
This paper should be referenced as:

Kirby, G.N.C., Connor, R.C.H. & Morrison, R. “START: A Linguistic Reflection
Tool Using Hyper-Program Technology”. In Proc. 6th International Workshop on
Persistent Object Systems, Tarascon, France (1994) pp 346-365.

START: A Linguistic Reflection Tool Using
Hyper-Program Technology

G.N.C. Kirby, R.C.H. Connor and R. Morrison

Division of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SS, Scotland

Abstract

The mechanism of linguistic reflection allows a programming system to
generate new program fragments and incorporate them into the system.
Although this ability has important applications in persistent systems, its
use has been limited by the difficulty of writing reflective programs.
This paper analyses the reasons for this difficulty and describes START,
a hyper-text based tool for reflection which has been implemented in the
Napier88 hyper-programming environment.

START supports the definition of structured program generators
which may contain embedded direct links to other generators and to
values, locations and types extant in the persistent environment. The
benefits are greater ease of understanding through a clean separation of
generator components, and a safer and more efficient mechanism for
communication between generator and generated code.

1 Introduction

Linguistic reflection gives a programming system the ability to generate new pro-
gram fragments and incorporate them into the ongoing computation. This has sev-
eral applications in a persistent environment including supporting safe evolution of
long-lived programs and data, and specifying highly generic programs that may be
reused in many contexts. In strongly typed systems the linguistic reflection process
includes checking of the generated program fragments to ensure type safety.

The details of linguistic reflection have been described by a number of authors
[1-11] . A short overview of the technique and its applications in persistent systems
will be given in order to motivate the main part of the paper, which analyses the
problems involved in writing reflective generator programs and describes START
(St Andrews Reflection Tool), a tool which aids in this process. One feature of
START is its hyper-text user interface which allows conceptually different parts of
a generator definition to be distinguished easily. The other main feature is the use
of hyper-program representations [8, 12] to provide an additional binding mecha-
nism. This gives increased safety and efficiency, and avoids the need to flatten type
representations to textual form.

Forms of linguistic reflection are provided in Lisp [13] , Scheme [14] and POP-2
[15] . This paper, however, will consider only strongly typed languages, relevant

examples of which include PS-algol [16] , Napier88 [17] and TRPL [18] . Linguistic
reflection in these languages involves the execution of generator procedures which
produce as their results representations of program fragments in the corresponding
language. These program fragments are incorporated into the application after the
appropriate validity checks.

Two varieties of type-safe linguistic reflection can be identified; these vary as to
the time at which generator execution takes place. With compile time linguistic
reflection, supported in TRPL, the generators are evaluated during the course of
program compilation and the new code produced is incorporated into the program
being compiled. This technique could be viewed as a sophisticated form of macro
expansion, where the language used to evaluate the macro is the same as the pro-
gramming language itself. With run time linguistic reflection, supported in PS-algol
and Napier88, the generators are evaluated during program execution and the new
code produced is compiled and executed in the same context. Both forms of lin-
guistic reflection have the effect of blurring the distinction between compile time
and run time.

One application of linguistic reflection is in supporting evolution in strongly
typed persistent systems. The inevitable changes to meta-data in long-lived systems
give rise to the problem of consistently changing all the affected programs and data.
Given some mechanism for locating the relevant programs and data, linguistic
reflection can be used to introduce transformed versions in a controlled manner.
One approach to limited automation of this process is described in [19].

Another application is in providing highly generic programs. The reuse of exist-
ing software reduces development and maintenance costs; the more generic, or
widely applicable, a software component is, the more likely it will be reused.
Polymorphism [20, 21] is one powerful mechanism for genericity. There exist,
however, some generic computations which are hard or impossible to express using
parametric or inclusion polymorphism. The difficulty lies in the fact that the course
of such a computation depends on details of the types of the input parameters, while
parametric and inclusion polymorphism by their nature abstract such details away.
A well used example is that of a strongly typed natural join function [22, 23], where
the algorithm and the type of the result relation depend on the types of the input
relations. This can be implemented using linguistic reflection, by defining a genera-
tor procedure which accepts representations of the types of the relations to be joined
and generates the representation of a procedure to perform the join for those types.

