
This thesis should be referenced as:

Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent Programming Systems”.
Ph.D. Thesis, University of St Andrews (1992).

Reflection and Hyper-Programming in
Persistent Programming Systems

Graham N. C. Kirby

Department of Mathematical and Computational Sciences

University of St Andrews

St Andrews

Fife KY16 9SS

Scotland

Abstract

In an orthogonally persistent programming system, data is treated in a manner independent of

its persistence. This gives simpler semantics, allows the programmer to ignore details of

long-term data storage and enables type checking protection mechanisms to operate over the

entire lifetime of the data.

The ultimate goal of persistent programming language research is to reduce the costs of

producing software. The work presented in this thesis seeks to improve programmer

productivity in the following ways:

• by reducing the amount of code that has to be written to construct an application;

• by increasing the reliability of the code written; and

• by improving the programmer’s understanding of the persistent environment in which

applications are constructed.

Two programming techniques that may be used to pursue these goals in a persistent

environment are type-safe linguistic reflection and hyper-programming. The first provides a

mechanism by which the programmer can write generators that, when executed, produce new

program representations. This allows the specification of programs that are highly generic

yet depend in non-trivial ways on the types of the data on which they operate. Genericity

promotes software reuse which in turn reduces the amount of new code that has to be written.

Hyper-programming allows a source program to contain links to data items in the persistent

store. This improves program reliability by allowing certain program checking to be

performed earlier than is otherwise possible. It also reduces the amount of code written by

permitting direct links to data in the place of textual descriptions.

Both techniques contribute to the understanding of the persistent environment through

supporting the implementation of store browsing tools and allowing source representations to

be associated with all executable programs in the persistent store.

This thesis describes in detail the structure of type-safe linguistic reflection and hyper-

programming, their benefits in the persistent context, and a suite of programming tools that

support reflective programming and hyper-programming. These tools may be used in

conjunction to allow reflection over hyper-program representations. The implementation of

the tools is described.

Acknowledgements

I thank my supervisor Ron Morrison for his support, guidance and enthusiasm. He has

succeeded in providing a superb research environment.

Ron Morrison, Richard Connor, Quintin Cutts, Al Dearle and Dave Stemple have all been

directly involved in the research described in this thesis. I thank them and the other members

of the PISA group at St Andrews, Fred Brown, Dave Munro and Craig Baker, for the benefits

of numerous discussions. I have also been helped by talking with Alex Farkas, Tim Sheard,

John Rosenberg and Malcolm Atkinson.

Ron Morrison, Dave Stemple and Richard Connor provided invaluable constructive criticism

during the writing of this thesis.

Thanks to Al for luring me into computing research in the first place with his diving trip tales

of browser writing. Finally I thank Charlotte for always cheering me up.

Contents

1 Introduction .. 1

1.1 Persistence and Software Costs... 1

1.2 The FIDE View of Software Production... 2

1.3 Persistence as a Platform... 3

1.3.1 Writing Less Code ... 3

1.3.2 Writing More Reliable Code .. 4

1.3.3 Understanding the Persistent Environment .. 4

1.3.4 Research Topics ... 4

1.4 Linguistic Reflection ... 5

1.5 Hyper-Programming ... 5

1.6 Software Products ... 6

1.7 Thesis Structure... 6

2 Reflection ... 7

2.1 Introduction ... 7

2.1.1 Behavioural Reflection .. 7

2.1.2 Linguistic Reflection .. 8

2.1.2.1 Characterisation .. 8

2.1.2.2 Lisp.. 8

2.1.2.3 POP-2 .. 9

2.1.2.4 TRPL ... 10

2.1.2.5 PS-algol ... 11

2.1.2.6 Napier88 .. 13

2.2 Type-Safe Linguistic Reflection ... 14

2.3 Anatomy of Type-Safe Linguistic Reflection ... 16

2.3.1 Reflection in General ... 16

2.3.2 Compilation.. 19

2.3.3 Compile-Time Linguistic Reflection ... 20

2.3.4 Optimised Compile-Time Linguistic Reflection.............................. 21

2.3.5 Run-Time Linguistic Reflection .. 23

2.3.6 Combined Compile-Time and Run-Time Linguistic Reflection 25

2.4 Dimensions of Type-Safe Linguistic Reflection....................................... 25

2.4.1 Initiation of Reflection ... 26

2.4.2 Time of Generator Execution... 26

2.4.3 Nature of Generators .. 26

2.4.4 Execution Environment of Generators... 26

2.4.5 Time of Type Checking of Generated Code 27

2.4.6 Execution Environment of Generated Code 27

2.4.7 Linking Generated Code into the Original Program 27

2.4.8 Characterisation of TRPL, PS-algol and Napier88 27

2.4.8.1 TRPL ... 27

2.4.8.2 PS-algol ... 28

2.4.8.3 Napier88 .. 29

2.5 Applications of Type-Safe Linguistic Reflection 30

2.5.1 Genericity and Efficiency .. 30

2.5.2 Software Evolution in Persistent Systems 32

2.5.3 Implementing Data Models.. 35

2.5.4 Optimising Implementations .. 35

2.5.5 Validating Specifications ... 35

2.6 Anatomy of Generators ... 36

2.6.1 Generator Components .. 36

2.6.2 Components in TRPL Generators .. 37

2.6.3 Components in PS-algol Generators .. 37

2.6.4 Components in Napier88 Generators ... 38

2.6.5 Factors in Understanding Generators... 39

2.7 Research Areas.. 39

2.8 Conclusions ... 40

3 Hyper-Programming .. 42

3.1 Introduction ... 42

3.2 Motivations and Benefits .. 44

3.2.1 Program Composition .. 44

3.2.2 Early Checking... 44

3.2.2.1 Checking Persistent Data Access .. 44

3.2.2.2 Other Kinds of Checking .. 46

3.2.3 Source Code Control .. 47

3.2.3.1 Relationships Among Program Forms 47

3.2.3.2 Languages with External Storage Systems 48

3.2.3.3 Persistent Languages ... 50

3.2.3.4 Hyper-Programs .. 52

3.2.4 Flexible Linking Mechanisms.. 55

3.2.5 Program Succinctness .. 58

3.3 Procedure Representations .. 58

3.4 Hyper-Worlds.. 60

3.5 Conclusions ... 62

4 Hyper-Programming Tools .. 63

4.1 Introduction ... 63

4.2 Hyper-Programming Tools ... 63

4.2.1 Data Representation Display Format ... 64

4.2.2 Constructing a Hyper-Program .. 67

4.2.3 Editing a Hyper-Program ... 75

4.2.4 Compile-Time Linking .. 78

4.2.5 Comparison with Other Systems.. 80

4.2.5.1 PS-algol Browser .. 80

4.2.5.2 Refined PS-algol Browser... 80

4.2.5.3 Napier88 Browser ... 81

4.2.5.4 ABERDEEN ... 81

4.3 Conclusions ... 81

5 Reflective Programming Tools .. 82

5.1 Reflection and Hyper-Programming ... 82

5.2 Ease of Programming Generators ... 83

5.3 Generator Model ... 83

5.4 Napier88 Representation of Generator Model .. 84

5.5 Generator Evaluation .. 86

5.6 Pre-defined Types and Operators.. 90

5.7 Graphical Interface.. 90

5.7.1 Creating Generators ... 90

5.7.2 Testing Generators ... 96

5.7.3 Generating Hyper-Program Links.. 98

5.8 Conclusions ... 100

6 Implementation .. 102

6.1 Introduction ... 102

6.2 User Interface Tool-Kit ... 102

6.2.1 History.. 103

6.2.2 Event Distribution .. 103

6.2.3 Windows and Window Managers .. 106

6.2.4 Hyper-Text Editing .. 107

6.2.5 Interface Widgets ... 107

6.2.6 Implementation of WIN ... 108

6.2.6.1 Window Manager Implementation 108

6.2.6.2 Window Manager Data Structures .. 109

6.2.6.3 Fragmentation ... 115

6.2.6.4 Hyper-Text Editor Data Structures 116

6.3 Browser ... 118

6.3.1 History.. 118

6.3.2 Browser Interface ... 119

6.3.3 Browser Implementation .. 119

6.3.3.1 Reflective Implementation .. 119

6.3.3.2 Low-Level Implementation... 121

6.3.3.3 Browsing Structures, Variants and Vectors 123

6.3.3.4 Browsing Environments.. 124

6.4 The Napier88 Compiler .. 125

6.5 Hyper-Programming Tools ... 126

6.5.1 Hyper-Program Representations .. 126

6.5.2 Constructing Closure Representations ... 129

6.6 Conclusions ... 135

7 Conclusions .. 137

7.1 Type-Safe Linguistic Reflection ... 137

7.2 Hyper-Programming ... 138

7.3 Related Work .. 138

7.3.1 Reflective Languages ... 138

7.3.2 Linking Mechanisms .. 138

7.3.3 User Interface Tool-Kits .. 139

7.3.4 Other Languages and Database Systems 139

7.3.4.1 Smalltalk-80 .. 139

7.3.4.2 GemStone .. 140

7.3.4.3 Arjuna.. 140

7.3.4.4 OSS ... 140

7.3.4.5 Iris ... 140

7.3.4.6 VBASE.. 140

7.3.4.7 O2.. 141

7.3.4.8 ML... 141

7.4 Future Research... 141

7.4.1 Programming Support .. 141

7.4.2 Hyper-Worlds... 141

7.4.3 Linking Control .. 142

7.4.4 Type-Safe Linguistic Reflection .. 142

7.5 Conclusions ... 143

Appendix A. Generator Tool Example: Natural Join .. 144

Example Using Generator Tool ... 144

Example in Napier88 ... 150

Example in TRPL... 154

Appendix B. Generator Interfaces ... 157

Pre-defined Types .. 157

Pre-defined Procedures .. 158

Appendix C. WIN Interfaces ... 161

User Types ... 161

Implementation Types.. 165

References .. 167

1

1 Introduction

1.1 Persistence and Software Costs

The persistence of data in a computer system is the length of time for which the data exists;
this may range from the very short to the very long. Some examples at the extremes of the
spectrum are the temporary data created during the evaluation of an expression in a program
and the long-term data stored in a company’s customer database. In the first case the data
persists for a brief fraction of a single program execution, while in the second the data may
outlive the programs that operate on it.

In an orthogonally persistent programming system, the manner in which data is manipulated
is independent of its persistence. The same mechanisms operate on both short-term and long-
term data, avoiding the traditional need for separate systems to control access to data of
different degrees of longevity. Thus data may remain under the control of a single persistent
programming system for its entire lifetime. The benefits of orthogonal persistence have been
described extensively in the literature [ACC82, ABC+83, ABC+84, AM85, AMP86, AB87,
Dea87, MBC+87, Wai87, AM88, Dea88, Bro89, MBC+89, Con90, MBC+90]; only a brief
outline will be presented here.

The principal gains provided by orthogonal persistence are presented in the FIDE Course on
Database Programming Languages and Persistent Systems [AAC+91] as:

• Improved programming productivity from simpler semantics.
• Without persistence, ad hoc arrangements for long term data storage, and data translations

are necessary.
• Type checking protection mechanisms operate over the whole environment.
• Referential integrity is automatically supported.

In a non-persistent system, long-term data is stored in a database such as a file system or
relational database. Programs operate on the data by reading it from the database,
manipulating it in some way and writing it back to the database. Typically, the format of the
data is translated to and from a richer programming language format as it is transferred
between the database and programming language domains. Figure 1.1 illustrates the
conceptual mappings that must be maintained and understood by the programmer.

Program Real world

Database

Figure 1.1: Conceptual mappings in a non-persistent system

The provision of a persistent language eliminates two of the three mappings since data retains
its programming language format over its entire lifetime. This simplification is illustrated in
Figure 1.2:

Program Real world

Figure 1.2: Conceptual mappings in a persistent system

2

Further benefits of orthogonal persistence, as described in [AAC+91], are:

• Programs such as procedures and modules can be represented by first class values which
reside in the persistent store.

• The persistence mechanism provides incremental loading.
• The persistence mechanism provides linking via incremental data loading.
• The persistence mechanism verifies type correctness of such linking.
• The persistence mechanism supports incremental program construction and replacement.
• The persistence mechanism provides program and data library management.

The ultimate goal of persistent programming language research, as in many other branches of
computer science, is to reduce the costs of producing software. These costs are borne during
a number of phases in the software development process which include software design,
coding, debugging and software evolution. The aim of the work described in this thesis is to
investigate and to support certain mechanisms for reducing software costs in persistent
systems. Gains in productivity are sought in three ways:

• by reducing the amount of code that has to be written to construct an application;
• by increasing the reliability of the code written; and
• by improving the programmer’s understanding of the persistent environment in which

applications are constructed.

Details of how these sub-goals are tackled will be elaborated later in this chapter.

1.2 The FIDE View of Software Production

The context of this work is the ESPRIT funded FIDE project [FID90], a collaboration in
which a number of groups worked towards the integration of programming languages and
database systems. The research areas within FIDE included type systems, object stores,
compiler technology and integrated programming environments. In [Con90], Connor
summarises the goals of the project as follows:

“An ideal model for building applications in an integrated data-intensive system
has been described by the FIDE project, and may be likened to the diagram in
Figure 1.3. In such a model as much as possible is factored out of the application
programs into a central repository. Using such a model it should be possible to
accelerate software production, improve system reliability and gain economies
from code re-use.

Currently, however, information systems are usually constructed within a set of
loosely connected support systems, such as database systems, programming
languages, programming environments and operating systems. Each of these
components is often designed independently and built using a separate
technology. The resulting inconsistencies between these technologies make
programming of data-intensive applications difficult, expensive, and error-prone.

3

Applications
Software
Building

Tools

Central Repository of
Data, Model, Constraints

and Operations

Growing Population of
Applications Programs

Figure 1.3: The FIDE model of applications building

The programming of systems which deal with large amounts of long-lived data is
intrinsically difficult. However, the major failure of current technology as
outlined above is that the lack of integration leads to avoidable complexity.

Persistent programming systems are one area in which to experiment with the
removal of this avoidable complexity. By merging the distinction between long-
term and short-term data, it becomes possible to model all of the activities
required for a body of data within a single system.”

1.3 Persistence as a Platform

A number of persistent programming systems have been proposed, including PS-algol
[ACC82], Amber [Car85], Galileo [ACO85], Leibniz [Eve85], Persistent Prolog [GMD85],
Poly [Mat85], DBPL [MS89], E [RC90], χ [HS90], Napier88 [MBC+89] and STAPLE
[DM90]. To various extents these systems provide the benefits described earlier. The work
presented in this thesis attempts to advance the technology by taking the basic persistent
system as given and using it as a platform on which to build further programming support.
The aim is to reduce software costs in a number of ways.

1.3.1 Writing Less Code

Writing program code is time consuming and error-prone. One way to reduce the costs
associated with constructing a software application is to write less code in the process. This
can be achieved using a number of methods including:

• using a higher-level programming language;

4

• reusing existing fragments of code; or
• automating parts of the code writing process.

Work in this thesis addresses the second and third points. One area involves the specification
of highly generic program forms. A generic program is more generally applicable than a
non-generic equivalent and the range of situations in which it can be reused is thus increased.
The thesis describes research on the specification of these forms and also on the structure
needed to support their reuse. This structure includes tools to aid the programmer in locating
candidate programs for reuse and in composing those selected to form new programs.

Another research area to be described involves allowing the programmer to specify certain
parts of an application without having to write code explicitly. In particular the need to write
code describing the positions of programs and data in the persistent store is reduced.

1.3.2 Writing More Reliable Code

Debugging incorrect programs is costly. In general the earlier in the application development
process that errors are detected, the cheaper it is to correct them. The considerations may not
be solely financial: consider, for example, the differing opportunities available for correction
when an error in a jet engine controller is detected during development as against during
operation. To increase the number of errors caught early, many systems subject programs to
a variety of static checks before allowing them to be executed. This enables many errors to
be corrected before they have an opportunity to cause harm. In addition to static checking,
programming systems may employ dynamic checking, performed during program execution
in an attempt to detect and prevent harmful operations before they occur.

Most orthogonally persistent systems enforce strong typing. This means that, through a
combination of static and dynamic checking, they ensure that no data is operated on in a
manner forbidden by its type. This increases program reliability by preventing a particular
class of errors defined by the type system. It is widely believed that at least some of the type
checking in persistent systems must be performed dynamically if the systems are to be useful.
However, it is advantageous for as much of the type checking as possible to be static, as this
allows type errors to be detected earlier and thus at less cost. The thesis describes research to
increase the proportion of static type checking while retaining the required flexibility. The
techniques established also extend to another form of checking, verifying the presence of data
in the persistent store. It is also believed that they may be used to allow forms of checking
that have been regarded as intrinsically dynamic to be performed statically [Con92].

1.3.3 Understanding the Persistent Environment

To make use of existing programs in composing applications, the programmer must be able
to obtain descriptions of those programs available. That is, there is a need to explore the
persistent environment in which application construction takes place. The thesis describes
research to provide tools for this exploration; they assist the programmer to discover what
software components are available and whether a given component is type compatible with
an intended use. The tools are also able to provide source representations for any executable
programs located in the persistent store. This is achieved by enforcing the retention, in the
persistent store, of source code at the time it is compiled.

1.3.4 Research Topics

The research in this thesis follows the directions described in the previous sections in two
main research areas:

Linguistic reflection is a technique that allows programs to be treated as data and vice-
versa. Using reflection the programmer can write programs that
produce new programs. The research involves a study of the

5

nature of reflection and the development of tools to support the
writing of reflective programs.

Hyper-programming is a technique that allows source programs to contain direct links to
values in the persistent store. As with reflection, the research
involves a study of the nature of hyper-programming and the
development of support tools. A further topic is the investigation
of how reflection and hyper-programming may be used in
conjunction.

1.4 Linguistic Reflection

With linguistic reflection, programs can create new program representations and transform
them into executable programs. Type-safe linguistic reflection is a kind of linguistic
reflection in which the program representations are checked for type correctness. The
technique may be used to specify highly generic program generators that create programs
tailored to the types of the data to be operated on. This genericity extends beyond that
available in current polymorphic systems and thus provides greater opportunities for software
reuse.

A related use is in accommodation to system evolution: using linguistic reflection,
applications may adapt to changes in the structure of the data on which they operate, while
retaining a high degree of static type checking. Support for adaptable applications assists the
goal of writing less code, by reducing the need to re-implement applications as data evolves.

Several systems that support type-safe linguistic reflection have been implemented in the
past; these include PS-algol [PS88], Napier88 [MBC+89]. and TRPL [She90]. Various
applications of the technique are described in [Coo90a, Phi90, She91, HKS92, Kir92, SSF92,
SSS+92]. This thesis describes research that focuses on the following aspects:

• classification and analysis of the anatomies of reflective systems;
• identification of issues affecting the useability of linguistic reflective systems; and
• investigation of the interaction between linguistic reflection and persistence.

1.5 Hyper-Programming

A hyper-program is a source program that contains links embedded in the text, in the same
way that a fragment of hyper-text contains links to other fragments. The difference is that
hyper-program links may to refer to data of any type in the persistent store, rather than being
restricted to textual data [FDK+92, KCC+92b].

The provision of hyper-programming facilities assists the three goals of writing less code,
writing more reliable code and understanding the persistent environment. The writing of less
code is achieved by allowing more succinct programs, as a textual description of how to
access a data item may be replaced by a link to the data. Code reliability is improved by
enabling certain program checking to be performed statically rather than dynamically.
Finally, the use of hyper-programs enables source representations to be supplied for certain
programs that may exist in the persistent store but admit no purely textual representation.
This assists the programmer in understanding the nature of the software available for reuse.

This thesis describes the first known implementation of hyper-programming. A related
research area is the interaction of hyper-programming with type-safe linguistic reflection.

6

1.6 Software Products

The software produced during the work described in this thesis comprises the following:

• a set of reflective programming tools;

• a programming environment in which the programmer may browse the contents of the
persistent store and compose hyper-programs linked to data found there;

• the support technology on which these tools are based:
- a graphical user interface tool-kit;
- an interactive persistent store browser;
- a hyper-text editor which is used to support editing of hyper-programs.

1.7 Thesis Structure

Chapter 2 analyses the components of reflective systems, identifying two main types,
behavioural reflection and linguistic reflection. The category of linguistic reflection is
further classified into type-safe and non-type-safe varieties. Examples of type-safe linguistic
reflection in different languages are given. The chapter analyses the nature of the program
generators used in linguistic reflective systems and identifies some aspects that lead to their
being difficult to write.

Chapter 3 describes the concept of hyper-programming and explains the benefits obtained.
Chapter 4 gives details of the user interface of the hyper-programming environment. To
illustrate this it shows how a simple application may be constructed by combining new code
with reused existing programs.

Chapter 5 presents some proposals for improving the ease with which reflective program
generators may be written. A generator model which supports the implementation of these
proposals and allows hyper-program representations to be manipulated is described. The
chapter then illustrates the user interface to the programming tools with which these
generators are constructed.

Chapter 6 describes the principal features of the implementations of the hyper-programming
and reflective programming tools. This includes the implementation of the underlying
window management facilities, the hyper-text editor, the persistent store browser, and
modifications to the Napier88 compiler to support compilation of hyper-programs.

7

2 Reflection

2.1 Introduction

Reflection involves programs being able to modify their own behaviour in the course of their
evaluation. They can achieve this in two ways: by changing the way that programs are
evaluated in the system, or by changing their own structures. Existing reflective languages
can be placed in one of two categories according to the variety of reflection that they support.
These varieties are behavioural reflection and linguistic reflection. One particular form of
reflection in the latter category, type-safe linguistic reflection, allows all reflective operations
to be type-checked. This form is suitable for use in strongly typed persistent systems in
which the integrity of large amounts of data depends on the prevention of operations that
contravene type rules.

This chapter describes some of the forms of reflection used in existing systems, and analyses
two forms of type-safe linguistic reflection, run-time reflection and compile-time reflection.
Applications of these techniques are described. These are: attaining high levels of genericity,
accommodating evolution in persistent systems, implementing data models, optimising
implementations and validating specifications. Some of the factors that affect the useability
of type-safe linguistic reflective systems from the point of view of the programmer are
identified. The nature of the generators, the functions that produce new program
representations, is described in detail.

Although its use is not confined to persistent systems, type-safe linguistic reflection is
particularly useful in such systems. As well as facilitating the evolution of persistent data, it
provides the basis for implementing hyper-program capabilities, as will be described in
Chapter 3. Conversely, the provision of a persistent store may enhance the usefulness of
reflective techniques by allowing both generic program forms and specialised versions to
persist.

2.1.1 Behavioural Reflection

With behavioural reflection a program can alter its own meaning. It does this by
manipulating its evaluator. One way to achieve this is for an interpreted language to allow
access to the internal structures of the interpreter at run-time. Thus a program may change
the behaviour of the interpreter as the program is being interpreted. This results in the
interpreter performing different actions in the process of interpretation, effectively altering
the meaning of the program. Another possible technique is for a program to change its own
compiler during its compilation, although no implementations of this are known.

Another mechanism, used in object oriented languages, is to provide a meta-object for every
object in the system. A meta-object controls some aspects of the behaviour of its associated
object, for example, how it inherits from super-classes, how its methods are invoked or how
to make a copy of it. In effect the meta-object is a mini-interpreter for its object. By sending
messages that change the way these aspects are handled to its meta-object, an object can
indirectly modify its own behaviour.

A number of existing systems that support behavioural reflection are listed below:

Brown is a variant of Lisp [MAE+62]. It allows the definition of reflective functions
that manipulate interpreter data structures [FW84].

Meta-Prolog is a logic based language based on Prolog [Kow79, CM84]. Meta-theories
that describe the deduction process itself can be defined [Bow86].

8

SOAR is a rule-based reflective language. The programmer may specify meta-rules
that control the operation of the inference system itself [LRN86].

3-KRS is an object oriented language. Every object in the language has a meta-
object. Meta-objects are themselves objects so they have their own meta-
meta-objects and so on. Meta-objects are created lazily. Each meta-object
contains information about the implementation and interpretation of its
corresponding object. By sending messages to its meta-object an object can
alter itself indirectly [Mae87].

Modulex is a strongly-typed language based on Modula-2 [Wir83] and supports both
object oriented and relational models. All objects have meta-objects. The
programmer can control the degree to which the representations of those meta-
objects are accessible to other users. Making the representation of a meta-
object visible allows users to run queries against it [Ala90].

2.1.2 Linguistic Reflection

2.1.2.1 Characterisation

In linguistic reflection systems, programs can change themselves directly, in contrast to the
indirect manner supported by behavioural reflection. A linguistic reflective program
manipulates data structures that represent itself in some way, and any changes are integrated
into the current computation. The program may, for example,

• in an interpreted language, alter the data structure that represents the program;

• in a compiled language, alter the compiled code that is being executed; or

• generate new data structures to be interpreted or new code to be executed.

These options offer different trade-offs between flexibility, execution efficiency and
assurance of program correctness. For example the first two options give a high degree of
flexibility, but without constraints on the nature of allowable updates to the program there is
little opportunity for program verification.

The systems described below all support the third method of achieving reflection, where
programs generate new code fragments that are incorporated into the programs. There are no
known examples of systems supporting the first two methods; some possible reasons for this
are described in Section 2.2. The third method of reflection may be used to cut out a level of
interpretation and provide more succinct notations. This method also facilitates
implementation of checks on the new code before it is executed. Some of the systems
described perform type checking on the new code, while others simply attempt to run
whatever code is generated.

This informal definition of reflection will be supplemented by a more detailed description
later.

2.1.2.2 Lisp

Lisp supports linguistic reflection through the eval function which allows an S-expression to
be constructed and evaluated at run-time. This enables a program to change itself by creating
new program fragments and integrating them into the current execution. Figure 2.1 shows an
example:

9

(setq code-rep '(defun id-fun (x) x))
(eval code-rep)
(id-fun 3)

=> 3

Figure 2.1: Example of reflection in Lisp

The first line of the program defines code-rep to be an expression that represents the source
code of a function definition, defun id-fun (x) x. In the second line this expression is
evaluated with the result that the function id-fun comes into scope. The function is then
applied to the value 3 to give the result, also 3.

Lisp and its variants support both behavioural and linguistic reflection, the former through
allowing programs to alter the interpreter, as in Brown, and the latter through the ability to
create new expressions that are interpreted. Another Lisp variant, Scheme [RC86], supports
reflection at compile-time through macros. The reflection here is of the same form as that of
POP-2 macros, described below.

2.1.2.3 POP-2

POP-2 [BCP71] is an untyped language that supports linguistic reflection at both compile-
time and run-time. The former is achieved using macros that are executed during
compilation to produce lists of lexical items. A macro is executed when its identifier is
encountered in the compiler input stream. The macro body may read further lexical items
from the input stream. After execution of the body the list of items produced is substituted
for the macro identifier in the input stream and compilation resumes. Thus a program
containing macro calls may alter itself by creating new program fragments that are integrated
with it during compilation.

Figure 2.2 shows the definition of a macro, due to Atkinson [Atk91], that replicates the items
in the input stream, up to end, a specified number of times.

macro repeat;
vars count, res, rep, next;
itemread() → count; !! get number of repetitions
nil → rep; !! sequence of items to repeat

collecting: itemread() → next; !! next item in repeated list
if next = "end" then goto collected; !! terminated by end
rep <> [% next %] → rep; !! append next item
goto collecting; !! repeatedly join this to res

collected: nil → res; !! res holds repeated groups
expanding: if count <= 0 then goto expanded; !! how many times done?

rep <> res → res; !! join repeated element on
count - 1 → count;
goto expanding;

expanded: macresults(res)
end;

Figure 2.2: Example of compile-time reflection in POP-2

The macro first declares variables count, res, rep and next, reads a value for count from the
compiler input stream, and initialises rep with the empty list. The next four lines perform a
loop, reading the compiler input stream and building up a list of lexical items in rep until the
item end is encountered. The syntax rep <> [% next %] denotes a list obtained by

10

appending the list rep with a list containing the single item next. Following the label
expanding the macro builds up a new list in res by appending rep to it count times. Finally
the list res is returned as the macro result and the lexical items in it are inserted into the
compiler input stream.

The macro repeat may then be used as follows:

[% repeat, 5, a, b, c, end d %]

This program is equivalent to:

[% a, b, c, a, b, c, a, b, c, a, b, c, a, b, c, d %]

POP-2 also supports reflection at run-time, with the pre-defined function popval. This
function takes as argument a list of lexical items and treats it as a program representation
which is compiled and executed. An example of a call to popval is shown below:

popval([x + y => goon]);

This compiles the program representation up to the reserved word goon and executes it,
resulting in the value of x + y being written out. Here linguistic reflection is achieved by
allowing programs to create new program fragments that are integrated into the current
execution.

2.1.2.4 TRPL

TRPL [She90] is a statically typed language that supports compile-time linguistic reflection.
New code is generated and integrated with the original program during compilation. To do
this the programmer writes context sensitive macros which are functions that produce code
representations. When the compiler encounters a call to a macro it is executed immediately
and the resulting code replaces the original call. Within a macro definition the programmer
can access the information accumulated by the compiler during compilation up to the macro
call. In particular this allows the types of identifiers introduced earlier in the program to be
discovered, allowing the action of the macro to depend on the types of its arguments. The
code representations manipulated by the macros are in a parsed, abstract syntax form,
expressed as TRPL values.

The abstract syntax produced by the execution of a macro is fed back into the compiler and
compiled as normal. The new code may in turn contain macro calls, leading to further macro
executions as they are compiled. So long as this terminates eventually, at the end of
compilation the compiled program contains no reflective language constructs. Since all the
new code is processed by the compiler in the normal way it is guaranteed to be type-correct
once compilation succeeds. Linguistic reflection is achieved through the ability of a program
with macro calls to create new program fragments, during compilation, that are integrated
into the original program.

Figure 2.3 shows a TRPL program that defines a macro to expand any integer identifier into
an expression that increments it by one:

11

macro INC (x := make_id (?, ?));
env e;
let x_type := type_of (x, e) in @ get the type of x
case x_type

{ TYPE (integer) → EREP (a := a + 1, a := x)
others → x}

variable i : integer := 3;
INC (i)

Figure 2.3: Example of reflection in TRPL

The macro header in the first line specifies that the macro takes one parameter called x. All
macro parameters are code representations, i.e., instances of abstract syntax. The header also
contains a pattern, make_id(?, ?), that the parameter must match. This ensures that the
parameter passed to the macro is the representation of an identifier. The components of the
make_id construct are not important here so the ‘don’t care’ symbol ? is used. If the macro is
passed a code representation that does not match the pattern an error is reported and
compilation fails.

On the second line the variable e is bound to the compilation environment at the point of the
macro call. It is then used in the following line in the call to the pre-defined function type_of.
This returns a representation of the type of the given code expression in that environment. It
is the ability to discover this information that allows the output of a macro to depend on the
types of its parameters. In this example the type representation is used to check that the
identifier passed to the macro is of type integer. If so the result of the macro is an expression
that increments the variable by 1. The pre-defined macro EREP is used to avoid having to
write down a messy abstract syntax expression. EREP produces a parsed version of the
expression passed to it, with optional substitutions. If the identifier is not of the correct type
the others branch of the case clause is executed and the result of the macro is the input
expression unchanged.

After the macro definition a variable i is declared, followed by a call to the macro. When the
program is compiled the resulting executable code will be equivalent to that produced by
compiling the following program:

variable i : integer := 3;
i := i + 1

The checking of the type of the parameter in this example was shown to illustrate how
macros have access to type information. Even if no checking was performed, incorrect uses
of the macro, such as passing it a string identifier, would be detected at compilation time by
the type-checking of the macro’s output.

The reflective facilities in TRPL do not enlarge the class of programs that can be written. For
any TRPL program with macro calls there is also an equivalent non-reflective program that
contains the code produced by the macros. The power of the reflection is that it allows the
programmer to write highly generic, yet statically type-checked, functions that vary their
behaviour depending on the types of their parameters. This can give major savings in the
total amount of code that the programmer writes [SSF92].

2.1.2.5 PS-algol

In contrast to the compile-time reflection of TRPL, reflection in PS-algol [PS88] occurs at
run-time, by allowing running programs to access the PS-algol compiler which is a procedure

12

in the persistent store. Linguistic reflection is achieved through programs altering themselves
by creating new program fragments, at run-time, which are compiled and integrated into the
current execution.

The compiler operates on string representations of programs rather than abstract syntax
forms. The programmer passes a representation of the expected type of the result to the
compiler along with a string to be compiled. To compile successfully the string must
represent a procedure value. The compiler returns an instance of type pntr which is the
infinite union of all structure types. If the compilation was successful and the type of the
result matched that specified, the pntr is a structure containing the result. Otherwise an error
is reported and the pntr is a null value. In this scheme the subsequent use of the compiled
result can be type-checked statically. A dynamic check is required to determine whether the
compilation succeeded. Figure 2.4 shows an example of run-time reflection in PS-algol:

let compilerDb = open.database("compiler", "friend", "read")
let compileHolder = s.lookup("compile", compilerDb)

structure compilerPack(proc(string, pntr → pntr) compileFn)
let compile = compileHolder(compileFn)

let mkFun = proc(→ string)
begin

write "enter real expression over x"
let expr = reads()

"proc(real x → real) ; " ++ expr
end

let newFunCode = mkFun()

structure procHolder(proc(real → real) fun)
let dummyProcHolder = procHolder(proc(real a → real) ; 0.0)
let resultHolder = compile(newFunCode, dummyProcHolder)

if resultHolder is procHolder then
begin

let newFun = resultHolder(fun)
let res = newFun(1.3)

end
else writeString "compilation failed"

Figure 2.4: Example of reflection in PS-algol

The program begins by linking to the compiler procedure in the persistent store. It calls the
pre-defined procedure open.database to access one of the roots of persistence, an associative
table. The parameters specify the name of the table, its password and ‘read only’ mode. Line
2 uses another pre-defined procedure, s.lookup, to look up the pointer indexed by the key
"compile". Next, the form of the structure that the pointer is expected to point to,
compilerPack, is defined and the pointer dereferenced to give the compiler procedure.
Following this is the definition and call of the procedure mkFun which takes no parameters
and returns a string result. When called it generates the string representation of a new
procedure, a function that maps reals to reals. The body of the function is obtained, in string
form, from the user via a call to the pre-defined input procedure reads. There is no guarantee
at this stage that the result of mkFun, newFunCode, is a valid representation of a procedure.
The program then defines a new structure, procHolder, with one field of the expected type of
the result of compilation, which is a procedure that takes a real and produces another as its

13

result. A pointer, dummyProcHolder, to an instance of the structure containing a dummy
procedure value is also defined. This pointer is passed to the compiler procedure along with
the new code representation. The next line tests whether the result produced is a pointer to an
instance of procHolder. If so the compilation has succeeded and the structure is dereferenced
and the new function called. Otherwise an error is reported.

2.1.2.6 Napier88

Napier88 supports run-time linguistic reflection of a similar style to that of PS-algol.
Linguistic reflection is achieved through creating new program fragments in string form to be
compiled at run-time, and incorporating the resulting values into the running program. The
main difference is in the interface to the compiler. Napier88 allows code representing values
of any type to be compiled, rather than only procedures. The result returned from the
compiler is an instance of the infinite union type any. If any errors have occurred during
compilation the any contains a string describing them, otherwise the any contains a procedure
that will execute the compiled code when called. Figure 2.5 shows the same example in
Napier88:

use PS() with compilerEnv, IO : env in
use compilerEnv with compile : proc(string → any) in
use IO with readString : proc(→ string);

writeString : proc(string) in
begin

let mkFun = proc(→ string)
begin

writeString("enter real expression over x")
let expr = readString()

"proc(x : real → real) ; " ++ expr
end

let newFunCode = mkFun()
let compiledCode = compile(newFunCode)

project compiledCode as result onto
proc(→ proc(real → real))
begin

let newFun = result()
let res = newFun(1.3)

end
string : writeString("compilation failed because " ++ result)
default : {}

end

Figure 2.5: Example of reflection in Napier88

The program starts by linking to the environments compilerEnv and IO in the persistent root
environment obtained by calling the pre-defined procedure PS. Environments are extensible
collections of bindings, used to structure the persistent store and support incremental
evolution [Dea89]. The program then links to the compiler procedure and procedures to read
and write strings. The expected types of the procedures in the persistent store are declared.
The program then defines and calls the generator procedure as before and the resulting string
is passed to the compiler procedure. A projection clause matches the type of the value in the
any returned. If compilation succeeds the value is a procedure that will execute the compiled
code and return the result of type proc(real → real). This is called in the corresponding
branch. In the case of compilation failure the any is projected onto a string describing the

14

error. The default branch is required by Napier88 rules but should never be executed in this
program as one of the first two branches should always match.

Current work on the Napier88 compilation system is investigating further refinements to the
compiler interface [Cut92]. These involve a separation of the processes of syntax checking,
code generation and linking existing values into compiled code. This could allow a program
to be compiled in the context of an existing environment, or to be partially compiled and then
have different copies linked into different environments.

2.2 Type-Safe Linguistic Reflection

In general linguistic reflection involves a program modifying some form of itself in a way
that affects its continued execution. The previous section described languages in which this
modification takes place during the compilation of the program (Scheme, POP-2, TRPL), and
languages in which it takes place during execution (Lisp, POP-2, PS-algol, Napier88).
TRPL, PS-algol and Napier88 are strongly typed, that is, all computations are checked for
type correctness before they are executed. Some restrictions on the forms of linguistic
reflection allowable are necessary if strong typing is to be enforced efficiently.

Program compilation involves the translation of a source program into another form which is
interpreted at execution time. There is a trade-off between compiler and interpreter
complexity. Where a compiler performs a large amount of processing the compiled form
may be low-level, requiring only a simple interpreter. At one end of the spectrum the
compiled form is native machine code, and interpretation reduces to direct execution by the
CPU. Where the compiler is simple, however, a higher-level compiled form is produced and
an interpreter of greater complexity is required. Thus at the other extreme the compilation
phase is omitted and the source code is interpreted directly.

