
Napier88 Standard Library Reference Manual

Release 2.2.1

July 1996

Graham Kirby
Fred Brown*

Richard Connor
Quintin Cutts†

Alan Dearle‡

Vivienne Dunstan
Ron Morrison
Dave Munro

University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland.
*Department of Computer Science, University of Adelaide,

South Australia 5005, Australia.
†University of Glasgow, Lilybank Gardens, Glasgow G12 8QQ, Scotland.

‡University of Stirling, Stirling FK9 4LA, Scotland.

This document should be referenced as:
“Napier88 Standard Library Reference Manual (Release 2.2.1)”.
University of St Andrews (1996).

Contents
1 Introduction..5

1.1 Accessing the Persistent Store ...5

2 The Napier88 Programming Environment..7
2.1 Hyper-Program Windows ..7

2.1.1 Editing Operations ..8
2.1.2 Saving and Loading Programs..10

2.2 Compilation Error Window ...10
2.3 Browser Window ...11

2.3.1 Operations on Windows ...11
2.3.2 Environments..12
2.3.3 Structures ..13
2.3.4 Variants...13
2.3.5 Vectors..13
2.3.6 Images...13
2.3.7 Pictures ...14
2.3.8 Procedures...15
2.3.9 Abstract Datatypes..15
2.3.10 Files...15
2.3.11 Universes ..15
2.3.12 Types...16
2.3.13 Browser Background Menu..17
2.3.14 Panning Tool...17

2.4 Declaration Sets ...18
2.4.1 Creating and Deleting Declaration Sets..............................18
2.4.2 Adding To a Declaration Set ..19
2.4.3 Displaying a Declaration Set ..19
2.4.4 Choosing Declaration Sets..20

2.5 The Output Window...21
2.6 The Background Menu...22
2.7 Multiple Programming Environment Sessions22
2.8 Accessing the Current State ...23
2.9 Using Napier88 from Command Line ...23

2.9.1 nps: Compiling Type Declarations23
2.9.2 npc: Compiling Programs ...24
2.9.3 npr: Running Programs...26
2.9.4 napier88: Starting the Programming Environment.............26
2.9.5 nprgc: Stable Store Garbage Collection26
2.9.6 nprstats: Stable Store Statistics...27
2.9.7 nprcompact: Stable Store Compaction27
2.9.8 nprcopystore: Creating an Initialised Stable Store27
2.9.9 nprformat: Stable Store Initialisation..................................27
2.9.10 nprsethost: Setting the Host ..27
2.9.11 nprregisterhost: Registering a New Host............................28
2.9.12 Environment Variables ...28

3 Graphical User Interface Programming..29
3.1 Windows and Window Managers ..29
3.2 Window Attributes...29
3.3 Drawing on Windows ..30
3.4 Current and Selected Windows..30

3.4.1 Current Windows..30
3.4.2 Selected Windows ..31

3.5 Applications and Input Events ...31

3.5.1 Background Windows and Applications32
3.6 Interface Interactors ...32

4 The Library Environment...33
4.1 Arithmetical ...33
4.2 Compiler...35
4.3 Concurrency ...39
4.4 Device ..41
4.5 Distribution ..43
4.6 Environment...45
4.7 Event ..45
4.8 FailValues ..46
4.9 Font ..47
4.10 Format ..48
4.11 Graphical..49

4.11.1 Outline ..49
4.11.2 Raster ..49

4.12 InteractiveEnvironment..51
4.13 InterfaceEditor ...51
4.14 IO ...51

4.14.1 PrimitiveIO ...55
4.15 Lists..59
4.16 People...60
4.17 Protection ...61
4.18 RasterRules ..61
4.19 String..61
4.20 System..62
4.21 Tables ...62
4.22 Time ...63
4.23 Utilities...64
4.24 Vector...71
4.25 Win...71

4.25.1 Borders..71
4.25.1.1 Interactive ..75

4.25.2 CurrentState ..78
4.25.2.1 CurrentBrowser..79

4.25.3 Cursors..79
4.25.4 Defaults...80
4.25.5 Generators...81
4.25.6 Images...98
4.25.7 Selection ...98
4.25.8 Tools ...99

4.25.8.1 EditorTools ..106
4.25.9 Utilities ...111

5 The Error Environment ..114
5.1 Arithmetical Errors ..114
5.2 Environment Errors..115
5.3 Format Errors ...116
5.4 Graphical Errors...116
5.5 IO Errors ..119
5.6 String Errors...124
5.7 Structure Errors ..124
5.8 System Errors...124
5.9 Variant Errors...124
5.10 Vector Errors..125

6 Type Definitions ...126

6.1 General ...126
6.2 Windows and Window Managers ..126
6.3 Bulk Types ...127
6.4 Outline Graphics ..128
6.5 Hyper-Text ...128
6.6 Editors ..128
6.7 Interface Tools ...129
6.8 Protection ...130
6.9 Programming Environment..130
6.10 Concurrency ...130
6.11 Distribution ..131

7 Napier88 Releases ..132
7.1 Operating Environment..132
7.2 Obtaining the Napier88 Release ..132
7.3 Documentation ...132
7.4 Napier88 Mailing List..132
7.5 Troubleshooting ...133
7.6 Version History Overview ...133
7.7 Version History Details..134

7.7.1 Release 2.2.1...134
7.7.1.1 Type Definition Changes.............................134
7.7.1.2 Library Component Changes.......................134
7.7.1.3 New Library Components............................134
7.7.1.4 Miscellaneous Changes134

7.7.2 Release 2.2.1b1...134
7.7.2.1 Type Definition Changes.............................134
7.7.2.2 Library Component Changes.......................135
7.7.2.3 New Library Components............................136
7.7.2.4 Miscellaneous Changes136

8 References ...138

1 Introduction
This manual describes the contents of the persistent store as supplied with Napier88 Release
2.2.1, known as Version 2.2.1 of the Napier88 Standard Library. It does not describe the
Napier88 language, which is described in the Napier88 Reference Manual (Release 2.2.1)
[MBC+96a].

The manual is also available on-line, together with source code listings, at:

http://www-ppg.dcs.st-andrews.ac.uk/Documentation/

1.1 Accessing the Persistent Store

The persistent store may be accessed from Napier88 programs by calling the predefined
procedure:

PS : proc(→ any)

The result returned is the persistent root injected into the union type any. Its type may vary
between different persistent stores. In the Napier88 Release 2.2.1 store the persistent root is
an environment which initially contains the following environments:

name environment contents

Error error handling procedures which are called when errors occur
during the execution of Napier88 programs

External facilities provided by other sites

Library standard procedures and other data which may be used in
Napier88 programs

User available for user data

Table 1.1: Environment contents

The initial structure of Error and Library is described in detail in this manual. User and
External are local to a particular installation and users should consult the local administrator
for details. The majority of data items in the standard library are constant and may be used
but not updated by user programs. There are also some that may be updated in order to affect
the behaviour of the system. The items in the library fall into a number of categories:

• procedures for compiling Napier88 programs;
• procedures for browsing the persistent store;
• procedures for performing I/O;
• procedures for constructing graphical user interfaces;
• procedures for controlling concurrent threads;
• procedures for accessing other Napier88 stores; and
• other utilities.

5

http://www-ppg.dcs.st-andrews.ac.uk/Documentation/

The initial environment structure of the standard library is shown in Figure 1.1:

Arithmetical
Compiler
Concurrency
Device
Distribution
Environment
Event
FailValues
Font
Format
Graphical
InteractiveEnvironment
InterfaceEditor
IO
Lists
People
Protection
RasterRules
String
System
Tables
Time
Utilities
Vector
Win

Library

Borders
CurrentState
Cursors
Defaults
Generators
Images
Selection
Tools
Utilities

Interactive

EditorTools

Outline
Raster

PrimitiveIO

CurrentBrowser

Arithmetical
Environment
Format
Graphical
IO
String
Structure
System
Variant
Vector

Error

External

User

Persistent
Root

Figure 1.1: Initial environment structure in the standard library

6

2 The Napier88 Programming Environment
Part of the standard library is an integrated programming environment, written in Napier88,
which allows the user to compose and execute Napier88 programs and examine their effects
on the persistent store. Section 2.9.4 describes how to start up the integrated programming
environment.

The programming environment supports hyper-programming, allowing the Napier88 source
programs to contain embedded direct references to values, locations and types in the
persistent store. The concept of hyper-programming is described in [KCC+92], [FDK+92],
[Kir92], [KCC+93] and [MCC+95].

The programming environment provides several varieties of window:

• multiple hyper-program windows;
• a compilation error display window;
• a browser window;
• multiple declaration set windows; and
• an output window.

The facilities provided by each window variety are now described.

2.1 Hyper-Program Windows

Hyper-program windows may be created by selecting New Editor from the background menu
described in Section 2.6. Each window contains a hyper-program text editing area, a scroll
bar and a row of light-buttons, as illustrated in Figure 2.1:

Figure 2.1: A hyper-program window

2.1.1 Editing Operations

The following operations are available in the text area:

operation method

enter text type at keyboard

7

position insertion point click mouse button 1

set current selection sweep region of text with mouse
button 1

extend current selection click with mouse button 2

move selected text drag selected region with mouse
button 1

select word double click with mouse button 1

delete current selection type ‘backspace’ or ‘delete’

cut current selection type ‘ctrl-x’

copy current selection type ‘ctrl-c’

paste type ‘ctrl-v’

insert hyper-program link type ‘ctrl-l’

evaluate selected text type ‘ctrl-e’

Table 2.1: Operations in hyper-program text area

The following operations are available via the light-buttons:

8

operation action keyboard
equivalent

Cut This cuts the current selection into a buffer shared among
all other hyper-program windows.

ctrl-x

Copy This copies the current selection into the shared buffer. ctrl-c

Paste This replaces the current selection with the contents of the
shared buffer.

ctrl-v

Clear This deletes the entire contents of the editor.

Find This presents a dialogue allowing searching of the text for a
given fragment of hyper-program text, either forwards or
backwards from the end of the current selection.

Load This presents a dialogue allowing text to be loaded into the
editor from a file (see Section 2.1.2).

Save This presents a dialogue allowing the contents of the editor
to be saved to a file (see Section 2.1.2).

Rename This presents a dialogue allowing the currently selected
light-button to be renamed. If no light-button is currently
selected it has no effect and the dialogue is not displayed.

Link This inserts a hyper-program link to the currently selected
value, location or type. A light-button representing it is
inserted into the hyper-program text. The initial label on
the button is a string beginning with the characters "V: ",
"L: " or "T: " respectively. The rest of the label is the name,
if any, associated with the selection (as, for example, when
it is a location). The value, location or type associated with
a button can be displayed in the browser window by
pressing the button with mouse button 1.

ctrl-l

Evaluate This attempts to compile the currently selected hyper-
program text, executes the result if successful, and displays
any result in the browser window. If the currently selected
hyper-program text is a valid type expression then a
representation of that type is displayed in the browser
window. If a compilation error occurs the compilation error
window is displayed (see Section 2.2).

ctrl-e

Source Sets This displays a dialogue allowing the source declaration
sets to be set (see Section 2.4.4).

Declare Types This attempts to compile the currently selected hyper-
program text and adds any type declarations in scope at the
end of the compilation to a selected declaration set (see
Section 2.4.2). Existing declarations with the same names
are over-written.

Table 2.2: Light-button operations in hyper-program window

9

2.1.2 Saving and Loading Programs

The save and load buttons allow hyper-program text to be written to and read from the
persistent store or the file system. Pressing the save button displays the dialogue shown in
Figure 2.2:

Figure 2.2: Save dialogue

With the File option selected the text of the hyper-program is saved under the given filename,
which is interpreted relative to the directory from which the Napier88 environment was
initiated. With the Persistent Store option selected, the entire hyper-program is saved as a
value in the persistent store with the given name, interpreted as an environment path from the
persistent root. For example the pathname User/graham/newProg denotes a value with the
name newProg in the environment graham, which is itself in the environment User in the
root environment.

When the Interpret Links box is checked (only possible when File is selected) the system
attempts to save access path information about the hyper-program links, in addition to the
text. This is only possible for links to environment locations, in particular those for which an
access path from the root is known by the system. In such cases the access path is stored with
the program.

A hyper-program may be loaded via the same dialogue. When Interpret Links is selected the
system attempts to reconstruct any saved links to environment locations by following the
stored access paths from the root. Links to other than environment locations, and links for
which the stored access path is not valid at the time of loading, are denoted by links to the
value nil.

2.2 Compilation Error Window

The Compilation Error window is displayed when compilation errors are encountered in a
hyper-program. One sub-window shows the source code with the region of the first error
highlighted. The second sub-window shows a message describing the error. When multiple
errors are detected the Next and Previous buttons can be used to scroll through the errors. An
example is shown in Figure 2.3:

10

Figure 2.3: The compilation error window

2.3 Browser Window

The Browser window is displayed automatically when the programming environment first
starts up. It is used to display representations of values produced by the evaluation of hyper-
programs. The root structure of the persistent store can be displayed by selecting Show PS
from the background menu described in Section 2.3.13.

The form in which a value is represented depends on the type of the value. Integers, reals,
strings and booleans are written to the output window. The manner in which other types are
displayed is described in Sections 2.3.2–2.3.10.

2.3.1 Operations on Windows

The following operations are available on all windows displayed in the browser window:

• The window can be selected or deselected by clicking on the border with mouse button 1.
If the window is not already selected it becomes selected and any other selected windows
are deselected. If the window is already selected it becomes deselected. When a window
is selected the corresponding value is also considered to be selected. This is of relevance
when inserting links into hyper-programs and when selecting certain operations from the
browser background menu which operate on the selected value.

• The window can also be selected or deselected by clicking on the border with mouse
button 2. In this case other windows are unaffected.

• A menu can be obtained by holding down mouse button 3 on the border. The entries in
the menu are Front, to bring the window to the front, Back, to put the window to the back,
and Dismiss, to undisplay the window.

11

2.3.2 Environments

To show an environment the browser displays a menu window containing an entry for each
binding in the environment. For base type values the corresponding entry shows the type
while for instances of constructed types only the type constructor is shown. An example is
shown in Figure 2.4:

Figure 2.4: An environment menu

The operations available on an environment menu entry depend on the mouse button used:

• Clicking with mouse button 1 results in the menu entry being highlighted and any other
highlighted menu entries or windows being un-highlighted. The corresponding
environment location is selected.

• A link to the corresponding environment location may be inserted into a hyper-program
editor window at the current insertion position by dragging the menu entry with mouse
button 1 and dropping it over the editor window.

• Clicking with mouse button 2 results in the menu entry being highlighted while other
selected menu entries or windows are unaffected.

• Holding down mouse button 3 results in a pop-up menu being displayed. Selecting Show
results in the value of the corresponding environment binding being displayed in the
browser. If the value is of such a type that a new window is displayed for it, an arrow is
drawn from the menu entry to the new window as shown in Figure 2.5. Selecting New
Universe also results in the value being displayed but in a separate universe as described
in Section 2.3.11.

Figure 2.5: Link from environment location to value

12

2.3.3 Structures

Structures are displayed in the same way as environments. An example of a structure menu is
shown in Figure 2.6:

Figure 2.6: A structure menu

2.3.4 Variants

Variants are displayed in the same way as structures except that the entry for the branch of
the variant which is actually present is indicated by the prefix '+'. Selecting other entries has
no effect. An example of a variant menu is shown in Figure 2.7:

Figure 2.7: A variant menu

2.3.5 Vectors

Vectors are displayed in the same way as structures with an entry for each element of the
vector: Each entry shows the corresponding index number. An example of a vector menu is
shown in Figure 2.8:

Figure 2.8: A vector menu

2.3.6 Images

An example of an image window is shown in Figure 2.9:

13

Figure 2.9: An image window

The size of the image in pixels is shown in the bottom right corner of the window.

2.3.7 Pictures

Pictures are displayed in a similar way to images, as shown in Figure 2.10:

Figure 2.10: A picture window

When a picture is first drawn it is scaled so that it fits completely into the display area.
Resizing the window enlarges or reduces the display area but does not alter the scale of the
picture. The scroll bars can be used to pan the display area to a different region of the
picture. The window also contains two arrow buttons on the left hand side which can be used

14

to enlarge or reduce the scale at which the picture is drawn. This makes it possible to zoom
in on a region of interest or to move back to view the picture as a whole.

2.3.8 Procedures

To show a procedure the browser displays a menu with a single entry source. When this
entry is selected using any mouse button the browser displays a hyper-program window
containing the source code for the procedure. The source code may be selected and copied
but not altered. If the procedure does not have source code attached the browser displays a
message to this effect in the output window. An example of a procedure menu is shown in
Figure 2.11:

Figure 2.11: A procedure window

2.3.9 Abstract Datatypes

To shown an instance of an abstract datatype the browser displays a menu with no entries.
An example of an abstract datatype menu is shown in Figure 2.12:

Figure 2.12: An abstract datatype window

2.3.10 Files

To show a file the browser displays its name in the output window.

2.3.11 Universes

The screen may become cluttered when the user browses a large data structure. Universes
can be used to organise the data space. A universe is created by selecting Universe from the
menu brought up with mouse button 3 over a structure, variant, vector or environment menu.
A new browser sub-window is then created and the corresponding value displayed inside it.
An example of a universe window is shown in Figure 2.13:

15

Figure 2.13: A universe window

The new value, the structure with field z in the example, is displayed by a new invocation of
the browser which operates entirely within the universe window. Any other objects
discovered from that new object will be confined to the window. In this way the object and
others accessible from it are kept separate from the rest of the visible data. Universes also
provide a grouping mechanism in that all the objects in a universe can be moved or deleted in
one action by operating on the window containing them. Any number of universes can be
created, and they can be nested to any degree.

2.3.12 Types

A representation of the type of a value in the browser window may be obtained by selecting
the corresponding window and selecting Show Type from the browser background menu.
The browser displays a window containing a canonical string representation of the value’s
type. Note that a type representation is displayed only when a window is selected, not when
a menu entry is selected. This is in order to avoid confusion between the contents of a
location and its type. An example of a type representation is shown in Figure 2.14:

Figure 2.14: A type representation

The browser also displays a representation of a type linked into a hyper-program when the
corresponding light-button in the hyper-program window is pressed. In this case the
representation may be a canonical string as above or, where type constructor information is

16

available, the original source code is displayed as a hyper-program fragment. An example of
a type constructor source representation, with a hyper-program link to a component type, is
shown in Figure 2.15:

Figure 2.15: A type constructor representation

2.3.13 Browser Background Menu

A background menu may be obtained in the browser window by holding down mouse button
3. The menu provides the following operations:

operation action

Centre pans the browser window so that the first selected object is in
the centre of the window

Show PS displays the root of persistence

Show Type displays a canonical representation of the type of the selected
value

Display displays the corresponding window, if the selected value is of
type Window, otherwise has no effect

Clear removes all objects displayed in the browser window

Table 2.3: Browser background menu operations

2.3.14 Panning Tool

The Panning Tool window allows the browser window to be panned over the unbounded
view space. The circle represents a joy-stick which can be dragged using mouse button 1.
While the joy-stick is off-centre the browser window pans in the same direction. The
panning increments are proportional to the amount the joy-stick is displaced from the centre.
The Panning Tool window is shown in Figure 2.16:

17

Figure 2.16: The panning tool

2.4 Declaration Sets

The user may create declaration sets containing named values, locations and types to use in
future program evaluation. Each declaration set has a unique name and may be thought of as
forming an additional outer scope for a program. Free identifiers in a program are resolved
by scanning the declaration sets associated with the program.

A type entry in a declaration set may represent either a type only, or a type constructor.
Which is obtained depends on the method used to create the entry. Both type and type
constructor names may be used as type denotations in programs, but only type constructor
names may be used to construct instances of types.

The declaration sets model is based on a number of earlier systems: Napier88 Release 1.1
[MBC+89a]; ABERDEEN [Far91]; and a previous version of the Napier88 programming
environment [KCC+92b].

The operations on declaration sets are:

• create a new declaration set;
• delete a declaration set;
• add a value, location or type to a declaration set;
• display the contents of a declaration set; and
• choose an ordered list of declaration sets to use for compilation.

2.4.1 Creating and Deleting Declaration Sets

Creation and deletion of declaration sets is performed using the declaration sets menu
obtained by selecting Declaration Sets from the background menu described in Section 2.6.
The declaration sets menu is shown in Figure 2.17:

18

Figure 2.17: The declaration sets menu

The menu contains a list of the existing declaration sets and light-buttons providing the
following operations:

operation action

New displays a dialogue prompting for a name for the new declaration set. If the
new name clashes with an existing declaration set name an error message is
displayed and the dialogue is re-presented. Otherwise a new empty
declaration set is created and the list is updated.

Remove permanently removes any selected declaration sets

Show displays the contents of any selected declaration sets

Done undisplays the declaration sets menu

Table 2.4: Declaration sets menu operations

2.4.2 Adding To a Declaration Set

One method of adding a value, location or type to a declaration set involves the user selecting
the corresponding representation in the browser window. The user then selects Add to
Declaration Set from the background menu described in Section 2.6. If a named location is
selected that name is used; otherwise the user is prompted for a name. A dialogue then
allows the user to choose an existing declaration set or to create a new one. If an entry with
the same name already exists in the chosen declaration set that entry is overwritten by the
new one.

The user may add a group of type declarations to a declaration set by pressing the Declare
Types button in a hyper-program editor. This attempts to compile the selected code, or the
entire contents if none is selected, and if successful adds all the top-level type definitions to a
declaration set chosen as above.

2.4.3 Displaying a Declaration Set

The contents of a particular declaration set may be displayed by pressing the Show button in
the declaration sets menu described in Section 2.4.1. This displays a further menu for each
selected declaration set. An example is shown in Figure 2.18:

19

Figure 2.18: A declaration set menu

Each menu contains a list of the entries in that declaration set and light-buttons providing the
operations shown in Table 2.5:

operation action

Show displays any selected entries in the browser window

Remove permanently removes any selected entries from the declaration set

Clear permanently removes all entries from the declaration set

Table 2.5: Declaration set menu operations

A hyper-program link to an entry in a declaration set can be inserted into a hyper-program by
selecting the appropriate menu entry and pressing the Link light-button as described in
Section 2.1.1.

2.4.4 Choosing Declaration Sets

The user may associate a particular combination of declaration sets with a hyper-program
editor. These declaration sets are then used in evaluating program fragments in that editor.
When it is first created an editor has no declaration sets associated with it. Declaration sets
may be added by pressing the Source Sets light-button. This displays a dialogue as shown in
Figure 2.19:

20

Figure 2.19: Dialogue for setting source declaration sets

The Available list on the left shows all the existing declaration sets. The Use list on the right
shows those currently associated with the editor, scope level increasing down the list. If two
declaration sets associated with an editor both contain an entry with the same name, the one
in the declaration set nearer the top of the list will mask the other. This is analogous to
normal scoping rules.

The dialogue also contains light-buttons providing the following operations:

operation action

Add adds any selected declaration sets in the Available list to the bottom of the
Use list

Promote moves the selected declaration sets up one position in the list if possible

Demote moves the selected declaration sets down one position in the list if possible

Remove removes any selected declaration sets from the use list

Cancel undisplays the dialogue without altering the declaration sets associated with
the editor

OK undisplays the dialogue and associates the chosen declaration sets with the
editor

Table 2.6: Source declaration sets menu operations

2.5 The Output Window

The Output window displays messages from the browser. Its contents may be scrolled and
cleared but not edited. A procedure to write messages to the Output window may be obtained
as described in Section 4.25.2.

21

Figure 2.20: The output window

2.6 The Background Menu

A background menu may be brought up in the programming environment by holding down
mouse button 3. The menu provides the following operations:

operation action

New Editor creates a new hyper-program editor window and displays it

Add to Declaration
Set

for each currently selected browser value, location or type,
adds a binding to a declaration set as described in Section
2.4.2

Declaration Sets displays the declaration set menu as described in Section 2.4.1

Show All Windows displays all windows registered with the programming
environment as described in Section 2.7

Delete Non-Visible unregisters windows not displayed, as described in Section 2.7

Stabilise calls the stabilise procedure described in Section 4.20

Quit quits the programming environment

Table 2.7: Background menu operations

2.7 Multiple Programming Environment Sessions

More than one programming environment session may be active simultaneously. The name
of the initial sessions can be specified as parameters to the command napier88, as described
in Section 2.9.4. Once sessions are active it is possible to start further sessions using the
procedure programmingEnv described in Section 4.12.

Programming environment windows persist between sessions of the programming
environment. When the environment is shut down the positions and sizes of the windows are
recorded and restored when it is next started up.

22

When a window is undisplayed by selecting Dismiss from its border menu, it is still retained
by the programming environment. The user can cause all such windows to be redisplayed by
selecting the entry Show All Windows from the background menu. It is possible however to
remove editor windows permanently from the programming environment by selecting the
entry Delete Non-Visible. This has the effect of deleting any editor windows not currently
displayed.

2.8 Accessing the Current State

To facilitate access to the programming environment from programs the following values are
available while the environment is active:

getCurrentBuffer : proc(→ Editor[Binding])
getCurrentColourMap : proc(→ *int)
setCurrentColourMap : proc(*int, int)
getCurrentCursor : proc(→ Cursor)
setCurrentCursor : proc(Cursor)
getCurrentError : proc(→ proc(string))
getCurrentOutputPack : proc(→ EditorPack[Binding])
getCurrentWindowManager : proc(→ WindowManager)
getCurrentWriteString : proc(→ proc(string))
CurrentBrowser : env

These are described in Section 4.25.2.

2.9 Using Napier88 from Command Line

There are a number of commands that control the execution of the Napier88 system from the
operating system command line.

2.9.1 nps: Compiling Type Declarations

For convenience, when a program is compiled it may be compiled against a set of pre-
compiled type declarations. This command is used to save such a set of type declarations and
is compatible with the declaration sets described in Section 2.4.

The source file must consist purely of type declarations or the command will fail and an error
message will be displayed. The general form of the command is:

nps [sourceFile declarationSet] [-l] [-t declarationSet]*

The first two parameters are the name of a file containing the type declarations and the name
of a declaration set. The options are:

-l (list) Produce a source listing.

-t (types) Compile against existing sets of type declarations. This option may be
repeated. The first declaration set forms the outermost scope and the source
file forms the innermost scope.

