Generating a Family of Byzantine-Fault-Tolerant Protocol Implementations
Using a Meta-Model Architecture

Graham NC Kirby, Alan Dearle & Stuart J Norcross
School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, Scotland
{graham, al, stuart}@cs.st-andrews.ac.uk

Abstract

We describe an approach to modelling a Byzantine-
fault-tolerant distributed algorithm as a family of re-
lated finite state machines, generated from a single
meta-model. Various artefacts are generated from each
state machine, including diagrams and source-level
protocol implementations. The approach allows a state
machine formulation to be applied to problems for
which it would not otherwise be suitable, increasing
confidence in correctness.

1. Introduction

The finite state machine is a widely used abstraction
for describing and reasoning about distributed algo-
rithms [1]. Here we address the problem of developing
a finite state machine formulation for an algorithm
whose generality precludes its expression as a single
state machine. Instead, the algorithm may be character-
ised as a family of related state machines, each corre-
sponding to particular values of some parameters to the
general algorithm. Although family members differ in
their individual states and transitions, they share a
common structure dictated by the general algorithm.

Our approach is to develop a meta-model that cap-
tures the common architecture of the family of state
machines. This can be executed with chosen parameter
values to generate any particular member of the state
machine family. The output of the meta-model is a
state machine representation, from which various con-
crete artefacts may be generated. These include textual
state machine descriptions, state machine diagrams and
specialised source-level algorithm implementations.

We describe this approach via the example of a
Byzantine-fault-tolerant (BFT) commit algorithm—
originally motivating the work. We think that the tech-
nique could also be applied to development of other
fault-tolerant protocols, making it directly relevant to
the area of architecting critical infrastructures.

2. Background

The motivation for this work arose during develop-
ment of a particular algorithm within a distributed stor-
age system [2]. The aim of the ASA project is to de-
velop a resilient, logically ubiquitous storage infra-
structure with the following attributes:

e data can be accessed efficiently and securely from
any physical location

data is stored resiliently

an historical record of data is available

The requirements include the following:

e it must provide a logical file system that appears
the same regardless of the physical machine from
which it is accessed

e files stored in the file system must be resilient to
the failure and/or malicious behaviour of individ-
ual machines

e it must provide a historical record

The ASA infrastructure provides a single distributed
abstract file system, which is built on a generic distrib-
uted storage layer. For scalability, this storage layer is
itself implemented on a peer-to-peer (P2P) key-based
routing infrastructure. The storage layer provides resil-
ience by replicating data and meta-data on multiple
P2P nodes, and actively maintaining those replicas as
nodes fail, misbehave or leave the P2P overlay.

The aspect of interest here is the commit algorithm
used to record a new version of a logical data item in
the distributed storage layer. The algorithm is executed
by all members of the set of P2P nodes on which that
data item’s version history is replicated. The member-
ship of this set can change dynamically as the topology
of the P2P network changes.

The purpose of the algorithm is to enable the node
set to agree a global ordering of the (potentially con-
current) updates to the version history of a particular
data item. The algorithm ensures that the same version

history is stored on each of the replica sites. Hence, a
subsequent query over the history will yield a consis-
tent response, regardless of which replica site is used.

The algorithm is also required to be BFT, meaning
that it operates correctly in the face of faulty behaviour
exhibited by some subset of the nodes storing the his-
tory replicas. Faulty behaviour may include responding
slowly, failing completely, or arbitrary malicious ac-
tions. As is well known, the theoretical limit on all
BFT schemes is that at least 3f+/ participants are
needed to give tolerance to f failures [3]. Hence for a
replication factor r, yielding r replicas of each version
history, the algorithm tolerates at most floor((r-1)/3)
faulty participants.

Background processes run to regenerate missing
replicas and to replace faulty nodes, thus here the limit
applies to the duration of a particular execution of the
algorithm, rather than to the lifetime of the system'.
Additional replicas need to be generated whenever the
set of nodes storing replicas of a given data item is
temporarily reduced. This may occur due to fail-stop
faults, which are straightforwardly detected through
timeouts, or due to the detection of malicious nodes.
Such nodes are eventually detected with high probabil-
ity using periodic cross-checks between replica nodes.

