
keywords

persistence, distribution, cache coherence, object lifecycle, heap management, garbage collection, Napier.



Cache Coherency and Storage Management†

in a Persistent Object System

Bett Koch, Tracy Schunke, Alan Dearle, Francis Vaughan,
Chris Marlin, Ruth Fazakerley & Chris Barter.

Department of Computer Science
The University of Adelaide
G.P.O. Box 498, Adelaide

South Australia 5001
Australia

{bett,tracy,al,francis,marlin,chris}@cs.adelaide.edu.au

Abstract

A distributed architecture for the support of programs written in the persistent programming
language Napier is described.  The architecture consists of a central server containing the stable
persistent store and a collection of clients, each executing Napier processes.  Since each client
has a cache of objects, some of which may be shared with other clients, a protocol is required to
ensure that the caches are coherent and that any access of an object will be to the most up-to-
date copy.  This architecture is explicated by following the lifecycle of an object from its ‘birth’
inside a client, through its life in the persistent store and its migration into other clients. Using
this vehicle, the coherency protocol and client/server architecture are illustrated and explained.

1 Introduction

This paper describes a distributed architecture designed to support applications written in the persistent
programming language Napier [1]. The Napier programmer views the world as a graph of strongly typed, stable
persistent objects known as the persistent store. In this domain of discourse, all the physical properties of data
have been abstracted over; examples of such properties include the location of the data, i.e. whether it is on
disk or in RAM, and on which machine it resides, and how long the data exists. The Napier programmer has
no control over the store — the underlying system manages the creation, movement and garbage collection of
all objects.

Here we describe progress on an implementation of a persistent system based upon the well known
multiple clients and single server model shown in Figure 1.  In this system, a number of clients execute
concurrently against a stable persistent store, managed by a single server, using a coherency protocol that
guarantees data integrity. Each client corresponds to a single process executing a Napier program.  These
programs execute in an environment that is robust and guarantees correct execution, regardless of the failure
of parts of the system.

Napier programs are compiled into Persistent Abstract Machine (PAM) code and it is an invocation of
the PAM that executes the programs.  One of the most notable features of the PAM [2,3] is that it is
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constructed entirely upon a heap-based storage architecture.  The persistent store is therefore implemented as
one very large heap in which all Napier objects, including process objects, reside.  Each client contains a
PAM interpreter, and is provided with an area of the persistent store within which to place newly created
objects; this area is termed a local heap.
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Figure 1. A persistent architecture to support distributed execution

2 The object lifecycle

In this paper, we use the metaphor of the life cycle of an object. We will follow the progress of a Napier
object from its ‘birth’ inside a client, through its life in the persistent store and its migration into other clients.
Using this metaphor, the coherency protocol and client/server architecture are illustrated and explained.

The example shown in Figure 2 manipulates two object types, namely domicile and animal. The program
creates an instance of each type, makes some assignments to one of the objects, makes another assignment to
some data in the persistent store, and finally makes one of the newly created objects reachable from the
persistent store. The program is explained more fully in the following sections.

type domicile is structure( name, location : string )
type animal is structure( name : string ;

home : domicile )

let smallPond = domicile( "pond", "Adelaide" )

let afrog = animal( "tadpole", smallPond )

afrog( name ) := "frog"

use PS() with bigPond : domicile in
afrog( home ) := bigPond

in PS() let Kermit = afrog



Figure 2. A Napier program



2.1. Creating local objects

Figure 3 shows a piece of code which creates an object of type domicile named smallPond, and another
called afrog of type animal.  As a result of running this code on Client A, five objects are placed in its local
heap, corresponding to the structures denoted by smallPond  and afrog, and the three strings “pond”,
“Adelaide” and “tadpole”.

let smallPond = domicile( "pond",
"Adelaide" )

let afrog = animal( "tadpole", smallPond )

local heap A

"pond"
"Adelaide"

"tadpole"

process

smallPond

afrog

Figure 3. Creating local objects

Local objects are freely modifiable.  Assignments may be made to fields of structures; for example, the
name field of the animal object denoted by afrog, may be updated as shown in Figure 4 below.  Note that this
update results in the string “tadpole” being unreachable from the running process.  This object will end its life
in the local heap.