For example, to save a set of type declarations given in the file types1.N in the declaration set
types1, the following could be used:

nps types1.N types1

23

To save a further set of type declarations compiled against this set, with a listing, the
following could be used:

nps types2.N types2 -l -t types1

The target declaration set and the set of existing declaration sets may also be specified within
the source code itself, by including comments of the following form at the start of the source:

! Type Environment : targetSet
! Dependencies : declarationSet1 declarationSet2

If a source file is not specified as a parameter, the command enters interactive mode. First the
command prompts for a list of declaration sets against which a source file may be compiled.
Each declaration set is at an inner scope level with respect to any previously specified sets.
To finish specifying source declaration sets, return is entered in response to the command’s
prompt Source type set:

Once any existing declaration sets have been specified, the command prompts for a source
file to be compiled and the declaration set name under which the type declarations should be
saved. The source file is compiled against all the declaration sets that have been specified.
When the type declarations have been saved the command prompts for another source file to
compile. To finish saving new declaration sets, return is entered in response to the
command’s prompt Filename:

To interactively save a set of type declarations, given in the file types.N, in the set sometypes,
the following could be used:

nps ! the command
Source type set: <return> ! request for a declaration set to compile against;

! none to specify
Filename: types.N ! the source file to compile
Destination type set: sometypes ! request for new declaration set name
Filename: <return> ! no more source files to be compiled

For backward compatibility with PS-algol implementations of Napier [MBC+89b], the non-
interactive version of nps allows a database name and password to be specified with each
declaration set name; these are ignored.

2.9.2 npc: Compiling Programs

This command is used to compile Napier88 programs and is parameterised by the name of
the source file. The source file must contain a void sequence [MBC+94] or the command
will fail and an error message will be displayed. The general form of the command is:

npc [sourceFile] [-eflnps] [-o objectFileName] [-t declarationSet]*

The options are:

-e (execute) Execute the program if the compilation succeeds.

-f (first) Terminate the attempted compilation after the first compilation error.

-l (list) Produce a source listing during compilation.

-n (no source) Do not attach source code to compiled procedures.

-o (object) Specify the name of the object code file.

24

-p (primitive) Allow the use of primitive functions in the source code.

-s (silent) Do not produce an object code file.

-t (types) Compile against existing sets of type declarations. This option may be
repeated. The first declaration set forms the outermost scope and the source
file forms the innermost scope.

The default settings for compilation, used if no flags are specified, are:

• do not execute the program after compilation;
• continue compiling after the first error is detected;
• do not produce a listing;
• attach source code to compiled procedures;
• for the source file X.N, use an object file X.out;
• do not allow primitive functions;
• produce an object file;
• do not compile against declaration sets.

For example, to compile a program in a file prog.N without executing it, without a listing,
producing an object code file and using two existing type declaration sets, the following
could be used:

npc prog.N -t outerTypes -t innerTypes

In this case, since the object code filename is not specified, the result of the compilation is
placed in a file prog.out. If the source filename does not end in .N the filename is constructed
by appending .out to the source filename.

To compile a program in a file prog.N and execute the result without producing an object
code file the following could be used:

npc prog.N -es

A set of declaration sets may also be specified within the program source code itself, by
including a comment of the following form as the first line of the program:

! Dependencies : declarationSet1 declarationSet2 declarationSet3

If a source file is not specified as a parameter, the command enters interactive mode. First the
command prompts for a list of declaration sets against which a source file may be compiled.
Each declaration set is at an inner scope level with respect to any previously specified sets.
To finish specifying declarations sets, return is entered in response to the command’s prompt
Source type set:

Once any existing declaration sets have been specified, the command prompts for a source
file to be compiled. The source file is compiled against all the declaration sets that have been
specified. When the compilation is complete the command prompts for another source file to
compile. To finish compiling, return is entered in response to the command’s prompt
Filename:

To interactively compile the program in the file prog.N, against the type declarations in the
set sometypes, the following could be used:

npc ! the command
Source type set: sometypes ! request for a declaration set to compile against
Source type set: <return> ! request for another declaration set; no more to specify

25

Filename: prog.N ! the source file to be compiled
Filename: <return> ! no more source files to be compiled

A database name and password may be specified, and ignored, as for nps.

2.9.3 npr: Running Programs

This command is used to run the Napier88 system. The general form is:

npr [objectFile]

The command may be parameterised by the name of a file containing a compiled Napier88
program to be executed. Otherwise the Napier88 system is restarted from the state preserved
by the most recent stabilise operation.

For example, to execute the compiled version of the program prog.N, the following could be
used:

npr prog.out

2.9.4 napier88: Starting the Programming Environment

This command is used to start up one or more interactive programming environment sessions.
The general form of the command is:

napier88 [[-depth screenDepth] [-display displayName] [-session sessionName]]*

The options are:

-depth Specifies the screen depth in planes, subject to the limitations of the display
device (default 8).

-display Specifies the X-server display (default $DISPLAY).

-session Specifies the session name.

For example, the following starts the session john on the display edradour:0.0:

napier88 -display edradour:0.0 -session john

while the following starts the sessions graham with depth 8 and richard with depth 4, both on
the default display:

napier88 -depth 8 -session graham -depth 4 -session richard

The command calls the procedure programmingEnv described in Section 4.12. If a session
name is not specified the user is prompted to select an existing session or create a new one.

2.9.5 nprgc: Stable Store Garbage Collection

This command is used to perform a garbage collection of the stable store. No other programs
may be run against the store while the garbage collection is taking place. For example,

nprgc

Note that executing this command may actually increase the size of the file which contains
the stable store. See nprcompact.

26

2.9.6 nprstats: Stable Store Statistics

This command is used to display statistics about the stable store. No other programs may be
run against the store while the statistics gathering is taking place. For example,

nprstats

maximum space : 383.609 Mbytes
allocated space : 5.581 Mbytes (85.7%)
unallocated space : 0.281 Mbytes (4.3%)
unused space : 0.000 Mbytes (0.0%)
management space : 0.654 Mbytes (10.0%)
number of objects : 85671 objects

The following configuration details are specified:
KEY_TO_ADDR
KEYS_ARE_INDIRECT
REQUEST_STABILISE
KEY_RANGE
minimum key : 64000
maximum key : 17fffff8
key alignment : 8

The first set of statistics reflect the current state of the stable store. The second set reports
details of the particular stable store implementation in use.

2.9.7 nprcompact: Stable Store Compaction

This command is used to compact the file containing the stable store. No other programs
may be run against the store while the compaction is taking place. For example,

nprcompact

2.9.8 nprcopystore: Creating an Initialised Stable Store

This command is used to create a new persistent store. The argument specifies the initial
contents of the new store; allowable values are full, compiler, fullNoSource or
compilerNoSource. For example,

nprcopystore full

2.9.9 nprformat: Stable Store Initialisation

This command is used to create a new empty stable store. If the stable store directory as
described in Section 2.9.11 already contains a store, an error message is displayed and no
further action is performed. For example,

nprformat

2.9.10 nprsethost: Setting the Host

This command is used to set the host from which programs may run against the stable store.
The general form of the command is:

nprsethost [-n] [hostname]

By default the command may only be run from the host for which the store is currently set. If
the -n flag is specified this constraint is over-ridden; this should be used with caution and

27

only when there is no possibility that there is currently a program running against the store.
If the hostname parameter is omitted the name of the current host is used.

2.9.11 nprregisterhost: Registering a New Host

This command is used to register hosts with the Napier88 system. It takes as a command line
argument either the authorisation code for a single machine, or the name of a file containing
multiple authorisation codes. For example,

nprregisterhost fj8ahd3h7a2
nprregisterhost auth.codes

2.9.12 Environment Variables

There are several shell variables that allow the Napier system to be dynamically configured.
They are:

NPRDIR : this variable defines the pathname for the release directory. All the commands
held in the bin directory use this variable to construct the pathnames of the executable
programs to be run.

NPRSTORE : this variable defines the pathname for the directory containing the stable store
file. If the desired size of stable store is too large for the disk partition containing the release
directory, a symbolic link can be used to map the store’s pathname onto a larger disk
partition.

NPRHEAP : this variable defines the size of the local heap (in megabytes) used by the
Napier88 interpreter. By default this is 8.

28

3 Graphical User Interface Programming
This section gives an outline of the user interface programming facilities provided by the
WIN window management system—which is also used to implement the programming
environment described in Section 2.

3.1 Windows and Window Managers

The principal entities in WIN are windows and window managers. A window has two main
functions: to display a bitmapped image and to handle user input. A window manager is used
to display and manipulate windows. As well as providing program output facilities, windows
may be used to implement user interface interactors such as light-buttons, sliders, menus etc.

Each window has encapsulated in it:

• an application procedure which processes input events received by the window; and

• an image on which raster operations may be performed by the application procedure or by
other programs.

Windows exist independently of window managers. Since they are Napier88 values they
have full civil rights and thus may be held in the persistent store, assigned to variables, passed
as procedure parameters etc. All window operations may be accessed by programs
independently of whether a window is displayed by a window manager. When a window is
displayed by a window manager its image may become visible to the user. Its application
procedure may also receive input events directed to the window, via the window manager,
from the user.

Each window manager operates within a parent window. This recursive structure allows
nesting of window managers to any depth. The recursion is grounded by a distinguished root
window manager which operates directly on the display device.

The procedures for creating windows and window managers are described in Section 4.25.5.
A window is displayed by calling one of a window manager’s interface procedures, passing it
the window and information describing where to position it. The details are also described in
Section 4.25.5.

3.2 Window Attributes

A window has a number of attributes which may be read and set. These include:

• its size;

• its title;

• its minimum and maximum size;

• its behaviour when its size is changed—used to allow the window display to be redrawn
appropriately;

• its application procedure—determining how the window handles input events;

• its border style—used by the window manager to show the outline of the window and to
allow interactive window manipulation;

29

• its priority for receiving input events;

• the number of planes in its display image—affecting how many colours can be displayed;
and

• the shape of the cursor when over the window.

The interface procedures which allow these attributes to be read and set are described in
Section 4.25.5.

3.3 Drawing on Windows

The display of a window may be updated via raster operations on its bitmap. Raster
operations may be performed between the window and another window or an image, in either
direction. The four possibilities are:

source destination

window image

image window

window another window

another window window

Table 3.1: Window raster operations

Straight line drawing on windows is also supported. The window drawing functions are
described in Section 4.25.5.

3.4 Current and Selected Windows

Windows displayed in the programming environment may be distinguished in two ways: by
being current and by being selected.

3.4.1 Current Windows

A window may be current with respect to the window manager that is displaying it. No more
than one of the windows displayed by a particular window manager may be current. If there
is a current window then any keyboard input events received by the window manager are
directed to the application procedure of that window. If there is no current window then
keyboard events are discarded.

A window may be made current by calling the makeCurrent procedure of the window
manager displaying it. This is described in Section 4.25.5. A window may also be made
current interactively, either by moving the cursor over it or clicking with a mouse button
within it.

A current window may be distinguished by its border. The border styles fixedX, menuX and
variableX, for example, indicate a current window by showing two parallel lines along the
title bar. These are described in Section 4.25.1.

30

3.4.2 Selected Windows

Any number of windows may be selected with respect to the programming environment as a
whole. The list of selected windows may be read by application programs and acted on
accordingly. For example, a command available in a drawing application might change the
size of all the selected windows.

A selected window may be distinguished by its border. The border styles fixedX, menuX and
variableX, for example, indicate a selected window by showing an inverted area along the
title bar. These are described in Section 4.25.1.

A window may be both current and selected simultaneously.

3.5 Applications and Input Events

Every window has an application, a procedure which processes input events received by the
window. Those input events may be keyboard events, if the window is current, or mouse
events within the window area. Input events are represented by instances of type Event:

type Event is variant(chars : string;
mouse : Mouse;
select, deselect : null)

type Mouse is structure(x,y : int ; buttons : *bool)

Keyboard events are represented by the chars branch. The string contains the characters
typed since the last keyboard event was issued. The length of the string is ≥ 1 since keyboard
events are generated only when keyboard input occurs. The time that must elapse between
key presses in order for separate events to be generated is not defined. Keyboard events are
generated only when keys are pressed down. No events are generated when keys are
released.

Mouse events are represented by the mouse branch. The structure contains the coordinates of
the mouse as two integers, and the state of the mouse buttons as a vector of booleans, each
element of which is true iff the corresponding mouse button is currently depressed. Mouse
events are generated repeatedly whenever there is no keyboard input. Consecutive mouse
events may thus contain the same information. To reduce the rate of structure creation, a
single mouse structure is used for all events. Where an application needs to retain the
information in a mouse event it is necessary to copy the contents of the structure, rather than
simply retaining a reference to the structure, since the contents will be overwritten when the
next mouse event is generated.

Each time WIN sends an event to a window application it compares that application with the
application that received the previous event. If they are different WIN sends a deselect event
to the previous application and then a select event to the new one, before sending the current
input event to the new application. Select and deselect events do not themselves carry user
input but they enable an application to perform particular actions when it first becomes the
focus of input and when it ceases to be the focus.

The type of an application is:

proc(Event)

By convention WIN applications do not perform busy waiting for input or call blocking IO
procedures. If this convention is not observed applications in other windows may be
prevented from receiving input directed to them.

31

3.5.1 Background Windows and Applications

By convention WIN applications do not call the raster operations of any window in which a
window manager is running. If this convention is not observed the display areas of windows
displayed by that window manager may be corrupted. It may be required, however, to draw
on the background of a window manager, for example in an application that shows links
between windows by drawing lines between them.

The facility is provided safely by allowing a window manager to display a window in the
background. Only one window may be so displayed at a time and a background window is
always behind all other windows, no matter what levels they are placed at. If the programmer
wishes to be able to draw anywhere on the background of the window manager this can be
done by creating a window the same size as the window containing the window manager,
displaying it in the background and then drawing on that window.

Alternatively the programmer may wish to have an application running in the background of
the window manager without the need to draw on the background. If a background window
is used there is an unnecessary memory overhead involved in storing the contents of the
window. It is possible to set a background application which processes any events not dealt
with by window applications.

3.6 Interface Interactors

The WIN library provides a number of pre-defined user interface interactors from which a
user interface may be composed. Each interactor is a window; interfaces are built up by
displaying interactor windows together in a parent window. The types of interactors provided
are:

• light-buttons
• sliders
• menus
• check boxes
• radio buttons
• hyper-text editors

Various varieties of each interactor type may be created; the generator procedures are
described in Section 4.25.8.

32

4 The Library Environment
This section describes the contents of the standard Library environment. Each environment
within Library is described in a sub-section of the same name, thus for example Section 4.1
Arithmetical describes the contents of the environment Arithmetical within Library.

Most of the types used here are defined in Section 6, which also gives the corresponding
declaration sets. The types Binding, TypeRep and TypeDescriptor are value-dependent types
and their use is described in Section 4.17.

4.1 Arithmetical

abs : proc(int → int)

This procedure returns the absolute value of the parameter. If the parameter is equal to

-maxint - 1

where the value of maxint is described later in this section, the procedure calls unaryInt in the
error environment described in Section 5.1, passing it the parameter. In this case, the result
obtained from the call of unaryInt is returned as the result of abs.

atan : proc(real → real)

This procedure returns the arctangent of the parameter x (given in radians) where:

−

π
2

< atan x() <
π
2

On an error, this procedure calls unaryReal in the error environment, passing it the parameter.
In this case, the result obtained from the call of unaryReal is returned as the result of atan.

bitwiseAnd : proc(int, int → int)

This procedure returns the logical (bitwise) and of the parameters.

bitwiseNot : proc(int → int)

This procedure returns the logical (bitwise) not of the parameter.

bitwiseOr : proc(int, int → int)

This procedure returns the logical (bitwise) or of the parameters.

33

cos : proc(real → real)

This procedure returns the cosine of the parameter (given in radians). On an error, this
procedure calls unaryReal in the error environment, passing it the parameter. In this case, the
result obtained from the call of unaryReal is returned as the result of cos.

epsilon : real

This is the largest value, ε, such that 1.0 + ε = 1.0 in the implementation.

exp : proc(real → real)

This procedure returns e raised to the power of the parameter. On an error, this procedure
calls unaryReal in the error environment, passing it the parameter. In this case, the result
obtained from the call of unaryReal is returned as the result of exp.

float : proc(int → real)

This procedure returns the parameter expressed as a real number.

ln : proc(real → real)

This procedure returns the logarithm to the base e of the parameter. If the parameter is not
greater than zero, this procedure calls unaryReal in the error environment, passing it the
parameter. In this case, the result obtained from the call of unaryReal is returned as the result
of ln.

maxint : int

This is the maximum integer possible in the implementation.

maxreal : real

This is the maximum real possible in the implementation.

pi : real

This is the value of π in the implementation.

rabs : proc(real → real)

This procedure returns the absolute value of the parameter.

random : proc(int → int)

This procedure returns a pseudo-random integer derived from the given seed.

34

shiftLeft : proc(int, int → int)

This procedure returns the value obtained by performing a bitwise shift left on the first
parameter by the number of places given by the second parameter. Zeros are brought in at
the low order end.

shiftRight : proc(int, int → int)

This procedure returns the value obtained by performing a bitwise shift right on the first
parameter by the number of places given by the second parameter. Zeros are brought in at
the high order end.

sin : proc(real → real)

This procedure returns the sine of the parameter (given in radians). On an error, this
procedure calls unaryReal in the error environment, passing it the parameter. In this case, the
result obtained from the call of unaryReal is returned as the result of sin.

sqrt : proc(real → real)

This procedure returns the positive square root of the parameter. If the parameter is negative
the procedure calls unaryReal in the error environment, passing it the parameter. In this case,
the result obtained from the call of unaryInt is returned as the result of sqrt.

truncate : proc(real → int)

This procedure returns the integer i such that for the parameter x,

i ≤ x ≤ i +1 where i * x ≥ 0.

On an error, this procedure calls truncate in the error environment, passing it the parameter.
In this case, the result obtained from the call of truncate is returned as the result.

4.2 Compiler

compileHyperSource : proc(HyperText[Binding] → CompilationResult[TypeDescriptor])

This procedure takes a hyper-program source representation and attempts to compile it. The
result is a variant with the following branches:

voidResult : proc()

This branch is obtained when a void sequence [MBC+94] is compiled
successfully. Calling the procedure causes the sequence to be executed.

35

nonVoidResult : proc(→ any)

This branch is obtained when a non-void sequence is compiled successfully.
Calling the procedure causes the sequence to be executed and the result
returned, injected into any.

typeExpression : TypeDescriptor

This branch is obtained when a type expression is compiled successfully. The
value is a protected representation of a type and optional constructor
information.

error : *CompilationError

This branch is obtained when the compilation fails. The vector contains an
element for each reported compilation error. Each element is a structure
containing the following:

errorRegion : CodeRegion

This contains the character offsets of the beginning and end of
the error region. Note that this is the region in which the error
was first detected; the erroneous code may lie before this.

errorLine : CodeRegion

This contains the character offsets of the beginning and end of
the line containing the error region.

lineNumber : int

This is the number of the line containing the error region.

errorMessage : string

This is a message describing the nature of the error.

compileHyperSourceWith : proc(HyperText[Binding], *string →
CompilationResult[TypeDescriptor])

This procedure performs the same function as compileHyperSource. The additional vector
parameter contains the names of declaration sets against which the source is compiled. The
declaration set corresponding to the vector element with the lowest index forms the innermost
additional scope.

compileString : proc(string → CompilationResult[TypeDescriptor])

This procedure takes a string program representation and attempts to compile it. The result
has the same form as that of compileHyperSource. Calling this procedure has the same effect
as calling genericCompile with the environment produced by calling stringInput with the
string as parameter.

36

compileStringWith : proc(string, *string → CompilationResult[TypeDescriptor])

This procedure performs the same function as compileString. The additional vector
parameter contains the names of declaration sets against which the source is compiled. The
declaration set corresponding to the vector element with the lowest index forms the innermost
additional scope.

compileTypeDefinitions : proc(HyperText[Binding] →
TypeCompilationResult[TypeDescriptor])

This procedure takes a hyper-program source representation containing type definitions and
attempts to compile it. The result is a variant which takes one of the following branches:

typeDefinitions : Table[string, TypeDescriptor]

This branch is obtained when the source is compiled successfully. The table
contains those type definitions in scope at the end of the program.

error : *CompilationError

This branch gives compiler error messages and is obtained when the
compilation fails.

compileTypeDefinitionsWith : proc(HyperText[Binding], *string →
TypeCompilationResult[TypeDescriptor])

This procedure performs the same function as compileTypeDefinitions. The additional vector
parameter contains the names of declaration sets against which the source is compiled. The
declaration set corresponding to the vector element with the lowest index forms the innermost
additional scope.

fileInput : proc(file, bool → env)

This procedure takes a file descriptor and returns an environment containing lexical analysis
procedures to operate over that file.

genericCompile : proc(env → CompilationResult[TypeDescriptor])

This procedure takes an environment containing lexical analysis procedures operating over a
source representation and attempts to compile the source. The result has the same form as
that of compileHyperSource. A compiler error message is obtained if the environment does
not contain the following procedures:

eoi : proc(→ bool)

This procedure should return true iff the end of the source has been reached.

37

read : proc(→ string)

This procedure should return the next character from the source and advance
to the following character.

readName : proc(string → string)

This procedure should read an identifier name from the source and return it
appended to the parameter.

resetLex : proc()

This procedure should reset the current lexical position to the beginning of the
source.

sourceOffset : proc(→ int)

This procedure should return the current character offset into the source.

positionInfo : proc(int → ∗int)

This procedure should return, for a given offset into the source, a vector with a
lower bound of 1 and the following values in the first three elements: the
character offset of the start of the line containing the given offset, the character
offset of the end of the line containing the given offset, and the number of the
line containing the given offset. The offset parameter specifies a character in
the source, with 1 corresponding to the first character. The returned line start
and end offsets should correspond to the first and last characters of the line
excluding newline characters. The line numbering should start at 1.

sourceFragment : proc(int, int → string)

This procedure should return the fragment of the source between and
including the given character offsets.

getDeclarationSet : proc(string → Optional[Table[string, Binding]])

This procedure returns a table operating on the declaration set with the given name, if it
exists. This table can then be used to enter, look up, remove and scan bindings in the
declaration set.

newDeclarationSet : proc(string)

This procedure creates a new declaration set with the given name, unless one already exists in
which case it has no effect.

38

removeDeclarationSet : proc(string)

This procedure removes the declaration set with the given name, unless no such declaration
set exists in which case it has no effect.

scanDeclarationSets : proc(proc(string → bool))

This procedure calls the given procedure repeatedly, passing it the name of each declaration
set, until it has been called for all declaration sets or it returns false. The declaration sets are
scanned in increasing name order.

stringInput : proc(string → env)

This procedure takes a string and returns an environment containing lexical analysis
procedures to operate over that string.

4.3 Concurrency

semaphoreGen : proc(int, string → Semaphore)

This procedure takes an initial value and a name for a semaphore and returns a structure
containing procedures to operate on the semaphore. If the parameter is negative an initial
value of zero is used. The name is used only for debugging purposes. The operations on the
semaphore are defined as in [SPG91] p. 153:

wait : proc()

The value of the semaphore is decremented. If the new value is less than zero
then the current thread is suspended and its dependency on the semaphore is
recorded.

signal : proc()

The value of the semaphore is incremented. If the new value is less than or
equal to zero, one of the threads suspended on the semaphore is selected and
made runnable.

threadPackage : ThreadPack

This abstract datatype instance contains procedures to operate on threads. Its closure contains
a set of threads, each of which may be runnable or suspended. At any time while the
Napier88 system is active, one or more of the runnable threads are executing. The
programmer may manipulate threads as witnesses of the abstract datatype. Denoting the
witness type as Thread, the operations are:

39

start : proc(proc() → Thread)

This procedure creates a new thread to execute the given void procedure, adds
the thread to the set of threads, marks the thread as runnable, and returns an
identifier for the thread.

getCurrentThread : proc(→ Thread)

This procedure returns the identifier of the thread executing it.

getAllThreads : proc(→ *Thread)

This procedure returns a vector containing identifiers for all the current
members of the set of threads.

kill : proc(Thread)

This procedure removes the thread denoted by the given identifier from the set
of threads. If the thread is currently executing it is terminated. If no runnable
threads remain the Napier88 system terminates.

restart : proc(Thread)

This procedure marks the thread denoted by the given identifier as runnable.
If the thread is currently executing the procedure has no effect.

suspend : proc(Thread)

This procedure marks the thread denoted by the given identifier as suspended.
If the thread is currently executing it is suspended immediately. If no runnable
threads remain the Napier88 system terminates.

getStatus : proc(Thread → string)

This procedure returns the status of the given thread identifier as one of the
following strings: "runnable", "suspended" or "dead".

getParent : proc(Thread → Optional[Thread])

This procedure returns the identifier of the thread from which the given thread
was started, if it has not yet terminated. The absent branch is returned if the
parent has terminated or if the given thread has no parent.

suspendUnlock : proc(string, Thread)

This procedure is for system use only and is password protected.

40

4.4 Device

colourMap : proc(file, pixel, int)

If the file parameter is a raster device, this procedure sets the colour map entry for the pixel
parameter to the integer parameter. The interpretation of the integer is device dependent.

If the file is not a raster device, a call is made to the procedure colourMap in the error
environment with the parameters supplied to the original call.

colourOf : proc(file, pixel → int)

If the file parameter is a raster device, this procedure returns the colour map entry associated
with the given pixel for that device.

If the file is not a raster device, a call is made to the procedure colourOf in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

getCursor : proc(file, *image)

If the parameter is a raster device, this procedure copies the cursor images associated with
that device into the vector parameter.

If the file is not a raster device, a call is made to the procedure getCursor in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

The elements of the vector are filled in as follows:

1 the cursor image,
2 the mask image.

If the vector has more than two elements, the extra elements are ignored. If the vector has less
than two elements, only the elements present are filled in.

getCursorInfo : proc(file, *int)

If the file parameter is a raster device, this procedure copies the cursor information for that
device into the vector parameter.

If the file is not a raster device, a call is made to the procedure getCursorInfo in the error
environment with the parameters supplied to the original call.

The elements of the vector are filled in as follows:

1 the cursor’s X position,
2 the cursor’s Y position,
3 the rasterop rule used to display the cursor,
4 the cursor’s X hotspot,
5 the cursor’s Y hotspot.

41

The interpretation of the rasterop rule may be found in the description of rasterOp in Section
4.11.2.

If the vector has more than five elements, the extra elements are ignored. If the vector has less
than five elements, only the elements present are filled in.

getScreen : proc(file → image)

If the parameter is a raster device, this procedure returns the image associated with that
device. If the file is not a raster device, a call is made to the procedure getScreen in the error
environment with the parameter supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

locator : proc(file, *int)

If the file parameter is a mouse or tablet device, this procedure copies the locator information
into the vector parameter.

