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Abstract 
We describe an approach to modelling a Byzantine-

fault-tolerant distributed algorithm as a family of re-
lated finite state machines, generated from a single 
meta-model. Various artefacts are generated from each 
state machine, including diagrams and source-level 
protocol implementations. The approach allows a state 
machine formulation to be applied to problems for 
which it would not otherwise be suitable, increasing 
confidence in correctness. 

 
 

1. Introduction 

The finite state machine is a widely used abstraction 
for describing and reasoning about distributed algo-
rithms [1]. Here we address the problem of developing 
a finite state machine formulation for an algorithm 
whose generality precludes its expression as a single 
state machine. Instead, the algorithm may be character-
ised as a family of related state machines, each corre-
sponding to particular values of some parameters to the 
general algorithm. Although family members differ in 
their individual states and transitions, they share a 
common structure dictated by the general algorithm. 

Our approach is to develop a meta-model that cap-
tures the common architecture of the family of state 
machines. This can be executed with chosen parameter 
values to generate any particular member of the state 
machine family. The output of the meta-model is a 
state machine representation, from which various con-
crete artefacts may be generated. These include textual 
state machine descriptions, state machine diagrams and 
specialised source-level algorithm implementations. 

We describe this approach via the example of a 
Byzantine-fault-tolerant (BFT) commit algorithm—
originally motivating the work. We think that the tech-
nique could also be applied to development of other 
fault-tolerant protocols, making it directly relevant to 
the area of architecting critical infrastructures. 

2. Background 

The motivation for this work arose during develop-
ment of a particular algorithm within a distributed stor-
age system [2]. The aim of the ASA project is to de-
velop a resilient, logically ubiquitous storage infra-
structure with the following attributes: 

• data can be accessed efficiently and securely from 
any physical location 

• data is stored resiliently 
• an historical record of data is available 

The requirements include the following: 

• it must provide a logical file system that appears 
the same regardless of the physical machine from 
which it is accessed 

• files stored in the file system must be resilient to 
the failure and/or malicious behaviour of individ-
ual machines 

• it must provide a historical record 

The ASA infrastructure provides a single distributed 
abstract file system, which is built on a generic distrib-
uted storage layer. For scalability, this storage layer is 
itself implemented on a peer-to-peer (P2P) key-based 
routing infrastructure. The storage layer provides resil-
ience by replicating data and meta-data on multiple 
P2P nodes, and actively maintaining those replicas as 
nodes fail, misbehave or leave the P2P overlay. 

The aspect of interest here is the commit algorithm 
used to record a new version of a logical data item in 
the distributed storage layer. The algorithm is executed 
by all members of the set of P2P nodes on which that 
data item’s version history is replicated. The member-
ship of this set can change dynamically as the topology 
of the P2P network changes. 

The purpose of the algorithm is to enable the node 
set to agree a global ordering of the (potentially con-
current) updates to the version history of a particular 
data item. The algorithm ensures that the same version 



 

history is stored on each of the replica sites. Hence, a 
subsequent query over the history will yield a consis-
tent response, regardless of which replica site is used. 

The algorithm is also required to be BFT, meaning 
that it operates correctly in the face of faulty behaviour 
exhibited by some subset of the nodes storing the his-
tory replicas. Faulty behaviour may include responding 
slowly, failing completely, or arbitrary malicious ac-
tions. As is well known, the theoretical limit on all 
BFT schemes is that at least 3f+1 participants are 
needed to give tolerance to f failures [3]. Hence for a 
replication factor r, yielding r replicas of each version 
history, the algorithm tolerates at most floor((r-1)/3) 
faulty participants. 

Background processes run to regenerate missing 
replicas and to replace faulty nodes, thus here the limit 
applies to the duration of a particular execution of the 
algorithm, rather than to the lifetime of the system1. 
Additional replicas need to be generated whenever the 
set of nodes storing replicas of a given data item is 
temporarily reduced. This may occur due to fail-stop 
faults, which are straightforwardly detected through 
timeouts, or due to the detection of malicious nodes. 
Such nodes are eventually detected with high probabil-
ity using periodic cross-checks between replica nodes. 