afrog( name ) := "frog"

local heap A

"pond"
"Adelaide"

"tadpole"

process

smallPond

afrog

"frog"

Figure 4. Modifying local objects

2.2 Accessing the persistent store

Any Napier program can access objects which exist in the persistent store by calling the predefined
function PS to obtain the root of persistence.  Local objects may refer to such objects.  If we assume that an
object called bigPond  of type domicile exists in the persistent store and is reachable from the root of
persistence, the migration of a frog from a small pond to a big pond may be modelled by the language-level
assignment shown in Figure 5.



use PS() with bigPond : domicile in
afrog( home ) := bigPond

local heap A
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Figure 5. Object field assignments

2.3 Sharing in the persistent store

Independently, within another client, another instance of type animal may be created which also contains
a reference to bigPond.  Clients A and B now share references to (and possibly copies of) persistent data.

use PS() with bigPond : domicile in
let bfrog = animal( "frog", bigPond )

local heap A

"pond"
"Adelaide"

"tadpole"

process

smallPond

afrog

"frog"

persistent
root
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process
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Figure 6. Shared references

2.4 Making local objects persistent

One way of making a local object available to other users of the persistent system is to make a name,
and therefore a reference to that object, public.  The declaration of the object Kermit in the root environment
shown in Figure 7 achieves this.



in PS() let Kermit = afrog

local heap A

"pond"
"Adelaide"
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Figure 7. References from persistent to local objects

However, such an assignment causes problems as the isolation of a client's local heap from external
references must be preserved.  Should another client wish to access the persistent object associated with the
name Kermit, known as afrog in the context of Client A, the object must be removed from its place of origin
in Client A's local heap. This mechanism is shown in Figure 8.

local heap A
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Figure 8. Object Migration

3 Characteristics of the architecture

Although the example shown in Figure 2 is obviously contrived, it is however typical of many Napier
programs.  Firstly, notice that the program constructs a graph, in this case a trivial one; once the graph is
constructed, it is linked into the persistent object graph. This kind of behaviour is common in programs written
in persistent programming languages.  In fact, linking a newly constructed data structure into an existing
persistent structure is often the last act of a program before ceasing execution.

If this is typical behaviour for persistent programs, it would suggest that making assignments from
persistent data to newly created data is relatively infrequent.  Furthermore, it has been shown by Loboz [4]
that most objects in persistent object stores are not modified.  If the persistent address space is large, we
believe it is also safe to assume that most data will not be shared.  The strategies described in Section 7
depend on these assumptions.

We have attempted to design a system in which there is only one level of object addressing like that
used by Thatte [5].  This contrasts with other persistent systems which use the now well known technique of
persistent identifier (PID) translation [6,7].  The benefit gained is the opportunity to exploit address translation
hardware.



The strategies used attempt to optimise what we expect to be common access patterns. Whether or not
these strategies are advantageous will only be revealed through measurement once the system is complete.
The system described in the following sections takes advantage of paging hardware, utilises the external
paging facilities provided by the Mach operating system [8] and avoids the use of indirection tables and PID
address translation (pointer swizzling) implemented in software.



4 Creating local objects

The object space in this system is shared by all clients and comprises a single 4 gigabyte address space
known as the persistent address space. Objects reachable from the persistent root are termed persistent, and
the pages used to hold these objects are termed persistent pages.  The persistent address space is maintained
by the Stable Store Server, shown in Figure 1, and it is within this address space that instances of PAMs
execute.

Each client views the same address space of objects within which references may be made by directly
addressing the objects.  At any time, each client may contain part of the total persistent address space in a
page cache.

The local heaps described in Section 1 reside inside page caches. Each local heap corresponds to a
Napier process and is constructed from a contiguous set of pages from the persistent address space. Local
heaps are small enough to always remain resident within the client's page cache during normal execution.
Experience with earlier implementations has shown that significant improvements in performance may be
obtained if the local heap area is rarely paged.  Furthermore, greater locality of reference may be obtained in
relation to larger heaps that do not use the local heap model. This can result in improved performance from
better page fault behaviour and improved processor cache utilisation.