Where reflection takes place at compile-time a program contains distinguished sections that
are interpreted during the compilation process and affect the resulting compiled form:

compilation process

source
program

reflective
part

2

1

{

3

1 source program translated into compiled form
2 reflective part of source program translated into compiled form
3 compiled form of reflective part interpreted, affecting final compiled form

resulting
compiled
program

compiled
form of

reflective part

compiled
form of non-

reflective part

Figure 2.6: Compile-time reflection

With reflection at run-time, the action of interpreting the reflective parts of the compiled
form causes parts of the compiled form itself to be modified as shown in Figure 2.7:

15

execution
process

reflective
part {

reflective part
interpreted, altering
compiled program

compiled
program

modified version
of compiled

program

changed
part}

Figure 2.7: Run-time reflection

In strongly typed languages every action performed by a program is type-checked before it
takes place, in order to enforce the modelling and protection roles of the type system. To
attain type-safe linguistic reflection, the subject of the remainder of this chapter, all
modifications made by a reflective program to itself must be checked for type correctness
before the modified sections are executed. In the general case a modification to a program
involves both the removal or overwriting of some existing code, and the addition of some
new code. Strong typing thus requires checking that the program remains type correct after
the removals and additions.

A simple way to achieve this is to impose the following two restrictions on the forms of
reflection:

• that modifications be allowed to source programs only; and
• that the only modifications allowed be additions.

The first restriction allows the type checking to be performed using existing type-checking
technology which operates on source programs or parse trees. The second restriction, to
incremental modifications, means that only the newly added code needs to be checked, rather
than the entire modified program.

Future research may address the issues of validating program modifications that do not
adhere to these restrictions. In the first case this would involve either type checking low-
level compiled forms, from which much type information had been ‘compiled away’, or
constraining the modifications to those that preserved type correctness. In the second case it
would involve re-checking the entire program or verifying that the removal of a fragment of
code from a correct program left the program still correct.

With type-safe compile-time reflection, as in TRPL, newly generated sections of source
program are incorporated into the source program being compiled and they are type-checked
in the normal course of compilation. This is illustrated in Figure 2.8:

16

source program

reflective
part

1

1 reflective part translated into compiled form
2 compiled form of reflective part interpreted to generate new source code
3 new source code translated into compiled form
4 compiled form integrated with rest of compiled program

compile
time {

2

3

4

compiled
program}

Figure 2.8: Compile-time type safe linguistic reflection

With type-safe run-time reflection, as in PS-algol and Napier88, the newly generated sections
are compiled and the resulting compiled forms incorporated into the compiled form being
interpreted. This is illustrated in Figure 2.9. This style of reflection requires a dynamic
linking mechanism: in PS-algol and Napier88 it involves dereference of pointers and
projection of anys respectively. As the new sections are compiled in isolation from the
original source program they cannot refer to identifiers in scope in the original program. It
will be described later how this restriction may be relaxed to allow the incrementally added
new code to communicate with the existing code.

compiled
program

1

2 3

4

1 source program translated into compiled form
2 compiled form of reflective part interpreted to generate new source code
3 new source code translated into compiled form
4 compiled form incorporated with original compiled program

compile-time

run-time {
{

reflective
part }

compiled
program

source program

reflective
part {

Figure 2.9: Run-time type-safe linguistic reflection

2.3 Anatomy of Type-Safe Linguistic Reflection

2.3.1 Reflection in General

This section will attempt to define the nature of type-safe linguistic reflection more precisely.
Given a language, L, and a domain of values, Val, the nature of execution of a program in L
will be discussed. The function eval is the evaluation function:

17

eval : L → Val

The domain of values, Val, differs for different languages. Examples of Val include
numbers, character strings, final machine states, the state of a persistent object store, and the
set of bindings of variables produced by the end of a program’s execution.

For linguistic reflection to occur, there must be a subset of Val, called ValL, that can be
mapped into L . For example, ValL could be the set of character strings containing
syntactically correct L expressions. Since ValL is a subset of Val that may be translated into
the language L it may be thought of as a representation of L.

A subset of L consisting of those language constructs that cause reflective computation is
denoted by LR . L R is called the reflective sub-language and ValLR stands for its
representation. An evaluation of an expression in LR invokes a generator. In linguistic
reflection the generators, the programs that produce other programs, are written in a subset of
the language L which will be denoted by LGen. LGen may include all of L but the programs
written in LGen must produce results in ValL. The major relationships among the language
and value sets are:

LR ⊂ L
ValLR

 ⊂ ValL ⊆ Val
LGen ⊆ L

The significance of the proper subset relationships is explained later. Two functions are
required for a full description of linguistic reflection. The first, drop, takes a construct in LR
and produces a generator in LGen. The second, raise, takes a value in ValL and produces an
expression in L:

drop : LR → LGen

raise : ValL → L

Linguistic reflection is defined as the occurrence of the following pattern of computation,
within the eval function, in the evaluation of a program in L:

procedure eval(e : L) → Val ! This types e as L and eval as L → Val.
case
...
inLR (e) => eval(raise(eval(drop(e))))
...

Figure 2.10: The linguistic reflective nature of eval

where the ellipses cover the evaluations of non-reflective constructs. The construct eval(
raise(eval(drop(e)))) represents the intuition that during the evaluation of a reflective
expression the result of the evaluation is itself evaluated as an expression in the language.

The expression produced by drop is a generator that is evaluated by the inner eval. The type
of a generator g in LGen is:

18

g : Val → ValL

The generator takes some arguments and returns as its result an expression in ValL which is
then translated into L by raise. The result is finally evaluated by the outer eval. This is
illustrated in Figure 2.11. The whole diagram represents the eval function, as does the box
containing eval within the diagram. This nested structure is a consequence of representing
the recursive function eval by a flow diagram and will be a feature of other diagrams.

reflection path

drop

LR

e : L

eval

Vale
in
LR

ValL

raise

LGen

non-reflective
part of eval

yes

no

Figure 2.11: eval in linguistic reflection

In order to make these concepts more concrete an example language is introduced. In this
language:

• ValL is the set of character strings that represent sentences in L;
• LR contains the single verb execute which initiates reflection;
• drop presents a string expression to the inner evaluation function;
• raise maps a string representation to the corresponding sentence in L;
• LGen is the set of expressions in L that result in character strings in ValL.

In this example language, drop and raise are defined by:

drop(execute(stringExpression)) = stringExpression

raise("expression") = expression

Figure 2.12 gives an example of linguistic reflection in this language. The symbol ++ denotes
string concatenation. The inner eval concatenates the strings to produce the string "2+3",
while the outer eval evaluates the expression execute("2+" ++ "3") by the following
sequence:

19

eval(execute("2+" ++ "3"))

! the reflection is recognised
=> eval(raise(eval(drop(execute("2+" ++ "3")))))
=> eval(raise(eval("2+" ++ "3")))
=> eval(raise("2+3"))
=> eval(2+3)
=> 5

Figure 2.12: An example of linguistic reflection

The above example shows that some reflective expressions may be evaluated statically, at
compile-time, since here all the information to perform the inner eval may be found
statically. Uses of this style of reflection are described later. This is not always the case
however and some reflective computation may have to be delayed until run-time. Figure
2.13 shows such a computation in which run-time input is solicited by the readString
procedure. The inner eval is thus constrained to execute at run-time.

execute("2+" ++ readString())

Figure 2.13: Example of run-time linguistic reflection

A reflective computation is well formed if it terminates and the output of each inner eval is
syntactically correct and typed correctly. Termination requires that the inner eval must
eventually result in a value in ValL-LR

, the set of values that represent non-reflective program
constructs. Syntactic correctness requires that the result of eval(drop(e)) is in ValL for all
reflective expressions. A generated expression must be internally type consistent as well as
typed correctly for its context.

In general, type correctness must be checked for each individual generated expression. Type
checking generators for the types of all their possible outputs is a topic for further research,
and is undecidable in general.

2.3.2 Compilation

This section is concerned with the mechanisms for linguistic reflection in compiled
languages and the anatomy given so far must be further refined to describe these. Figure 2.14
shows the structure of eval as a composition of two functions: compile and eval'. The
function compile takes an expression in language L and produces another in a target language
L'. The function eval' is the evaluation function for L'. The types of the functions are defined
by:

compile : L → L'

eval' : L' → Val

L’L Valcompile eval’

Figure 2.14: eval as function composition

20

2.3.3 Compile-Time Linguistic Reflection

One way in which linguistic reflection can be accomplished in a compilation environment is
for reflective constructs to be compiled and executed during the compilation of a program
containing them. This is limited to cases where the reflection is over compile-time
information, that is static, and cannot be used for reflection that depends on values that are
only available at run-time.

In such a system, generators are used to express computations over the syntactic elements of
a program. As in any form of linguistic reflection, the computations are expressed in the
subset LGen of the language L. The reflective sub-language LR contains the calls to the
generators. That is, the pattern of evaluation that defines LR is only initiated by these
reflective calls. A possible drop function in this architecture is a function that takes a
reflective call, finds its generator definition and uses the definition and the call arguments to
form a call to the generator. The inner eval executes the call at compile-time to produce a
new expression in ValL. This in turn is transformed to an L expression by raise and presented
to the outer eval. Figure 2.15 illustrates this model. Such a pattern of reflection is called
compile-time linguistic reflection since the reflection is performed at compile-time even
though the evaluator, eval', is called. The type checking of the generated expressions is
performed by the compiler. The pattern of eval is given by:

procedure eval(e : L) → Val ! This types e as L and eval as L → Val.
eval'(compile(e))

procedure compile(e : L) → L'
if inLR(e)
then compile(raise(eval'(compile(drop(e)))))
else translate(e)

21

eval’

reflection pathdrop

LR

LGen

yes

L'no

compile

e : L

compile

Val

L'

e
in
LR

ValL

raise

translate

eval'

Figure 2.15: eval in compile-time linguistic reflection

The macro facilities in POP-2 and Lisp contain this style of compile-time reflection without
the type checking.

2.3.4 Optimised Compile-Time Linguistic Reflection

An optimised variant of the previous architecture can be produced by having the parser
generate abstract syntax as values in Val. This choice of ValL allows the result of the inner
eval to be passed directly to the post-parse compiler called postParseCompile. The raise
function reduces to the identity function in this optimisation. The drop function here
produces a compiled version of the generator in the target language generator subset LGen.
This optimised drop function is denoted by dropOpt. The structure of eval in this case is
shown in Figure 2.16. Here ev denotes the parsed form of e expressed in ValL and LRv

 the
parsed forms of LR. The pattern of eval is given by:

procedure parse(e : L) → ValL
…

procedure eval(e : L) → Val
eval'(compile(e))

procedure compile(e : L) → L'
postParseCompile(parse(e))

22

procedure postParseCompile(ev : ValL) → L'
if inLRv

(ev)
then postParseCompile(raiseOpt(eval'(dropOpt(ev))))
else translate(ev)

reflection
path

LGen'

compile

yes

L'

Val

no

e : L

ValL
ValLR

parse

ev : ValL

ev
in
LRv

raiseOpt
(identity)

translate

postParseCompile

dropOpt

eval'

eval'

Figure 2.16: eval in optimised compile-time linguistic reflection

The two versions of the same function eval' in both Figure 2.15 and Figure 2.16 highlight
some implementation choices. Although both eval' functions are semantically the same, they
may be implemented differently. For example, the eval' within the compiler could be an
interpreter function and the right hand eval' could be the machine executing machine code.
The details of these implementations are not germane to this description.

An example of such an architecture is the implementation of TRPL. The TRPL reflective
constructs are TRPL context sensitive macro calls, the elements of LR. The dropOpt function
takes the parsed arguments of a macro call and passes them to the macro definitions which
have been compiled into target language functions (generators) ready for eval'. Thus a call of
the compiler is avoided in the reflective eval. The result of executing the compiled macro
definitions is to produce new TRPL code expressed in the parsed form ValL. This code can
contain new function, type and even macro definitions. This new code is presented to the
post-parse compiler for compilation and evaluated using eval'. Type checking is performed
after each inner eval'.

Figure 2.17 gives an example of optimised compile-time reflection as it occurs in TRPL. ev
denotes the ValL form of e, while e denotes its compiled form.

23

eval(execute("2+" ++ "3"))
=> eval'(compile(execute("2+" ++ "3")))
=> eval'(postParseCompile(parse(execute("2+" ++ "3"))))
=> eval'(postParseCompile((execute("2+" ++ "3"))v))

! the reflection is recognised
=> eval'(postParseCompile(raiseOpt(eval'(dropOpt((execute("2+" ++ "3"))v)))))

! dropOpt produces "2+" ++ "3"Gen which denotes compiled generator of (2+3)v
=> eval'(postParseCompile(raiseOpt(eval'("2+" ++ "3"Gen))))
=> eval'(postParseCompile(raiseOpt((2+3)v)))

! raiseOpt is the identity function
=> eval'(postParseCompile((2+3)v))
=> eval'(2+3)
=> 5

Figure 2.17: Optimised compile-time linguistic reflection in TRPL

The original expression, execute("2+" ++ "3"), is parsed and then examined by the post-
parse compiler which recognises that it is a parsed form of a reflective construct. A generator
previously compiled into its L' form from a definition of execute is produced by dropOpt
using the parsed form of execute’s input. This generator, "2+" ++ "3"Gen, evaluates to the
ValL form of 2+3. The inner eval' executes the generator and the parsed form (2+3)v is
produced. This is passed to the post-parse compiler, which completes its compilation. It is
eventually evaluated in its compiled form by eval' as the completion of the original eval.

2.3.5 Run-Time Linguistic Reflection

Where reflection occurs at run-time the expression in LR, which causes the reflection, has
already been compiled. That is, it is the eval' function that recognises the expression in LR',
the compiled form of LR, to initiate reflection. The original expression e is in the process of
being evaluated by:

eval(e)
=> eval'(compile(e))
=> eval'(e) ! where e is the compiled form of e

The pattern of eval' in this case is shown by

procedure eval'(e : L') → Val ! This types e as L' and eval' as L' → Val.
if inLR'(e)
then eval(raiseRun(eval'(dropRun(e))))
else eval''(e)

Notice that the outer evaluation function is eval whereas the inner one is eval'. The outer
eval encompasses the compiler since it expands to eval'(compile(…)). The dropRun
function has the type LR' → LGen'. This is illustrated in Figure 2.18, where eval'' denotes the
non-reflective part of eval.

24

raiseRun
ValL

L

LR'

yes

no
Val

eval'

dropRun

compile

e
in
LR'

eval'

LGen'

L

eval''

e : L'

reflection path

Figure 2.18: eval in run-time linguistic reflection

An example of this form of reflection is the use of a run-time callable compiler together with
the ability to bind and execute newly compiled program fragments within the running
program. PS-algol and Napier88 with their callable compilers and incremental loaders are
examples of languages that provide run-time linguistic reflection. The function eval in Lisp
and the function popval in POP-2 are early examples of untyped run-time reflection.

Figure 2.19 gives an example of run-time reflection as it occurs in Napier88.

eval(execute("2+" ++ readString()))
=> eval'(compile(execute("2+" ++ readString())))
=> eval'(execute("2+" ++ readString()))

! now the reflection is recognised
=> eval(raiseRun(eval'(dropRun(execute("2+" ++ readString())))))
=> eval(raiseRun(eval'("2+" ++ readString())))

! if "3" is input for the call of readString
=> eval(raiseRun("2+3"))

! applying raiseRun and expanding eval
=> eval'(compile(2+3))
=> eval'(2+3)
=> 5

Figure 2.19: Run-time linguistic reflection in Napier88

The original expression is first compiled and is in the process of being evaluated by eval'
when the reflection is discovered. The compiled form execute("2+" ++ readString()) is
presented to dropRun which removes the execute verb. The inner eval' reads in the string and
concatenates it with "2+". If the string read in is "3" then the result of the concatenation is

25

"2+3". This expression is in ValL and is transformed into L by raiseRun. Finally the
expression 2+3 is compiled and evaluated by compile and eval'.

2.3.6 Combined Compile-Time and Run-Time Linguistic Reflection

The integration of compile-time and run-time linguistic reflection is a topic for further
research. Figure 2.20 shows a possible structure for eval in a combined system:

eval’

drop

LR

LGen

yes

no

compile

e : L

L’

e
in
LR

ValL

raise

translate

compile

L

LR’

no
Val

eval’

e
in
LR’

eval’

LGen’

ValL

L

e : L’

reflection path

yes

dropRun

raiseRun

eval’’

Figure 2.20: eval in combined compile-time and run-time linguistic reflection

2.4 Dimensions of Type-Safe Linguistic Reflection

The previous sections have described some particular mechanisms for type-safe linguistic
reflection. The reflective process has a number of dimensions, choices for each of which
must be made when designing a reflective system. These are:

• the way that the reflection process is initiated;
• the nature of the generators;
• the time at which the generators are executed;
• the environment in which the generators are executed;
• the time at which generated code is type checked;
• the environment in which the generated code is executed; and
• the way that generated code is linked into the original program.

26

2.4.1 Initiation of Reflection

Linguistic reflection is initiated by an expression in the reflective sub-language, LR, being
evaluated. Some examples of the form of LR expressions are:

• a simple verb applied to a program representation, such as execute "3+4";
• a macro call, such as INC (i);
• a call to a compiler function, such as compile(newFunCode).

2.4.2 Time of Generator Execution

In existing implementations the generators are executed at fixed points in the evaluation
process, either during program compilation or at run-time. A goal of current research is to
unify compile-time and run-time reflective technology in a single system, providing a
consistent notation for specifying both styles of reflection. One proposal for such a notation,
due to Connor [Con91], suggests the provision of two LR constructs. Both perform the same
function but they differ temporally and therefore in the environments in which they operate.
They are:

force which forces the reflective evaluation on the first encounter and replaces the force
construct with the generated result. It therefore performs the inner eval and the
drop.

delay which delays reflective evaluation. That is the inner eval and drop are not
performed until the program is executing after the initial compilation phase.

Compile-time linguistic reflection uses force implicitly whereas run-time linguistic reflection
uses delay. The two constructs could also be used in combination to give finer control over
the time at which reflection occurs.

2.4.3 Nature of Generators

Since the generators are all written in the language subset LGen, it is the nature of the
language forms that they manipulate that distinguishes different linguistic reflective
languages. The generators compute over and produce expressions in ValL. In some systems
this is simply the set of strings.

Where some processing of the expressions has already taken place, there is a possibility of
using more structured forms for ValL. In optimised compile-time linguistic reflection the
generators operate over parsed forms of L . Thus ValL can be the abstract syntax trees
constructed by the parser. The generators compute over these abstract syntax trees and form
new ones.

Readability of the generators is an important issue with either kind of program representation,
and is discussed in Section 2.7. When available, pre-defined abstractions operating over
program representations aid the task of defining new program representations through
analysis and composition of existing ones.

2.4.4 Execution Environment of Generators

The time of reflective evaluation affects the environment that is available to a generator.
There are two environmental issues here. First of all the generators may need access to the
details of the compilation such as the symbol table which provides type, scoping and
identifier definitions. This is trivially available in compile-time linguistic reflection but it is
also possible to parameterise the generators, with an environment, and to arrange that the
compiler environment is preserved and available at run-time for run-time linguistic reflection.

27

The second issue is that generators may link to existing values. This linking may be to R-
values, by copy, or L-values, by reference, and may be resolved at compile-time or delayed
until run-time.

2.4.5 Time of Type Checking of Generated Code

In optimised compile-time linguistic reflection the result of the generation is integrated into
the program being compiled. The internal type consistency of the new program fragment and
its type compatibility with the environment into which it is placed are both checked by the
post-parse compiler before execution.

In run-time linguistic reflection the result of the generation is type checked when it is
presented to the compiler as part of the outer eval. This checks for the fragment’s internal
consistency. The type compatibility of the fragment with its environment is checked when it
is linked into the original running program.

2.4.6 Execution Environment of Generated Code

In compile-time linguistic reflection the generated code fragments are incorporated into the
main program and are thus executed in the environment created by that program. In existing
run-time reflective systems the generated fragments are compiled and executed in isolation,
and the results then linked into the running program. It is possible for a generated program to
access values in scope in the original program that initiated the reflection, but only indirectly
through the persistent store: the main program can place a value in the store where it can be
accessed by the generated program.

More flexibility could be provided by parameterising generated code fragments with an
environment in which to execute, together with a mechanism to allow the environment at any
given point to be captured. Another mechanism that allows generated code to refer directly
to values available in the generator will be described in Chapter 5.

2.4.7 Linking Generated Code into the Original Program

In compile-time linguistic reflection the code produced by executing a generator is
incorporated into the program being compiled. The new code is compiled just as if it had
been part of the original program, thus no special linking mechanism is needed.

In run-time linguistic reflection the generated code is compiled and executed independently
of the main program and the results linked into the running program. This requires a
dynamic linking and type-checking mechanism.

2.4.8 Characterisation of TRPL, PS-algol and Napier88

The type-safe reflective languages TRPL, PS-algol and Napier88 represent three sets of
choices among the dimensions described above. The languages can be characterised as
follows:

2.4.8.1 TRPL

Linguistic reflection in TRPL is initiated when the post-parse compiler encounters the parsed
form of a macro call. The macro arguments, which are instances of TRPL abstract syntax,
i.e., elements of ValL, are passed to the compiled form of the corresponding generator. The
generator is executed to produce new instances of abstract syntax representing function and
type definitions and an in-line code expansion. Pre-defined abstractions are provided for
manipulating type and code representations.

28

Each generator has access to the compiler environment at the point of the macro call,
allowing the types of expressions to be queried. The type representations obtained have a
structured form which facilitates analysis to obtain type representations of sub-components,
such as a field of a record type. Existing data in the file system or from the user may be
accessed in a generator body using the standard IO facilities.

Abstract syntax produced by the execution of a macro is fed back into the post-parse
compiler and type-checked in the course of its compilation. This includes both checking the
internal consistency of the new program fragment and its compatibility with the surrounding
program. At run-time the code produced by a generator is executed in the context of the
preceding program, thus values introduced earlier in the program may be in scope in the
generated code.

2.4.8.2 PS-algol

Linguistic reflection in PS-algol is initiated at run-time when the evaluator encounters the
compiled form of a call to the following procedure:

compile : proc(string, pntr → pntr)

The procedure takes a program representation and a pointer to a structure of the appropriate
form to contain the expected result, and returns a pointer to a new structure containing the
compiled result. Each generator is a procedure that produces a string as its result. Thus the
inner eval' involves the evaluation of a procedure body. In the cases that a generator
executes without errors the string is an element of ValL, as it represents a PS-algol procedure.
The only pre-defined operations on program representations are string concatenation and sub-
string copying. The generators are executed at run-time and may access values in the
persistent store but have no direct access to compilation information. As a generator can take
arbitrary parameters it may be passed type representations in the same way as any other
values. Type representations can be obtained using the following pre-defined procedure:

class.identifier : proc(pntr → string)

This returns a string representation of the form of the structure denoted by the pointer. To
obtain a type representation for a non-structure value the programmer must create a structure
with the value as one of the fields, pass it to class.identifier, and process the resulting string
to extract the appropriate part.

Type checking of the program fragment produced by a generator occurs in two stages. The
first occurs during compilation of the main program, when the compatibility of the expected
type of the generated code with the rest of the program is checked. Secondly, at run-time the
compiler checks that the fragment is internally consistent and that its type matches the
expected type. If this fails the pointer returned by the compiler denotes an error structure that
contains information about the reasons for failure.

Generated program fragments are executed in isolation from the main program. If required
the programmer can arrange for values in scope in the main program to be accessible by
generated fragments, by placing them in the persistent store. Note that the result of
successfully executing a generated fragment is always a new procedure value, and that the
new procedure is itself used in the context of the main program, thus values in scope there
may be passed to it as parameters when it is called. The new procedure is linked into the
original program by dereferencing the structure returned by the compiler procedure.

29

2.4.8.3 Napier88

The provision of linguistic reflection in Napier88 is similar to that in PS-algol. The principal
differences are the use of the run-time compiler, the form of the type representations, and the
way in which generated code is linked into the original program. The compiler procedure,
compile, has the following type:

compile : proc(string → any)

The procedure compile is not limited to procedure representations but may be applied to a
representation of any Napier88 value or sequence of commands. The value injected into the
resulting any is a parameter-less procedure that will execute the compiled code in the case of
successful compilation, or a string explaining the fault in the case of a compilation error. The
programmer does not have to supply a representation of the expected type to the compiler
procedure. Some examples are shown below:

compile("3 + 4") => any(proc(→ int) ; 3 + 4) => 7

compile("xor screen onto screen") => any(proc() ; xor screen onto screen)
=> screen cleared

compile("proc(i : int → int) ; i + 1")
=> any(proc(→ proc(int → int)) ; proc(i : int → int) ; i + 1)
=> proc(i : int → int) ; i + 1

compile("abc") => any("error at line 1: …")

Figure 2.21: Examples of use of Napier88 compile procedure

A type representation for a value injected into an any may be obtained using the pre-defined
procedure:

getTypeRep : proc(any → TypeRep)

This returns a structured type representation, the form of which is described in [Cut92] and
defined in Appendix B. Generated code is linked into the original program with a run-time
type check of the any as illustrated below:

let result = compile("…")

project result as exec onto
proc(→ int) : { let seven = exec() }
proc() : exec()
string : writeString("compilation failed: " ++ exec)
default : writeString("result of unknown type")

Figure 2.22: Run-time checking of compile result

30

2.5 Applications of Type-Safe Linguistic Reflection

2.5.1 Genericity and Efficiency

There are a number of application areas for the styles of strongly typed linguistic reflection
described earlier. One of these is in supporting highly generic programs efficiently. The
advantage of genericity is that it may promote software reuse, with associated economic
benefits, by making the programs that are written more generally applicable than their non-
generic counterparts. Thus for a given application it is more likely that existing software will
be available, reducing the amount of new code that needs to be written.

A number of languages support polymorphic functions [Mat85, Tur85, Per87, MTH89,
MBC+89, DM90, HWA+90, She90]. These achieve genericity by allowing the programmer
to abstract over details of types. For example, a single function that counts the lengths of
homogeneous lists of any element type may be defined. This is possible because the type of
the list elements does not affect the way in which the length of the list is calculated. This
variety of polymorphism is known as parametric polymorphism. Another variety, inclusion
polymorphism, allows types to be partly abstracted over. For example, a function that
expects a record parameter with a single field name may also be passed a record with two
fields, name and address. The extra information is ignored by the function.

While these forms of polymorphism allow generic functions to be defined, their use is
confined to cases where the generic computation does not depend on the types of the
operands. There also exist application areas where a generic operation may sensibly be
defined over many different types, but where the type of the data does affect the computation.
Some examples are: natural join, deep equality testing and pretty-printing. In these cases the
‘same’ operation may be performed on instances of many different types, with details of each
computation being determined by the particular type. For example with natural join the types
of the input relations determine both the type of the result relation and the algorithm to
produce the result. This constitutes a form of ad hoc polymorphism [Str67].

Generic programs whose behaviour depends on the types of their data can be written using
type-safe linguistic reflection. The technique involves defining generators that, supplied with
the types for a particular call, produce source representations of code to perform the
operation for those types. The generators are used differently in compile-time and run-time
reflection. With compile-time reflection the following actions are performed:

• During compilation, generator definitions are compiled.

• Also during compilation, calls to generators are executed. The generators produce new
source code that is specialised to operate on particular types. They have access to type
information accumulated by the compiler during compilation up to the point of the
generator calls.

• The new source representations are incorporated into the original source program,
replacing the calls to the generators.

• After each generator call, compilation continues from the point where the call was
encountered. The new code produced by the generator is compiled and type-checked as
if it had been part of the original program.

• When compilation has been completed all the reflective constructs have been ‘compiled
away’ from the resulting compiled code.

With run-time reflection the following actions are performed:

• Generator function definitions are compiled along with the rest of the source program.

31

• When a generic operation is required to be applied to some data during execution, a
generator is called and the data passed to it. The generator is able to discover the types of
the data.

• The generator produces new source code to operate on those particular types.

• The new source code is compiled. If compilation succeeds the resulting compiled code is
applied to the data.

In both compile-time and run-time reflection the code produced by the generators may be
executed many times after the process of reflection has taken place, with no further
overheads due to the genericity. This contrasts with the interpretive scheme that would be
required to provide the same genericity if reflection were not used. In such a scheme the
costs of specialisation would be borne every time a generic operation was performed.

To illustrate this difference, consider both reflective and non-reflective implementations of a
generic operation to perform natural join in a language without built-in support for relations.
The reflective implementation produces a specialised version of natural join whenever it is
required. This version is specialised to the types of the input relations, specifying the names
and types of their attributes, and type of the result relation. It is possible to verify before any
call to the specialised function that it is supplied with relations of the correct types, thus the
body of the function itself need not contain any checking for the well-formed-ness of the
input relations. In addition the computation of the result type and the algorithm for
producing the result tuples can be performed in the generator rather than the specialised
function, which may be executed many times for each execution of the generator.

Without reflection, interpretation is required to provide the genericity. This solution requires
a more loosely typed representation of relations, where all relations have the same type, for
example a list of attribute names together with a two dimensional array of values. A single
natural join function can then be defined for all relations. The disadvantage is that more
computation is required at run-time: the compatibility of the input relations must be checked
and the algorithm to produce the result tuples determined from examination of the input
relations.

In the reflective solution to the natural join problem, the type dependent details of instances
of a family of functions are generated. Thus the generator can be thought of as a highly
generic abstraction over the functions. Another example of this approach is a set of four
traversal functions over recursive data types [She91]. These functions generalise the list map
and fold functions allowing them to be applied to any recursive data type. Sheard has also
used the technique to define a deep equality test for any type [She90]. Similarly, forms
systems for data entry and access can be automatically generated from type definitions.
Cooper has used such a technique to provide a rich repertoire of interaction modes over any
structures that may be defined in a range of data models [Coo90b].

The genericity achievable via linguistic reflection depends on the ability of a generator to
access type details and generate program fragments that are tailored to the types given when
the generator is executed. This constitutes a form of ad hoc polymorphism, but the genericity
attained in these examples exceeds the capabilities of current polymorphic type systems
[SFS+90]. In most polymorphic systems, the behaviour of polymorphic functions must be
essentially invariant over the range of input types. The examples listed above have behaviour
that varies too much to be accommodated by current polymorphic systems.

In conclusion, linguistic reflection supports the definition of generic programs whose
behaviour depends on the types of their inputs, and that are more efficient at run-time than
the equivalent interpretive versions. Efficiency is gained by allowing the input data to be
represented in a more specialised form while still supporting generic abstractions over the
data. This allows validity checking and algorithm construction to be performed earlier.

32

2.5.2 Software Evolution in Persistent Systems

Type-safe linguistic reflection may also be used in accommodating the evolution of strongly
typed persistent object stores. Characteristics of such stores are that the type system is
infinite and that the set of types of existing values in the store evolves independently from
any one program. This means that when a program is written or generated some of the values
that it may have to manipulate may not yet exist, and their types may not yet be known for
inclusion in the program text. For strong typing these values must have a most general type
but in some applications their specific types can only be found once they have been created.

An example of such a program is a persistent object store browser [DB88, DCK90] which
displays a graphical representation of any value presented to it. The browser may encounter
values in the persistent store for which it does not have a static type description. This may
occur, for example, for values which are added to the store after the time of definition of the
browser program. For the program to be able to denote such values, they must belong to an
infinite union type, such as Amber’s dynamic [Car85], PS-algol’s pntr or Napier88’s any.

Before any operations may be performed on a value of an infinite union type it must be
projected onto another type with more type information. This projection typically takes the
form of a dynamic check of the value’s type against a static type assertion made in the
program that uses it. A projection of a Napier88 any value was illustrated earlier, in Section
2.4.8.3.

The browser program takes as parameter an infinite union type to allow it to deal with values
whose types were not predicted at the time of implementation. However the program cannot
contain static type assertions for all the types that may be encountered as their number is
unbounded. There are two possibilities for the construction of such a program: it may either
be written in a lower-level technology [KD90] or else be written using linguistic reflection.

The linguistic reflective implementation of the browser program in Napier88 has a number of
components. First of all the value of the union type passed to the program is interrogated to
yield a representation of its specific type. If it is one of the base types such as string, int, etc.,
a method built into the browser is used to display the value. Otherwise the type
representation is used to construct a representation of a Napier88 program. The compiler is
called dynamically with this code representation as its argument, and returns some executable
code which is capable of performing the appropriate projection of the union type, along with
the required operations to browse the value. This new code is type-safe since it has been
checked by the compiler. A different program is generated for each different type of value
which is encountered during the browsing of the persistent store.

Figure 2.23 illustrates these actions. The types of the procedures used by the browser are
shown in the rectangles. Instances of the type TypeRep are used to represent Napier88 types.
Instances of the union type any are used as inputs to the browser and are also produced by the
compiler procedure. In this case the values produced by the compiler are themselves
procedures containing the code to display the values being browsed.

33

browser

proc(any)

compile

proc(string → any)

getTypeRep
proc(any → TypeRep)

?

persistent store

apply getTypeRep to
obtain representation

of value's type

apply compile to
translate source

execute compiled
form

value displayed

generator

proc(TypeRep → string)

apply generator to type
representation to generate source

of procedure to display value

apply pre-defined
procedure to display value

check whether
it's a base type yes

no

call of browser

Figure 2.23: Actions of reflective store browser

An outline of the browser code is shown in Figure 2.24:

let browser = proc(val : any)
begin

let valTypeRep = getTypeRep(val)

if valTypeRep denotes a base type then use built-in method else
begin

case true of
valTypeRep denotes a structure type :
begin

let new = compile(structureDisplayerGenerator(valTypeRep))

! new is of type any.
! structureDisplayerGenerator builds up a string program
! representation through analysis of valTypeRep.

project new as compiledCode onto
proc(→ proc(any)) : compiledCode()(val)
default : writeString("error in compilation")

end

34

other cases : use similar methods for other type constructors
end

end

Figure 2.24: Browsing using run-time linguistic reflection

For brevity the definitions of the procedures getTypeRep, generator, menu and writeString
have not been shown. Assume that a value of the following type, injected into any, is passed
to the browser:

type Person is structure(name : string ; age : int)

To display the value the browser needs to be able to construct and display a menu window
with an entry for each field. It must also be able to extract the field values for further
browsing should the user select one of the menu entries. The string produced by the
generator is shown in Figure 2.25. The single quote character is used in Napier88 as an
escape character to allow double quotes to be included in strings.

"type T is structure(name : string ; age : int)

proc(x : any)
project x as specificX onto

T : menu('"name : string'", '"age : int'",
proc() ; browser(any(specificX(name))),
proc() ; browser(any(specificX(age))))

default : writeString('"error'")"

Figure 2.25: String produced by generator in browser

Note that the program produced by the generator itself contains a call to the browser
procedure. This is achieved by linking the browser procedure into a location in the persistent
store where it can be accessed by the generated program. The details of this access have also
been omitted.

The algorithm shown is potentially inefficient as it requires reflection to be performed on
every encounter with a structure type. This can be improved by using the persistent store as a
cache for the results of reflection so that the generator call and compilation need not occur for
types encountered previously. To achieve this the browser maintains a persistent table of
display procedures, keyed by type representations. Each time the browser is called it checks
whether the table contains a procedure to display values of the same type as the value passed
to it, and if so that procedure is used. If there is no such procedure a new one is generated
using reflection and entered in the table before it is called. In this way the use of reflection is
only necessary on the first encounter with a particular type.

This example illustrates the use of linguistic reflection to define programs that operate over
values whose type is not known in advance. These programs potentially perform different
operations according to the type of their operands but without endangering the type security
of the system. The requirement for such programs is typical of an evolving system where
new values and types must be incrementally created without the necessity to re-define or re-
compile existing programs.

Linguistic reflection can be used to accommodate a wide range of system changes. For
example the schema changes of typical database applications become type changes in

35

database programming languages, and reflective programs that are based on type details can
regenerate code whenever a schema changes. If algorithms such as joins or form generation
are systematically derived from the type information these derivations will be re-computed.
With run-time reflection this happens lazily which may save computation since many
systems undergo a sequence of changes between runs of many of their applications. In
contrast the hand crafted method of providing the same functionality requires that a
programmer locate all the places where changes are necessary, perform all the changes
correctly and then re-validate the software. The reflective method gains particularly well in
this case as it may avoid the need for re-validation as is discussed below.

2.5.3 Implementing Data Models

A data model is typically defined by a data description language and by one or more data
manipulation languages (including query languages). Linguistic reflection allows these
languages to be implemented efficiently, avoiding any additional levels of interpretation.
Sentences in the data description language introduce new model constructs. A reflective
generator translates these sentences into type declarations and declarations of associated
procedures and introduces these into the computational context. Sentences in the data
manipulation language are then translated into corresponding algorithms against these
representational types and executed via reflection. In a persistent language this provides a
very rapid means of prototyping and evaluating a data model [CAD+87, Coo90a, CQ92].
With the optimisation strategies discussed below this can be developed into a reasonable
quality implementation of a DBMS for the data model.

This use of reflection to implement languages is not confined to data models. The technique
is applicable to any language and has been used in a commercial system to develop a set of
requirements analysis tools based on process modelling [War89, Bru91, BPR91]. Philbrow
has used the same technique to provide polymorphic indexing mechanisms over arbitrary
collections [Phi90].

2.5.4 Optimising Implementations

A form of optimisation has used linguistic reflection to directly declare data structures and to
manipulate them directly avoiding a level of interpretation. In addition to this optimisation, a
generator that develops concrete code for high level abstractions can choose from
implementation strategies in order to minimise costs [CAD+87]. Relational query
optimisation, for example, can be integrated directly into the compilation process via
linguistic reflection. Run-time reflection allows re-compilation and new optimisation as the
statistics of the database change [Cut92]. More general transformations of high level
specifications into implementations can also be accomplished using linguistic reflection
[FS91].