Thus linguistic reflection provides a rich form of ad-hoc polymorphism [24, 25],
with which generic yet type-dependent operators can be defined over wide ranges of
types [1, 3, 23]. This mechanism has some similarities with that of 4GL systems,
where generic application descriptions are automatically tailored to specific
instances. In this case the structure of the type system and the language defines the
primitives over which the generators are written.. It is somewhat ironic that the type
system itself, which is often seen as restricting the expressibility of the language,
can be used as the basis of very flexible and high level generation mechanisms. The
technique is particularly suited to persistent systems since the persistent environ-
ment may be used as a cache to store executable versions of generated procedures.

This means that the generator need not be executed more than once for given
parameters.

The next section discusses the problems encountered in writing reflective
generator procedures for uses such as those outlined above. The remainder of the
paper then introduces START, a generator editing tool which combines a hyper-text
interface with hyper-program technology in an effort to tackle some of these
problems.

2 Reflective Generators

This section examines the structure and role of the generator in the reflection
process.

2.1 The Reflection Process

The process of linguistic reflection has been characterised in [10] as follows:
Programs in a language L manipulate a domain of values Val. This domain

differs between languages. Examples of Val include numbers, character strings,
final machine states, the state of a persistent object store, and the set of bindings of
variables produced by the end of a program’s execution.

For linguistic reflection to occur, there must be a subset of Val , called ValL, that
can be mapped into L. Since ValL is a subset of Val that may be translated into the
language L it may be thought of as a representation of L. In the known implemen-
tations of linguistic reflection ValL is the set of character strings containing syntac-
tically correct expressions in the cases of PS-algol and Napier88, and the set of valid
parse trees in the case of TRPL.

A subset of L consisting of those language constructs that cause reflective com-
putation is denoted by LR. LR is called the reflective sub-language. An evaluation
of an expression in L R invokes a generator, a program that produces another
program. Generators are written in a subset of the language L denoted by L Gen .
LGen may include all of L but the programs written in LGen must produce results in
ValL. Linguistic reflection thus involves the following steps during evaluation of a
program in L:

• a construct in LR is encountered;
• this causes a generator, written in LGen , to be evaluated;
• the result, a value in ValL, represents a new construct in L;
• the new construct is checked and, if valid, executed.

Note that this description does not specify whether the generator evaluation takes
place during compilation or execution, and is valid for either case.

2.2 Generator Structure

Each generator contains a result expression that when evaluated produces the gen-
erated program fragment. The code in this expression itself represents code, thus it

belongs to the subset of L containing sentences that, when evaluated, produce values
in ValL. This subset will be denoted by LL. The set LL can be partitioned into two
subsets, LLConst

 and L LVar
. The former, L LConst

, contains those sentences that

produce the same values in ValL for all executions, while the latter, LLVar
, contains

sentences that may evaluate to different values on different executions. This is illus-
trated in Figure 1:

L

LL

LLVar
LLConst

Figure 1: Subset relationships between code categories

Some examples of sentences in these sets are shown below for a language in which
members of ValL are strings, makeCode() denotes a call to a generator makeCode ,
and ++ denotes concatenation:

a := a + 1 ∈ L

"a := a + 1" ∈ LLConst
makeCode() ∈ LLVar
"a := " ++ makeCode() ∈ LLVar

Note that the last example is itself a composition of two code fragments, one a

member of LLConst
 and the other a member of LLVar

. In general a generator body

contains a section of code in L, here termed the prelude, followed by a section of

code in LLVar
 that defines the resulting generated fragment, here termed the result

definition. This is illustrated in Figure 2. The purpose of the prelude is to set up an

environment in which the result definition is evaluated.

parameters

prelude ∈ L

result definition ∈ LL

generator definition

some components ∈ LLConst

other components ∈ LLVar

Figure 2: Structure of a generator

In simple cases the generator body may contain only the result definition, and that

code may lie in L LConst
 rather than L LVar

. In the general case the execution of a

generator involves the evaluation of the prelude and those parts of the result defini-

tion that lie in LLVar
, i.e., the variable parts. The parts in LLConst

 do not need to be

evaluated as they are constant over all executions of the generator. Typically the

evaluation of the prelude affects the program fragments produced in the result defi-

nition. The result of the generator is obtained by composing the newly created

fragments with the constant parts of the result definition.

2.3 An Example of a Generator

The next section will identify some of the problems involved in programming
generators. This section concentrates on an example written in Napier88. Lack of
space prevents comparison with other languages and notations. Rather than use a
complete but trivial example, the main part of a generator for the (non-trivial) natu-
ral join problem is shown in Figure 3. To save space, various auxiliary procedure
definitions are omitted. The form of the generator is a procedure which takes as
parameters the representations of two structure types. These define the types of the
relations to be joined: each relation is modelled as a set of structures. The output of
the generator is the representation of a procedure to perform natural join over pairs
of rela tions of these types.