All objects are created in a local heap.  In Figure 3, the object representing the string “tadpole” will be
unreachable long before it gains any rights to long-term persistence.  In fact, many Napier objects are short
lived; this is exacerbated by the fact that Napier is a block retention language [9] and that activation records
are allocated by the PAM from the heap rather than from a stack.

If transient objects are confined to a localised area, they may be distinguished from persistent objects
resident in the total persistent address space and consequently garbage collected locally at low cost.  Local
heaps may be safely garbage collected provided that no external references (from other processes or the
server) point into them.  Fortunately, the creation and export of such pointers are easily detected, making this
technique tractable.  This is discussed further in Section 7.

The implementation permits, and requires, a single external pointer into local heaps.  This pointer is to
the process header object representing the process executing in the local heap and is used as a root for local
garbage collection.  Process headers are reachable from the root of persistence making processes restartable
in the event of a failure.

5 Accessing the persistent store

The distinguished object known as the root of persistence is stored at a known address and is accessible
by any process.  A typical Napier program makes use of many objects found in the persistent store; examples
of such objects include a browser [10], a window manager [11] and the Napier compiler.  A process may
traverse the transitive closure of objects reachable from the persistent root in order to access these tools; in so
doing, it constructs references to objects that are outside its local heap.

An example of this mechanism is shown in Figure 2, in which the object denoted by bigPond is reachable
from the root environment. The code fragment in Figure 5 results in the creation of a pointer from the locally
created object, denoted by afrog, to a member of the persistent heap (bigPond).  Recall that the objects
named afrog and bigPond reside in the same persistent address space and therefore the reference to bigPond
from afrog is a direct pointer stored within the object.

When an attempt is made to access an object not resident in the page cache, a page fault is generated.
Under Mach, the user is permitted to provide a process called an external pager which services page faults. If
an external pager is associated with a user process, the Mach kernel will forward page fault exceptions to that
external pager, which will return the required data (in the case of a read fault) or may write the data to some
stable medium (for a write fault).

The external pager, upon receipt of the page fault, communicates with the Stable Store Server via the
Client Request Handler.  The Client Request Handler handles all communications with other clients and the



Stable Store Server.  Once the appropriate page is delivered and placed in the client's address space, the
access may proceed normally.

6 Sharing in the persistent store

The coherency algorithm addresses the problem illustrated in Figure 6, where persistent page copies are
required by a number of clients.  Further problems arise when one of those clients attempts to modify such a
page.  Two finite state automata have been developed to implement a coherency protocol between the clients
and the server.  These are based on the following principles:

• a page copy may be held by more than one client for read-only access, and

• only one client may hold write permission for a particular page.



To enforce these access restrictions, the Stable Store Server referees all page requests from connected
clients.  It determines whether pages are available for read or write access and distributes the requested pages
accordingly.  The server, therefore, maintains the majority of data structures used to ensure coherency.  For
each page, a data structure records those clients which hold up-to-date copies of that page; this list is known
as the V-list (valid list).

If the Stable Store Server receives a request from a client to read a persistent page, it must determine if
it is capable of directly supplying a copy of that page.  If it can, it immediately sends the page to the
requesting client; this is illustrated in Figure 5 where a previously unrequested page is requested by Client A.
If the page may have been modified with respect to the server's copy, it must forward the read request to a
client with a valid copy of that page.  Such a client may be identified by examining the V-list associated with
that page.

In Figure 6, the server is unable to supply the page copy as the page is held by a single client which may
freely modify the copy of the page in its local page cache without arbitrating with the server for write
permission.  The server must therefore forward client B's read request to Client A which will, in turn, forward
the potentially updated copy of the page to client B.

Note that if a client is known to hold the only copy of a page, it may update that page without requesting
permission from the server.  However, if the page is unmodified, the client must inform the Stable Store
Server of its intention to modify the page.  This mechanism will represent a considerable performance
increase if the assumptions made in Section 3 are correct.