3. General approach

Initially, we designed a single generic algorithm
that appeared to meet the requirements outlined in the
previous section, parameterised by the replication fac-
tor. In an effort to gain greater insight into its opera-
tion, we then developed a finite state machine model
for a selected replication factor—four, being the sim-
plest scheme to yield a BFT algorithm. Although nei-
ther the algorithm (about 500 lines of pseudo-code) nor
the state machine (33 states with 3-4 transitions from
each) were especially complex, they were non-trivial.
We then faced the problem that there was no strong
correlation between the code and the state machine.
Thus even though we were satisfied (informally) that
the state machine was correct, its creation achieved
little in terms of building confidence in the algorithm.

The main reason for the disparity between the state
machine and the algorithm was that the former was
specific to a fixed replication factor, while the algo-
rithm was generic. The individual states in the state
machine correspond to the counts of messages that
have been sent and received at particular points during
the algorithm’s execution. The maximum values of
these counts vary with the replication factor, thus the
number of states in the machine also varies. By the
same argument, it is not possible to construct a single

! Details are available at http://asa.cs.st-andrews.ac.uk/metamodel/.

state machine that captures the generic algorithm.

Our goal at this point was to unify the state machine
model and the generic algorithm, by generalising the
state machine in some way. The key insight that made
this possible was to identify how both the state space
and the state transitions were determined by the repli-
cation factor. The state space was defined straightfor-
wardly by the various combinations of the possible
message counts, themselves bounded by the replication
factor. For transitions, the important point was that
some denoted simple increments in message counts,
whereas others denoted actions to be performed
(termed phase transitions). By identifying where in the
state diagram phase transitions occurred, and relating
these to the replication factor, it was possible to pro-
duce a generic description defining a family of related
state machines. We then proceeded as follows:

e We developed a meta-model that captured the com-
mon structure among the members of the state ma-
chine family.

e We executed the meta-model with a replication fac-
tor of four to generate an abstract representation of a
specific state machine, which we then checked for
consistency with the original state machine.

e Once satisfied with the correctness of the meta-
model, we developed tools to generate various state
machine artefacts, including diagrams and source-
level implementations.

3.1. Generation process

The overall generation process is illustrated in
Figure 1.

problem parz«(neters
instantiate

Meta Model
Instance

generate

State Machine
Instance

I"

generate

Description Diagram Implementation

Textual J { State } { Source-Level J {Documentation

Figure 1. State machine generation scheme

The meta-model describes the components of the
states, the rules for state update on message receipt,
and the actions to be carried out when particular state
transitions occur. The meta-model is implemented in
Java by a class MetaModel. Its constructor takes the
replication factor as a parameter, thus each instance of

MetaModel is specialised to that replication factor. The
method generateStateMachine() performs the genera-
tion of the corresponding state machine. This returns
an abstract state machine representation in the form of
an instance of class StateMachine. The state machine
contains a collection of states linked by transitions.
Both states and transitions may be annotated for docu-
mentation purposes. Transitions also refer to associated
actions to be performed by the state machine. These
classes are outlined in Figure 2.

class MetaModel {
MetaModel (int replication_factor) {..
StateMachine generateStateMachine();
}
class StateMachine {
String[] messages;
State[] states;
State start_state;
State finish_ state;
}
class State {
String state_name;
Transition[] transitions;
String[] annotations;
}
class Transition {
State resultant_state;
String[] actions;
String[] annotations;

Figure 2. Corresponding Java classes

Figure 3 shows how a particular state machine may
be generated and rendered in a textual format.

MetaModel meta_model 4
StateMachine machine 4
meta_model.generateStateMachine();

= new MetaModel (4);

println(new TextRenderer () .render (machine 4));

Figure 3. Generating a state machine
3.2. Defining the meta-model

In general terms, the meta-model is a model of the
structure common to all members of the state machine
family. The steps involved in the generation of a par-
ticular member of the family—an instance of State-
Machine—are as follows:

1. generate a data structure containing representations
of all possible states
2. for each state, generate the transitions resulting
from all possible messages, and record in the data
structure
. prune any unreachable states
4. combine any sets of equivalent states

W

The final data structure forms the resulting State-
Machine instance. Of these steps, /, 3 and 4 can be
performed fairly mechanically, whereas step 2 embod-
ies the core logic of the algorithm.

