
1

This paper should be referenced as:

Kirby, G.N.C., Cutts, Q.I., Connor, R.C.H. & Morrison, R. “The Implementation of a Hyper-
Programming System”. University of St Andrews Technical Report CS/93/5 (1993).

2

The Implementation of a Hyper-Programming System

G.N.C. Kirby, Q.I. Cutts, R.C.H. Connor and R. Morrison

Department of Mathematical and Computational Sciences,
University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland.

{graham, quintin, richard, ron}@dcs.st-andrews.ac.uk

1 Introduction

Hyper-programming is a style of programming applicable to strongly typed persistent
systems [ABC+83], in which a source program may contain direct links to language values as
well as textual program constructs. It represents a form of hyper-media [EE68, YMV85,
Bro86, Big88, Shn89, DMD92] applied to the program development process, in which the
links may point to any typed objects. To allow this richer form of source program, the
representations of the programs themselves must be held within a persistent store.

The use of hyper-programming with a persistent language gives a number of benefits
including the following:

• increased ease of program composition;
• being able to perform program checking early;
• being able to enforce associations from executable programs to source programs;
• support for source representations of procedure closures; and
• availability of an increased range of linking times.

These benefits will be outlined only briefly here; they have been elaborated in greater detail
in [Kir92, KCC+92]. This paper focuses on the implementation of a prototype hyper-
programming system constructed for, and using, the language Napier88 [MBC+89].
Although here we report on experience with one particular language we believe that the
techniques described could be applied to other persistent languages, examples of which
include Amber [Car85], Galileo [ACO85], persistent Quest [MMS92], E [RC90] and
STAPLE [DM90].

Section 2 explains in more detail the concept of hyper-programming and its benefits listed
above; Section 3 identifies several varieties of supporting technology required to implement a
hyper-programming system; Section 4 describes the user interface of the prototype system
and its implementation; Section 5 describes the three different forms in which hyper-
programs are represented during different phases of the program life-cycle; and Section 6
gives details of the hyper-program compiler.

2 Hyper-programming and its Benefits

An example of a hyper-program residing in a persistent store is shown in Figure 1. The
hyper-program contains both text and a direct link to another data item in the persistent store.
The data item is a procedure to write out strings. The direct link is a reference that cannot be
accidentally or maliciously corrupted. In a strongly typed language that supports referential
integrity, the link might be implemented as a pointer.

3

persistent store

writeString

hyper-program

for i = 1 to 10 do
begin
 ("Hello world")
end

direct link
procedure

value

Figure 1: A hyper-program

As listed in the introduction, the use of hyper-programs as source representations offers a
number of advantages over purely textual source programs.

2.1 Ease of Program Composition

The principal benefit of a hyper-programming system is a reduction in the effort required to
construct programs. It allows the programmer to compose programs interactively, navigating
a graphical representation of the persistent store and selecting data items to be incorporated
into the programs. This removes the need to write textual specifications of the access paths
for persistent data items (i.e. descriptions of how to find the data in the persistent store)
referred to by a program. In conventional persistent languages such as PS-algol [PS88] and
Napier88 these specifications can be verbose; in a hyper-program this verbosity is eliminated
for those data items existing when the program is written. Note that the ability to link to data
items at run-time is still required in the cases where data becomes available only after a
program is written. As will be seen in Section 4 however, in some cases it is possible to link
a store location that will later contain the data item into a hyper-program.

2.2 Early Program Checking

Hyper-programming allows some program checks to be performed earlier than in
conventional systems, subsequently giving increased assurance of program correctness. This
is possible because data items linked into a hyper-program are available for checking before
run-time, referential integrity ensuring that the checked data remains available at run-time.
Persistent data access checking is one example of checking that may be brought forward.
Conventionally the consistency of the declared type of a persistent data item with its use in a
program is checked at compilation-time. The existence of the data item at the declared
position in the persistent store, and the equivalence of the declared type with the actual type
of the data item, are then checked at run-time. The second set of checks may be eliminated
when a data item is incorporated into a hyper-program: the data item is guaranteed to exist in
the persistent store since it is available for incorporation in the first place; and no type needs
to be declared for the data item and subsequently checked against the actual type, as the
actual type is available at compilation-time.

More generally the programmer may perform arbitrary checks on data values before linking
them into a hyper-program, by writing and executing other programs that compute over them.
If the checks succeed, the code that performs the checking can then be omitted from the
hyper-program, since the links to the original values are guaranteed to remain intact.