If the file is not a mouse or tablet device, a call is made to the procedure locator in the error
environment with the parameters supplied to the original call.

The elements of the vector are filled in as follows:

1 if the file is a tablet, its X dimension, otherwise 0,
2 if the file is a tablet, its Y dimension, otherwise 0,
3 the locator X position,
4 the locator Y position,
5 a date stamp,
6 the state of button 1, representing down as 1 and up as 0,
7...n the state of button i - 5 where i is the vector index.

If the vector has more elements than the information available, the extra elements are
ignored; if the vector has too few elements, only the elements present are set. If the file is a
tablet device or a mouse device associated with an X-window, the X and Y positions are
absolute. Otherwise the X and Y positions are relative to the those of the last call of locator.

setCursor : proc(file, *image)

If the file parameter is a raster device, this procedure sets the cursor and mask images to be
copies of elements of the vector parameter.

If the file is not a raster device, a call is made to the procedure setCursor in the error
environment with the parameters supplied to the original call.

The elements of the vector are interpreted as follows:

1 specifies the cursor image,
2 specifies the mask image.

If the vector has more than two elements, the extra elements are ignored; if the vector has less
than two elements, only the elements present are set.

42

setCursorInfo : proc(file, *int)

If the file parameter is a raster device, this procedure alters the cursor information for that
device according to the contents of the vector parameter.

If the file is not a raster device, a call is made to the procedure setCursorInfo in the error
environment with the parameters supplied to the original call.

The elements of the vector are interpreted as follows:

1 specifies the cursor’s X position,
2 specifies the cursor’s Y position,
3 specifies the rasterop rule used to display the cursor,
4 specifies the cursor’s X hotspot,
5 specifies the cursor’s Y hotspot.

The interpretation of the rasterop rule may be found in the description of rasterOp in Section
4.11.2.

If the vector has more than five elements, the extra elements are ignored; if the vector has less
than five elements, only the elements present are set.

4.5 Distribution

remoteStoreTable : Table[string, RemoteStore]

This table contains mappings from symbolic remote store names to actual locations of stores.
The symbolic names are strings, while the store location structures each contain the name of a
remote host, the pathname of a store at that host, a user name and a password. The host name
may be specified as a local machine name or a full IP host name. The user name and
password may be empty strings. For example:

remoteStoreTable(enter)(
 "panda",
 RemoteStore("panda", "/pstore2/demoStore"))

remoteStoreTable(enter)(
 "aRemoteStore",
 RemoteStore("mcname.somewhere.edu", "/napier/store"))

serviceTable : Table[string, proc(file, env, env)]

This table contains mappings from remote service names to procedures which implement
those services. Initially the table contains one procedure, keyed by the string
"remoteNapier", which implements the remote scan and copy functions described in this
section. It is recommended that this procedure is not overwritten or removed. The user may
provide new services by adding entries to the table.

When an incoming connection from a remote store requests a named service, by writing the
name of the service followed by a carriage return to the connecting socket, the corresponding
procedure is looked up in the table. The procedure is then called, passing it the socket and
environments which contain procedures to read to and write from the socket respectively.

43

scan : proc(RemoteStore, string → RemoteResult[StoreScan[TypeRep]])

This procedure takes a remote store description and attempts to connect to that store and
return information about the contents of the store. If the store description is not valid the
result is a string describing the error. Otherwise the result depends on whether the store
contains an environment at the root of persistence.

If the store contains an environment the string parameter is interpreted as the pathname of an
environment accessible from the root environment, and the result is a list of structures
containing one element for each of the bindings present in the remote environment at the time
of the scan. Each element contains the name of the binding as a string and a representation of
the type of the binding. The pathname is given relative to the top level environment and
should consist of an initial slash followed by environment names separated by slashes, for
example:

"/Library/Distribution" ! Distribution contained in Library contained in top level.
"/" ! Top level environment.

If the pathname is not well formed the result is a string describing the error.

If the store does not contain an environment at the root of persistence, the string parameter is
ignored and the result is a representation of the type of the root of persistence.

The operation of this procedure depends on whether a Napier88 process is currently active in
the remote store. If so the procedure attempts to connect with the remote process at the
socket level and any user name or password provided with the remote store description is
ignored. If this attempt fails, or if no process is active in the remote store, the procedure
attempts to copy the remote store to the local machine in order to scan it. In this case the user
name and password, if present, may be used in the attempt to connect to the remote machine.

copyValue : proc(RemoteStore, string → RemoteResult[any])

This procedure takes a remote store description and attempts to copy a value from it. If the
store contains an environment at the root of persistence the string parameter is interpreted as a
pathname from the root environment in the same way as for scan above. In this case the
result is a copy of the remote binding injected into any. If the store does not contain an
environment, the pathname is not well formed or no binding with the given name is present,
the result is a string describing the error.

User name and password information is used in the same way as for scan.

copyStore : proc(RemoteStore → RemoteResult[any])

This procedure takes a remote store description and attempts to make a deep copy of its
contents. If the attempt fails the result is a string describing the error, otherwise the result is a
copy of the store contents injected into any.

User name and password information is used in the same way as for scan.

createStore : proc(RemoteStore, any → RemoteResult[null])

This procedure takes a remote store description and a value injected into any, and attempts to
create a new store containing that value. If the remote store already exists or the attempt to

44

create the store fails for some other reason, the result is a string describing the error.
Otherwise the result is nil.

User name and password information is used in the same way as for scan.

setListener : proc(bool)

This procedure turns listening in the local store on if the parameter is true and off otherwise.
Listening involves monitoring the network for incoming connection attempts from other
stores. If it is turned off no other store will be able to connect to the local store. The
performance of threads in the local store will however be increased.

notifyCopy : proc(string)

This procedure is called when a copy request from another store is satisfied. It is passed the
pathname of the value copied.

notifyScan : proc(string)

This procedure is called when a scan request from another store is satisfied. It is passed the
pathname of the environment scanned.

4.6 Environment

environment : proc(→ env)

This procedure creates a new empty environment.

lookup : proc(env, string → Optional[any])

This procedure looks up the binding with the given name in the given environment and
returns the current value if any.

scan : proc(env, proc(string, TypeRep, bool))

This procedure calls the given procedure once for every binding in the given environment, in
alphabetical order of binding name. Each invocation of the procedure is passed the name of
the identifier in the binding, a representation of its type and a boolean to indicate whether or
not the location is constant.

4.7 Event

The Napier88 system recognises a small range of asynchronous events. These are a hangup
signal, an interrupt signal, a quit signal and a timer interrupt. On completion of a particular
event procedure, the procedure will return to the running program.

The Event environment contains the procedures that are called when one of these events is
detected by the system. These procedures are variables and the user may change them by
assignment. The default procedures are described below.

45

The UNIX signals referred to may be found in §3 of the UNIX Manual under Signal.

hangup : proc()

This procedure is called if the Napier88 system receives a UNIX SIGHUP signal. By default,
this procedure stops the Napier88 system.

interrupt : proc()

This procedure is called if the Napier88 system receives a UNIX SIGINT signal. By default,
this procedure does nothing.

quit : proc()

This procedure is called if the Napier88 system receives a UNIX SIGQUIT signal. By
default, this procedure stops the Napier88 system.

timer : proc()

This procedure is called 30 times per second. By default, this procedure does nothing.

4.8 FailValues

The FailValues environment contains dummy instances of some commonly used types. The
types are defined in Section 6.

applicationFailValue : Application
bindingEditorFailValue : Editor[Binding]
bindingFailValue : Binding
borderStyleFailValue : BorderStyle
buttonPackFailValue : ButtonPack
choicePackFailValue : ChoicePack
cursorFailValue : Cursor
displayInfoFailValue : DisplayInfo
envFailValue : env
fontFailValue : Font
fontPackFailValue : FontPack
hyperProgramPackFailValue : EditorPack[Binding]
hyperSourceFailValue : HyperText[Binding]
iconManagerFailValue : IconManager
indexFailValue : Index
intVectorFailValue : *int
levelFailValue : Level
limitFailValue : Limit
menuPackFailValue : MenuPack
nullEditorFailValue : Editor[null]
nullEditorPackFailValue : EditorPack[null]
nullHyperTextFailValue : HyperText[null]
posFailValue : Pos
rectFailValue : Rect
screenWindowManagerPackFailValue : ScreenWindowManagerPack
sizeFailValue : Size

46

sliderPackFailValue : SliderPack
soundFailValue : *int
stringVectorFailValue : *string
voidProcFailValue : proc()
windowFailValue : Window
windowManagerFailValue : WindowManager
windowStateFailValue : WindowState

4.9 Font

The Font environment contains the following instances of type FontPack:

cmrB14

cmrR14

courB10 courB12 courB14

courR10 courR12 courR14

gallantR19

screenB12 screenB14

screenR7 screenR11 screenR12 screenR13 screenR14

serifR10 serifR11 serifR12 serifR14 serifR16

Table 4.1: Font names

Each instance is a structure with the following fields:

font : Font

This structure contains characters, a vector of images; fontHeight, the height
of the characters in pixels; descender, the distance from the bottom of a
character to the base line; and info, a string describing the font.

stringToTile : proc(string → image)

This procedure returns a new image onto which the characters of the given
string have been copied.

charToTile : proc(string → image)

This procedure returns the image corresponding to the first character of the
given string. This may be used as an optimisation of stringToTile in some
cases.

The widths of characters in a font may vary, but the programmer may examine these by
taking the x dimension of the appropriate image. For example:

47

this is the baseline

descender 4 pixels

height 15 pixels

width 8 pixels width 10 pixels

Figure 4.1: Character dimensions

4.10 Format

eformat : proc(real, int, int → string)

This procedure returns a string representation of the real parameter, with an exponent. The
first integer parameter gives the required number of digits before the decimal point and the
second the number of digits after the decimal point. If either integer parameter is negative, a
call is made to the procedure eformat in the error environment with the parameters supplied
to the original call. In this case, the result obtained from the call of the error procedure is
returned as the result.

fformat : proc(real, int, int → string)

This procedure returns a string representation of the real parameter. The first integer
parameter gives the required number of digits before the decimal point and the second the
number of digits after the decimal point. If the first integer is too small to represent the real
number, or the second integer is negative, a call is made to the procedure fformat in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

gformat : proc(real → string)

This procedure returns a string representation of the real parameter in the most suitable
format.

iformat : proc(int → string)

This procedure returns a string representation of the integer.

48

4.11 Graphical

4.11.1 Outline

makeDrawFunction : proc(string → DrawFunction)

This procedure is for use with Outline graphics [Mor82], [MBB+86]. It takes a string
parameter describing a device type and returns a procedure to display Outline pictures on that
device. The devices supported are:

"image" Napier88 raster image
"g6320" colour plotter

If the parameter is not one of the strings listed above the null branch of the variant is returned.
For the parameter "image" the result is of type:

proc(image, pic, real, real, real, real)

otherwise the result is of type:

proc(file, pic, real, real, real, real)

In either case the procedure returned takes a picture and a bounding rectangle in the infinite
two dimensional real space over which all pictures are defined. The real parameters give the
minimum x, maximum x, minimum y and maximum y bounds respectively. The picture is
clipped to the area of the bounding rectangle. The rectangle is then scaled and shifted to fit
the area of the device on which it is drawn.

If the x parameters are equal or the y parameters are equal then the bounding box has zero
size and a call is made to the Draw procedure in the graphical errors environment.

If the picture being drawn contains a text statement whose end points are coincident, a call is
made to the Text procedure in the graphical errors environment. The result returned by the
Text procedure is used to replace the erroneous text statement.

The mapping of a picture onto a device is performed using real arithmetic which, in certain
circumstances, may result in arithmetic errors. If any arithmetic errors do occur the
appropriate procedure in the arithmetical errors environment is called.

4.11.2 Raster

This environment contains procedures for use with raster graphics [MBD+86].

getPixel : proc(image, int, int → pixel)

This procedure returns the pixel at the given position in the image. The first integer
parameter gives the x coordinate and the second integer parameter the y coordinate. If the
position lies outside the image a call is made to the procedure getPixel in the error
environment. In this case, the result obtained from the call of the error procedure is returned
as the result.

49

line : proc(image, int, int, int, int, pixel, int)

This procedure draws a line on the image parameter. The x and y coordinates of the first end
point are given by the first and second integer parameters respectively. The x and y
coordinates of the second end point are given by the third and fourth integer parameters
respectively. The line is drawn using the pixel parameter which is combined with the pixels
of the image using the raster rule given by the last parameter. The interpretation of the raster
rule is the same as for rasterOp.

pixelDepth : proc(pixel → int)

This procedure returns the number of planes in the pixel.

rasterOp : proc(image, image, int)

This procedure performs a raster operation from the first image S onto the second image D
using a rule given by dividing the integer parameter by 16 and interpreting the remainder as
follows:

0 S and ~S 8 S and D

1 ~ (S or D) 9 ~S xor D

2 ~S and D 10 D

3 ~S 11 ~S or D

4 S and ~D 12 S

5 ~D 13 S or ~D

6 S xor D 14 S or D

7 ~ (S and D) 15 S or ~S

Table 4.2: Raster rules

where on maps to true and off maps to false.

setPixel : proc(image, int, int, pixel)

This procedure sets the pixel at the given position in the image. The first integer parameter
gives the x coordinate and the second integer parameter the y coordinate. If the position lies
outside the image a call is made to the procedure setPixel in the error environment.

xDim : proc(image → int)

This procedure returns the X dimension of the image.

yDim : proc(image → int)

This procedure returns the Y dimension of the image.

50

zDim : proc(image → int)

This procedure returns the number of planes in the image.

4.12 InteractiveEnvironment

programmingEnv : proc(int, string, string)

This procedure attempts to start the named interactive programming environment session.
The first parameter gives the display depth in planes; the second parameter gives the X server
name; the third parameter gives the name of the session. If either of the string parameters is
the empty string the current value of the environment variable DISPLAY, and the string
"napier", are used as respective defaults. The result of the procedure is a procedure which
halts the session.

Settings : env

This environment contains variables which control the default window positions and sizes for
the interactive programming environment.

4.13 InterfaceEditor

This environment is currently empty.

4.14 IO

stdIn : file

This is a file variable that is initially connected to the control terminal for the Napier88
system.

endOfInput : proc(→ bool)

This procedure reads one byte as an integer from the file stdIn. If the read is successful, false
is returned. If an I/O error occurs the procedure calls the endOfInputIOE procedure in the
error environment. If the end of input is encountered the procedure returns true. The
procedure attempts to make the byte read available to the next endOfInput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readInt or readReal
operation. If the byte cannot be made available, a call is made to the endOfInputUnread
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of endOfInput.

inputPending : proc(→ bool)

This procedure returns true iff there is input available to be read from the file stdIn.

51

peekByte : proc(→ int)

This procedure reads one byte as an integer from the file stdIn. If an I/O error occurs the
procedure calls the peekByteIOE procedure in the error environment. If the end of input is
encountered the procedure calls the peekByteEOI procedure in the error environment. The
procedure attempts to make the byte read available to the next endOfInput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readInt or readReal
operation. If the byte cannot be made available, a call is made to the peekByteUnread
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of peekByte.

peekChar : proc(→ string)

This procedure reads one character from the file stdIn. If an I/O error occurs the procedure
calls the peekCharIOE procedure in the error environment. If the end of input is encountered
the procedure calls the peekCharEOI procedure in the error environment. The procedure
attempts to make the character read available to the next endOfInput, readByte, readChar,
peekByte, peekChar, readString, readLine, readBool, readInt or readReal operation. If the
character cannot be made available, a call is made to the peekByteUnread procedure in the
error environment. The result obtained from any of the error procedures is returned as the
result of peekChar.

readBool : proc(→ bool)

This procedure reads one boolean from the file stdIn. The layout characters " ", "'t" and "'n"
are ignored. If the characters after any layout characters do not form a boolean the procedure
calls the readBoolBadChar procedure in the error environment. The characters up to and
including the first erroneous character will have been read. If an I/O error occurs, the
procedure readBool calls the readBoolIOE procedure in the error environment. If the end of
input is encountered the procedure calls the readBoolEOI procedure in the error environment.
The result obtained from any of the error procedures is returned as the result of readBool.

readByte : proc(→ int)

This procedure reads one byte as an integer from the file stdIn. If an I/O error occurs the
procedure calls the readByteIOE procedure in the error environment. If the end of input is
encountered the procedure calls the readByteEOI procedure in the error environment. The
result obtained from either of the error procedures is returned as the result of readByte.

readChar : proc(→ string)

This procedure reads one character from the file stdIn. If an I/O error occurs the procedure
calls the readCharIOE procedure in the error environment. If the end of input is encountered
the procedure calls the readCharEOI procedure in the error environment. The result obtained
from either of the error procedures is returned as the result of readChar.

readInt : proc(→ int)

This procedure reads one integer from the file stdIn. The layout characters " ", "'t" and "'n"
are ignored. If the first character after any layout characters is not a digit or a sign which is
followed by a digit, the procedure calls the readIntBadChar procedure in the error

52

environment. The erroneous character will have been read. If the end of input is encountered
before the first digit the procedure calls the readIntEOI procedure in the error environment. If
an I/O error occurs the procedure calls the readIntIOE procedure in the error environment.

The procedure reads characters from the file stdIn until it has parsed an integer. The parsing
may involve reading the first character following the integer. When this occurs the procedure
attempts to make the extra character read available to the next endOfInput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readInt or readReal
operation. If the character cannot be made available a call is made to the readIntUnread
procedure in the error environment.

When an integer has been successfully parsed it is converted into an integer value. If an
arithmetic error occurs during the conversion, a call is made to the readIntOverflow
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of readInt.

readLine : proc(→ string)

This procedure reads characters from the file stdIn up to and including a newline character. It
concatenates the characters and returns them as a string without the newline character. If the
end of input is encountered during this operation the procedure calls the readLineEOI
procedure in the error environment. If an I/O error occurs the procedure calls the
readLineIOE procedure in the error environment. The result obtained from either of the error
procedures is returned as the result of readLine.

readReal : proc(→ real)

This procedure reads one real from the file stdIn. The layout characters " ", "'t" and "'n" are
ignored. If the first character after any layout characters is not a digit or a sign which is
followed by a digit, the procedure calls the readRealBadChar procedure in the error
environment. The erroneous character will have been read. If the end of input is encountered
before the first digit the procedure calls the readRealEOI procedure in the error environment.
If an I/O error occurs the procedure calls the readRealIOE procedure in the error
environment.

This procedure reads characters from the file stdIn until it has parsed a real. The parsing may
involve reading the first character following the real. When this occurs the procedure
attempts to make the extra character read available to the next endOfInput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readInt or readReal
operation. If the character cannot be made available a call is made to the readRealUnread
procedure in the error environment.

When a real has been successfully parsed it is converted into a real value. If an arithmetic
error occurs during the conversion, a call is made to the readRealOverflow procedure in the
error environment. The result obtained from any of the error procedures is returned as the
result of readReal.

readString : proc(→ string)

This procedure reads a string literal (a string in quotes) from the file stdIn. The layout
characters " ", "'t" and "'n" are ignored.

If the first character after any layout characters is not a double quote the procedure calls the
readStringBadChar procedure in the error environment. The erroneous character will have

53

been read. If an I/O error occurs the procedure calls the readStringIOE procedure in the error
environment. If the end of input is encountered the procedure calls the readStringEOI
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of readString.

makeReadEnv : proc(file → env)

This procedure creates an environment that contains the procedures endOfInput,
inputPending, readByte, readChar, peekByte, peekChar, readString, readLine, readBool,
readInt and readReal, each of which operates on the given file rather than the file stdIn. Each
of these procedures may call the error procedures described above.

stdOut : file

This is a file variable that is initially connected to the control terminal for the Napier88
system.

writeBool : proc(bool)

This procedure writes the boolean to the file stdOut. If an error occurs a call is made to the
procedure writeBool in the error environment.

writeByte : proc(int)

This procedure computes the bitwise and of the integer with 255 and writes the result as a
byte to the file stdOut. If an error occurs a call is made to the procedure writeByte in the error
environment.

writeInt : proc(int)

This procedure writes the integer to the file stdOut. If an error occurs a call is made to the
procedure writeInt in the error environment.

writeReal : proc(real)

This procedure writes the real to the file stdOut. If an error occurs a call is made to the
procedure writeReal in the error environment.

writeString : proc(string)

This procedure writes the string to the file stdOut. If an error occurs a call is made to the
procedure writeString in the error environment.

integerWidth : int

Integers written out using writeInt are displayed, left justified, in this number of characters. If
the number does not fit within this space, the exact number of characters is used.
integerWidth is a variable with an initial value of 12.

54

realWidth : int

Reals written out using writeReal are displayed, left justified, in this number of characters. If
the number does not fit within this space, the exact number of characters is used. realWidth is
a variable with an initial value of 14.

spaceWidth : int

spaceWidth spaces are written out after any integer or real number written using writeInt or
writeReal. spaceWidth is a variable with an initial value of 2.

outputString : proc(string)

This procedure writes out the string using the procedure obtained by calling
getCurrentWriteString in the CurrentState environment.

makeWriteEnv : proc(file → env)

This procedure creates an environment that contains the procedures writeByte, writeString,
writeBool, writeInt and writeReal, each of which operates on the given file rather than the file
stdOut. Each procedure may call the error procedures described above. The environment also
contains the variables integerWidth, realWidth and spaceWidth, to control the operation of
writeInt and writeReal on the file. The initial values of the three variables are 12, 14 and 2
respectively.

4.14.1 PrimitiveIO

The procedures in this environment map the I/O facilities of the operating system onto the
Napier88 system.

close : proc(file → int)

This procedure closes the file associated with the given file descriptor. The integer returned
is 0 if the operation was successful and -1 otherwise.

create : proc(string, int → file)

This procedure creates a file with the given name. The integer parameter specifies the
decimal value of the (UNIX) file protection bitmap. If the creation fails, nilfile is returned.

errorNumber : proc(→ int)

This procedure returns the error number of the last primitive I/O operation executed by the
current thread. The error numbers are those returned by the last UNIX I/O operation and are
described in intro(2) in the UNIX Manual.

55

getByte : proc(int, int → int)

This procedure returns a byte from the word given by the first parameter. The second
parameter gives the byte index from the start of the word, 0 indicating the first byte. If an
illegal index is specified a call is made to the getByte procedure in the error environment.

ioctl : proc(file, *int, int → int)

The ioctl commands correspond exactly to those supported by the UNIX ioctl system call.
The ioctl instruction will not execute the specified command unless it is applicable to a
compatible terminal and the vector of integers contains sufficient integer elements to hold the
parameters or results of the specified command. The supported commands are:

TIOCSETP TIOCSETN TIOCSETC TIOCSLTC TIOCSETD
TIOCFLUSH TIOCSTI TIOCSPGRP TIOCLBIS TIOCLBIC
TIOCEXCL TIOCNXCL TIOCHPCL TIOCSBRK TIOCCBRK
TIOCSDTR TIOCCDTR TIOCSTOP TIOCSTART TIOCGETP
TIOCGETC TIOCGLTC TIOCGETD TIOCGPRG TIOCOUTQ
FIONREAD FIONBIO

open : proc(string, int → file)

This procedure opens the file with the given name in access mode given by the integer
parameter interpreted as follows:

0 read only
1 write only
2 read and write

If the open fails, nilfile is returned.

A particular file type and attributes may be specified by prefixing the file name with one of
the following prefixes:

"DISK:", "TTY:", "STDIN:", "STDOUT:", "STDERR:",
"ACCEPT:", "CONNECT:", "SOCKET:", "SHELL:", "WINDOW:"

If no recognised prefix is given the host operating system is interrogated after a file is
opened/created to determine its type.

Disk file objects are created whenever a file is opened or created in an external
file system. The filename prefix for a disk file is "DISK:", for example:

open("DISK:myfile", 2)

Terminal file objects are created whenever a terminal device is opened. The
filename prefix is "TTY:". If the filename prefixes "STDIN:", "STDOUT:" or
"STDERR:" are specified then file objects are created for the Napier system’s
standard input, output and error. These files are permanently open and are
assumed to be terminal devices. For "STDIN:", "STDOUT:" and "STDERR"
the access mode parameter is ignored. For example:

open("TTY:/dev/ttyp1", 2)

56

open("STDIN:", 2)
open("STDOUT:", 2)
open("STDERR:", 2)

A socket file object is created whenever an incoming network connection is
accepted or a connection to a remote Napier system is successful. The
filename prefixes for a socket are "ACCEPT:", "CONNECT:", "SOCKET:"
and "SHELL:". The access mode parameters are ignored.

"ACCEPT:" is used to accept a connection from any remote Napier system.
The remainder of the filename is ignored. If no other Napier system is
attempting to connect then nilfile is returned. For example:

open("ACCEPT:", 2)

"CONNECT:" is used to connect to a remote Napier system. This is specified
by a host identifier, followed by a double colon and the path name of a Napier
store directory. The host identifier may be either a local name or full internet
address. If the connection attempt fails then nilfile is returned. Possible
reasons for failure include:

• the host identifier is not a valid address;
• the store directory does not exist or does not contain a valid Napier store;
• the remote Napier system is not currently accepting connections; or
• there is no interpreter currently running against the remote store.

For example:

open("CONNECT:panda::/pstore2/demoStore", 2)
open("CONNECT:mcname.somewhere.edu::/pstore2/demoStore", 2)

"SOCKET:" is used to connect to a named port on a remote system. This is
specified by a host identifier, followed by a double colon and the number of a
port. The host identifier may be either a local name or full internet address. If
the connection attempt fails then nilfile is returned. Possible reasons for
failure include:

• the host identifier is not a valid address;
• the port number is not valid; or
• the host is not currently accepting connections on the named port.

For example:

open("SOCKET:panda::7123", 2)
open("SOCKET:mcname.somewhere.edu::80", 2)

"SHELL:" is used to specify a socket connected to a command line interpreter.
The command line interpreter is started when the Napier system is invoked. In
a UNIX system the interpreter is a shell.

open("SHELL:", 2)

A window file object is created whenever a raster window is opened. The
filename prefix for a window is "WINDOW:". If no window name is given a

57

default window is opened in the host environment. For example, a shell
variable DISPLAY may have been set to specify an X display to use.
Alternatively it may be possible to access the local frame buffer and use that to
simulate a window.