The generator procedure, defineJoin , takes as parameters the type representa-
tions type1 and type2 , and returns a code representation as a string. Before the
procedure declaration two strings are defined. defineTypes represents the definition
of the type constructors Comparison and Set used within the generated code.

getPredefined represents code to bind to the existing procedures mkEmptySet and
mkComparison in the persistent environment.

Within the body of defineJoin , a representation of the type of the join result,
resultType, is computed from the input type representations by an auxiliary proce-
dure joinResultType . Details of error reporting at this and other stages have been
omitted for simplicity—for example the input types might not have compatible
common fields on which to join, in which case the execution of the generator would
fail. The generated code is then obtained by concatenating the type defini tions and
binding code with the definition of the join procedure itself. The general form of
the join procedure is fixed by the string literals which are concatenated with the type
dependent code fragments obtained by computing over the type representations.

The definitions of the auxiliary procedures writeType , defineOneJoin and
defineCompareResult are omitted, as are the definitions of the types against which
the generator itself is compiled and parts of the type definition string defineTypes .
Details of how an executable version of the generated code is obtained are also not
shown.

let defineTypes =
 "type Comparison[T] is structure(equal, lessThan :
 proc(T, T -> bool)

 rec type Set[T] is structure(
 insert : proc(T -> Set[T]);
 difference : proc(Set[T] -> Set[T]));
 …
 size : proc(-> int))"

let getPredefined =
 "use PS() with
 mkEmptySet : proc[T](Comparison[T] -> Set[T]);
 mkComparison : proc[T](proc(T, T -> bool) ->
 Comparison[T]) in"

let defineJoin = proc(type1, type2 : TypeRep -> string)
begin
 let resultType = joinResultType(type1, type2)

 defineTypes ++ "'n" ++ getPredefined ++ "'n" ++

 "begin
 rec let join = proc(
 rel1 : Set[" ++ writeType(type1) ++"] ;
 rel2 : Set[" ++ writeType(type2) ++ "] ->
 Set[" ++ writeType(resultType) ++ "])

 project rel1 as first onto
 populated :
 begin
 let joinOne = " ++
 defineOneJoin(type1, type2, resultType) ++
 "(first(choose)(), rel2)
 let joinOthers = join(first(rest)(), rel2)

 project joinOne as firstJoined onto
 populated : firstJoined(union)(joinOthers)
 default : joinOthers
 end
 default : mkEmptySet[" ++ writeType(resultType) ++
 "](" ++
 defineCompareResult(resultType) ++ ")

 join
 end"
end

Figure 3: Example generator definition in Napier88

2.4 Why Programming Generators is Hard

Programmers writing generators in various languages have reported that generators
are considerably more difficult to write and understand than conventional programs
[3, 5, 7] . Some possible reasons for this are:

• A generator may describe a large class of programs rather than a single one.
Although a conventional program may have many different possible execution
paths, its structure is fixed. The structure of different programs produced by a
single generator may differ widely. To understand a generator the reader must
determine the features common to all programs produced by it, and understand
how the parts that vary among the resulting programs relate to the input
parameters to the generator. In the example the overall structure of the join
procedure is constant while the details of the result type and the joinOne proce-
dure are dependent on the input types.

• The programmer must perform a mental mapping between sentences in L and
their representations in LL. This is trivial for the example of "rec let join =
…" but less so for writeType(type1).

• The constant and variable parts of the result definition appear different even
though they both represent parts of the resulting program fragment. By the end
of the generator execution they are integrated seamlessly but this is not appar-
ent from inspection of the generator source code. This is seen in the same line
as the previous example: …Set[" ++ writeType(type1) ++ "] …

• Code in different parts of the generator is evaluated at different times. During

the execution of the generator, the prelude and those parts of the result defini-

tion in LLVar
 are evaluated. Later during the reflection process the new code

produced by the generator, comprising the LLConst
 parts of the result definition

composed with the fragments produced by the evaluation of the LLVar
 parts, is

evaluated. Thus adjacent parts of the result definition may be evaluated at dif-

ferent times and in different environments. In the example, execution of the

generator involves evaluation of joinResultType(type1,type2) in the

prelude and writeType(type1) in LLVar
. Later the code rel1 : Set[,

composed with the result of writeType(type1), is evaluated.