4

2.3 Enforcing Associations

In a programming system it is often desirable to maintain associations between executable
programs and their corresponding source code programs, to facilitate debugging and software
evolution. These associations enable the system to show the source code corresponding to
the point where an error occurs in a running program, or to supply the source code for a given
executable program so that it can be modified and a new version created. In file-based
systems such as Pascal [Wir71] and C [KR78] these associations are maintained by
convention, for example by filename suffixes as in prog.c and prog.o. With such schemes
there is nothing to prevent the associations being corrupted, for example by overwriting the
file prog.c with an inappropriate file. In an integrated persistent programming system it is
possible to keep both source and executable programs within a persistent store and replace
the unenforceable associations with tamper-proof, i.e. immutable, direct links from
executable programs to source programs. There is then a guarantee that the appropriate
source program will be accessible from a given executable program. The ability of the
programming system to ensure that every executable program has its source code attached
also aids software reuse, since more information about executable programs in the persistent
store is available.

2.4 Increased Range of Linking Times

Persistent programming languages allow programs to be linked to persistent data at a number
of different times during the program development process. These include run-time, link-
time and, in a recent system, compilation-time [FDK+92]. Hyper-programming adds another
possible time to this range: program composition time. Where data is linked to at
composition time, safety and efficiency are increased since some checking and tracing of
access paths is factored out, while flexibility is reduced since the data must be present when
the hyper-program is composed. Thus a wider range of choices among the
safety/efficiency/flexibility trade-offs is available.

3 Support Technology Requirements

The principal requirements for supporting a hyper-programming system are:

• a persistent store providing referential integrity;

• linguistic reflection facilities [SSS+92], including a compiler accessible from within the
language and a means of denoting executable programs within the language, e.g. by first
class procedure closures;

• browsing tools to display graphical representations of the data in the persistent store; and

• graphical user interface tools programmable from within the language.

A persistent store is required to contain the hyper-program representations and the data items
linked into them. The store should support referential integrity, so that once a reference to a
data item in it has been established, the data item will remain accessible for as long as the
reference exists.

Secondly the hyper-program source representations, and the executable programs produced
by compiling them, must be denotable values in the programming language. Linguistic
reflective facilities are required to support the compilation process. One way to represent
executable programs is as procedure closures.

A third requirement is for tools that provide the programmer with a graphical representation
of the persistent store. The representation shows the values, locations and types in the store

5

and the links between them. The programmer can select the representations of specific data
items in order to link them into hyper-programs.

4 The Graphical User Interface

Figure 2 shows how a hyper-program might appear to the programmer during editing. A
more detailed description of the hyper-programming user interface is given in [Kir92].

Figure 2: A hyper-program editor

The programmer composes a hyper-program by a combination of typing text into an editor
window and inserting links to existing data. Browsing tools are used to display
representations of the data in the persistent store and to highlight data for linking. In Figure 2
the two windows labelled env show the representations of Napier88 environments in the
persistent store. Each environment contains a number of <name,value,type> bindings. The
top-most environment in the figure contains a binding myEnv to the other environment; this
is shown by a connecting arrow. The procedure writeString in this environment has been
highlighted with the mouse and linked into the hyper-program where it is denoted by a light-
button, by pressing the link button in the hyper-program editor. If the programmer presses
the writeString button some time later, the browser will highlight the representation of the
linked procedure value, redisplaying the window if necessary.

The data corresponding to a hyper-program link may be either a language value or a store
location containing a value (R-value or L-value respectively). Each location may be either a
location within a composite value such as a Napier88 structure or environment, or a free
identifier location. This latter alternative allows hyper-programs to contain links to data in
the closures of existing procedures; this will be explained further in Section 6. Figure 3
shows examples of highlighted graphical representations of, from the left, a value (an
environment), a location in an environment, and a free variable location.

6

Figure 3: Graphical data representations

The light-buttons within the text in a hyper-program editor can be moved and edited like the
rest of the text. The names displayed on the light-buttons can also be changed as they are not
significant to the meaning of the hyper-program.

