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Abstract

In designing and building persistent object systems we are attempting to regularise
the activities on data that are traditional in programming languages, operating systems,
database management systems and file systems. We hypothesise that regularity and
simplicity may be achieved by regarding the exercise as one of designing a language
powerful enough to allow for all our programming needs and using some principles in the
design of the language to achieve this regularity and simplicity.

In this paper we investigate the nature of binding mechanisms showing how some
form of dynamic binding is necessary for persistence. The binding mechanisms of Ada,
which has a traditional file based view of persistence, and of Napier, which has an object
based view, are used as illustrations.

1. Introduction
In traditional programming languages, database management systems, file systems

and operating systems there are a number of, often conflicting, binding mechanisms for
composing sub-systems, programs and data. In our experiments in designing, building and
using a persistent information space architecture (PISA) [3] we have encountered these
binding mechanisms and wish to report on them here.

We wish to build a total system capable of providing for all programming activity.
Our traditional view of the persistent information space is that it will subsume the functions
of a plethora of mechanisms currently supported by components such as command
languages, editors, file systems, compilers and interpreters, linkage editors and binders,
debuggers, DBMS sub-languages and graphics libraries [1]. The information space is
composed of objects, which may be simple or highly structured, defined by the universe of
discourse of the type system of the PISA architecture. To build sub-systems or other objects
out of the information space requires mechanisms to compose these components. Since we
wish to subsume the activities of the programming language, database management system,
file system and operating system, the equivalent power of the binding mechanisms in these
systems must be provided.

A further requirement on our information space is that the evolution of the data
should be controllable Since the uses of data cannot be predicted it is necessary to support the
construction of new software systems which make use of existing data even when the data
was defined independently. For large scale, widely used or continuously used systems any
alteration to the system should not necessarily require total rebuilding. A mechanism is
required to control the units of reconstruction.

We report here, first on the nature of binding mechanisms, giving a classification of
them, demonstrating that some method of dynamic binding is necessary in a persistent
system and then describing the mixture of bindings allowed in the languages, Ada [9] and
Napier [2].



2. The nature of binding mechanisms
Traditionally a binding consists of a name-value pair [15]. That is, a value is bound

to a name for some period during the evaluation of a program. This has been extended by
Burstall & Lampson to include a type [4] and further by Atkinson & Morrison to constancy
[2]. A binding mechanism, therefore, has four components: a name, a value, a type and an
indication as to whether the value is mutable or not. To further complicate the issue, bindings
may be performed statically by the compiler or dynamically by the run time system. Indeed
bindings can be made at intermediate stages but only the extremes are of interest here since
non-static bindings are always dynamic in some sense. A binding mechanism has four parts,
listed below.

R-value or L-value bindings?
The first categorisation is that sometimes the bindings are to immutable values, that

is constant values that do not alter during the period of the binding, and sometimes the
bindings are to mutable values where the binding does not change although the value within
it may. These kinds of bindings are traditionally known as R-value (for immutables) and L-
value (for mutables) bindings in programming language semantics parlance [15]. The
manifest constants of BCPL[13] or Pascal [17] are examples of R-value bindings and the
compiler can make the binding statically. On the other hand Pascal variables are examples of
L-value bindings where the compiler may bind the name to a location but not to a particular
value since it may vary at run time.

When is the binding performed?
Some bindings can be performed statically (usually by a compiler) and others require

to be performed dynamically (by the run time system). Again the manifest constants of BCPL
or Pascal are examples of static R-value bindings. In contrast to this the variables of Fortran
can be statically bound by the compiler and so constitute static L-value bindings. That is, the
compiler can statically allocate the location for the variable thus setting up the binding
between name and L-value.

In block structured languages the binding of name to value is established when
declaration is encountered. That is, although an abstract stack address may be statically
determined, the actual location, or value is not known, and the binding not performed, until
the block is entered and the code for the binding executed. Thus, the variables of Pascal are
examples of dynamic L-value bindings. Procedure parameters are also bound dynamically
since a procedure activation is equivalent to entering a block with the procedure parameters
as the first declarations. Constants whose values are calculated dynamically, that is when the
constant is created, which can be seen in S-algol[11] and the simple constant values of
Ada[9] are examples of dynamic R-value bindings. The advantage of this type of constant is
that it may be read in or calculated from other data objects and then protected from change.

What scoping is involved?
A binding is always performed with reference to a particular environment. This may

be performed statically or dynamically. The algol 60 scoping rule is static and allows
duplicate bindings to be detected statically. Dynamic scoping can be seen in Lisp[10] and in
the segment binding mechanism of Multics [8]. A binding of a file name to a file in an open
statement is usually resolved in the dynamic environment of the program. Indeed this is the
desired form of binding since different invocations of the program may be required to bind to
different files. For example, when running the mail command in UNIX [14] user running the
command wishes to bind to his or her own environment.
When is type checking performed?

