concurrency a conceptual requirement of the PISA

architecture rather than the information space itself which we traditionally view as

figure 1.

Persistent Information Space

Concurrency &  Transactions

Figure 1 A Persistent Information Space Architecture

Distributed Stable Store
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The persistent space is composed of objects defined by the universe of

discourse of the PISA language. For the present the only requirement that we have of

that language is that it must support concurrent computation, an unbounded name

space and a context mechanism. At this level the programmer has no notion of where

the data resides, be it locally, on disk or on a remote processor, how long the data

may be kept or in what form it may be stored. An important consequence of this is

that true persistence does not allow distribution to be seen at the conceptual level.

At a lower level the information space is supported by a stable store. This store

may be distributed over many storage devices and machines and is likely to be built

out of many disparate technologies both software and hardware. Thus locality and

distribution are appropriate concepts here.

We subscribe to the view that it is premature to build mechanisms for atomic

transactions into the low level stable store [1,9,10,14]. The stable store provides a

very primitive form of transaction that allows the system to recover from unexpected

errors, be they hardware or software. Thus it provides primitive (one level) recovery

but not atomicity or general (multi process) reversability. There is little agreement on

an appropriate generalised transaction mechanism and for the present we deem it

safer to build sophisticated mechanisms for atomic transactions, at a higher level of

abstraction, using the concurrency and stability primitives.

Users of the persistent information space access data via concurrency and

transaction protocols. This is done by encapsulating the data in concurrency and/or

transaction abstractions. The focus of this paper is to look at how concurrency may

be integrated with the persistent information space. In particular what primitives are

sufficient to support concurrency in persistent languages and how are they integrated

with a polymorphic type system and a persistent store to build the abstraction

mechanisms described above?

3. Concurrency Models
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In designing a concurrent language for use in programming the persistent store

we have two conceptual problems. The first is how to impose context on the

unbounded name space. The second is how to specify concurrent activity, that is

separate threads of control.

There are many different styles of concurrency in modern programming

languages. The applicative languages such as SASL[18] have implicit concurrency

due to the fact that they are referentially transparent. This style of concurrency is

transparent to the user and will merely add speed to the execution of the programs. It

is difficult to see how the applicative languages can make full use of a persistent store

since the store would have to remain static to ensure referential transparency.

Store semantics languages have themselves split into two paradigms. The first

is a shared store semantics where the whole store is available for use by all

customers. The use must be synchronised to avoid indeterminate results. The shared

store model roughly characterises a multiprocessor system where many processors

share the same store.

The second paradigm is that of message passing where independent tasks have

their own store and communicate with other tasks by sending messages to them. The

message passing paradigm roughly models a distributed system where separate

processors, perhaps with their own local store, communicate over a communications

channel.

It is generally accepted that where large amounts of communication are

required then the shared store model is more efficient in speed since local store is

usually faster than a communications channel. However, where large amounts of

computation are performed between communications then the message passing

model may be appropriate.

Our dilemma should now be apparent. For persistence we wish to have an

unbounded name space upon which we can impose some context mechanism. Thus

the shared store model would seem more appropriate. On the other hand we know

that this unbounded information space will be constructed out of components and it
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would seem sensible to build this in from the beginning to allow for expansion. For

this the message passing model is more appropriate.

The answer is to have a model that will allow the programmer the freedom to

choose.

3.1 Napier Model

We have proposed and built the language Napier [17] in which the persistent

store may be regarded as an unbounded collection of objects, each one sharable

among the active processes in the system. We will use this language to demonstrate

the concepts necessary to allow polymorphic, persistent processes.

In Napier, all data is persistent. That is, data is kept for as long as it is useable.

This can be determined from the fact that it is reachable by the computation of the

transitive closure of objects from the persistence root, called PS. When a process

terminates all its data objects may be destroyed except those that the process has

arranged to be reachable from PS. It should be noted that the persistent store may, in

general, be a graph since it is a generalised data structure and it may be distributed

over many machines. Given such a model of the information space we must define

mechanisms for context and concurrency.