• Communication of data between evaluation environments is unwieldy. It may
be that a value computed during the execution of a generator prelude is required
in the generated code. This involves either generating code to create a copy of
the value, or placing a reference to the value in some storage accessible from
both evaluation environments and then generating code to retrieve it. The first
option involves an execution overhead and precludes communication of the
identity of the value. The latter option also involves an execution overhead,

and in addition there may be a risk of the value being removed from the envi-
ronment before the generated code is executed. This second mechanism is used
in the example: the generator produces code to retrieve the procedures
mkEmptySet and mkComparison from the persistent store.

• There may be a lot of syntactic noise in the code of a generator, particularly
where constant and variable parts of the result definition are composed
together. The example contains many concatenation and quote symbols.

• In languages where ValL comprises string expressions, manipulation of
program representations is unwieldy. One example of such a manipulation is
determining the result type of a procedure from its representation. This is non-
trivial when the representation is a string, since it involves parsing the string. A
parse tree representation presents less of a problem, since the representation of
the result type may be a component which can be accessed directly. This
problem does not arise in the example since the generator is parameterised only
by type representations.

These factors suggest several desirable features for any generator notation:

• Syntactic noise should be cut to a minimum.

• It should be easy to identify which parts of the result definition are constant, in
LLConst

, and which parts are variable, in LLVar
.

• It should be possible to use different code representation forms in the constant

and variable parts of the result definition. A textual form, such as strings, is

easy to read in the constant parts since it gives a simple mapping between

LLConst
 and L . An abstract syntax form may be more suitable for the variable

parts as it facil itates the expression of code representation manipulations.

• There should be a simple mechanism enabling the generated code to refer to
values in scope in the generator prelude.

• Supplementary tools to aid understanding of generators should be provided.
For example, a tool could display the resulting code produced by a generator
for given inputs. This could help in understanding the relationships between
generator parameters and the code fragments produced by LLVar

 code.

3 START: The Generator Tool

3.1 Design Criteria

This section describes START, a tool designed to aid writing generators in
Napier88. It is implemented within the Napier88 hyper-programming environment
[26] . The principal ideas are:

1) to display the variable parts within a generator result definition as hyper-
text links; and

2) to allow generated code to contain hyper-program links.

The first point addresses the problems of excessive syntactic noise within result def-
ini tions and distinguishing between constant and variable parts, by presenting a
clean user interface. The second addresses the problem of communicating between
the separate evaluation environments of generator and generated code, by allowing
generators to produce hyper-program representations. A hyper-program is a
program which contains both text and embedded direct links to existing values in
the persistent environment [27, 8, 12]. A generated hyper-program may thus con-
tain a direct link to a value in scope within the generator.

A window-based generator editor is used to allow the programmer to view a
generator at various degrees of detail. At the most abstract level the programmer
sees only the prelude code and the fixed parts of the result definition. The positions
of the variable parts are indicated by light-buttons embedded in the code. This level
of detail shows the programmer the main structure of the generated result, while
abstracting over the variations that depend on the particular specialisation. To
examine the details of the variations the programmer may press a button and view
the corresponding code in a separate window. This use of windows allows much of
the noisy syntax involved in combining parts of the result definition to be omitted,
making it easier to read.

The usefulness of this ability to separate constant and variable parts of the result
definition depends on the style in which generators are written. It is always possible
to write generators in such a way that the entire result definition is variable; how-
ever the assumption is made that programmers will choose to write constant defini-
tions for the generated code fragments that are common to all inputs.

Two additional design criteria were to give uniformity between generators and

the variable LLVar
 parts of result definitions—which may themselves be regarded as

generators—and to allow arbitrary nesting of generators.

3.2 Generator Model Details

START supports a model in which each generator has two separate components: a

prelude and a result definition . The prelude is a procedure that processes the

parameters input to the generator, while the result definition is a variant that may be

either a fragment of hyper-program source code or a procedure that produces such a

fragment. These source code fragments may contain place-holders corresponding to

further generators. Thus each LLVar
 part of the result definition is itself represented

by another generator.
To evaluate a generator its prelude is executed with the generator parameters

passed to it. If the result definition is a procedure then it is executed in turn, with
the results produced by the prelude passed to it. The result of this procedure, or the
result defini tion itself in the other case, is a source code fragment which may con-
tain place-holders for other generators. If so these generators are themselves evalu-
ated and the resulting code fragments incorporated into the result. This process is
continued until a source code representation without generator place-holders is
obtained. A generator could be recursive, containing a place-holder to itself within
its result definition, although the practical usefulness of this capability is question-
able.