Type checking, assuming it is performed at all, can be done statically by a compiler
or by the run time system. Dynamic type checking occurs when the run time system executes
code to ensure that the data is of the correct type. This typically occurs in read statements and
in projections out of a union. Some languages such as SASL [16] deliberately choose run
time type checking to facilitate polymorphism.



The binding mechanisms can be categorised by the following table.

Static Typing Static Typing Dynamic Typing Dynamic Typing
Static Scoping Dynamic Scoping Static Scoping Dynamic Scoping

Static R-value 1 2 3 4
Static L-value 5 6 7 8

Dynamic R-value 9 10 11 12
Dynamic L-value 13 14 15 16

There are 16 different methods of binding based on the four binding choices given
above. The most static form is a static R-value binding with static type checking and static
scoping. The most dynamic form is a dynamic L-value with dynamic type checking and
scoping.  It is interesting to note that even within one particular language there is often more
than one binding category. For example, in Pascal category 1 describes const values,
category 13, variables, category 15, variant projections and category 16, file names.

We use the phrase Flexible Incremental Binding Set (FIBS) to describe the mixture
of bindings required in a particular language. We search for a FIBS that is sufficient for a
persistent environment.

3. Further Comments on the Binding Categories
If we examine the columns of the above matrix we can see that the first column,

categories 1, 5, 9 and 13 represent the bindings normally found in strongly typed languages.
Pascal uses categories 1 and 13 for its manifest constants and variables, Fortran category 5
for its variables and PS-algol [12] categories 9 and 13 for its dynamic constants and variables
respectively.

In column 2, categories 2, 6, 10 and 14, it is difficult to perceive how such bindings
may be used. For this column every unique name in the system must have the same type. If
they did not we could not statically check the type.

Column 3, categories 3, 7, 11 and 15 allow the typing to be dynamic and the scoping
to be static. SASL uses category 11 to bind its objects. In the bindings the scoping is static.
However the type checking is not performed until the operator is applied to the operand.
Category 15 is typically the binding mechanism used in read statements, in projections out of
a union and to bind file names to external files. For example, the statement

let a = readi ()

forms a binding between the name 'a' and the value read in. We use the procedure to indicate
that an integer is expected so that the type checking in the compiler can continue. However,
the type checking is actually performed as the object is read in and can therefore be regarded
as part of the binding. By this technique the type checking can be dynamic but the static
scoping may be preserved.

Finally column 4, categories 4, 8, 12 and 16 are the most dynamic of all. As said
before category 16 is the mechanism used to bind Multics segments and the objects of Lisp.
An applicative Lisp would use category 12.

4. Safety v Flexibility
In determining the appropriate binding mechanisms for a particular system, the

designer is faced with the problem of balancing safety against flexibility. The safety in the
system is derived from being able to say (even prove) something about the program before it
runs (ie statically) in order to improve confidence that it is correct. This explains the wish by
most language designers to employ static type checking as one of the devices for static
checking.



A second aspect of static checking is that the programs so checked are usually more
efficient. By performing the checking statically the need for dynamic checking is removed
making the run time representation of the program execute faster and in less space.

Finally an aspect of static checking that is often overlooked in programming systems
is that of the source code on program documentation. If a compiler can statically check a
program then so can another user. Thus statically checked programs have better
documentation properties and consequently better cost properties throughout the life cycle of
the programs.

Taken to extreme statically checked systems such as those described in category 1
are not very interesting. Statically typed and scoped, static R-values cannot accommodate
change in the system. New values cannot be calculated and this category of binding is only of
interest as a subset of a more general FIBS. Even the static (applicative) languages have more
binding mechanisms than this. It is, however, a very safe mechanism.

At the other extreme, totally dynamic systems are just as unacceptable. Category 16
defines dynamic L-values that are dynamically type checked and scoped. Reasoning statically
about the bindings in such a system is impossible because the particular bindings that occur
depend on the dynamic evaluation of the program. The system is extremely flexible since the
program can calculate which binding will occur next but it is much less safe.

5. Persistent Systems
We have categorised a spectrum of binding mechanisms and assert that persistent

systems need all of the spectrum to facilitate the needs of prospective users. We can consider
the persistent store to be populated by objects which we would expect to be partially
statically checked for safety. From this universe of objects we wish to allow

a the creation of new objects (and binding into the persistent store)
b the reuse of existing objects (program and data) by new objects
c new combinations of existing and/or new objects
d incremental construction of objects

We may wish to bind statically to a combination of objects in the persistent store in
which case the objects are assembled into a new object bound together. On the other hand we
may wish to obtain the latest version of the object and delay the binding until we actually use
the object, as in Multics.