2.5.5 Validating Specifications

There are various ways linguistic reflection can be used to support validation of programs.
The first derives from the fact that generated program fragments are stereotyped in their
form. This stereotyping can be aimed toward producing forms that facilitate verification
efforts [FSS92, SSF92]. Generators themselves can be analysed in order to verify properties
of all generated expressions. Though this is a second order problem, there is the possibility
of stereotyping the generator programs themselves to produce sub-languages that support the
second order reasoning. Validating generators would be especially useful since it would
mean that programs that were regenerated as a result of system evolution such as changes to
types would not need to be re-validated.

Theorem proving itself can be integrated with compilation using linguistic reflective
capabilities. A version of the Boyer-Moore theorem prover kernel has been implemented in
TRPL working over the parsed form of TRPL’s functional core language. Using this kernel,

36

validation of properties of TRPL functional programs can be performed as a part of the
compilation process. For example, the problem of verifying that database integrity
constraints are invariants of transactions can be addressed by this approach [SS89].

2.6 Anatomy of Generators

A number of uses for type-safe linguistic reflection have been described, giving significant
benefits in the areas of software reuse and system evolution, implementation and
optimisation. Currently the main constraint on the wider use of the technique is the difficulty
of writing and understanding generators. This section will examine the various components
found in generator bodies, describe the existing type-safe reflective languages in terms of the
framework developed, and identify factors that affect the ease with which generators may be
understood.

2.6.1 Generator Components

Each generator contains a result expression that when evaluated produces the generated
program fragment. The code in this expression itself represents code, thus it belongs to the
subset of L containing sentences that, when evaluated, produce values in ValL. This subset
will be denoted by LL. The set LL can be partitioned into two subsets, LLConst

 and LLVar
. The

former, LLConst
, contains those sentences that produce the same values in ValL for all

executions, while the latter, LLVar
, contains sentences that may evaluate to different values on

different executions. This is illustrated in Figure 2.26:

L

LL

LLVar LLConst

LL ⊂ L

LLConst ⊂ LL

LLVar
 ⊂ LL

LLConst
 ∩ LLVar

 = ∅
LLConst

 ∪ LLVar
 = LL

Figure 2.26 Subset relationships between code categories

Some examples of sentences in these sets are shown below for a language in which members
of ValL are strings and ++ denotes concatenation:

a := a + 1 ∈ L
"a := a + 1" ∈ LLConst

"a := " ++ makeCode() ∈ LLVar

Note that the last example is itself a composition of two code fragments, one a member of
LLConst

 and the other a member of LLVar
. In general a generator body contains a section of code

in L , here termed the prelude, followed by a section in LLVar
 that defines the resulting

generated fragment, here termed the result definition. This is illustrated in Figure 2.27. The
purpose of the prelude is to set up an environment in which the result definition is evaluated.

37

parameters

prelude ∈ L

result definition ∈ LLVar
{generator

definition

some components ∈ LLConst

other components ∈ LLVar

}
}

Figure 2.27: Structure of a typical generator

In simple cases the generator body may contain only the result definition, and that code may
lie in LLConst

 rather than LLVar
. In the general case the execution of a generator involves the

evaluation of the prelude and those parts of the result definition that lie in LLVar
, i.e., the

variable parts. The parts in LLConst
 do not need to be evaluated as they are constant over all

executions of the generator. Typically the evaluation of the prelude affects the program
fragments produced in the result definition. The result of the generator is obtained by
composing the newly created fragments with the constant parts of the result definition.

2.6.2 Components in TRPL Generators

The generators in reflective TRPL programs are context sensitive macros. The example from
Figure 2.3 is reproduced in Figure 2.28, with the constant parts of the result definition shown
in outline text, and the variable parts in italic text. To reduce confusion the reserved words
have not been emboldened.

macro INC (x := make_id (?, ?)); @ Plain text is in L.
env e; @ Outline text is in LLConst

.
let x_type := type_of (x, e) in @ Italic text is in LLVar

.
case x_type

{ TYPE (integer) → EREP (a := a + 1, a := x)
others → x}

Figure 2.28: Code categories in a TRPL generator

The body of the macro contains a call to the pre-defined macro EREP, which expands to an
abstract syntax representation of the code passed to it. That code is a := a + 1, where a is
substituted by whatever identifier has been passed to INC. Although a parsed form of code
representation is used this is disguised by EREP which allows the code in LLConst

 to be written
textually. The substitution written after the main code a := a + 1 provides the means for
composing the constant and variable parts of the result definition. Further examples of
reflection in TRPL are given in [SS91].

2.6.3 Components in PS-algol Generators

The generators in reflective PS-algol programs are procedures that return strings. The
example from Figure 2.4 is reproduced in Figure 2.29 below, with the same formatting as the
TRPL example above:

38

let mkFun = proc(→ string) ! Plain text is in L.
begin ! Outline text is in LLConst

.
write "enter real expression over x" ! Italic text is in LLVar

.
let expr = reads()

"proc(real x → real) ; " ++ expr
end

Figure 2.29: Code categories in a PS-algol generator

Here the code in LLConst
 is enclosed by quotes. It is composed with the variable parts of the

result definition by string concatenation.

In [Coo90a], Cooper describes a variation on this notation in which the main result definition
is a single string with embedded place-holders, of the form #IDENTIFIER, as shown below:

let mkFun = proc(→ string) ! Plain text is in L.
begin ! Outline text is in LLConst

.
write "enter real expression over x" ! Italic text is in LLVar

.
let expr = reads()

let program := "proc(real x → real) ; #EXPRESSION"
replace(program, "#EXPRESSION", expr)
program

end

Figure 2.30: Code categories in a PS-algol generator with place-holders

Each place-holder corresponds to a variable part of the result definition. Following the
definition of the string the programmer specifies substitutions for the place-holders using the
procedure replace. In fact replace is not a real procedure since the textual form of the entire
generator is pre-processed before compilation to give a form equivalent to that in Figure 2.29.
In more complex generators this scheme improves readability by reducing the syntactic noise
of string concatenation in the result definition, providing meaningful names for each section
of LLVar

 code, and making those sections easy to pick out.

2.6.4 Components in Napier88 Generators

The generators in reflective Napier88 programs have the same form as in PS-algol. For
completeness the example from Figure 2.5 is shown below. It is very similar to that in Figure
2.30 apart from minor syntactic differences.

let mkFun = proc(→ string) ! Plain text is in L.
begin ! Outline text is in LLConst

.
writeString("enter real expression over x") ! Italic text is in LLVar

.
let expr = readString()

"proc(x : real → real) ; " ++ expr
end

Figure 2.31: Code categories in a Napier88 generator

39

2.6.5 Factors in Understanding Generators

Programmers writing generators in various languages have reported that generators are
considerably more difficult to write and understand than conventional programs. Some
possible reasons for this are:

• A generator may describe a large class of programs rather than a single one. Although a
conventional program may have many different possible execution paths, its structure is
fixed. The structure of different programs produced by a single generator may differ
widely. To understand a generator the reader needs to be able to determine the features
common to all programs produced by it, and to understand how the parts that vary among
the resulting programs relate to the input parameters to the generator.

• The constant and variable parts of the result definition appear different even though they
both represent parts of the resulting program fragment. By the end of the generator
execution they are integrated seamlessly but this is not apparent from inspection of the
generator source code.

• Code in different parts of the generator are evaluated at different times. During the
execution of the generator, the prelude and those parts of the result definition in LLVar

 are
evaluated. Later during the reflection process the new code produced by the generator,
comprising the LLConst

 parts of the result definition composed with the fragments produced
by the evaluation of the LLVar

 parts, is evaluated. Thus adjacent parts of the result
definition may be evaluated at different times and in different environments.

• The programmer must understand several mappings:

— between sentences in L and their representations in LLConst
,

e.g. a := a + 1 → "a := a + 1"

— between sentences in L and their representations in LLConst
 or LLVar

 used in code
manipulation functions,
e.g. a := a + 1 → "a := a + 1"
or a := a + 1 → assign("a","a + 1")

— between sentences in LLConst
 or LLVar

 and the sentences in L which they represent,
e.g. "a := a + 1" → a := a + 1
or assign("a","a + 1") → a := a + 1

• In languages where L L comprises string expressions, manipulation of program
representations is unwieldy. One example of such a manipulation is determining the
result type of a procedure from its representation in ValL. This is non-trivial when the
representation is a string, as it involves parsing the string. A more structured
representation might contain a representation of the result type as a component that could
be accessed directly.

2.7 Research Areas

The useability factors identified above suggest several areas for research in reflective
programming. One is to improve support for writing generators: some desirable features are
listed below.

• When reading a generator definition, it should be easy to identify which parts of the result
definition are constant, in LLConst

, and which parts are variable, in LLVar
.

40

• It should be possible to use different code representation forms in the constant and
variable parts of the result definition. A textual form, such as strings, is easy to read in
the constant parts as it gives the simplest mapping between LLConst

 and L. An abstract
syntax form may be more suitable for the variable parts as it facilitates the expression of
code representation manipulations.

• Programming tools could aid understanding of generators. For example, a tool could be
provided to display the resulting code produced by a generator for any given inputs. This
could help in understanding the relationships between generator parameters and the code
fragments produced by LLVar

 code.

Another research area is the provision of flexible and general linking mechanisms to support
linking between generators, generated program fragments, the compilation environment and a
persistent store.

Chapter 5 describes an interactive system that is designed to assist in constructing reflective
Napier88 programs. A window-based generator editor reduces syntactic noise in generator
result definitions, and allows the programmer to view the resulting code for any particular
generator execution. Hyper-program linking facilities, to be explained in Chapter 3, allow
both generators and generated program fragments to contain direct links to values in the
persistent store.

2.8 Conclusions

Behavioural and linguistic reflection allow a programming system to affect its own
behaviour. In behavioural reflection this involves a program altering the way it is interpreted,
while in linguistic reflection a program can change itself. A style of linguistic reflection
appearing in strongly typed programming languages has been identified, defined and
described. This style, termed type-safe linguistic reflection, can extend the class of
algorithms that can be written in a type-safe manner. Linguistic reflection is characterised by
the ability of a program to generate code in its language that is to be integrated into its own
execution. This ability provides a base for generator technology that can be integrated with a
programming language in a uniform and type-safe manner. While this capability has been a
feature of many interpreter based languages with weak type systems, it is relatively new in
compiler based, strongly typed systems. Two styles of linguistic reflection have arisen in
database programming languages, compile-time and run-time. Both have been described in
detail, allowing a comparison of the mechanisms as currently implemented.

Many uses have been found for linguistic reflection in the database programming area.
These uses are characterised by a need for a high level of genericity in specifying data and
procedures, a requirement that has proved problematical to meet using programming
language type systems alone. Two such uses have been detailed and several more discussed.

Type safety has been achieved in PS-algol, Napier88 and TRPL by type checking each
generated program segment, which is necessary when the complete programming language
can be used to write generators. Limiting the language subset available for writing
generators may allow the generators to be type checked for the type of all output at one time.
This is a topic for future research. Other work to be done includes combining the two styles
of reflection presented here, and exploring the relationship of linguistic reflection with other
kinds of reflection.

The structure of the generators in existing systems has been analysed, three categories of
generator code identified, and proposals made toward making generator definitions easier to
understand. Ease of use is a significant problem in existing reflective language systems.
Although once a generator is written it can be used to effect by any programmer, only a
minority of the programming community are likely to write their own generators. This

41

situation might be improved with better generator definition notations and programming
tools.

42

3 Hyper-Programming

3.1 Introduction

Most programs written in persistent languages access data in a persistent store. Programs
contain denotations for this data, which may include values, store locations that contain
values, and types. At some stage during the software development process the denotations in
a program are resolved to the actual data. The terms defined below will be used in describing
this resolution:

data item: a value, or a location containing a value, in the persistent store;

access path: a description of the position of a data item in the persistent store;

access specification: the access path of a data item together with a description of its
expected type.

Each program contains an access specification for each of the data items that the program
links to. In PS-algol and Napier88 this code is executed at run-time and any related errors
occur at that time. Errors can arise due to the data not being present at the specified position
in the store, or its type being different from that specified. In addition to accessing data
items, programs can also access types in the persistent store but the nature of this access will
be discussed later.

Often the programmer knows that some of the data items linked into a program exist in the
persistent store at the time the program is written. In such cases a language system could
allow the programmer to indicate the required data items by interactive gesture with a mouse,
instead of writing an access specification for each data item. Graphical representations of the
appropriate data items of the store could be pointed to by the programmer. No access
specification would be required as the access paths and type descriptions could be obtained
from the system’s internal representation of the persistent store.

The linking of the program to the data items specified in this manner could be handled by the
system in several different ways. It could perform the same actions as if the programmer had
written normal access specifications. It would thus verify at run-time that the store contained
data items with the specified access paths and types, and then link those items into the
running program. Another strategy is to link the data items directly into the program as it is
written.

This chapter will explore the possibilities of the latter option. This scheme requires a change
in the nature of the source program: the textual description of the computation is augmented
with tokens that denote the persistent data items the program accesses. By analogy with a
hyper-text graph, in which a piece of text contains embedded links to other pieces of text, this
type of source program is termed a hyper-program [FDK+92, KCC+92b]. It consists of a
textual source program with embedded links to values, locations and types. To construct a
hyper-program the programmer types in program text and then inserts tokens that denote data
items identified by pointing to their graphical representations.

Figure 3.1 shows an example of a hyper-program. The hyper-program contains both text and
a token that denotes a data item in the persistent store, a procedure to write out strings. The
hyper-program contains a link to the procedure itself rather than an access specification for it.

43

persistent store

writeString

hyper-program

for i = 1 to 10 do
begin
 ("Hello world")
end

direct link
procedure

value

Figure 3.1: A hyper-program

The tokens in a hyper-program denote references to, rather than copies of, values and
locations in the persistent store. This contrasts with linking mechanisms in file-based
languages such as C [KR78], with which a program can be linked to a number of other
programs. These involve copying code from other programs into the main program code. In
addition, hyper-programs can contain links to any data items rather than just to sections of
code.

A number of benefits of using hyper-programs will be described. These are:

• support for program composition and software reuse;
• being able to perform program checking early;
• being able to enforce associations from executable programs to source programs;
• availability of an increased range of linking times;
• reduced program verbosity; and
• support for source representations of procedure closures.

The principal requirement for supporting a hyper-programming system is a persistent store to
contain the program representations and the data items corresponding to the tokens in the
programs. The assumption is made here that the store is stable and that it supports referential
integrity. This means that once a reference to a data item in the store has been established,
the data item will remain accessible for as long as the reference exists.

Secondly, the hyper-program source representations must be denotable values in the
programming language. Linguistic reflective facilities are required to support the conversion
of hyper-program representations into executable programs. Where the executable programs
produced by reflecting over the hyper-programs are themselves language values, a suitable
representation is required. One possibility is to use procedure closures; these are already
supported as first class values in a number of languages.

A third requirement is for tools that provide the programmer with the graphical
representation of the persistent store. The representation shows the values, locations and
types in the store and the links between them. The programmer can point to the
representations of specific data items and obtain tokens for them to be incorporated into
hyper-programs.

These implementation requirements are discussed later in Chapter 6. This chapter elaborates
on the motivations for building a hyper-programming system and on its benefits. To be
useful in practice a hyper-programming system will also have to support additional facilities
for ‘programming in the large’, that is, building large applications from smaller components.
These include facilities for controlling the sharing of components between applications, for

44

limiting the visibility of some components for protection reasons, and for imposing a degree
of partitioning on the persistent store to aid intellectual manageability and execution
efficiency. A model to support these facilities, the hyper-world model, is proposed.

3.2 Motivations and Benefits

3.2.1 Program Composition

The primary motivation for providing a hyper-programming system is to allow the
programmer to compose programs interactively, navigating the persistent store and selecting
data items to be incorporated into the programs. This reduces the need to write access
specifications for persistent data items that are accessed by a program.

Existing languages that allow a program to link to persistent data items at any time during its
execution, such as PS-algol and Napier88, require it to contain code to specify the access
path and type for each data item. The access path defines how the data is found by following
a particular route through the persistent store starting from a root of persistence. The type
specifies the expected type of the data at that store position. When a program is compiled the
compiler checks that subsequent use of the data is compatible with its expected type. When
the program is executed the run-time system checks that the data is present at the declared
position and that it does have the expected type.

This mechanism gives flexibility because a program can link to data in the store at any time
during its execution. However in many cases the programmer knows that a particular data
item is present in the store at the time the program is written. Although the programming
system could obtain all the information in the access specification by inspecting the data item
at that time, the programmer must still write the access specification.

In a hyper-programming system the programmer has the option of linking existing data items
into a program by pointing to graphical representations rather than writing access
specifications. One example of such a graphical interface is described in Chapter 4. Note
that the ability to link to data items at run-time is still required in the cases where data
becomes available only after a program is written.

3.2.2 Early Checking

Hyper-programming can provide improved safety in several ways. One of these is that it
allows some program checks to be performed earlier than normal, subsequently giving
increased assurance of program correctness. This is possible because data items accessed by
a program may be available for checking before run-time. Referential integrity then ensures
that the checked data remains available at run-time.

Checking can be performed at several stages in the program development process in existing
systems. The principal opportunities are at compilation-time when a program is translated
into an executable program, and at run-time when the executable program is executed.
Categories of checking include checking programs for syntactic correctness and type
consistency, and checking persistent data access. Usually the program checks are performed
at compilation-time, although in some syntax directed programming systems [AHM88] type
consistency is verified as a program is constructed. The ability to bring forward the checking
of persistent data access in a hyper-programming system is now discussed.

3.2.2.1 Checking Persistent Data Access

In conventional strongly typed persistent systems a program contains an access specification
for each persistent data item used. These access specifications are checked at run-time: at
that time the system verifies that each data item is in fact present in the store, with the
previously declared access path and type. This is illustrated in Figure 3.2:

45

access path
type

use p1 : t1, p2 : t2, p3 : t3 as x in access
specification

program

persistent store

type t1

type t2 type t3

path p1

path p2

path p3

persistent root

d 1

d2 d3

check against
store at run-
time

Figure 3.2: Access specification with run-time checking

In the program the identifier x is introduced to denote the data item obtained by traversing the
access path p1 : t1, p2 : t2, p3. In the diagram this data item is labelled d3. The type of x is
declared to be t3. Each component of the path—p1, p2 and p3— is a fragment of code that
defines a route between two data items. p1 is first applied to the persistent root to give data
item d1, then p2 is applied to d1 to give d2, and finally p3 to d2 to give d3. The types of the
intermediate data items, t1 and t2, also form part of the access path. Note that there may be
other routes to d3 apart from the one shown. At compilation-time the system checks that the
access specification is consistent with the rest of the program. At run-time it checks that the
access specification is valid with respect to the current state of the store, i.e., that d3 can in
fact be accessed along the given path and that it does have the declared type t3.

A program execution will fail if the store does not contain a route to a data item
corresponding to the access path specified in the program. Thus even if it is known at the
time of writing that a particular program will execute correctly, it cannot be predicted when it
may fail on some future execution.

The use of hyper-programs as source representations allows the checking of access
specifications to be performed before run-time. Each token embedded in a hyper-program
denotes a data item that exists in the store at the time the hyper-program is composed. The
process of checking the access path is moved from run-time to program composition time.
The access path is established incrementally as the programmer manipulates the graphical
representations of the data in the store to locate the required data item. Once the path has
been established the data item at the end of it is linked into the hyper-program and the path
need not be followed again at execution time. This is illustrated in Figure 3.3. The hyper-
program will be unaffected if the access path is then removed. This might occur, for
example, due to the link from d2 to d3 being overwritten by a link to some other data item.

46

persistent store

type t1

type t2 type t3

path p1

path p2

path p3

persistent root

d1

d2 d3

use as x in

hyper-program

token

access path followed when token is
incorporated into hyper-program

Figure 3.3: Access path with hyper-program

The access path part of the access specification is established during hyper-program
composition. The other part, the type specification of the data item, is checked when the type
consistency of the hyper-program is verified at or before compilation-time. The system
checks that the type of the data item denoted by the token is compatible with the use of the
token in the program. The various checking phases are summarised in Figure 3.4:

composition-time compilation-time run-time

conventional
persistent

check type consistency of
program

check presence and type
of data

hyper-programming locate data check consistency of
program with data

Figure 3.4: Run-time data checking and hyper-program checking

Creating direct links from a hyper-program to values in the persistent store, with the
associated safety benefits described above, is only applicable where values are present in the
store at hyper-program composition time. Added flexibility can be gained by using tokens to
denote mutable locations in the store. Linking a location into a hyper-program involves the
same processes as for linking a value, with the difference that the value associated with the
token changes when the location is updated. Updates to the location may occur at any time
after the composition of the hyper-program. Strong typing ensures that the type of any value
assigned to a location is compatible with the type of its original contents. This allows the
type checking of persistent locations to be performed at compilation-time only. The values in
locations associated with the tokens in a hyper-program can vary but their types will always
remain the same. Where a token denotes a location, that location is linked directly into the
executable program produced from the hyper-program, so that updates to the location also
affect the executable program.

3.2.2.2 Other Kinds of Checking

Language systems also perform other kinds of checking at run-time. Some of this checking
can also be performed earlier in a hyper-programming system. An example of this is
dependent type checking.

47

A dependent type is a type that depends on a value, requiring run-time type checking in
conventional systems. To determine whether two dependent types are compatible, the
language’s type checker takes account of the associated values as well as their structure. An
example of a dependent type is the generic type map [ALP+91], instances of which are
associations between sets of values. To create a map the programmer calls a generating
procedure, passing it as a parameter another procedure that determines whether two given
values of the domain type are equal. This equality-testing procedure is used in the
implementation of the map. Language rules define that two maps are type equivalent if and
only if their respective domain and range types are equivalent, and their equality-testing
procedures are identical. Because of this it is not generally possible to type-check at
compilation-time a program that contains map operations, as the map values themselves must
be tested.

However, in a hyper-programming system the value on which a dependent type depends may
be linked directly into a program, and may thus be available for checking at compilation-
time. This makes it possible for the system to check operations on dependent types at
compilation-time rather than planting code in the executable program to perform the
checking at run-time. The system may also provide tools that allow the programmer to verify
the type compatibility of selected values before they are linked into the hyper-program.
Transmission of the results of such checks to the compilation system is a topic for future
research.

More generally the programmer may perform arbitrary checks on data values before linking
them into a hyper-program, by writing and executing other programs that compute over them.
If the checks succeed, the code that performs the checking can then be omitted from the main
hyper-program.

3.2.3 Source Code Control

3.2.3.1 Relationships Among Program Forms

Safety can also be improved with respect to the relationships between executable programs
and source programs. In a programming system it is often desirable to maintain links
between executable programs and their corresponding source code programs, to facilitate
debugging and software evolution. These links enable the system to show the source code
corresponding to the point where an error occurs in a running program, or to supply the
source code for a given executable program so that it can be modified and a new version
created.

In existing systems these links operate by conventions and can be corrupted by programmer
actions that do not conform to those conventions. Given a language that supports executable
programs as first class values—for example, procedures—a hyper-programming system can
enforce links from executable code to source code. To illustrate this, the relationships
between these different forms of code and other data values will be described, first in general
and then with particular reference to file-based systems, persistent systems and finally hyper-
programming systems.

Application development involves a number of activities including the following:

• constructing source code programs;
• compiling source code to give intermediate programs;
• linking intermediate programs to give executable programs;
• linking existing data items into executable programs; and
• executing linked programs in a run-time environment.

The software entities involved in these activities are:

48

• source programs;
• intermediate programs—these are not executable as the code in them makes unresolved

references to other programs;
• executable programs—these can be executed directly; and
• data items that are manipulated during execution.

Language systems support several varieties of relationships between the software entities
listed above. These are causations, associations and direct links.

Causations are one-way ‘cause and effect’ relationships. A causation from an entity A to
another entity B exists if a change to A results in a corresponding but indirect change to B.
Indirect means that some other process must be performed for the change to propagate. An
example of a causation is the relationship between a source program and the corresponding
compiled version. A modification to the source program causes a corresponding change in
the compiled program but only after the process of compilation.

Associations are general relationships between entities. An example is an association
between an executable program and the corresponding source program, maintained by a
source level debugging system. This information is not intrinsic to the associated entities
themselves but is maintained by an external mechanism. In general the accuracy of
associations depends on adherence to conventions: if changes to the entities are made outside
the control of the external mechanism the associations may become invalid. In the example
the source program could be updated without notifying the debugging system, in which case
its association with the executable program would become invalid.

Direct links are references between entities in the run-time environment. A direct link from
an entity A to another entity B exists if a change to B results in a corresponding and
immediate change to A. This could be implemented by storing the address of B inside A.
The language systems considered here support identity, that is, a reference to a given entity is
guaranteed to remain valid and to refer to the same entity for as long as the reference exists.
Thus a direct link from A to B always remains valid regardless of the operations performed
on B. A change to B has an immediate effect on A without the need for any intermediate
process.

3.2.3.2 Languages with External Storage Systems

In languages such as Pascal [Wir71], Ada [DOD83] and C, the persistent data, that which
survives for longer than the program execution that creates it, is manipulated differently from
the transient data. It is held in a storage system, separate from the run-time environment,
with which programs communicate through an interface. An example is the Unix file system
[RT78].

The program entities listed earlier, source programs, intermediate programs and executable
programs, all reside in the external storage system. Source programs are compiled to produce
intermediate programs. Where necessary a linker is then used to link in existing intermediate
and executable programs from a program library. This linking involves combining the
intermediate program with copies of the library programs to produce a new executable
program. At run-time the resulting executable program is itself copied into the data space of
a run-time environment and evaluated in that context. The running program may create new
data items (values and locations) with direct links between them. It may also access existing
data in the external storage system. The run-time environment disappears at the end of
execution, along with any new data items created in it.

Figure 3.5 summarises the causations and associations between the various entities:

49

causations associations

from to from to

source program intermediate program intermediate program source program

intermediate program executable program executable program intermediate program

intermediate library program executable program executable program intermediate library program

executable library program executable program executable program executable library program

executable program run-time data item

file system data run-time data item

run-time data item file system data

Figure 3.5: Causations and associations

Associations involving run-time data items are not maintained, as the data items are transient.
The relationships are illustrated pictorially in Figure 3.6. Here rectangles represent source
programs, rounded rectangles represent intermediate programs, diamonds represent
executable programs and ellipses represent data items that can be denoted in the
programming language.

program
data

program library

intermediate
program

run-time environment

source
program

executable
program

copy of executable code

compilation

copying and
execution

linking

access
through file

system
interface

direct link

causation

association

Key

data item

file system

Figure 3.6: Relationships in a file-based system

A file-based system may involve linguistic reflection. For example in the Unix environment
C programs are used to convert other C source programs into intermediate and executable
programs which are executed within the system.

50

3.2.3.3 Persistent Languages

Persistent languages that support first class procedures are now considered. Examples of
these are PS-algol, Napier88, Galileo [ACO85, AGO88], P-Quest [BMM+92, MMS92] and
STAPLE [DM90]. The model of persistence in these languages is persistence through
reachability [ABC+83]: this means that a data item will persist at the end of a program’s
execution if and only if it is reachable from one or more persistent roots.

In these languages executable programs can be represented as procedures or functions and
can thus be stored in a persistent store rather than a file system. Since each executable
program is a language value it can contain direct links to other data items, and other values
can contain direct links to it. A separate program library is not necessary as direct links to
other executable programs in the store can be incorporated into an executable program when
it is formed. Programming techniques to achieve the effects of incremental linking in this
way are described in [AM84, AM85, AM86, DCC92]. As executable programs are values,
incremental linking of code and incremental loading of data reduce to the same problem and
are handled by the run-time system.

Note that although the languages listed above use procedure closures to represent executable
programs this is not essential to the schemes described in this section. All that is required is
some mechanism to denote executable programs as values in the programming language.

The persistent store may subsume the functions of the file system, or the persistent store and
file system may be used together. Figure 3.7 shows the relationships in a hybrid system in
which source programs are kept in the file system and executable programs in the store. Here
the program library contains only source programs; the corresponding executable programs
reside in the store. The combined ellipses and diamonds in the diagram represent these
procedure values. As the linking process can be achieved without a separate linker, no
intermediate programs are required.

The figure shows causations and associations between source programs and executable
programs as before. There is also a causation from the main executable program e1 to the
data item v1 which is created by execution of that program. Data item v1 contains a direct link
to data item v2, as does e1, which also contains direct links to other executable programs;
these direct links replace the associations between executable programs and library programs
shown in Figure 3.6.

51

(b)v2

executable
program

compilation

e1

source program

persistent store

v1

data item
execution

direct link

causation

association

Key

file system

program
data

access
through file

system
interface

source program library

data item

Figure 3.7: Relationships in a hybrid persistent / file-based system

Figure 3.8 shows the relationships in a persistent system where all components and data
reside in the persistent store. The combined ellipses and rectangles represent source
programs that are denotable values in the programming language. These values may be, for
example, text strings or abstract syntax trees.

52

direct link

causation

association

Key

(b)v2

persistent store

v1

source program

executable
program

compilation

execution

e1

data item

data item

program library

Figure 3.8: Relationships in a persistent system

Both schemes shown have the advantage that executable programs are associated with the
others that they use by direct links. Once established these links are guaranteed to remain in
place. In contrast, the integrity of the associations between executable programs that reside
in the external storage system, in a non-persistent system, depends on the programmer
following certain conventions. For example the deletion of a source program from the
program library might break these conventions.

The scheme shown in Figure 3.8 has the further advantage that the source programs, being in
the persistent store, are brought under control of the language. This allows the system to be
self-supporting: the environment in which programs are composed, compiled and executed
can itself be implemented using the same programming language. Functions that are
normally controlled by the operating system can then be integrated with the programming
language. These include source code control and versioning, source level debugging,
controlling the configuration of applications built from multiple components, documentation,
etc. A number of workers are currently addressing the problems of supporting the whole
software engineering process within an integrated persistent system [Coo90a, Far91, DCC92,
DMD92, KCC+92b]. Type-safe linguistic reflection is needed to implement such a system.

3.2.3.4 Hyper-Programs

Bringing executable programs into the persistent store allows associations between them to
be enforced by direct links. It would be beneficial for the associations between executable
programs and source programs to be replaced by direct links also, for the same reason, i.e.,
they could not then be accidentally corrupted. Then each executable program would contain
a direct link to its corresponding source program. As an executable program can also contain
direct links to other data items in the persistent store, a source program must be able to
denote those data items in order to represent the executable program accurately. This
requires the use of hyper-programs as source representations.

53

Figure 3.9 shows the relationships in a hyper-programming system. Each executable
program contains a direct link to its source hyper-program. Each of the other direct links
contained in an executable program is duplicated in its corresponding hyper-program.

(b)

persistent store

source hyper-program

executable
program

compilation

execution

e1

data item

data item

program library

Key

direct link

causation

Figure 3.9: Relationships in a hyper-programming system

To illustrate the necessity of hyper-programs for providing accurate source representations of
executable programs, consider the situation where multiple executable programs have direct
links to a store location as illustrated in Figure 3.10:

executable
program

persistent store

location

executable
program

Figure 3.10: Executable programs sharing a location

The problem arises in supplying separate source programs for each of the executable
programs. Unless there is a direct access path to the location from a persistent root, and in
general there does not have to be one, conventional source representations do not provide any
notation with which the location can be denoted in a source program.

54

To illustrate how the situation in Figure 3.10 might arise, Figure 3.11 shows how the
executable programs could be created in Napier88:

let i := 0

in PS() let inc := proc() ; i := i + 1
in PS() let get := proc(→ int) ; i

Figure 3.11: Creating a shared location in Napier88

This program first initialises an integer variable i with the value 0. It then creates two
persistent procedures that operate on i, the first incrementing it by 1 and the second returning
its current value. The procedures are made persistent by declaring them in the context of the
persistent root environment, obtained by calling the pre-defined procedure PS. Although the
store location corresponding to the variable i is not declared in the persistent environment, it
will persist because it is reachable from the procedures inc and get which are themselves
persistent. The result of executing this program is that the persistent store contains the two
procedures and the shared integer location which is not directly accessible from the persistent
root.

The problem in supplying source representations for inc and get is to denote the same integer
location in both source representations. With existing language notations the only way to
achieve this is to supply a single source program that represents both procedures, such as that
in Figure 3.11. However this is unsatisfactory in general as it forces all executable programs
that share locations to be represented in the same source program. This could involve most
of the components of a large application, in which case it would nullify one of the benefits of
splitting the application into smaller components, that of being able to modify a component
independently of the others.

A better solution is to change the program notation by introducing hyper-programs as source
representations. It is then possible to denote a shared location in the source program for a
single executable program, by including a token for the location within the hyper-program.
This makes it feasible for every executable program to contain a direct link to its own source
hyper-program. Figure 3.12 illustrates this for the procedure inc:

executable
program

persistent store

location

executable
program

i

inc

proc() ; := + 1

source program

Figure 3.12: Executable program with direct link to hyper-program

55

Thus the use of hyper-programs as source representations allows associations from
executable programs to source programs to be replaced by direct links, further improving the
robustness of the programming system by eliminating accidental changes to or deletions of
source programs.

3.2.4 Flexible Linking Mechanisms

Programming languages support a number of different mechanisms for establishing direct
links from programs to persistent values, locations and types. The degrees of freedom
include constancy or variability, linking to L-values or R-values [Str67], and the time at
which the linking takes place. The focus here is on the range of times available. Some
possible times are during program composition, during compilation, during a separate linking
phase, and during execution.

The principal varieties of programming system identified earlier were file-based, persistent
and hyper-programming systems. Another possibility is a compile-time linking system in
which the tokens embedded in a program are associated with data items in the persistent store
when the program is compiled rather than when it is written. The linking times possible in
each of these systems are shown in Figure 3.13. From here on it will be assumed that the
hyper-programming systems under consideration incorporate facilities for compile-time
linking as well as composition-time linking.

System Linking Time

composition compilation linking phase execution

program data program data program data program data

file-based • •

persistent • • • •

compile-time linking • • • • • •

hyper-programming • • • • • • • •

Figure 3.13: Comparison of possible linking times in various systems

File-based systems allow links to existing data to be formed only at run-time. Links to
existing programs are formed during a linking phase by copying library programs into the
main program. In persistent systems a linking phase can be simulated using first class
functions. As executable programs are a form of data, linking to both programs and data can
be performed either at link-time or run-time. Compile-time linking systems support these
same linking times and also allow linking to programs and data at compilation-time.

A hyper-programming system supports all the linking times described. The programmer can
specify various linking times as appropriate for different components of an application.
Deciding when components should be linked into a main program involves trade-offs
between program safety, flexibility and execution efficiency.

Run-time linking gives flexibility as the data (data will now be used to denote both programs
and other kinds of data) accessed does not have to be present in the persistent store, file
system or database before run-time. Indeed the access path to the data may not be known
until run-time. Program safety is low as the data may not be present when the program is
run, causing a run-time failure. Execution overheads are also higher, in strongly typed
systems, as the type of the data must be checked dynamically. This kind of linking is

56

possible in many systems, for example, C, Pascal, Ada, Smalltalk-80 [GR83], PS-algol,
Napier88.

A distinct linking phase occurs in some file-based systems between compilation and
execution, involving the copying of other executable programs into the main executable
program. A similar effect can also be achieved in persistent languages with higher-order
procedures, where it allows all types of data to be linked into an executable program before
run-time. In the latter case it provides improved safety and efficiency over run-time linking,
as checks for the data’s existence and type are performed before run-time. Flexibility is
reduced as its use requires the data to be present earlier.

Linking at compilation-time increases safety and efficiency, bringing checks further forward
in time, and reduces flexibility correspondingly. With this mechanism the data linked into an
executable program is fixed.

Composition-time linking is the least flexible of the alternatives described as the data bound
to must be present at the time that the program is written. It offers the greatest safety as
access to the data is always maintained once it is bound into the source code, even if the
source code is edited and re-compiled. This is not true of the other linking styles where
editing of the source code requires all links to be re-established. Efficiency is slightly
increased overall as the access path to the data, whether it is expressed by textual code or by
user gesture, must be followed only once, at composition-time, and not on every re-
compilation.

Figure 3.14 shows the linking opportunities in several different systems, for a program that
accesses persistent data repeatedly throughout its execution. The line above each individual
diagram shows the range of times during which the first linking to persistent data may be
performed, while the line below shows the range during which the last linking may take
place. Each linking process may cause a failure due to the data not being found or not having
the expected type.

57

construction compilation linking phase executionNapier88

construction compilation executionSmalltalk-80

construction compilation executionGalileo

construction compilation linking phase executionPascal

construction compilation linking phase execution
hyper-

programming

construction compilation linking phase execution
compile-time

linking

time

range in which linking may finish

range in which linking may start

Figure 3.14: Comparison of linking opportunities in various systems

The systems shown exhibit a spectrum of possible linking times, from Smalltalk-80 where all
linking is performed at run-time, to the hyper-programming system where linking may be
performed during any of the phases.

Smalltalk-80: All linking is performed at run-time. With the example program that accesses
persistent data repeatedly, the first linking occurs near the beginning of execution, and the
last linking at any time during execution.

Pascal: A distinct linking phase allows other executable programs to be linked into the
program before execution. Non-program data, from the file system, is linked to at run-time.
Complex data structures must be reconstructed from a flattened form. As Pascal allows
direct links between data items in the run-time environment, links to persistent data items
need only be established the first time the program accesses them. This means that the
establishing of links may finish before the end of execution.