3. General approach 

Initially, we designed a single generic algorithm 
that appeared to meet the requirements outlined in the 
previous section, parameterised by the replication fac-
tor. In an effort to gain greater insight into its opera-
tion, we then developed a finite state machine model 
for a selected replication factor—four, being the sim-
plest scheme to yield a BFT algorithm. Although nei-
ther the algorithm (about 500 lines of pseudo-code) nor 
the state machine (33 states with 3-4 transitions from 
each) were especially complex, they were non-trivial. 
We then faced the problem that there was no strong 
correlation between the code and the state machine. 
Thus even though we were satisfied (informally) that 
the state machine was correct, its creation achieved 
little in terms of building confidence in the algorithm. 

The main reason for the disparity between the state 
machine and the algorithm was that the former was 
specific to a fixed replication factor, while the algo-
rithm was generic. The individual states in the state 
machine correspond to the counts of messages that 
have been sent and received at particular points during 
the algorithm’s execution. The maximum values of 
these counts vary with the replication factor, thus the 
number of states in the machine also varies. By the 
same argument, it is not possible to construct a single 
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state machine that captures the generic algorithm. 
Our goal at this point was to unify the state machine 

model and the generic algorithm, by generalising the 
state machine in some way. The key insight that made 
this possible was to identify how both the state space 
and the state transitions were determined by the repli-
cation factor. The state space was defined straightfor-
wardly by the various combinations of the possible 
message counts, themselves bounded by the replication 
factor. For transitions, the important point was that 
some denoted simple increments in message counts, 
whereas others denoted actions to be performed 
(termed phase transitions). By identifying where in the 
state diagram phase transitions occurred, and relating 
these to the replication factor, it was possible to pro-
duce a generic description defining a family of related 
state machines. We then proceeded as follows: 

• We developed a meta-model that captured the com-
mon structure among the members of the state ma-
chine family. 

• We executed the meta-model with a replication fac-
tor of four to generate an abstract representation of a 
specific state machine, which we then checked for 
consistency with the original state machine. 

• Once satisfied with the correctness of the meta-
model, we developed tools to generate various state 
machine artefacts, including diagrams and source-
level implementations. 

3.1. Generation process 

The overall generation process is illustrated in 
Figure 1. 

 
Figure 1. State machine generation scheme 
The meta-model describes the components of the 

states, the rules for state update on message receipt, 
and the actions to be carried out when particular state 
transitions occur. The meta-model is implemented in 
Java by a class MetaModel. Its constructor takes the 
replication factor as a parameter, thus each instance of 



 

MetaModel is specialised to that replication factor. The 
method generateStateMachine() performs the genera-
tion of the corresponding state machine. This returns 
an abstract state machine representation in the form of 
an instance of class StateMachine. The state machine 
contains a collection of states linked by transitions. 
Both states and transitions may be annotated for docu-
mentation purposes. Transitions also refer to associated 
actions to be performed by the state machine. These 
classes are outlined in Figure 2. 
class MetaModel { 
 MetaModel(int replication_factor) {… 
 StateMachine generateStateMachine(); 
} 
class StateMachine { 
 String[] messages; 
 State[] states; 
 State start_state; 
 State finish_state; 
} 
class State { 
 String state_name; 
 Transition[] transitions; 
 String[] annotations; 
} 
class Transition { 
 State resultant_state; 
 String[] actions; 
 String[] annotations; 
} 

Figure 2. Corresponding Java classes 
Figure 3 shows how a particular state machine may 

be generated and rendered in a textual format. 
MetaModel meta_model_4 = new MetaModel(4); 
StateMachine machine_4 = 
 meta_model.generateStateMachine(); 
 
println(new TextRenderer().render(machine_4)); 