To perform any of the binding activities above, with a persistent store, requires a
subject which has a description of the object to which it wishes to bind. For the purpose of
this paper we will assume that the description is provided in the form of a type although there
is still much research in finding a type system that is rich enough for this purpose. Since the
subject and object may be prepared separately, the types must match by some rule and
structural equivalence is the appropriate type matching rule for this.

When an object is statically bound to a subject a static description of the object is
required. For complete static binding throughout the system, a complete type description of
the persistent store is required. This is clearly impracticable for large systems or for systems
that are incrementally updated in parallel.

In general the persistent store forms a graph. To avoid having to describe the
complete graph there must be nodes at which we can leave the description incomplete in
static terms. In our experiments we have used a built-in infinite union of cross product types
[12] to perform this action. Thus, in order to describe the part of the persistent store of
interest, the user need only describe up to these infinite union nodes completely. To traverse
these nodes, a projection out of the union (a dynamic bind) is necessary. This same technique



is used in dynamic construct of the language Amber [5] which allows an infinite union of all
types for this purpose.

It should be clear from the above that some form of dynamic binding is not only
desirable but also necessary in persistent systems.

Some of our skill in using a persistent object store will be in deciding which objects
are statically composed and never changed and which objects are dynamically composed. A
judicious mixture of mechanisms has to be provided by the system and we would expect
eager binding, in that, when it is appropriate to perform the binding, then it is done for safety
and not delayed unnecessarily.

We will now investigate two languages to identify their flexible incremental binding
sets and highlight their binding mechanisms. The first language, Ada, has a file system view
of persistence whereas the second, Napier, has an object store view.

5.1 Bindings in Ada
Ada takes a very traditional view of program and data. Its philosophy is that program

and data are quite separate and two different mechanisms, a library and a file system are used
to provide the persistence in the system. The library contains all the statically bound program
objects and uses the compiler and a loader to compose the library units into programs. The
program may then dynamically create bindings and may bind to objects in the file store.

Sub-programs and packages are therefore composed statically into programs by the
loader. These may, of course, contain code for dynamic bindings. Generics are a good
example of binding category 1. That is, a generic is a static R-value (to the compiler) which
uses static typing and static scoping.

All data object binding is performed dynamically. Constants and variables are
examples of binding categories 9 and 13 respectively. In the general case sub-type objects
require a run-time check and therefore are bindings of categories 11 and 15. Selecting from a
record by using a variant requires dynamic scoping to see if the record has the particular
variant yielding binding category 15 only since constants are not allowed in records.
Category 10 binding is used however to bind an exception to a particular name.

When we look at persistent data in files we see that the 'create' and 'open' statements
act on an external file name binding it to a particular file. The file name, a string in this case,
is evaluated in the dynamic environment, dynamically type checked and yields category 12
bindings for read file and category 16 bindings for write files. Thus, the FIBS for Ada is {1,
9, 10, 11, 12, 13, 15, 16}.

However, there are a number of hidden activities relating to binding within the files.
The first is that any file has to be of a particular type. Ada has no union type and thus the
whole of the file has to be completely described on use. Incremental building of the persistent
store (a collection of file) is done by using the file itself effectively as the built-in infinite
union which may be projected from by name. Thus sections of the persistent data are
dynamically composed by program which knows about the particular files. No cross
referencing between the files is possible.

It is also in the use of files that we expose the pretence of name equivalence. Each
instantiation of the generic packages Sequential_io and Direct_io yields a unique file type. If
this were the case we could not create a file in one program and use it in another because the
file types would be different. The generic formal parameter type is converted on instantiation
to the equivalent of an integer which is used to denote the file within the program. This is
equivalent to structural equivalence of file type across programs.

5.2 Bindings in Napier



In Napier, all data is persistent. That is, data is kept for as long as it is usable. This
we can determine from the fact that it is reachable by the computation of the transitive
closure of objects from the persistence root, called PS. When a program terminates all of its
data objects may be destroyed except those that the program has arranged to be reachable
from PS. In general the persistent store will be a graph and objects which may be distributed
over many machines.

Our preferred method of use of the persistent store is to navigate it with a software
tool like a browser [7] that writes programs which bind to the persistent objects that we
select. In such an environment the difference between compile time and run time is blurred.
Indeed our action in using the system is essentially setting up bindings and executing
programs using these bindings. For persistent objects there is no notion of static R-values or
static L-values and the bindings contained in rows 1 and 2 of the matrix do not apply. This
should not be a surprise to us as rows 1 and 2 refer to bindings that are created by the
compiler which may have disappeared. Such bindings may still be available if a compiler is
employed to compile programs against the persistent store but will only be available for
objects within the program and not persistent objects. For this reason they will not be
discussed further.