A window filename may include specifications of the x, y and z dimensions of
the window as well as its initial x and y positions. The specifications are
encoded by prefixing a number by either "XDIM:", "YDIM:", "ZDIM:",
"XPOS:" or "YPOS:" respectively. Each of these attributes is prefixed by a
space character to separate them from the rest of the filename. If possible these
specifications will be used. If no z dimension is specified a default of 1 is
assumed. For example:

open("WINDOW: XDIM:600 YDIM:600 XPOS:50 YPOS:50 ZDIM:8", 2)

readBytes : proc(file, *int, int, int → int)

This procedure reads bytes from the given file into the vector of integers. The first integer
parameter gives the byte offset from the start of the vector’s elements. The second integer
parameter gives the maximum number of bytes to be read. The procedure returns the number
of bytes read if the operation completes successfully and -1 otherwise. The number of bytes
read is not necessarily the maximum possible.

seek : proc(file, int, int → int)

This procedure sets the position of the next read or write from the given file. The first integer
parameter gives the offset in the file relative to the position determined by the second integer
parameter as follows:

0 start of file
1 current position
2 end of file

The procedure returns the position in the file if the operation was successful and -1 otherwise.

setByte : proc(int, int, int → int)

This procedure returns the integer obtained by replacing a byte in the word given by the first
parameter. The second parameter gives the byte index from the start of the word, 0 indicating
the first byte. The third parameter gives the byte with which it is to be replaced. If an illegal
index is specified a call is made to the setByte procedure in the error environment.

writeBytes : proc(file, *int, int, int → int)

This procedure writes bytes to the given file from the vector of integers. The first integer
parameter gives the byte offset from the start of the vector’s elements. The second integer
parameter gives the maximum number of bytes to be written. The procedure returns the
number of bytes written if the operation completes successfully and -1 otherwise. The
number of bytes written is not necessarily the maximum possible.

58

4.15 Lists

listPackGen : proc[T](→ ListPack[T])

This procedure returns a structure containing procedures to manipulate a list with elements of
type T. The list implementation maintains a current position in the list, represented by an
integer specifying the number of list elements before the current position. This may range
between 0 and the number of elements in the list. Initially the list is empty and the current
position is 0. The procedures are:

insert : proc(T)

This procedure inserts an element into the list at the current position. The
current position now lies after the new element.

replace : proc(T)

This procedure has no effect if the list is empty. Otherwise it replaces the
element at the current position with the given element. The current position
now lies at the new element.

clear : proc()

This procedure deletes all the elements in the list.

delete : proc()

This procedure has no effect if the current position is equal to the number of
list elements i.e. at the end of the list. Otherwise it deletes the element at the
current position. The current position remains unchanged.

element : proc(→ Optional[T])

This procedure returns the absent branch if the list is empty or the current
position is equal to the number of list elements i.e. at the end of the list.
Otherwise it returns the element at the current position. The current position
remains unchanged.

length : proc(→ int)

This procedure returns the number of elements in the list.

pos : proc(→ int)

This procedure returns the current position.

59

atEnd : proc(→ bool)

This procedure returns true iff the current position lies at the end of the list.

go : proc(int)

This procedure sets the current position to the given value. If the value is less
than 0 or greater than the number of list elements the procedure has no effect.

goNext : proc()

This procedure increments the current position by 1. If the current position is
already at the end of the list the procedure has no effect.

goPrev : proc()

This procedure decrements the current position by 1. If the current position is
already at the start of the list the procedure has no effect.

find : proc(proc(T → bool) → int)

This procedure scans the elements of the list in order from the start of the list,
applying the given procedure to each element, until true is obtained or the end
of the list is reached. The procedure returns the position of the element for
which true was obtained, or -1 if there was no such element.

4.16 People

This environment contains the following:

al : image Al Dearle, University of Stirling
dan : image Dan Williams, University of St Andrews
dave : image Dave Munro, University of St Andrews
dharini : image Dharini Balasubramaniam, University of St Andrews
fred : image Fred Brown, University of Adelaide
graham : image Graham Kirby, University of St Andrews
john : image John Napier, University of St Andrews (retd)
malcolm : image Malcolm Atkinson, University of Glasgow
quintin : image Quintin Cutts, University of Glasgow
richard : image Richard Connor, University of St Andrews
ron : image Ron Morrison, University of St Andrews
snoopy : pic Snoopy the Beagle, Peanuts
stephan : image Stephan Scheuerl, University of St Andrews
vivienne : image Vivienne Dunstan, University of St Andrews

60

4.17 Protection

protectedBinding : Protected

This abstract datatype provides access to the protected type Binding which represents entities
that may be passed to the browser or linked into hyper-programs. The code below shows an
example of its use:

project PS() as root onto env :
use root with Library : env in
use Library with Protection,Utilities : env in
use Protection with protectedBinding : Protected in
use protectedBinding as X[Binding] in
use Utilities with bindingToHyperSource : proc(string,Binding -> HyperText[Binding]) in
...

protectedTypeDescriptor : Protected

This abstract datatype provides access to the protected type TypeDescriptor which represents
instances of type constructor information. It is used in the same way as protectedBinding.

protectedTypeRep : Protected

This abstract datatype provides access to the protected type TypeRep which represents types.
It is used in the same way as protectedBinding.

4.18 RasterRules

This environment contains the following integers which represent raster rules for use with
window operations:

copyRule andRule orRule xorRule
notRule norRule nandRule xnorRule

4.19 String

asciiToString : proc(int → string)

This procedure returns the single character string corresponding to the ASCII code given by
calculating i rem 128, where i is the parameter.

digit : proc(string → bool)

This procedure returns true iff the first character of the string is a decimal digit.

length : proc(string → int)

This procedure returns the number of characters in the given string.

61

letter : proc(string → bool)

This procedure returns true iff the first character of the string is a lower case or upper case
letter.

stringToAscii : proc(string → int)

This procedure returns the ASCII code for the first character of the given string, unless the
string is the empty string, in which case 0 is returned.

4.20 System

abort : proc()

This procedure terminates the currently executing thread. No stabilisation is performed.

diskgc : proc()

This procedure performs a garbage collection of the entire persistent store.

stabilise : proc()

This procedure records the entire state of the Napier88 system on non-volatile storage. It is
called automatically on normal program termination.

4.21 Tables

compareInt : Comparison[int]

This structure contains procedures to test equality and ordering on integers, and may be used
with tableGen to generate tables keyed by integers.

compareString : Comparison[string]

This structure contains procedures to test equality and ordering on strings, and may be used
with tableGen to generate tables keyed by strings.

intHashTableGen : proc[Data](int, Data → Table[int, Data])

This procedure returns an associative hash table keyed by integers, whose interface is as
described for tableGen. The parameters are the initial size of the hash table and an
initialising value of the specialising type.

62

stringHashTableGen : proc[Data](int, Data → Table[string, Data])

This procedure returns an associative hash table keyed by strings, whose interface is as
described for tableGen. The parameters are the initial size of the hash table and an
initialising value of the specialising type.

tableGen : proc[Key, Data](Comparison[Key] → Table[Key, Data])

This procedure returns a structure containing procedures to manipulate an associative table
with keys of type Key and associated data of type Data. The parameter is a variant that is
either a structure containing procedures to compare key values for equality and ordering, or a
structure containing only a procedure to test for equality. A more efficient implementation is
obtained when both procedures are supplied. The procedures in the table structure are:

enter : proc(Key, Data)

This procedure inserts an entry into the table. If the table already contains an
entry with the given key the existing value is overwritten.

lookup : proc(Key → Optional[Data])

This procedure returns either the data associated with the given key or the
absent branch if the key is not found.

remove : proc(Key)

This procedure removes the data associated with the given key from the table.
If the key is not found the procedure has no effect.

scan : proc(proc(Key, Data → bool))

This procedure calls the given procedure repeatedly, passing it each key
present in the table and the associated data, until it has been called for all
entries or it returns false. If the table has an ordering defined for it the entries
are scanned in increasing key order. Otherwise the entries are scanned in the
order in which the keys were inserted.

4.22 Time

date : proc(→ string)

This procedure gives the current date and time in the format illustrated below:

"Sat Oct 16 16:05:25 BST 1993"

63

time : proc(→ int)

This procedure returns the CPU time used by the Napier88 system since it was initialised.
The time is measured in 60th of a second clock ticks.

4.23 Utilities

cacheGen : proc[T](int, proc(→ T), Optional[proc(T → bool)] → Cache[T])

This procedure returns a structure containing procedures to manipulate a cache of elements of
type T. The first parameter specifies the initial size of the cache; the second is a procedure
which is used to generate new elements. The optional procedure parameter, if present, is
used to determine whether a given element is still in use or may be returned in response to a
request for a new element. The procedures in the cache structure are:

getElement : proc(→ T)

This procedure returns an element. If possible an existing cache element is
reused. If a testing procedure was supplied when the cache was generated, the
current value of the cache field busy is used to test the existing elements of the
cache. Otherwise, once a given cache element is issued (returned by
getElement) it is assumed to be unavailable until it is freed explicitly by a call
to release.

If a free element is found it is returned. Otherwise the current value of the
cache field sizeIncrement is called, passing it the current cache size. The
result is interpreted as the number of elements by which the cache size should
be increased. If this increment is less than 1, a new element is generated by
calling the current value of the cache field new, and returned without insertion
into the cache. If the increment is 1 or greater, the appropriate number of new
elements are generated, inserted into the cache, and one of them returned as
the result. In either case, before the element is returned, it is passed to the
current value of the cache field init to carry out any initialisation which may
be necessary.

getStats : proc(→ *int)

This procedure returns a vector containing statistics about the operation of the
cache since it was created. The vector elements are as follows:

1 current size of the cache
2 number of times an element has been requested
3 number of times a request has been satisfied by an existing element
4 number of times a request has resulted in new elements being added to the
cache
5 number of times a new element has not been added to the cache

flush : proc()

This procedure removes all the elements from the cache.

64

release : proc(T)

This procedure marks the given element as being available for reuse.

grow : proc(int)

This procedure increases the size of the cache by the given number of
elements, using the current value of the cache field new to generate new
elements.

new : proc(→ T)

This procedure generates a new cache element.

busy : proc(T → bool)

This procedure returns true if the given element is currently in use and
unavailable for reuse.

init : proc(T)

This procedure is used to initialise an element before being returned by
getElement.

sizeIncrement : proc(int → int)

This procedure takes as parameter the current size of the cache, and returns an
increment (which may be 0) by which the size of the cache may be increased.
By supplying suitable values for this field it is possible to obtain, for example,
a fixed size cache, a cache which grows up to a maximum size, exponential
growth, or any other scheme.

notify : proc(int)

This procedure is called when the size of the cache changes, passing it the new
cache size.

concatenateHyperText : proc[T](HyperText[T], HyperText[T] → HyperText[T])

This procedure concatenates the given fragments of hyper-text.

concatenateStrings : proc(*string → string)

This procedure returns the string obtained by concatenating together the strings in the given
vector.

65

error : proc(string)

This procedure displays the given error message.

executeAsThread : proc(proc())

This procedure executes the given procedure as a separate thread. The current thread is
suspended until the new thread terminates. Any fatal run-time errors will not affect the
current thread.

extractHyperText : proc[T](HyperText[T], int, int → HyperText[T])

This procedure extracts the part of the given fragment of hyper-text lying between the two
given character positions inclusive.

find : proc(string, string, int → int)

This procedure searches the string given by the first parameter for the target string given by
the second parameter, starting at the given offset into the string and wrapping back to the
beginning if necessary. If the target is found the result is the offset at which the target occurs
in the string. If the target is not found the result is zero.

genHTML : proc(env, string, string, string, string)

This procedure scans the given environment for procedures and generates HTML
representations of the source code for each procedure. Other environments reachable from
the root environment are also recursively scanned. A hierarchy of directories and HTML
files corresponding to the environment structure is generated, with a directory for each
environment. Each directory contains a file named Default.html which lists the procedures
and environments reachable from the corresponding environment, and a file named x.html for
each procedure x, which contains the source code for that procedure. Within the HTML
source code representation, references to other procedures are denoted by links to the
appropriate other HTML files. If the source code for a procedure encountered is not
available, the generated HTML file for that procedure contains a message saying so.

The procedure also scans the types currently contained in declaration sets and generates
corresponding HTML files. Thus references within procedures to types declared in
declaration sets are also denoted by links in the generated procedure source code.

The first string parameter specifies the first part of the URL for each generated HTML file,
for example "http://www-ppg.dcs.st-and.ac.uk". The second string parameter specifies the
name of the directory containing the generated HTML files; this directory will be created if it
does not already exist. The third string parameter specifies the name of the directory, within
the root directory, containing the source code for type declarations. The final string
parameter specifies the name of the directory, within the root directory, containing the source
code for procedures which are referred to by procedures reachable from the environment
structure but which are not themselves directly reachable from it.

The result of a successful execution of genHTML is a directory hierarchy containing HTML
files. This directory should then be copied to the appropriate web server as specified by the
first string parameter, for example:

66

Example 1: to locate files at root of web server hierarchy:

executed program text:

genHTML(Library, "http://www-ppg.dcs.st-and.ac.uk", "Source", "Types", "Anon")

command line:

cp -r Source $SERVERROOT

Example 2: to locate files deeper in web server hierarchy:

executed program text:

genHTML(myEnv, "http://www-ppg.dcs.st-and.ac.uk/Graham", "myEnvSource", "T", "A")

command line:

cp -r myEnvSource $SERVERROOT/Graham

getArgs : proc(→ *string)

This procedure returns the command line arguments used to invoke the current Napier88
session. The vector contains an element for each word, with a lower bound of 0. For
example, if a session is initiated by typing

npr myProg.out arg1

at the command line, then a call to getArgs during the session will return the vector :

vector @0 of ["npr", "myProg.out", "arg1"]

getEnv : proc(→ *string)

This procedure returns the values of the shell environment variables in effect at the
invocation of the current Napier88 session. The vector contains an element for each variable,
with a lower bound of 1. An example is shown below:

vector @1 of ["DISPLAY=panda", "NPRDIR=/napier/release", "NPRSTORE=/napier/store"]

getHyperProgramPack : proc(bool, bool → EditorPack[Binding])

This procedure returns a structure containing procedures to operate on a hyper-program
editor, as described for hyperProgramPackGen in Section 4.25.5. The first parameter
specifies whether the contents of the editor can be edited interactively. The second parameter
specifies whether the editor window contains cut, copy and paste buttons.

getProcSource : proc(any → HyperText[Binding])

This procedure returns the source representation, if any, of the given procedure value. If the
procedure does not have attached source, or if the given parameter is not a procedure, the
result is a fail value.

67

getType : proc(any → TypeRep)

This procedure returns an abstract representation of the type of the given value.

max : proc(int, int → int)

This procedure returns the maximum of the two integers.

min : proc(int, int → int)

This procedure returns the minimum of the two integers.

mkBlankString : proc(int → string)

This procedure returns a string containing the given number of space characters. If the
parameter is negative the empty string is returned. The procedure is designed to minimise the
number of object creations.

mkCompareHyperText : proc[T](→ Comparison[HyperText[T]])

This procedure returns a structure containing procedures to test equality and ordering on
instances of hyper-text.

mkEnvLocBinding : proc(env, string → Binding)

This procedure returns a binding denoting the location with the given name in the given
environment. If no such location exists then bindingFailValue is returned.

mkHyperLink : proc[T](string, LinkPack[T] → HyperText[T])

This procedure returns a fragment of hyper-text consisting of a single link to the given value
with the given name.

mkLocBinding : proc(any → Binding)

This procedure returns a binding denoting a new mutable location with the given initial value.

mkStructLocBinding : proc(any, string → Binding)

This procedure returns a binding denoting the location with the given name in the given
structure. If no such location exists then bindingFailValue is returned.

mkTypeBinding : proc(TypeRep → Binding)

This procedure converts the given type representation to a binding.

68

mkTypeDescriptorBinding : proc(TypeDescriptor → Binding)

This procedure converts the given type descriptor to a binding.

mkValueBinding : proc(any → Binding)

This procedure converts the given value to a binding.

mkVecLocBinding : proc(any, int → Binding)

This procedure returns a binding denoting the location with the given index in the given
vector. If no such location exists then bindingFailValue is returned.

protectedPackGen : proc[T](T → ProtectedPack[T])

This procedure takes an initialising instance of the specialising type and returns a structure
allowing instances of the specialising type to be protected. The components of the structure
are:

protected : Protected

This is an abstract datatype whose witness type abstracts over the specialising
type.

setProtected : any

This encapsulates a procedure of type proc(Abs) where Abs is the witness
type of the abstract datatype protected. It records the given abstract reference
to an instance of the specialising type.

getProtected : any

This encapsulates a procedure of type proc(→ Abs) where Abs is the witness
type of the abstract datatype protected. It returns an abstract reference to the
currently recorded instance of the specialising type.

setConcrete : proc(T)

This procedure records the given instance of the specialising type.

getConcrete : proc(→ T)

This procedure returns the currently recorded instance of the specialising type
in its concrete form.

The first program below illustrates how a value may be put into the persistent store in an
abstract form:

69

let protectedIntPack = protectedPackGen[int](0)

project PS() as root onto env :
begin

in root let protectedIntPack = protectedIntPack

use protectedIntPack(protected) as X[ProtectedInt] in
project protectedIntPack(getProtected) as getProtectedInt onto
proc(-> ProtectedInt) :
begin

protectedIntPack(setConcrete)(7)
in root let aProtectedInt = getProtectedInt()

end
default : writeString("an error")

end
default : {}

The next program illustrates how the value may be retrieved and converted back to its
concrete form:

project PS() as root onto env :
use root with protectedIntPack : ProtectedPack[int] in
use protectedIntPack(protected) as X[ProtectedInt] in
use root with aProtectedInt : ProtectedInt in

project protectedIntPack(setProtected) as setProtectedInt onto
proc(ProtectedInt) :
begin

setProtectedInt(aProtectedInt)
let seven = protectedIntPack(getConcrete)()

end
default : writeString("an error")

default : {}

These procedures may be used to provide protected access to a set of values of a particular
type as follows:

• call protectedPackGen specialised to the appropriate type;

• make the abstract datatype protected generally accessible; and

• restrict access to the other components of the structure, for example by password
protection [CDM+90].

showBinding : proc(Binding, int)

This procedure displays the binding denoted by the given abstract representation. The integer
parameter is ignored.

showType : proc(TypeRep → string)

This procedure returns a string representation of the given abstract type representation.

stringToHyperSource : proc(string → HyperText[Binding])

This procedure returns a fragment of hyper-text consisting of the given string with no links.

70

stringToInt : proc(string → int)

This procedure converts the given string representation of an integer to the corresponding
integer. If the string contains any non-digit characters other than a single leading "-" the
result is zero.

4.24 Vector

lwb : proc[t](*t → int)

This procedure returns the lower bound of the vector.

upb : proc[t](*t → int)

This procedure returns the upper bound of the vector.

4.25 Win

4.25.1 Borders

double : BorderStyle

This border style produces a border with a double line around the window.

currentnon-current

Figure 4.2: double borders

The interactive operations provided by the border are:

• The window can be brought to the front by clicking on the border with mouse button 1.
• The window can be moved by dragging the border with mouse button 2.
• The window can be undisplayed by clicking on the border with mouse button 3.

71

fixedX : BorderStyle

This border style produces an Open Look™ [Sun89] style border with a title bar and a close
box.

non-current, non-selected current, non-selected

non-current, selected current, selected

Figure 4.3: fixedX borders

The interactive operations using the border are:

• The window can be selected or deselected by clicking on the border with mouse button 1.
If the window is not already selected it becomes selected and any other selected windows
are deselected. If the window is already selected it becomes deselected.

• The window can also be selected or deselected by clicking on the border with mouse
button 2. In this case other selected windows are unaffected.

• A menu can be obtained by holding down mouse button 3 on the border. The entries in
the menu are Front, to bring the window to the front, Back, to put the window to the back,
and Dismiss, to undisplay the window.

• The window can be closed to its icon by clicking on the close box with mouse button 1.

This border style is equivalent to genericXBorderGen(false, true, true, true).

genericXBorderGen : proc(bool, bool, bool, bool → BorderStyle)

This procedure produces a border style which in turn produces an Open Look style border.
The first parameter specifies whether the border has a close box; the second parameter

72

specifies whether the border has resize handles; the third parameter specifies whether a
border menu is provided; the fourth parameter specifies whether a thin box is drawn around
the inside of the border. Subject to these options the interactive operations on the border are
the same as for fixedX.

invisible : BorderStyle

This border style produces a border with no visible parts and no interactive operations.

menuX : BorderStyle

This border style produces the same border as that produced by fixedX, without a close box or
inner rectangle.

non-current, non-selected current, non-selected

non-current, selected current, selected

Figure 4.4: menuX borders

This border style is equivalent to genericXBorderGen(false, false, false, false).

73

plain : BorderStyle

This border style produces a border with a single line around the window and no interactive
operations.

Figure 4.5: A plain border

shadow : BorderStyle

This border style produces a border with a single line and a shadow around the window and
no interactive operations.

Figure 4.6: A shadow border

74

variableX : BorderStyle

This border style produces the same border as that produced by fixedX, with the addition of
resize handles at the four corners.

non-current, non-selected current, non-selected

non-current, selected current, selected

Figure 4.7: variableX borders

The window can be resized by dragging a resize handle with mouse button 1.

This border style is equivalent to genericXBorderGen(true, true, true, true).

4.25.1.1 Interactive

This section describes how the user can define new styles of borders. A border is defined by
splitting it up into a number of areas using the following types:

type BorderStyle is proc(Window -> Border)
type Border is List[Area]
type Area is structure(currentImage,nonCurrentImage : image ;

pos : Pos ; distributeEvent : Application)

A border style is represented as a procedure which takes as its parameter a window and
returns a list of values of type Area. Each of these is a structure that contains two images for
a part of the border. One of the images is displayed when the window is current and the other
when it is not. The border as a whole is built up from the separate areas. Each structure also
contains the position of the origin of the area relative to the origin of the window and an
application that processes mouse events that occur over the area. No keyboard events are
sent to border applications. Mouse events sent to border applications are translated so that
the positions are relative to the origin of the window.

75

By convention, the number of elements returned by a border style, and the corresponding
image sizes and positions, should be the same each time it is called. The current and non-
current image in each element should also be the same size. If these conventions are not
followed, windows may be displayed incorrectly.

A border style could be split into four areas as illustrated in Figure 4.8:

❶

❷

❸

❹

Title

Figure 4.8: Border style areas

A new border style is made by constructing a procedure of type BorderStyle which takes a
window as its parameter and returns a list of border areas. The procedure will use the size of
the window to calculate the sizes and positions of the areas. The only restriction on the
appearance of a border style is that its outline should be rectangular. If this is not adhered to
the border may not be displayed correctly.

A number of predefined procedures are available for performing interactive window
manipulation and these can be incorporated into a new border style. The move procedure, for
example, displays an outline of the window and moves it around following the position of the
mouse until the mouse button is released, when it calls the window manager’s move
procedure to move the window to its new position.

The procedures can be incorporated into a border style by using them within the applications
for the border areas.

delete : proc(Window, Event, EventTest, proc(), proc())

This procedure undisplays the given window. The second parameter is ignored and is present
only for compatibility with the other procedures in the environment. Before undisplaying the
window, delete calls the first of the void procedure parameters. After undisplaying the
window it loops until the EventTest parameter returns false on the current event and then calls
the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as a ‘delete window’ command.

iconise : proc(Window, Event, EventTest, proc(), proc())

This procedure closes the given window. The second parameter is ignored and is present
only for compatibility with the other procedures in the environment. Before closing the
window, iconise calls the first of the void procedure parameters. After closing the window it
loops until the EventTest parameter returns false on the current event and then calls the
second of the void procedure parameters.

76

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as a ‘close window’ command.

move : proc(Window, Event, EventTest, proc(), proc())

This procedure allows the given window to be moved interactively. The Event parameter is
interpreted as the event which caused the procedure to be invoked. Before moving the
window, move calls the first of the void procedure parameters. It then displays an outline of
the given window and allows it to be dragged by the mouse until the EventTest parameter
returns false on the current event. It then moves the window to the current position of the
outline and calls the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as a ‘move window’ command.

pushPop : proc(Window, Event, EventTest, proc(), proc())

This procedure brings the given window to the front, unless the window is already at the
front, in which case it sends the window to the back. The second parameter is ignored and is
present only for compatibility with the other procedures in the environment. Before moving
the window, pushPop calls the first of the void procedure parameters. After moving the
window it loops until the EventTest parameter returns false on the current event and then calls
the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as an ‘alter window depth’ command.

resize : proc(Window, Event, EventTest, proc(), proc())

This procedure allows the given window to be resized interactively. The second parameter is
ignored and is present only for compatibility with the other procedures in the environment.
Before resizing the window, resize calls the first of the void procedure parameters. It then
displays an outline of the given window and allows its size to be altered by dragging the
mouse until the EventTest parameter returns false on the current event. If the cursor is
initially close to a corner of the window then the position of that corner is altered during the
resize. Otherwise the position of the window edge nearest the cursor is altered. The
procedure then moves the window to the current position of the outline and calls the second
of the void procedure parameters.

resizeFromCorner : proc(Window, Event, int)

This procedure allows the given window to be resized interactively using mouse button 1.
The procedure displays an outline of the given window and allows its size to be altered by
dragging the mouse until mouse button 1 is released. The integer parameter specifies the
corner to be dragged: 1=top left; 2=top right; 3=bottom left; 4=bottom right.

windowCreatorGen : proc(WindowManager, proc(Size, WindowManager, int → Window),
Size → Application)

This procedure returns an application which allows a rectangular outline to be dragged out
using any mouse button, subject to the minimum size given by the third parameter. When the
mouse button is released the application creates a window by calling the second parameter

77

and displays it at the position of the outline. The window manager parameter should be the
window manager running in the window in which the application is set. The integer
parameter passed to the second parameter is the number of the mouse button being used.

4.25.2 CurrentState

getCurrentBuffer : proc(→ Editor[Binding])

This procedure returns the cut/copy/paste buffer shared among hyper-program editors in the
current session.

getCurrentColourMap : proc(→ *int)

This procedure returns a copy of the current colour map. The procedure
colourMapIntToRGB may be used to convert it to RGB format.

setCurrentColourMap : proc(*int, int)

This procedure sets the colour map for the current screen device to the given map. The
second parameter specifies the screen depth in planes.

getCurrentCursor : proc(→ Cursor)

This procedure returns a copy of the current cursor.

setCurrentCursor : proc(Cursor)

This procedure sets the current cursor to the given cursor.

getCurrentError : proc(→ proc(string))

This procedure returns a procedure which may be used to display error messages.

getCurrentOutputPack : proc(→ EditorPack[Binding])

This procedure returns an editor which may be used to display hyper-program messages.

getCurrentWindowManager : proc(→ WindowManager)

This procedure returns the top-level window manager in the current session.

getCurrentWriteString : proc(→ proc(string))

This procedure returns a procedure which may be used to display string messages.