3.1.1 Context

Context is controlled by two methods in Napier, one static and one dynamic.

The block structure of the language allows objects to be hidden to the outside world.

Thus within the context of the block the name has a unique interpretation. Block

structure forms a tree of contexts which may be used to segment the unbounded

information space. The persistent space, however, is a graph and not necessarily a

tree and that would suggest that block structure is not powerful enough to model all

the required contexts.

In most programming languages it is recognised that block structure is not

sufficient for all our modelling needs. In languages with higher order functions, such



12
as Napier, we can overcome this deficiency by another method. For example, we

could write a block that returned a procedure which held within its closure a hidden

object. A counter is a good example of this.

let successor = begin
let next := 0
proc ( -> int)
begin

next := next + 1
next

end
end

The block expression, when executed, returns a procedure which contains the

variable 'next' in its closure. This procedure is declared with the name 'successor'.

'next' is initialised in the block expression. On exit from the block the object 'next'

cannot be destroyed as it will be required if the procedure 'successor' is called. Each

call of 'successor' yields the next integer in the sequence. The procedure does this by

remembering, in its closure, the last value it returned, in 'next', and calculating the

new value from it. Languages with such semantics are called block retention

languages and any block structured language with higher order functions falls into

this category. By adding some concurrency control to the system we could ensure

mutual exclusion on the access to 'next' and extend the block to a monitor[12].

However, although powerful, the combination would be difficult to use without more

syntactic support.

Although the above method allows users to dynamically create and manipulate

contexts, the technique is essentially static since the scope of the objects must be

defined by the programmer and may never be changed. A second method of context

control is provided in Napier. The technique is similar to block structure except that

we are allowed to dynamically nest the blocks. To do this the data type environment

is used.

Objects of type environment are collections of bindings, that is name-value

pairs. The distinguished point of the persistence graph, PS is of type env. Objects of
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type env belong to the infinite union of all labelled cross products of typed name-

value pairs.Environments are designed to perform two roles. The first is to act as a

context mechanism in the form of a collection of bindings, like a block. All

environments have the same union type and are assignment compatible. On dynamic

projection the particular environment is determined to have a specific type. This

allows the mesting of environments to be constructed dynamically.

The second major use for environments is as an extensibility mechanism to

control change in the system. Bindings may be added and subtracted dynamically to

allow this. Environments are best demonstrated by example. We will create an

environment that contains a counter and two procedures, one to increment the counter

and one to decrement it. This may be done by

let e = environment ()
in e let count := 0
!we have now placed the binding count : int = 0 in the environment e
use e with count : int in
begin

in e let add = proc (n : int -> int) ; {count := count + n ; count}
in e let subtract = proc (n : int -> int) ; {count := count - n ; count}

end
!the environment now has three bindings, count, add and subtract

The use clause binds an environment and its field names to the clause

following the in. In the above the name 'count' is available in the block as if it had

been declared in the immediate enclosing block. The binding occurs at run time since

in general the environment value, 'e', may be any expression evaluating to an

environment. The binding is therefore dynamic and is similar to projection out of a

union. The difference is that here we only require a partial match on the fields and

other fields not mentioned in the use clause are invisible in the qualified clause and

may not be used.

The environment mechanism provides a contextual naming scheme that can be

composed dynamically. The use clauses can be nested and the environments involved

calculated dynamically and therefore the name bindings can be constructed

dynamically. This does not yield full dynamic scoping in the Lisp sense since all the
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objects in the individual environments are statically bound. The technique

complements the block structure in the language and completes the context

mechanisms required for persistent information spaces.

For information to outlive the process it must be reachable from the

distinguished root, PS. In the above case we could do this by adding e to PS by

in PS let ee = e

!add the binding ee : env = e to the environment PS

and to retrieve it again we could use

use PS with ee : env in ...