Simple bindings are introduced by a let declaration. For example

let a = readi ()

introduces the binding of 'a' to the integer value that will be read in. Since we have use '='
rather than ':=' to introduce the binding, the value is constant. This is an example of a
dynamic R-value binding, category 9. Dynamic L-values, category 13, can also be introduced
by

let a := 3.2

which binds the name a to the variable location which has the initial value '3.2'.

All simple object bindings are introduced in this manner and there is a one-one
correspondence between this and the bindings introduced as procedure parameters. That is,
the language obeys the Principle of Correspondence [15]. Before we can look at other
bindings in the system, we must have a brief description of the universe of discourse of the
language.

The Napier type system is loosely based on one suggested by Cardelli & Wegner[6].
All data objects in the system can be described by the following rules

1. the scalar data types are integer, real, boolean, string, pixel, picture and null.
2. image is the type of a rectangular matrix of pixels.
3. for any data type t, *t is the type of a vector with elements of type t.
4. for identifiers I1,..In and types t1,..tn, structure( I1:t1,...In:tn) is the type of

a structure with fields Ii and corresponding types ti, for i = 1..n.
5. for types t1,..tn, t1|...|tn is the type of a union of the types ti, for i = 1..n.
6. for any data types t1,..tn and t, proc( t1,...tn -> t) is the type of a procedure

with parameter types ti, for i = 1..n and result type t.
7. type parameterisation may be used in the type algebra.
8. for identifiers I1,..In and types t1,..tn, env  is the type of an environment

with entries  Ii and corresponding types ti, for i = 1..n.
9. for any identifier I and any type t, abstype I with t, is the type of an abstract

data type.
10. any procedure type may be universally quantified.
11. type any is the infinite union of all types.



The universe of discourse of the language is defined by the closure of rules 1 and 2
under the recursive application of rules 3 to 11.

With regard to binding to the persistent store the data types env and any are the most
important. Objects of type env are collections of bindings, that is quadruples of name, value,
type and constancy. They differ from structures in that objects of this type belong to the
infinite union of all such cross products. Furthermore we can add bindings to, or delete
bindings from objects of type env. The distinguished point in the persistence graph, PS, has
data type env. Type any is the infinite union of all types.

We can simulate the scoping mechanism of block structure using environments. We
can collect the environments dynamically in some order that will be equivalent to entering
blocks. We can then create new bindings in the environments in the same manner as we do
from blocks. This is perhaps best explained by an example. We will write a program to place
an integer and a procedure that operates on that integer into an environment and place it in
the persistent store. Later we will retrieve the values and use them.

let e = environment ()
let rand := 2111 in e

This creates the dynamic L-value binding, category 13 and places the binding in the
environment e. To use the binding we write

use e with rand : int in
begin

let random = proc ( -> int)
begin

rand := (519 * rand) rem 8192
rand

end in e
end

We have a new example of binding here that is of interest. The use clause
dynamically binds the name, type, constancy tuple to the environment expression. If the
environment contains at least that name, type, constancy tuple then the binding succeeds and
the name is available in the following clause. The binding, which occurs at run time, and is
therefore dynamic, is similar to projecting out of a union. The difference here is that we only
require a partial match. Other fields not mentioned in the use clause are invisible in the
qualified clause and may not be used. Depending whether the value that we bind to is an R-
value or an L-value we obtain binding categories 12 and 16 respectively. That is, in the L-
value case, a dynamic L-value with dynamic type checking and dynamic scoping.

This kind of binding is the most dynamic form that can be found in a strongly typed
system and is therefore sufficient for our needs. Notice that the binding once it is performed
acts in the same manner that block structure does. That is, the environments may be collected
in any order and act like nested blocks. Once the binding has been performed on entry to the
use clause (block) then the scoping reverts to being static. This gives us the flexibility of
constructing blocks either statically as we compose the program or dynamically as we run it.

6. Conclusions
We have presented a classification of binding mechanisms that have been traditional

in programming languages, operating systems, database management systems and file
systems. In this we have extended the notion of a binding to be a name, value, type and
constancy quadruple. From this categorisation we have shown that dynamic binding is
necessary in persistent systems. Furthermore we have proposed structural equivalence as the



appropriate type checking method and built-in infinite unions as the method of allowing a
partial description of the persistent store.

To highlight the binding mechanisms we have described the binding in a traditional
file based system, Ada, and an object based system, Napier.
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