5 Representing Hyper-Programs

The hyper-programming system uses three different representation forms for hyper-programs
at various stages of the program development process. The first of these, the editing form, is
optimised for editing, including fast selection, insertion and deletion of both text and light-
buttons. The second, the export form, is optimised for low-cost storage and is designed to
occupy as little space as possible. The motivation for this is that, as will be described later,
the hyper-program system automatically records a hyper-program whenever a procedure is
compiled and thus the number of hyper-programs simultaneously existing is potentially large.
The third representation form, the compilation form, is designed to allow a hyper-program
compiler to be constructed from the original Napier88 compiler with minimal change.

Translation from the editing form to the export form takes place when the contents of a
hyper-program editor are read using the appropriate interface procedure. This form is also
passed to the hyper-program compiler for compilation. Within the hyper-program compiler
the export form is translated to the compilation form before being processed.

The three representation forms will now be illustrated with reference to the example hyper-
program shown in Figure 4. The hyper-program contains links to an integer, a procedure
value and an environment location in the persistent store.

writeString : proc(string)

hyper-program

for i = 1 to currentBound do
begin
 writeString (currentMessage)
end

env location containing
currentMessage : string

currentBound : int

Figure 4: Example hyper-program

7

The editing form is illustrated in Figure 5 which shows the data structure describing the text,
the positions of the embedded light-buttons and their associated actions. The types used are
defined in the appendix.

The text is stored in a doubly linked list of strings, one for each text line. The new-line at the
end of each text line is not stored as part of the string but is implicitly present between each
consecutive pair of lines. Each list element also contains a line number. This allows the
editor to determine the ordering for list elements efficiently.

Details of embedded light-buttons are stored in a vector. Each element contains:

• an integer index for the button;
• the text displayed on the button;
• the text positions at which it starts and finishes;
• the procedure that will be executed when the button is pressed;
• a value of type any that may be set by the programmer.

The light-button vector is ordered by the buttons’ positions in the text. This allows the editor
to distinguish efficiently between a mouse button press over a light-button, in which case its
associated procedure is called, and a press over normal text, in which case the insertion point
is set to the new position. The editor calculates the text position corresponding to the (x,y)
position of the mouse and then uses a binary split algorithm to determine whether the text
position lies between the start and finish of any of the light-buttons.

The vector displayed below the doubly linked list in Figure 5 contains three elements
recording the names and positions of the light-buttons. The button indices are independent of
the elements’ offsets within the vector; they are used by the programmer to denote particular
buttons when calling those editor interface procedures that operate on buttons.

Each element in the vector also records:

• a procedure that is called when the light-button is pressed, causing a representation of the
linked data to be displayed by the browsing tools;

• a reference to the linked data comprising an instance of type Binding defined in Figure 6.

8

18

32

16
5

13
25"currentBound"

procedure to
display

representation of
writeString
procedure

reference to
writeString

procedure injected
into type any

"end"

"for i = 1 to currentBound do"

"begin"

" writeString(currentMessage)"

TextLine

1

2

3

4

writeString : proc(string)

2 "writeString"

3 "currentMessage"

Binding: "value"procedure to display
representation of

environment location

Binding: "valueLocation"

specification of a
location within an

environment

procedure to display
representation of

stack location

Binding: "frameLocation"

specification of a
location within a

frame

light-button
vector

text
positions of
button ends

1

*InternalButtonInfo
TextPointer

Figure 5: A hyper-program in editing form

The export form is represented by the Napier88 type HyperSource which is also defined in
Figure 6. The definition of type Binding has been simplified for the purpose of explanation;
the full definition is given in the appendix.

! *Substitution denotes a vector whose elements have type Substitution.

type HyperSource is structure(code : string ;
bindings : Optional[*Substitution[Binding]])

where

type Optional[T] is variant(present : T ; absent : null)

type Substitution[T] is structure(val : T ; codeRegion : CodeRegion)

9

type Binding is variant(value : any ; ! The value in a universal type.
valueLocation : ValueLocation;
frameLocation : FrameLocation)

type CodeRegion is structure(start, finish : int) ! Specification of region of code.

type ValueLocation is … ! Specification of a location within a composite value.

type FrameLocation is … ! Specification of a location within a frame (uses shown later).

Figure 6: Type definition for HyperSource

The export form contains a string together with a vector of substitutions. Each substitution
specifies a region within the string and the data, an instance of type Binding, to be substituted
in that region. The substitution regions are specified by pairs of character offsets from the
start of the string. The example hyper-program is shown in this form in Figure 7.

