
The Napier88 Standard Library Reference Manual

Version 2.2

Compatible With Napier88 Release 2.0

June 1994

Graham Kirby
Fred Brown†

Richard Connor
Quintin Cutts
Alan Dearle†

Vivienne Moore
Ron Morrison
Dave Munro

University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland.
†University of Adelaide, GPO Box 498, Adelaide, South Australia 5001, Australia.

This document should be referenced as:
“The Napier88 Standard Library Reference Manual Version 2.2”.
University of St Andrews Technical Report CS/94/7.

Contents
1 Introduction..5

1.1 Accessing the Persistent Store ...5

2 The Napier88 Programming Environment..7
2.1 Hyper-Program Windows ..7
2.2 The Compilation Error Window ..10
2.3 The Browser Window ..10

2.3.1 Operations on Windows ...10
2.3.2 Environments..11
2.3.3 Structures ..12
2.3.4 Variants...12
2.3.5 Vectors..12
2.3.6 Images...12
2.3.7 Pictures ...13
2.3.8 Procedures...14
2.3.9 Abstract Datatypes..14
2.3.10 Files...14
2.3.11 Universes ..14
2.3.12 Types...15
2.3.13 The Browser Background Menu...16
2.3.14 The Panning Tool ...16

2.4 Declaration Sets ...17
2.4.1 Creating and Deleting Declaration Sets..............................17
2.4.2 Adding To a Declaration Set ..18
2.4.3 Displaying a Declaration Set ..18
2.4.4 Choosing Declaration Sets..19

2.5 The Output Window...20
2.6 The Background Menu...21
2.7 Persistent Windows..21
2.8 Accessing the Current State ...22
2.9 Using Napier88 from UNIX ..22

2.9.1 nps...22
2.9.2 npc...23
2.9.3 npr ...24
2.9.4 napier88 ..24
2.9.5 nprgc ...24
2.9.6 nprstats..25
2.9.7 nprcompact ...25
2.9.8 nprformat ..25
2.9.9 nprsethost..25
2.9.10 nprregisterhost ..26
2.9.11 UNIX Environment Variables ..26

3 Graphical User Interface Programming..27
3.1 Windows and Window Managers ..27
3.2 Window Attributes...27
3.3 Drawing on Windows ..28
3.4 Current and Selected Windows..28

3.4.1 Current Windows..28
3.4.2 Selected Windows ..29

3.5 Applications and Input Events ...29
3.5.1 Background Windows and Applications30

3.6 Interface Interactors ...30
3.7 The User Interface Editor...30

3.7.1 Interface Design..30
3.7.2 Nested Windows...31
3.7.3 Running the Editor..31
3.7.4 Mode Buttons..32
3.7.5 The Current Window Manager...32
3.7.6 File Menu..33

3.7.6.1 New..33
3.7.6.2 Close ..33
3.7.6.3 Load and Save..33
3.7.6.4 Quit ..33

3.7.7 Interactors Menu...33
3.7.7.1 Layout Mode..34
3.7.7.2 Creating an Interactor34
3.7.7.3 Border Menus ..34

3.7.8 Code Generation ...34

4 The Library Environment...36
4.1 Arithmetic ..36
4.2 Browser ..38
4.3 Compiler...39
4.4 Concurrency ...42
4.5 Device ..43
4.6 Distribution ..45
4.7 Environment...47
4.8 Event ..47
4.9 FailValues ..47
4.10 Font ..48
4.11 Format ..49
4.12 Graphics ...50

4.12.1 Outline ..50
4.12.2 Raster ..50

4.13 InteractiveEnvironment..52
4.14 InterfaceEditor ...52
4.15 IO ...52

4.15.1 PrimitiveIO ...56
4.16 Lists..59
4.17 People...61
4.18 Protection ...61
4.19 RasterRules ..63
4.20 String..63
4.21 System..64
4.22 Tables ...64
4.23 Time ...65
4.24 Utilities...65
4.25 Vector...68
4.26 Win...68

4.26.1 Borders..68
4.26.1.1 Interactive ..72

4.26.2 CurrentState ..74
4.26.2.1 CurrentBrowser..75

4.26.3 Defaults...76
4.26.4 Generators...77
4.26.5 Images...93
4.26.6 Selection ...93
4.26.7 Tools ...94

4.26.7.1 EditorTools ..101
4.26.8 Utilities ...106

5 The Error Environment ..107
5.1 Arithmetic ..107
5.2 Graphics ...108
5.3 String..111
5.4 Structure ...111
5.5 Vector...111
5.6 Variant..112
5.7 Environment...112
5.8 IO ...113
5.9 Format ..117

6 Type Definitions ...119
6.1 General ...119
6.2 Event Distribution ..119
6.3 Windows and Window Managers ..119
6.4 Fonts windows and bindingsrs...121
6.6 Interface Tools ...122
6.7 Programming Environment..122
6.8 Concurrency ...123
6.9 Distribution ..123

7 Napier88 Releases ..124
7.1 Operating Environment..124
7.2 Obtaining the Napier88 Release ..124
7.3 Napier88 Mailing List..124
7.4 Troubleshooting ...125

8 References ...126

9 Index..128

1 Introduction
This manual describes the contents of the persistent store as supplied with Napier88 Release
2.0. These contents are known as Version 2.2 of the Napier88 Standard Library.