Napier88: Persistence allows links to be formed to data structures directly rather than having
to reconstruct them. The establishing of links can start during a simulated linking phase or at
the beginning of execution, and can finish any time after the beginning of the linking phase.

Galileo: Programs are compiled in the context of a persistent environment, thus linking to
persistent data starts at the beginning of compilation, and may finish at any stage during
compilation. Note that the programmer does not have explicit control over compilation:
program fragments are compiled and executed interactively as they are entered.

compile-time linking: Linking opportunities are similar to Napier88 except that linking may
start or finish as early as the beginning of compilation.

58

hyper-programming: Linking may start or finish even earlier, at the beginning of the
program composition process. This gives the widest range of possible linking times and thus
the greatest flexibility.

The positions of the left hand ends of the lower lines in each diagram are significant. These
show the earliest possible times by which all the linking and checking for the program may
be completed. The further a line extends to the left, the earlier it is possible to be confident
that suitably written programs in that system will not fail due to linking errors. The
exception to this is the hyper-programming system, where although linking to data may be
completed during program composition, the type checking of its compatibility with the
program is not performed until compilation-time.

3.2.5 Program Succinctness

Persistent systems offer significant savings over non-persistent systems regarding the data
access code required. One empirical study concluded that 30% of the code in a large set of
commercial non-persistent programs was dedicated to transferring data to and from an
external storage system [IBM78]. In a persistent system this code is replaced by access
specifications. Recent measurements of Napier88 programs have suggested that these access
specifications occupy around 13% of program code [Sjø92], a considerable reduction on
30%. The intellectual effort required to write the code is also significant: in writing access
specifications in a persistent system the programmer is not concerned with programming
transformations between structured and flattened formats.

A hyper-programming system gives a further improvement in conciseness as the access
specifications can in some cases be replaced by tokens that denote persistent data items. The
information that was specified in the access specifications is provided by the interactive
gesturing by which the programmer points out data items to be linked in. The measurements
of Napier88 programs found around 20% of identifiers referring to persistent data. Further
work is required to measure the proportion of this data that is available for linking at hyper-
program composition time.

Figure 3.15 shows the persistent data access code that appears in source programs in the
various cases:

System Access path code

non-persistent file access + importing + exporting

persistent access path + type description

hyper-programming
(data present at composition time)

(data not present at composition time)

token

access path + type description

Figure 3.15: Comparison of access path code

3.3 Procedure Representations

As hyper-programs can contain direct links to values and locations in the persistent store they
can be used to represent executable programs, including those with links to shared locations.
This provides a convenient representation format for procedure values, the benefits of which
are now described.

As described earlier, associations between executable programs and source programs can be
replaced by direct links. When a procedure value is created, the compilation system can

59

insert a direct link to its hyper-program source program. Given referential integrity, the
source code will then remain accessible for as long as the procedure value.

The presence of hyper-program source representations allows browsing tools to display
meaningful representations of procedure values, showing both source code and direct links to
persistent data items. This may aid software reuse since documentation in the form of the
original source code can be made available for every procedure value in the persistent store.

Hyper-programs allow separate procedure source representations since shared locations can
be denoted by tokens. A further consequence is that one of a group of procedures that share
values or locations can be replaced by a refined version without the need to replace the
others. This reduces the cost of modifying applications that are composed of multiple
procedures.

Figure 3.16 shows the example program given earlier:

let i := 0

in PS() let inc := proc() ; i := i + 1
in PS() let get := proc(→ int) ; i

Figure 3.16: Procedures with a shared location

After this program has been executed and the procedures inc and get linked into the persistent
store, a hyper-programming system allows one of them to be replaced by a new version that
shares the same location, without having to replace the other. For example, inc can be
replaced by a version that increments by 2 on each call. To achieve this the programmer first
obtains the hyper-program source representation for inc and makes a copy of it. This new
copy has the same store location, containing the value of i, linked into it. The copy is then
edited to change the increment value to 2, compiled and executed to produce a new procedure
value with that store location linked into it. Finally the new procedure is assigned to the store
location of inc. The sharing between the new procedure and get is preserved without any
change to get. This is illustrated in Figure 3.17:

60

inc

new
executable
program

persistent store

location

executable
program

get

i

proc() ; := + 1

source program

proc(→ int) ;

source program

source program

proc() ; := + 2

Figure 3.17: Preserving sharing of a location

The use of hyper-program source representations for procedures in this way avoids having to
replace all procedures that share locations when a single one is changed. Another advantage
is that the same shared locations are retained after the replacement of a procedure. Without
hyper-program source representations not only do all the procedures have to be replaced in
order to preserve sharing, but new shared locations must be created and the values that were
previously shared copied into the new locations.

There is some tension between the benefits of being able to inspect procedure closures,
described above, and the protection role in which procedures are sometimes used [AM85,
MBC+90]. Procedures with encapsulated state may be used to control and limit access to
that state. This was illustrated in the example where the location i was not directly accessible
after the execution of the program, but only through the procedures inc and get. The
implementor of an application may wish to prevent direct access to the internal
implementation details, or even for those details to be completely hidden so that users cannot
discover how the application is implemented. The ability of a hyper-programming system to
support access to the source code of a procedure and the state bound into it may give the user
too much freedom. It may be necessary for the system to support different access privileges
for different procedures. For some the hyper-program source code could be freely available,
while for others access might be restricted to the original implementor by use of a password
protocol [CDM+90], or even completely unavailable. Restricting source access to the
implementor would allow implementation data structures to be examined or repaired when
bugs in the procedures that operate on them were discovered, without unduly compromising
protection from users.

3.4 Hyper-Worlds

There are a number of components that a persistent programming environment should
support if it is to provide for the software engineering process as a whole. These include:

• program composition, compilation and execution;
• storing of source and compiled versions of programs;
• debugging;

61

• documentation;
• decomposition of large application programs into components, and organisation of those

components;
• navigating the persistent store to locate programs and other data with given attributes;
• querying of the types of programs and data in the persistent store.

The model of hyper-programming as described so far allows source programs to contain links
to any other data in the persistent store. In large scale systems this generality may lead to
several problems. Firstly, the store may become intellectually unmanageable as the number
of links increases. Secondly, evolution of application programs by substituting new versions
of their components becomes difficult to manage if unrestricted linking to the components is
permitted—it may be necessary to locate each data item linked to the component being
substituted and determine whether a new version of the data item is required in turn. In
addition the model described does not provide a uniform framework for storing meta-data
about application components.

One research topic is the provision of additional structure over a basic hyper-programming
system to address these needs. The hyper-world model offers the programmer a loose
coupling mechanism to offset the disadvantages of the tight coupling made possible by
hyper-programming. In this model, based in part on that described in [WA86], the persistent
store is partitioned into a number of application spaces or hyper-worlds. Each hyper-world
contains the program components and data used by an application, and a schema that
describes their relationships. Each hyper-world has a single visible component which may be
linked to from outside the hyper-world; no other components inside the hyper-world may be
linked to from outside.

The schema includes documentation information, a type description and hyper-program
source for each component. It also includes a representation of the component linking
topology, and a list of type definitions local to the hyper-world. This allows the programmer
to perform various queries over the components, and to determine the implications of
replacing a component with a changed version.

The partitioning supported by hyper-worlds may reduce problems such as keeping track of
inter-component links to a manageable scale, by restricting the region of interest from the
entire persistent store to the hyper-world. It may also allow type-checking to be performed
more efficiently.

Figure 3.18 shows a representation of a persistent store containing nested hyper-worlds and
linked components:

62

Hyper-world

Hyper-world Hyper-world

Persistent store

Figure 3.18: A store with hyper-worlds

3.5 Conclusions

There are many situations when the programmer writes code to access data items in the
persistent store, knowing that those data items are present in the store at the time of writing.
This chapter has shown how data can be linked directly into a source program as opposed to
the program containing instructions on how to link to it at run-time. This gives the benefits
provided by interactive languages: greater program safety as there is no danger of losing
access to the data during the time between writing and execution, and better efficiency as
run-time type and access path checks are factored out, while retaining the flexibility of being
able to link to the store dynamically when required.

An analysis has been given of the program entities and their inter-relationships in a hyper-
programming system, and compared to those found in file-based and existing persistent
systems. A number of benefits of using hyper-programs have been described. These include
being able to: perform program checking early; enforce associations from executable
programs to source programs with direct links; support an increased range of linking times;
reduce program verbosity; and provide source representations for procedure closures.

A framework, hyper-worlds, has been proposed for supporting ‘programming in the large’ in
the context of a hyper-programming system. It allows the programmer to impose a degree of
partitioning on the persistent store, in order to aid intellectual manageability and improve
execution efficiency.

63

4 Hyper-Programming Tools

4.1 Introduction

The previous chapter stated that it was desirable for the programmer to be able to write
programs that operate on data items in the persistent store, without having to write textual
access specifications for the data items in the program. An access specification describes the
type of a data item and a path by which it may be reached from a root of the persistent store.
Instead of supplying this explicitly the programmer may select a graphical representation of
the data item by gesture and have the system incorporate some specification of that data into
the program. This specification may take a number of forms, depending on the stage in the
software development process at which the mapping from specification to data is resolved.

• When the mapping is resolved during program composition the specification inserted into
the program is a token representing a direct link to the data item itself. This occurs in
hyper-programming.

• When the mapping is resolved during compilation the specification inserted into the
program is a tag identifier. At the time of tagging, at program composition, the tag
identifier may be associated with the data item itself, or with its access specification. In
the first case a link to the data item currently associated with the tag identifier is inserted
into the executable code at compilation-time, while in the second case the data item that
currently has the tagged access specification is linked.

• Similarly, when the mapping is resolved at run-time a tag identifier is inserted into the
program during composition. At compilation-time the access specification of the tagged
data item is inserted into the executable code. The program thus operates on the data
item that currently has the tagged access specification at run-time. It may also be
necessary to provide a mechanism for the programmer to tag access specifications that do
not correspond to any existing data item at the time of composition.

The main part of this chapter describes the programmer’s view of a hyper-programming
system for Napier88, in order to give an impression of the technique’s impact on the
programming process. The system also provides some support for compilation-time linking
as described above and these facilities are described at the end of the chapter. Support for
linking access specifications evaluated at run-time has not been implemented.

4.2 Hyper-Programming Tools

The system provides hyper-programming tools that support two main functions:

• Locating data items in the persistent store, either values, locations or types.

• Displaying and editing hyper-programs. This involves being able to link data items from
the persistent store into the hyper-programs.

Browsing tools are used to display representations of data items in the persistent store, and to
allow the programmer to explore the store by navigating along links between data items.
Graphical representations emphasise their linking topology.

The hyper-program editing tool displays hyper-programs as text with embedded light-buttons
representing the tokens that denote data items in the persistent store. As well as conventional
text editing it allows tokens to be inserted and deleted, and the data items associated with
tokens to be examined.

64

These tools are used in conjunction to support the construction and editing of hyper-
programs. The programmer uses the browsing tools to identify and select data items in the
persistent store. Tokens for them are then linked into hyper-programs under construction.
The browsing tools may be used again to display representations of the data items linked into
existing hyper-programs.

The tools implemented represent one particular set of solutions to the requirements of hyper-
program construction, and others are possible. They incorporate features based on a number
of other systems [DB88, DCK90, KD90, Far91, FDK+92, KCC+92a].

4.2.1 Data Representation Display Format

The hyper-programming system uses windows to display hyper-programs, messages and
representations of Napier88 data items. The windows are similar to those used in the Open
Look [Sun89] and Macintosh [App86] graphical user interfaces.

The form of the data representations varies according to the type of the data. Instances of the
scalar types int, real, string, bool, pixel and file are displayed textually in a single output
window. Instances of the types image and pic are displayed graphically in individual output
windows. All other types are displayed as menu windows, with an entry for each component
of the type. Although there are an infinite number of Napier88 types, the number of type
constructors is small and finite and all instances of a given constructor are displayed in the
same format. The constructors are: structure, variant, proc, abstype and vector. Instances of
the type env are also displayed as menus.

All windows displayed by the system have a title bar at the top, and some have a close box at
the left of the title bar and resize handles at the corners. Any window can be moved around
the screen by dragging its title bar using mouse button 1. When present the close box can be
used to convert a window to its iconic form by clicking on it, and a resize handle can be used
to alter the size of a window by dragging it, both with mouse button 1.

close box

title bar resize handles

Figure 4.1: Parts of a window

The browser displays connecting arrows between menu windows to show direct links
between the data items they represent. A menu entry can be selected to cause the browser to
display the value of the corresponding data item. Some examples of browser windows are
shown in Figure 4.2:

65

Figure 4.2: Graphical representations of Napier88 values

Figure 4.2 shows an environment in the centre and the values of some of its bindings. The
arrow between the variant and the structure shows that the structure value present in the
variant is also a component of the environment. Structures and environments are displayed
as menus, the entries of which can be selected to examine individual fields. Each entry
shows the type in the case of a base type, or the type constructor in the case of a constructed
type. Variants are also displayed as menus, with the difference that the branch actually
present is shown in bold type and this is the only entry that can be selected. Vectors are
displayed as fixed menus with the four entries shown. When selected they display the
bounds of the vector in the text output window, a particular element, and all the elements
respectively. Images, which represent bitmaps, and pictures, which represent line drawings,
are displayed in scrollable windows. Picture windows support altering the magnification to
allow zooming in and out. Procedures are represented by menus with a single entry to
display the source code. The use of procedure menus will be described in more detail later.

66

At any one time there may be at most one window or menu entry highlighted. This is
indicated by a highlighted title bar or entry label respectively. Various operations can be
performed on the highlighted window or menu entry. To highlight a window the
programmer clicks mouse button 1 on the window border. Figure 4.3 shows the highlighting
of a window that represents an environment value:

mouse button 1 clicked

Figure 4.3: Highlighting a window

A menu entry can either be highlighted in the way described above, or selected, in which case
the corresponding data item is displayed by the browser and the menu entry does not remain
highlighted. The former is achieved by clicking mouse button 1, and the latter by holding
down mouse button 3 until a sub-menu appears and then releasing the button to select the
show sub-menu entry:

value of binding name
displayed in output window

mouse button 1
clicked

mouse button 3
held down

entry name highlighted

mouse button 3
released, selecting

menu entry

Figure 4.4: Selecting and highlighting a menu entry

The screen may become cluttered when the programmer browses a large data structure.
Universes help the programmer to organise the screen area. Each universe is a window
containing a separate invocation of the browser, allowing representations of values to be
displayed and moved around independently of other universes. To create a new universe the

67

programmer highlights a menu entry and then selects display in new universe from the
background menu brought up by holding down mouse button 3 over the background:

Figure 4.5: Creating a universe

A new universe can also be obtained by holding down mouse button 3 over a menu entry,
and then selecting new universe from the sub-menu that appears. A new window is then
created and the value of the data item displayed within it as shown in Figure 4.6:

Figure 4.6: Value displayed in a new universe

The representations of the new value and any others accessed from it are confined to the
universe window, so they are kept separate from the rest of the visible data. Universes
provide a grouping mechanism in that all the objects in a universe can be moved or deleted in
one action by operating on the window containing them. Any number of universes can be
created and they can be nested to any degree.

4.2.2 Constructing a Hyper-Program

The use of the hyper-programming system will be illustrated with an example. The example
involves constructing a persistent procedure that takes a picture, performs a transformation
on it and copies the result repeatedly onto the screen to give a tiling effect. The procedure
takes as a parameter a procedure to perform the transformation. The main procedure also has

68

two data items linked into it: the picture itself and a procedure to make a single copy of a
picture on the screen.

The following requirement for the main procedure is assumed, that on each execution it
operates on the same picture, but on the most up-to-date version of the display procedure.
This is achieved by linking the main procedure to the picture value and to the environment
location containing the display procedure. Figure 4.7 shows how the example can be
programmed in standard Napier88, using access specifications that are evaluated at run-time.

use PS() with fishPics : env in
use fishPics with shark : pic ; displayFish : proc(int, int, pic) in
begin

let constShark = shark

let drawShark = proc(transform : proc(pic → pic))
begin

for x = 1 to 30 do
for y = 1 to 20 do

displayFish(x, y, transform(constShark))
end

in PS() let drawShark := drawShark
end

Figure 4.7: An example Napier88 program

The first two lines of the program give the access specifications for a picture of type pic and a
procedure of type proc(int, int, pic). Both are accessed from an environment that is itself
accessed from the root environment via the name fishPics. Inside the main block of the
program a local identifier constShark is declared, with the value of the picture. This
declaration ensures that the procedure will continue to operate on the same picture even if the
environment location originally containing it is updated with a different picture. The
program then declares the main procedure drawShark which takes as its parameter a
procedure that maps pictures to pictures. Two nested loops in the body of drawShark draw a
transformed version of the picture over the screen. Finally the procedure is made persistent
by creating a binding to it in the root environment.

There now follows a description of how an equivalent program may be constructed in the
hyper-programming system. Of course the same program could be entered if the programmer
required run-time linking to the persistent store. The method to be illustrated shows how
composition time linking may be used. To construct the hyper-program the programmer first
enters the textual part and then positions the insertion marker at the point where the first
direct link is to be inserted. Figure 4.8 shows an editor window containing the textual part of
the hyper-program. Missing at this stage are the type of the transform parameter, the display
procedure and the picture to be displayed.

69

Figure 4.8: Textual part of a hyper-program

The location of the display procedure will now be bound in. To do this the programmer
navigates through the store from the persistent root with the browser until the procedure is
located.

In the example the programmer selects the entry for the environment fishPics in the root
environment. The procedure required is accessible from fishPics through the environment
binding with the name displayFish. These identifiers will be used in this description to
denote the environment and procedure respectively; however, note that the identifiers are
really associated with the particular access paths shown rather than the values themselves.
Figure 4.9 shows the browser display after the programmer has selected the entry for
displayFish, resulting in the display of a window representing the procedure.

Figure 4.9: Browser display of a procedure value

A representation of the type of the procedure is obtained by highlighting the procedure
window and then selecting show type from the pop-up background menu as shown in Figure
4.10:

70

Figure 4.10: Obtaining the type of a value

A textual representation of the type of the procedure is then displayed in a window attached
to the procedure window as shown in Figure 4.11:

Figure 4.11: Browser display of a procedure type

The programmer now selects the location containing the procedure. This is done by
highlighting the procedure entry in the environment window using mouse button 1, with the
result as shown in Figure 4.12. The root environment and type representation windows have
been omitted for brevity.

71

Figure 4.12: Browser display of an environment location

Locations in structures, abstract data types and vectors can also be selected in a similar way.

The programmer now presses the link button in the editor window to link the selected
location into the hyper-program at the position of the insertion point. A button denoting the
location appears in the hyper-program as shown in Figure 4.13:

Figure 4.13: Location linked into a hyper-program

A similar method is used to link the appropriate picture into the hyper-program. The
programmer selects the shark entry from the environment to display a representation of the
picture. In this case it is the value itself rather than the environment location that is selected.
The programmer indicates this by highlighting the picture window rather than the
environment location. Figure 4.14 shows the display after the picture has been linked into
the hyper-program:

72

Figure 4.14: Value linked into a hyper-program

The buttons embedded in this hyper-program are labelled with the identifiers from their
environment entries. The identifiers are not significant to the meaning of the hyper-program
and can be changed without affecting the program. They are used only as an aid to legibility.
In some cases the system will not be able to find an appropriate label for a button, for
example when the environment window pointing to the representation of the value bound in
has been removed from the display. In such cases the label will be blank initially. To change
the label on an embedded button the programmer presses it using mouse button 2. A
dialogue then prompts for the new label.

The final stage in composing the hyper-program is to link in the procedure argument type.
To do this the programmer highlights an existing value of the required type, accessed from
the fishPics environment with the name fishTransformer. The programmer then selects show
type from the background menu, highlights the resulting type window, and presses link in the
hyper-program window. This sequence of actions results in the insertion of a button to
represent the type. Figure 4.15 shows the situation before the link button is pressed.

73

Figure 4.15: Linking a type into a hyper-program

The programmer then gives the type button a name T, to make the program easier to read,
and presses evaluate to compile and execute the hyper-program. The result of execution in
this case is a new procedure value, a representation of which is automatically displayed by
the browser as shown in Figure 4.16:

Figure 4.16: Value resulting from evaluation of a hyper-program

74

The new procedure value is now available for linking into other hyper-programs. This is
another example of an ‘anonymous’ value: the system does not supply an initial label for any
button denoting the value since there is no identifier associated with it. The procedure value
has the hyper-program source code bound into it; this can be recalled later for examination
and editing.

The programmer can now construct other hyper-programs that call the procedure.
Alternatively the hyper-program might simply be made persistent for later use. Figure 4.17
shows a hyper-program that will link the new procedure into the persistent store. The button
in the program denotes the procedure.

Figure 4.17: Making a value persistent

The linking requirements with respect to the procedure and its components have been met.
Because the picture value has been linked into the original hyper-program, and consequently
into the closure of drawShark, the procedure will be unaffected by any subsequent update of
the environment location containing the picture, or by the location being dropped from the
environment. The location of displayFish has been linked, so dropping the location from the
environment will not affect drawShark, but an update of the location will result in the new
value being used inside drawShark.

4.2.3 Editing a Hyper-Program

Several modes of hyper-program editing are possible in general, including editing text,
deleting and inserting tokens, associating existing tokens with different data items, and
examining and updating data associated with tokens. The system being described
implements a particular selection of these facilities.

The hyper-program editor treats the light-buttons that represent tokens as single characters,
so they can be cut, copied and pasted in the same way as text. New tokens are inserted in the
manner described in the previous section. The data associated with a token can be inspected
by pressing the corresponding light-button: the browsing tool then displays and highlights a
representation of the data. That data could then be updated by linking it into another hyper-
program that performed some operation on it.

Figure 4.18 shows the display after the programmer has pressed the displayFish button in the
original program. This highlights the environment location containing the procedure.

75

Figure 4.18: Browsing a link in a hyper-program

Continuing with the example, Figure 4.19 shows how the environment location could be
updated with a refined version of the procedure using standard Napier88.

use PS() with fishPics : env;
drawShark : proc(proc(pic → pic)) in

use fishPics with shark : pic ; displayFish : proc(int, int, pic) in
begin

let constShark = shark

drawShark := proc(transform : proc(pic → pic))
begin

for x = 1 to 30 do
for y = 1 to 20 do

if x = 1 or y =1 or x = 30 or y = 20 do
displayFish(x, y, transform(shark))

end
end

Figure 4.19: Updating environment location in standard Napier88

The first three lines of the program give the access specifications for the environment
location to be updated and for the other data items as before. A new procedure value of the
same type as the original is then assigned to the location drawShark. This new procedure
draws copies of the transformed picture around the edge of the screen rather than over the
whole screen. Note that the picture linked into the new version of the procedure is the picture
accessible from the environment fishPics at the time that the new version is installed. This

76

will not be the same picture that the original procedure operated on if the picture location has
been updated since the original procedure was created. Although this may not be the desired
semantics the programmer has no choice given that no special arrangements were made to
maintain a reference to the original picture.

It will now be shown how the programmer may achieve a similar update to the environment
location using the hyper-programming system. One of the benefits of the system is that links
to particular data items may be preserved in a modified version of a procedure if required. In
the example this enables the refined procedure to contain a link to the original picture.

The programmer first obtains the source code of the original procedure by selecting the
source entry from its menu:

Figure 4.20: Obtaining the hyper-program source code of a procedure

This results in the display of an editor window containing the hyper-program source. The
system does not allow this source program to be modified, so as to enforce the association
from the procedure value to its source. Instead the programmer creates a new editor window
by selecting hyper-program window from the background menu, and copies the source code
into the new window using the copy and paste buttons. The copied code contains direct links
to the same data items as the original, i.e., to the picture, the location containing the display
procedure, and the parameter type. The programmer then edits the text of the new hyper-
program so that the picture is drawn only around the edges of the screen, and presses the
evaluate button. If compilation and execution is successful the representation of a new
procedure is displayed, as shown in Figure 4.21:

77

Figure 4.21: Value resulting from evaluation of modified hyper-program

This new procedure has different behaviour from the original application but contains the
same direct links. The old version can be overwritten with the new one by a program such as
that shown in Figure 4.22:

78

Figure 4.22: Installing a modified version of the procedure

4.2.4 Compile-Time Linking

The prototype system also supports compile-time linking as described in the introduction.
This involves the insertion of tag identifiers into a program. When the program is compiled
the tags are resolved into references to data items and these references incorporated in the
executable program. This resolution is performed using a shared table that maps identifiers
to data items. Any program compiled in the system may contain identifiers from the shared
table. The entries in the table appear in a menu window labelled Shared Table.

Figure 4.23 shows how the programmer adds an entry to the shared table by highlighting the
representation of a data item and selecting add to table from the background menu:

79

Figure 4.23: Adding a data item to the shared table

The system prompts for a name which is then added to the table and appears in the Shared
Table window. The programmer may then use that name to refer to the data item in
programs. Figure 4.24 shows a program that creates a link to the display procedure in the
root environment, after the programmer has entered the name myProc to denote the
procedure in the shared table:

Figure 4.24: Compile-time linking

80

4.2.5 Comparison with Other Systems

The hyper-programming system described has evolved from several other strongly typed
object browsers, described below.

4.2.5.1 PS-algol Browser

Developed by Dearle and Brown, the PS-algol browser [DB88] was originally designed as an
aid to debugging. The system allowed the user to scan the table that is used to structure a PS-
algol database, to traverse pointers between structures, and to display the contents of
structure fields and vectors. As a linked data structure was traversed the browser maintained
a stack of menus, with only the menu showing the current object being visible at one time.
The user could pop the menu stack to backtrack along the original route. The restriction to
one visible menu made it difficult to visualise complex data structures—for example it was
not possible to determine the size of a circular list in which all the data elements were the
same.

4.2.5.2 Refined PS-algol Browser

Dearle, Cutts and Kirby produced a prototype of a refined version of the PS-algol browser
[DCK90] which could display multiple menus linked by arrows. Although an improvement
on the existing PS-algol browser, a full implementation was never developed, partly because
of the immaturity of the PS-algol window management technology available [CK87].

4.2.5.3 Napier88 Browser

The first Napier88 browser, developed by Kirby [KD90], implemented the ideas of the
refined PS-algol browser in Napier88. Napier88’s richer type system required it to be
extended to display environments and variants as well as structures and vectors. The browser
also supported partitioning of the display by means of self-contained universes, an idea first
proposed in the context of the refined PS-algol browser described above.

4.2.5.4 ABERDEEN

The ABERDEEN system, developed by Farkas [Far91], supported interactive program
development with compile-time linking to persistent data items. The user specified the
linking by attaching a tag identifier to the browser representation of the required data item
and using that identifier in a source program. The system also allowed a structured view of
the type of a data item, in which each component of the type was represented by a menu
similar to those used for values. The user could construct hierarchies of collections of type
definitions against which source programs were compiled.

4.3 Conclusions

There is much scope for further enhancements to the hyper-programming system described.
Possibilities include:

• provision of a graphical display of types, as in ABERDEEN;

• support for performing simple operations, such as assignments to structure fields and
creation and deletion of environment bindings, by direct manipulation rather than typing
in source code;

• support for controlling access to procedure source code.

The need for facilities to restrict access to procedure source code was described in Chapter 3.
Password protection could be implemented easily but the challenge is to develop a

81

mechanism that provides the required control without unduly hindering the developer who
does have the right to see the source code.

Another issue is whether the user should be allowed to view the source code of procedures
encapsulated within abstract data types. Clearly this would violate the abstraction as the user
could discover the implementation of the abstract data type, but again there may be a case for
allowing controlled access to the implementor. The need for multiple levels of access to
abstracted data is further discussed in [CDM+90].

82

5 Reflective Programming Tools
The preceding chapters have described two ways in which persistent programming systems
can be extended, through type-safe linguistic reflection and hyper-programming, and have
also described a prototype set of hyper-programming tools. This chapter will describe a
further set of tools that have been implemented to support reflective programming in
Napier88. These tools allow generators to manipulate hyper-program fragments, giving a
new richer style of reflection in which the program representations analysed and synthesised
may contain direct links to data in the persistent store. In addition they are designed to make
generators easier to program.

5.1 Reflection and Hyper-Programming

The concepts of linguistic reflection and hyper-programming are linked, in that linguistic
reflection is likely to be used in the implementation of most hyper-programming systems. It
might be possible to construct a hyper-programming system in which the source
representations did not themselves reside in the persistent store, but it is probably not
sensible. The straight-forward implementation strategy is to represent hyper-programs within
the language and this then requires linguistic reflection to transform them into executable
programs.

Conversely, hyper-programming facilities can be used to widen the applicability of
reflection. The central concept of hyper-programming, the ability to embed references to
persistent data in source code representations, may be applied to reflective systems to give a
flexible and uniform linking mechanism. This facility allows a reference to data created by a
generator, or already existing in the persistent store, to be linked directly into the newly
generated code. This overcomes the problems in existing run-time reflection systems caused
by generators and generated code fragments being evaluated in completely separate
environments. In other systems the programmer must use an ad-hoc solution in which data is
placed in the persistent store by a generator and later accessed by generated code fragments.
This suffers both from a performance overhead, due to the access specification checking
required when the generated code is executed, and from a lack of security as there is no guar-
antee that the data will still be accessible when the generated code is executed.

The ability for generators to reflect over hyper-program source representations opens up new
styles of program manipulation. In other systems the representations manipulated are
divorced from the persistent data in that they may contain access specifications for data
items, but not the data items themselves. Thus the information about a data item that may be
determined by analysis of a program fragment that accesses it is limited to its expected access
path and type. In a reflective hyper-programming system however, the program fragment
may contain a direct link to the data item, in which case the generator can access the data
itself.

This has an impact on both the analysis and synthesis of program fragments. When
analysing a fragment that contains a direct link to a data item the generator can perform
arbitrary computation on that data item in order to discover its properties. For example, a
generator performing source level optimisation on a hyper-program might decide whether or
not to replace a given loop with an in-line expansion by examining the size, or other
properties, of the data linked into the hyper-program within the bounds of the loop.

During program synthesis a generator may construct code representations containing direct
links to data items created by the generator or already existing in the persistent store. Thus
data operated on by the generated program can be made manifest if it already exists when the
program is generated. Where manifest data items are immutable values rather than store
locations, the generator may verify that particular properties of the data hold; if so, those
properties are guaranteed to continue to hold during subsequent executions of the generated

83

code. This means that checks can be executed in the generator rather than in the generated
code, allowing some varieties of constraint checking which are normally performed
dynamically to be performed statically with respect to the generated code.

5.2 Ease of Programming Generators

The general structure of a generator was described in Chapter 2. Each generator contains a
prelude and a result expression. When evaluated the generator first executes the prelude.
This sets up the environment (in the general rather than the Napier88 sense) in which the
result expression is evaluated.

The result expression produces the generated program fragment; the code in it lies in the
subset LL of the language L. This subset contains all the language sentences that produce
values in ValL when evaluated. The result expression may contain components in either or
both of LLConst

 and LLVar
. These subsets of LL contain expressions that give constant and

variable results respectively. Constant expressions represent fixed fragments of source code
while variable expressions may contain references to values in the environment populated by
the execution of the prelude. The values in the environment may vary between evaluations of
the generator.

Chapter 2 also identified some factors that make generators in reflective systems hard to
understand. One of these was the programmer’s difficulty in distinguishing the constant
parts of the result definition from the variable parts. This is combined with a high level of
syntactic noise. The tools described here are designed to make Napier88 generators easier to
write and understand.

A window-based generator editor is used to allow the programmer to view a generator at
various degrees of detail. At the most abstract level the programmer sees only the prelude
code and the fixed parts of the result definition. The positions of the variable parts are
indicated by buttons embedded in the code. This level of detail shows the programmer the
main structure of the generated result, while abstracting over the variations that depend on
the particular specialisation. To examine the details of the variations the programmer may
press a button and view the corresponding code in a separate window. This use of windows
allows much of the noisy syntax involved in combining parts of the result definition to be
omitted, making it easier to read.

The usefulness of this ability to separate constant and variable parts of the result definition
depends on the style in which generators are written. It is always possible to write generators
in such a way that the entire result definition is variable, but the assumption made here is that
programmers will choose to write constant definitions wherever possible. The separation of
LLConst

 and LLVar
 code also allows different representations to be used. A textual form for the

fixed code is easy to read while a more structured form for the code produced by the variable
parts facilitates the specification of the code manipulation.

5.3 Generator Model

The generator model supported by the editor was designed to meet the following criteria:

• to allow generators to manipulate hyper-program source representations;

• to use hyper-program facilities to give a flexible mechanism for communication between
generators, generated code and the persistent store;

• to give uniformity between generators and the variable LLVar
 parts of result definitions,

which may themselves be regarded as generators; and

84

• to allow arbitrary nesting of generators.

In the model each generator has two separate components: a prelude and a result definition.
The prelude is a procedure that processes the parameters input to the generator, while the
result definition is a variant that may be either a fragment of hyper-program source code or a
procedure that produces one. These source code fragments may contain place-holders
corresponding to further generators. Thus each LLVar

 part of the result definition is
represented by a generator, fulfilling the third and fourth criteria.

To evaluate a generator its prelude is executed with the generator parameters passed to it. If
the result definition is a procedure then it is executed in turn, with the results produced by the
prelude passed to it. The result of this procedure, or the result definition itself in the other
case, is a source code fragment which may contain place-holders for other generators. If so
these generators are themselves evaluated and the resulting code fragments incorporated into
the result. This process is continued until a source code representation without generator
place-holders is obtained.

The ability of a generator to produce hyper-program source code containing links to data
items means that generated code can refer directly to values constructed by the generator.
This is not possible in other generator models, in which generated code is evaluated in a
separate environment from the generator. With TRPL’s compile-time reflection, for
example, a generator can produce code that when executed will construct a new value
equivalent to one in scope in the generator, but it cannot be the same value, as the generator
and generated code are evaluated in different environments. With run-time reflection in
standard Napier88 it is possible for generated code to refer to a value in scope in a generator
but only indirectly through the persistent store. Thus the generator can link a value into the
persistent store from where it is later retrieved by the generated code. The disadvantage of
this mechanism is that the link to the value may have been removed in the meantime.

The new model allows direct links from generated code to values in scope in a generator.
This also allows generated code to refer directly to values in the persistent store at the time of
generator execution. This combination gives the desired communication flexibility.

5.4 Napier88 Representation of Generator Model

Figure 5.1 shows the Napier88 type definitions used to implement the model described in the
previous section. Looking first at the main definitions, the first component of the structure
type Generator is a procedure, prelude, that takes a Napier88 environment as its parameter
and returns another environment. These environments contain the generator parameters and
prelude results respectively. The prelude may return a newly created environment, the input
environment with new bindings in it, or any other environment.

The second component of a generator, the result definition, is an instance of the variant type
GeneratorResult. Its value may be an instance of type GeneratorSource or a procedure that
takes an environment and produces a GeneratorSource. In the first case the result definition
is a literal code fragment while in the second case it is a procedure that must be executed to
produce a code fragment. In both cases the code fragment may contain place-holders both
for hyper-program links and for sub-generators. Where sub-generators occur they too are
evaluated, at some stage in the evaluation process to be described later, and their results
substituted into the result code representation. The sub-generators are represented by an
instance of the variant type Optional, the absent branch indicating that there are none, or the
present branch containing a vector of generators together with descriptions of where each
result is to be substituted into the main result.

The code representations manipulated are hyper-programs. Each representation, of type
HyperSource, contains a fragment of code, which may be textual or in some parse tree form,
and an optional vector of substitutions in the code. A substitution, of type Binding, is a

85

reference to a value, store location or type. A store location may be within an environment, a
structure, an abstract data type, a vector or a stack frame.

Note the symmetry between generator results and hyper-programs: both consist of a form of
source code and a number of substitutions.

!********************** Subsidiary Definitions ***********************

type CodeTree is … ! Parsed form of code representation.

type Code is variant(textual : string ; tree : CodeTree)

type CodeRegion is … ! Specification of region of source code.

type Optional[T] is variant(present : T ; absent : null)

type Substitution[T] is structure(val : T ; codeRegion : CodeRegion)

type TypeRep is … ! Representation of type.

type EnvLocation is structure(pointer : null ; typeRep : TypeRep)

type StructLocation is structure(structValue : any ; field : string)

type VectorLocation is structure(vectorValue : any ; index : int)

type StackPos is structure(Frame, MSoffset, PSoffset : int)

type FrameLocation is structure(frame : null ; stackPos : StackPos ; typeRep :
TypeRep ; envLoc : bool)

type TypeContainer is structure(typeRep : TypeRep)

type Binding is variant(value : any;
envLocation : EnvLocation;
structLocation : StructLocation;
abstypeLocation : StructLocation;
vectorLocation : VectorLocation;
frameLocation : FrameLocation;
aType : TypeContainer)

!************************ Main Definitions *************************

rec type Generator is structure(prelude : proc(env → env) ;
resultDefn : GeneratorResult)

& GeneratorResult is variant(literal : GeneratorSource ;
expression : proc(env → GeneratorSource))

86

& GeneratorSource is structure(
code : HyperSource ;
generators : Optional[*Substitution[Generator]])

& HyperSource is structure(code : Code ;
bindings : Optional[*Substitution[Binding]])

Figure 5.1: Napier88 description of generator model

Note also that the literal branch of GeneratorResult is redundant so far as expressiveness is
concerned: a literal result definition could be expressed as a procedure which ignored its
parameters and always produced the same result. However, the presence of this branch
enables the window-based generator editor to display a meaningful representation of the
result definition, as will be illustrated later. The generator editor is used by the programmer
to construct instances of type Generator.

Hyper-program links to data items may occur in various places in the generators and
generated code:

• in a prelude—since it is a procedure which may be produced by evaluating a hyper-
program containing links to data items;

• in the source code specified by a literal result definition;

• in the body of an expression result definition—since it is a procedure;

• in the source code produced by an expression result definition—this is achieved using
one of the pre-defined procedures m k L i n k, mkEnvLocLink, mkStructLocLink,
mkVecLocLink or mkTypeLink described in Appendix B.