"for i = 1 to currentBound do
begin
 writeString(currentMessage)
end"

HyperSource

41 51

*Substitution[Binding] 14 25

CodeRegion

54 67

Binding: value

Binding: value

Binding: valueLocation

vector of
substitutions

text
offsets

structure

Figure 7: A hyper-program in export form

When the hyper-program is compiled the compiler first converts it to the compilation form
shown in Figure 8. Each substitution region in the text string is replaced by a unique
identifier of the form uniqueIdn where n is an integer chosen to ensure that the identifier does
not occur anywhere else in the representation. Associated with the text string is a newly
created symbol table which contains an entry for each of the unique identifiers. Among other
items of information, each entry contains a representation of the type of the linked data and a
reference to the abstract machine representation of the data itself. The hyper-program is then
compiled using the new symbol table to resolve uses of the substituted identifiers.

10

"for i = 1 to uniqueId78 do
begin
 uniqueId317(uniqueId402)
end"

uniqueId78

symbolTable representation of
type proc(string)

abstract machine
representation of

procedure

… other info

uniqueId317 … other info

uniqueId402 … other info

representation
of type int

abstract machine
representation of

integer

representation of
type string

abstract machine
representation of

environment location

program

extra symbol
table

Figure 8: A hyper-program in compilation form

6 Compiling Hyper-Programs

6.1 Compiler Interfaces

The first Napier88 compiler was implemented by Brown, Connor, Dearle and Morrison. The
hyper-programming system described here uses a modified version implemented in Napier88
by Cutts [Cut92]. The compiler is accessible by Napier88 programs through several
interfaces. The simplest is shown in Figure 9:

compileString : proc(string → any)

Figure 9: Simple interface to the Napier88 compiler

This interface to the compiler is a procedure that takes a string parameter and returns an
instance of the union type any which can then be projected to give the resulting value. There
is also a more flexible interface to the compiler which allows programs to be compiled
against existing values. The interface is shown in Figure 10:

type lValue is … ! structure containing info about an identifier

type symbolTable is table[string, lValue]

compile : proc(string, list[symbolTable] → any)

Figure 10: Flexible interface to the Napier88 compiler

This version of the compiler interface takes as parameters a string and a list of symbol tables,
and returns a result of type any. The list contains symbol tables that form a series of extra
‘outer scopes’ during compilation. To compile a program against an existing value, the
programmer constructs a new symbol table using a procedure available in the persistent store,
adds the value to the symbol table and passes it in a list to the compiler. If the compiler
encounters an identifier not declared within the source program it searches the extra symbol

11

tables and, if found, plants a reference to the corresponding value or store location in the
resulting executable code.

6.2 Parsing Procedure Definitions

The second interface described above is sufficient to compile hyper-programs containing
links to data in the persistent store. It is also useful to be able to treat procedure definitions
as hyper-programs in their own right, replacing references to free identifiers by hyper-
program links. This allows every procedure value to have a source level representation.
Figure 11 illustrates a procedure definition and the hyper-program corresponding to the
procedure value produced by executing the definition, in which the occurrences of a free
identifier are replaced by hyper-program links to the appropriate store location:

let i := 0
proc() ; i := i + 1

proc() ; i := i + 1

procedure definition hyper-program

free identifier
 i : int

Figure 11: Procedure definition and corresponding hyper-program

In order to enforce associations from procedures to source representations, whenever the
compiler reaches the end of a procedure definition it extracts the part of the source code
defining the procedure and inserts a reference to it in the newly constructed code vector. The
source code stored is a hyper-program, in the export form, in which all free identifiers are
replaced by hyper-program links to store locations. The compiler records the current position
within the source code as it starts to compile a procedure and again at the end, giving the
textual bounds of the procedure definition. Since procedure definitions may be nested, the
compiler uses a stack of procedure definition start positions to ensure correct processing.

The compiler also keeps track of hyper-program links to be inserted into the procedure source
code. These occur where the source program itself contains hyper-program links, and also
where a free identifier is used within a procedure definition. Free means that the identifier is
declared outside the procedure definition, in an outer block. In Napier88 a procedure value is
represented by a code vector and a list of the enclosing stack frames constructed during the
execution of the program that created the procedure. The values of free variables are
resolved with respect to these stack frames.