The ability of a generator to produce hyper-program source code containing
links to data items means that generated code can refer directly to values con-
structed by the generator, or to values in the persistent store at the time of generator
execution.

Figure 4 shows some of the Napier88 type definitions describing this model.
Type HyperText, omitted to save space, represents fragments of hyper-text and is
parameterised by the type of the embedded links. An instance of HyperText con-
tains a text string and a list of <link value, text position> pairs. The definition of
Binding is also omitted: this is used to denote hyper-program values, and instances
may represent values, locations or types.

Generators are represented by instances of the structure type Generator . The
first component is a procedure, prelude, that takes a Napier88 environment as its
parameter and returns another environment. These environments contain the gener-
ator parameters and prelude results respectively.

The second component of a generator, the result definition, is an instance of the
variant type GeneratorResult . Its value may be either an instance of type
GeneratorSource or a procedure that takes an environment and produces a
GeneratorSource. In the first case the result definition is a literal code fragment
while in the second case it is a procedure that must be executed to produce a code
fragment. In both cases the code fragment may contain hyper-program links and
links to sub-generators, both represented by instances of the variant type
BindingOrGenerator.

! Hyper-text with embedded references to instances of type Link
type HyperText[Link] is …

! Value, location or type
type Binding is …

! Generator containing a prelude and a result definition
rec type Generator is structure(prelude : proc(env -> env) ;

resultDefn : GeneratorResult)

! Result definition can be fixed or dependent on inputs
& GeneratorResult is variant(

literal : GeneratorSource ;
expression : proc(env -> GeneratorSource))

! Generated code is text with links to Bindings and
! other Generators
& GeneratorSource is HyperText[BindingOrGenerator]

& BindingOrGenerator is variant(binding : Binding ;
 generator : Generator)

Figure 4: Napier88 description of generator model

Note that the literal branch of GeneratorResult is redundant so far as expressiveness
is concerned: a literal result definition could be expressed as a procedure which
ignored its parameters and always produced the same result. However, the presence
of this branch enables the generator editor to display a meaningful representation of
the result defini tion.

The generator construction system provides a number of pre-defined types and
procedures that may be linked into generators and generated code. The procedures
provide set operations and analysis and synthesis of both type representations and
source representations. Procedures and types may be linked directly into generator
definitions using hyper-program construction tools [8] .

3.3 The START Generator Editor

3.3.1 User Interface

The generator editor provides a form window with a number of fields corresponding
to the various components of a generator. When a particular component is not
present, or empty, the field is not displayed. To create a generator the programmer
fills in the fields as appropriate. All fields may contain hyper-program links to
values, locations and types identified using an external browsing tool [26] . These
are distinguished by the prefixes V: , L: and T: respectively shown on the link labels.

The first set of fields contains the prelude definition. One field contains the
names and types of the prelude parameters. As a short cut for the programmer a
separate field is provided for type representation parameters, since these are

expected to be particularly common. Here the programmer need only specify the
names of the parameters, since they are assumed to be of type TypeRep .

Other fields contain the body of the prelude code and the outputs from the
prelude which will be passed on to the variable parts of the result definition. The
result definition itself may be an expression, in which case the result varies between
evaluations, or a literal, in which case the result is always the same. For an expres-
sion the editor provides fields for both general parameters and type representations,
as for the prelude parameters. The result body then contains code which when exe-
cuted will generate a code representation.

For a literal a single field contains the result code. In addition to the normal
hyper-program links, a literal result definition may also contain links to sub-genera-
tors, corresponding to embedded variable parts of the result. These links are distin-
guished by the prefix G: on their labels. The programmer creates a sub-generator at
the current insertion point by pressing the sub-generator button. This inserts a link
and invokes a new generator editing window. The nesting of generators may be
continued to any depth. If the insertion point lies within an expression definition
when the sub-generator button is pressed a new generator is created but the link to it
is a hyper-program link and has a V: prefix. Thus a result definition is represented
as a form of hyper-text comprising a graph of linked generators and sub-generators.