Figure 3. Generating a state machine 

3.2. Defining the meta-model 

In general terms, the meta-model is a model of the 
structure common to all members of the state machine 
family. The steps involved in the generation of a par-
ticular member of the family—an instance of State-
Machine—are as follows: 

1. generate a data structure containing representations 
of all possible states 

2. for each state, generate the transitions resulting 
from all possible messages, and record in the data 
structure 

3. prune any unreachable states 
4. combine any sets of equivalent states 

The final data structure forms the resulting State-
Machine instance. Of these steps, 1, 3 and 4 can be 
performed fairly mechanically, whereas step 2 embod-
ies the core logic of the algorithm. 

3.2.1. Generating possible states. To generate all pos-
sible states, the state space must be defined in terms of 
the problem parameters—in our case, the replication 
factor. The BFT commit algorithm involves five mes-
sages that may be received by a participating node: 

put, vote, commit, free, not free 

In brief, the client sends a put message to each of 
the servers. A vote message is sent by a server to the 
others when it believes that this update should be next 
in the global ordering. A commit message is sent to 
indicate that enough votes have been received to pro-
ceed with the update. The algorithm works by counting 
the messages sent and received, yielding a state com-
prising the union of the following variables: 

boolean put_received, vote_sent, commit_sent 
int votes_received, commits_received 

Two other boolean variables, could_choose and 
has_chosen, are used by the algorithm to track the free 
and not free messages. The upper bound on both 
votes_received and commits_received is one less than 
the number of participants, which itself is given by the 
replication factor. Thus in total there are five boolean 
variables and two integer variables that range from 0 to 
r-1 for replication factor r. Hence the space of possible 
states, containing all combinations of values, has the 
size 25r2. This gives 512 states for the smallest sensible 
value of r=4. The generateStateMachine() operation 
iterates through all of these combinations, generating a 
list of State objects. A simplified example of the data 
structure at this stage is shown in Figure 4. 

 
Figure 4. Data structure after step 1 

3.2.2. Generating transitions. The core of the meta-
model defines the transitions between states. For any 
given state, it determines the effects of each of the pos-
sible messages, in terms of actions performed and the 
resulting state. Given that a transition from one state to 
another represents a change in the variables tracking 
the messages sent and received, a transition can be 



 

categorised as either a simple state transition or a phase 
transition. 

On a simple state transition, the sole effect is to in-
crement one of the received message counts; no action 
is performed. A phase transition occurs when the re-
ceipt of a message causes some threshold to be 
crossed, triggering an action. For example, in the 
commit algorithm, when the total number of votes sent 
and received reaches the number of non-faulty nodes, a 
commit message is sent to all the nodes. 

The second step in the generation of a state machine 
is to iterate over each of the state representations in the 
data structure generated during the first step. For each 
state, the meta-model determines which transitions 
would result from each of the possible messages, if 
received by the running state machine in that state. 
Each transition, along with any corresponding actions, 
is recorded in the state machine data structure. 

Figure 5 shows the operation generateTransi-
tionOnVote(), defined within the meta-model, deter-
mining the transitions from any given state on receipt 
of a vote message2. The control decisions that would be 
taken dynamically in a generic algorithm are here be-
ing taken at generation time. 
generateTransitionOnVote(State s) { 
 initialise state variables from s 
 increment votes_received 
 if total votes >= threshold(r): 
  if !vote_sent: 
   if could_choose: 
    set has_chosen 
    record action: 
     send not free message 
   record action: send vote message 
   set vote_sent 
   unset could_choose,  
  if commit_sent: 
   record action: send commit message 
   set commit_sent 
 derive new state s1 from state variables 
 record transition s->s1 in data structure 
} 

Figure 5. Meta-model for vote message 
Figure 6 shows the data structure after representa-

tions of the state transitions have been generated. 