Having defined a mechanism for the conceptual problem of context we must

now define one for concurrency.

3.1.2 Concurrency

The model of concurrency in Napier is based on CSP [11] and Ada [13]. The

choice of this model reflects our own preferences in concurrency. The system should

be regarded as an exampler of how to integrate persistence and concurrency and not

to determine the sole model of concurrency.

Process is a type in the language. The type defines the process interface that the

process presents to the world. The interface consists of a set of procedures (names)

called entries. External to the process the entries act like first-class procedures. Inside

the process the entries do not act like procedures but are used to establish rendezvous

with calling processes. The syntax of process type is

<process_type> :: = process ([< entry_list>])

<entry_list> :: = <identifier_list> : < proc_type> [;<entry_list>]
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For example, the counter given earlier may be extended to a safely updated

counter by specifying the type

type shared_counter is process (add, subtract : proc (int ->int) )

and creating an instance of the type. Outside the process, entries act like first class

procedures and may be called. For example, if an object of type 'shared_counter' with

the name 'this_counter' existed we could communicate with it by

this_counter (add) (3)

which would add 3 to the value and yield the new total. Thus the entries are typed as

procedures outside the process to which they belong. The parameter list is evaluated

in the calling process, before the rendezvous takes place, which is suspended until the

rendezvous is complete.

Within a process the entry name is used to establish a rendezvous. The receive

clause uses the entry name, its formal parameter list and a clause to be executed

during the rendezvous. The syntax is

<entry_clause> ::= receive <identifier> ([<parameter_list>]) do <clause>

For example

receive add (n : int -> int) do
begin

count := count + n
count

end

When a rendezvous is established the body of the particular entry is executed.

During this time the caller is suspended. If, however, a receive clause is executed
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before it has been called then the callee is suspended until the entry is called. Each

receive clause defines a body for the entry. Thus each entry name may have many

bodies in a process.

Processes are created and activated by associating a process body (a void

clause) with a process name. The syntax is

<clause> :: =  <identifier> with <clause>

For example

let this_counter = shared_counter with
while true do
begin

receive add (n : int -> int) do
begin

count := count + n
count

end
receive subtract (n : int -> int) do
begin

count := count - n
count

end
end

The process once created starts to execute immediately and in parallel with the

main body which created it. A name may be given to the process by declaring it, as

above.

In the example, the process 'this_counter' will loop servicing requests for adding and

subtracting in strict order.

To implement the rendezvous there is a separate queue of waiting processes for

every entry. These queues are serviced on a first-come first-served basis. Non-

determinism in the system is provided by a select clause. The syntax is

<select_clause>::=select

<guarded_command>{;<guarded_command>}*selected

<guarded_command> ::= [<guard>] : <guard_clause>

<guard_clause>     ::= <entry_clause> | <clause>
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<guard>      ::= <boolean_clause>

For example

select

occupancy < 4 : receive enter () do occupancy := occupancy + 1

     : receive exit () do occupancy := occupancy - 1 selected

A guarded command is open if it does not contain a guard or the boolean

expression is true. Otherwise it is closed. To execute the select clause all the guards

are evaluated in order. This determines the open guarded commands. One of these is

chosen for execution non-derministically, subject to the constraint that if the guard

clause is an entry clause it will only be chosen if the entry can be received

immediately. If none of the guarded commands can be immediately executed the

process waits until one can be.

A process becomes completed when it finishes the execution of its body. If an

entry call is made to a completed process an exception is raised in the calling process.

The same is true if the called task terminates while the caller is on an entry queue. If

an exception is raised during a rendezvous it is propagated in both processes. Finally

if the caller completes before the callee completes, the callee will complete its part of

the rendezvous.

Two processes are equal only if they are the same process. They have the same

type if they have the same entries.