78

4.25.2.1 CurrentBrowser

browser : proc(Binding)

This procedure displays the given value using the currently active browser.

deselect : proc(Binding)

This procedure deselects the given value. It is removed from the selection list and its browser
representation assumes the unselected appearance.

select : proc(BindingInfo[Binding], bool)

This procedure selects the value in the given structure. If the boolean parameter is false any
other selected values are deselected. The selected value is added to the selection list and its
browser representation assumes the selected appearance. The other structure fields contain a
name for the binding, which may be blank, and, for a location, the vertical offset from the
base of the parent menu both in pixels and in numbers of entries. For non-locations these
fields are ignored.

selected : proc(Binding → bool)

This procedure returns true iff the given value is in the selection list.

getSelectedBindingInfo : proc(→ List[BindingInfo[Binding]])

This procedure returns the current selection list.

4.25.3 Cursors

This environment contains the instances of type Cursor shown in the table below:

name appearance hot-spot

arrowCursor 1,1 (top left)

borderCursor 1,1 (top left)

iconiseCursor 1,1 (top left)

moveCursor 1,1 (top left)

resizeCursor 8,8 (middle)

textCursor 8,8 (middle)

79

waitCursor 1,1 (top left)

4.25.4 Defaults

defaultBoldFont : FontPack

This variable contains the default bold font. Initially it is set to courB14.

defaultBorderStyle : BorderStyle

This variable contains the default border style. Initially it is set to variableX.

defaultBorderThickness : int

This variable contains the default border thickness. Initially it is set to 2.

defaultColourMap : *int

This variable contains the default colour map used when the programming environment is
initialised.

defaultFont : FontPack

This variable contains the default font. Initially it is set to courR14.

defaultIcon : image

This variable contains the default icon image. Initially it is set to the image shown below:

defaultLinkMarker : string

This variable contains the marker used by hyper-program editors to denote embedded link
information in files. Initially it is set to "!@£$". See Section 4.25.4.

80

defaultOuterScopes : *string

This variable contains the names of the default declaration sets associated with a newly
created hyper-program editor. Initially it is set to stringVectorFailValue, denoting no
declaration sets.

defaultWindowCursor : image

This variable contains the default cursor image. Initially it is set to the image shown below:

defaultWindowDepth : int

This variable contains the default image depth for windows. Initially it is set to 8.

defaultWindowSize : Size

This variable contains the default size for windows. Initially it is set to Size(300, 200).

defaultXWindowPos : Pos

This variable contains the default position for X windows relative to the top left corner of the
screen. Initially it is set to Pos(10, 10).

defaultXWindowSize : Size

This variable contains the default size for X windows. Initially it is set to Size(1100, 770).

4.25.5 Generators

editorGen : proc[HyperLink](Window → Editor[HyperLink])

This procedure returns a hyper-text editor running in the given window. The type parameter
specifies the type of the hyper-links which may be embedded in the text of the editor. The
editor is implemented as an abstract data type containing procedures which fall into several
categories:

• procedures for reading and writing hyper-text to and from the editor;

• procedures for navigating around the hyper-text in the editor;

• procedures for controlling interactive input and the appearance of the window display;
and

• procedures for setting and reading attributes of the editor.

Although the editor returned by this procedure operates on a window it is possible to de-
couple the editor from its window and later re-couple it to the same or a different window.

81

This makes it possible to retain text in the persistent store within an editor without the
potentially large overhead of storing the associated window by storing the editor in its
unbound state. While an editor is de-coupled from its window the procedures specific to the
window display are disabled. Operations on the hyper-text may still be performed but the
effects are not visible in any window.

An editor manipulates a number of lines of hyper-text separated by carriage returns. There is
no limit on the length of a line. Each line may contain both characters and links to instances
of the parameter type HyperLink. The editor records the current selection, which is a pair of
points in the hyper-text, all the hyper-text between the points being considered as selected.
The points may coincide, in which case the selection is empty. Editing functions such as cut,
copy and paste operate on the current selection.

Instances of the witness type of the abstract type Editor are used to represent positions within
the hyper-text. The user is unable to perform any operations on such values except to use
them as parameters to editor functions. Thus the user cannot discover the internal repre-
sentation of the hyper-text or manipulate it other than through the editor interface.

If a line of text is too long to fit on one line in the window, it wraps onto subsequent window
lines. No word wrapping is performed. The text is displayed in a single fixed-width font
only. The font can be set by the user. The user can turn highlighting on or off. When it is
on, the text currently selected (if visible in the window) is shown in inverse video. When it is
off the selection is displayed as normal, although it is still possible for the user to invert
arbitrary regions of text using the invert procedure.

The editor’s initial font is given by the current value of defaultFont in the environment
Defaults.

The procedures in an editor with witness type TextPointer and parameterised by type
HyperLink are:

copyText : proc(Editor[HyperLink])

This procedure takes as parameter another editor of the same type to act as a
buffer, and copies the currently selected text to the buffer. The current
selection is unaffected but the previous contents of the buffer are over-written.

cutText : proc(Editor[HyperLink])

This procedure performs the same actions as copyText except that the current
selection is deleted.

clearText : proc()

This procedure deletes the current selection.

pasteText : proc(Editor[HyperLink])

This procedure over-writes the current selection with the contents of the given
buffer.

82

insertText : proc(HyperText[HyperLink], bool)

This procedure over-writes the current selection with the given hyper-text. If
the boolean parameter is true the window display is updated incrementally as
the text is inserted. If the parameter is false the display is updated only after
the insertion has been completed. This option gives better performance when
large sections of hyper-text are inserted. If no window is currently coupled to
the editor, the boolean parameter has no effect.

readFromFile : proc(file, Optional[proc(string →
Optional[LinkPack[HyperLink]])])

This procedure over-writes the current selection with the contents of the given
file. If the optional procedure parameter is supplied it is called each time the
link marker string (see Section 4.25.4) is encountered, being passed the
corresponding text. If the procedure then returns a hyper-link this is inserted
into the editor.

writeToFile : proc(file, Optional[proc(HyperLink → string)])

This procedure writes the contents of the editor out to the given file. If the
optional procedure parameter is supplied it is called for each hyper-link and
the resulting string written to the file at the corresponding position, together
with the associated text. Otherwise only the text is written out.

select : proc(TextPointer, TextPointer)

This procedure sets the current selection to the hyper-text between the given
positions. Note that text positions cannot be created by the user but can only
be obtained by calling editor procedures.

firstSelection : proc(→ TextPointer)

This procedure returns the starting position of the current selection.

lastSelection : proc(→ TextPointer)

This procedure returns the finishing position of the current selection.

firstLine : proc(→ TextPointer)

This procedure returns the position of the beginning of the first text line.

lastLine : proc(→ TextPointer)

This procedure returns the position of the beginning of the last text line.

83

topLine : proc(→ TextPointer)

This procedure returns the position of the start of the top-most window line.
This need not be at the beginning of a text line. If no window is currently
coupled to the editor an error is reported using the procedure error as
described in Section 4.23 and the position returned is the beginning of the first
text line.

bottomLine : proc(→ TextPointer)

This procedure returns the position of the start of the bottom-most window
line. This need not be at the beginning of a text line. If no window is
currently coupled to the editor an error is reported using the procedure error as
described in Section 4.23 and the position returned is the beginning of the first
text line.

frontOfLine : proc(TextPointer → TextPointer)

This procedure returns the position of the beginning of the text line containing
the given position.

endOfLine : proc(TextPointer → TextPointer)

This procedure returns the position of the end of the text line containing the
given position.

nextLine : proc(TextPointer → TextPointer)

This procedure returns the position of the beginning of the text line following
the text line containing the given position. If the given position is in the last
text line, the position of the end of that line is returned.

previousLine : proc(TextPointer → TextPointer)

This procedure returns the position of the beginning of the text line preceding
the text line containing the given position. If the given position is in the first
text line, the position of the beginning of that line is returned.

peek : proc(→ HyperText[HyperLink])

This procedure returns the next character or hyper-link after the current
selection, or the empty string if the current selection is at the end of the hyper-
text. A newline character is returned if the current selection ends at the end of
a text line.

84

read : proc(→ HyperText[HyperLink])

This procedure performs the same actions as peek except that the current
selection is advanced so that it begins and ends at the point after the character
or hyper-link read, unless it is already at the end of the hyper-text.

readLine : proc(→ HyperText[HyperLink])

This procedure returns the remainder of the text line after the current selection,
not including the newline character at the end, and advances the current
selection to the beginning of the following text line. If it already ends in the
last line, the current selection is moved to the end of that line.

selectedText : proc(→ HyperText[HyperLink])

This procedure returns the hyper-text in the current selection.

before : proc(TextPointer, TextPointer → bool)

This procedure returns true iff the first position lies before the second position
in the hyper-text.

endOfText : proc(→ bool)

This procedure returns true iff the end of the current selection is at the end of
the last text line.

getFont : proc(→ FontPack)

This procedure returns the font used to display the hyper-text.

getHighlight : proc(→ bool)

This procedure returns true iff the current selection is highlighted.

getProgressIndicator : proc(→ proc(string, real))

This procedure returns the user-set procedure used to display file I/O progress.

getScrollAction : proc(→ proc(int, bool))

This procedure returns the user-set procedure that is called whenever the
hyper-text is scrolled.

85

getWindow : proc(→ Window)

This procedure returns the window currently coupled to the editor or a fail
value if there is no such window.

interactiveEdit : proc(Editor[HyperLink], EventTest, EventTest, EventTest
→ Application)

This procedure generates an application which can be used to allow the user to
enter and edit text in the window interactively. It takes as parameters an editor
to use as an editing buffer and procedures to detect point, extend and other
mouse button presses. Note that the application for the window must be set
explicitly to allow interactive editing.

The interactive operations supported by the application are as follows:

operation method

enter text type at keyboard

position insertion point click mouse button 1

set current selection drag region of text with mouse button
2

extend current selection click with mouse button 2

select word double click with mouse button 1

delete current selection type ‘backspace’ or ‘delete’

cut current selection type ‘ctrl-x’

copy current selection type ‘ctrl-c’

paste type ‘ctrl-v’

Table 4.3: Interactive operations

On some terminals the codes for cut, copy and paste may not work due to the
characters being trapped before reaching the WIN system.

invert : proc(TextPointer, TextPointer)

This procedure inverts the pixels of the characters between the two given text
positions.

lineCount : proc(→ int)

This procedure returns the number of text lines currently held in the editor.

86

new : proc()

This procedure deletes all the text in the editor.

offset : proc(TextPointer, bool → Index)

This procedure returns the distance from the start of the text to the given
position. The distance is returned as a variant, being the number of characters
if the given boolean value is true and otherwise a structure containing the
number of lines and an offset within a line.

position : proc(Pos → TextPointer)

This procedure returns the position in the text which is currently closest to the
given position in the window display relative to the bottom left of the window.

redisplay : proc(TextPointer)

This procedure redraws the contents of the window with the given text
position at the top. If the text position is not at the beginning of a text line, the
procedure uses instead the first text position before the given one which would
normally fall at the beginning of a window line. This ensures that a text line
always starts at the beginning of a window line.

scanLinks : proc(proc(Substitution[LinkPack[HyperLink]] → bool))

This procedure applies the given procedure successively to each link in the
hyper-text, in their order within the hyper-text, until either the procedure
returns false or it has been called for all the links.

scroll : proc(int, bool)

This procedure scrolls the window display up or down. If the boolean
parameter is true then the display is scrolled up by the given number of
window lines, a negative number giving downwards scrolling. If the boolean
is false then the integer parameter gives the absolute position to scroll to, as a
number of text lines from the beginning of the text.

search : proc(HyperText[HyperLink], bool → bool)

This procedure searches for the given hyper-text, starting from the end of the
current selection, moving forwards or backwards depending on the given
boolean value. The boolean value returned is true iff the hyper-text is found,
in which case the hyper-text is selected. A link in the target hyper-text
matches a link in the editor iff they are identical.

87

seek : proc(Index → TextPointer)

This procedure returns the position corresponding to the given offset from the
start of the text.

setFont : proc(FontPack)

This procedure sets the font used to display the text. The font is checked to
make sure that it contains all the necessary characters and that they are all the
same size. If so, the contents of the window are redrawn in the new font,
otherwise the procedure has no effect.

setHighlight : proc(bool)

This procedure sets the highlight on if the argument is true, or off otherwise.
When the highlight is on the current selection is inverted whenever it is visible
in the window.

setProgressIndicator : proc(proc(string, real))

This procedure sets the procedure used to display file I/O progress. The string
parameter specifies the type of I/O and the real parameter specifies the fraction
of the I/O completed.

setScrollAction : proc(proc(int, bool))

This procedure sets the procedure that is called whenever the hyper-text is
scrolled. The parameters are the same as those passed to scroll.

setWindow : proc(Window)

This procedure sets the display window for the editor. Any existing contents
of the window are erased and the text is displayed in it starting from the
beginning of the first text line. If the editor is already coupled to a window the
procedure has no effect.

unbindWindow : proc()

This procedure de-couples the editor from its display window. If there is no
window coupled to the editor the procedure has no effect.

eventMonitorGen : proc(proc(→ Event), Application, Optional[proc(→ bool)] → proc())

This procedure returns a procedure (an event monitor) that repeatedly gathers user input
events by calling the first procedure parameter and passes them to the application specified as
the second parameter. If the optional procedure parameter is present the event monitor calls
it after passing each event, and terminates if the procedure returns true. If the optional
parameter is not present the event monitor loops indefinitely.

88

This could be used, for example, to initiate a single user WIN session without starting the
programming environment, as illustrated below:

let swManagerPack = screenWindowManagerGen(1,"")
let windowManager = swManagerPack(windowManager)
let gatherEvents = swManagerPack(gatherEvents)
in root let finished := false ! make variable accessible by other programs

let em = eventMonitorGen(
 gatherEvents,
 windowManager(getDisplayWindow)()(getApplication)(),
 Optional[proc(-> bool)](present : proc(-> bool) ; finished))
em()

Here the session will terminate when the variable finished is set to true.

hyperProgramPackGen : proc(Size, bool, bool, proc(→ List[Table[string, Binding]])
→ EditorPack[Binding])

This procedure returns an instance of EditorPack specialised to links of type Binding. The
first parameter specifies the size of the window. The contents of the editor are interactively
editable iff the second parameter is true. Iff the third parameter is true the window contains
all the light-buttons described in Section 2.1.

The fourth parameter is a procedure that returns a list of tables mapping string names to
Bindings. This list is used to form a series of outer scopes during compilation of the editor
contents.

When the contents of the hyper-program editor are written out to a file the editor records,
where possible, information about the positions in the store of the Binding links. In some
cases this enables the links to be reconstructed when the hyper-program is read back from the
file. Such a case arises when a Binding is accessible through a chain of environments from
the root of persistence. Since, however, the information recorded for each such case is the
path from the persistent root, there is no guarantee that the reconstructed link is the same as
the original.

The string defaultLinkMarker, described in Section 4.25.4, is used to indicate the presence of
a link record in the file. It may be updated if it clashes with genuine text in the editor. If it is
set to the empty string then the editor does not attempt to record or interpret any link
information on file writes and reads.

The resulting EditorPack contains the following fields:

window : Window

This window contains the editor window and associated scroll bar and light-
buttons.

editor : Editor[Binding]

This is the editor itself.

getTitle : proc(→ string)

This procedure returns the title of the source code currently being edited.

89

getText : proc(→ HyperText[Binding])

This procedure returns the entire contents of the editor.

append : proc(HyperText[Binding])

This procedure inserts the given hyper-text after the existing contents of the
editor.

getBuffer : proc(→ Editor[Binding])

This procedure returns the current cut/paste buffer.

setBuffer : proc(Editor[Binding])

This procedure sets the current cut/paste buffer.

screenWindowManagerGen : proc(int, string → ScreenWindowManagerPack)

This procedure attempts to create an X window and return a window manager operating
directly on it. It allows the use of WIN facilities without using the multi-user programming
environment.

The parameters give the depth of the display area in planes, and the name of the X server. If
the latter is the empty string, the current value of the environment variable DISPLAY is used.
If the attempt to create the X window fails, a fail value is returned. Otherwise the resulting
structure contains the window manager and the following procedures:

gatherEvents : proc(→ Event)

This procedure returns input events for the window manager. This may be
used in conjunction with the eventMonitorGen procedure to distribute
interactive input to the window manager.

closeScreen : proc()

This procedure closes the X window associated with the window manager.

screenDevice : file

This is the file corresponding to the X window associated with the window
manager.

unboundEditorGen : proc[HyperLink](→ Editor[HyperLink])

This procedure returns an editor with no display window coupled to it.

90

windowGen : proc(→ Window)

This procedure returns a window. The window’s initial icon, cursor, size, pixel depth and
border style are given respectively by the current values of defaultIcon,
defaultWindowCursor, defaultWindowSize, defaultWindowDepth and defaultBorderStyle in
the environment Defaults.

The fields of the window are as follows:

windowRaster : proc(Limit, Limit, Window, int, bool)

This procedure performs a raster operation between the window and another
given window. The first limit specifies the region in the window and the
second the region in the other window. The integer parameter specifies the
raster rule to be used according to the values in the RasterRules environment.

The boolean parameter specifies the direction of the raster operation. If it is
true the raster operation is from the other window to the window, otherwise
the operation is from the window to the other window. If the source region is
larger than the destination region it is clipped on the top and right sides as
necessary. If it is smaller than the destination the new pixels are drawn
starting at the bottom left of the destination region.

For example, the following code xors an area of 10 by 10 pixels starting at
position (0,0) from window1 onto window2 at the position (10,20):

let destination = Limit(Pos(10,20), Size(10,10))
let source = Limit(Pos(0,0),Size(10,10))
window2(windowRaster)(destination, source, window1, xorRule, true)

imageRaster : proc(Limit, image, int, bool)

This procedure performs a raster operation between the window and a given
image. The limit parameter specifies the region in the window. The integer
parameter specifies the raster rule to be used according to the values in the
RasterRules environment.

The boolean parameter specifies the direction of the raster operation. If it is
true the raster operation is from the image to the window, otherwise it is from
the window to the image. Clipping of the window region is performed as for
windowRaster.

drawLine : proc(Pos, Pos, pixel, int)

This procedure draws a line on the window between the given points, using
the given pixel and raster rule. If either point lies outside the window the line
is clipped to the boundaries of the window.

setInputOption : proc(InputOption)

This procedure specifies how the window receives input events when it is the
current window displayed by a window manager. The parameter is interpreted
according to its branch as follows:

91

all : the window receives all input events detected by the window
manager until the input option is reset;

normal : the window receives mouse events over the window region and all
text events;

none : the window receives no input events until the input option is reset.

getInputOption : proc(→ InputOption)

This procedure returns the input option currently associated with the window.

setSize : proc(Rect)

This procedure changes the size of the window to that of the specified
rectangle. The rectangle’s coordinates are given relative to the current origin
of the window. The existing contents of the window are redrawn at the old
origin of the window, after being clipped if necessary. The bottom left corner
of the resized window becomes the new origin of the window’s coordinate
system.

For example, the following code creates a window of the default size
(assumed to be 100 by 100 pixels) and then enlarges it by 10 pixels in both
directions. Blank space is added at the left and bottom of the window and the
old contents are drawn on the window starting at the point (10,10).

let windowOne = windowGen()
windowOne(setSize)(Rect(Pos(-10, -10), Pos(100, 100)))

getSize : proc(→ Size)

This procedure returns the current size of the window.

setApplication : proc(Application)

This procedure sets the application for the window. The application is a
procedure which takes an input event as its parameter and performs some
action.

getApplication : proc(→ Application)

This procedure returns the application currently associated with the window.

setTitle : proc(string)

This procedure sets the title for the window.

getTitle : proc(→ string)

This procedure returns the title currently associated with the window.

92

setResizeControl : proc(ResizeControl)

This procedure sets the resize behaviour for the window. It allows the
programmer of an application to specify how to regenerate the display when
the window in which it is running is resized. The fields of the structure
parameter are interpreted as follows:

before : proc(Rect → Rect)

This procedure is called immediately the window’s setSize
procedure is called, before any changes are made to the
window. The parameter gives the proposed new size of the
window. The procedure may perform any actions necessary
before the window is resized. The result of the procedure is the
actual permitted new size of the window, which may be
different from the proposed new size. If the result is equal to
rectFailValue in the environment FailValues the entire resize
operation is vetoed.

after : proc(Rect)

This procedure is called after a window has been resized, with
the new size passed to it.

For example, the following code shows the procedures being set for a window
whose application displays a view onto an image which is larger than the
window. To conserve memory the application does not keep a separate copy
of the part of the image which is shown in the window. The procedure before
copies from the window any parts of the image that will cease to be visible,
while after draws on any parts of the image that have newly become visible.

let resizeControl =
begin

let before = proc(newRect : Rect → Rect)
begin

… !*** Copy parts that become invisible after resize.
newRect

end

let after = proc(newRect : Rect)
begin

… !*** Fill in parts that become visible after resize.
end

ResizeControl(before,after)
end

imageViewerWindow(setResizeControl)(resizeControl)

getResizeControl : proc(→ ResizeControl)

This procedure returns the resize control structure currently associated with
the window.

93

setMinSize : proc(Size)

This procedure sets the minimum size to which the window can be resized.
Subsequent calls to resize with a size smaller than the minimum in either
direction will have no effect. If the window is currently smaller than the
minimum specified then the minimum is not set.

getMinSize : proc(→ Size)

This procedure returns the minimum size currently associated with the
window.

setMaxSize : proc(Size)

This procedure sets the maximum size to which the window can be resized.
Subsequent calls to resize with a size larger than the maximum in either
direction will have no effect. If the window is currently larger than the
maximum specified then the maximum is not set.

getMaxSize : proc(→ Size)

This procedure returns the maximum size currently associated with the
window.

setDepth : proc(int)

This procedure sets the pixel depth of the window. If the new depth is greater
than the existing depth then planes of off are added behind the existing planes.
If the new depth is less than the existing depth then planes from the back are
discarded.

getDepth : proc(→ int)

This procedure returns the current pixel depth associated with the window.

setBorderStyle : proc(BorderStyle)

This procedure sets the border style used to display the window in a window
manager.

getBorderStyle : proc(→ BorderStyle)

This procedure returns the current border style associated with the window.

getBorder : proc(→ Border)

This procedure returns the border currently associated with the window. If the
window is not displayed by a window manager the list is empty.

94

setCursor : proc(Cursor)

This procedure sets the cursor displayed when the cursor moves over the
window.

getCursor : proc(→ Cursor)

This procedure returns the cursor currently associated with the window.

getWindowManager : proc(→ WindowManager)

This procedure returns the window manager currently displaying the window.
If the window is not displayed the fail value windowManagerFailValue is
returned.

setVirtualWindow : proc(string, Window)

This procedure is for system use only and is password protected.

windowManagerGen : proc(Window → WindowManager)

This procedure returns a window manager operating in the given parent window. The fields
of the window manager are as follows:

display : proc(DisplayInfo, bool)

This procedure displays a window. The first parameter is a structure
containing the window, its required position on the window manager display
relative to the bottom left corner and its level relative to other windows. Iff
the boolean parameter is true the window is displayed in the background
behind all other windows. The window is not displayed if it is already
displayed by another window manager or if an attempt is made to display it in
the background when a background window already exists.

undisplay : proc(Window)

This procedure removes the given window from the window manager display.

makeCurrent : proc(Window)

This procedure sets the window manager’s current window to be the specified
window. Any existing current window is made non-current.

setPos : proc(Window, Pos)

This procedure moves the given window to the given position.

95

getPos : proc(Window → Pos)

This procedure returns the position of the origin of the given window relative
to the bottom left corner of the parent window.

setLevel : proc(Window, Level)

This procedure moves the given window to the given level relative to other
windows. If the boolean field in the second parameter is true then the integer
parameter is interpreted as the number of windows from the front, otherwise as
the number of windows from the back. Thus Level(true, 1) puts the window
at the front, while Level(false, 2) puts it second from the back.

getLevel : proc(Window, bool → Level)

This procedure returns the level of the given window. If the boolean
parameter is true the result is relative to the front, otherwise it is relative to the
back. Any background window is ignored.

getWindows : proc(→ *Window)

This procedure returns a vector containing the windows currently displayed by
the window manager, with a lower bound of 1, starting with the window
nearest the front.

getWindowAtPos : proc(Pos → Window)

This procedure returns the front-most window which overlaps the given
position. If there is none then windowFailValue is returned.

getNotifier : proc(string → Notifier)

This procedure is for system use only and is password protected.

getDisplayWindow : proc(→ Window)

This procedure returns the window in which the window manager is running.

getIconManager : proc(→ IconManager)

This procedure returns an icon manager for the window manager. The fields
are as follows:

close : proc(Window)

This procedure undisplays the given window and displays an
icon in its place, itself a window.

96

open : proc(Window)

This procedure undisplays the given icon and redisplays the
corresponding window at its original position.

getIconState : proc(Window → DisplayInfo)

This procedure returns a structure containing information about
the icon associated with the given window. The fields of the
structure can be updated to change the way that the icon will be
displayed when the window is next closed.

getWindowState : proc(Window → DisplayInfo)

This procedure returns a structure containing information about
the window associated with the given icon. The fields of the
structure can be updated to change the way that the window
will be displayed when the icon is next opened.

setBackgroundApp : proc(Application)

This procedure sets an application to run in the background of the window
manager. The application receives keyboard events when there is no current
window, and mouse events which do not occur over a window.

getBackgroundApp : proc(→ Application))

This procedure returns the current background application.

97

4.25.6 Images

This environment contains the following images:

downArrow : image

icon : image

leftArrow : image

magnify : image

rightArrow : image

upArrow : image

windowIcon : image

4.25.7 Selection

deselect : proc(Window)

This procedure deselects the given window. If the window is not already selected the
procedure has no effect.

select : proc(Window, bool)

This procedure selects the given window. If the window is already selected the procedure has
no effect. If the boolean parameter is true the procedure does not affect other windows. If
the parameter is false any other selected windows are deselected.

selected : proc(Window → bool)

This procedure returns true iff the given window is selected.

getRefinementsTable : proc(→ Table[WindowManager, proc(Window, bool, bool)])

This procedure returns a table which maps window managers to procedures that refine the
manner in which their windows are selected and deselected. When a window is selected or

98

deselected the table is searched for the parent window manager. If it is found the
corresponding procedure is called. The first boolean parameter is true for a selection and
false for a deselection. The second boolean parameter is equal to the parameter to select for a
selection and false for a deselection.

getSelectedWindows : proc(→ List[Window])

This procedure returns a list containing the windows that are currently selected.

