A Persistent Hyper-Programming System

Graham Kirby, Ron Morrison & Dave Munro
Division of Computer Science
University of St Andrews
North Haugh, Fife KY 16 9SS, UK
{ graham, ron, dave} @dcs.st-andrews.ac.uk

Abstract

We demonstrate the use of a hyper-programming sys-
tem in building persistent applications. This allows pro-
gram representations to contain type-safe links to persis-
tent objects embedded directly within the source code. The
benefits include improved efficiency and potential for
static program checking, reduced programming effort and
the ability to display meaningful source-level representa-
tions for first-class procedure values. Hyper-programming
represents a completely new style of programming which
isonly possible in a persistent programming system.

1. Hyper-programming

Persistent programming languages were developed in
an effort to reduce the burden on the application pro-
grammer of organising the transfer of long-term data be-
tween volatile program storage and non-volatile storage.
Previously, application data which was to be retained be-
tween activations had to be written explicitly to a database
or file system, and later read in again to the application
space. The flattening and rebuilding of data structures that
this required involved a significant programming over-
head, and an increased intellectual effort since the pro-
grammer had to keep track of a three way mapping be-
tween program representation, database/file representation
and the real world. The introduction of orthogonally per-
sistent languages meant that any program data could be
made persistent simply by identifying it as such, with all
transfers between memory hierarchy layers handled trans-
parently.

The treatment of source programs as strongly typed
persistent objects, which is made possible by the use of a
Persistent Object System (POS) as the support platform,
permits a new approach to program construction. Hyper-
programming involves storing strongly typed references to
other persistent objects within a source program represen-
tation. Thus the source code entity is represented by a
graph rather than a linear text sequence. By analogy with
hyper-text this is called a hyper-program. It may be con-
sidered as similar to a closure, in that it contains both a
textual program and an environment in which non-locally
declared names may be resolved. The difference is that
now the environment is explicitly constructed by the

Richard Connor & Quintin Cutts
Department of Computing Science
University of Glasgow
Lilybank Gardens, Glasgow G12 8QQ, UK
{richard, quintin} @dcs.glasgow.ac.uk

programmer who specifies persistent objects to be bound
into the hyper-program at construction time.

The support of hyper-program construction techniques
by a POS provides a number of advantages:

* Program succinctness. textual descriptions of the lo-
cations and types of persistent components used may be
replaced by simple embedded references.

e Increased execution efficiency: checking the validity
of specified access paths to other components is factored
out when they are embedded directly in the source pro-
gram. Checking of type consistency may be performed at
compilation time rather than execution time.

* Reliable access to components. where a textual de-
scription of a component is replaced by a direct reference,
the underlying referential integrity of the POS ensures that
the component will always be accessible by the program.
By contrast, where a textual description is used it may be
invalid by the time the program executes, even if it was
valid when the program was constructed.

e Automatic source code retention: the hyper-program
notation may also be used to represent procedure clo-
sures,with encapsulated state. This source representation
can be recorded by the POS when the procedure is created,
and permanently associated with the procedure by
recording areferenceto it in the closure value.

We demonstrate a prototype hyper-programming sys-
tem based on the Napier88 persistent language. At its core
are a hyper-program editor and an object browser. The
programmer uses the browser to locate objects of interest
in the persistent store, and then embeds links to those ob-
jects into the hyper-program under construction. The
editor displays buttons within the program text to denote
the links; when a button is pressed the corresponding ob-
ject is displayed by the object browser. We show how
these techniques may be used to construct and alter persis-
tent applications.

2. Conclusions

The demonstration illustrates the new technique of
hyper-programming which has been made possible by im-
plementing a programming environment entirely within a
POS. Papers on the subject and details of how to obtain the
prototype system are available at:

ht t p: / / ww ppg. dcs. st - andr ews. ac. uk/