3.2.3. Pruning unreachable states. Once the complete 
transition graph has been generated, a reachability 
analysis is performed. Depending on the application, 
there may exist states that could never be reached via 
transitions from the start state. For example, the com-
mit algorithm completes as soon as f+1 commit mes-
sages have been received, thus there are no reachable 
states where the commit count exceeds f. For simplic-
ity, such states are removed from the generated model. 
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ing the states and the rationale for each transition. 

With a replication factor of 4, this step reduces the 
state space from its initial size of 512 to 48. 

 
Figure 6. Data structure after step 2 

Figure 7 illustrates the result of pruning. 

 
Figure 7. Data structure after step 3 

3.2.4. Combining equivalent states. The generated 
state machine may be further simplified by identifying 
and combining sets of states that are equivalent, in the 
sense that the outgoing transitions from each perform 
the same actions and lead to the same destination state. 
Since this step may result in further states becoming 
unreachable, the previous step and this one are re-
peated alternately until no further reduction in the state 
space occurs. With a replication factor of 4, this proc-
ess eventually results in 33 states. Figure 8 illustrates 
the result of this step. 

3.3. State machine artefacts 

The abstract representation of a state machine gen-
erated by the meta-model can be rendered to yield vari-
ous concrete artefacts, including: 

• a simple textual representation 
• a state transition diagram 
• source code for an implementation of the corre-

sponding protocol 



 

 
Figure 8. Data structure after step 4 

Figure 9 shows the textual representation of a par-
ticular state and its outgoing transitions. The name of 
the state encodes the variable values (put_received, 
votes_sent etc) in that state. Note that the commentary 
describing the state in terms of the generic algorithm 
has been entirely automatically generated. 
state: T/2/F/0/F/F/F 
 
Have received initial put from client. Have not 
voted since another update has already been voted 
for. Have received 2 votes and no commits. Have not 
sent a commit since neither the vote threshold (3) 
nor the external commit threshold (2) has been 
reached. May not choose since another ongoing update 
has been voted for. Have not chosen this update 
since another ongoing update has been chosen. Wait-
ing for 1 further vote (including local vote if any) 
before sending commit. Waiting for 2 further exter-
nal commits to finish. 
 
Transitions: 
 
 message: VOTE 
  action: send vote message 
  action: send commit message 
  transition to: T/3/T/0/T/F/F 
 
 message: COMMIT 
  transition to: T/2/F/1/F/F/F 
 
 message: FREE 
  action: send vote message 
  action: send commit message 
  action: send not free message 
  transition to: T/2/T/0/T/T/T 

Figure 9. Example generated state description 
A state machine may be rendered as a state diagram 

by generating an XML diagram representation that can 
be imported into a diagramming tool (in this case, To-
gether [4]). An example is available online at the ad-
dress given previously. 

Figure 10 shows a fragment of generated code, deal-
ing with the receipt of a vote message. Each state is 
represented by a generated variable of the form S-F-0-
F-0-F-F-F. Although the structure embodied in the 
generated code is equivalent to that shown in Figure 9, 

its organisation differs in that all possible states are 
grouped under each message, rather than vice-versa. 
void receiveVote() { 
 
  switch (getState()) { 
    
    case (S-F-0-F-0-F-F-F) : { 
      setState(S-F-1-F-0-F-F-F); 
    } 
   
    case (S-F-0-F-0-F-F-T) : { 
      setState(S-F-1-F-0-F-F-F); 
    } 
    ...  
    case (S-T-1-T-1-F-T-T) : { 
      sendCommit(); 
      setState(S-T-2-T-1-T-T-T); 
    } 
    ... 
} 

Figure 10. Example generated source code 
Commentary on states and transitions, as illustrated 

in Figure 9, is also included in the generated code. 