We can now use a shared object example to see how it may be programmed in

Napier.

type shared_int_object is process (write : proc (int), read : proc ( -> int) )

let int_object = shared_int_object with
begin

let i := 0
while true do

select
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: receive write (val : int) do i := val
: receive read ( -> int) do i

selected
end !create a new process running in parallel

Thus 'int_object' is a handle on a process of type 'shared_int_object' which is

executing in parallel with the rest of the system. The process will loop forever

receiving requests to 'write' and 'read' in any order. The process itself will ensure

mutual exclusion of multiple calls.

For convenience we can rename the entry procedures outside the process. For

example

let Write = int_object (write) ; let Read = int_object (read)

and we can pass the procedures 'Write' and 'Read' to other components of the system.

We may wish to establish a rendezvous by calling the procedure. For example

Write (2)

Processes are also first class data objects and may be generated as the result of

a procedure. For example

let int_object_generator = proc ( init : int -> shared_int_object)
shared_int_object with
begin

let i := init
while true do

select
: receive write (val : int) do i := val
: receive read ( -> int) do i

selected
end

let this_object = int_object_generator (2)
let that_object = int_object_generator (-42)
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creates two processes running in parallel with the main stream. These two processes

both have the same type 'shared_counter' and may be used where objects of this type

are required.

In the following example we demonstrate that by integrating the process

concept with the polymorphic type system, we can define polymorphic process

generators.

type shared_object [t] is process (write : proc (t), read : proc ( -> t) )

let object_generator = proc [t] ( init : t -> shared_object [t])
shared_object [t] with
begin

let i := init
while true do

select
: receive write (val : t) do i := val
: receive read ( -> t) do i

selected
end

let int_object = object_generator [int] (3)
let string_object = object_generator [string] ("Ronald")

int_object (write) (-4213)

In this example a polymorphic procedure 'object_generator' has been used to

generate processes of a particular type. The procedure is a generic form quantified by

the type 't'. It takes as a parameter an object of the type 't' and returns an active

process of type 'shared_object' parameterised by 't'. The procedure must be given a

particular type and an object of that type to operate correctly. 'int_object' has the type

shared_object [int] and 'string_object' the type shared_object [string] which are not

the same. However, the entry procedures manipulate integers and strings respectively

and may be used where procedures of these types are appropriate.

It should be noted that these generators and the processes themselves are more

powerful than the generics and tasks of Ada. In Napier. the processes are first class

objects and may be passed around or stored in a complex data structure in the

persistent environment. This is not possible in Ada.
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3.1.3 Locality and Distribution

So far all the processes that we have described are lightweight in that they

share the address space of their creators. It so happens that in the 'shared_counter'

example, the processes do not use any free variables and create their own

environment, thus making it look heavyweight in nature. This we can use to our

advantage to give both lightweight and heavyweight processes in the persistent store.

Our ideal model of the persistent architecture is an unbounded space

fragmented by the context mechanism. We know, however, that the system will be

built out of localities and we can accommodate this by arranging that localities are

always controlled by one context. By making the environment our context

mechanism, we can achieve the correct mixture of bindings necessary to support a

distributed system.

To support the distribution mechanism we require at least two procedures to be

built into the system. They are

let copy = proc [t] (item : t -> t )

let copy_to_env = proc [t] (environment : env ; N : name[t] ; item : t)

The 'copy' procedure makes a copy of the object. That is, it copies the transitive

closure of the object to ensure that it will work correctly. The 'copy_to_env'

procedure makes a copy of the object using the copy procedure and moves it into the

same locality as the environment placing a new binding in the environment. The new

binding is the name 'N' to the copy of the value 'item'.

The 'copy_to_env' procedure is essentially the bootstrap mechanism for a new

locality being added to the persistent store. Initially there is one distinguished point

PS. To add a new locality, a binding is placed in PS or any environment reachable

from PS, so that it may be seen by all users. Binding to this new environment, and

thus locality, is performed by the environment binding mechanism described above.
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The placing of the new locality in the environment is equivalent to plugging a new

component in to the system and must be performed by a low level implementation as

it is not possible at this level of abstraction.