Figure 5 shows an example of a generator which prompts the user for a string,
converts it to a source representation, and incorporates it into the generated repre-
sentation of a procedure mapping reals to reals. The names on the buttons denoting
the links are present to aid understanding but do not affect the semantics of the code
fragments: the programmer could change the button names if desired. The initial
names are supplied by the browsing tool with which the links are created.

Figure 5: A simple generator

When all details have been filled in the programmer can create an instance of type
Generator by pressing the compose button. The generator is passed to the browsing
system where it may be evaluated for particular parameters, stored or manipulated
in any other manner.

3.3.2 Example

Figure 6 shows a generator editor used for the natural join example. The large win-
dow contains the generator for join itself, while the others contain sub-generators
type1 and type2 and an auxiliary procedure joinResultType .

The prelude takes two type representation parameters of type TypeRep , repre-
senting the tuple types of the input relations. For brevity the checks to ensure that
they represent structure types are not shown. The prelude enriches the input envi-

ronment with three new values: resultType , which represents the tuple type of the
result relation, and type1Fields and type2Fields which are sets containing the field
information for the two input types. The value resultType is obtained by calling a
procedure joinResultType , a direct link to which is contained in the prelude code.
The structure field information is obtained using the pre-defined procedure
getStructureFields which returns a set of <name, type representation> pairs.

The result definition is a literal and contains the definition of the generated join
procedure. The code contains a number of links to sub-generators. These are used
to define, in order of appearance, the first input type, the second input type, the
result type (twice), a procedure to perform a join between a single tuple and a rela-
tion, and a procedure to compare instances of the result type.

The result definition also contains a direct link to the pre-defined procedure
mkEmptySet. This contrasts with the Napier88 solution in which the result defini-
tion contains code to link to the procedure in the persistent store. The direct link
notation is both more concise and more secure, as there is no danger of access to the
procedure being removed between the times of evaluation of the generator and
execution of the generated result.

Figure 6 also shows the definition of the procedure joinResultType which com-
putes a representation of the result type. This is achieved by constructing the union
of the two sets containing the names and types of the fields of the input types and
using the pre-defined procedure mkStructureType to create a type representation.
The other windows show the sub-generators type1 and type2. These generators use
the pre-defined procedure mkTypeLink to obtain links to the types represented by the
input type representa tions.

Figure 6: Generators join , type1 and type2

The point of having a distinguished literal branch in the result definition type, rather
than representing all result definitions as procedures, should now be apparent. It
means that the fixed parts of the result definition can be displayed in the generator
editor without having to evaluate the generator against any particular parameters.

The combination of the START tool with the hyper-programming environ ment
gives the following advantages over the pure Napier88 solution of Figure 3:

• It may be easier to understand the general form of the generated code, that
of a procedure which takes two sets as parameters and returns a third.

• Less code is generated since type definitions and specifications of how to
access values in the persistent environment are replaced by hyper-program
links.

• There is no need to flatten a structured type representation to a textual form
for inclusion in the generated code, as performed by the procedure
writeType in Figure 3.

3.4 Testing Generators

The testing facility allows the programmer to test a generator with various inputs.
When the test button is pressed a new window is displayed, containing a sub-
window in which values for the generator parameters may be entered. The
programmer can then press the generate code button to evaluate the generator with
those parameters. If the generator executes successfully the resulting code represen-
tation is displayed in the lower sub-window. One possible reason for failure of the
generator is that the parameters supplied are not compatible with those expected by
the generator: in this case a message to that effect is displayed. When generated
successfully, the code may itself be evaluated by pressing the evaluate button. If
the generated code is well formed it is executed and any resulting value displayed
by the browsing system; otherwise messages indicating the errors are displayed.

Figure 7 shows a test window for a generator which takes no parameters. The
generate code button has been pressed and a procedure definition has been gener-
ated. The generated code contains hyper-program links to the existing procedure
locations sin and f. The programmer could now create an instance of the new
procedure by pressing evaluate.

Figure 7: Generator test window

4 Open Problems and Future Work

4.1 Errors

Many problems with this technique remain. One of the principal problems is deal-
ing with errors, which may arise at any of the following points:

• during the execution of a generator;
• during compilation of the generated code produced by a generator; or
• during execution of the generated code.

An exception mechanism supported by the underlying language could be used to
handle errors occurring during the execution phases. In the absence of such a
mechanism the generator model could be refined to allow a generator to return
errors instead of a code fragment. For example, a natural join generator could
return a join not defined error when the input types had no common fields.