4. Use in practice 

We have incorporated the meta-model for the dis-
tributed commit algorithm into the ASA infrastructure. 
Since the replication factor is expected to change only 
rarely, we executed the meta-model with the default 
replication factor, generated source code from the re-
sulting state machine, and copied that into the code-
base. The benefit of this approach is that the imple-
mentation is tightly coupled with its state machine de-
scription, giving us confidence in its correctness. 

Should we wish in future to support dynamic 
change to the replication factor, this may be achieved 
by dynamically generating implementations, compiling 
them and loading the resulting classes [5]. So long as 
new replication factors are not presented at high fre-
quency, this approach is quite feasible; Table 1 shows 
approximate wall-clock times taken to generate state 
machines of various complexities on an Apple 
MacBook Pro (3GB, 2.33GHz Intel Core 2 Duo). 

Table 1. Times to generate state machines 
f r initial 

states 
final 
states 

generation 
time (s) 

1 4 512 33 0.10 
2 7 1568 85 0.12 
4 13 5408 261 0.38 
8 25 20000 901 2.2 
15 46 67712 2945 19.1 

Since completing the meta-modelling process for 
the ASA distributed commit algorithm we have refined 
the infrastructure to make it applicable to other prob-
lems. As steps 1, 3 and 4 described in section 3.2 are 



 

largely independent of the details of the algorithm, the 
implementation of these steps was separated into an 
abstract superclass, from which problem-specific meta-
models can be derived. Rather than containing hard-
wired definitions of the state components and mes-
sages, these are now represented by a data structure 
with which the generic meta-model is initialised. 
Figure 11 shows how the original meta-model is now 
configured. Each instance of IntComponent defines the 
maximum value of the corresponding state component. 
StateComponent[] state_components = { 
 new IntComponent("votes_received", 
  replication_factor - 1), 
 new IntComponent("commits_received", 
  replication_factor - 1), 
 new BooleanComponent("put_received"), 
 new BooleanComponent("vote_sent"), 
 new BooleanComponent("commit_sent"), 
 new BooleanComponent("could_choose"), 
 new BooleanComponent("has_chosen")}; 
   
String[] messages = {"put", "vote", 
 "commit", "free", "not_free"}; 
   
initMetaModel(state_components, messages); 

Figure 11. Initialising generic meta-model 

5. Related work 

This work is obviously strongly related to the exten-
sive literature on finite state machines, for example [1, 
6]. Traditionally, state machines are used to model 
computations with fixed numbers of states, whereas 
our generative approach allows greater flexibility. 

Architectural style languages [7, 8] allow families 
of related systems to be characterised in terms of their 
shared high level system structure, and specialised to 
produce particular instances. The work described here 
is less general since it focuses explicitly on the state 
machine paradigm; the generic meta-model could be 
thought of as one particular architectural style. 

We have previously used generative techniques to 
build generic object browsers [9] and to support highly 
generic strongly typed code [5]. 

An alternative strategy is to apply formal specifica-
tion and verification techniques to fault-tolerant algo-
rithms. For example, in [10] a protocol is specified as 
logical assertions and verified using an interactive 
proof checker. In [11] an extended actor algebra is 
used to specify fault-tolerant software architectures. 
These approaches offer the possibility of formal 
proofs, whereas here we intend to provide a less formal 
aid to understanding, at significantly lower cost. 

6. Conclusions 

We have outlined an approach to generating a fam-
ily of related state machines and corresponding proto-

col implementations from a unifying meta-model. In 
the ASA project this has allowed us to produce a state 
machine style description of our original BFT distrib-
uted commit algorithm. This has increased our confi-
dence in the correctness of the algorithm; indeed sev-
eral errors in the original version were identified dur-
ing the process. We are currently investigating possi-
bilities for performing more rigorous checking on the 
state machine formulation. 

Although we have applied this approach to a spe-
cific BFT distributed algorithm, the approach should 
be applicable to other critical infrastructure problems 
involving protocols where the number of states is de-
pendent on a set of parameters. 
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