WindowMaps : env

This environment is intended to contain application-specific mappings from windows to
values. For example, a drawing application might provide a mapping from windows used to
display objects to the data about the corresponding objects. Each mapping is a procedure
which takes a window and returns an optional Binding.

browser : proc(Window → Optional[Binding]

This procedure maps browser windows to the corresponding values, locations
and types.

4.25.8 Tools

checkBoxGroupGen : proc(*Appearance, *proc(int, bool), int, int, int → ChoicePack)

This procedure generates a window displaying a group of check boxes. The interpretation of
the parameters is the same as that for genericChoiceGen. An example of a check box
window is shown in Figure 4.9:

Figure 4.9: A check box window

dialogueGen : proc(Size, string, string, string, proc(int), proc(int) → Window)

This procedure generates a dialogue window with one or two choices. The parameters are:
the size of the window; a prompt string; the titles of the two light-buttons; and the procedures
to be called when the light-buttons are pressed. If the second title is empty the second light-
button is not displayed. An example of a dialogue window is shown in Figure 4.10:

99

Figure 4.10: A dialogue window

genericButtonGen : proc(Appearance, proc(int), bool, proc(int, bool), bool →
ButtonPack)

This procedure is used to implement lightButtonGen and trillButtonGen and it may also be
called directly. The parameters are:

• a label to be displayed on the button;

• a procedure that is called when the button is pressed, passing it the number of the mouse
button used;

• a boolean that specifies whether the button procedure should be called continually while
the button is pressed (true) or whether it should only be called once the button has been
released (false);

• a procedure that is called whenever the button changes state from pressed to released and
vice-versa, passing it the number of the mouse button used and a boolean that specifies
whether the button has become pressed (true) or released (false); and

• a boolean that specifies whether the button should have rounded ends (true) or
rectangular (false). If an image rather than a string is supplied for the button label this
parameter is ignored.

The structure returned by the generator contains a window that implements the light-button
and a procedure that when called makes the light-button flash as though pressed and released.
A light-button window cannot be resized.

genericChoiceGen : proc(*Appearance, *proc(int, bool), bool, int, int, int →
ChoicePack)

This procedure is used to implement checkBoxGroupGen and radioButtonGroupGen and it
may also be called directly. The procedure generates a group of check boxes or radio
buttons. The first parameter is a vector of labels to be displayed by the boxes/buttons. The
second parameter is a vector of procedures to be called when the states of the boxes/buttons
are altered by clicking on them with a mouse button. The integer parameter to each
procedure gives the mouse button used and the boolean parameter is true iff the box/button
has just become selected.

The boolean parameter is true for check boxes and false for radio buttons. The integer
parameters specify how the boxes/buttons are to be arranged. The first gives the number per
column; the second gives the vertical separation; the third gives the horizontal separation
between columns.

100

The states of check boxes can be altered independently of one another. The states of radio
buttons are inter-dependent in that whenever a radio button becomes selected the previously
selected radio button becomes de-selected.

The resulting structure contains a window on which the boxes/buttons are displayed and the
following procedure:

set : proc(int, int, bool)

This procedure sets the state of the box/button given by the first parameter to
selected if the boolean parameter is true and unselected otherwise. The effect
is the same as if the state had been set interactively by clicking with the mouse
button specified by the second integer parameter.

genericDialogueGen : proc(Size, string, *Appearance, *proc(int), int, int, int, int, int
→ Window)

This procedure generates a dialogue window with an arbitrary number of choices. The
parameters are: the size of the window; a prompt string; the labels for the light-buttons; the
procedures to be called when the light-buttons are pressed; the horizontal offset of the
message from the left side of the dialogue, the vertical offset of the bottom of the message
from the top of the dialogue, the number of buttons in each column of buttons, the horizontal
separation between columns of buttons and the vertical separation between rows of buttons.
An example of such a dialogue window is shown in Figure 4.11:

Figure 4.11: A dialogue window

genericMenuExpandableGen : proc(*Appearance, *proc(int, MouseEvent), *Appearance,
*proc(int), proc(bool, bool, bool, int), bool,
bool, bool → MenuPack)

This procedure generates a window containing a menu and associated light-buttons. The
parameters are the same as those to genericMenuGen, except for the third and fourth
parameters which specify the labels and actions for the light-buttons. An example of such a
menu window is shown in Figure 4.12:

101

Figure 4.12: A menu window

genericMenuGen : proc(*Appearance, *proc(int, MouseEvent),
proc(bool, bool, bool, int), bool, bool, bool → MenuPack)

This procedure is used to implement menuGen, scrollingMenuGen and
genericMenuExpandableGen, and it may also be called directly. The parameters are:

• a vector containing labels for the menu entries;

• a vector containing procedures that are called whenever an entry is selected or its
highlight state changes;

• a procedure that is called whenever the menu is scrolled; and

• booleans that specify whether the menu may be scrolled, whether entries may be added
and removed from the menu and whether the scroll bar, if present, is on the left of the
menu.

Whenever a mouse button is pressed or released over a menu entry the corresponding element
of the vector of procedures is called, passing it the number of the menu entry and a
description of the event type. This also occurs when the cursor moves over or leaves a menu
entry while a mouse button is down.

The scroll procedure is called whenever the up or down scroll buttons are used. Its first
boolean parameter is true when either button is pressed down initially, the second is true
when either button is released and the third is true if the scrolling is in the up direction. The
number of the mouse button used is also passed to it. The procedure is called continually
while either scroll button is held down, in which case the first two parameters are false.

The resulting structure contains the menu window, a table mapping entry numbers to
structures containing labels and actions, and the following procedures:

setTop : proc(int)

This procedure scrolls the menu so that the given entry lies at or near the top
of the menu, subject to the constraint that the maximum possible number of
entries for the current window size are always displayed. Thus if the given

102

entry is the last it will never be displayed higher than the bottom position. If
the menu is non-scrollable then the procedure has no effect.

getTop : proc(→ int)

This procedure returns the number of the entry currently displayed at the top
of the menu.

setNoVisible : proc(int)

This procedure sets the size of the menu window so that the given number of
entries are visible. The procedure has no effect if the given number is less
than one. The change in size is subject to the menu window’s usual
constraints on minimum and maximum size.

getNoVisible : proc(→ int)

This procedure returns the number of entries currently visible in the menu.

setHighlight : proc(int, bool)

This procedure sets the highlighted state of the given entry to on or off
depending on the boolean parameter. A value of true gives a highlighted
entry and false a non-highlighted entry.

getHighlight : proc(int → bool)

This procedure returns the highlighted state of the given entry.

getNoEntries : proc(→ int)

This procedure returns the number of entries currently in the menu.

genericSliderGen : proc(int, int, real, real, real, bool, proc(int, real),
proc(int, bool) → SliderPack)

This procedure is used to implement sliderGen and it may also be called directly. The
parameters are:

• the X and Y dimensions of the slider;

• the minimum and maximum real values associated with the slider;

• the amount to be skipped when a mouse click occurs off the thumb;

• a boolean that specifies whether the slider is oriented horizontally (true) or vertically
(false);

• a procedure that is called when the value of the slider is changed, passing it the mouse
button used and the new value;

103

• a procedure that is called at the start and finish of a change in the value of the slider.
When the value starts to change it is passed the mouse button used and the value true.
When the value finishes changing it is passed the mouse button used and the value false.

The resulting structure contains the slider window and the following procedures:

set : proc(real)

This procedure sets the value of the slider.

setBounds : proc(real, real, real)

This procedure adjusts the minimum and maximum values of the slider and
the skip increment.

lightButtonGen : proc(Appearance, proc(int) → ButtonPack)

This procedure generates a light-button with the given label. When the button is pressed it is
highlighted. When it is released the given procedure is called, passing it the mouse button
used. The structure returned contains the light-button window and a procedure that when
called makes the light-button flash as though pressed and released. A light-button window
cannot be resized. An example of a light-button window is shown in Figure 4.13:

Figure 4.13: A light-button window

menuGen : proc(*Appearance, *proc(int) → MenuPack)

This procedure generates a fixed size, non-scrollable menu with the given labels and
associated actions. The fields of the resulting structure are described above for
genericMenuGen. An example of a menu window is shown in Figure 4.14:

Figure 4.14: A menu window

popUpMenuGen : proc(*Appearance, *proc(int) → MenuPack)

This procedure generates a menu with the same appearance as that generated by menuGen,
suitable for display as a pop-up menu. The menu window is initially set to take all input, and
is undisplayed when the cursor is moved off the window without any mouse buttons pressed.

104

radioButtonGroupGen : proc(*Appearance, *proc(int, bool), int, int, int → ChoicePack)

This procedure generates a group of radio buttons. The interpretation of the parameters is the
same as that described for genericChoiceGen above. An example of a radio button window
is shown in Figure 4.15:

Figure 4.15: A radio button window

scrollingMenuGen : proc(*Appearance, *proc(int) → MenuPack)

This procedure generates a variable size scrollable menu with the given labels and associated
actions. The fields of the resulting structure are described above for genericMenuGen.
Entries may not be added to or removed from the menu. The number of entries initially
visible is not defined. An example of a scrolling menu window is shown in Figure 4.16:

Figure 4.16: A scrolling menu window

sliderGen : proc(int, int, real, real, real, bool, proc(int, real) → SliderPack)

This procedure generates a slider. The interpretation of the parameters is the same as that
described for genericSliderGen above. An example of a slider window is shown in Figure
4.17:

Figure 4.17: A slider window

trillButtonGen : proc(Appearance, proc(int) → ButtonPack)

This procedure generates a light-button with the given label. When the button is pressed it is
highlighted and the given procedure is called repeatedly, passing it the mouse button used,

105

until the button is released. The structure returned contains the light-button window and a
procedure that when called makes the light-button flash as though pressed and released. The
light-button window cannot be resized.

4.25.8.1 EditorTools

copyClearEditorToolGen : proc[HyperLink](Size → EditorPack[HyperLink])

This procedure generates an editor pack that provides buttons for copying and clearing the
hyper-text. The parameter is the size of the editor window. An example of such an editor
window is shown in Figure 4.18:

Figure 4.18: An editor window with copy and clear

fullEditorToolExpandableGen : proc[HyperLink](Size, *string, *proc(int)
→ EditorPack[HyperLink])

This procedure generates an editor pack that provides all the buttons described for
genericEditorToolGen and also user defined buttons. The parameters are the size of the
editor window, a vector of string labels for the user defined buttons and a vector of associated
actions. An example of such an editor window is shown in Figure 4.19:

Figure 4.19: An editor window with all operations and user defined buttons

106

fullEditorToolGen : proc[HyperLink](Size → EditorPack[HyperLink])

This procedure generates an editor pack that provides all the buttons described for
genericEditorToolGen. The parameter is the size of the editor window. An example of such
an editor window is shown in Figure 4.20:

Figure 4.20: An editor window with all operations

genericDialogueGen : proc[HyperLink](Size, *string, *Pos, *EditorPack[HyperLink],
*Pos, *Appearance, *Pos,
*proc(int, *HyperText[HyperLink])
→ DialoguePack[HyperLink])

This procedure generates a dialogue window with an arbitrary number of labels, light-buttons
and text fields. The parameters are: the size of the window; the labels; the positions of the
labels; the editors for the text fields; the positions of the text fields; the labels for the light-
buttons; the positions of the light-buttons; and the procedures to be called when the light-
buttons are pressed. Each procedure is passed the number of the mouse button used and the
current contents of the text fields.

genericEditorToolGen : proc[HyperLink](
Size, bool, bool, bool, bool, bool, bool,
Optional[*string], Optional[*proc(int)],
Optional[proc(string,HyperText[HyperLink])],
Optional[proc(string → Optional[HyperText[HyperLink]])],
Optional[proc(HyperLink → string)],
Optional[proc(string → Optional[LinkPack[HyperLink]])],
Optional[proc(EditorPack[HyperLink] → EventTest)],
Optional[proc(EditorPack[HyperLink] → EventTest)] →
EditorPack[HyperLink])

This procedure is used to implement the other editor generators and it may also be called
directly. The parameters are the size of the editor window; boolean parameters described
below; an optional vector of string labels for user defined buttons; an optional vector of
actions for the buttons; and a number of optional procedures. The boolean parameters specify
whether the following options are enabled, respectively:

• ability to select hyper-text interactively using the mouse;
• ability to copy selected hyper-text into the given buffer;
• ability to clear the hyper-text in the editor;

107

• ability to edit the hyper-text interactively;
• ability to load and save text from and to the file system; and
• presence of a scroll bar.

The number of light-buttons displayed at the bottom of the editor window depends on which
of the options are enabled. The possible buttons are cut, copy, paste, clear, find, load and
save. The dependencies are shown in Table 4.4, in which a tick indicates that a particular
option must be enabled for the corresponding button to appear. User defined buttons are
displayed after the pre-defined buttons.

option enabled

select copy clear edit load/save

cut ✔ ✔

copy ✔

paste ✔ ✔

button clear ✔

find ✔

load ✔

save ✔ ✔

Table 4.4: Editor tool light-buttons

The first optional procedure parameter, if present, is used when storing the editor contents in
the persistent store. The currently selected pathname and the contents of the editor are passed
to the procedure.

The second optional procedure parameter, if present, is used when loading text into the editor
from the persistent store. The currently selected pathname is passed to the procedure, which
then returns an optional fragment of hyper-text.

The third optional procedure parameter, if present, is used when writing the editor contents to
a file. For each occurrence of a link, the link is passed to the procedure to obtain a string
representation. The editor then writes to the file the link marker as described in Section
4.25.4, followed by the link label, another link marker, the link representation, and finally
another link marker.

The fourth optional procedure parameter, if present, is used when reading text into the editor
from a file. When a link marker is encountered the following text up to the next link marker
is treated as the link label, and the text after that up to the third link marker is passed to the
procedure for conversion to a link value.

The fifth optional procedure parameter, if present, is used to filter interactive input to the
editor. The procedure is called at the time the editor is generated, passing it the new instance
of EditorPack. Each input event is passed to the resulting filter procedure which may carry
out any appropriate action. If the filter procedure returns true, the event is then passed to the
editor application, otherwise it is discarded.

The final optional procedure parameter, if present, is used to filter interactive input to the
dialogue displayed when the find button is pressed.

108

The structure returned by the procedure contains the editor window, the editor and the
following procedures:

getTitle : proc(→ string)

This procedure returns the current title of the text being edited. This title
corresponds to the most recent file name if text has been loaded from or saved
to the file system.

getText : proc(→ HyperText[HyperLink])

This procedure returns the current contents of the editor.

append : proc(HyperText[HyperLink])

This procedure inserts the given hyper-text at the end of the existing hyper-
text.

getBuffer : proc(→ Editor[HyperLink])

This procedure returns the current cut/paste buffer.

setBuffer : proc(Editor[HyperLink])

This procedure sets the current cut/paste buffer.

genericSingleLineDialogueGen : proc[HyperLink](Size, string, *Appearance,
*proc(int, HyperText[HyperLink]),
EditorPack[HyperLink], int, int, int,
int, int, int, int →
DialoguePack[HyperLink])

This procedure is used to implement singleLineDialogueGen and it may also be called
directly. It generates a dialogue window containing a single line hyper-text editor and a
number of user defined light-buttons. The parameters are as follows:

• the size of the dialogue window;

• a prompt label;

• a vector of labels for the light-buttons;

• a vector of procedures to be called when the light-buttons are pressed, each one taking as
parameters the mouse button used and the current contents of the editor;

• the editor to be displayed;

• the X offset of the prompt from the left of the dialogue; the Y offset of the prompt from
the top of the dialogue; the X offset of the editor from the left of the dialogue; the Y offset
of the editor from top of the dialogue; the number of light-buttons per column; the
horizontal separation of the light-buttons; and the vertical separation of the light-buttons.

109

The resulting structure contains the dialogue window and the following procedure:

set : proc(HyperText[HyperLink])

This procedure replaces the contents of the editor with the given hyper-text.

readOnlyEditorToolExpandableGen : proc[HyperLink](Size, *string, *proc(int) →
EditorPack[HyperLink])

This procedure generates an editor pack with user defined buttons that does not allow
interactive selecting, copying or editing of the hyper-text. The parameters are the size of the
editor window, a vector of string labels for the user defined buttons and a vector of associated
actions. An example of such an editor window is shown in Figure 4.21:

Figure 4.21: A read only editor window with user defined buttons

readOnlyEditorToolGen : proc[HyperLink](Size → EditorPack[HyperLink])

This procedure generates an editor pack that does not allow interactive selecting, copying or
editing of the hyper-text. The parameter is the size of the editor window. An example of
such an editor window is shown in Figure 4.22:

Figure 4.22: A read only editor window

simpleEditorToolGen : proc[HyperLink](Size → EditorPack[HyperLink])

This procedure generates an editor pack that allows interactive selecting and editing of the
hyper-text but provides no light-buttons. The parameter is the size of the editor window. An
example of such an editor window is shown in Figure 4.23:

110

Figure 4.23: A simple editor window

singleLineDialogueGen : proc[HyperLink](Size, string, string, string,
proc(HyperText[HyperLink]),
proc(HyperText[HyperLink]) →
DialoguePack[HyperLink])

This procedure generates a dialogue window containing a single line hyper-text editor and
two user defined light-buttons. The parameters are: the size of the dialogue; a prompt label;
labels for the light-buttons; and procedures that are called when the light-buttons are pressed,
passing them the current contents of the editor. An example of such a dialogue window is
shown in Figure 4.24:

Figure 4.24: A single line dialogue window

4.25.9 Utilities

button1Down,button2Down,button3Down : proc(Event → bool)

These procedures return true iff the corresponding mouse button of the given event is down.

colourDefnTable : Table[string, RGB]

This table contains colour names and their corresponding RGB values, and is used by the
procedure pickColour. The initial entries are:

"black" "dark grey"
"white" "light grey"
"red" "olive"
"green" "purple"
"blue" "aqua"
"cyan" "light green"
"magenta" "dark green"
"yellow" "lime green"

111

"orange" "light blue"
"brown" "dark blue"
"pink" "sky blue"

colourMapIntToRGB : proc(*int → *RGB)

This procedure converts the given colour map in integer format to RGB format.

colourMapRGBToInt : proc(*RGB → *int)

This procedure converts the given colour map in RGB format to integer format.

fileToImage : proc(file → image)

This procedure reads a representation of an image from the given file in the format produced
by imageToFile and converts it to an image.

fileToSound : proc(file → *int)

This procedure reads a representation of a sound from the given file in Sun audio format and
converts it to a vector of integers.

getBorderExtent : proc(Window → Rect)

This procedure returns the extent of the window’s current border. The coordinates of the
corners are given relative to the origin of the window.

imageToFile : proc(file, image)

This procedure writes a representation of the given image to the given file.

intToPixel : proc(int, int → pixel)

This procedure converts the given integer value to the equivalent pixel. The second
parameter specifies the pixel depth.

intToRGB : proc(int → RGB)

This procedure converts the given colour map entry in integer format to RGB format.

pickColour : proc(string, *int → pixel)

This procedure takes as parameters a string colour name and a colour map, and returns the
pixel value which most closely corresponds to that colour in the colour map. The procedure
makes use of the table colourDefnTable, to which entries may be added by the user. If the
given colour name is not found in colourDefnTable the pixel corresponding to black is
returned.

112

pixelToInt : proc(pixel → int)

This procedure converts the given pixel value to the equivalent integer.

playSound : proc(*int)

This procedure attempts to play the sound represented by the given vector through the
machine’s loudspeaker.

RGBToInt : proc(RGB → int)

This procedure converts the given colour map entry in RGB format to integer format.

setColourMap : proc(file, *int, int)

This procedure sets the colour map for the given screen device to the given map. The third
parameter specifies the screen depth in planes.

showProgress : proc(string, int, int, real)

This procedure displays a progress slider with the given title, at the given position in the
programming environment window manager, showing the given proportion completed
(between 0.0 and 1.0).

tiffFileToImage : proc(file → Pair[image, *int])

This procedure, due to Ying-Jean Kuo of Glasgow University, reads a representation of an
image from the given file in 1-bit, 4-bit or 8-bit Intel TIFF format and converts it to an image
and an associated colour map.

113

5 The Error Environment
The Error environment contains the following items:

Arithmetical : env
Environment : env
Format : env
Graphical: env
IO : env
String : env
Structure : env
Variant : env
Vector : env

The procedures that are called in the event of an error are stored in these environments. Each
procedure is a variable and the user may change them by assignment. By default, all the error
procedures write out an appropriate error message and halt the execution of the current
thread.

5.1 Arithmetical Errors

getByte : proc(int, int → int)

This procedure may be called during execution of the getByte procedure in PrimitiveIO. It is
called when the byte index supplied to getByte is not between 0 and 3. The parameters to the
error procedure are those supplied to the original call of getByte.

Int : proc(string, int, int → int)

This procedure may be called during the operations plus, times, minus, div and rem with a
string parameter of "+", "*", "-", "div" and "rem" respectively. The other parameters are the
integers on which the original operation was attempted.

Real : proc(string, real, real → real)

This procedure may be called during the operations plus, times, minus and divide with a
string parameter of "+", "*", "-" and "/" respectively. The other parameters are the real
numbers on which the original operation was attempted.

setByte : proc(int, int, int → int)

This procedure may be called during execution of the setByte procedure in PrimitiveIO. It is
called when the byte index supplied to setByte is not between 0 and 3. The parameters to the
error procedure are those supplied to the original call of setByte.

114

truncate : proc(real → int)

This procedure may be called during execution of the truncate procedure in Arithmetical. It is
called when the result would be outwith the implementation dependent bounds for legal
integers. The parameter to the error procedure is that supplied to the original call of truncate.

unaryInt : proc(string, int → int)

This procedure may be called during the operations unary minus and abs with a string
parameter of "-" and "abs" respectively. The second parameter is the integer on which the
original operation was attempted.

unaryReal : proc(string, real → real)

This procedure may be called during the operations unary minus, sin, cos, exp, ln, sqrt, atan
and truncate with a string parameter of "-", "sin", "cos", "exp", "ln", "sqrt", "atan" and
"truncate" respectively. The second parameter is the real number on which the original
operation was attempted.

5.2 Environment Errors

envDrop : proc(env, string)

This procedure may be called during the dropping of a binding from an environment. It is
called when no binding with the required identifier can be found in the environment. The
parameters to the error procedure are the original environment and the name of the identifier
that was to be dropped.

envProject : proc(env, string, TypeRep, bool)

This procedure may be called during a projection from an environment. It is called when no
binding with the required signature can be found in the environment. The parameters to the
error procedure are the original environment, the name of the identifier being searched for, a
representation of the expected type and a boolean that is true iff the binding was expected to
be constant.

envRedeclaration : proc(env, string, TypeRep, bool)

This procedure may be called during a declaration within an environment. It is called when
an attempt is made to declare a new binding with an identifier already present in the
environment. The parameters to the error procedure are the original environment, the name
of the identifier, a representation of the type of the new binding and a boolean that is true iff
the new binding was to be constant.

115

5.3 Format Errors

eformat : proc(real, int, int → string)

This procedure may be called during execution of the eformat procedure in Format. It is
called when either of the required number of digits before and after the point is negative. The
parameters to the error procedure are the real number and the required numbers of digits
before and after the point.

fformat : proc(real, int, int → string)

This procedure may be called during execution of the fformat procedure in Format. It is
called when the real number is too large to be written with the required number of digits
before the point, or when the required number of digits after the point is negative. The
parameters to the error procedure are the real number and the required numbers of digits
before and after the point.

5.4 Graphical Errors

closedWindow : proc(file, image)

This procedure may be called during a raster operation on an image associated with a window
file. It is called when the window file is closed. The parameters to the error procedure are
the window file and the image.

colourMap : proc(file, pixel, int)

This procedure may be called during execution of the colourMap procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of colourMap.

colourOf : proc(file, pixel → int)

This procedure may be called during execution of the colourOf procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of colourOf.

Draw : proc(pic, real, real, real, real)

This procedure may be called during execution of the procedure returned by the
makeDrawFunction procedure in Outline. It is called when the two x parameters or the two y
parameters are equal. The parameters to the error procedure are the picture to be drawn and
the attempted clipping region.

116

getCursor : proc(file, *image)

This procedure may be called during execution of the getCursor procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of getCursor.

getCursorInfo : proc(file, *int)

This procedure may be called during execution of the getCursorInfo procedure in Device. It
is called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of getCursorInfo.

getPixel : proc(image, int, int → pixel)

This procedure may be called during execution of the getPixel procedure in Raster. It is
called when the coordinates lie outwith the bounds of the image. The parameters to the error
procedure are those supplied to the original call of getPixel.

getScreen : proc(file → image)

This procedure may be called during execution of the getScreen procedure in Device. It is
called when the file is not a raster device. The parameter to the error procedure is the original
file.

imagePixelConstant : proc(image)

This procedure is called when a raster update operation is attempted on an image of constant
pixels. The parameter to the error procedure is the original image.

limitAt : proc(image, int, int → image)

This procedure may be called during the 'limit i at x, y' operation. It is called when x < 0 or x
≥ xDim (i) or y < 0 or y ≥ yDim (i). The parameters to the error procedure are the original
image and the x and y coordinates.

limitAtBy : proc(image, int, int, int, int → image)

This procedure may be called during the 'limit i to x1 by y1 at x2, y2' operation. It is called
when x2 < 0 or x2 ≥ xDim (i) or y2 < 0 or y2 ≥ yDim (i) or when the sub-image requested is
not totally enclosed within the original image. The parameters to the error procedure are the
original image, the x coordinate, the x dimension, the y coordinate and the y dimension.

locator : proc(file, *int)

This procedure may be called during execution of the locator procedure in Device. It is
called when the file is not a mouse or tablet device. The parameters to the error procedure are
those supplied to the original call of locator.