3.2.1. Generating possible states. To generate all pos-
sible states, the state space must be defined in terms of
the problem parameters—in our case, the replication
factor. The BFT commit algorithm involves five mes-
sages that may be received by a participating node:

put, vote, commit, free, not free

In brief, the client sends a put message to each of
the servers. A vofe message is sent by a server to the
others when it believes that this update should be next
in the global ordering. A commit message is sent to
indicate that enough votes have been received to pro-
ceed with the update. The algorithm works by counting
the messages sent and received, yielding a state com-
prising the union of the following variables:

boolean put received, vote_sent, commit_sent
int votes_received, commits_received

Two other boolean variables, could choose and
has_chosen, are used by the algorithm to track the free
and not free messages. The upper bound on both
votes_received and commits_received is one less than
the number of participants, which itself is given by the
replication factor. Thus in total there are five boolean
variables and two integer variables that range from 0 to
r-1 for replication factor ». Hence the space of possible
states, containing all combinations of values, has the
size 2°/%. This gives 512 states for the smallest sensible
value of r=4. The generateStateMachine() operation
iterates through all of these combinations, generating a
list of State objects. A simplified example of the data
structure at this stage is shown in Figure 4.

states - ,Q

start L--~

state
O

finish
state | |77 *O

Figure 4. Data structure after step 1

3.2.2. Generating transitions. The core of the meta-
model defines the transitions between states. For any
given state, it determines the effects of each of the pos-
sible messages, in terms of actions performed and the
resulting state. Given that a transition from one state to
another represents a change in the variables tracking
the messages sent and received, a transition can be

categorised as either a simple state transition or a phase
transition.

On a simple state transition, the sole effect is to in-
crement one of the received message counts; no action
is performed. A phase transition occurs when the re-
ceipt of a message causes some threshold to be
crossed, triggering an action. For example, in the
commit algorithm, when the total number of votes sent
and received reaches the number of non-faulty nodes, a
commit message is sent to all the nodes.

The second step in the generation of a state machine
is to iterate over each of the state representations in the
data structure generated during the first step. For each
state, the meta-model determines which transitions
would result from each of the possible messages, if
received by the running state machine in that state.
Each transition, along with any corresponding actions,
is recorded in the state machine data structure.

Figure 5 shows the operation generateTransi-
tionOnVote(), defined within the meta-model, deter-
mining the transitions from any given state on receipt
of a vote message”. The control decisions that would be
taken dynamically in a generic algorithm are here be-
ing taken at generation time.

generateTransitionOnVote (State s) {
initialise state variables from s
increment votes received
if total votes >= threshold(r):
if !vote sent:
if could choose:
set has chosen
record action:
send not free message
record action: send vote message
set vote sent
unset could choose,
if commit sent:
record action: send commit message
set commit_ sent
derive new state sl from state variables
record transition s->sl1 in data structure

Figure 5. Meta-model for vote message

Figure 6 shows the data structure after representa-
tions of the state transitions have been generated.

3.2.3. Pruning unreachable states. Once the complete
transition graph has been generated, a reachability
analysis is performed. Depending on the application,
there may exist states that could never be reached via
transitions from the start state. For example, the com-
mit algorithm completes as soon as f+1 commit mes-
sages have been received, thus there are no reachable
states where the commit count exceeds f. For simplic-
ity, such states are removed from the generated model.

2 s . . .
Similar logic in the meta-model generates documentation describ-
ing the states and the rationale for each transition.

With a replication factor of 4, this step reduces the
state space from its initial size of 512 to 48.

states

start L--~
state

finish
state

Figure 6. Data structure after step 2

Figure 7 illustrates the result of pruning.

states

start L--
state

finish
state

Figure 7. Data structure after step 3

3.2.4. Combining equivalent states. The generated
state machine may be further simplified by identifying
and combining sets of states that are equivalent, in the
sense that the outgoing transitions from each perform
the same actions and lead to the same destination state.
Since this step may result in further states becoming
unreachable, the previous step and this one are re-
peated alternately until no further reduction in the state
space occurs. With a replication factor of 4, this proc-
ess eventually results in 33 states. Figure 8 illustrates
the result of this step.