5.5 Generator Evaluation

To allow reflection, a pre-defined procedure expandGenerator is used to evaluate the
generator, producing a code representation that can be passed to the run-time compiler. The
procedure evaluates the given generator, passing it its parameters in an environment. Any
generators in the resulting code (sub-generators) are expanded in turn until a code
representation without place-holders is obtained.

The expansion of each generator is performed by the procedures dropAndEval and resultOf.
The latter returns a structure containing the generator result and the generator environment
obtained by executing the prelude. The procedure dropAndEval obtains the result of the
given generator. It then iterates through the sub-generators if any, and for each one evaluates
it and substitutes the resulting source for the sub-generator. The definition of these
procedures are shown in Figure 5.2:

type SourceAndEnv is structure(source : GeneratorSource ; envir : env)

! Returns the result source code and the environment.
let resultOf = proc(generator : Generator ; initialEnvir : env → SourceAndEnv)
begin

! Call the prelude to set up the environment.
let enrichedEnvir = generator(prelude)(initialEnvir)

87

project generator(result) as X onto
expression :
begin

! Call the procedure to evaluate the
! expression in the context of the environment.
SourceAndEnv(X(enrichedEnvir), enrichedEnvir)

end
literal : SourceAndEnv(X, enrichedEnvir) ! Return the literal result.
default : dummyValue ! Can’t happen.

end

! Evaluates generator and expands one level of sub-generators.
let dropAndEval = proc(generator : Generator ; initialEnvir : env →

SourceAndEnv)
begin

! Get the result code and environment.
let result = resultOf(generator, initialEnvir)
let resultSource := result(source)
let resultEnvir := result(envir)

project resultSource(generators) as generatorVec onto
present :
begin

! Expand all the sub-generators
for i = 1 to upb[Substitution[Generator]](generatorVec) do
begin

let generatorSubstitution = generatorVec(i)
! Expand the sub-generator.
let expand = resultOf(generatorSubstitution(subs), resultEnvir)
resultEnvir := expand(envir)
! Substitute the source code into the main result.
! Assume substitute defined elsewhere.
resultSource := substitute(resultSource,

generatorSubstitution(codeRegion),
expand(source))

end
end
default : {} ! No sub-generators.

SourceAndEnv(resultSource, resultEnvir)
end

88

! Fully expands a generator.
let expandGenerator = proc(gen : Generator ; initialEnvir : env → HyperSource)
begin

! Expand the generator to the first level.
let result := dropAndEval(gen, initialEnvir)

! Continue expanding sub-generators until none left.
while result(source)(generators) is present do
begin

! Make the current source into a generator.
let nextLevelGenerator = Generator(nullPrelude,

GeneratorResult(literal : result(source)))
result := dropAndEval(nextLevelGenerator, result(envir))

end

! Return only the source code.
result(source)(code)

end

Figure 5.2: Definition of expandGenerator

The evaluation sequence is illustrated in Figure 5.3 which shows the evaluation of a
generator with a literal result. The literal source code contains text with one hyper-program
link to a value in the persistent store and two sub-generator substitutions. Each sub-generator
contains an expression result; these are evaluated in turn, to produce plain source code in the
first case and source code with a further sub-generator in the second case. Once all sub-
generators have been expanded the generated code fragments are composed to give the
resulting hyper-program.

89

generator with
evaluated result

generator with
literal result

Key

a b c

execution of
prelude output

environment

literal result code

intermediate
result

d e f

g

a d b e g f c

object 1

object 2

input
environment

expansion

main
generator

evaluated part
of result code

sub-generator part
of result code

expansion of sub-generators

all generated
code combined final result

value in
persistent store

Figure 5.3: Evaluation of generator by expandGenerator

Figure 5.4 shows the pattern of communication between generators: the environment
produced by each prelude is passed as input to the prelude of each of the sub-generators
immediately below it.

90

execution of
prelude output

environment

intermediate
result

input
environment

main
generator

output environment passed
as input to preludes of

sub-generators

Figure 5.4: Communication between generator and sub-generators

5.6 Pre-defined Types and Operators

The generator construction system provides a number of pre-defined types and procedures
that may be linked into generators and generated code. The types include those shown in
Figure 5.1, and a set type. The full list is given in Appendix B. The procedures provide set
operations and analysis and synthesis of both type representations and source representations.

To link a procedure or type into a program the programmer selects a representation of it with
the browsing tools and creates a link as described in Chapter 4.

5.7 Graphical Interface

5.7.1 Creating Generators

The graphical generator interface will be introduced with an example used in Chapter 2.
Figure 5.5 shows a Napier88 generator which produces the representation of a procedure to
calculate a user-specified function:

proc(→ string)
begin

writeString("enter real expression over x")
let expr = readString()

"proc(x : real → real) ; " ++ expr
end

Figure 5.5: Generator in Napier88

91

Using the generator model described in the previous section, this can be represented by the
following Napier88 code:

! Expanded definition of CodeRegion for string code representation.
type CodeRegion is structure(start, finish : int)

! Dummy values.
let noGenerators = Optional[*Substitution[Generator]](absent : nil)
let noBindings = Optional[*Substitution[Binding]](absent : nil)
let noPrelude = proc(e : env → env) ; e

! Procedure to set up environment by reading in function body.
let prelude = proc(e : env → env)
begin

writeString("enter real expression over x")
in e let expr = Code(textual : readString())

end

! Define result code with place-holder for function body.
let codeString = "proc(x : real → real) ; body"
let source = Code(textual : codeString)

! Procedure to generate result code from environment.
let genDefn = proc(e : env → GeneratorSource)

use e with expr : Code in GeneratorSource(expr, noGenerators)

! Turn it into a full generator.
let bodyGen = Generator(noPrelude, GeneratorResult(expression : genDefn))

! Define textual region to be substituted, using character offsets.
let substitutionRegion = CodeRegion(27, 30)

! Vector containing single sub-generator.
let generators = Optional[*Substitution[Generator]](present :

vector @1 of [Substitution[Generator](bodyGen, substitutionRegion)])

! Make source into hyper-program source.
let hyperSource = HyperSource(source, noBindings)

! Form main generator.
let result = GeneratorResult(literal : GeneratorSource(hyperSource, generators))
let mkFun = Generator(prelude, result)

Figure 5.6: Generator in refined model

Figure 5.7 shows how the example fits with the general structure shown in Figure 5.3.
Execution of the prelude populates the evaluation environment with the representation of the
user-specified function; this is passed to the sub-generator from which it is returned
unchanged and composed with the procedure header to give the result.

92

execution of prelude:
writeString("enter real expression over x")
in e let expr = Code(textual : readString()) mkFun

all generated
code combined

"proc(x : real → real) ; " bodyGen

user function e.g. "x + 1.0"

"proc(x : real → real) ; x + 1.0"

Figure 5.7: Structure of generator example

The programmer need not enter the verbose code shown in Figure 5.6 directly, since it is
constructed by the interactive generator editor. Figures 5.8 to 5.11 show how the generator is
constructed using the editor. For such a simple example it may not be clear that the system
provides any improvement in legibility over the original Napier88 encoding, but it will serve
to illustrate the way the editor is used. Appendix A gives a non-trivial example, the
definition of a generic natural join function, together with corresponding definitions in
Napier88 and TRPL.

The window in Figure 5.8 shows the definition of the generator mkFun under construction.
The top three quarters of the window contains the prelude. The first two sub-windows show
the parameters expected by the prelude, the one on the right for type representation
parameters and the one on the left for all other values. In this case no parameters are used by
the prelude; any present in the input environment will be ignored. The body of the prelude
contains a call to a procedure writeString linked in from the persistent store: the prefix L: on
the button label indicates that the button represents a hyper-program link to a location. The
radio buttons below the prelude body window have the unchanged choice selected, indicating
that the prelude returns the input environment, unchanged, as the output environment. The
prelude results and result definition have not yet been filled in.

93

Figure 5.8: Defining prelude body

94

Figure 5.9 shows the generator definition window after the programmer has entered the
specification of the prelude outputs, to be placed in the output environment. The first column
contains the identifiers to be associated with the outputs and the second column contains
expressions for the outputs themselves. In this case there is one output with the identifier
expr. The output value is obtained by reading in a string and converting it to a source code
fragment. This is performed at generator evaluation time, immediately after the prelude body
is executed. It involves calling two other procedures, mkHyperSource and readString, the
former being one of the pre-defined procedures provided by the generator system. The code
to produce the output value contains hyper-program links to these procedures.

Figure 5.9: Defining prelude results

95

Figure 5.10 shows the window after the result definition has been entered. The literal choice
is selected to show that the definition is a literal. The result definition window contains the
literal source code. The sub-generator that generates the function body has not been entered
at this stage.

Figure 5.10: Defining result definition

Finally, Figure 5.11 shows the editor after the sub-generator has been specified. To do this
the programmer selected the text body in the result definition and pressed the sub-generator
button. The editor then replaced the text with a button labelled G: body, the prefix indicating
a generator, and displayed another window to allow the sub-generator definition to be
entered. This sub-generator contains no prelude. The expression choice for the result
definition specifies that the sub-generator result is formed by evaluating an expression which
simply returns the source code passed in. The parameter list has one entry, showing that the
parameter expr in the input environment is used. Recall that the output environment of the
main generator is passed as the input environment to the sub-generator. The parameter has
the pre-defined type HyperSource; a link to the type is shown by a button with a T: prefix.

The point of having a distinguished literal branch in the result definition type, rather than
representing all result definitions as procedures, should now be apparent. It means that the
fixed parts of the result definition can be displayed in the generator editor without having to
evaluate the generator with any particular arguments.

96

Figure 5.11: Completed generator definition

Sub-generator buttons only occur in literal result definitions: if the sub-generator button is
pressed when the insertion point lies within a literal result definition, a sub-generator button
with a G: prefix is inserted, as described above. If the insertion point lies within an
expression definition, however, the button will denote a hyper-program link to the new
generator, and will have a V: prefix.

The function of the test button is described in the next section. The compose button creates
an instance of type Generator from the current window contents and causes a representation
of it to be displayed by the browsing tools so that it may be linked into other programs.

5.7.2 Testing Generators

The testing facility allows the programmer to test the generator with various inputs. When
the test button is pressed a new window is displayed, containing a sub-window in which
values for the generator parameters may be entered. The programmer can then press the
generate code button to evaluate the generator with those parameters. If the generator

97

executes successfully the resulting code representation is displayed in the lower sub-window.
One possible reason for failure of the generator is that the parameters supplied are not
compatible with those expected by the generator: in this case a message to that effect is
displayed. When generated successfully, the code may itself be evaluated by pressing the
evaluate button. This has the same effect as evaluating code in a hyper-program editor
window: if compilation succeeds the code is executed and any resulting value displayed by
the browser, otherwise compilation error messages are displayed.

Figure 5.12 shows two examples of test windows for the generator body. In the first the
parameter expr is given the value formed by converting a string literal into source code using
the pre-defined procedure mkHyperSource. The source code generated is simply the string
without any hyper-program links. In the second a fragment of source code from the
persistent store is linked in as the value for the parameter. As body is only a sub-generator
the code fragments generated are not well-formed when taken in isolation. Pressing the
evaluate button in either case would result in a message that the name x had not been
declared.

Figure 5.12: Test windows for sub-generator body

98

Figure 5.13 shows a test window for the main generator mkFun, after the generate code
button has been pressed and the programmer has been prompted for input during the
execution of the prelude. In this example the expression input contained hyper-program links
to the procedures sin and f in the persistent store, with the result that the generated code also
contains these links.

Figure 5.13: Test window for generator mkFun

5.7.3 Generating Hyper-Program Links

It has already been described how a generator may produce a source representation that
contains embedded direct links to data items in the persistent store. One mechanism for
achieving this was illustrated in the example in Figure 5.13, in which source code containing
links was passed to a generator as a parameter and formed part of the result. There are two
other ways that links may be incorporated in generated code:

• a literal result definition may contain hyper-program links; or

• an expression result definition may contain expressions that evaluate to give hyper-
program links.

These will be illustrated in turn. Figure 5.14 shows an example of a generator with a literal
result definition that contains both a hyper-program link and a type link, the latter being
distinguished by a T: prefix on the button. The test window shows that the code generated is
simply the result definition code.

99

Figure 5.14: Hyper-program and type links in a literal result definition

Figure 5.15 shows a generator test2, the result definition of which contains embedded sub-
generators newType, process and vec. These sub-generators contain references to the pre-
defined procedures mkTypeLink, mkEnvLocLink and mkLink which create links to,
respectively, a type, a named environment location and a value. The test window at the
bottom shows an example of the generated code which contains a link to the type int and
hyper-program links to a location containing a procedure and to a vector value.

100

Figure 5.15: Hyper-program and type links in an expression result definition

5.8 Conclusions

A set of reflective programming tools has been described. They allow the programmer to
construct generators that manipulate and produce hyper-program source representations. The
tools provide a graphical user interface to a generator model in which generators may
produce fixed or variable results, and may contain embedded sub-generators nested to any
degree. The hyper-program facilities provide a uniform mechanism by which both generator
and generated code may contain links to data in the persistent store. This gives convenient
access to the library of pre-defined procedures for source code analysis and manipulation.
The graphical interface provides an abstraction mechanism with which the programmer may
choose to view a generator at varying degrees of detail.

The use of hyper-program generators has been related to the possibilities for early program
checking outlined in the previous chapter. As hyper-programs may contain manifest data,

101

properties of that data can be verified by the generators that produce them. These techniques
stretch the spectrum of times available for linking and checking. While allowing very early
linking, with associated safety and efficiency benefits, they do not preclude dynamic linking
during execution in the cases where it is useful.

102

6 Implementation

6.1 Introduction

This chapter describes the principal features of the implementation of the hyper-
programming and reflective programming tools. This includes a description of the software
systems upon which they are implemented, which are as follows:

• a graphical user interface tool-kit, WIN; [KCD+89, CDK90, KCC+92a]
• a set of persistent object browsing tools [KD90, KCC+92a]; and
• the Napier88 compiler [Dea88, Cut92].

Each of these systems is available to the Napier88 programmer and can be used
independently of the others. They are implemented in Napier88 although the object browser
and the compiler make use of implementation level facilities that are not generally available
to the Napier88 programmer.

The user interface aspects of the hyper-programming system are implemented entirely using
WIN. Underlying it are the browsing tools and the compiler. The browsing tools allow data
linked into hyper-programs to be displayed graphically and data in the persistent store to be
selected for linking into new hyper-programs. The compiler allows hyper-programs to be
transformed into executable forms. Some changes to the original browsing system and
compiler were made; these are described in Section 6.5.

The relationships among the software layers are illustrated in Figure 6.1. This shows that, for
example, the browser system is built using WIN, the Napier88 language and some of the
facilities of the Napier88 implementation level.

Napier88 implementation level

Napier88 compiler

Napier88

hyper-programming tools

browser

WIN

reflective programming tools

Figure 6.1: Dependencies among software layers

6.2 User Interface Tool-Kit

The user interface tool-kit, WIN (Windows In Napier88), supports the programming of
interactive graphical interfaces for Napier88 applications. Its main features are:

103

• a user input event distribution system;
• support for creating and displaying overlapping windows;
• facilities for hyper-text editing, a sub-set of which support conventional text editing; and
• a pre-defined library of user interface ‘widgets’.

Design and implementation work was carried out in collaboration with Quintin Cutts, Alan
Dearle and Richard Connor. Cutts was heavily involved with the development of the
window management system in general, while Dearle and Connor respectively were the
principal designers of the virtual window and notifier mechanisms, to be described.

6.2.1 History

Work on a persistent window management system began with the development of the
PStools system in PS-algol [CK87]. This provided window management and event
distribution but planned text editing facilities were never fully implemented. Windows
created in the system were permanently associated with particular window managers; this
was found to be too inflexible as they could not be stored independently in the persistent
store.

Following the implementation of Napier88 the WIN system was developed in a number of
stages. The first provided independent windows and window managers, an event distribution
mechanism similar to that used in PStools and a limited range of user interface widgets. The
next stage added text editing facilities. In the most recent stage hyper-text editing facilities
were added, allowing text to contain embedded light-buttons, and a more extensive range of
interface widgets provided.

6.2.2 Event Distribution

WIN supports multiple applications. Since Napier88 provides a single thread of control only
one application can execute at a time and the others are suspended until control is transferred.
This transfer of control is event-driven: an application is active only so long as input events
are directed to it. Each application is modelled as a procedure that accepts a single input
event, performs some action and then returns control to a central event routing system (ERS).
At any time the ERS may have several such applications registered with it. When an input
event occurs the ERS determines to which application to route it and calls the appropriate
application procedure with the event as parameter. As there is only one thread of control the
ERS is suspended while the application performs its processing. When the processing
terminates the ERS resumes polling for input events. This control structure is illustrated in
Figure 6.2:

104

which
application?

input event
detection

applications

event
routing
system
(ERS)

Figure 6.2: Event distribution in WIN

The successful operation of this system depends on adherence to a convention that
application procedures will return control as soon as possible. In particular it is assumed that
applications will not poll for input events themselves but will rely on the ERS to detect and
route events.

The ERS deals with fairly low-level input events that describe mouse and keyboard activity.
On each event detection/routing cycle the ERS determines whether any keyboard characters
have been typed since the last event was routed. If so, all the new characters are
concatenated into a single string and routed as an event. Otherwise a mouse event is routed.
The representation of the mouse event contains information about the current position of the
cursor and whether or not the mouse buttons are currently pressed. Mouse events are routed
even if the state of the mouse has not changed since the last event, thus when the system is
quiescent with no user input occurring a continuous stream of identical mouse events is
routed.

The ERS also generates two kinds of ‘pseudo-event’ which are used to signal to applications
when the event distribution path changes. Each time a keyboard or mouse event is routed the
ERS first checks whether it is being routed to the same application that received the previous
event. If not, before routing the event, the ERS routes a ‘deselect’ event to the application
that received the previous event and then a ‘select’ event to the new application. The main
purpose of this is to let an application know when it is about to become inactive. For
example a light-button might be programmed by an application that highlights and de-
highlights an area of the screen depending on whether a mouse button is pressed when the
cursor is in the area. The use of deselect events allows the application to de-highlight the
light-button if the cursor moves out of the area while the mouse button is pressed down.
Without deselect events the application would not be called once the cursor was moved
away.

Events are represented by the following Napier88 type:

type Event is variant(chars : string;
mouse : Mouse;
select, deselect : null)

105

where

type Mouse is structure(x, y : int ; buttons : *bool)

The state of the mouse buttons is represented by the vector of booleans buttons, the ith
element of which is true if button i is pressed and false otherwise. Higher level mouse events
such as double clicks and button state transitions are not represented in the ERS but can be
detected by computation within applications if required. Keyboard input, however, is treated
at a higher level in that events represent characters rather than states of the entire keyboard.
Whether or not this approach gives a more suitable level of abstraction for the application
programmer, it is forced by the underlying IO facilities of Napier88.

The routing of events is performed by notifiers. The main notifier keeps track of the
applications registered with the ERS and the criteria that determine how events are routed
between them. When each application is registered the programmer supplies a filter
procedure that, when invoked, takes an input event as its parameter and returns a boolean. A
value of true indicates that the application accepts the event for processing while false
indicates that the event is ignored by the application. The notifier maintains an ordered list of
applications and their associated filter procedures. To route an event the notifier scans the
list, calling each filter procedure in turn with the new event as parameter, until one of them
returns true. The event is then passed as a parameter to the corresponding application and
deemed to have been consumed. If none of the filter procedures return true the event is
discarded.

Notifiers can be composed in hierarchies. This is achieved by registering one notifier as an
application with another notifier. Thus a top-level notifier might route events between
different user applications while sub-notifiers are used to route them to different components
within an application.

Notifiers route events given to them; another component is needed to poll for user input,
construct events from it, and pass them to the top-level notifier. This role is performed by the
event monitor, the only system that actively polls the input devices. Figure 6.3 shows the
interactions of notifiers, applications and the event monitor:

106

.

event monitor

filter

application

or
de

r
of

 te
st

in
g

repeated
calls

notifier
notifier

notifier

Figure 6.3: Event monitor and a notifier hierarchy

Notifiers can be re-configured dynamically, that is, (filter, application) pairs can be removed
and new ones added at any point in the list.

6.2.3 Windows and Window Managers

Windows are commonly used in user interface systems to partition and organise the screen
display area [MM81, App86, Mye86, SG86, WCG87, HP88, Sun89]. When they can overlap
the effect is to provide a usable space greater than the physical screen size. WIN supports
windows and window managers; the latter are used to organise the display of multiple
windows. Each window has an application of the form described in the previous section
associated with it. When user input events are directed towards a particular window the ERS
routes them to the corresponding application.

Applications manipulate windows. The interactions between windows are handled by the
window manager. The full procedural interface of a window is given in Appendix C. The
principal operations on a window are raster operations, altering its size and setting the
application that handles the events it receives. Raster operations may specify another
window or an image as the source or the destination, and a number of raster modes (e.g.,
copy, xor, not, etc.) may be used. As well as changing the size of a window the programmer
can specify the behaviour of the application when the window is resized in future. The
programmer of an application does not have deal with matters such as the position of the
window or whether it is obscured. The co-ordinates of mouse events are translated relative to
the origin of the window, and repainting of the window when it becomes visible is handled
automatically.

Window managers are used to display windows on the screen. A window can exist
independently of any window manager but it only becomes visible when a window manager
is used to display it. The principal operations of a window manager support displaying and
un-displaying windows, setting their position and depth, and transforming them to and from
their iconic forms. The depth of a window determines which other windows are obscured by
it. A window cannot be displayed by more than one window manager simultaneously at
present.

107

Window managers can be nested within one another to arbitrary depth. When a window
manager is created the programmer specifies a window within which it operates. The
recursion is grounded by a special window manager that operates directly on the physical
screen. This is illustrated in Figure 6.4. The dotted region is controlled by the special
window manager which is displaying two windows labelled a and d. Another window
manager operates within window a, shown by the striped region. That window manager
displays a further two windows, b and c. Window a is known as the parent window of b and
c.

window

special window
manager running

physical screen

window window windowwindow manager
running

a

b

c

d

Figure 6.4: Nested windows and window managers

6.2.4 Hyper-Text Editing

WIN provides hyper-text editors which allow manipulation of text and embedded light-
buttons. These editors are used to support hyper-programming facilities. Each hyper-text
editor is a window with an application that controls interactive editing of the text. The editor
facilities can also be accessed through a procedural interface which is given in Appendix C.

6.2.5 Interface Widgets

WIN provides a number of interface widgets which are also implemented as windows with
applications. Those available include light-buttons, sliders, independent and mutually
exclusive choices, fixed and scrolling menus, and dialogues. Complex applications may be
built up by creating widget windows and displaying them with a window manager operating
in an application window.

108

6.2.6 Implementation of WIN

6.2.6.1 Window Manager Implementation

Two main approaches to window manager implementation were considered at the design
stage. In the first approach each window maintains a complete copy of its display image.
This gives simple algorithms for window manipulation as the window manager can access
any part of a window image easily whether or not the window is partly or wholly obscured.
The costs are that the visible parts of windows are stored both within the windows and on the
screen and that drawing on a visible window involves raster operations to both the window’s
copy and to the screen. This strategy was used to implement the PStools system.

The second approach relies on being able to read the contents of the physical screen as well
as write to it. The visible parts of a window’s image are stored only on the physical screen
and only the obscured parts are stored within the window data structure. This reduces the
store overheads and removes the need for double raster operations but the data structures and
algorithms to operate over them are correspondingly more complicated. This strategy was
chosen for WIN; it will now be described in more detail.

The manner of storage of a window’s graphical contents depends on whether it is displayed
by a window manager. There are three cases:

• the window has never been displayed by a window manager;
• the window is currently displayed by a window manager;
• the window has been displayed but is currently not displayed.

In the first case the window’s contents are stored as a single image in the window’s data
structure. In the second case the window relinquishes control of its contents to the window
manager that displays it. In the third case the window becomes again responsible for its own
contents.

The transfer of control is achieved using virtual windows. Every window, displayed or not,
has encapsulated within it a virtual window with the same procedural interface as a normal
window. Whenever one of the window’s raster operation procedures is called, the window in
turn calls the corresponding procedure of the virtual window.

If a window has never been displayed, its virtual window operates on the single image stored
in the window’s data structure. When the window is displayed its virtual window is replaced
by a new one supplied by the window manager. The new virtual window operates on the
window manager’s data structure which stores the obscured parts of all the windows
displayed by it. The visible parts are, by definition, displayed in visible parts of the parent
window, which are displayed in visible parts of its parent window and so on. At the end of
the nesting chain the visible parts are stored in the physical screen memory.

When a window is undisplayed the window manager that was displaying it supplies it with
another new virtual window that operates on a single image again.

Thus the raster operations are delegated to the virtual window which will result in different
procedures being called depending on whether or not the window is displayed. Other
operations are dealt with by the window directly; the corresponding procedures in the virtual
window are simple stubs as they are never called. This structure is illustrated in Figure 6.5:

109

window

virtual window

setVirtualWindow

interface
procedures

procedure that
delegates

stub
procedure

implementation
procedure

raster
operations
delegated
to virtual
window

operations dealt
with directly

operate on internal
image if not displayed or
window manager data
structure if displayed

Figure 6.5: Window with its virtual window

6.2.6.2 Window Manager Data Structures

The window manager maintains two main data structures. The first of these is a doubly
linked list of structures containing information about the positions of the windows displayed
and how they obscure one another. The second is a notifier that is used to route input events
to the appropriate window applications and border regions. To enable these structures to be
described in detail the concepts of borders and current windows will now be explained.

Windows may be displayed with borders around them to show their outlines and allow the
user to manipulate them interactively. A number of border styles are pre-defined and the
programmer may also define new styles. Each style consists of a procedure that takes a
window as a parameter and returns a list of Areas as defined below:

type Area is structure(currentImage, nonCurrentImage : image ; pos : Pos ;
distributeEvent : Application)

A border is defined by a group of rectangular regions displayed around the edge of a window;
the list returned by the style procedure contains an instance of type Area for each region.
Each one contains two images, one displayed when the window is current and the other when
it is not current; the position of the region relative to the origin of the window; and an
application to process mouse events occurring over the region. This application provides

110

facilities such as interactive moving and resizing of windows. A simple rectangular border
can be defined as four regions as illustrated in Figure 6.6:

Figure 6.6: Regions of a border

At any time either one or none of the windows displayed by a window manager is current.
This allows the system to determine which window should receive keyboard events: all
keyboard events are routed to the application of the current window. The input focus follows
the cursor: the current window is always the one immediately below the cursor, or if there is
no such window, the one that was below the cursor most recently. Most of the pre-defined
border styles identify the current window by drawing its border differently from when it is
non-current. This is illustrated in Figure 6.7 in which window 2 is the current window:

window 3

window 2

window 1

Figure 6.7: Border styles for current and non-current windows

When a window that is displayed becomes partly obscured, as with window 2 in Figure 6.7, it
is partitioned into rectangular regions each of which is wholly obscured or wholly visible.
This is illustrated in Figure 6.8, where window 2 has been partitioned into three regions A, B
and C. Regions A and B are wholly visible and region C is wholly obscured.

111

window 3

window 2

A

B

window 1

C

parent window

Figure 6.8: Partitioning of a partly obscured window

The first window manager data structure contains a list entry for each window. It is ordered
by window depth, with the entry for the window nearest the front at the head of the list. Each
entry contains a binary tree with leaves corresponding to the regions into which the window
has been partitioned. Where a region is visible the leaf records its bounding rectangle in
co-ordinates relative to the origin of the window manager’s parent window. No image
information is stored since visible pixels can be read from the appropriate region of the
parent window. For obscured regions the leaf records the bounding rectangle, an image
containing the obscured pixels, and a pointer to the obscuring window. Figure 6.9 shows the
list for a window manager displaying the three windows of Figure 6.8, with an enlarged view
of the tree for window 2. The tree contains an image for region C only.

The bounding rectangles are recorded at internal nodes in the tree, to enable faster searching
of the tree. A frequently performed operation is for the window manager to scan a tree to
find all leaf nodes whose bounding rectangles enclose a given point or intersect with a given
region. An entire sub-tree can be eliminated from a search if the bounding rectangle of the
parent node does not meet the intersection criterion. In the example of Figure 6.9, if a given
point does not lie within the bounding rectangle stored at the second internal node then it can
be safely assumed not to lie within either region B or C without further testing.

Figure 6.9 also shows as an example the details of the notification in the list entry for
window 3. It contains a filter procedure which accepts only mouse events that occur within
the bounding rectangle of window 3 and its border. The notification’s application, executed
whenever the notification accepts an event, contains a notifier structure which routes the
event either to one of the border regions or to a procedure that deals with events over the
main window area. The actions performed by this procedure will be explained shortly.

112

other house-
keeping info

other house-
keeping info

other house-
keeping info

1

2

3

window information list,
ordered by depth

test for
main area

test for left
border region

test for top
border region

test for right
border region

test for bottom
border region

test for mouse
event in bounding

rectangle of
window 3

notifier for regions
of window 3

notification for
window 3

bounding
rectangle

(A ∪ B ∪ C)

imageobscuring
window (1)

bounding
rectangle

(B ∪ C)

bounding
rectangle

(C)

bounding
rectangle

(A)

bounding
rectangle

(B)

tree for window 2

Figure 6.9: Window manager’s list of windows

Figure 6.10 illustrates the structure of the window manager notifier. The first notification in
the notifier list contains a filter procedure that tests for keyboard events or mouse events over
a visible region of the current window. To determine whether an event occurs in a visible
region it scans the window’s tree for a leaf node whose rectangle contains the position of the
event. If one is found and it does not contain an image, that region of the window is visible.
The corresponding application uses another notifier to route accepted events to either the
application of the current window, for keyboard events and mouse events over the main

113

window area, or to the application associated with the region of the border within which the
event occurs. As the notification for the current window is always at the head of the notifier
list, events directed to the current window are routed without the need to execute multiple
filter procedures in the main notifier.

Below the notification for the current window is a notification corresponding to each of the
windows displayed. The filter procedures in these notifications test only for mouse events
within the bounding rectangles of the corresponding windows: keyboard events are always
accepted by the notification for the current window, while the ordering of the notifications by
window level ensures that mouse events occurring over an obscured region of a window are
not routed to the application of that window. For example, an event occurring over the
region of window 3 that is obscured by window 2 will not be routed to window 3 as the event
will also be over window 2 and will thus be accepted by its notification first.

The application in each of the notifications corresponding to the non-current windows also
routes events using another notifier. Its structure differs from that of the notifier for the
current window in that events over the main part of the window are dealt with by a procedure
that makes the window current and then discards the event. Making the window current
results in the removal of the notification currently at the head of the notifier list and the
insertion of a notification for the newly current window in its place. The existing notification
for that window is now redundant as any events that its filter procedure would accept will be
accepted and consumed by a notification higher up in the list. However the redundant
notification is left in place as it will be needed again when some other window becomes
current.

114

distribute to border
regions or delegate to

application of window 2

distribute to border
regions or make

window 1 current

distribute to border
regions or make

window 2 current

distribute to border
regions or make

window 3 current

discard event

window manager notifier list

test for keyboard
event or mouse event

in visible part of
window 2

(current window)

test for mouse event in
bounding rectangle of

window 1

test for mouse event in
bounding rectangle of

window 2

test for mouse event in
bounding rectangle of

window 3

otherwise
test for

main area

test for left
border region

test for top
border region

test for right
border region

test for bottom
border region

notifier for regions
of window 3

make window
3 current

delegate to
border

delegate to
border

delegate to
border

delegate to
border

test for
main area

test for left
border region

test for top
border region

test for right
border region

test for bottom
border region

notifier for regions
of window 1

delegate to
application

test for
key press

delegate to
application

delegate to
border

delegate to
border

delegate to
border

delegate to
border

Figure 6.10: Window manager’s notifier list

115

The data structures shown in Figures 6.9 and 6.10 are updated whenever a window is
displayed or undisplayed or its level is altered.

6.2.6.3 Fragmentation

The window manager uses a tree compactor to reduce window fragmentation, which may
occur in situations such as that illustrated in Figure 6.11. This shows window 1, which partly
obscures window 2, being moved to a new position in four small steps. At each step some of
the existing partitions of window 2 are further split into smaller regions.

window 2
window 1

Figure 6.11: Source of window fragmentation

Figure 6.12 shows the resulting fragmentation. The tree for window 2 now contains fifteen
leaf nodes corresponding to the split-up regions, although the whole window could be
represented by a single node since all the regions are visible.

window 2
window 1

Figure 6.12: Resulting fragmentation

There are two problems associated with this fragmentation. The first is that the data structure
describing the window’s contents becomes complex, so window manipulation algorithms that
traverse the structure take longer. The other problem arises if window 2 now becomes
completely obscured by another window: its contents are stored as a large number of small
images and the memory overheads associated with each image may become significant.

To reduce these problems a buddy-type compactor is used to recombine leaf nodes, by
traversing the tree and examining each pair of sibling leaf nodes. If the nodes both represent
obscured regions or both represent visible regions the parent node is overwritten by a new
leaf node constructed by combining the two siblings. Figure 6.13 shows how the tree of
window 2 is reduced to a single node by the compactor:

116

Figure 6.13: Compaction of a window tree

Like other buddy algorithms [Kno65], the algorithm does not compact non-sibling pairs even
when they are compatible. Its advantage is that little computation is required, making it
feasible to invoke it, for every window displayed, whenever any window is moved, displayed
or undisplayed.

6.2.6.4 Hyper-Text Editor Data Structures

The hyper-text editor maintains three main data structures. The first structure contains the
text itself, the second structure describes which part of the text is visible in the editor window
and the third structure describes the positions of the embedded light-buttons and their
associated actions.

The text is stored in a doubly linked list of strings, one for each text line. The new-line at the
end of each text line is not stored as part of the string but is implicitly present between each
consecutive pair of lines. Each list element also contains a line number. This allows the
editor to determine the ordering for list elements efficiently.

The user may select regions of the text; the start and finish of the selected text are represented
as structures of type TextPointer, one field containing the list element for the relevant text
line and the other containing an integer offset into the line. The offset refers to a point
between two characters, so for example an offset of zero corresponds to the point before the
first character and an offset of five to the point between the fifth and sixth characters.

The layout of the text within the window display is recorded in a vector. Each element
contains a TextPointer specifying the position within the text data structure of the beginning
of the corresponding window line. If a text line is longer than the number of characters
which fit into a window line, more than one window line points to it. Each element of the
window line vector also contains the vertical offset in pixels of the base of the corresponding
window line from the base of the window. The offsets could be calculated as required but
they are stored as an optimisation since they change only when the number of window lines
changes, a relatively infrequent occurrence caused by the window size changing.

Details of embedded light-buttons are stored in a vector. Each element contains:

• an integer index for the button;
• the text displayed on the button;
• the text positions at which it starts and finishes;
• the procedure that will be executed when the button is pressed;
• a value of type any that may be set by the programmer.

117

The light-button vector is ordered by the buttons’ positions in the text. This allows the editor
to distinguish efficiently between a mouse button press over a light-button, in which case its
associated procedure is called, and a press over normal text, in which case the insertion point
is set to the new position. The editor calculates the text position corresponding to the (x,y)
position of the mouse and then uses a binary split algorithm to determine whether the text
position lies between the start and finish of any of the light-buttons.

The data structures will be illustrated with the following example. An editor contains the text
shown below:

And did those feet in ancient time
Walk upon England’s mountains green?
And was the holy lamb of God
On England’s pleasant pastures seen?

The text contains two hyper-text buttons, one over the word mountains and the other over the
word God. Part of the text is selected. The text visible in the editor window is shown in
Figure 6.14, with the selected text displayed white on black:

Figure 6.14: Example of hyper-text editor display

Figure 6.15 shows the data structures that represent this configuration. The two text pointers
at the top record the current selection. The vector on the right records the pixel offsets of
each window line from the base of the window: here the height of each line including the
inter-line space is 16 pixels. Each element points to the text position lying at the start of the
window line. The vector displayed below the doubly linked list contains two elements
recording the names and positions of the light-buttons. The button indices are independent of
the elements’ offsets within the vector; they are used by the programmer to denote particular
buttons when calling those editor interface procedures that operate on buttons. The types
used are defined in Appendix C.

118

29

1 "mountains"

20

action
any

2320 0

20

0

0

20

"On England’s pleasant pastures seen?"

"And did those feet in ancient time"

"Walk upon England’s mountains green?"

"And was the holy lamb of God"

TextLine

TextPointer
*WindowLine

64

48

32

0

16

TextPointer

*InternalButtonInfo

28

25

5 "God"

action
any

TextPointer

1

2

3

4

TextPointer

start of
selection

end of
selection

line
numbers

pixel
offsets

character
offsets

button
ids

Figure 6.15: Hyper-text editor data structure

6.3 Browser

The hyper-programming system requires a browsing tool to allow the programmer to locate
values in the persistent store for incorporation into hyper-programs. The tool is also needed
for examining values bound into existing hyper-programs. The Napier88 browser is capable
of displaying a representation of any value passed to it. This representation can be either
textual or graphical although the hyper-programming system uses graphical representations
only.

6.3.1 History

The Napier88 browser is based on a tool written for PS-algol by Dearle and Brown [DB88],
and a proposal for its extension [DCK90]. The main differences are that the Napier88 type
system is more complex, thus the Napier88 browser has to deal with more type constructors,
and in the user interfaces. The PS-algol browser only displays one value at a time, making it
difficult for the user to discern the topology of inter-connected structures. With the Napier88
browser multiple values can be displayed and arrows drawn between representations to show
references between values.