Errors during compilation and execution of the generated code are more prob-
lematic for the user, who is unlikely to know or care about the details of the genera-
tor. In the absence of such errors the user may even be unaware of the existence of
the generated code: the generator could be hidden by an encapsulating procedure
which calls the generator and then calls the generated code to produce the required
result. However, errors in the generator code itself may result in invalid code being
generated. While the resulting compilation errors could be reported to the user
these are unlikely to be useful to anyone other than the author of the generator.
Similarly errors may arise during the execution of the generated code; the challenge
is to be able to report these errors to the user in terms of the user problem domain
rather than the domain of execution of the generated code.

It is not clear how far the static checking of generators can be developed. An
ideal system would be able to determine from static analysis of a generator whether
the generated code would always be syntactically correct. Intuitively this appears
undecidable for any non-trivial generator language. It is conceivable however that it
would be possible to design a generator language which was sufficiently restricted
to allow static checking while retaining enough expressibility to be useful.

4.2 Language Issues

The approach taken with the START tool has been to design a generator model as
an add-on to the unchanged Napier88 language. Alternatively, generator could be
provided as a construct within a language. This would be a more elegant solution
but it is not clear what other benefits, if any, would result. Two other possibilities
for future work are to allow pattern matching on the structure of type and program
representations within generators, and to allow more highly structured program
representations to be used in conjunction with string representations. These features
are both found in TRPL [18] , and in the persistent context might allow manipulation
of program representations to be expressed more clearly and succinctly.

4.3 User Interface

Plans for further development in the user interface area include provision of
enhanced tools for testing generators, and the use of colour in the generator editor to
distinguish the varieties of embedded links.

5 Conclusions

Linguistic reflection has a number of applications in persistent systems, but the
difficulty of writing and understanding generators has limited its use. This paper
has identi fied some of the reasons for this and described START, a hyper-text based
generator editor tool designed to ease the process. The tool relies heavily on the
existing Napier88 hyper-programming environment [26] .

One feature of START is its hyper-text user interface which allows conceptually
different parts of a generator definition to be distinguished easily. It enables the
programmer to concentrate either on the form of the generated code common to all
uses or details of type dependent parts as required. The other main feature is the use
of hyper-program representations to provide an additional binding mechanism.
Where appropriate the code generated may contain embedded direct hyper-program
links to values, locations and types in the persistent environment. This results in
shorter generated code and increased safety and efficiency. It also avoids the need
to flatten type representations to textual form.

The generator editor has been implemented in the Napier88 hyper-programming
environment. Although the current editor only supports the development of
Napier88 generators, it is believed that the concepts could be applied to any self-
supporting persis tent programming system.

6 Acknowledgements

We thank Dave Stemple for many stimulating discussions on the topics discussed
here. This work was supported by ESPRIT III Basic Research Action 6309 FIDE2
and SERC grant GR/F 02953.

References
1.* Dearle A, Brown AL. Safe Browsing in a Strongly Typed Persistent Environment.

Comp. J. 1988; 31,6:540-544

2. Alagic S. Persistent Metaobjects. In: A. Dearle, G. M. Shaw and S. B. Zdonik (ed)
Implementing Persistent Object Bases. Morgan Kaufmann, 1990, pp 27-38

3. Cooper RL. On The Utilisation of Persistent Programming Environments. Ph.D.
thesis, University of Glasgow, 1990

4. Philbrow PC. Indexing Strongly Typed Heterogeneous Collections Using Reflection
and Persistence. In: Proc. ECOOP/OOPSLA Workshop on Reflection and Metalevel
Architectures in Object-Oriented Programming, Ottawa, Canada, 1990

5. Sheard T. Automatic Generation and Use of Abstract Structure Operators. ACM
ToPLaS 1991; 19,4:531-557

6. Hook J, Kieburtz RB, Sheard T. Generating Programs by Reflection. Oregon
Graduate Institute of Science & Technology Report CS/E 92-015, 1992

7.* Kirby GNC. Persistent Programming with Strongly Typed Linguistic Reflection. In:
Proc. 25th International Conference on Systems Sciences, Hawaii, 1992, pp 820-831

8.* Kirby GNC. Reflection and Hyper-Programming in Persistent Programming Systems.
Ph.D. thesis, University of St Andrews, 1992

9. Stemple D, Sheard T, Fegaras L. Linguistic Reflection: A Bridge from Programming
to Database Languages. In: Proc. 25th International Conference on Systems Sciences,
Hawaii, 1992, pp 844-855