Copies of persistent pages in clients' page caches are initially write protected. This causes an access
exception to be raised if a PAM attempts to modify a shared page. Whenever this occurs the Client Request
Handler requests the Stable Store Server for write permission for that page.  The server must ensure that all
valid page copies are removed from other clients before it grants write permission to the requesting client.
The server sends invalidation signals to all V-list members except the client which requested modification
permission for the page.  Upon receipt of all the invalidation acknowledgements from those clients requested
to invalidate, the Stable Store Server informs the original requesting client that write permission is granted.

7 Making local objects persistent

Continuing the progression through the events an object may experience in its lifetime, we now consider
the situation where a persistent object, resident in a persistent page cached within a client, points to an
occupant of that client's local heap.  As illustrated in Figure 7, this arises at the language level when an
assignment is made from an object which is already persistent, to data created locally.  At the
implementation level, this assignment means that data created by the interpreter within the confines of its
local heap is now reachable from an external point, other than its process header.  For the reasons stated
earlier, chief among which is preserving the ability to garbage collect the local heap area independently, it is
important to:

• be able to detect the construction of pointers from persistent pages to locally created objects,
and

• devise a mechanism whereby no other client will obtain a page while it contains references
into local heap areas.

Using a scheme derived from generation-based garbage collection [12], another set of previously unused
persistent pages, termed copy-out pages, is maintained by a client.  In addition, the set of persistent pages
which reference local objects is recorded; following Ungar, this set is termed the remembered set.  New
members may be added to this set when an assignment occurs at the machine level.  For example, the
statement

in PS() let Kermit = afrog

results in the addition of the address, representing Kermit, to the remembered set.



If a local heap always comprises contiguous pages, the interpreter can make a simple check at such a
time: if the source address lies outside the range reserved for the local heap, and the assignment target lies
within it, the source and its corresponding page identifier are placed in the remembered set.  In Figure 9,
pages P1 and P2 contain objects which reference the local objects A and D.  These represent the instances of
animal and domicile structures from Figures 3 to 8.  The remembered set records the addresses of the pointers
representing Kermit, Muppet  and Rymill.  The last two references could be the result of the following
implementation level assignments:

in PS() let Muppet = afrog
in PS() let Rymill = smallPond
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Figure 9. A client's page cache

The copy-out pages are used when an external request arrives at the client for a page belonging to the
remembered set.  The basic strategy is to copy the local heap object (or objects), referred to by the requested
page, into a copy-out page.  All references to the objects must eventually be changed to reflect their new
locations within the persistent virtual address space.  References from other persistent pages may be found
efficiently, and updated immediately, by searching the remembered set.  However, references from local heap
pages may only be detected by traversing the local heap.

Such a traversal is expensive in terms of time, delaying the required page supply; it also necessitates
halting the interpreter, which is potentially running concurrently at this time.  Instead, this operation is
postponed, and another data structure called the Copies Table is utilised.  This table holds (old, new) address
pairs for objects which have been duplicated.  Once moved, the object itself must be scanned for local
addresses among its pointer fields;  should any be found, appropriate entries are inserted in the remembered
set.  The old and new addresses of the object are placed in the Copies Table.  The page may now be safely
exported since it no longer contains references to the client's local heap.

Figure 10 shows the situation where page P1 has been prepared for export by the above procedure.
Object A has been moved into the copy-out page C1, and the two persistent locations which contained
references to A, now point to the object A'.  Finally, the mapping between A and A' has been entered in the
Copies Table.
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Figure 10. Copying out a local object



The original copy of a duplicated object cannot be classed as garbage until those references to it from
within the local heap are altered.  To trigger the alteration procedure, the local heap page containing the
original copy is completely protected from all accesses.  Page L1 in Figure 10 is depicted as protected since
it contains the old copy of object A.

If the interpreter attempts to access such a page, the external pager will be invoked with an access
exception.  Since the interpreter has halted, the local heap can now be fully traversed to find and update all
references to copied objects; the relevant entries in the Copies Table can subsequently be deleted.  If the
interpreter does not attempt to access this page before the next local garbage collection, all references from
within the local heap to relocated objects are updated at this time, and the Copies Table becomes empty.