119

6.3.2 Browser Interface

The programmer accesses the Napier88 browser as a procedure that takes one parameter of
the infinite union type any. An instance of the browser is generated by calling a generator
with an instance of the following type as a parameter:

type BrowserType is variant(graphical : WindowManager;
textual : proc(string))

The type WindowManager is defined in Appendix C. The value passed to the browser
generator determines whether the output of the browser will be in graphical form, in which
case the window manager value is used to display value representations, or in textual form, in
which case the procedure is called whenever the browser needs to output text. Only in the
former case does the browser attempt to display links between values. The graphical user
interface was described in Chapter 4.

6.3.3 Browser Implementation

Two versions of the browser have been built, with the same user level interface but different
underlying implementations. The first version uses type-safe linguistic reflection, while the
second is written at a lower level using implementation-level facilities available to the
builders of the Napier88 system itself.

6.3.3.1 Reflective Implementation

The action taken by the browser to display a value depends on the value’s type; it executes a
different procedure for each type. For example, displaying a variant requires a different kind
of window from that required for a structure. As there are an infinite number of Napier88
types, it is not possible to generate all the procedures statically. The browser instead relies on
the Napier88 compiler being available as a procedure within the language. When the
browser encounters a new type it constructs and compiles a new procedure to display it.

Linguistic reflection is a relatively expensive process; the browser would be more efficient if,
for example, it had a generic procedure that could be used to display all structure values
without having to use reflection. It would in fact be possible to provide such a generic
procedure if all it had to do was to display a menu for a given structure. The labels for the
menu entries could be determined by inspection of a representation of the structure’s type.
The problem to which reflection provides the solution is dereferencing into the structure to
obtain its field values for further browsing.

Structure dereference in Napier88 is expressed by field names which must be specified
statically. The reason for this rule is to enable static type checking. There is no way to write
a computation that calculates a field name at run-time, as field names are not part of the value
space. Because of this a generic structure display procedure could not obtain the structure
field values, since the field names could only be determined by dynamic inspection of the
type representation.

The solution adopted is use the field names obtained dynamically to generate the
representation of a specialised procedure to display values of that particular structure type.
With respect to the generated procedure the field names are known statically. The
representation is then compiled and executed. A similar process can be used for other type
constructors. Figure 6.16 illustrates the procedure representation that might be generated for
a particular structure type. For simplification the definition of the procedure menu3 to
display menus with 3 entries is assumed. The generated procedure contains a label for each
menu entry and a procedure to be executed when the entry is selected. Recall that
apostrophes are used to allow quotes to be included inside a string.

120

"type T is structure(a : proc(…) ; b : variant(…) ; c : structure(…))
use PS() with browser : proc(any) in
proc(val : T)

menu3('"a : proc'", proc() ; browser(any(val(a))),
'"b : variant'", proc() ; browser(any(val(b))),
'"c : structure'", proc() ; browser(any(val(c))))"

Figure 6.16: Generated procedure to browse a structure

The browser maintains a table keyed by representations of the types that have been browsed
in the past, containing procedures that will browse values of those types. The table is loaded
at the time of its creation with procedures to browse all the base types and procedure values.
These procedures can be loaded at the outset because all values of a given base type are
browsed in the same way. All procedure values are also browsed in the same way.

When the browser is called it first determines the type of the value in the any passed to it. It
then searches the table for a representation of that type. If the value being browsed is of one
of the base types or the type has been encountered previously, a procedure will be found to
browse it.

If, however, the type is not present in the table, the browser constructs a new procedure to
browse the value. Browsing involves displaying a menu window representing the value and
extracting any other values directly accessible from the value being displayed so that they in
turn can be browsed and displayed. To construct the new procedure the browser builds a
textual representation of the required procedure and then uses the compiler to compile the
text. The code representation is built up by string manipulation, directed by the structure of
the type of the value to be displayed. Before executing the procedure which is produced by
compilation of the new code, the browser enters it into the table, keyed by a representation of
the type of the object which it can browse. In this way the browser learns about new types:
the next time an object of that type is encountered there will already be a procedure in the
table to browse it. Since the table is persistent, the compilation process is necessary only on
the first encounter with the type.

Figure 6.17 illustrates the process of browsing a structure value. If the type of the structure
has not been encountered before, the browser analyses a representation of the type to
determine the names and types of the structure fields. It uses this information to construct the
textual representation of a procedure to display values of the structure type.

121

a : proc

structure

b : variant

c : structure

determine field names
and representations of

their types

construct representation
of procedure to display
menu and dereference

structure fields

compile procedure
and record in

persistent table

encountered
type before?

dereference field b
and pass value back

to browser

display
structure
window

field b selected

browser invoked
for structure value

"…
…val(a)…
…
…val(b)…
…
…val(c)…
…"

no

yes

get type
representation

Figure 6.17: Reflective implementation of structure browsing

The browsing of environments presents a problem not found with the other base types. As
the names and types of the bindings in an environment can only be determined by dynamic
inspection, the browser must use reflection to obtain the binding values in the same way as
structure field values are obtained. An example of the code generated to browse the value of
a binding x with type T is shown in Figure 6.18. Once compiled the resulting procedure is
applied to the environment to display the value.

"type T is … ! Definition of type T
use PS() with browser : proc(any) in
proc(e : env)

use e with x : T in browser(any(x))"

Figure 6.18: Generated procedure to browse an environment binding

The overheads associated with performing reflection are more significant with browsing
environments than browsing structures because they are incurred every time a different
binding is browsed. With structures the names and types of the fields are constant so all the
reflection can be performed on the first encounter with the type; since bindings can be added
and dropped from environments the reflection is needed each time a new binding is browsed.

6.3.3.2 Low-Level Implementation

The browser forms the basis for the hyper-programming environment described in Chapter 4.
One of its uses is to allow the programmer to navigate around the persistent store to locate

122

data to be reused. Since environments provide the main store structuring mechanism, this
involves much browsing of environments. It was found that the implementation using
reflection did not give adequate speed performance to allow serious use. To address this the
browser was re-implemented using lower-level technology. The new version uses several
procedures that are not available in the standard Napier88 release because they are not type-
safe. These procedures operate at the untyped object level that underlies the Napier88
system, and allow words to be read from and written to arbitrary positions in objects.

Implementation at this level is more efficient than using the reflection techniques, because
rather than having to construct and compile code to access the components of compound
values, the browser can simply read directly from the objects that represent them. This relies
on knowledge of the fact that Napier88 values are represented using a small number of object
formats, one for each of the type constructors [CBC+90]. The disadvantage of this strategy is
that it reduces the portability of the system: its implementation must change if the Napier88
store formats change.

The general structure of the browser is the same in the low-level implementation. It still
examines the type of a value passed to it and decides from it how to display the value. If the
type has been encountered previously an existing display procedure is located and used,
otherwise a new display procedure is generated and stored before use. New procedures are
also generated for accessing environment bindings.

The difference is in the way these new procedures are generated. Instead of constructing and
compiling new code representations, the system uses one of a small set of existing higher-
order procedures, one for each type constructor, that return display procedures. The
generator procedures take as parameters information about the type of the value to be
displayed. This allows an offset map to be calculated and bound into the returned display
procedure. The map contains offsets into the store object implementing the value being
displayed. The display procedure uses the offsets with the low-level object access functions
to access the values bound into the value being displayed.

All object formats in the current Napier88 system keep pointers and non-pointers separated.
This facilitates the location of pointers during garbage collection. Because of this the offset
map contains offsets for both the pointer and non-pointer components of each value bound
into the value being displayed. Depending on the type of the bound value one of those
components may be empty—for example, a real is represented by two non-pointer words, a
procedure by two pointer words, and a variant by one pointer and one non-pointer word.

Other low-level functions are used to combine the pointer and non-pointer components back
into a typed Napier88 value so that it can be passed in turn to the browser if required.
Because the code of every display procedure produced by a given generator is the same, the
generation of the new procedures requires only the binding-in of the offsets rather than the
construction of new code. This could be viewed as a very limited form of reflection in which
the generators can vary the environment of the closures produced but not their code.

The low-level functions used in the implementation of this version of the browser are
described below. The functions can only be accessed using a special system-builders’
version of the Napier88 compiler.

makeObject: This takes as parameters a size and number of pointer fields, and returns a
pointer to a new store object.

formAny: This takes a pointer to a store object and a representation of the type of the
value it implements, and returns the value injected into type any.

splitAny: This takes an any and returns a pointer to the store object implementing it and a
representation of the value’s type.

123

assignPntr, assignInt, lookupPntr, lookupInt:

These allow pointer and scalar words to be read from and written to store
objects.

6.3.3.3 Browsing Structures, Variants and Vectors

To browse a structure the browser needs to build a menu showing the field names and their
types and to extract the values stored in the fields of the structure. The field names and types
are obtained from the representation of the type of the structure value, while the values in the
fields are accessed by reading directly from the store object that implements the structure
value.

On encountering a value with an unknown structure type the browser:

• obtains a representation of the structure type;
• extracts the field names and type representations from the type representation;
• uses the field types to work out the store formats of the field values;
• constructs an offset map containing the positions of the field values within the structure

object;
• produces a browsing procedure with the offset map bound into it;
• records the procedure in the persistent table and then calls it.

To browse one of the fields of a structure of that type the browser:

• obtains a pointer to the store object implementing the structure value;
• looks up the offsets of the pointer and non-pointer components of the required field value

from the offset map;
• reads the pointer and non-pointer components of the field value from the appropriate

positions within the structure object;
• converts the components and the field type representation to a typed any form;
• calls itself to browse the any.

Figure 6.19 illustrates the browsing of a variant field in a structure. In this example the
pointer and non-pointer components of the variant are stored non-consecutively in the
structure object. The layout of the structure object has been slightly simplified. In reality
extra words are stored in the object for housekeeping purposes.

124

a : proc

structure

b : variant

c : structure

calculate field names
and representations

of their types

calculate field
offset map

encountered
type before?

display
structure
window

field b selected

browser invoked
for structure value

no

yes

get type
representation

a
pntr

a
pntr

b
pntr

c
pntr

b
non-
pntr

0 1 2 3 4
object offset

read words 2
and 4 and form

into an any

pass any back
to browser

a

b

0 n/a

2 4

pointer
offset

non-pointer
offset

c 3 n/a

record procedure
with offset map in

persistent table

get store object
representing

structure

field
name

Figure 6.19: Low-level implementation of structure browsing

The main improvement in performance over the reflective implementation occurs when the
browser first encounters an unfamiliar structure type. The actions in the first list given in this
section are all inexpensive compared to invoking the compiler. The amount of work required
when a field value is browsed is broadly similar in the two implementations.

The methods for browsing unfamiliar variants and vectors are similar and slightly simpler as
the field offset maps are not needed. A variant only holds one value so calculation of its
offsets is trivial, while all the elements of a vector must occupy the same number of words,
so element offsets can be calculated by multiplication when the elements are accessed.

6.3.3.4 Browsing Environments

As env is a base type the browser table contains a single pre-defined procedure for browsing
environments. Since the contents of environments can vary there is no point in storing
information about environments encountered for future use.

When an environment is encountered the browser uses a standard procedure to scan it,
discovering the names of the bindings it contains and representations of their types. To
browse a binding from the environment the browser uses a low-level procedure to access the

125

procedures that implement that environment. These procedures are normally hidden from the
Napier88 programmer. It then calls one of the procedures to obtain a pointer to the store
object that implements the location of the required binding, reads the pointer and non-pointer
components of the value, and converts them to an any in the same way as for structures.
Finally the any is passed back to the browser to be displayed.

The amount of work required to display an environment in this implementation is similar to
the reflective implementation. The savings occur when bindings in the environment are
browsed as the need for compilation is removed.

6.4 The Napier88 Compiler

The first Napier88 compiler was implemented by Brown, Connor, Dearle and Morrison
[Dea88, Bro89, Con90]. The version used for the experiments described in this thesis is
itself implemented in Napier88 and was implemented by Cutts [Cut92]. The compiler is
accessible by Napier88 programs through several interfaces. The simplest is shown in Figure
6.20:

compileString : proc(string → any)

Figure 6.20: Simple interface to the Napier88 compiler

This interface to the compiler is a procedure that takes a string parameter and returns a result
of type any. Projecting the result gives a value that depends on the type of the code
represented by the input string, as follows:

• If the input code represents a void program, i.e., a program that does not return a result,
the value is a procedure of type proc(). Calling the procedure causes the compiled code
to be executed.

• If the input code represents a value of type T, the value projected from the any is a
procedure of type proc(→ T). Calling the procedure causes the compiled code to be
executed, producing the result value.

• If there are compilation errors due to the input code being invalid, the value projected
from the any is a string that describes the errors.

There is also a more flexible interface to the compiler which abstracts over the nature of the
source representation being compiled. It also allows programs to be compiled against
existing values, i.e., it supports compilation-time linking. The interface is shown in Figure
6.21:

type lValue is … ! structure containing info about an identifier
type symbolTable is table[string, lValue]

compile : proc(env, list[symbolTable], *string → any)

Figure 6.21: Flexible interface to the Napier88 compiler

The procedure providing this version of the compiler interface takes as parameters an
environment, a list of symbol tables and a vector of strings. It returns a result of type any
using the same convention as the simple interface. The environment parameter contains
procedures that operate on the source code: one returns the next character from the source
code and advances the remembered position, while another returns true or false depending on
whether the end of the source code has been reached. These procedures abstract over the

126

nature of the source code: it could be a string, a file or some other program representation.
The list parameter contains symbol tables that form a series of extra ‘outer scopes’ during
compilation. Finally the vector parameter contains strings that specify compiler options such
as source listing, line numbering, etc. To compile a program against an existing value, the
programmer constructs a new symbol table using a procedure available in the persistent store,
adds the value to the symbol table and passes it in a list to the compiler. If the compiler
encounters an identifier not declared within the source program it searches the extra symbol
tables and, if found, plants a reference to the corresponding value or store location in the
resulting executable code.

6.5 Hyper-Programming Tools

6.5.1 Hyper-Program Representations

The hyper-programming environment supports three different representation forms for hyper-
programs:

• While being manipulated in a hyper-program editor a hyper-program is represented by a
combination of text and embedded light-buttons.

• When exported from an editor a hyper-program has a simpler representation. It is this
representation form that is obtained if the contents of an editor are read using the
appropriate interface procedure. It is also the form that is manipulated by reflective
hyper-program generators and in which source code attached to procedure values is
stored. The form is ‘light weight’ thus few storage overheads are incurred.

• A hyper-program is converted to a third form before being passed to the compiler.

The three forms will now be illustrated with reference to the hyper-program shown in Figure
6.22. The hyper-program contains links to a free identifier, a procedure value and an
environment location.

writeString : proc(string)

hyper-program

for i = 1 to currentBound do
begin
 (currentMessage)
end

env location containing
currentMessage : string

free identifier
currentBound : int

Figure 6.22: Example hyper-program

While the hyper-program is stored within a hyper-program editor it is represented by the
hyper-text structure shown in Figure 6.23. There is a light-button corresponding to each
embedded link. Each element of the light-button vector contains, in addition to the button’s
index, text and position:

127

• a procedure that is called when the light-button is pressed, causing a representation of the
linked data to be displayed by the browsing tools;

• a reference to the linked data comprising an instance of type Binding injected into type
any.

In this representation the data linked into the hyper-program is stored in the spare ‘user’
fields of the light-button representations:

10

24

8
5

1
3 25"currentBound"

procedure to
display

representation of
writeString
procedure

reference to
writeString

procedure injected
into type any

"end"

"for i = 1 to currentBound do"

"begin"

" (currentMessage)"

TextLine

1

2

3

4

writeString : proc(string)

2 " "

3 "currentMessage"

Binding: "value"procedure to display
representation of

environment location

Binding: "envLocation"

reference to
environment

location

procedure to display
representation of

stack location

Binding: "frameLocation"

reference
to frame

containing
stack

representation
of type int

description of
identifier's

position in stack

light-button
vector

text
positions
of button

ends

representation
of type string

false

1

*InternalButtonInfo

Figure 6.23: Representation within hyper-program editor

An exported hyper-program is represented by an instance of type HyperSource as defined in
Figure 5.1. This contains a program in string or parsed form together with a vector of
substitutions. Each substitution specifies a region of the program and the data, an instance of
type Binding, to be substituted in that region. For a string program representation the regions
are specified by a pair of character offsets from the start of the string, the first offset giving

128

the character number for the start of the region and the second giving the number for the end
of the region. The example hyper-program is shown in this form in Figure 6.24. It can be
seen that this form requires many fewer objects than that in Figure 6.23.

"for i = 1 to currentBound do
begin
 (currentMessage)
end"

HyperSource

41 43

*Substitution[Binding]
14 25

CodeRegion

46 59

Binding: "frameLocation"

Binding: "value"

Binding: "envLocation"

Figure 6.24: Representation of exported hyper-program

Figure 6.25 shows the hyper-program form that is processed by the compiler. When the
evaluate button in a hyper-program editor is pressed the editor converts the hyper-program to
this form and passes it to the compiler. Each substitution region in the text string is replaced
by a unique identifier of the form uniqueIdn where n is an integer chosen to ensure that the
identifier does not occur anywhere else in the processed representation. Associated with the
text string is a newly created symbol table which contains an entry for each of the identifiers
corresponding to a substitution region. Among other items of information, each entry
contains a representation of the type of the linked data and a reference to the data itself. The
form of the reference depends on the nature of the data:

• for a value, the reference is to the low-level object representing the value;

• for an environment location, the reference is to the low-level object representing that
location;

• for a free identifier, the reference is to the low-level object representing the frame
containing the data, along with the position of the data within the frame.

A location in a structure, abstract data type or vector is not represented by a single unique
identifier. Instead, the hyper-program contains a unique identifier for the structure, abstract
data type or vector value, and code to perform the dereference is inserted after it. This code
has the form (fieldName), (fieldName) or (index) respectively.

This hyper-program representation is passed to the compiler using the flexible compiler
interface described in Section 6.4. This interface allows external symbol tables to be passed
to the compiler along with the text. The compiler then uses the newly created symbol table
to resolve uses of the substituted identifiers, which were chosen so that they did not clash
with any normal identifiers in the hyper-program.

129

"for i = 1 to uniqueId78 do
begin
 uniqueId317(uniqueId402)
end"

uniqueId78

symbolTable representation of
type proc(string)

low-level representation
of procedure

… other info

uniqueId317 … other info

uniqueId402 … other info

representation
of type int

frame no and
position in frame

representation of
type string

low-level representation
of environment location

Figure 6.25: Hyper-program representation passed to the compiler

6.5.2 Constructing Closure Representations

In order to enforce associations from executable programs to the corresponding source
programs, the hyper-programming system arranges that whenever a procedure is compiled its
source code is retained and stored in the resulting closure. This is achieved by modifying the
part of the Napier88 compiler that compiles procedure definitions, the procedure procLiteral.
When the new version of procLiteral reaches the end of a procedure definition it extracts the
part of the source code defining the procedure and inserts a reference to it in the newly
constructed low-level object representing the code vector. The source code stored is a hyper-
program, in the exported form, in which all free identifiers are replaced by hyper-program
links.

During execution of the standard Napier88 compiler, the current position within the source
text is abstracted over within the lexical analysis procedures. In the hyper-programming
system these procedures are modified to make the source text position accessible by other
procedures. This enables the modified version of procLiteral to note the current text position
as it starts to compile a procedure and again at the end, giving the bounds of the procedure
definition within the source code. As procedure definitions may be nested, giving nested
activations of procLiteral, the system maintains a stack of positions of procedure definition
starts. An entry is pushed at the start of procLiteral and popped at the end.

The system also keeps track of hyper-program links to be inserted into the procedure source
code. These occur where the source program itself contains hyper-program links, and also
where a free identifier is used within a procedure definition. Free here means that the
identifier is declared outside the procedure definition. To determine which identifiers are
free, procLiteral stores the lexical level of the procedure along with its source start position
in each stack element. Whenever the modified lexical analysis procedures encounter an
identifier, the symbol table entry for that identifier, if any, is obtained. If an entry exists and
it shows that the identifier was declared at a lower lexical level than that of the procedure
currently being compiled, then the identifier is free. In that case a new element is added to a
list in the element at the top of the procedure stack. The new list element contains the source
text position of the identifier and a specification of its corresponding data, of type Binding.
In the case that the identifier denotes a hyper-program link already present in the source

130

program, then the data already exists and the Binding contains a reference to a value or
location. Alternatively, where the identifier is defined in the source program outside the
procedure definition, the data will not exist until run-time. In this case the Binding contains a
description of where the data will be at run-time, comprising a frame number and a position
within the frame. Each time the end of procLiteral is reached the information about the
current procedure definition is popped from the stack and used to produce its textual source
code together with a vector of substitutions. Each substitution contains the position of an
identifier and a Binding. The text and the substitutions together form an instance of type
HyperSource, a hyper-program, and a reference to this is inserted in the newly formed code
vector for the procedure.

This process is illustrated in Figure 6.26. The source code contains two procedure definitions
p1 and p2, with p2 nested inside p1. The lexical level before the procedure definition is 0; at
the start of p1 it becomes 1; inside p2 it is 2. The source character offsets of the start and
finish of p1 are denoted by offset 1 and offset 4, while the corresponding offsets for p2 are
offset 2 and offset 3. The identifiers x and y are declared within the program and z represents
a hyper-program link to a value in the persistent store. The figure shows the hyper-program
source representations recorded for p1 and p2; note that some identifiers appear in both
representations. A given identifier may appear normally in one representation and as a
hyper-program link in another, as is the case for y in this example.

The bottom part of the figure shows the state of the procedure stack at the point that the
compiler reaches the end of p2. The top element contains information about p2: its start
offset, its lexical level and a list of the free identifiers used within it, x and y. Below this on
the stack is information about p1, the free identifiers being x, twice, and z. At this point in
compilation the contents of the top element are used to form the source for p2; the stack is
then popped and later the other element is used to form the source for p1.

131

offset 1

offset 2

offset 3

offset 4

0

1

2

lexical
level hyper-program source of p1

hyper-program source of p2

offset 2 2

x text offset of x

y text offset of y

offset 1 1

x text offset of x

z text offset of z

x text offset of x

false

Binding: "frameLocation"

frame 0 position within frame

type representation

false

Binding: "frameLocation"

frame 0 position within frame

type representation

reference to value

Binding: "value"

compiler stack as parsing reaches offset 3

let x := 5

let p1 = proc()
begin
 let y = x + z

 let p2 = proc(→ int)
 begin
 x + y + 2
 end
end

proc(→ int)
begin
 x + y + 2
end

proc()
begin
 let y = x + z

 let p2 = proc(→ int)
 begin
 x + y + 2
 end
end

false

Binding: "frameLocation"

frame 0 position within frame

type representation

false

Binding: "frameLocation"

frame 1 position within frame

type representation

Figure 6.26: Constructing source representations for nested procedures

As illustrated in Figure 6.26, the information recorded in the Binding for a free identifier
during compilation consists of a frame number and a position within that frame. The frame
itself cannot be recorded as it does not come into existence until the compiled program is
executed, thus the frame pointer field contains a null value. When the source hyper-program
of a procedure value is displayed by the browser, the browser scans the hyper-program for

132

null frame pointers and overwrites them with pointers to the appropriate frames. The frames
are found by traversing the procedure’s static chain to find the appropriate frame numbers.
When a light-button corresponding to a free identifier is pressed the associated value is
obtained and displayed by reading words from the frame, converting them to a typed value
and passing the result to the browser.

The mechanisms described so far allow a source program passed to the compiler to contain
hyper-program links to values or locations in the persistent store. Another variation is
needed to cater for the possibility that a source program may contain hyper-program links to
values or locations within existing frames. This situation arises when the programmer creates
a new source program by combining components copied from the source programs of
existing procedures with free identifiers, as illustrated in the next two figures. Figure 6.27
shows two source programs that contain references to frames containing free identifiers.
Each frame contains a pointer to the next frame in the static chain, eventually terminating in
the outer-most frame. Since the two procedures in the example have been produced by
executing independently compiled programs, the two static chains are disjoint.

proc()
begin
 deeplyNested := 3
end

source of another proc

static link

deeplyNested

static link

static link

frames

Binding: "frameLocation"

frame 3 position within frame

proc(→ int)
begin
 x + y + 2
end

source of p2

x

frames

y

static link

Binding: "frameLocation"

frame 0 position within frame

Binding: "frameLocation"

frame 1 position within frame

Figure 6.27: Procedures with disjoint static chains

Figure 6.28 shows a new source program constructed by copying parts from both existing
source programs:

133

let a := 0

proc(→ proc(→ int))
begin
 let b := 1

 proc(→ int)
 begin
 x + y + deeplyNested
 end
end

new source code

x

frames

y

static link

Binding: "frameLocation"

frame 0 position within frame

Binding: "frameLocation"

frame 1 position within frame

static link

deeplyNested

static link

static link

Binding: "frameLocation"

frame 3 position within frame

Figure 6.28: Program with references to existing frames

When invoked to compile a source program that contains references to external identifiers in
existing frames as shown here, the modified compiler first allocates a numbering to each of
the frames. The frames are numbered consecutively from 0 and the ordering is unimportant.
The compiler then modifies the frame numbers recorded with the external identifiers to
reflect the new numbering scheme and sets the lexical level at the beginning of compilation
to the number of external frames. In the example shown there are three external frames so
the lexical level at the beginning of compilation will be 3. In contrast, the standard compiler
always begins compilation with a lexical level of 0.

The final way in which the modified compiler differs from the standard compiler is in the
code planted to build the display on entry to a procedure. The standard compiler plants code
that is executed on a procedure entry and traverses the procedure’s static chain, loading onto
the stack a pointer to each frame in the chain. These pointers form the display. The modified
compiler also plants additional code that is executed after the standard display has been
constructed. The additional code loads a pointer to each of the external frames in decreasing
order of frame number. This ensures that references to external identifiers planted in the
compiled code will be resolved correctly at run-time.

This mechanism is illustrated in Figure 6.29 which shows the state of the symbol table list at
the start of compilation of the body of the inner procedure in the new program. The first two
symbol tables contain entries for identifiers declared in the enclosing blocks, in this case the
identifiers a and b. As compilation started at a lexical level of 3, this is the frame number for
a. Another symbol table contains entries for the unique identifiers assigned to represent the
external identifiers. These entries contain the frame numbers assigned to the external frames
at the start of compilation.

134

a

symbolTable

… other info3

frame
number

uniqueId4

symbolTable

… other info

uniqueId20 … other info

uniqueId36 … other info

0

frame
number

1

2

represents
deeplyNested

represents
y

represents
x

symbol table
list

b

symbolTable

… other info4

frame
number

Figure 6.29: Symbol table list during compilation

135

Figure 6.30 shows the current frame at the start of execution of the procedure body. The
frame’s static link points to the frame for the enclosing block, created at run-time. The
display contains pointers to this frame and to each of the external frames.

current frame

x

y

static link

static link

deeplyNested

static link

static link

2

1

0b

static link

normal part
of display

new frame
number

a

extra part
of display

Figure 6.30: Current frame during execution

6.6 Conclusions

The implementation of the prototype hyper-programming tools has been described. As they
are built using the WIN user interface system and the Napier88 browser, these systems have
also been described, as have some relevant features of the Napier88 compiler.

The WIN system is implemented entirely in Napier88 and provides overlapping windows,
user event distribution and a library of pre-defined interface widgets. Event-driven
applications are constructed by writing Napier88 programs that compose selected widgets
with additional code to provide application-specific behaviour. The contents of windows are
stored in a space-efficient way that avoids duplication of image information in memory or the
need for double updates to visible windows. A simple compaction technique is used to limit
fragmentation of partially obscured windows.

Two implementation techniques have been used for the adaptive store browser. The original
version employed type-safe linguistic reflection to construct browsing code for unfamiliar
types, while the current version uses knowledge of the underlying store formats to enable
direct access to the components of objects. In both cases, once a procedure for browsing a
new type has been created it is stored in a persistent cache so that the work of creating the
procedure does not have to be repeated on subsequent encounters with the type.

136

The hyper-programming tools allow the programmer to construct source programs that
contain references to existing data and types. The data may be a value in the persistent store,
a location in the persistent store, a value in a frame, or an environment location in a frame. A
hyper-program is represented in one of several forms depending on whether it is being edited,
exported outside an editor, or processed by the compiler. Modifications to the Napier88
compiler allow it to compile source programs with embedded hyper-program links and to
store the relevant part of the source code with the closure produced by the compilation of
each procedure definition.

137

7 Conclusions
The motivation for the research described in this thesis is to improve programmer
productivity in persistent systems. This has been tackled in three ways:

• by reducing the amount of code that has to be written;
• by increasing the reliability of the code written; and
• by improving the programmer’s understanding of the persistent environment.

Uses of type-safe linguistic reflection and hyper-programming techniques to achieve these
goals have been investigated. Chapters 2 and 3 describe the techniques and give analyses of
their benefits when employed in a persistent programming environment. Chapters 4 and 5
illustrate how the programmer interacts with the tools that support the techniques. Finally
Chapter 6 gives details of how the programming tools were implemented.

7.1 Type-Safe Linguistic Reflection

Type-safe linguistic reflection allows program representations to be manipulated as data and
the results transformed into executable programs. It enables the programmer to write
programs that produce new programs. The technique may be used to specify highly generic
program generators, extending beyond the genericity available in current polymorphic
systems. This provides greater opportunities for software reuse thus reducing the amount of
new code to be written. The mode of use of the generators is similar to that of generics in
Ada [DOD83], in that typically for each specialisation of a generator the specialised form is
used many times. Thus the costs of specialisation are amortised over many uses. The
difference is that the specialised forms produced by reflection may depend on information
available at specialisation time in more interesting ways, such as the structure of the types of
the data.

Type-safe linguistic reflection may also be used to enable applications to adapt to changes in
the structure of the data on which they operate, while retaining a high degree of static type
checking. This reduces the amount of new code required since there is less need to re-
implement applications as the data evolves.

Several systems that support type-safe linguistic reflection have been previously
implemented. The contributions of this thesis are the following:

• a classification and analysis of the anatomies of reflective systems;
• identification of issues affecting the useability of linguistic reflective systems; and
• investigation of the interaction between linguistic reflection and persistence.

A generator model based on this work has been described, supporting the manipulation of
hyper-program representations. Programming tools that aid the programmer in constructing,
viewing and editing such generators have also been described.

Type-safe linguistic reflection has been used with persistence in two distinct ways. Firstly,
where the reflection takes place in a persistent environment, the program representations
manipulated are richer than mere textual forms. As they may contain direct links to
persistent data, that data is available for inspection by the generators. This means that the
specialised forms produced may depend on properties of the data manipulated other than the
type. Similarly the specialised forms may contain links to data, properties of which have
been verified by the generators.

Secondly, type-safe linguistic reflection has been used as an implementation technology in
constructing an interactive persistent programming environment. Program representations

138

are composed with an editor, itself implemented in the persistent programming language, and
transformed using reflection into executable program forms.

7.2 Hyper-Programming

A hyper-program is a source program that contains links embedded in the text, in the same
way that a fragment of hyper-text contains links to other fragments. The difference is that
hyper-program links may to refer to data of any type in the persistent store, rather than being
restricted to textual data [FDK+92, KCC+92b].

The provision of hyper-programming facilities assists the three goals of writing less code,
writing more reliable code and understanding the persistent environment. The writing of less
code is achieved by allowing more succinct programs, as a textual description of how to
access a data item may be replaced by a link to the data. Code reliability is improved by
enabling certain program checking to be performed statically rather than dynamically.
Finally, the use of hyper-programs enables source representations to be supplied for certain
programs that may exist in the persistent store but admit no purely textual representation.
This assists the programmer in understanding the nature of the software available for reuse.

This thesis describes the first known implementation of hyper-programming. It provides a
programming environment in which the programmer may browse the contents of the
persistent store and compose hyper-programs linked to data found there. The support
technology on which the environment is based is all implemented in Napier88. It includes
the Napier88 compiler, a graphical user interface tool-kit, an interactive persistent store
browser and a hyper-text editor.

Whereas type-safe linguistic reflection and persistence are orthogonal to one another, hyper-
programming and persistence are deeply inter-linked. It is the ability to compose and store
program representations within the persistent environment that makes possible the
fundamentally different nature of hyper-program representations.

7.3 Related Work

7.3.1 Reflective Languages

Linguistic reflection is supported by a number of languages including Lisp [MAE+62], POP-
2 [BCP71], TRPL [She90], PS-algol [PS88] and Napier88 [MBC+89]. In the last three the
reflection is type-safe, that is the new programs that are generated are checked for type
correctness before being executed.

Type-safe linguistic reflection has been used in a number of different ways. These include
implementation of object browsers [DB88, DCK90], implementation of data models
[Coo90a, Coo90b, CQ92], specification of generic program forms [SFS+90], optimisation of
implementations [CAD+87, FS91] and validation of specifications [FSS92, SSF92].

It is believed that the generator notations developed in this thesis would enable these uses of
type-safe linguistic reflection to be coded in a cleaner and more understandable way.

7.3.2 Linking Mechanisms

The hyper-programming environment described allows the links from a program to the data
on which it operates to be established during three different phases of the application
development process. These are at program composition time, compilation-time and run-
time.

139

No other languages support composition-time linking. Compilation-time linking is available
in the ABERDEEN programming environment [Far91]. It also occurs in the interactive
languages ML [MTH89], Quest [Car89] and Galileo [ACO85].

Several language systems support a distinct linking phase between compilation-time and run-
time, during which unresolved references to data and programs in the compiled program are
established to give an executable program. Examples of such languages are Pascal [Wir71],
C [KR78] and Ada [DOD83]. It has been shown in [AM84, MAD87, AM88, Con90] how
the same effects and benefits of this linking phase may be obtained in a persistent language
with first class procedures and no explicit linking phase.

Dynamic systems such as Lisp and Smalltalk-80 [GR83] allow linking at run-time only.
While highly flexible this precludes any static checking of the data.

7.3.3 User Interface Tool-Kits

A number of user interface tool-kits and interface development systems are commercially
available. These include the Apple Macintosh Toolbox [App86]; NeXT’s User Interface
Builder [Web89]; Sun Microsystems’ Graphic User Interface Design Editor [Sun89, Sun90];
the Simple User Interface Toolkit (SUIT) [PYD91]; and IBM’s experimental ITS system
[WBB+90].

A development trend can be seen in these systems, from the tool-kit approach to the more
sophisticated interface development systems. In the earlier systems the composition of
interface components is described textually with calls to a program library. The more recent
systems allow the interface to be developed interactively, using mouse gesture and reducing
the need to write program code. Surveys are given in [Mye89, Shn92].

The user interface tool-kit developed in the course of this thesis is not particularly
sophisticated in comparison with the more recent systems listed above. However it has
served its purpose as enabling technology. It is also the only known system that can be used
with a strongly typed persistent language.

7.3.4 Other Languages and Database Systems

This section identifies a number of other programming languages and database systems and
for each attempts to indicate whether or not support for run-time linguistic reflection and
hyper-programming could be provided. The principal criteria for run-time linguistic
reflection are:

• a means of representing programs as data values;

• accessibility of a compiler from within an executing program; and

• a means of binding to a compiled result from within the same executing program.

For hyper-programming the main requirement is for the enforcement of referential integrity
i.e. whether once a reference to a value or object is established, it can be guaranteed to refer
to the value or object for as long as the reference itself exists.

7.3.4.1 Smalltalk-80

Smalltalk-80 is an object-oriented programming language which supports a ‘snap-shot’ form
of persistence [GR83]. This means that at any point an image of the current state of the
system can be dumped to non-volatile storage and later restored. Referential integrity is
maintained since there is no explicit deletion of objects and thus dangling references are
prevented. Garbage collection is used to remove non-reachable objects automatically. It

140

should be possible to provide reflection and hyper-programming facilities by encapsulating
each hyper-program in an object with methods to read and write both characters and hyper-
program bindings. A compiler object would provide a method to take a hyper-program and
produce either a result object or an error description. The result object, if compilation was
successful, would be of class Object or a sub-class i.e. any class.

7.3.4.2 GemStone

GemStone [MS87, BOP+89] is an object-oriented database system with a database language,
OPAL, based on Smalltalk. It allows the programmer to write queries over objects and their
instance variables, and also to specify indices over instance variables. Since the data model
is largely the same as Smalltalk, it should be possible to support reflection and hyper-
programming in the way described above.

7.3.4.3 Arjuna

Arjuna is a distributed object-oriented programming language [DPS+89, SDP91]. It does not
support orthogonal persistence; the programmer must write code to flatten and reconstruct
objects at class definition time. Explicit deletion of objects is allowed and object identity is
not preserved over flattening and reconstruction. Because of this the language is not suited to
hyper-programming, since a hyper-program link in a hyper-program could not be guaranteed
to always a refer to the same object. No facilities for linguistic reflection are currently
provided although it appears that run-time linguistic reflection could be supported by making
the compiler available as an object.

7.3.4.4 OSS

OSS [SM90] is an object storage system for the SOS operating system [Sha86]. It is based
on C++ [Str86], and the programmer manipulates OSS objects as though they were C++
objects. As with Arjuna, explicit object deletion is permitted, allowing dangling references
and thus making the system unsuitable for hyper-programming. Again, a compiler could be
made available within the system in order to provide linguistic reflection.

7.3.4.5 Iris

Iris [LDF+87, FBC+90] provides an object-oriented data model based on DAPLEX [Shi81]
and Taxis [MBW80]. Queries over the data are translated into a relational algebra and the
database itself is implemented above an underlying relational storage system. Several
interfaces to the database are provided, including OSQL, an object-oriented extension of
SQL, and an extended version of a Lisp structure browser. Explicit deletion of objects is
permitted but only in cases where there exist no references from other objects to the object to
be deleted. This implies that, as with Smalltalk, both hyper-programming and run-time
reflection could be supported.

