
A Persistent Hyper-Programming System

Graham Kirby, Ron Morrison & Dave Munro
Division of Computer Science

University of St Andrews
North Haugh, Fife KY16 9SS, UK

{graham, ron, dave}@dcs.st-andrews.ac.uk

Richard Connor & Quintin Cutts
Department of Computing Science

University of Glasgow
Lilybank Gardens, Glasgow G12 8QQ, UK

{richard, quintin}@dcs.glasgow.ac.uk

Abstract

We demonstrate the use of a hyper-programming sys-
tem in building persistent applications. This allows pro-
gram representations to contain type-safe links to persis-
tent objects embedded directly within the source code. The
benefits include improved efficiency and potential for
static program checking, reduced programming effort and
the ability to display meaningful source-level representa-
tions for first-class procedure values. Hyper-programming
represents a completely new style of programming which
is only possible in a persistent programming system.

1. Hyper-programming

Persistent programming languages were developed in
an effort to reduce the burden on the application pro-
grammer of organising the transfer of long-term data be-
tween volatile program storage and non-volatile storage.
Previously, application data which was to be retained be-
tween activations had to be written explicitly to a database
or file system, and later read in again to the application
space. The flattening and rebuilding of data structures that
this required involved a significant programming over-
head, and an increased intellectual effort since the pro-
grammer had to keep track of a three way mapping be-
tween program representation, database/file representation
and the real world. The introduction of orthogonally per-
sistent languages meant that any program data could be
made persistent simply by identifying it as such, with all
transfers between memory hierarchy layers handled trans-
parently.

The treatment of source programs as strongly typed
persistent objects, which is made possible by the use of a
Persistent Object System (POS) as the support platform,
permits a new approach to program construction. Hyper-
programming involves storing strongly typed references to
other persistent objects within a source program represen-
tation. Thus the source code entity is represented by a
graph rather than a linear text sequence. By analogy with
hyper-text this is called a hyper-program. It may be con-
sidered as similar to a closure, in that it contains both a
textual program and an environment in which non-locally
declared names may be resolved. The difference is that
now the environment is explicitly constructed by the

programmer who specifies persistent objects to be bound
into the hyper-program at construction time.

The support of hyper-program construction techniques
by a POS provides a number of advantages:
• Program succinctness: textual descriptions of the lo-
cations and types of persistent components used may be
replaced by simple embedded references.
• Increased execution efficiency: checking the validity
of specified access paths to other components is factored
out when they are embedded directly in the source pro-
gram. Checking of type consistency may be performed at
compilation time rather than execution time.
• Reliable access to components: where a textual de-
scription of a component is replaced by a direct reference,
the underlying referential integrity of the POS ensures that
the component will always be accessible by the program.
By contrast, where a textual description is used it may be
invalid by the time the program executes, even if it was
valid when the program was constructed.
• Automatic source code retention: the hyper-program
notation may also be used to represent procedure clo-
sures,with encapsulated state. This source representation
can be recorded by the POS when the procedure is created,
and permanently associated with the procedure by
recording a reference to it in the closure value.

We demonstrate a prototype hyper-programming sys-
tem based on the Napier88 persistent language. At its core
are a hyper-program editor and an object browser. The
programmer uses the browser to locate objects of interest
in the persistent store, and then embeds links to those ob-
jects into the hyper-program under construction. The
editor displays buttons within the program text to denote
the links; when a button is pressed the corresponding ob-
ject is displayed by the object browser. We show how
these techniques may be used to construct and alter persis-
tent applications.

2. Conclusions

The demonstration illustrates the new technique of
hyper-programming which has been made possible by im-
plementing a programming environment entirely within a
POS. Papers on the subject and details of how to obtain the
prototype system are available at:

http://www-ppg.dcs.st-andrews.ac.uk/