10.* Stemple D, Stanton RB, Sheard T et al. Type-Safe Linguistic Reflection: A Generator
Technology. ESPRIT BRA Project 3070 FIDE Report FIDE/92/49, 1992

11.* Stemple D, Morrison R, Kirby GNC, Connor RCH. Integrating Reflection, Strong
Typing and Static Checking. In: Proc. 16th Australian Computer Science Conference,
Brisbane, Australia, 1993, pp 83-92

12.* Kirby GNC, Connor RCH, Cutts QI, Dearle A, Farkas AM, Morrison R. Persistent
Hyper-Programs. In: A. Albano and R. Morrison (ed) Persistent Object Systems, Proc.
5th International Workshop on Persistent Object Systems, San Miniato, Italy.
Springer-Verlag, 1992, pp 86-106

13. McCarthy J, Abrahams PW, Edwards DJ, Hart TP, Levin MI. The Lisp Programmers’
Manual. M.I.T. Press, Cambridge, Massachusetts, 1962

14. Rees J, Clinger W. Revised Report on the Algorithmic Language Scheme. ACM
SIGPLAN Notices 1986; 21,12:37-43

15. Burstall RM, Collins JS, Popplestone RJ. Programming in POP-2. Edinburgh
University Press, Edinburgh, Scotland, 1971

16. PS-algol Reference Manual, 4th edition. Universities of Glasgow and St Andrews
Report PPRR-12-88, 1988

17.* Morrison R, Brown AL, Connor RCH et al. The Napier88 Reference Manual (Release
2.0). University of St Andrews Report CS/93/15, 1993

18. Sheard T. A user’s Guide to TRPL: A Compile-time Reflective Programming
Language. COINS, University of Massachusetts Report 90-109, 1990

19.* Connor RCH, Cutts QI, Kirby GNC, Morrison R. Using Persistence Technology to
Control Schema Evolution. In: Proc. 9th ACM Symposium on Applied Computing,
Phoenix, Arizona, 1994, pp 441-446

20. Strachey C. Fundamental Concepts in Programming Languages. Oxford University
Press, Oxford, 1967

21. Milner R. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences 1978; 17,3:348-375

22. Codd EF. Extending the relational model to capture more meaning. ACM ToDS 1979;
4,4:397-434

23. Stemple D, Fegaras L, Sheard T, Socorro A. Exceeding the Limits of Polymorphism
in Database Programming Languages. In: F. Bancilhon, C. Thanos and D. Tsichritzis
(ed) Lecture Notes in Computer Science 416. Springer-Verlag, 1990, pp 269-285

24. Kaes S. Parametric Overloading in Polymorphic Programming languages. In: Lecture
Notes in Computer Science 300. Springer-Verlag, 1988, pp 131-144

25. Wadler P, Blott S. How to Make ad-hoc Polymorphism Less ad-hoc. In: Proc. 16th
ACM Symposium on Principles of Programming Languages, Austin, Texas, 1989

26.* Kirby GNC, Brown AL, Connor RCH et al. The Napier88 Standard Library
Reference Manual Version 2.2. University of St Andrews Report CS/94/7, 1994

27.* Farkas AM, Dearle A, Kirby GNC, Cutts QI, Morrison R, Connor RCH. Persistent
Program Construction through Browsing and User Gesture with some Typing. In: A.
Albano and R. Morrison (ed) Persistent Object Systems, Proc. 5th International
Workshop on Persistent Object Systems, San Miniato, Italy. Springer-Verlag, 1992,
pp 376-393

*Available via ftp from
ftp-fide.dcs.st-andrews.ac.uk/pub/persistence.papers

or via WWW from
http://www-fide.dcs.st-andrews.ac.uk:8080/Publications.html

	Citation
	Title
	Abstract
	1 Introduction
	2 Reflective Generators
	2.1 The Reflection Process
	2.2 Generator Structure
	2.3 An Example of a Generator
	2.4 Why Programming Generators is Hard

	3 START: The Generator Tool
	3.1 Design Criteria
	3.2 Generator Model Details
	3.3 The START Generator Editor
	3.3.1 User Interface
	3.3.2 Example

	3.4 Testing Generators

	4 Open Problems and Future Work
	4.1 Errors
	4.2 Language Issues
	4.3 User Interface

	5 Conclusions
	6 Acknowledgements
	References