To determine which identifiers are free, the compiler records the lexical level of each
procedure in the corresponding stack element. Whenever an identifier is encountered, the
symbol table entry for that identifier is obtained. If the entry shows that the identifier was
declared at a lower lexical level than that of the procedure currently being compiled, then the
identifier is free. In that case a new element is added to a list contained in the top procedure
stack element. The new list element contains the source text position of the identifier and a
specification of its corresponding data, of type Binding. In the case that the identifier denotes
a hyper-program link present in the source program, then the data already exists and the
Binding contains a reference to a value or location. Alternatively, where the identifier is free,
the data will not exist until run-time, and the Binding contains a description of the data’s run-
time location comprising a frame number (offset up the static chain) and a position within the
frame. Each time the end of a procedure is reached the information about the current
procedure definition is popped from the stack and used to produce its textual source code
together with a vector of substitutions. Each substitution contains the position of an identifier
and a Binding. The text and the substitutions together form an instance of type HyperSource,

12

a hyper-program, and a reference to this is inserted in the newly formed code vector for the
procedure.

This process is illustrated in Figure 12. The source code contains two procedure definitions
p1 and p2, with p2 nested inside p1. The lexical level before the first procedure definition is
0; at the start of p1 it becomes 1; inside p2 it is 2. The source character offsets of the start
and finish of p1 are denoted by offset 1 and offset 4, while the corresponding offsets for p2
are offset 2 and offset 3. The identifiers x and y are declared within the program and z
represents a hyper-program link to a value in the persistent store. The figure shows the
hyper-program source representations recorded for p1 and p2; note that some identifiers
appear in both representations. A given identifier may appear normally in one representation
and as a hyper-program link in another, as is the case for y in this example.

The bottom part of the figure shows the state of the procedure stack at the point that the
compiler reaches the end of p2. The top element contains information about p2: its start
offset, its lexical level and a list of the free identifiers used within it, x and y. Below this on
the stack is information about p1, the free identifiers being x, twice, and z. At this point in
compilation the contents of the top element are used to form the source for p2; the stack is
then popped and later the other element is used to form the source for p1.

offset 1

offset 2

offset 3

offset 4

0

1

2

lexical
level

hyper-program source of p2

offset 2 2

x text offset of x frame 0 position within frame

Binding: frameLocation

y text offset of y frame 1 position within frame

Binding: frameLocation

offset 1 1

x text offset of x frame 0 position within frame

Binding: frameLocation

z text offset of z reference to value

Binding: value

x text offset of x frame 0 position within frame

Binding: frameLocation

compiler stack as parsing reaches offset 3

let x := 5

let p1 = proc()
begin
 let y = x + z

 let p2 = proc(→ int)
 begin
 x + y + 2
 end
end

proc(→ int)
begin
 x + y + 2
end

hyper-program source of p1
proc()
begin
 let y = x + z

 let p2 = proc(→ int)
 begin
 x + y + 2
 end
end

Figure 12: Constructing source representations for nested procedures

13

As illustrated above, the information recorded for a free identifier consists of a frame number
and a position within that frame. The frame itself cannot be recorded as it does not come into
existence until the compiled program is executed. When the source hyper-program of a
procedure value is displayed by the browsing tools, the outer frames now exist so the hyper-
program is scanned and pointers to the appropriate frames inserted. These are found by
traversing the procedure’s static chain to find the appropriate frame numbers. When a light-
button corresponding to a free identifier is pressed the associated value is displayed by
reading words from the frame, converting them to a typed value and passing the result to the
browsing tools.

6.3 Compiling References to Existing Data

The mechanisms described so far allow a source program passed to the compiler to contain
hyper-program links to values or locations in the persistent store. Another variation is
needed to cater for the possibility that a source program may contain hyper-program links to
locations within existing frames. This situation may arise when a new source program is
created by combining components copied from the source programs of existing procedures
with free identifiers, as illustrated in the following figures. Figure 13 shows two source
programs that contain references to frames containing free identifiers. Each frame contains a
pointer to the next frame in the static chain, eventually terminating in the outer-most frame.
Since the two procedures have been produced by executing independently compiled
programs, the two static chains are disjoint.

proc(→ int)
begin
 x + y + 2
end

source of p2
x

frames

y

static link

frame 0 position within frame

Binding: frameLocation

frame 1 position within frame

Binding: frameLocation

proc()
begin
 deeplyNested := 3
end

source of another proc

static link

deeplyNested

static link

static link

frames

frame 3 position within frame

Binding: frameLocation

Figure 13: Procedures with disjoint static chains

Figure 14 shows a new source program constructed by copying links from both existing
source programs:

14

let a := 0

proc(→ proc(→ int))
begin
 let b := 1

 proc(→ int)
 begin
 x + y + deeplyNested
 end
end

new source code

x

frames

y

static link

frame 0 position within frame

Binding: frameLocation

frame 1 position within frame

Binding: frameLocation

static link

deeplyNested

static link

static link

frame 3 position within frame

Binding: frameLocation

Figure 14: Program with references to existing frames

When compiling a source program containing links to identifiers in existing frames, the
compiler first allocates a numbering to each of the frames. The frames are numbered
consecutively from 0 and the ordering is unimportant. The compiler then modifies the frame
numbers recorded with each link to reflect the new numbering scheme, and sets the lexical
level at the beginning of compilation to the number of external frames. In the example
shown there are 3 external frames so the lexical level at the beginning of compilation is 3. In
contrast, the standard compiler always begins compilation with a lexical level of 0.

As each procedure definition is compiled the compiler generates code to build a display on
entry to the procedure. When executed this code traverses the procedure’s static chain,
loading onto the stack a pointer to each frame in the chain. In addition it loads a pointer to
each of the external frames in decreasing order of frame number. This ensures that
references to external identifiers planted in the compiled code are resolved correctly at run-
time.

This mechanism is illustrated in Figure 15, which shows the state of the compiler’s symbol
table list at the start of compilation of the body of the inner procedure in Figure 13. The first
two symbol tables contain entries for the identifiers a and b declared in the enclosing blocks.
Since compilation started at a lexical level of 3, this is the frame number for a. Another
symbol table contains entries for the unique identifiers assigned to represent the external
identifiers. These entries contain the frame numbers assigned to the external frames at the
start of compilation.

15

a

symbolTable

… other info3

uniqueId4

symbolTable

… other info

uniqueId20 … other info

uniqueId36 … other info

0

frame
number

1

2

represents
deeplyNested

represents
y

representsx

symbol table
list

b

symbolTable

… other info4

frame number frame number

Figure 15: Symbol table list during compilation

Figure 16 shows the current frame at the start of execution of the procedure body. The
frame’s static link points to the frame for the enclosing block, created at run-time. The
display contains pointers to this frame and to each of the external frames.

current frame

x

y

static link

static link

deeplyNested

static link

static link

2

1

0b

static link

conventional
part of display

new frame
numbers

a

extra part
of display

Figure 16: Current frame during execution

7 Conclusions

Hyper-programming provides a new style for linking programs with persistent data, allowing
direct links to data to be incorporated into source programs held in a persistent store. The

16

benefits of this facility have been outlined; in particular it allows more convenient
composition of programs and it allows associations between executable programs and source
programs to be enforced, in contrast with traditional systems that rely on convention.

A prototype hyper-programming system for Napier88 allows the programmer to browse the
data in the persistent store, to construct source programs, and to link items of data into the
programs. Each data item may be a value or a location in the persistent store. A hyper-
program is represented in one of several forms depending on whether it is being edited,
exported outside an editor, or processed by the compiler. The Napier88 hyper-program
compiler ensures that each procedure value compiled has its hyper-program source code
attached to it. An outline of the techniques used in this process has been given.

Implementation Types

rec type TextLine is variant(cons : structure(hd : string ; index : int ;
before,after : TextLine);

tip : null)
type TextPointer is structure(line : TextLine ; offset : int)

type InternalButtonInfo is structure(id : int ; name : string ;
start,finish : TextPointer ;
action : proc(int) ; extra : any)

rec type TypeRep is structure(label, misc, random : int ;
name : string ; others : Var)

& Var is variant(none : null ; one, unique : TypeRep ; many : *TypeRep)

type EnvLocation is structure(pointer : null ; typeRep : TypeRep)

type StructLocation is structure(structValue : any ; field : string)

type VectorLocation is structure(vectorValue : any ; index : int)

type StackPos is structure(Frame,MSoffset,PSoffset : int)

type FrameLocation is structure(frame : null ; stackPos : StackPos ;
typeRep : TypeRep ; envLoc : bool)

type TypeContainer is structure(typeRep : TypeRep)

type Binding is variant(value : any;
envLocation : EnvLocation;
structLocation : StructLocation;
abstypeLocation : StructLocation;
vectorLocation : VectorLocation;
frameLocation : FrameLocation;
aType : TypeContainer)

References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
“An Approach to Persistent Programming”. Computer Journal 26, 4 (1983) pp
360-365.