117

makeImage : proc(int, int, pixel → image)

This procedure may be called during the image creation operation. It is called when either
the x or the y dimension is less than one. The parameters to the error procedure are the x and
y dimensions and the initialising pixel.

pixelOverflow : proc(pixel → pixel)

This procedure may be called during the pixel concatenation operation ++. It is called when
the depth of the resulting pixel overflows the implementation size (the maximum pixel depth
is 24 pixels in the current implementation of Napier88). The parameter to the error procedure
is a pixel containing the first 24 planes of the result.

setCursor : proc(file, *image)

This procedure may be called during execution of the setCursor procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of setCursor.

setCursorInfo : proc(file, *int)

This procedure may be called during execution of the setCursorInfo procedure in Device. It
is called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of setCursorInfo.

setPixel : proc(image, int, int, pixel)

This procedure may be called during execution of the setPixel procedure in Raster. It is
called when the coordinates lie outwith the bounds of the image. The parameters to the error
procedure are those supplied to the original call of setPixel.

subImage : proc(image, int, int → image)

This procedure may be called during the image indexing operation |. It is called when the
start plane is less than zero, when the start plane is greater than or equal to the image depth,
when the number of planes requested is less than one, or when the planes selected are not a
subset of the original image. The parameters to the error procedure are the original image,
the start plane and the number of planes.

subPixel : proc(pixel, int, int → pixel)

This procedure may be called during the pixel indexing operation |. It is called when the start
plane is less than zero, when the start plane is greater than or equal to the pixel depth, when
the number of planes requested is less than one, or when the planes selected are not a subset
of the original pixel. The parameters to the error procedure are the original pixel, the start
plane and the number of planes.

118

Text : proc(string, real, real, real, real → pic)

This procedure may be called during creation of a picture using the text statement. It is
called when the end points of the text are coincident. The parameters to the error procedure
are the text string, the coordinates of the first end point and the coordinates of the second end
point.

5.5 IO Errors

endOfInputIOE : proc(file, int → bool)

This procedure may be called during execution of the endOfInput procedure in IO. It is
called when an error occurs. The parameters to the error procedure are the file being read and
the I/O number indicating the error.

endOfInputUnread : proc(file, int, int → bool)

This procedure may be called during execution of the endOfInput procedure in IO. It is
called when the byte read cannot be made available to the next read operation on the same
file. The parameters to the error procedure are the file being read, the byte read and the I/O
number indicating the error.

peekByteEOI : proc(file → int)

This procedure may be called during execution of the peekByte procedure in IO. It is called
when the end of input is encountered. The parameter to the error procedure is the file being
read.

peekByteIOE : proc(file, int → int)

This procedure may be called during execution of the peekByte procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

peekByteUnread : proc(file, int, int → int)

This procedure may be called during execution of the peekByte procedure in IO. It is called
when the byte read cannot be made available to the next read operation on the same file. The
parameters to the error procedure are the file being read, the byte read and the I/O number
indicating the error.

peekCharEOI : proc(file → string)

This procedure may be called during execution of the peekChar procedure in IO. It is called
when the end of input is encountered. The parameter to the error procedure is the file being
read.

119

peekCharIOE : proc(file, int → string)

This procedure may be called during execution of the peekChar procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

peekCharUnread : proc(file, int, int → string)

This procedure may be called during execution of the peekChar procedure in IO. It is called
when the character read cannot be made available to the next read operation on the same file.
The parameters to the error procedure are the file being read, the byte corresponding to the
character read and the I/O number indicating the error.

readBoolBadChar : proc(file, string → bool)

This procedure may be called during execution of the readBool procedure in IO. It is called
when an erroneous character is read. The parameters to the error procedure are the file being
read and the characters that had been read, up to and including the erroneous character,
excluding any layout characters.

readBoolEOI : proc(file, string → bool)

This procedure may be called during execution of the readBool procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readBoolIOE : proc(file, string, int → bool)

This procedure may be called during execution of the readBool procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the I/O number indicating the error.

readByteEOI : proc(file → int)

This procedure may be called during execution of the readByte procedure in IO. It is called
when the end of input is encountered. The parameter to the error procedure is the file being
read.

readByteIOE : proc(file, int → int)

This procedure may be called during execution of the readByte procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

120

readCharEOI : proc(file → string)

This procedure may be called during execution of the readChar procedure in IO. It is called
when the end of input is encountered. The parameter to the error procedure is the file being
read.

readCharIOE : proc(file, int → string)

This procedure may be called during execution of the readChar procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

readIntBadChar : proc(file, string → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when a digit or a sign character followed by a digit is not the first non-layout character found.
The parameters to the error procedure are the file being read and the character that was read
instead of the expected digit or sign character.

readIntEOI : proc(file, string → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readIntIOE : proc(file, string, int → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the I/O number indicating the error.

readIntOverflow : proc(file, string → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when an arithmetic error occurs converting the integer parsed into an integer value. The
parameters to the error procedure are the file being read and the characters that form the
integer.

readIntUnread : proc(file, string, int, int → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when an extra character read while parsing an integer cannot be made available to the next
read operation on the same file. The parameters to the error procedure are the file being read,
the characters that form the integer, the byte corresponding to the extra character read and the
I/O number indicating the error.

121

readLineEOI : proc(file, string → string)

This procedure may be called during execution of the readLine procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected.

readLineIOE : proc(file, string, int → string)

This procedure may be called during execution of the readLine procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred and the I/O number indicating the
error.

readRealBadChar : proc(file, string → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when a digit or a sign character followed by a digit is not the first non-layout character found.
The parameters to the error procedure are the file being read and the character that was read
instead of the expected digit or sign character.

readRealEOI : proc(file, string → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readRealIOE : proc(file, string, int → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the I/O number indicating the error.

readRealOverflow : proc(file, string → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when an arithmetic error occurs converting the real parsed into a real value. The parameters
to the error procedure are the file being read and the characters that form the integer.

readRealUnread : proc(file, string, int, int → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when an extra character read while parsing a real cannot be made available to the next read
operation on the same file. The parameters to the error procedure are the file being read, the
characters that form the real, the byte corresponding to the extra character read and the I/O
number indicating the error.

122

readStringBadChar : proc(file, string → string)

This procedure may be called during execution of the readString procedure in IO. It is called
when a double quote character is not the first non-layout character found. The parameters to
the error procedure are the file being read and the character that was read instead of the
expected double quote.

readStringEOI : proc(file, string → string)

This procedure may be called during execution of the readString procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding the leading double quote.

readStringIOE : proc(file, string, int → string)

This procedure may be called during execution of the readString procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding the leading double quote,
and the I/O number indicating the error.

writeBool : proc(file, string, int, int)

This procedure may be called during execution of the writeBool procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the boolean being written, the number of characters successfully
written and the I/O number indicating the error.

writeByte : proc(file, int, int)

This procedure may be called during execution of the writeByte procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, the
byte being written and the I/O number indicating the error.

writeInt : proc(file, string, int, int)

This procedure may be called during execution of the writeInt procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the integer being written, the number of characters successfully
written and the I/O number indicating the error.

writeReal : proc(file, string, int, int)

This procedure may be called during execution of the writeReal procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the real being written, the number of characters successfully written
and the I/O number indicating the error.

123

writeString : proc(file, string, int, int)

This procedure may be called during execution of the writeString procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, the
string being written, the number of characters successfully written and the I/O number
indicating the error.

5.6 String Errors

concatenate : proc(string, string → string)

This procedure may be called during the string concatenation operation ++. It is called when
the length of the resulting string overflows the implementation size (the maximum string
length is maxint characters in the current implementation of Napier88). The parameters to the
error procedure are the two strings to be concatenated.

subString : proc(string, int, int → string)

This procedure may be called during the substring indexing operation |. It is called when the
string to be dereferenced is an empty string, when the start position is less than one, when the
length is less than zero, or when the finish position is after the end of the string. The
parameters to the error procedure are the original string, the start position and the number of
characters.

5.7 Structure Errors

structureFieldConstant : proc()

This procedure may be called during an assignment to a field within a structure. It is called
when the field is constant.

5.8 System Errors

This environment contains error procedures used by the system implementation.

5.9 Variant Errors

varProject : proc(TypeRep, string, string)

This procedure may be called during a variant projection. It is called when the variant is
projected onto an incorrect branch. The parameters to the error procedure are a
representation of the variant type, the name of the expected branch and the name of the actual
branch.

The Napier88 system cannot continue after a variant projection error and the current thread
will terminate even if the error handling procedure returns normally.

124

5.10 Vector Errors

makeVector : proc[t](int, int, t → *t)

This procedure may be called during an attempted vector creation. It is called when the lower
bound is greater than the upper bound. The parameters to the error procedure are the lower
bound, the upper bound and the initialising value.

vectorElementConstant : proc[t](*t, int, t)

This procedure may be called during an assignment to a location within a vector. It is called
when the elements of the vector are constant. The parameters to the error procedure are the
original vector, the index and the value to be assigned to the location.

vectorIndexAssign : proc[t](*t , int, t)

This procedure may be called during an attempted assignment to a location within a vector. It
is called when the attempted index is less than the lower bound of the vector or greater than
the upper bound of the vector. The parameters to the error procedure are the original vector,
the index and the value to be assigned to the location.

vectorIndexSubs : proc[t](*t, int → t)

This procedure may be called during an attempted access to a location within a vector. It is
called when the attempted index is less than the lower bound of the vector or greater than the
upper bound of the vector. The parameters to the error procedure are the original vector and
the index.

125

6 Type Definitions
The Napier88 types required for programming using the standard library are listed below.
They are also available in the given declaration sets.

6.1 General

Declaration set: general

type Optional[T] is variant(present : T ; absent : null)

rec type List[T] is variant(cons : structure(hd : T ; tl : List[T]) ; tip : null)

type ListBool is List[bool]
type ListInt is List[int]
type ListString is List[string]

rec type DoubleList[T] is variant(cons :
 structure(hd : T ; before,after : DoubleList[T]) ; tip : null)

type Pair[S,T] is structure(fst : S ; snd : T)

6.2 Windows and Window Managers

Declaration set: win

type Pos is structure(x,y : int)
type Size is structure(x,y : int)
type Limit is structure(pos : Pos ; size : Size)
type Rect is structure(origin,corner : Pos)
type Level is structure(fromFront : bool ; position : int)
type InputOption is variant(all,none,normal : null)

type Mouse is structure(x,y : int ; buttons : *bool)
type Event is variant(chars : string;
 mouse : Mouse;
 select,deselect : null)
type EventType is variant(up,down,enter,leave,click,doubleClick : null)
type MouseEvent is structure(button : int ; event : EventType)

type Application is proc(Event)

type EventTest is proc(Event -> bool)

type Notification is structure(examineEvent : EventTest ; processEvent : Application)

type Notifier is structure(distributeEvent : Application;
 addNotification : proc(Notification,Level -> proc()))

type Font is structure(characters : *image ; fontHeight,descender : int ; info : string)
type FontPack is structure(font : Font ;
 stringToTile,charToTile : proc(string -> image))

type ResizeControl is structure(before : proc(Rect -> Rect) ; after : proc(Rect))

rec type DisplayInfo is structure(window : Window ; pos : Pos ; level : Level)

& Window is structure(windowRaster : proc(Limit,Limit,Window,int,bool);
 imageRaster : proc(Limit,image,int,bool);
 drawLine : proc(Pos,Pos,pixel,int);
 setInputOption : proc(InputOption);
 getInputOption : proc(-> InputOption);

126

 setSize : proc(Rect);
 getSize : proc(-> Size);
 setApplication : proc(Application);
 getApplication : proc(-> Application);
 setTitle : proc(string);
 getTitle : proc(-> string);
 setResizeControl : proc(ResizeControl);
 getResizeControl : proc(-> ResizeControl);
 setMinSize : proc(Size);
 getMinSize : proc(-> Size);
 setMaxSize : proc(Size);
 getMaxSize : proc(-> Size);
 setDepth : proc(int);
 getDepth : proc(-> int);
 setBorderStyle : proc(BorderStyle);
 getBorderStyle : proc(-> BorderStyle);
 getBorder : proc(-> Border);
 setCursor : proc(Cursor);
 getCursor : proc(-> Cursor);
 getWindowManager : proc(-> WindowManager);
 setVirtualWindow : proc(string,Window))

& WindowManager is structure(display : proc(DisplayInfo,bool);
 undisplay : proc(Window);
 makeCurrent : proc(Window);
 setPos : proc(Window,Pos);
 getPos : proc(Window -> Pos);
 setLevel : proc(Window,Level);
 getLevel : proc(Window,bool -> Level);
 getWindows : proc(-> *Window);
 getWindowAtPos : proc(Pos -> Window);
 getNotifier : proc(string -> Notifier);
 getDisplayWindow : proc(-> Window);
 getIconManager : proc(-> IconManager);
 setBackgroundApp : proc(Application);
 getBackgroundApp : proc(-> Application))

& IconManager is structure(close : proc(Window);
 open : proc(Window);
 getIconState : proc(Window -> DisplayInfo);
 getWindowState : proc(Window -> DisplayInfo))

& BorderStyle is proc(Window -> Border)
& Border is List[Area]
& Area is structure(currentImage,nonCurrentImage : image ;
 pos : Pos ; distributeEvent : Application)

& Cursor is structure(cursor,mask : image ; hotSpot : Pos)

type RGB is structure(r,g,b : int)

6.3 Bulk Types

Declaration set: bulk

type Table[Key,Data] is structure(enter : proc(Key,Data);
 lookup : proc(Key -> Optional[Data]);
 remove : proc(Key);
 scan : proc(proc(Key,Data -> bool)))

type Comparison[Key] is variant(
 ordered : structure(equal,lessThan : proc(Key,Key -> bool));
 unordered : structure(equal : proc(Key,Key -> bool)))

type ComparisonString is Comparison[string]

type ListPack[T] is structure(insert,

127

 replace : proc(T);
 clear,
 delete : proc();
 element : proc(-> Optional[T]);
 length,
 pos : proc(-> int);
 atEnd : proc(-> bool);
 go : proc(int);
 goNext,
 goPrev : proc();
 find : proc(proc(T -> bool) -> int))

type Cache[T] is structure(getElement : proc(-> T);
 getStats : proc(-> *int);
 flush : proc();
 release : proc(T);
 grow : proc(int);
 new : proc(-> T);
 busy : proc(T -> bool);
 init : proc(T);
 sizeIncrement : proc(int -> int);
 notify : proc(int))

6.4 Outline Graphics

Declaration set: win

type DrawFunction is variant(imageDraw : proc(image,pic,real,real,real,real) ;
 fileDraw : proc(file,pic,real,real,real,real) ;
 fail : null)

6.5 Hyper-Text

Declaration set: hyperText

type CodeRegion is structure(start,finish : int)

type Substitution[T] is structure(value : T ; region : CodeRegion)

type LinkPack[HyperLink] is structure(link : HyperLink ;
 showLink : proc(HyperLink,int))

type HyperText[HyperLink] is structure(
 characters : string ;
 links : Optional[*Substitution[LinkPack[HyperLink]]])

6.6 Editors

Declaration set: editor

type Index is variant(characters : int;
 lines : structure(line,char : int))

rec type Editor[HyperLink] is abstype[TextPointer](
 copyText : proc(Editor[HyperLink]);
 cutText : proc(Editor[HyperLink]);
 clearText : proc();
 pasteText : proc(Editor[HyperLink]);
 insertText : proc(HyperText[HyperLink],bool);
 readFromFile : proc(file,Optional[proc(string ->
 Optional[LinkPack[HyperLink]])]);

128

 writeToFile : proc(file,Optional[proc(HyperLink -> string)]);
 select : proc(TextPointer,TextPointer);
 firstSelection : proc(-> TextPointer);
 lastSelection : proc(-> TextPointer);
 firstLine : proc(-> TextPointer);
 lastLine : proc(-> TextPointer);
 topLine : proc(-> TextPointer);
 bottomLine : proc(-> TextPointer);
 frontOfLine : proc(TextPointer -> TextPointer);
 endOfLine : proc(TextPointer -> TextPointer);
 nextLine : proc(TextPointer -> TextPointer);
 previousLine : proc(TextPointer -> TextPointer);
 peek : proc(-> HyperText[HyperLink]);
 read : proc(-> HyperText[HyperLink]);
 readLine : proc(-> HyperText[HyperLink]);
 selectedText : proc(-> HyperText[HyperLink]);
 before : proc(TextPointer,TextPointer -> bool);
 endOfText : proc(-> bool);
 getFont : proc(-> FontPack);
 getHighlight : proc(-> bool);
 getProgressIndicator : proc(-> proc(string,real));
 getScrollAction : proc(-> proc(int,bool));
 getWindow : proc(-> Window);
 interactiveEdit : proc(Editor[HyperLink],EventTest,EventTest,EventTest
 -> Application);
 invert : proc(TextPointer,TextPointer);
 lineCount : proc(-> int);
 new : proc();
 offset : proc(TextPointer,bool -> Index);
 position : proc(Pos -> TextPointer);
 redisplay : proc(TextPointer);
 scanLinks : proc(proc(Substitution[LinkPack[HyperLink]] -> bool));
 scroll : proc(int,bool);
 search : proc(HyperText[HyperLink],bool -> bool);
 seek : proc(Index -> TextPointer);
 setFont : proc(FontPack);
 setHighlight : proc(bool);
 setProgressIndicator : proc(proc(string,real));
 setScrollAction : proc(proc(int,bool));
 setWindow : proc(Window);
 unbindWindow : proc())

6.7 Interface Tools

Declaration set: tools

type Appearance is variant(graphical : image ; textual : string)

type EditorPack[HyperLink] is
 structure(window : Window;
 editor : Editor[HyperLink];
 getTitle : proc(-> string);
 getText : proc(-> HyperText[HyperLink]);
 append : proc(HyperText[HyperLink]);
 getBuffer : proc(-> Editor[HyperLink]);
 setBuffer : proc(Editor[HyperLink]))

type HyperTextPack is EditorPack[any]

type MenuEntry is structure(appearance : Appearance ; action : proc(int, MouseEvent))

type MenuPack is structure(window : Window;
 setTop : proc(int);
 getTop : proc(-> int);
 setNoVisible : proc(int);
 getNoVisible : proc(-> int);
 setHighlight : proc(int,bool);

129

 getHighlight : proc(int -> bool);
 getNoEntries : proc(-> int);

 entryTable : Table[int, MenuEntry])

type ButtonPack is structure(window : Window ; flash : proc())

type SliderPack is structure(window : Window;
 set : proc(real);
 setBounds : proc(real,real,real))

type ChoicePack is structure(window : Window ; set : proc(int,int,bool))

type DialoguePack[HyperLink] is structure(window : Window ;
 set : proc(int,HyperText[HyperLink]))

type ScreenWindowManagerPack is structure(windowManager : WindowManager;
 gatherEvents : proc(-> Event);
 closeScreen : proc();
 screenDevice : file)

6.8 Protection

Declaration set: protection

type Protected is abstype[i](absHolder : structure(abs : i))

type ProtectedPack[T] is structure(protected : Protected ;
 setProtected,
 getProtected : any ;
 setConcrete : proc(T) ;
 getConcrete : proc(-> T))

6.9 Programming Environment

Declaration set: programmingEnv

type WindowState is structure(window : Window ; pos : Pos ; level : Level ;
 open,displayed : bool)

type CompilationError is structure(errorRegion,
 errorLine : CodeRegion;
 lineNumber : int;
 errorMessage : string)

type CompilationResult[TypeDescriptor] is variant(voidResult : proc();
 nonVoidResult : proc(-> any);
 typeExpression : TypeDescriptor;
 error : *CompilationError)

type TypeCompilationResult[TypeDescriptor] is variant(
 typeDefinitions : Table[string, TypeDescriptor];
 error : *CompilationError)

type BindingInfo[Binding] is structure(binding : Binding;
 name : string;
 menuOffset : int;
 fieldNo : int)

6.10 Concurrency

Declaration set: concurrency

130

type ThreadPack is abstype[Thread](start : proc(proc() -> Thread);
 getCurrentThread : proc(-> Thread);
 getAllThreads : proc(-> *Thread);
 kill,
 restart,
 suspend : proc(Thread);
 getStatus : proc(Thread -> string);
 getParent : proc(Thread ->
 Optional[Thread]);
 suspendUnlock : proc(string,Thread)
)

type Semaphore is structure(wait,signal : proc())

6.11 Distribution

Declaration set: distribution

type RemoteStore is structure(host, storeDir : string)

type EnvEntry[TypeRep] is structure(entryName : string ; entryType : TypeRep)

type StoreScan[TypeRep] is variant(envDescription : List[EnvEntry[TypeRep]];
 typeDescription : TypeRep)

type RemoteResult[T] is variant(successful : T ; error : string)

131

7 Napier88 Releases

7.1 Operating Environment

Napier88 Release 2.2.1 runs on the following configurations:

• Sun SPARC running SunOs1 Version 4.1.3.

• Sun SPARC running Solaris Version 1.1.

• DEC Alpha running OSF/12. This may require configuration to support memory mapped
files: mail the address given in Section 7.5 for details.

7.2 Obtaining the Napier88 Release

The Napier88 Installation Guide [KBC+96] describes how to obtain a Napier88 release.
Napier88 Release 2.2.1 is Copyright © University of St Andrews 1996 and is subject to a
licence fee. If you have a licence for an earlier release of Napier88, however, Release 2.2.1 is
free. The current licence fee is specified in the README file in the release directory:

ftp://ftp-ppg.dcs.st-andrews.ac.uk/pub/Napier88/release2.2.1/README

7.3 Documentation

The following documents are available in PostScript form from:

ftp://ftp-ppg.dcs.st-andrews.ac.uk/pub/persistence.papers/
or
http://www-ppg.dcs.st-andrews.ac.uk/Publications/

and in HTML form at:

http://www-ppg.dcs.st-andrews.ac.uk/Documentation/

• Napier88 Installation Guide (Release 2.2.1)
• Napier88 Standard Library Reference Manual (Release 2.2.1) (this document)
• Napier88 Reference Manual (Release 2.2.1)

7.4 Napier88 Mailing List

If you wish to be added to an electronic mailing list3 which carries notifications of future
releases and papers, send an e-mail request of the following form:

1SunOs™ and Solaris™ are trademarks of Sun Microsystems, Inc.

2OSF/1™ is a trademark of the Open Software Foundation.

3The mailing list is run by Mailbase™, a service provided by the University of Newcastle upon Tyne.

132

ftp://ftp-ppg.dcs.st-andrews.ac.uk/pub/Napier88/release2.2.1/README
ftp://ftp-ppg.dcs.st-andrews.ac.uk/pub/persistence.papers/
http://www-ppg.dcs.st-andrews.ac.uk/Documentation/

To: mailbase@mailbase.ac.uk
Subject:

join napier88-users <your-first-name> <your-last-name>
stop

where the bracketed words are replaced as appropriate. For example:

join napier88-users John Napier

The request will be processed automatically and your name added to the mailing list. To
send e-mail to all members of the mailing list, send your message to:

napier88-users@mailbase.ac.uk

7.5 Troubleshooting

In the event of problems with downloading a release, or to report any other bugs, send e-mail
to:

napier@dcs.st-andrews.ac.uk

7.6 Version History Overview

Release 1.1

The original Napier88 release, implemented in PS-algol. This included the Napier88
compiler, a basic standard library, and run-time system [MBC+89a].

Release 2.0

In this release the Napier88 compiler was itself implemented in Napier88, so that a PS-algol
system was no longer also necessary. The language definition was modified slightly with
respect to type operators and the model of abstract datatype witnesses. The root of
persistence became an any rather than an env for greater generality. Support for concurrent
threads was provided. The standard library was extended to include the compiler, user
interface tools, browser, hyper-programming tools, distribution and concurrency support etc
[MBC+96b]

Release 2.1

This was an internal release only.

Release 2.2

The language remained unaltered from release 2.0. The standard library included a number
of bug fixes, support for multiple concurrent user sessions, and a protection mechanism to
allow controlled user access to low-level data structures.

Release 2.2.1b1

This included further bug fixes and improved colour support.

Release 2.2.1

133

mailto:mailbase@mailbase.ac.uk
mailto:napier88-users@mailbase.ac.uk
mailto:napier@dcs.st-andrews.ac.uk

The current release includes optional full hyper-program source code for the standard library,
a utility for generating HTML source code representations, and further bug fixes. HTML
versions of the documentation and library source code are available at:

http://www-ppg.dcs.st-andrews.ac.uk/Documentation/

7.7 Version History Details

This section describes in detail the changes made in recent versions.

7.7.1 Release 2.2.1

Changes made between release 2.2.1b1 and release 2.2.1 are as follows:

7.7.1.1 Type Definition Changes

There are no changes to type definitions.

7.7.1.2 Library Component Changes

There are no changes to existing library components.

7.7.1.3 New Library Components

The procedure lookup looks up a named binding in a given environment (Section 4.6).

The procedure genHTML generates HTML source code for the procedures in a given
environment (Section 4.23).

The procedure getProcSource returns the hyper-program source code of a given procedure
(Section 4.23).

The procedure mkVecLocBinding creates a binding denoting a vector location (Section 4.23).

7.7.1.4 Miscellaneous Changes

The npc command may take the -f and -n flags (Section 2.9.2).

Source code for library procedures is now included (Section 2.3.8).

7.7.2 Release 2.2.1b1

Changes made between release 2.2 and release 2.2.1b1 are as follows:

7.7.2.1 Type Definition Changes

The pre-defined types are now organised in a number of declaration sets (Section 6).

The types ListBool, ListInt and ListString are now defined in the declaration set general.
(Section 6.1).

The types Cursor and RGB are now defined in the declaration set win (Section 6.2).

The procedure fields setCursor and getCursor in type Window now operate on instances of
type Cursor (Section 6.2).

134

http://www-ppg.dcs.st-andrews.ac.uk/Documentation/

The types ComparisonString and Cache are now defined in the declaration set bulk (Section
6.3).

The procedure fields readFromFile and writeToFile in type Editor now take additional
parameters (Section 6.6).

The type EditorPack now includes the procedure fields getBuffer and setBuffer (Section 6.7).

The procedure field set in type DialoguePack now takes an additional parameter (Section
6.7).

The procedure field live in type ThreadPack is now renamed getStatus and returns a string
result (Section 6.10).

The type RemoteStore no longer includes the fields userName and password (Section 6.11).

7.7.2.2 Library Component Changes

The procedure semaphoreGen now takes a name as a parameter (Section 4.3).

The procedure live is renamed getStatus and now returns a string result (Section 4.3).

The procedures getCursor and setCursor now take a vector of images as a parameter (Section
4.4).

The procedures getCursorInfo and setCursorInfo now include the cursor hotspot position
(Section 4.4).

The procedure open now allows a socket connection to another host to be opened (Section
4.14.1).

The procedures in the environment CurrentState are all changed (Section 4.25.2).

The procedure eventMonitorGen now takes an optional termination test procedure (Section
4.25.5).

The procedure screenWindowManagerGen now takes a string display name and returns a
structure containing procedures (Section 4.25.5).