7.3.4.6 VBASE

VBASE [AH87] attempts to integrate an object based database system with an object-
oriented programming language. Although strong typing has been presented as one of the
design goals, the language COP (C Object Processor) which is used by the programmer to
implement applications in the system is a strict superset of C. Thus there is no way to
prevent arbitrary address arithmetic being performed below the level of the type system. The
database system supports automatic maintenance of inverse relationships, thus all references
to a particular object can be found simply. Various clustering strategies can be specified on a
per-object basis. Objects can be deleted explicitly, thus the referential integrity problem
occurs. As with Arjuna and OSS this makes VBASE unsuitable for hyper-programming,
while again run-time reflection could be supported. The language provides a dynamic type
checking mechanism that could be used to assert the expected type of the result of a reflective
computation.

141

7.3.4.7 O2

O2 is another object-oriented database system [BBB+88, LRV90]. A number of language
interfaces to the database are provided, including C (O2C) and BASIC (BO2). Application
programs written in these languages are compiled to C, during which type violations such as
arbitrary address arithmetic may be detected. Persistence is defined by reachability from one
or more roots specified in a schema, and there is no explicit object deletion. O2 could thus
support hyper-programming and run-time reflection.

7.3.4.8 ML

ML [Mil78, MTH89] is different from the previous languages and database systems in that it
is (largely) functional, and statically typed. Although each compilation unit is statically type
checked, the incremental nature of the system makes it possible to perform a variety of
linguistic reflection in which a program representation is compiled and the current
environment enriched with the results. These results can then be referred to in subsequent
programs. It is not possible however to bind to the result of a particular instance of reflection
within the compilation unit in which it is created, since this would require a means of
dynamic type checking. Nevertheless, hyper-programming could be implemented in this
way, with persistent versions of ML [Mat89] deriving the greatest benefits.

7.4 Future Research

7.4.1 Programming Support

Existing programming environments offer rich sets of tools to assist the programmer in the
various phases of software development. Some examples of such environments are Unix
[RT78]; Turbo Pascal [Bor89]; Think C™[BM89]; the Cornell Program Synthesizer [TR81];
Interlisp [TM84]; Cedar [Tei84]; PECAN [Rei84]; Trellis [OHK87]; Mesa [Swe85] and
GANDALF [Not85]. Tools provide such functions as source code editing; comparing,
linking and analysing source programs; checking for inconsistencies; configuring a system
according to component dependencies; debugging; maintaining associations between
executable and source programs; and many others.

Future research will investigate the tool support needed by the persistent hyper-programmer.
Undoubtedly the functions listed above will be required but new needs will also arise as the
increasing sophistication of persistent programming environments changes the nature of
program construction. Tool integration has been a theme of much work on programming
environments; the rich type systems of persistent systems will provide a high band width
channel for communication between future programming tools.

7.4.2 Hyper-Worlds

As the size of persistent stores increases the problems of change management will grow. The
very advantage provided by the hyper-programming paradigm, that of allowing collections of
data to be tightly coupled together, creates a tension with the need for flexibility to
accommodate change. If unrestricted linking throughout the persistent store is permitted,
inter-application dependencies may build up to the extent that it become difficult or costly to
make the related changes necessary to restore consistency after a change to an application
component. The persistent store can be compared to a large pot containing spaghetti and
cheese sauce [Mai90]. After the sauce has set it becomes difficult to extract a single strand of
spaghetti without disturbing the others.

If however the mixture is poured into small bowls before the sauce sets, the task of removing
a strand is easier. Only the strands in the same bowl as the one to be removed stick to it;
those in the other bowls are unaffected. The hyper-world model outlined in Chapter 3
proposes a similar strategy to manage the persistent store. The store is partitioned into many

142

small hyper-worlds or application spaces; a given component may only be linked to by other
components in the same hyper-world. This limits the propagation of a change to a
component, such as its replacement with another of a different type, to a relatively small
region of the persistent store. Research is required to further investigate the suitability of this
model and to implement tools to support it.

7.4.3 Linking Control

A consequence of the tightly coupled nature of hyper-program representations is that it
becomes difficult to use them outside of the persistent store. For example, how can a hyper-
program listing be published in an article? How can a hyper-program be sent to a co-worker
at a different site for installation in a different persistent store? Possible mechanisms include
making a deep copy of a hyper-program and its closure—with the danger of copying the
whole persistent store—or cutting direct links in some manner and re-establishing them in
another store.

These are facets of a more general problem of relinking. Given a source program or
executable program created in a particular environment, how can it be reused in a different
environment? Where the program establishes links dynamically, it is only loosely coupled to
its environment and is easy to transplant. Future research will seek mechanisms to combine
the benefits of tight coupling with the ability for reuse in new environments.

Reflective hyper-programming provides one approach to the particular problem of cutting
links in a hyper-program and re-establishing them in another store. This involves
implementing a generator generator which takes as input a hyper-program and produces a
generator. The result generator contains within it the textual part of the hyper-program and
descriptions of the access paths within the persistent store of the data to which the hyper-
program is linked. The generator is self-contained thus it admits a purely textual source
representation which can be exported to a foreign store. Once installed there the generator is
evaluated. It uses the information about the access paths of the data in the original store to
access the corresponding data in the foreign store and produce a fully linked hyper-program
which is isomorphic to the original.

7.4.4 Type-Safe Linguistic Reflection

Even with a graphical user interface, the generators used in type-safe linguistic reflection are
still hard to write. Typically they will be written by the systems programmer and made
available in the persistent store for general use. It is an open question whether future
improvements in generator models and user interfaces will ever reduce the difficulty to the
level of writing polymorphic programs in current systems. This seems a worthwhile goal to
aim for.

Further refinement of the generator model and the supporting tools may involve the
development of a model in which the typing of the generators is more tightly controlled. In
the current model each generator takes a single environment as a parameter; this gives a
flexible mechanism and has the advantage that the model can be implemented in the type
system of Napier88. However it does mean that generator calls with incompatible arguments
are not detected until generator execution time. One approach is to define generator as a
type constructor and allow the parameters to become part of the type in the same way that the
types of a procedure’s parameters are part of its type. It would be possible to implement a
version of Napier with such a type constructor using a text pre-processor that converted
programs into standard Napier88. Indeed it would make an appropriate test of the existing
generator system to implement the pre-processor as a generator.

Other challenges in the field of reflection include the development of an integrating model
for compile-time and run-time reflection, and second order type checking issues. Although
the effects of compile-time reflection can be obtained in a persistent run-time reflective

143

future .

system, different processes occur during the two kinds of reflection as the action of the
compiler is more complex in the first. It is not clear as yet whether any advantages would be
obtained in a combined system. The other research area addresses the question of whether a
generator definition language can be sufficiently restricted to allow the generator results to be
type checked statically, while retaining enough flexibility to be useful.

7.5 Conclusions

The main theme of this thesis is that the use of a persistent environment as a base for
supporting programming activities can lead to major productivity gains. The nature of
programs developed within a persistent environment may be fundamentally different from
the traditional view of programs as static descriptions of manipulations on data. Linguistic
reflection has been used both as an implementation technology for this kind of programming
and as a programming tool that increases productivity in its own right. The persistent
environment also impacts on the reflection process and the implications of generators being
able to access that environment are only beginning to be explored.

Whether or not the hyper-program ever becomes as widely accepted as its poor relative the
hyper-text document, it has been exciting to build and to use. Let us hope that some of these
ideas survive in persistent systems of the

144

Appendix A. Generator Tool Example: Natural Join
This appendix illustrates the use of the generator tools to provide a reflective solution to the
problem of specifying a generic natural join function. This is contrasted with a similar
solution in standard Napier88. Both cases involve analysis of the input types and the
construction of tailored code that performs natural join on arguments of those types.

For brevity, in both cases the existence of various pre-defined procedures is assumed. With
the generator tools these procedures are indeed pre-defined and are available for general use;
with standard Napier88 the programmer would have to define the procedures also. The
procedures available with the generator tools are listed in Appendix B.

Relations are modelled here as sets of Napier88 structures. The definition of a generic set
type and a procedure for creating empty sets are assumed.

The general solution in both cases is as follows:

• Construct a representation of the result type of the join from the input type.

• Construct the representation of a procedure to perform the join. The procedure is
recursive and for the base case, when the first set in the join is empty, it returns an empty
set. Otherwise it forms a set containing the tuples obtained by joining the first tuple of
the first set with the second set. The result is obtained by performing a union operation
with this and the result of joining the remainder of the first set with the second set.

Following these two examples a solution in TRPL is given.

Example Using Generator Tool

Figures A.1 to A.4 show windows containing generator and procedure definitions to
implement natural join. The first window in Figure A.1 shows the main generator, join. It
takes two parameters of type TypeRep, representing the tuple types of the input relations. For
brevity the checks to ensure that they represent structure types are not shown. The prelude
enriches the input environment with three new values: resultType, which represents the tuple
type of the result relation, and type1Fields and type2Fields which are sets containing the field
information for the two input types. The value resultType is obtained by calling a procedure
joinResultType, a direct link to which is contained in the prelude code. The structure field
information is obtained using the pre-defined procedure getStructureFields which returns a
set of (name,type) pairs. The result definition is a literal and contains the definition of the
resulting join procedure. The code contains a number of buttons representing calls to sub-
generators. These are used to define, in order of appearance, the first input type, the second
input type, the result type (twice), a procedure to compare instances of the result type and a
procedure to perform a join between a single tuple and a relation.

The result definition also contains a direct link to the pre-defined procedure mkEmptySet. As
will be illustrated later this contrasts with the Napier88 solution in which the result definition
contains code to link to the procedure in the persistent store. The direct link notation is both
more concise and more secure, as there is no danger of access to the procedure being
removed between the times of evaluation of the generator and execution of the generated
result.

Figure A.1 also shows the definition of the procedure joinResultType which computes a
representation of the result type. This is achieved by constructing the union of the two sets
containing the names and types of the fields of the input types and using the pre-defined
procedure mkStructureType to create a type representation. The other windows show the

145

sub-generators type1 and type2. These generators use the pre-defined procedure mkTypeLink
to obtain links to the types represented by the input type representations.

The first window in Figure A.2 shows the generator resultType which produces a link to the
join result type. The next, compareResult, produces code to construct an instance of type
Comparison specialised to the result type, using the sub-generator matchBody which is
explained below. The code contains a direct link to the pre-defined procedure
mkComparison. The next window shows the generator onejoin which produces a definition
of the procedure to join a single tuple and a relation. If the set representing the relation is
empty the procedure returns an empty set. Otherwise the procedure picks a tuple from the
relation and recursively obtains the result of joining the original tuple with the remainder of
the relation. If the selected tuple does not match with the original tuple then the result of the
join is returned. If it does match then a new tuple is formed by concatenating the two tuples
and inserted in the result relation. The last window in Figure A.2 shows the generator that
produces the procedure to determine whether two tuples match according to the rules for
natural join. Another sub-generator matchBody is used to define the body of this procedure.

Figure A.3 shows matchBody which produces an expression that will evaluate to true when
two tuples match. The expression consists of the ‘and’ing together of a number of boolean
expressions, each of which tests for equality of the tuples over a particular attribute. To
produce this the generator first computes the intersection of the sets of field information for
the two input types, using the pre-defined procedure intersection. In computing this
intersection, two fields are considered equal if their names are equal and their types are
equivalent. The generator then iterates over the intersection set and builds up a new set
containing fragments of source code, each of which tests for equality over one attribute/field.
Each fragment is constructed by passing the field name to the pre-defined procedure
evalWithString, along with the sub-generator mkFieldNameTest. This procedure evaluates
the generator, passing the string value to it in its input environment. Finally the result
definition of matchBody consists of a call to the pre-defined procedure andCompose which
produces an expression in which the elements of the set passed to it are ‘and’ed together.
The other windows in Figure A.3 contain the sub-generators mkFieldNameTest and
fieldName. The former produces a literal expression comparing two tuples over a
field/attribute name determined by the latter, which simply converts a string into a source
code fragment.

Figure A.4 shows the generator concat which produces the representation of a procedure to
concatenate two tuples together. The body of the procedure is constructed by the sub-
generator concatBody shown below. The structure of concatBody is similar to that of
matchBody. First it calculates the union of the sets of field information. It then iterates over
the resulting set and builds up a new set containing expressions that select the attribute value
from the first or second tuple as appropriate. These expressions are formed by the sub-
generators takeFrom1 and takeFrom2. The result definition of concatBody consists of a call
to the pre-defined procedure mkStruct to form the representation of a code fragment to create
a new structure/tuple from the field names and expressions.

146

Figure A.1: Generators join, type1 and type2

147

Figure A.2: Generators resultType, compareResult, onejoin & match

148

Figure A.3: Generators matchBody, mkFieldNameTest & fieldName

149

Figure A.4: Generators concat, concatBody, takeFrom1 & takeFrom2

150

Example in Napier88

Figure A.6 shows an implementation of generic natural join in standard Napier88, using as
far as possible the same algorithm as the previous solution. The principal differences from
the previous solution are as follows:

• The source code being manipulated is in string form rather than hyper-program form.

• There is more syntactic noise in the generator result definitions in the Napier88 version,
due to the many string concatenation and quote symbols. Quotes and apostrophes
appearing within strings are difficult to read as they are preceded by extra apostrophes as
escape symbols.

• The program includes textual type definitions. These are required both in the main
program and in the generated code.

• The program contains code to link to the pre-defined procedures in the persistent store.
This is also required both in the main program and in the generated code. Thus it is
possible that the generated code will fail when it is executed due to pre-defined
procedures no longer being present.

• Although the definitions of the pre-defined procedures have not been shown here, they
must be defined by the programmer as they are not part of the Napier88 standard user
environment [MBC+89].

• The existence of an additional pre-defined procedure writeType is assumed. It produces a
textual definition of a type from a type representation.

rec type TypeRep is structure(label, misc, random : int ;
name : string ; others : Var)

& Var is variant(none : null ; one, unique : TypeRep ; many : *TypeRep)

type NameAndType is structure(name : string ; typeRep : TypeRep)

type NameAndValue is structure(name, value : string)

type Comparison[T] is variant(
ordered : structure(equal, lessThan : proc(T, T → bool));
unordered : structure(equal : proc(T, T → bool)))

rec type Set[T] is variant(
emptyset : structure(insert : proc(T → Set[T]);

union : proc(Set[T] → Set[T]);
intersection : proc(Set[T] → Set[T]);
difference : proc(Set[T] → Set[T]));

populated : structure(insert : proc(T → Set[T]);
union : proc(Set[T] → Set[T]);
intersection : proc(Set[T] → Set[T]);
difference : proc(Set[T] → Set[T]);
delete : proc(T → Set[T]);
choose : proc(→ T);
rest : proc(→ Set[T]);
includes : proc(T → bool);

151

scan : proc(proc(T → bool));
size : proc(→ int))

use PS() with
mkComparison : proc[T](proc(T,T → bool) → Comparison[T]);
mkEmptySet : proc[T](Comparison[T] → Set[T]);
intersection : proc[T](Set[T], Set[T] → Set[T]);
union : proc[T](Set[T], Set[T] → Set[T]);
memberOf : proc[T](T, Set[T] → bool);
insert : proc[T](T, Set[T] → Set[T]);
iterate : proc[T](Set[T], proc(T → bool));
getStructureFields : proc(TypeRep → Set[NameAndType]);
andCompose : proc(Set[string] → string);
mkStruct : proc(Set[NameAndValue] → string);
mkStructureType : proc(Set[NameAndType] → TypeRep);
compareString : Comparison[string];
writeType : proc(TypeRep → string) in

begin

let defineMatch = proc(type1, type2, resultType : TypeRep ;
type1Fields, type2Fields : Set[NameAndType] → string)

begin
let overlap = intersection[NameAndType](type1Fields, type2Fields)
let testSet := mkEmptySet[string](compareString)

let addTest = proc(fieldInfo : NameAndType → bool)
begin

let test = "arg1(" ++ fieldInfo(name) ++
") = arg2(" ++ fieldName ++ ")"

testSet := insert[string](testSet, test)
true

end

iterate[NameAndType](overlap, addTest)

"proc(arg1 : " ++ writeType(type1) ++ " ; arg2 : " ++ writeType(type2) ++
" → bool) ; " ++ andCompose(testSet)

end

let defineConcat = proc(type1, type2, resultType : TypeRep ;
type1Fields, type2Fields : Set[NameAndType] → string)

begin
let combination = union[NameAndType](type1Fields, type2Fields)
let compareNameAndValue = mkComparison[NameAndValue](

proc(a,b : NameAndValue → bool) ; a = b)
let structElementSet := mkEmptySet[NameAndValue](

compareNameAndValue)

let addField = proc(fieldInfo : NameAndType → bool)
begin

let fieldName = fieldInfo(name)
let takeFrom = if memberOf[NameAndType](fieldInfo, type1Fields)

then "arg1" else "arg2"
let structElement = NameAndValue(fieldName,

takeFrom ++ "(" ++ fieldInfo(name) ++ ")")

152

structElementSet := insert[NameAndValue](structElementSet,
structElement)

true
end

iterate[NameAndType](combination, addField)

"proc(arg1 : " ++ writeType(type1) ++ " ; arg2 : " ++ writeType(type2) ++
" → " ++ writeType(resultType) ++ ") ; " ++
mkStruct(structElementSet)

end

let defineOneJoin = proc(type1, type2, resultType : TypeRep → string)
begin

"begin
rec let onejoin = proc(element : " ++ writeType(type1) ++ " ;

rel : Set[" ++ writeType(type2) ++ "] →
Set[" ++ writeType(resultType) ++ "])

project rel as reln onto
populated :
begin

let chooseReln = reln(choose)()
let joinRest = onejoin(element, reln(rest)())

if " ++ defineMatch() ++ "(element, chooseReln) then
begin

let newTuple = " ++ defineConcat(type1, type2, resultType) ++ "
(element, chooseReln)

project joinRest as restJoined onto
populated : restJoined(insert)(newTuple)
emptyset : restJoined(insert) (newTuple)
default : {}

end
else joinRest

end
default : mkEmptySet[" ++ writeType(resultType) ++ "](" ++

defineCompareResult(resultType) ++ ")

oneJoin
end"

end

let defineCompareResult = proc(resultType : TypeRep → string)
"mkComparison[" ++ writeType(resultType) ++ "](proc(a, b : " ++
writeType(resultType) ++ " → bool) ; a = b)"

let defineTypes =
"type Comparison[T] is variant(

ordered : structure(equal, lessThan : proc(T, T → bool));
unordered : structure(equal : proc(T, T → bool)))

rec type Set[T] is variant(
emptyset : structure(insert : proc(T → Set[T]);

union : proc(Set[T] → Set[T]);

153

intersection : proc(Set[T] → Set[T]);
difference : proc(Set[T] → Set[T]));

populated : structure(insert : proc(T → Set[T]);
union : proc(Set[T] → Set[T]);
intersection : proc(Set[T] → Set[T]);
difference : proc(Set[T] → Set[T]);
delete : proc(T → Set[T]);
choose : proc(→ T);
rest : proc(→ Set[T]);
includes : proc(T → bool);
scan : proc(proc(T → bool));
size : proc(→ int))"

let getPredefined =
"use PS() with

mkEmptySet : proc[T](Comparison[T] → Set[T]);
mkComparison : proc[T](proc(T, T → bool) → Comparison[T]) in"

let defineJoin = proc(type1, type2, resultType : TypeRep → string)
begin

defineTypes ++ getPredefined ++

"begin
rec let join = proc(rel1 : Set[" ++ writeType(type1) ++"] ;

rel2 : Set[" ++ writeType(type2) ++ "] →
Set[" ++ writeType(resultType) ++ "])

project rel1 as first onto
populated :
begin

let joinOne = " ++ defineOneJoin(type1, type2, resultType) ++ "
(first(choose)(), rel2)
let joinOthers = join(first(rest)(), rel2)

project joinOne as firstJoined onto
populated : firstJoined(union)(joinOthers)
default : joinOthers

end
default : mkEmptySet[" ++ writeType(resultType) ++ "](" ++

defineCompareResult(resultType) ++ ")

join
end"

end

let joinResultType = proc(type1Fields, type2Fields : Set[NameAndType] →
TypeRep)

begin
let resultFields = union[NameAndType](type1Fields, type2Fields)
mkStructureType(resultFields)

end

let join = proc(type1, type2 : TypeRep → string)
begin

let type1Fields = getStructureFields(type1)

154

let type2Fields = getStructureFields(type2)
let resultType = joinResultType(type1Fields, type2Fields)

defineJoin(type1, type2, resultType)
end

end

Figure A.6: Implementation of generic natural join in standard Napier88

Example in TRPL

Figure A.7 shows an implementation of generic natural join in TRPL. The principal
differences from the previous solutions are as follows:

• The solution involves the definition of a context sensitive macro that is evaluated at
compilation-time.

• The source code being manipulated is in parsed rather than in string or hyper-program
form.

• The solution assumes the existence of a polymorphic join function, join, that takes the
match and concat functions as arguments.

• The input types are set types rather then tuple types.

The macro definition begins with the extraction of the types of the input values r and s from
the current compilation environment e using a built-in function type_of. This uses an
environment variable defined in the header as the current compiler environment. These types
are expanded using another built-in function expandtype. This expands all type variables
contained in a type representation into their structural forms. The next two equations extract
the list of component names by using pattern recognition on the representation of the input
types. A representation of a legal type for this macro call is of the form parametric_rep
("set", cons (struct_rep ("constrName", componentList), nil)). The case statement either
matches this for each type representation or returns an error. When a match is made the
variables in the pattern are bound to their matched components and the case body is
evaluated. Question marks stand for parts of the value to be matched by anything and
ignored. The case bodies here are just the extracted list of component name and type pairs.
New names are then generated for the output type and a constructor function for its tuples.

The macro then computes the unique and overlapping components of the two input relations
and generates the output type definition. This code uses pattern matching lambda
expressions, the expressions starting with [x & ?, y & ?]. In these functions the input
arguments are first matched with the patterns in the brackets. The patterns here are pairs
since & is the infix pair construction operator. As before, successful pattern matching causes
the variables in the patterns to be bound to the matching components of the values. In this
case x and y are bound to the names of the components.

The unique and overlapping components are computed by set_difference and set_intersection
using the lambda functions over the component lists. Pattern matching lambda expressions
capture the criterion that components are equal when their names represented as strings are
equal. If the names are equal but the types are not, the match function will produce a type
error when it is passed to the compiler. The units section contains only the output type
definition using another built-in function define_type. The first parameter gives the
computed type name and the second supplies the representation of the type expression
including the tuple constructor function name, bound to constr. Note the use of the

155

constructor functions, parametric_rep and struct_rep, to construct the typed representation of
the new type.

Next is the code for generating the representations of the match and concat function bodies.
The match body is an expression of the form rt.a=st.a && rt.b=st.b && ... && true, where
&& denotes logical and. It is to be used in the inline expansion as the body of a lambda
function having rt and st as variables standing for the tuples of the input relations, r and s.

This portion of the definition uses a macro, EREP, to facilitate the generation of expression
representations. EREP takes as its first argument an expression which gives a pattern for the
representation it generates. Optional arguments may follow which give values to be
substituted in the representation of the first argument. This allows computed representations
to be inserted into constant expressions. A simple example of this is EREP (f (x), x := s2id
("y")), where s2id is a function that converts a string value into the representation of an
identifier. This evaluates to the representation of f (y). The match body is produced by
mapping the eqterm function over the overlapping component name and type pairs. The
eqterm function takes a component pair, extracts the component name and constructs an
equality expression that compares the named projection of rt and st tuples. The list of these
terms is used to construct a boolean expression ‘and’ing all the equality terms with true. This
uses a reduction function over the mapped list. The reduction uses a binary lambda function
and EREP to build the representation of the and expression. Starting the reduction with true
defines the base case of no common component names to be the cartesian product.

The concat body is generated by using EREP and listmap, together with a feature that allows
variable length constructs in the pattern used in EREP. The ellipsis before args marks it as a
parameter that accepts a list for its substitution. The list of representations of component
names is produced by the append3 and listmap functions, the former a function that appends
three lists. An example of a concat body is make_a_b_c_d (rt.a, rt.b, rt.c, st.d). The inline
expansion uses EREP and the computed bodies of match and concat to generate the
representation of a call to join.

macro NATJOIN (r, s) ; env e;
let ertype := type_of (r, e), @ get the types of r and s

estype := type_of (s, e),
rtype := expandtype (ertype, e), @ expand set types to
stype := expandtype (estype, e), @ remove any type variables

@ build component lists for r and s
rcomps := case rtype

{parametric_rep ("set", cons (struct_rep (?, rcompslist), nil))
→ rcompslist, @ ? indicates tuple constructor name unimportant

others → warning ("first argument not a set of tuple", nil)},
scomps := case stype

{parametric_rep ("set", cons (struct_rep (?, scompslist), nil))
→ scompslist,

others → warning ("second argument not a set of tuple", nil)},

@ generate symbols for new type
tn := genstring ("type$"),

@ and constructor function for output tuples
constr := genstring ("constr$"),

runique := set_difference (rcomps, scomps, [x & ?, y & ?] → string_eq (x, y)),
sunique := set_difference (scomps, rcomps, [x & ?, y & ?] → string_eq (x, y)),
overlap := set_intersection (scomps, rcomps, [x & ?, y & ?] → string_eq (x, y))

156

in
units

LIST (@ the new type definition
define_type (tn,

parametric_rep ("set", LIST (struct_rep (constr,
append3 (overlap, runique, sunique))))))

@ build bodies of match and concat
@ first a representation for the body of the match lambda
@ expression which looks like rt.a=st.a && rt.b=st.b && ... && true

let eqterm := [x & ?] → EREP ((rt.field) = (st.field), field := s2id (x)),
match := listreduce (listmap(overlap, eqterm),

[term, exp] → EREP (t && e, t := term, e := exp),
EREP (true)),

@ build a representation for the body of the concat
@ lambda expression which looks like
@ construct (rt.common1, … rt.unique1, … st.unique1, …)

concat := EREP (con (…args),
con := s2id (constr),
args := append3 (

listmap (overlap, [x & ?] → EREP (rt.f, f := s2id (x))),
listmap (runique, [x & ?] → EREP (rt.f, f := s2id (x))),
listmap (sunique, [x & ?] → EREP (st.f, f := s2id (x)))))

@ the inline expansion is a call to join with lambda functions for match and concat
in

EREP (join (r, s, [rt, st] → mtch, [rt, st] → cnct),
mtch := match,
cnct := concat)

Figure A.7: Implementation of generic natural join in TRPL

157

Appendix B. Generator Interfaces

Pre-defined Types

type CodeTree is … ! Parsed form of code representation

type Code is string

type CodeRegion is structure(start,finish : int)

type Optional[T] is variant(present : T ; absent : null)

type Substitution[T] is structure(value : T ; region : CodeRegion)

rec type TypeRep is structure(label, misc, random : int ;
name : string ; others : Var)

& Var is variant(none : null ; one, unique : TypeRep ; many : *TypeRep)

type EnvLocation is structure(pointer : null ; typeRep : TypeRep)

type StructLocation is structure(structValue : any ; field : string)

type VectorLocation is structure(vectorValue : any ; index : int)

type StackPos is structure(Frame,MSoffset,PSoffset : int)

type FrameLocation is structure(frame : null ; stackPos : StackPos ;
typeRep : TypeRep ; envLoc : bool)

type TypeContainer is structure(typeRep : TypeRep)

type Binding is variant(value : any;
envLocation : EnvLocation;
structLocation : StructLocation;
abstypeLocation : StructLocation;
vectorLocation : VectorLocation;
frameLocation : FrameLocation;
aType : TypeContainer)

rec type Generator is structure(prelude : proc(env → env) ;
resultDefn : GeneratorResult)

& GeneratorResult is variant(literal : GeneratorSource ;
expression : proc(env → GeneratorSource))

& GeneratorSource is structure(code : HyperSource ;
generators : Optional[*Substitution[Generator]])

& HyperSource is structure(code : Code ;
bindings : Optional[*Substitution[Binding]])

type NameAndType is structure(name : string ; typeRep : TypeRep)

type NameAndValue is structure(name : string ; value : HyperSource)

158

type Comparison[T] is variant(
ordered : structure(equal, lessThan : proc(T, T → bool));
unordered : structure(equal : proc(T, T → bool)))

rec type Set[T] is variant(
emptyset : structure(insert : proc(T → Set[T]);

union : proc(Set[T] → Set[T]);
intersection : proc(Set[T] → Set[T]);
difference : proc(Set[T] → Set[T]));

populated : structure(insert : proc(T → Set[T]);
union : proc(Set[T] → Set[T]);
intersection : proc(Set[T] → Set[T]);
difference : proc(Set[T] → Set[T]);
delete : proc(T → Set[T]);
choose : proc(→ T);
rest : proc(→ Set[T]);
includes : proc(T → bool);
scan : proc(proc(T → bool));
size : proc(→ int))

Pre-defined Procedures

intersection : proc[T](Set[T], Set[T] → Set[T])
Returns the intersection of two sets.

union : proc[T](Set[T], Set[T] → Set[T])
Returns the union of two sets.

memberOf : proc[T](T, Set[T] → bool)
Determines whether the given element belongs to the given set.

insert : proc[T](Set[T], T → Set[T])
Returns the set obtained by inserting the element in the given set.

getStructureFields : proc(TypeRep → Set[NameAndType])
Takes a structure type representation and returns a set of (name,type) pairs, empty if the
representation isn’t of a structure type.

map : proc[S,T](Set[S], proc(S → T), Comparison[T] → Set[T])
Takes a set, a procedure operating on the element type and an equality function, and returns
the set obtained by applying the procedure to all elements of the set.

orCompose : proc(Set[HyperSource] → HyperSource)
Returns the source consisting of the boolean ‘or’ing of the elements of the set.

andCompose : proc(Set[HyperSource] → HyperSource)
Returns the source consisting of the boolean ‘and’ing of the elements of the set.

mkStruct : proc(Set[NameAndValue] → HyperSource)
Returns the source for a structure creation with the given field names and elements.

evalWithString : proc(Generator, string → HyperSource)
Evaluates the given generator, passing the given string to it as a parameter with the name
stringVal.

159

mkStructureType : proc(Set[NameAndType] → TypeRep)
Creates a structure type representation from the given field information. A fail value is
returned if field names are duplicated.

mkEmptySet : proc[T](Comparison[T] → Set[T])
Returns an empty set with elements of the given type.

mkLink : proc(any → HyperSource)
Returns the source for a link to the given value.

mkEnvLocLink : proc(env, string → HyperSource)
Returns the source for a link to the location with the given name in the given environment.

mkStructLocLink : proc(any, string → HyperSource)
Returns the source for a link to the location with the given field name in the given structure
or abstype.

mkVecLocLink : proc(any, int → HyperSource)
Returns the source for a link to the location with the given index in the given vector.

mkTypeLink : proc(TypeRep → HyperSource)
Returns the source for a link to the type represented by the given type representation.

mkHyperSource : proc(string → HyperSource)
Converts the given string to source code.

mkGeneratorSource : proc(HyperSource → GeneratorSource)
Converts the given source code to generator source code with no generator place-holders.

concatHyperSource : proc(HyperSource,HyperSource → HyperSource);
Concatenates the two fragments of hyper-program source code.

concatGeneratorSource : proc(GeneratorSource,GeneratorSource → GeneratorSource)
Concatenates the two fragments of generator source code.

extractHyperSource : proc(HyperSource,int,int → HyperSource)
Extracts the hyper-program source code between and including the two character offsets.

extractGeneratorSource : proc(GeneratorSource,int,int → GeneratorSource)
Extracts the generator source code between and including the two character offsets.

mkComparison : proc[T](proc(T, T → bool) → Comparison[T])
Converts the given equality testing procedure to an instance of Comparison for that type.

compareHyperSource : Comparison[HyperSource]
Compares two instances of HyperSource for equality.

iterate : proc[T](Set[T], proc(T → bool))
Iterates through the given set calling the given procedure with each element as argument until
it returns false or the set is exhausted.

expandGenerator : proc(Generator, env → HyperSource)
Expands the given generator with the parameters in the given environment to produce a
hyper-program source representation.

compileAndProcess : proc(HyperSource,proc(any))
Compiles the given hyper-program source code and passes the result to the given procedure.

160

equalType : proc(TypeRep,TypeRep → bool);
Tests the two type representations for equivalence.

typeOf : proc(any → TypeRep)
Returns a representation of the type of the value injected into the given any.