3.1.4 Stability

Each locality is stabilised independently in the system. When the standard

procedure 'stabilise' is called the locality in which the processes is operating is

stabilised. This may be done automatically or by the user. The 'stabilise' procedure

calculates which objects are in the locality that it is going to operate on by computing

the transitive closure of all the objects local to the environment. Cross locality

pointers are ignored. The procedure is made available to users so that higher level

transaction mechanisms may be built. Krablin[14] has shown how this may be done

in the language CPS-algol.

3.1.5 Polymorphic persistent processes

In the following example we demonstrate that by integrating the process

concept with the type system, we can define polymorphic persistent processes. The

example is that of readers and writers accessing a shared database. The procedure that

creates the database is given an initial value for the database, which is copied to

remove any aliases, along with the database type. The procedure creates a process to

control access to the database and returns the procedures 'read' and 'write', in a

structure, which may be used to access the database in a controlled manner. Indeed

since the database is always copied it is the only manner in which it may be accessed.

The example can be extended to allow alteration to parts of the database but that is

not relevant here. The algorithm is taken from Barnes [4] page 228.

let Readers_Writers = proc [t] (init : t -> structure (Read : proc ( -> t) ; Write : proc
(t) ) )
begin

type Control is process (start : proc (int), stop_read, write_it, stop_write :
proc () )

let control = Control with
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begin

let readers := 0 ; let writers := 0 ; let READ = 0 ; let WRITE = 1
while true do

select
writers = 0 : receive start (service : int) do

if service = READ then readers
:= readers + 1

else writers := 1
: receive stop_read () ; readers := readers - 1

readers = 0 : receive write_it ()
: receive stop_write () ; writers := 0

selected
end

let item := copy (init)

struct ( Read = proc ( -> t)
begin

control (start) (READ)
let result = copy (item)
control (stop_read) ()
result

end ;
Write = proc (X : t)

begin
control (start) (WRITE)
control (write_it) ()
item := copy (X)
control (stop_write) ()

end )
end

let synchronised_integer = Readers_Writers [int] (0)
let Read = synchronized_integer (Read) ; let Write = synchronized_integer (Write)

In this example, with the call Readers_Writers [int] (0), the user process creates

a database which is a synchronised integer with initial value zero. The two database

operations are then given local names 'Read' and 'Write', which will give controlled

access to the integer.

While the process itself ensures mutual exclusion of access to its entries, the

procedures 'Read' and 'Write' may be made available to any number of other (user)

processes, to provide concurrent interfaces to the database. Because such procedures

execute within the closure of their creator (in this case the procedure

'Readers_Writers'), care must be taken with access to shared variables in this closure;
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in this example, only 'item' is shared, and access to it is controlled by the process

'Control'.

This example has been kept deliberately simple to illustrate the mechanism. To

be more general, the interface would have to be extended to allow selective updating

and access to a more general database. However, the example does illustrate how the

concurrency abstraction mechanism need only be written once and then applied to

any type of database. This has benefits in terms of software re-use and economics. A

solution to a second example, the ring buffer problem, is given in Appendix I.

Processes, and procedures that generate processes, may be stored in the

persistent store. Thus when the program that activates a process terminates, the

process itself may remain active. As an example we will store the 'Readers_Writers'

procedure and the 'int_object' process from previous examples in the persistent store

and retrieve them later. Storing them in the persistent store may be done by

let e = environment ()
in e let R_W = Readers_Writers
in e let Int_object = int_object
in PS let ee = e

Thus the PS environment contains a binding ee : env and this environment

contains the bindings R_W : proc [t] (init : t -> structure (Read : proc ( -> t) ; Write

: proc (t) ) ) and Int_object : process (write : proc (int ), read : proc ( -> int) ).