[ACO85] Albano, A., Cardelli, L. & Orsini, R. “Galileo: a Strongly Typed, Interactive
Conceptual Language”. ACM Transactions on Database Systems 10, 2 (1985)
pp 230-260.

17

[Big88] Bigelow, J. “Hypertext and CASE”. IEEE Software 5, 2 (1988).

[Bro86] Brown, P.J. “Interactive documentation”. Software – Practice and Experience
16, 3 (1986) pp 291-299.

[Car85] Cardelli, L. “Amber”. AT&T Bell Labs, Murray Hill Technical Report AT7T
(1985).

[Cut92] Cutts, Q.I. “Delivering the Benefits of Persistence to System Construction and
Execution”. Ph.D. Thesis, University of St Andrews (1992).

[DM90] Davie, A.J.T. & McNally, D.J. “Statically Typed Applicative Persistent
Language Environment (STAPLE) Reference Manual”. University of St
Andrews Technical Report CS/90/14 (1990).

[DMD92] Dearle, A., Marlin, C.D. & Dart, P. “A Hyperlinked Persistent Software
Development Environment”. In Proc. Hyper-Oz ’92: A Workshop on Hypertext
Activities in Australia, Adelaide, Australia (1992).

[EE68] Engelbart, D.C. & English, W.K. “A research center for augmenting human
intellect”. In Proc. Joint Fall Conference (1968) pp 395-409.

[FDK+92] Farkas, A.M., Dearle, A., Kirby, G.N.C., Cutts, Q.I., Morrison, R. & Connor,
R.C.H. “Persistent Program Construction through Browsing and User Gesture
with some Typing”. In Proc. 5th International Workshop on Persistent Object
Systems, San Miniato, Italy (1992) pp 375-394.

[KCC+92] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. &
Morrison, R. “Persistent Hyper-Programs”. In Proc. 5th International Workshop
on Persistent Object Systems, San Miniato, Italy (1992) pp 73-95.

[Kir92] Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent Programming
Systems”. Ph.D. Thesis, University of St Andrews (1992).

[KR78] Kernighan, B.W. & Ritchie, D.M. The C programming language. Prentice-
Hall, (1978).

[MBC+89] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The Napier88
Reference Manual”. University of St Andrews Technical Report PPRR-77-89
(1989).

[MMS92] Matthes, F., Müller, R. & Schmidt, J.W. “Object Stores as Servers in Persistent
Programming Environments—The P-Quest Experience”. ESPRIT BRA Project
3070 FIDE Technical Report (1992).

[PS88] “PS-algol Reference Manual, 4th edition”. Universities of Glasgow and St
Andrews Technical Report PPRR-12-88 (1988).

[RC90] Richardson, J.E. & Carey, M.J. “Implementing Persistence in E”. In Persistent
Object Systems, Rosenberg, J. & Koch, D. (ed), Springer-Verlag (1990) pp
175-199.

[Shn89] Shneiderman, B. “Reflections on Authoring, Editing, and Managing Hypertext”.
In The Society of Text, Barrett, E. (ed) MIT Press (1989).

18

[SSS+92] Stemple, D., Stanton, R.B., Sheard, T., Philbrow, P., Morrison, R., Kirby,
G.N.C., Fegaras, L., Cooper, R.L., Connor, R.C.H., Atkinson, M.P. & Alagic, S.
“Type-Safe Linguistic Reflection: A Generator Technology”. ESPRIT BRA
Project 3070 FIDE Technical Report FIDE/92/49 (1992).

[Wir71] Wirth, N. “The Programming Language Pascal”. Acta Informatica 1 (1971) pp
35-63.

[YMV85] Yankelovich, N., Meyrowitz, N. & van Dam, A. “Reading and Writing the
Electronic book”. IEEE Computer October (1985) pp 15-29.

	Citation
	Title
	1 Introduction
	2 Hyper-programming and its Benefits
	2.1 Ease of Program Composition
	2.2 Early Program Checking
	2.3 Enforcing Associations
	2.4 Increased Range of Linking Times

	3 Support Technology Requirements
	4 The Graphical User Interface
	5 Representing Hyper-Programs
	6 Compiling Hyper-Programs
	6.1 Compiler Interfaces
	6.2 Parsing Procedure Definitions
	6.3 Compiling References to Existing Data

	7 Conclusions
	Implementation Types
	References