In Figure 11, the pointer from afrog has been updated, the mapping (A,A') has been removed, and the
protection on page L1 has been lifted.  In this way, objects migrate from initial creation as part of a process'
local heap, to general availability as part of the shared persistent store.
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Figure 11. Completing reference updates

Different clustering strategies may be modelled by altering the way in which the copy out process is
implemented.  Suppose the copy-out page C1 in Figure 11 is required by another client; the procedure
described above would be repeated.  If object A formed part of a linked data structure, it is highly probable
that C1's data would soon be of non-local interest.  It may be advantageous, when initially required to copy an
object, to immediately copy its transitive closure as well.  Such a strategy caters for a depth-first pattern of
access to objects.

Alternatively, it may be better to anticipate future export requests for all pages in the remembered set,
and, when one such page is requested, move all objects directly referenced from this set.  Adopting the first
option would cause both the structure A and the string object "frog" to be moved if page P1 was requested;
adopting the second would result in the relocation of both the structures A and D in a breadth-first manner.
Experimentation and further measurements regarding typical object access will be needed to determine an
optimal strategy.

8 Stabilisation

We have described a distributed object space managed by a central server. The central server provides a
stable store in which a self consistent version of the object space is maintained.  To ensure stability may
always be achieved, rollback is made possible by writing data to disk using a shadow paging technique [13].
In general terms, this scheme involves maintaining original page versions along with the new.  As the final
stage in a stabilisation, a single disk-page write updates a mapping, reflecting which version is to be treated



as the original henceforth [14].  Until this point, the previous stable state is completely preserved, and
indicated by the old mapping.

The Stable Store Server maintains those structures needed to correctly roll back the execution state of
interdependent clients should failure occur in any part of the system.  Those parts of the system that can
continue without jeopardising the store's integrity are unaffected.

A client which holds modified pages may pass copies on to another client as a result of read requests.
Thus, clients may become dependent on one another by virtue of having seen the same data, which has been
modified with respect to the Stable Store.  We term such dependent clients associates and a set of mutually
dependent clients an association [15].



It is important to note that associations are dynamic in nature, with clients being added and associations
merging over time.  Associations, which are maintained by the Stable Store Server, contain a list of page
identifiers, which identifies those pages modified by members of the association since the last stabilise.

Any client may initiate a stabilise operation.  At such a time, the server notifies the instigating client's
association to stabilise in order to bring the stable store into a new consistent state.  Each of the associates
must send back copies of all modified pages held in their local cache.  It is not necessary to write back pages
until this time.  Due to the nature of associations (that is, a client may belong to only one association and a
modified page belongs to only one association's page list), several independent stabilisation cycles may be in
progress at any time.

9 Conclusions

A distributed architecture designed to support applications written in the persistent programming language
Napier has been described.  Objects are manipulated within caches inside clients, each of which are serviced
by a central server; the architecture supports the sharing of objects between clients.  Thus, the question of
cache coherency arises and a sophisticated cache coherency protocol has been designed for the system.

Alternative schemes for sharing virtual memory between distributed clients have been proposed [16,17].
In [18], the underlying data repository moves between stable states  through checkpoint  operations.  A
checkpoint involves flushing those pages onto disk which have been modified since the last checkpoint.  A
new stable state is achieved when a known set of such pages has been thus secured, and any record of their
original contents, as held in the previous stable state, can be safely disposed.  Wu and Fuchs [19] describe a
system whereby checkpoints are carried out on individual nodes (i.e. clients), as soon as another node
requests the use of any updated data. A major concern of this work has been to limit rollback propagation, so
that the failure of any client only affects that client.

The idea of having local heaps originates in architectures such as POMS [6] and CPOMS [7] that perform
PID translation. These systems have the advantage of being able to perform local garbage collection, but pay
a heavy cost penalty in the form of software address translation.

Our approach to distributed support for persistent objects has been illustrated through the description of
the lifecycle of an object from its ‘birth’ inside a client, through its life in the persistent store and its
migration into other clients.  Our scheme also shows potential for clustering objects in a page based persistent
address space, with all the attendant benefits.  The architecture exploits hardware address translation through
the external pager mechanism provided by the Mach operating system.  This scheme capitalises on the
advantages of a local heap.  In addition to potentially improving performance through locality of reference,
the likelihood of having to perform garbage collection over a large persistent address space is minimised.
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