3.3. State machine artefacts

The abstract representation of a state machine gen-
erated by the meta-model can be rendered to yield vari-
ous concrete artefacts, including:

e asimple textual representation

e astate transition diagram

e source code for an implementation of the corre-
sponding protocol

start L--"
state

finish
state

Figure 8. Data structure after step 4

Figure 9 shows the textual representation of a par-
ticular state and its outgoing transitions. The name of
the state encodes the variable values (put received,
votes_sent etc) in that state. Note that the commentary
describing the state in terms of the generic algorithm
has been entirely automatically generated.

its organisation differs in that all possible states are
grouped under each message, rather than vice-versa.

void receiveVote () {
switch (getState()) {
case (S-F-0-F-0-F-F-F) : {

setState (S-F-1-F-0-F-F-F) ;
}

case (S-F-0-F-0-F-F-T) : {
setState (S-F-1-F-0-F-F-F) ;
}

case (S-T-1-T-1-F-T-T) : {
sendCommit () ;
setState (S-T-2-T-1-T-T-T) ;
}

state: T/2/F/0/F/F/F

Have received initial put from client. Have not
voted since another update has already been voted
for. Have received 2 votes and no commits. Have not
sent a commit since neither the vote threshold (3
nor the external commit threshold (2) has been
reached. May not choose since another ongoing update
has been voted for. Have not chosen this update
since another ongoing update has been chosen. Wait-
ing for 1 further vote (including local vote if any)
before sending commit. Waiting for 2 further exter-
nal commits to finish.

Transitions:

message: VOTE
action: send vote message
action: send commit message
transition to: T/3/T/0/T/F/F

message: COMMIT
transition to: T/2/F/1/F/F/F

message: FREE
action: send vote message
action: send commit message
action: send not free message
transition to: T/2/T/0/T/T/T

Figure 9. Example generated state description

A state machine may be rendered as a state diagram
by generating an XML diagram representation that can
be imported into a diagramming tool (in this case, To-
gether [4]). An example is available online at the ad-
dress given previously.

Figure 10 shows a fragment of generated code, deal-
ing with the receipt of a vofe message. Each state is
represented by a generated variable of the form S-F-0-
F-0-F-F-F. Although the structure embodied in the
generated code is equivalent to that shown in Figure 9,

Figure 10. Example generated source code

Commentary on states and transitions, as illustrated
in Figure 9, is also included in the generated code.

4. Use in practice

We have incorporated the meta-model for the dis-
tributed commit algorithm into the ASA infrastructure.
Since the replication factor is expected to change only
rarely, we executed the meta-model with the default
replication factor, generated source code from the re-
sulting state machine, and copied that into the code-
base. The benefit of this approach is that the imple-
mentation is tightly coupled with its state machine de-
scription, giving us confidence in its correctness.

Should we wish in future to support dynamic
change to the replication factor, this may be achieved
by dynamically generating implementations, compiling
them and loading the resulting classes [5]. So long as
new replication factors are not presented at high fre-
quency, this approach is quite feasible; Table 1 shows
approximate wall-clock times taken to generate state
machines of various complexities on an Apple
MacBook Pro (3GB, 2.33GHz Intel Core 2 Duo).

Table 1. Times to generate state machines

f r initial final | generation
states states time (s)
1 4 512 33 0.10
2 7 1568 85 0.12
4 13 5408 261 0.38
8 | 25 20000 901 2.2
15| 46 67712 2945 19.1

Since completing the meta-modelling process for
the ASA distributed commit algorithm we have refined
the infrastructure to make it applicable to other prob-
lems. As steps 1, 3 and 4 described in section 3.2 are

largely independent of the details of the algorithm, the
implementation of these steps was separated into an
abstract superclass, from which problem-specific meta-
models can be derived. Rather than containing hard-
wired definitions of the state components and mes-
sages, these are now represented by a data structure
with which the generic meta-model is initialised.
Figure 11 shows how the original meta-model is now
configured. Each instance of IntComponent defines the
maximum value of the corresponding state component.