161

Appendix C. WIN Interfaces

User Types

type Pos is structure(x,y : int)
type Size is structure(x,y : int)
type Limit is structure(pos : Pos ; size : Size)
type Rect is structure(origin,corner : Pos)
type Level is structure(fromFront : bool ; position : int)
type InputOption is variant(all,none,normal : null)

type Optional[T] is variant(present : T ; absent : null)

rec type List[T] is variant(cons : structure(hd : T ; tl : List[T]) ; tip : null)

rec type DoubleList[T] is variant(cons : structure(hd : T ;
before,after : DoubleList[T]) ;

tip : null)

type Pair[S,T] is structure(fst : S ; snd : T)

type Mouse is structure(x,y : int ; buttons : *bool)
type Event is variant(chars : string;

mouse : Mouse;
select,deselect : null)

type EventType is variant(up,down,enter,leave,click,doubleClick : null)
type MouseEvent is structure(button : int ; event : EventType)

type Application is proc(Event)

type EventTest is proc(Event → bool)

type Notification is structure(examineEvent : EventTest ;
processEvent : Application)

type Notifier is structure(distributeEvent : Application;
addNotification : proc(Notification,Level → proc()))

type ResizeControl is structure(before : proc(Rect → Rect) ; after : proc(Rect))

rec type DisplayInfo is structure(window : Window ; pos : Pos ;
level : Level ; style : BorderStyle)

& Window is structure(
windowRaster : proc(Limit,Limit,Window,int,bool);
imageRaster : proc(Limit,image,int,bool);
drawLine : proc(Pos,Pos,int);
resize : proc(Rect);
takeInput : proc(InputOption);
getSize : proc(→ Size);
setApplication : proc(Application);
getApplication : proc(→ Application);
setTitle : proc(string);
getTitle : proc(→ string);
setResizeControl : proc(ResizeControl);
getResizeControl : proc(→ ResizeControl);

162

setMinSize : proc(Size);
setMaxSize : proc(Size);
getWindowManager : proc(→ WindowManager);
setVirtualWindow : proc(Window))

& WindowManager is structure(
display : proc(DisplayInfo,bool);
undisplay : proc(Window);
makeCurrent : proc(Window);
setPos : proc(Window,Pos);
getPos : proc(Window → Pos);
setLevel : proc(Window,Level);
getLevel : proc(Window,bool → Level);
setCursor : proc(Window,image);
getCursor : proc(Window → image);
getWindows : proc(→ *Window);
getBorderExtent : proc(Window → Rect);
getNotifier : proc(→ Notifier);
getDisplayWindow : proc(→ Window);
getIconManager : proc(→ IconManager);
setBackgroundApp : proc(Application);
getBackgroundApp : proc(→ Application))

& IconManager is structure(close : proc(Window);
open : proc(Window);
getIconState : proc(Window → DisplayInfo);
getWindowState : proc(Window → DisplayInfo))

& BorderStyle is proc(Window → List[Area])
& Area is structure(currentImage,nonCurrentImage : image ;

pos : Pos ; distributeEvent : Application)

type AreaList is List[Area]

type Font is structure(characters : *image ;
fontHeight,descender : int ; info : string)

type FontPack is structure(font : Font ;
stringToTile,charToTile : proc(string → image))

type Result[Data] is variant(ok : Data ; fail : null)

type Table[Key,Data] is structure(
enter : proc(Key,Data);
lookup : proc(Key → Result[Data]);
remove : proc(Key);
scan : proc(proc(Key,Data → bool));
firstKey : proc(→ Result[Key]))

type Comparison[Key] is variant(
ordered : structure(equal,lessThan : proc(Key,Key → bool));
unordered : structure(equal : proc(Key,Key → bool)))

type Index is variant(characters : int;
lines : structure(line,char : int))

163

type ButtonInfo[TextPointer] is structure(name : string;
start,
finish : TextPointer;
action : proc(int);
extra : any)

type Text is structure(characters : string ; buttons : *int)

rec type SimpleEditor is abstype[TextPointer](
copyText : proc(SimpleEditor);
cutText : proc(SimpleEditor);
pasteText : proc(SimpleEditor);
insertText : proc(string);
readFromFile : proc(file);
writeToFile : proc(file);
select : proc(TextPointer,TextPointer);
firstSelection : proc(→ TextPointer);
lastSelection : proc(→ TextPointer);
firstLine : proc(→ TextPointer);
lastLine : proc(→ TextPointer);
frontOfLine : proc(TextPointer → TextPointer);
endOfLine : proc(TextPointer → TextPointer);
nextLine : proc(TextPointer → TextPointer);
previousLine : proc(TextPointer → TextPointer);
peek : proc(→ Text);
read : proc(→ Text);
readLine : proc(→ Text);
selectedText : proc(→ Text);
before : proc(TextPointer,TextPointer → bool);
endOfText : proc(→ bool);
lineCount : proc(→ int);
new : proc();
offset : proc(TextPointer,bool → Index);
search : proc(string,bool → bool);
seek : proc(Index → TextPointer);
insertButton : proc(string,proc(int) → int);
setButtonInfo : proc(int,string,proc(int),any);
lookupButton : proc(int → Result[ButtonInfo[TextPointer]]);
scanButtons : proc(proc(int,ButtonInfo[TextPointer])))

type HyperEditor is abstype[TextPointer](
copyText : proc(SimpleEditor);
cutText : proc(SimpleEditor);
pasteText : proc(SimpleEditor);
insertText : proc(string,bool);
readFromFile : proc(file);
writeToFile : proc(file);
select : proc(TextPointer,TextPointer);
firstSelection : proc(→ TextPointer);
lastSelection : proc(→ TextPointer);
firstLine : proc(→ TextPointer);
lastLine : proc(→ TextPointer);
topLine : proc(→ TextPointer);
bottomLine : proc(→ TextPointer);
frontOfLine : proc(TextPointer → TextPointer);
endOfLine : proc(TextPointer → TextPointer);
nextLine : proc(TextPointer → TextPointer);
previousLine : proc(TextPointer → TextPointer);

164

peek : proc(→ Text);
read : proc(→ Text);
readLine : proc(→ Text);
selectedText : proc(→ Text);
before : proc(TextPointer,TextPointer → bool);
endOfText : proc(→ bool);
getFont : proc(→ FontPack);
getHighlight : proc(→ bool);
getWindow : proc(→ Window);
interactiveEdit : proc(SimpleEditor,EventTest,EventTest,EventTest →

Application);
invert : proc(TextPointer,TextPointer);
lineCount : proc(→ int);
new : proc();
offset : proc(TextPointer,bool → Index);
position : proc(Pos → TextPointer);
redisplay : proc(TextPointer);
scroll : proc(int,bool);
search : proc(string,bool → bool);
seek : proc(Index → TextPointer);
setFont : proc(FontPack);
setHighlight : proc(bool);
setWindow : proc(Window);
unbindWindow : proc();
insertButton : proc(string,proc(int) → int);
setButtonInfo : proc(int,string,proc(int),any);
lookupButton : proc(int → Result[ButtonInfo[TextPointer]]);
scanButtons : proc(proc(int,ButtonInfo[TextPointer])))

type Appearance is variant(graphical : image ; textual : string)

type HyperEditorPack is structure(window : Window;
editor : HyperEditor;
append : proc(string);
getText,
getFileName : proc(→ string))

type HyperProgramPack is structure(window : Window;
editor : HyperEditor;
getTitle : proc(→ string);
insert : proc(HyperSource);
getText : proc(→ HyperSource))

type MenuPack is structure(
window : Window;
setTop : proc(int);
getTop : proc(→ int);
setNoVisible : proc(int);
getNoVisible : proc(→ int);
setHighlight : proc(int,bool);
getHighlight : proc(int → bool);
getNoEntries : proc(→ int);
locate : proc(Appearance → Pair[int,bool]);
doAction : proc(int,MouseEvent);
addEntry : proc(Appearance,proc(int,MouseEvent),int);
removeEntry : proc(int))

type ButtonPack is structure(window : Window ; flash : proc())

165

type SliderPack is structure(window : Window;
set : proc(real);
setBounds : proc(real,real,real))

type CheckBoxPack is structure(window : Window ; set : proc(bool))

type ChoicePack is structure(window : Window ; set : proc(int,int,bool))

type DialoguePack is structure(window : Window ; set : proc(string))

type BrowserType is variant(graphical : WindowManager ; textual : proc(string))

type WindowState is structure(window : Window ; pos : Pos ;
level : Level ; open,displayed : bool)

Implementation Types

type Association is structure(windowDisplayInfo,iconDisplayInfo : DisplayInfo)
type AssociationList is List[Association]

rec type WindowInfo is structure(rect,borderRect : Rect;
notification : Notification;
tree : VisTree;
areaList : AreaList;
removeNotification : proc();
background : bool;
cursor : image;
style : BorderStyle;
inputOption : InputOption;
window : Window)

& VisTree is variant(node : structure(rect : Rect ; parent : Parent ;
order : int ; left,right : VisTree);

leaf : structure(rect : Rect ; parent : Parent ;
content : Content ; covering : Covering))

& Parent is variant(tree : VisTree ; root : WindowInfo ; none : null)
& Content is Optional[image]
& Covering is variant(present : WindowInfo ; absent,offScreen : null)

type WinList is DoubleList[WindowInfo]

rec type TextLine is variant(cons : structure(hd : string ; index : int ;
before,after : TextLine);

tip : null)
type TextPointer is structure(line : TextLine ; offset : int)
type TextRecord is structure(firstSelection,lastSelection : TextPointer ;

firstLine : TextLine)

type WindowLine is structure(lineStart : TextPointer ; lineBase : int)
type WindowRecord is structure(

window : Window ;
textRecord : TextRecord ;
lineArray : *WindowLine ;
font : FontPack;
firstSelectionIndex,lastSelectionIndex : int)

166

type InternalButtonInfo is structure(id : int ; name : string ;
start,finish : TextPointer ;
action : proc(int) ; extra : any)

type Destination is variant(w : Window ; i : image)

rec type Keeper is structure(binding : Binding;
window : Window ;
refersTo : List[ReferenceTo];
referedToBy : List[ReferenceFrom])

& ReferenceTo is structure(keeper : Keeper ; references : int)
& ReferenceFrom is structure(keeper : Keeper;

arrowImage,obscuredImage : image;
menuOffset,fieldNo,objectX,
objectY,parentX,parentY : int;
lineSet : bool)

type Traverser is proc(Binding,Binding,env,int,int)

type BrowserImplementation is structure(browse : proc(Binding) ;
localEnv : env)

type BindingInfo is structure(binding : Binding;
name : string;
menuOffset : int;
fieldNo : int)

type Selection is Optional[Binding]

type ProcInfo is structure(freeIds : List[Substitution[Binding]] ;
lexLevel,startOffset : int)

167

References
[AAC+91] Albano, A., Atkinson, M.P., Connor, R.C.H., Delobel, C., Ghelli, G., Lécluse,

C., Mancini, L., Matthes, F., Morrison, R., Orsini, R., Philbrow, P., Rabitti, F.,
Richard, P., Schmidt, J. & Watt, D. FIDE Course on Database
Programming Languages and Persistent Systems (1991).

[AB87] Atkinson, M.P. & Buneman, O.P. “Types and Persistence in Database
Programming Languages”. ACM Computing Surveys 19, 2 (1987) pp 105-
190.

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
“An Approach to Persistent Programming”. Computer Journal 26, 4 (1983) pp
360-365.

[ABC+84] Atkinson, M.P., Bailey, P.J., Cockshott, W.P., Chisholm, K.J. & Morrison, R.
“Progress with Persistent Programming”. Universities of Glasgow and St
Andrews Technical Report PPRR-8-84 (1984).

[ACC82] Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. “PS-algol: An Algol with a
Persistent Heap”. ACM SIGPLAN Notices 17, 7 (1982) pp 24-31.

[ACO85] Albano, A., Cardelli, L. & Orsini, R. “Galileo: a Strongly Typed, Interactive
Conceptual Language”. ACM Transactions on Database Systems 10, 2 (1985)
pp 230-260.

[AGO88] Albano, A., Ghelli, G. & Orsini, R. “The Implementation of Galileo’s Values
Persistence”. In Data Types and Persistence, Atkinson, M.P., Buneman, O.P.
& Morrison, R. (ed), Springer-Verlag (1988) pp 253-263.

[AH87] Andrews, T. & Harris, C. “Combining Language and Database Advances in an
Object-Oriented Development Environment”. In Proc. OOPSLA’87, Orlando,
Florida (1987).

[AHM88] Altmann, R.A., Hawke, A.N. & Marlin, C.D. “An Integrated Programming
Environment Based on Multiple Concurrent Views”. Australian Computer
Journal 20, 2 (1988) pp 65-72.

[Ala90] Alagic, S. “Persistent Metaobjects”. In Implementing Persistent Object
Bases, Dearle, A., Shaw, G.M. & Zdonik, S.B. (ed), Morgan Kaufmann (1990)
pp 27-38.

[ALP+91] Atkinson, M.P., Lécluse, C., Philbrow, P. & Richard, P. “Design Issues in a
Map Language”. In Bulk Types & Persistent Data, Kanellakis, P. &
Schmidt, J.W. (ed), Morgan Kaufmann (1991) pp 20-32.

[AM84] Atkinson, M.P. & Morrison, R. “Persistent First Class Procedures are
Enough”. In Lecture Notes in Computer Science 181, Joseph, M. &
Shyamasundar, R. (ed), Springer-Verlag (1984) pp 223-240.

[AM85] Atkinson, M.P. & Morrison, R. “Procedures as Persistent Data Objects”. ACM
Transactions on Programming Languages and Systems 7, 4 (1985) pp 539-
559.

168

[AM86] Atkinson, M.P. & Morrison, R. “Integrated Persistent Programming Systems”.
In Proc. 19th International Conference on Systems Sciences, Hawaii (1986) pp
842-854.

[AM88] Atkinson, M.P. & Morrison, R. “Types, Bindings and Parameters in a
Persistent Environment”. In Data Types and Persistence, Atkinson, M.P.,
Buneman, O.P. & Morrison, R. (ed), Springer-Verlag (1988) pp 3-20.

[AMP86] Atkinson, M.P., Morrison, R. & Pratten, G.D. “A Persistent Information Space
Architecture”. In Proc. 9th Australian Computing Science Conference,
Australia (1986).

[App86] Apple Computer. Inside Macintosh. Addison-Wesley, Reading,
Massachusetts (1986).

[Atk91] Atkinson, M.P. “POP-2 Example”. Personal communication (1991).

[BBB+88] Bancilhon, F., Barbedette, G., Benzaken, V., Delobel, C., Gamerman, S.,
Lécluse, C., Pfeffer, P., Richard, P. & Valez, F. “The Design and
Implementation of O2, an Object-Oriented Database System”. In Lecture
Notes in Computer Science 334, Dittrich, K.R. (ed), Springer-Verlag (1988)
pp 1-22.

[BCP71] Burstall, R.M., Collins, J.S. & Popplestone, R.J. Programming in POP-2.
Edinburgh University Press, Edinburgh, Scotland (1971).

[BM89] Borenstein, P. & Mattson, J. Think C™ User Manual. Symantec Corporation,
Cupertino, California (1989).

[BMM+92] Brown, A.L., Mainetto, G., Matthes, F., Müller, R. & McNally, D.J. “An Open
System Architecture for a Persistent Object Store”. In Proc. 25th International
Conference on Systems Sciences, Hawaii (1992) pp 766-776.

[BOP+89] Bretl, B., Otis, A., Penney, J., Schuchardt, B., Stein, J., Williams, E.H.,
Williams, M. & Maier, D. “The GemStone Data Management System”. In
Object-Oriented Concepts, Applications, and Databases, Kim, W. &
Lochovsky, F. (ed), Morgan-Kaufman (1989).

[Bor89] Borland International. Turbo Pascal. Borland International, Scotts Valley,
California (1989).

[Bow86] Bowen, K. “Meta-level Techniques in Logic Programming”. In Proc.
International Conference on Artificial Intelligence and its Applications,
Singapore (1986).

[BPR91] Bruynooghe, R.F., Parker, J.M. & Rowles, J.S. “PSS: A System for Process
Enactment”. In Proc. 1st International Conference on the Software Process:
Manufacturing Complex Systems (1991).

[Bro89] Brown, A.L. “Persistent Object Stores”. Ph.D. Thesis, University of St
Andrews (1989).

[Bru91] Bruynooghe, R.F. “PML Reference Manual”. ICL Technical Report
ICL/4R2F/00070 (1991).

169

[CAD+87] Cooper, R.L., Atkinson, M.P., Dearle, A. & Abderrahmane, D. “Constructing
Database Systems in a Persistent Environment”. In Proc. 13th International
Conference on Very Large Data Bases (1987) pp 117-125.

[Car85] Cardelli, L. “Amber”. AT&T Bell Labs, Murray Hill, Technical Report AT7T
(1985).

[Car89] Cardelli, L. “Typeful Programming”. DEC Technical Report 45 (1989).

[CBC+90] Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison, R. “The
Persistent Abstract Machine”. In Persistent Object Systems, Rosenberg, J. &
Koch, D.M. (ed), Springer-Verlag (1990) pp 353-366.

[CDK90] Cutts, Q.I., Dearle, A. & Kirby, G.N.C. “WIN Programmers’ Manual”.
University of St Andrews Technical Report CS/90/17 (1990).

[CDM+90] Connor, R.C.H., Dearle, A., Morrison, R. & Brown, A.L. “Existentially
Quantified Types as a Database Viewing Mechanism”. In Lecture Notes in
Computer Science 416, Bancilhon, F., Thanos, C. & Tsichritzis, D. (ed),
Springer-Verlag (1990) pp 301-315.

[CK87] Cutts, Q.I. & Kirby, G.N.C. “An Event-Driven Software Architecture”.
Universities of Glasgow and St Andrews Technical Report PPRR-48-87
(1987).

[CM84] Clocksin, W.F. & Mellish, C.S. Programming in PROLOG (2nd Edition).
Springer-Verlag, New York (1984).

[Con90] Connor, R.C.H. “Types and Polymorphism in Persistent Programming
Systems”. Ph.D. Thesis, University of St Andrews (1990).

[Con91] Connor, R.C.H. “A language which can manipulate its own syntactic entities”.
Personal communication (1991).

[Con92] Connor, R.C.H. “Panel on Persistent Type Systems”. In Proc. 5th International
Workshop on Persistent Object Systems, San Miniato, Italy (1992).

[Coo90a] Cooper, R.L. “On The Utilisation of Persistent Programming Environments”.
Ph.D. Thesis, University of Glasgow (1990).

[Coo90b] Cooper, R.L. “Configurable Data Modelling Systems”. In Proc. 9th
International Conference on the Entity Relationship Approach, Lausanne,
Switzerland (1990) pp 35-52.

[CQ92] Cooper, R.L. & Qin, Z. “A Graphical Data Modelling Program With
Constraint Specification and Management”. In Proc. 10th British National
Conference on Databases, Aberdeen (1992).

[Cut92] Cutts, Q.I. “Delivering the Benefits of Persistence to System Construction and
Execution”. Ph.D. Thesis, University of St Andrews (1992).

[DB88] Dearle, A. & Brown, A.L. “Safe Browsing in a Strongly Typed Persistent
Environment”. Computer Journal 31, 6 (1988) pp 540-544.

[DCC92] Dearle, A., Cutts, Q.I. & Connor, R.C.H. “An Application Architecture Using
Type-Safe Incremental Linking”. University of St Andrews Technical Report
CS/92/13 (1992).

170

[DCK90] Dearle, A., Cutts, Q.I. & Kirby, G.N.C. “Browsing, Grazing and Nibbling
Persistent Data Structures”. In Persistent Object Systems, Rosenberg, J. &
Koch, D.M. (ed), Springer-Verlag (1990) pp 56-69.

[Dea87] Dearle, A. “Constructing Compilers in a Persistent Environment”. In Proc. 2nd
International Workshop on Persistent Object Systems, Appin, Scotland (1987).

[Dea88] Dearle, A. “On the Construction of Persistent Programming Environments”.
Ph.D. Thesis, University of St Andrews (1988).

[Dea89] Dearle, A. “Environments: A flexible binding mechanism to support system
evolution”. In Proc. 22nd International Conference on Systems Sciences,
Hawaii (1989) pp 46-55.

[DM90] Davie, A.J.T. & McNally, D.J. “Statically Typed Applicative Persistent
Language Environment (STAPLE) Reference Manual”. University of St
Andrews Technical Report CS/90/14 (1990).

[DMD92] Dearle, A., Marlin, C.D. & Dart, P. “A Hyperlinked Persistent Software
Development Environment”. In Proc. Hyper-Oz ’92: A Workshop on
Hypertext Activities in Australia, Adelaide, Australia (1992).

[DOD83] “Reference Manual for the Ada Programming Language”. U.S. Department of
Defense Technical Report ANSI/MIL-STD-1815A (1983).

[DPS+89] Dixon, G.N., Parrington, G.D., Shrivastava, S.K. & Wheater, S.M. “The
Treatment of Persistent Objects in Arjuna”. Computer Journal 32, 4 (1989) pp
323-332.

[Eve85] Evered, M. “LEIBNIZ - A Language to Support Software Engineering”. Dr.
Ing. Thesis, University of Darmstadt (1985).

[Far91] Farkas, A.M. “ABERDEEN: A Browser allowing intERactive DEclarations
and Expressions in Napier88”. University of Adelaide Honours Project (1991).

[FBC+90] Fishman, D.H., Beech, D., Cate, H.P., Chow, E.C., Connors, T., Davis, J.W.,
Derrett, N., Hoch, C.G., Kent, W., Lyngbaek, P., Mahbod, B., Neimat, M.A.,
Ryan, T.A. & Shan, M.C. “Iris: An Object-Oriented Database Management
System”. In Readings in Object-Oriented Database Systems, Zdonik, S.B.
& Maier, D. (ed), Morgan Kaufman (1990) pp 216-226.

[FDK+92] Farkas, A.M., Dearle, A., Kirby, G.N.C., Cutts, Q.I., Morrison, R. & Connor,
R.C.H. “Persistent Program Construction through Browsing and User Gesture
with some Typing”. In Proc. 5th International Workshop on Persistent Object
Systems, San Miniato, Italy (1992) pp 375-394.

[FID90] “The FIDE Project”. Esprit II Basic Research Action 3070 (1990).

[FS91] Fegaras, L. & Stemple, D. “Using Type Transformation in Database System
Implementation”. In Proc. 3rd International Conference on Database
Programming Languages, Nafplion, Greece (1991) pp 289-305.

[FSS92] Fegaras, L., Sheard, T. & Stemple, D. “Uniform Traversal Combinators:
Definition, Use and Properties”. In Proc. 11th International Conference on
Automated Deduction (CADE-11), Saratoga Springs, New York (1992).

171

[FW84] Friedman, D. & Wand, M. “Reification: Reflection Without Meta-physics”. In
Proc. ACM Symposium on Lisp and Functional Programming (1984) pp 348-
355.

[GMD85] Gray, P.M.D., Moffat, D.S. & Du Boulay, J.B.H. “Persistent Prolog: A
Searching Storage Manager for Prolog”. In Proc. 1st International Workshop
on Persistent Object Systems, Appin, Scotland (1985) pp 353-368.

[GR83] Goldberg, A. & Robson, D. Smalltalk-80: The Language and its
Implementation. Addison Wesley, Reading, Massachusetts (1983).

[HKS92] Hook, J., Kieburtz, R.B. & Sheard, T. “Generating Programs by Reflection”.
Oregon Graduate Institute of Science & Technology Technical Report CS/E
92-015 (1992).

[HP88] Hewlett Packard. NewWave Environment General Information Manual.
Hewlett-Packard (1988).

[HS90] Hurst, A.J. & Sajeev, A.S.M. “A Capability Based Language for Persistent
Programming”. In Persistent Object Systems, Rosenberg, J. & Koch, D.M.
(ed), Springer-Verlag (1990) pp 186-201.

[HWA+90] Hudak, P., Wadler, P., Arvind, Boutel, B., Fairbairn, J., Fasel, J., Hughes, J.,
Johnsson, T., Kieburtz, D., Peyton-Jones, S., Nikhil, R., Reeve, M., Wise, D.
& Young, J. “Report on the Functional Programming Language Haskell”.
University of Glasgow (1990).

[IBM78] “IBM Report on the Contents of a Sample of Programs Surveyed”. IBM, San
Jose, California (1978).

[KCC+92a] Kirby, G.N.C., Cutts, Q.I., Connor, R.C.H., Dearle, A. & Morrison, R.
“Programmers’ Guide to the Napier88 Standard Library, Edition 2.1”.
University of St Andrews (1992).

[KCC+92b] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. &
Morrison, R. “Persistent Hyper-Programs”. In Proc. 5th International
Workshop on Persistent Object Systems, San Miniato, Italy (1992) pp 73-95.

[KCD+89] Kirby, G.N.C., Cutts, Q.I., Dearle, A. & Marlin, C.D. “WIN: A Persistent
Window Management System”. Universities of Glasgow and St Andrews
Technical Report PPRR-73-89 (1989).

[KD90] Kirby, G.N.C. & Dearle, A. “An Adaptive Graphical Browser for Napier88”.
University of St Andrews Technical Report CS/90/16 (1990).

[Kir92] Kirby, G.N.C. “Persistent Programming with Strongly Typed Linguistic
Reflection”. In Proc. 25th International Conference on Systems Sciences,
Hawaii (1992) pp 820-831.

[Kno65] Knowlton, K.C. “A Fast Storage Allocator”. Communications of the ACM 8,
10 (1965) pp 623-625.

[Kow79] Kowalski, R. “Algorithm = Logic + Control”. Communications of the ACM
22, (1979) pp 424-436.

[KR78] Kernighan, B.W. & Ritchie, D.M. The C programming language. Prentice-
Hall (1978).

172

[LDF+87] Lyngbaek, P., Derrett, N.P., Fishman, D.H., Kent, W. & Ryan, T.A. “Design
and Implementation of the Iris Object Manager”. In Proc. 2nd International
Workshop on Persistent Object Systems, Appin, Scotland (1987) pp 25-51.

[LRN86] Laird, J., Rosenbloom, P. & Newell, A. “Chunking in SOAR: The Anatomy of
a General Learning Mechanism”. Machine Intelligence 1, 1 (1986).

[LRV90] Lécluse, C., Richard, P. & Velez, F. “O2, an Object-Oriented Data Model”. In
Readings in Object-Oriented Database Systems, Zdonik, S.B. & Maier, D.
(ed), Morgan Kaufman (1990) pp 227-236.

[MAD87] Morrison, R., Atkinson, M.P. & Dearle, A. “Flexible Incremental Bindings in
a Persistent Object Store”. Universities of Glasgow and St Andrews Technical
Report PPRR-38-87 (1987).

[MAE+62] McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P. & Levin, M.I. The
Lisp Programmers’ Manual. M.I.T. Press, Cambridge, Massachusetts
(1962).

[Mae87] Maes, P. “Concepts and Experiments in Computational Reflection”. In Proc.
OOPSLA’87, Orlando, Florida (1987) pp 147-155.

[Mai90] Mainetto, G. “Italian Cookery”. Personal communication (1990).

[Mat85] Matthews, D.C.J. “Poly Manual”. University of Cambridge Technical Report
65 (1985).

[Mat89] Matthews, D.C.J. “Papers on Poly/ML”. University of Cambridge Technical
Report 161 (1989).

[MBC+87] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “Polymorphism,
Persistence and Software Reuse in a Strongly Typed Object Oriented
Environment”. Universities of Glasgow and St Andrews Technical Report
PPRR-32-87 (1987).

[MBC+89] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The Napier88
Reference Manual”. University of St Andrews Technical Report PPRR-77-89
(1989).

[MBC+90] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C.,
Dearle, A., Rosenberg, J. & Stemple, D. “Protection in Persistent Object
Systems”. In Security and Persistence, Rosenberg, J. & Keedy, J.L. (ed),
Springer-Verlag (1990) pp 48-66.

[MBW80] Mylopoulos, J., Bernstein, P.A. & Wong, H.K.T. “A Language Facility for
Designing Database-Intensive Applications”. ACM Transactions on Database
Systems 5, 2 (1980) pp 185-207.

[Mil78] Milner, R. “A Theory of Type Polymorphism in Programming”. Journal of
Computer and System Sciences 17, 3 (1978) pp 348-375.

[MM81] Meyrowitz, N. & Moser, M. “BRUWIN: An Adaptable Design Strategy for
Window Manager/Virtual Terminal Systems”. Journal of the ACM 28 (1981)
pp 180-189.

[MMS92] Matthes, F., Müller, R. & Schmidt, J.W. “Object Stores as Servers in
Persistent Programming Environments—The P-Quest Experience”. ESPRIT
BRA Project 3070 FIDE Technical Report FIDE/92/48 (1992).

173

[MS87] Maier, D. & Stein, J. “Development and Implementation of an Object-
Oriented DBMS”. In Research Directions in Object-Oriented
Programming, Shriver, B. & Wegner, P. (ed), MIT Press (1987) pp 355-392.

[MS89] Matthes, F. & Schmidt, J.W. “The Type System of DBPL”. In Proc. 2nd
International Workshop on Database Programming Languages, Salishan,
Oregon (1989) pp 219-225.

[MTH89] Milner, R., Tofte, M. & Harper, R. The Definition of Standard ML. MIT
Press, Cambridge, Massachusetts (1989).

[Mye86] Myers, B.A. “A Complete and Efficient Implementation of Covered
Windows”. IEEE Computer September (1986) pp 57-67.

[Mye89] Myers, B.A. “User Interface Tools: Introduction and Survey”. IEEE Software
6, 1 (1989) pp 15-23.

[Not85] Notkin, D. “The GANDALF Project”. Journal of Systems and Software 5,
(1985) pp 91.

[OHK87] O’Brien, P.D., Halbert, D.C. & Kilian, M.F. “The Trellis Programming
Environment”. In Proc. OOPSLA’87, Orlando, Florida (1987) pp 91-102.

[Per87] Perry, N. “Hope+”. Flagship project, Imperial College London Technical
Report IC/FPR/LANG/2.5.1/7 (1987).

[Phi90] Philbrow, P.C. “Indexing Strongly Typed Heterogeneous Collections Using
Reflection and Persistence”. In Proc. ECOOP/OOPSLA Workshop on
Reflection and Metalevel Architectures in Object-Oriented Programming,
Ottawa, Canada (1990).

[PS88] “PS-algol Reference Manual, 4th edition”. Universities of Glasgow and St
Andrews Technical Report PPRR-12-88 (1988).

[PYD91] Pausch, R., Young, N. & DeLine, R. “Simple User Interface Toolkit (SUIT):
The Pascal of User Interface Toolkits”. In Proc. ACM Symposium on User
Interface Software and Technology (1991) pp 117-125.

[RC86] Rees, J. & Clinger, W. “Revised Report on the Algorithmic Language
Scheme”. ACM SIGPLAN Notices 21, 12 (1986) pp 37-43.

[RC90] Richardson, J.E. & Carey, M.J. “Implementing Persistence in E”. In Persistent
Object Systems, Rosenberg, J. & Koch, D.M. (ed), Springer-Verlag (1990) pp
175-199.

[Rei84] Reiss, S.P. “Graphical Program Development with PECAN Program
Development Systems”. ACM SIGPLAN Notices 19, 5 (1984) pp 30-41.

[RT78] Ritchie, D.M. & Thompson, K. “The UNIX Time-Sharing System”. The Bell
System Technical Journal 63, 6 (1978) pp 1905-1930.

[SDP91] Shrivastava, S.K., Dixon, G.N. & Parrington, G.D. “An Overview of the
Arjuna Distributed Programming System”. IEEE Software 8, 1 (1991) pp 66-
73.

174

[SFS+90] Stemple, D., Fegaras, L., Sheard, T. & Socorro, A. “Exceeding the Limits of
Polymorphism in Database Programming Languages”. In Lecture Notes in
Computer Science 416, Bancilhon, F., Thanos, C. & Tsichritzis, D. (ed),
Springer-Verlag (1990) pp 269-285.

[SG86] Scheifler, R.W. & Gettys, J. “The X Window System – An Overview”. ACM
Transactions on Graphics 5, 2 (1986).

[Sha86] Shapiro, M. “SOS: a Distributed Object-Oriented Operating System”. In Proc.
2nd ACM SIGOPS European Workshop on “Making Distributed Systems
Work”, Amsterdam, Netherlands (1986).

[She90] Sheard, T. “A user’s Guide to TRPL: A Compile-time Reflective
Programming Language”. COINS, University of Massachusetts Technical
Report 90-109 (1990).

[She91] Sheard, T. “Automatic Generation and Use of Abstract Structure Operators”.
ACM Transactions on Programming Languages and Systems 19, 4 (1991) pp
531-557.

[Shi81] Shipman, D. “The Functional Data Model and the Data Language DAPLEX”.
ACM Transactions on Database Systems 6, 1 (1981) pp 140-173.

[Shn92] Shneiderman, B. Designing the User Interface. Addison-Wesley, Reading,
Massachusetts (1992).

[Sjø92] Sjøberg, D. “Measuring Name and Identifier Usage in Napier88 Applications”.
ESPRIT BRA Project 3070 FIDE Technical Report FIDE/92/37 (1992).

[SM90] Shapiro, M. & Mosseri, L. “A Simple Object Storage System”. In Persistent
Object Systems, Rosenberg, J. & Koch, D.M. (ed), Springer-Verlag (1990) pp
272-276.

[SS89] Sheard, T. & Stemple, D. “Automatic Verification of Database Transaction
Safety”. ACM Transactions on Database Systems 12, 3 (1989) pp 322-368.

[SS91] Sheard, T. & Stemple, D. “Examples in TRPL”. COINS, University of
Massachusetts (1991).

[SSF92] Stemple, D., Sheard, T. & Fegaras, L. “Linguistic Reflection: A Bridge from
Programming to Database Languages”. In Proc. 25th International Conference
on Systems Sciences, Hawaii (1992) pp 844-855.

[SSS+92] Stemple, D., Stanton, R.B., Sheard, T., Philbrow, P., Morrison, R., Kirby,
G.N.C., Fegaras, L., Cooper, R.L., Connor, R.C.H., Atkinson, M.P. & Alagic,
S. “Type-Safe Linguistic Reflection: A Generator Technology”. ESPRIT BRA
Project 3070 FIDE Technical Report FIDE/92/49 (1992).

[Str67] Strachey, C. Fundamental Concepts in Programming Languages. Oxford
University Press, Oxford (1967).

[Str86] Stroustrup, B. The C++ Programming Language. Addison-Wesley (1986).

[Sun89] Sun Microsystems. Open Look™ Graphical User Interface Functional
Specification. Addison-Wesley, Mountain View, California (1989).

[Sun90] Sun Microsystems. Open Windows Developer’s Guide 1.1: User’s Guide.
Addison-Wesley, Mountain View, California (1990).

175

[Swe85] Sweet, R.E. “The Mesa Programming Environment”. In Proc. ACM
SIGPLAN Symposium on Programming Languages and Programming
Environments (1985) pp 216-229.

[Tei84] Teitelman, W. “A Tour Through Cedar”. IEEE Software April (1984) pp 44-
73.

[TM84] Teitelman, W. & Masinter, L. “The Interlisp Programming Environment”. In
Interactive Programming Environments, Barstow, D.R., Shrobe, H.E. &
Sandewall, E. (ed), McGraw-Hill (1984).

[TR81] Teitelbaum, T. & Reps, T. “The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment”. Communications of the ACM 24, 9
(1981) pp 563.

[Tur85] Turner, D.A. “Miranda: A non-strict functional language with polymorphic
types”. In Lecture Notes in Computer Science 201, Jouannaud, J. (ed),
Springer-Verlag (1985) pp 1-16.

[WA86] Wile, D.S. & Allard, D.G. “Worlds: An Organizing Structure for Object-
Bases”. In Proc. 2nd ACM SIGSOFT/SIGPLAN Symposium on Practical
Software Development Environments, Palo Alto, California (1986).

[Wai87] Wai, F. “Distribution and Persistence”. In Proc. 2nd International Workshop
on Persistent Object Systems, Appin, Scotland (1987) pp 207-225.

[War89] Warboys, B. “The IPSE 2.5 Project: Process Modelling as the Basis for a
Support Environment”. In Proc. 1st International Conference on System
Development Environments and Factories, Berlin, Germany (1989).

[WBB+90] Wiecha, C., Bennett, W., Boies, S., Gould, J. & Greene, S. “ITS: A Tool for
Rapidly Developing Interactive Applications”. ACM Transactions on
Information Systems 8, 3 (1990) pp 204-236.

[WCG87] Williams, A., Crampton, C. & Goswell, C. “Unix Window Management
Systems Client-Server Interface Specification”. Rutherford Appleton
Laboratory Technical Report 11/3/87 (1987).

[Web89] Webster, B.F. The NeXT Book. Addison-Wesley, Reading, Massachussetts
(1989).

[Wir71] Wirth, N. “The Programming Language Pascal”. Acta Informatica 1 (1971) pp
35-63.

[Wir83] Wirth, N. Programming in Modula-2. Springer-Verlag (1983).

	Title
	Abstract
	Acknowledgements
	Contents
	Introduction
	1.1 Persistence and Software Costs
	1.2 The FIDE View of Software Production
	1.3 Persistence as a Platform
	1.3.1 Writing Less Code
	1.3.2 Writing More Reliable Code
	1.3.3 Understanding the Persistent Environment
	1.3.4 Research Topics

	1.4 Linguistic Reflection
	1.5 Hyper-Programming
	1.6 Software Products
	1.7 Thesis Structure

	2 Reflection
	2.1 Introduction
	2.1.1 Behavioural Reflection
	2.1.2 Linguistic Reflection
	2.1.2.1 Characterisation
	2.1.2.2 Lisp
	2.1.2.3 POP-2
	2.1.2.4 TRPL
	2.1.2.5 PS-algol
	2.1.2.6 Napier88

	2.2 Type-Safe Linguistic Reflection
	2.3 Anatomy of Type-Safe Linguistic Reflection
	2.3.1 Reflection in General
	2.3.2 Compilation
	2.3.3 Compile-Time Linguistic Reflection
	2.3.4 Optimised Compile-Time Linguistic Reflection
	2.3.5 Run-Time Linguistic Reflection
	2.3.6 Combined Compile-Time and Run-Time Linguistic Reflection

	2.4 Dimensions of Type-Safe Linguistic Reflection
	2.4.1 Initiation of Reflection
	2.4.2 Time of Generator Execution
	2.4.3 Nature of Generators
	2.4.4 Execution Environment of Generators
	2.4.5 Time of Type Checking of Generated Code
	2.4.6 Execution Environment of Generated Code
	2.4.7 Linking Generated Code into the Original Program
	2.4.8 Characterisation of TRPL, PS-algol and Napier88
	2.4.8.1 TRPL
	2.4.8.2 PS-algol
	2.4.8.3 Napier88

	2.5 Applications of Type-Safe Linguistic Reflection
	2.5.1 Genericity and Efficiency
	2.5.2 Software Evolution in Persistent Systems
	2.5.3 Implementing Data Models
	2.5.4 Optimising Implementations
	2.5.5 Validating Specifications

	2.6 Anatomy of Generators
	2.6.1 Generator Components
	2.6.2 Components in TRPL Generators
	2.6.3 Components in PS-algol Generators
	2.6.4 Components in Napier88 Generators
	2.6.5 Factors in Understanding Generators

	2.7 Research Areas
	2.8 Conclusions

	3 Hyper-Programming
	3.1 Introduction
	3.2 Motivations and Benefits
	3.2.1 Program Composition
	3.2.2 Early Checking
	3.2.2.1 Checking Persistent Data Access
	3.2.2.2 Other Kinds of Checking

	3.2.3 Source Code Control
	3.2.3.1 Relationships Among Program Forms
	3.2.3.2 Languages with External Storage Systems
	3.2.3.3 Persistent Languages
	3.2.3.4 Hyper-Programs

	3.2.4 Flexible Linking Mechanisms
	3.2.5 Program Succinctness

	3.3 Procedure Representations
	3.4 Hyper-Worlds
	3.5 Conclusions

	4 Hyper-Programming Tools
	4.1 Introduction
	4.2 Hyper-Programming Tools
	4.2.1 Data Representation Display Format
	4.2.2 Constructing a Hyper-Program
	4.2.3 Editing a Hyper-Program
	4.2.4 Compile-Time Linking
	4.2.5 Comparison with Other Systems
	4.2.5.1 PS-algol Browser
	4.2.5.2 Refined PS-algol Browser
	4.2.5.3 Napier88 Browser
	4.2.5.4 ABERDEEN

	4.3 Conclusions

	5 Reflective Programming Tools
	5.1 Reflection and Hyper-Programming
	5.2 Ease of Programming Generators
	5.3 Generator Model
	5.4 Napier88 Representation of Generator Model
	5.5 Generator Evaluation
	5.6 Pre-defined Types and Operators
	5.7 Graphical Interface
	5.7.1 Creating Generators
	5.7.2 Testing Generators
	5.7.3 Generating Hyper-Program Links

	5.8 Conclusions

	6 Implementation
	6.1 Introduction
	6.2 User Interface Tool-Kit
	6.2.1 History
	6.2.2 Event Distribution
	6.2.3 Windows and Window Managers
	6.2.4 Hyper-Text Editing
	6.2.5 Interface Widgets
	6.2.6 Implementation of WIN
	6.2.6.1 Window Manager Implementation
	6.2.6.2 Window Manager Data Structures
	6.2.6.3 Fragmentation
	6.2.6.4 Hyper-Text Editor Data Structures

	6.3 Browser
	6.3.1 History
	6.3.2 Browser Interface
	6.3.3 Browser Implementation
	6.3.3.1 Reflective Implementation
	6.3.3.2 Low-Level Implementation
	6.3.3.3 Browsing Structures, Variants and Vectors
	6.3.3.4 Browsing Environments

	6.4 The Napier88 Compiler
	6.5 Hyper-Programming Tools
	6.5.1 Hyper-Program Representations
	6.5.2 Constructing Closure Representations

	6.6 Conclusions

	7 Conclusions
	7.1 Type-Safe Linguistic Reflection
	7.2 Hyper-Programming
	7.3 Related Work
	7.3.1 Reflective Languages
	7.3.2 Linking Mechanisms
	7.3.3 User Interface Tool-Kits
	7.3.4 Other Languages and Database Systems
	7.3.4.1 Smalltalk-80
	7.3.4.2 GemStone
	7.3.4.3 Arjuna
	7.3.4.4 OSS
	7.3.4.5 Iris
	7.3.4.6 VBASE
	7.3.4.7 O2
	7.3.4.8 ML

	7.4 Future Research
	7.4.1 Programming Support
	7.4.2 Hyper-Worlds
	7.4.3 Linking Control
	7.4.4 Type-Safe Linguistic Reflection

	7.5 Conclusions

	Appendix A. Generator Tool Example: Natural Join
	Example Using Generator Tool
	Example in Napier88
	Example in TRPL

	Appendix B. Generator Interfaces
	Pre-defined Types
	Pre-defined Procedures

	Appendix C. WIN Interfaces
	User Types
	Implementation Types

	References