The components selectedWindows and refinements are replaced by the procedures
getSelectedWindows and getRefinementsTable (Section 4.25.7).

The procedures which generate interactive editors no longer take a cut/paste buffer as a
parameter (Section 4.25.8.1).

The procedure genericEditorToolGen now takes a number of additional parameters (Section
4.25.8.1).

The parameter order of the procedure imageToFile is now reversed for consistency (Section
4.25.9).

The procedure setColourMap now takes a file parameter (Section 4.25.9).

The error procedures getCursor and setCursor now take vector parameters (Section 5.4).

135

7.7.2.3 New Library Components

The procedure compileTypeDefinitionsWith allows type definitions to be compiled in the
context of existing declaration sets (Section 4.2).

The procedures notifyCopy and notifyScan are called when an incoming remote copy/scan
request is serviced (Section 4.5).

The environment FailValues contains cursorFailValue, nullEditorFailValue,
nullEditorPackFailValue, nullHyperTextFailValue, screenWindowManagerPackFailValue
and voidProcFailValue (Section 4.8).

The procedure programmingEnv starts a programming environment session (Section 4.12).

The procedure outputString outputs a string using the appropriate procedure for the current
session (Section 4.14).

The procedures intHashTableGen and stringHashTableGen provide hash tables keyed by
integers and strings (Section 4.21).

The procedure cacheGen provides a flexible cache for Napier88 values (Section 4.23).

The procedure mkLocBinding creates a link to a mutable location (Section 4.23).

The procedure resizeFromCorner allows a window to be resized interactively (Section
4.25.1.1).

The environment Cursors contains cursors (Section 4.25.3).

The procedure popUpMenuGen creates a pop-up menu (Section 4.25.8).

The procedure genericDialogueGen creates a dialogue with arbitrary labels, buttons and text
fields (Section 4.25.8.1).

The table colourDefnTable and the procedures colourMapIntToRGB, colourMapRGBToInt,
intToPixel, intToRGB, pickColour, pixelToInt and RGBToInt provide support for
manipulation of colour tables (Section 4.25.9).

7.7.2.4 Miscellaneous Changes

When saving/reading a hyper-program to/from a file, an option is available to treat
environment location links specially (Section 2.1.2).

Drag-and-drop from environment menu entries to hyper-program windows is supported
(Section 2.3.2).

The Display option in the browser background menu allows the window corresponding to a
selected Window value to be displayed (Section 2.3.13).

Multiple simultaneous user sessions are supported (Section 2.7).

Additional procedures to access the current session state are provided (Section 2.8).

Declarations sets on which a program depends may be specified by comments within the
source code as well as through command line arguments or editor settings (Sections 2.9.1,
2.9.2).

The npc command may take the -o and -p flags (Section 2.9.2).

136

The napier88 command may start up multiple user sessions (Section 2.9.4).

137

8 References

 [CDM+90] Connor, R.C.H., Dearle, A., Morrison, R. & Brown, A.L. “Existentially Quantified Types as a
Database Viewing Mechanism”. In Lecture Notes in Computer Science 416, Bancilhon, F.,
Thanos, C. & Tsichritzis, D. (ed), Springer-Verlag, Proc. 2nd International Conference on
Extending Database Technology, Venice, Italy (1990) pp 301-315.

 [Far91] Farkas, A.M. “ABERDEEN: A Browser allowing intERactive DEclarations and Expressions in
Napier88”. University of Adelaide (1991).

 [FDK+92] Farkas, A.M., Dearle, A., Kirby, G.N.C., Cutts, Q.I., Morrison, R. & Connor, R.C.H. “Persistent
Program Construction through Browsing and User Gesture with some Typing”. In Persistent
Object Systems, Albano, A. & Morrison, R. (ed), Springer-Verlag, Proc. 5th International
Workshop on Persistent Object Systems, San Miniato, Italy (1992) pp 376-393.

 [KBC+96] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Morrison, R. & Munro, D.S. “Napier88 Installation
Guide (Release 2.2.1)”. University of St Andrews (1996).

 [KCC+92] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. & Morrison, R. “Persistent
Hyper-Programs”. In Persistent Object Systems, Albano, A. & Morrison, R. (ed), Springer-
Verlag, Proc. 5th International Workshop on Persistent Object Systems, San Miniato, Italy
(1992) pp 86-106.

 [KCC+92b] Kirby, G.N.C., Cutts, Q.I., Connor, R.C.H., Dearle, A. & Morrison, R. “Programmers’ Guide to
the Napier88 Standard Library, Edition 2.1”. University of St Andrews (1992).

 [KCC+93] Kirby, G.N.C., Cutts, Q.I., Connor, R.C.H. & Morrison, R. “The Implementation of a Hyper-
Programming System”. University of St Andrews Technical Report CS/93/5 (1993).

 [Kir92] Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent Programming Systems”. Ph.D.
Thesis, University of St Andrews (1992).

 [MBB+86] Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearle, A. “A Persistent Graphics
Facility for the ICL PERQ Computer”. Software – Practice and Experience 16, 4 (1986) pp 351-
367.

 [MBC+89a] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The Napier88 Reference Manual”.
Universities of Glasgow and St Andrews Technical Report PPRR-77-89 (1989).

 [MBC+89b] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “Napier88 Release 1.0”. University of
St Andrews (1989).

 [MBC+94] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby, G.N.C. & Munro,
D.S. “The Napier88 Reference Manual (Release 2.0)”. University of St Andrews Technical
Report CS/94/8 (1994).

 [MBC+96a] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby, G.N.C. & Munro,
D.S. “Napier88 Reference Manual (Release 2.2.1)”. University of St Andrews (1996).

 [MBC+96b] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby, G.N.C. & Munro,
D.S. “Napier88 Release 2.2.1”. University of St Andrews (1996).

 [MBD+86] Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P. “An Integrated Graphics Programming
Environment”. Computer Graphics Forum 5, 2 (1986) pp 147-157.

 [MCC+95] Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S. & Kirby, G.N.C. “Exploiting Persistent
Linkage in Software Engineering Environments”. Computer Journal 38, 1 (1995) pp 1-16.

138

 [Mor82] Morrison, R. “Low Cost Computer Graphics for Micro Computers”. Software – Practice and
Experience 12, 8 (1982) pp 767-776.

 [SPG91] Silberschatz, A., Peterson, J.L. & Galvin, P.B. Operating System Concepts. Addison-Wesley,
Reading, Massachusetts (1991).

 [Sun89] Sun Microsystems Open Look™ Graphical User Interface Functional Specification.
Addison-Wesley, Mountain View, California (1989).

Those references marked * are available from:

ftp://ftp-ppg.dcs.st-andrews.ac.uk/pub/persistence.papers/

or from:

http://www-ppg.dcs.st-andrews.ac.uk/Publications/

139

9 Index

A panning 17
universes 15abort 62

bulk 127abs 33
busy 65abstract datatypes 15
button1Down 111ACCEPT 57
button2Down 111after 93
button3Down 111andRule 61
ButtonPack 130Appearance 129
buttonPackFailValue 46append 90, 109

Application 126
application 31 C
applicationFailValue 46 Cache 128
Area 75, 127 cache 64
arguments 67 cacheGen 64
Arithmetical 33, 114 changes
asciiToString 61 from previous releases 134
atan 33 chars 31
atEnd 60 charToTile 47
audio file 112 checkBoxGroupGen 99

ChoicePack 130
B choicePackFailValue 46

clear 59Back 72
clearText 82background menu
close 55, 96browser 17
closedWindow 116programming environment 22
closeScreen 90background window 32
CodeRegion 128before 85, 93
colourBinding 33

colour definition table 111bindingEditorFailValue 46
colour map 78, 112, 113bindingFailValue 46
format 112, 113BindingInfo 130
mapping colour to pixel 112bitwiseAnd 33

colourDefnTable 111bitwiseNot 33
colourMap 41, 116bitwiseOr 33
colourMapIntToRGB 78, 112Border 75, 127
colourMapRGBToInt 112Borders 71
colourOf 41, 116BorderStyle 75, 127
command line arguments 67borderStyleFailValue 46
compaction 27bottomLine 84
compareInt 62browser 79, 99
compareString 62browser 11
Comparison 127background menu 17
ComparisonString 127displaying abstract datatypes 15
CompilationError 130displaying environments 12
CompilationResult 130displaying files 15
compileHyperSource 35displaying images 13
compileHyperSourceWith 36displaying pictures 14
Compiler 35displaying procedures 15
compileString 36displaying structures 13
compileStringWith 37displaying type constructors 16
compileTypeDefinitions 37displaying types 16
compileTypeDefinitionsWith 37displaying variants 13
compilingdisplaying vectors 13

compiler flags 24

140

primitive functions 25 DialoguePack 130
programs 24 digit 61
type declarations 23 DISK 56
with declaration sets 24 diskgc 62

concatenate 124 Dismiss 72
concatenateHyperText 65 display 95
concatenateStrings 65 DisplayInfo 126
Concurrency 39 displayInfoFailValue 46
concurrency 130 Distribution 43, 131
CONNECT 57 double 71
copyClearEditorToolGen 106 DoubleList 126
copyRule 61 downArrow 98
copyStore 44 drag and drop 8, 12
copyText 82 Draw 116
copyValue 44 DrawFunction 128
cos 34 drawLine 91
create 55
createStore 44 Ecurrent state 23 Editor 128current window 30 editor 89, 128CurrentBrowser 23, 79 editorCurrentState 78 hyper-program editor 22Cursor 127 editorGen 81cursorFailValue 46 EditorPack 129Cursors 79 EditorTools 106cutText 82 eformat 48, 116

element 59
D endOfInput 51
date 63 endOfInputIOE 119
declaration sets 18 endOfInputUnread 119

adding to 19, 22 endOfLine 84
choosing 20 endOfText 85
compiling with 24 enter 63
creating 18 envDrop 115
deleting 18 EnvEntry 131
displaying 19 envFailValue 46

default values 80 Environment 45, 115
defaultBoldFont 80 environment variables 28, 67
defaultBorderStyle 80 environment 45
defaultBorderThickness 80 environments 12
defaultColourMap 80 envProject 115
defaultFont 80 envRedeclaration 115
defaultIcon 80 eoi 37
defaultLinkMarker 80 epsilon 34
defaultOuterScopes 81 Error 5
Defaults 80 error 36, 37, 66
defaultWindowCursor 81 errorLine 36
defaultWindowDepth 81 errorMessage 36
defaultWindowSize 81 errorNumber 55
defaultXWindowPos 81 errorRegion 36
defaultXWindowSize 81 Event 45, 126
delete 59, 76 event monitor 88
deleting windows 23 event 31
dependent types 33, 61, 69 asynchronous 45
deselect 31, 79, 98 eventMonitorGen 88
Device 41 EventTest 126
dialogueGen 99 EventType 126

141

executeAsThread 66 getBorderStyle 94
exp 34 getBuffer 90, 109
External 5 getByte 56, 114
extractHyperText 66 getConcrete 69

getCurrentBuffer 23, 78
getCurrentColourMap 23, 78F getCurrentCursor 23, 78FailValues 46 getCurrentError 23, 78fformat 48, 116 getCurrentOutputPack 23, 78file getCurrentThread 40disk 56 getCurrentWindowManager 23, 78displaying 15 getCurrentWriteString 23, 78socket 57 getCursor 41, 95, 117terminal 56 getCursorInfo 41, 117window 57 getDeclarationSet 38fileInput 37 getDepth 94fileToImage 112 getDisplayWindow 96fileToSound 112 getElement 64find 60, 66 getEnv 67firstLine 83 getFont 85firstSelection 83 getHighlight 85, 103fixedX 72 getHyperProgramPack 67float 34 getIconManager 96flush 64 getIconState 97Font 47, 126 getInputOption 92font 47 getLevel 96fontFailValue 46 getMaxSize 94FontPack 126 getMinSize 94fontPackFailValue 46 getNoEntries 103Format 48, 116 getNotifier 96Front 72 getNoVisible 103frontOfLine 84 getParent 40ftp server 132 getPixel 49, 117fullEditorToolExpandableGen 106 getPos 96fullEditorToolGen 107 getProcSource 67
getProgressIndicator 85

G getProtected 69
garbage collection 26, 62 getRefinementsTable 98
gatherEvents 90 getResizeControl 93
general 126 getScreen 42, 117
Generators 81 getScrollAction 85
genericButtonGen 100 getSelectedBindingInfo 79
genericChoiceGen 100 getSelectedWindows 99
genericCompile 37 getSize 92
genericDialogueGen 101, 107 getStats 64
genericEditorToolGen 107 getStatus 40
genericMenuExpandableGen 101 getText 90, 109
genericMenuGen 102 getTitle 89, 92, 109
genericSingleLineDialogueGen 109 getTop 103
genericSliderGen 103 getType 68
genericXBorderGen 72 getWindow 86
genHTML 66 getWindowAtPos 96
getAllThreads 40 getWindowManager 95
getApplication 92 getWindows 96
getArgs 67 getWindowState 97
getBackgroundApp 97 gformat 48
getBorder 94 go 60
getBorderExtent 112 goNext 60

142

goPrev 60 J
Graphical 49, 116
grow 65

K
kill 40

H killing a thread 40
hangup 46
heap size 28

Lhost
lastLine 83registering 27
lastSelection 83setting for store 27
leftArrow 98hyper-program window 7
length 59, 61hyper-programming 7
letter 62hyperProgramPackFailValue 46
Level 126hyperProgramPackGen 89
levelFailValue 46hyperSourceFailValue 46
Library 5HyperText 128
lightButtonGen 104hyperText 128
Limit 126HyperTextPack 129
limitAt 117
limitAtBy 117

I limitFailValue 46
icon 98 line 50
iconise 76 lineCount 86
IconManager 127 lineNumber 36
iconManagerFailValue 46 LinkPack 128
iformat 48 List 126
imagePixelConstant 117 ListBool 126
imageRaster 91 ListInt 126
Images 98 ListPack 127
images 13 listPackGen 59

reading TIFF file 113 Lists 59
imageToFile 112 ListString 126
Index 128 ln 34
indexFailValue 46 locator 42, 117
init 65 lookup 45, 63
initialising stable store 27 lwb 71
InputOption 126
inputPending 51

Minsert 59
magnify 98insertText 83
makeCurrent 95Int 114
makeDrawFunction 49integerWidth 54
makeImage 118Interactive 75
makeReadEnv 54interactiveEdit 86
makeVector 125InteractiveEnvironment 51
makeWriteEnv 55interactor 32
max 68InterfaceEditor 51
maxint 34interrupt 46
maxreal 34intHashTableGen 62
MenuEntry 129intToPixel 112
menuGen 104intToRGB 112
MenuPack 129intVectorFailValue 46
menuPackFailValue 46invert 86
menuX 73invisible 73
min 68IO 51, 119
mkBlankString 68ioctl 56
mkCompareHyperText 68
mkEnvLocBinding 68

143

mkHyperLink 68 outline 49
mkLocBinding 68 output window 21
mkStructLocBinding 68 outputString 55
mkTypeBinding 68
mkTypeDescriptorBinding 69 PmkValueBinding 69 Pair 126mkVecLocBinding 69 pasteText 82Mouse 126 peek 84mouse 31 peekByte 52MouseEvent 126 peekByteEOI 119move 77 peekByteIOE 119multiple users 22 peekByteUnread 119

peekChar 52
N peekCharEOI 119
nandRule 61 peekCharIOE 120
Napier88 26 peekCharUnread 120

heap size 28 People 60
obtaining a release 132 persistent store 5
reference manual 5 pi 34
release 2.2.1 5 pickColour 112
release directory 28 pictures 14
stable store directory 28 pixelDepth 50
standard library 5 pixelOverflow 118

new 65, 87 pixelToInt 113
newDeclarationSet 38 plain 74
nextLine 84 playSound 113
nonVoidResult 36 popUpMenuGen 104
norRule 61 Pos 126
Notification 126 pos 59
Notifier 126 posFailValue 46
notify 65 position 87
notifyCopy 45 positionInfo 38
notifyScan 45 previousLine 84
notRule 61 primitive functions 25
npc 24 PrimitiveIO 55
npr 26 procedures 15
nprcompact 27 programming environment 7
nprcopystore 27 background menu 22
NPRDIR 28 declaration sets 18
nprformat 27 output window 21
nprgc 26 persistent windows 22
NPRHEAP 28 showing windows 22
nprregisterhost 28 starting 26
nprsethost 27 programmingEnv 51, 130
nprstats 27 programs
NPRSTORE 28 compiling 24
nps 23 running 26

saving to file 10
Protected 130O protected 69offset 87 protectedBinding 61open 56, 97 ProtectedPack 130operating system protectedPackGen 69environment 28 protectedTypeDescriptor 61interface to Napier88 23 protectedTypeRep 61Optional 126 Protection 61orRule 61 protection 130Outline 49

144

PS 5 RemoteResult 131
pushPop 77 RemoteStore 131

remoteStoreTable 43
remove 63Q removeDeclarationSet 39quit 46 replace 59
resetLex 38

R resize 77
rabs 34 ResizeControl 126
radioButtonGroupGen 105 resizeFromCorner 77
random 34 restart 40
Raster 49 RGBToInt 113
raster rules 61 rightArrow 98
rasterOp 50 running programs 26
RasterRules 61
read 38, 85 SreadBool 52 saving programs 10readBoolBadChar 120 scan 44, 45, 63readBoolEOI 120 scanDeclarationSets 39readBoolIOE 120 scanLinks 87readByte 52 screenDevice 90readByteEOI 120 screenWindowManagerGen 90readByteIOE 120 ScreenWindowManagerPack 130readBytes 58 screenWindowManagerPackFailValue 46readChar 52 scroll 87readCharEOI 121 scrollingMenuGen 105readCharIOE 121 search 87readFromFile 83 seek 58, 88readInt 52 select 31, 79, 83, 98readIntBadChar 121 selected 79, 98readIntEOI 121 selected window 31readIntIOE 121 selectedText 85readIntOverflow 121 Selection 98readIntUnread 121 Semaphore 131readLine 53, 85 semaphore 39readLineEOI 122 semaphoreGen 39readLineIOE 122 serviceTable 43readName 38 sessionreadOnlyEditorToolExpandableGen 110 starting 51readOnlyEditorToolGen 110 set 101, 104, 110readReal 53 setApplication 92readRealBadChar 122 setBackgroundApp 97readRealEOI 122 setBorderStyle 94readRealIOE 122 setBounds 104readRealOverflow 122 setBuffer 90, 109readRealUnread 122 setByte 58, 114readString 53 setColourMap 113readStringBadChar 123 setConcrete 69readStringEOI 123 setCurrentColourMap 23, 78readStringIOE 123 setCurrentCursor 23, 78Real 114 setCursor 42, 95, 118realWidth 55 setCursorInfo 43, 118Rect 126 setDepth 94rectFailValue 46 setFont 88redisplay 87 setHighlight 88, 103references 138 setInputOption 91registering new host 27 setLevel 96release 65

145

setListener 45 STDERR 56
setMaxSize 94 stdIn 51
setMinSize 94 STDIN 56
setNoVisible 103 stdOut 54
setPixel 50, 118 STDOUT 56
setPos 95 store directory 28
setProgressIndicator 88 StoreScan 131
setProtected 69 String 61, 124
setResizeControl 93 stringHashTableGen 63
setScrollAction 88 stringInput 39
setSize 92 stringToAscii 62
Settings 51 stringToHyperSource 70
setTitle 92 stringToInt 71
setTop 102 stringToTile 47
setVirtualWindow 95 stringVectorFailValue 47
setWindow 88 Structure 124
shadow 74 structureFieldConstant 124
shell variables 28 structures 13
SHELL 57 subImage 118
shiftLeft 35 subPixel 118
shiftRight 35 Substitution 128
showBinding 70 subString 124
showProgress 113 suspend 40
showType 70 suspendUnlock 40
signal 39 System 62, 124
simpleEditorToolGen 110
sin 35 TsingleLineDialogueGen 111 Table 127Size 126 tableGen 63sizeFailValue 46 Tables 62sizeIncrement 65 Text 119sliderGen 105 ThreadPack 131SliderPack 130 threadPackage 39sliderPackFailValue 47 threadssocket 57 getting all threads 40SOCKET 57 getting current thread 40sound 112, 113 getting parent 40soundFailValue 47 killing 40source restarting 40displaying procedure source code 15 starting 40sourceFragment 38 suspending 40sourceOffset 38 testing status 40spaceWidth 55 TIFF file 113sqrt 35 tiffFileToImage 113stabilise 62 Time 63stable store time 64compaction 27 timer 46directory 28 Tools 99garbage collection 26 tools 129initialisation 27 topLine 84setting host 27 trillButtonGen 105statistics 27 truncate 35, 115standard library 6 TTY 56start 40 type constructor 16starting type declarationsa session 51 compiling 23WIN 88 TypeCompilationResult 130statistics 27

146

typeDefinitions 37 windowManagerFailValue 47
TypeDescriptor 33 windowManagerGen 95
typeExpression 36 WindowMaps 99
TypeRep 33 windowRaster 91
types 16 WindowState 130

windowStateFailValue 47
writeBool 54, 123U writeByte 54, 123unaryInt 115 writeBytes 58unaryReal 115 writeInt 54, 123unbindWindow 88 writeReal 54, 123unboundEditorGen 90 writeString 54, 124undisplay 95 writeToFile 83universes 15

upArrow 98
Xupb 71

User 5 xDim 50
Utilities 64, 111 XDIM 58

xnorRule 61
xorRule 61V XPOS 58value-dependent types 33

variableX 75
YVariant 124

variants 13 yDim 50
varProject 124 YDIM 58
Vector 71, 125 YPOS 58
vectorElementConstant 125
vectorIndexAssign 125 ZvectorIndexSubs 125 zDim 51vectors 13 ZDIM 58voidProcFailValue 47
voidResult 35

W
wait 39
web server 5, 132, 139
win 126
Win 71
WIN 29

starting 88
window 89
window manager 29
Window 126
window 29

attributes 29
background 32
corresponding value 99
current 30
deleting 23
selected 31
updating 30

WINDOW 57
windowCreatorGen 77
windowFailValue 47
windowGen 91
windowIcon 98
WindowManager 127

147

	Contents
	1 Introduction
	1.1 Accessing the Persistent Store

	2 The Napier88 Programming Environment
	2.1 Hyper-Program Windows
	2.1.1 Editing Operations
	2.1.2 Saving and Loading Programs

	2.2 Compilation Error Window
	2.3 Browser Window
	2.3.1 Operations on Windows
	2.3.2 Environments
	2.3.3 Structures
	2.3.4 Variants
	2.3.5 Vectors
	2.3.6 Images
	2.3.7 Pictures
	2.3.8 Procedures
	2.3.9 Abstract Datatypes
	2.3.10 Files
	2.3.11 Universes
	2.3.12 Types
	2.3.13 Browser Background Menu
	2.3.14 Panning Tool

	2.4 Declaration Sets
	2.4.1 Creating and Deleting Declaration Sets
	2.4.2 Adding To a Declaration Set
	2.4.3 Displaying a Declaration Set
	2.4.4 Choosing Declaration Sets

	2.5 The Output Window
	2.6 The Background Menu
	2.7 Multiple Programming Environment Sessions
	2.8 Accessing the Current State
	2.9 Using Napier88 from Command Line
	2.9.1 nps: Compiling Type Declarations
	2.9.2 npc: Compiling Programs
	2.9.3 npr: Running Programs
	2.9.4 napier88: Starting the Programming Environment
	2.9.5 nprgc: Stable Store Garbage Collection
	2.9.6 nprstats: Stable Store Statistics
	2.9.7 nprcompact: Stable Store Compaction
	2.9.8 nprcopystore: Creating an Initialised Stable Store
	2.9.9 nprformat: Stable Store Initialisation
	2.9.10 nprsethost: Setting the Host
	2.9.11 nprregisterhost: Registering a New Host
	2.9.12 Environment Variables

	3 Graphical User Interface Programming
	3.1 Windows and Window Managers
	3.2 Window Attributes
	3.3 Drawing on Windows
	3.4 Current and Selected Windows
	3.4.1 Current Windows
	3.4.2 Selected Windows

	3.5 Applications and Input Events
	3.5.1 Background Windows and Applications

	3.6 Interface Interactors

	4 The Library Environment
	4.1 Arithmetical
	4.2 Compiler
	4.3 Concurrency
	4.4 Device
	4.5 Distribution
	4.6 Environment
	4.7 Event
	4.8 FailValues
	4.9 Font
	4.10 Format
	4.11 Graphical
	4.11.1 Outline
	4.11.2 Raster

	4.12 InteractiveEnvironment
	4.13 InterfaceEditor
	4.14 IO
	4.14.1 PrimitiveIO

	4.15 Lists
	4.16 People
	4.17 Protection
	4.18 RasterRules
	4.19 String
	4.20 System
	4.21 Tables
	4.22 Time
	4.23 Utilities
	4.24 Vector
	4.25 Win
	4.25.1 Borders
	4.25.1.1 Interactive

	4.25.2 CurrentState
	4.25.2.1 CurrentBrowser

	4.25.3 Cursors
	4.25.4 Defaults
	4.25.5 Generators
	4.25.6 Images
	4.25.7 Selection
	4.25.8 Tools
	4.25.8.1 EditorTools

	4.25.9 Utilities

	5 The Error Environment
	5.1 Arithmetical Errors
	5.2 Environment Errors
	5.3 Format Errors
	5.4 Graphical Errors
	5.5 IO Errors
	5.6 String Errors
	5.7 Structure Errors
	5.8 System Errors
	5.9 Variant Errors
	5.10 Vector Errors

	6 Type Definitions
	6.1 General
	6.2 Windows and Window Managers
	6.3 Bulk Types
	6.4 Outline Graphics
	6.5 Hyper-Text
	6.6 Editors
	6.7 Interface Tools
	6.8 Protection
	6.9 Programming Environment
	6.10 Concurrency
	6.11 Distribution

	7 Napier88 Releases
	7.1 Operating Environment
	7.2 Obtaining the Napier88 Release
	7.3 Documentation
	7.4 Napier88 Mailing List
	7.5 Troubleshooting
	7.6 Version History Overview
	7.7 Version History Details
	7.7.1 Release 2.2.1
	7.7.1.1 Type Definition Changes
	7.7.1.2 Library Component Changes
	7.7.1.3 New Library Components
	7.7.1.4 Miscellaneous Changes

	7.7.2 Release 2.2.1b1
	7.7.2.1 Type Definition Changes
	7.7.2.2 Library Component Changes
	7.7.2.3 New Library Components
	7.7.2.4 Miscellaneous Changes

	8 References
	9 Index