StateComponent [] state_components = {
new IntComponent("votes_received",
replication_factor - 1),
new IntComponent ("commits_ received",

replication_factor - 1),
new BooleanComponent("put_received"),
new BooleanComponent ("vote_sent"),
new BooleanComponent("commit_sent"),
new BooleanComponent ("could choose"),
new BooleanComponent ("has_chosen") };

String[] messages = {"put", "vote",
"commit", "free", "not_free"};

initMetaModel(state_components, messages) ;

Figure 11. Initialising generic meta-model
5. Related work

This work is obviously strongly related to the exten-
sive literature on finite state machines, for example [1,
6]. Traditionally, state machines are used to model
computations with fixed numbers of states, whereas
our generative approach allows greater flexibility.

Architectural style languages [7, 8] allow families
of related systems to be characterised in terms of their
shared high level system structure, and specialised to
produce particular instances. The work described here
is less general since it focuses explicitly on the state
machine paradigm; the generic meta-model could be
thought of as one particular architectural style.

We have previously used generative techniques to
build generic object browsers [9] and to support highly
generic strongly typed code [5].

An alternative strategy is to apply formal specifica-
tion and verification techniques to fault-tolerant algo-
rithms. For example, in [10] a protocol is specified as
logical assertions and verified using an interactive
proof checker. In [11] an extended actor algebra is
used to specify fault-tolerant software architectures.
These approaches offer the possibility of formal
proofs, whereas here we intend to provide a less formal
aid to understanding, at significantly lower cost.

6. Conclusions

We have outlined an approach to generating a fam-
ily of related state machines and corresponding proto-

col implementations from a unifying meta-model. In
the ASA project this has allowed us to produce a state
machine style description of our original BFT distrib-
uted commit algorithm. This has increased our confi-
dence in the correctness of the algorithm; indeed sev-
eral errors in the original version were identified dur-
ing the process. We are currently investigating possi-
bilities for performing more rigorous checking on the
state machine formulation.

Although we have applied this approach to a spe-
cific BFT distributed algorithm, the approach should
be applicable to other critical infrastructure problems
involving protocols where the number of states is de-
pendent on a set of parameters.

7. Acknowledgments

This work was supported by EPSRC grant
GR/S44501/01 and by a Royal Society of Edinburgh /
Scottish Executive Support Research Fellowship. Mar-
kus Tauber and Rob Maclnnis contributed to the de-
velopment of the distributed commit algorithm.

8. References

[11 L. M. Minsky, Computation: Finite and Infinite Ma-
chines: Prentice Hall, 1967.

[2] G.N.C.Kirby, A. Dearle, S. J. Norcross, M. Tauber,
and R. Morrison, “Secure Location-Independent Stor-
age Architectures (ASA)”, 2004 http://www-
systems.dcs.st-and.ac.uk/asa/

[3] L.Lamport, R. Shostak, and M. Pease, “The Byzantine
Generals Problem”, ACM ToPLaS, vol. 4 no. 3, pp.
382-401, 1982.

[4] “Borland Together”, 2007 http://www.borland.com/

[51 G.N.C.Kirby, R. Morrison, and D. W. Stemple, “Lin-
guistic Reflection in Java”, Software - Practice & Ex-
perience, vol. 28 no. 10, pp. 1045-1077, 1998.

[6] D.Brand and P. Zafiropulo, “On Communicating Fi-
nite-State Machines”, Journal of the ACM, vol. 30 no.
2, pp. 323-342, 1983.

[71 D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting
Style in Architectural Design Environments”, Proc. 2nd
SIGSOFT Symposium on Foundations of Software En-
gineering, New Orleans, USA, pp. 175-188, 1994.

[8] N.Medvidovic and R. N. Taylor, “A Classification and
Comparison Framework for Software Architecture De-
scription Languages”, IEEE Transactions on Software
Engineering, vol. 26 no. 1, pp. 70-93, 2000.

[91 A.Dearle and A. L. Brown, “Safe Browsing in a
Strongly Typed Persistent Environment”, Computer
Journal, vol. 31 no. 6, pp. 540-544, 1988.

[10] J. Hooman, “Verification of Distributed Real-Time and
Fault-Tolerant Protocols”, in Lecture Notes in Com-
puter Science 1349, Springer, pp. 261-275, 1997.

[11] N. Dragoni and M. Gaspari, “An Object Based Algebra
for Specifying a Fault Tolerant Software Architecture”,
Journal of Logic and Algebraic Programming, vol. 63,
pp. 271-297, 2005.