These objects may be retrieved from the persistent store by the following

type shared_int_object is process (write : proc (int), read : proc ( -> int) )

use PS with ee : env in
use ee with R_W : proc [t] (init : t -> structure (Read : proc ( -> t) ; Write : proc
(t) ) ),

Int_object : shared_int_object in
begin

let first = Int_object (read) ()
let synchronised_int = R_W [int] (first)
...

end
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In this example, the integer that is encapsulated in the 'Int_object' process is

used to initialise the database generated by the 'Readers_Writers' procedure, which is

called 'R_W' here. It should be obvious that the process 'Int_object' is always active.

Getting it out of the persistent store allows the current process to communicate with

it.

3.1.6 Protocols and inheritance

The entry list for a process specifies its type and can be considered as the

protocol through which it may be accessed. By utilising the multiple inheritance

scheme of Cardelli [6] we can place process types in the type lattice and define a

partial ordering of processes. Thus it is possible to define procedures that will operate

on processes with at least a given defined protocol. If the process has a more

specialised type then that may also be used. For example

type RON is process (add : proc (int -> int) )
type FRED is process (add, subtract : proc (int -> int) )

let Ric = proc [t ≤ RON] (A : t )
begin

.
let q = A (add (2))
.

end

let ron = RON with ... ! create a process of type RON
Ric [RON] (ron) ! pass it to the procedure Ric
let fred = FRED with ... ; Ric [FRED] (fred)

The procedure 'Ric' takes as a parameter an object of type 't' which is a process

with at least an entry 'add' of the correct type. In the example, the procedure is called

twice with a process parameter. The first 'ron' has exactly the entry 'add' whereas the

second 'fred' has more. Inside the procedure, only the entry 'add' may be used. By

using this subtype inheritance we can abstract over entry protocols that are common

to processes.
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Such an inheritance mechanism is important in object-oriented programming.

Although the inheritance mechanism is available for all data types in Napier it is

particularly important for processes since they are the main system construction type

for self contained objects. By structuring the system into co-operating processes and

using the other type constructors as data abstraction mechanisms we can impose an

object-oriented methodology.

The inheritance mechanism is also important for controlling change in the

system. For example, a process may be changed to give more entries in its interface

without altering the procedures that work on at least the supertype. This allows

dynamic change to the active processes in the system subject to the supertype

constraints.

4. Conclusions

Wegner [19] has defined an object-oriented language to have three essential

features. They are

a. the ability to define objects as a set of operations and a state that

remembers the effect of the operations.

b. the objects can be categorised by class (type).

c. there is an inheritance mechanism for defining superclasses and

subclasses.

In comparison with this, processes traditionally have a state and a method of

communicating with each other. By making process a type in the modelling language

and ensuring that the type system allows inheritance, then the methodologies can be

conveniently integrated. To illustrate this, the table below compares the essential

features of both styles.

Object-Oriented Process-Oriented

objects processes
object state process state
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object type process type
object operations process entries
object inheritance process protocols

We have presented a model of a persistent information space which is

composed of objects. The information space is unbounded in that the user has the

capacity to create objects forever. A context mechanism is introduced in order to

control the unbounded name space.

It is argued that at a persistent level of architecture, concepts such as locality,

distribution and stability are physical properties of how we might build an unbounded

information space. By using one of the contextual mechanisms of the system to

incorporate locality we can provide all the necessary functionality by two procedures

'copy_to_env' and 'stabilise'.

The Napier system is multiparadigm in that we can construct processes to

distinguish between locality and context or we can build using the object-oriented

methodology which we call process-oriented.In this approach we use a strong type

system to unify the concepts of process and inheritance. We allow static data

constructors but use process as the main object constructor and integrate this with a

persistent environment to yield concurrent object-oriented databases. It should be

noted however that process-oriented computation still requires a contextual

mechanism such as environments to control the name space.
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