This manual does not describe the Napier88 language, which is described in the Napier88
Reference Manual (Release 2.0) [MBC+94a].

Version 2.2 of the Napier88 Standard Library is structured differently from the standard
environment of Napier88 Release 1.0 and contains considerable additional software.

1.1 Accessing the Persistent Store

The persistent store may be accessed from Napier88 programs by calling the predefined
procedure:

PS : proc(→ any)

The result returned is the persistent root injected into the union type any. Its type may vary
between different persistent stores. In the Napier88 Release 2.0 store the persistent root is an
environment initially containing the following environments:

name environment contents

Error error handling procedures which are called when errors occur
during the execution of Napier88 programs

External facilities provided by other sites

Library standard procedures and other data which may be used in
Napier88 programs

User available for user data

Table 1.1: Environment contents

The initial structure of Error and Library is described in detail in this manual. User and
External are local to a particular installation and users should consult the local administrator
for details. The majority of data items in the standard library are constant and may be used
but not updated by user programs. There are also some that may be updated in order to affect
the behaviour of the system. The items in the library fall into a number of categories:

• procedures for compiling Napier88 programs;
• procedures for browsing the persistent store;
• procedures for performing I/O;
• procedures for constructing graphical user interfaces;
• procedures for controlling concurrent threads;
• procedures for accessing other Napier88 stores; and
• other utilities.

5

The initial environment structure of the standard library is shown in Figure 1.1:

Arithmetic
Browser
Compiler
Concurrency
Device
Distribution
Environment
Event
FailValues
Font
Format
Graphics
InteractiveEnvironment
IO
Lists
People
Protection
RasterRules
String
System
Tables
Time
Utilities
Vector
Win

Library

Borders
CurrentState
Defaults
Generators
Image
Selection
Tools
Utilities

Interactive

EditorTools

Outline
Raster

PrimitiveIO

CurrentBrowser

Images

Arithmetic
Environment
Event
Format
Graphics
IO
String
Structure
Variant
Vector

Error

External

User

Persistent
Root

Figure 1.1: Initial environment structure in the standard library

6

2 The Napier88 Programming Environment
Part of the standard library is an integrated programming environment, written in Napier88,
which allows the user to compose and execute Napier88 programs and examine their effects
on the persistent store. Section 4.13 describes how to start up the integrated programming
environment.

The programming environment supports hyper-programming, allowing the Napier88 source
programs to contain embedded direct references to values, locations and types in the
persistent store. The concept of hyper-programming is described in [FDK+92, Kir92,
KCC+92b, KC93, MBC+94b].

The programming environment provides several varieties of window:

• multiple hyper-program windows;
• a compilation error display window;
• a browser window;
• multiple declaration set windows; and
• an output window.

The facilities provided by each window variety are now described.

2.1 Hyper-Program Windows

Hyper-program windows may be created by selecting New Editor from the background menu
described in Section 2.5. Each window contains a hyper-program text editing area, a scroll
bar and a row of light-buttons. The following operations are available in the text area:

7

operation method

enter text type at keyboard

position insertion point click mouse button 1

set current selection drag region of text with mouse
button 1

extend current selection click with mouse button 2

select word double click with mouse button 1

delete current selection type ‘backspace’ or ‘delete’

cut current selection type ‘ctrl-x’

copy current selection type ‘ctrl-c’

paste type ‘ctrl-v’

insert hyper-program link type ‘ctrl-l’

evaluate selected text type ‘ctrl-e’

Table 2.1: Operations in hyper-program text area

An example of a hyper-program window is shown in Figure 2.1:

Figure 2.1: A hyper-program window

The operations available via the light-buttons are as follows:

8

operation action keyboard
equivalent

Cut This cuts the current selection into a buffer shared among
all other hyper-program windows.

ctrl-x

Copy This copies the current selection into the shared buffer. ctrl-c

Paste This replaces the current selection with the contents of the
shared buffer.

ctrl-v

Clear This deletes the entire contents of the editor.

Find This presents a dialogue allowing searching of the text for a
given fragment of hyper-program text, either forwards or
backwards from the end of the current selection.

Load This presents a dialogue allowing text to be loaded into the
editor from a file.

Save This presents a dialogue allowing the textual contents of the
editor to be saved to a file.

Rename This presents a dialogue allowing the currently selected
light-button to be renamed. If no light-button is currently
selected it has no effect and the dialogue is not displayed.

Link This inserts a hyper-program link to the currently selected
value, location or type. A light-button representing it is
inserted into the hyper-program text. The initial label on
the button is a string beginning with the characters "V: ",
"L: " or "T: " respectively. The rest of the label is the name,
if any, associated with the selection (as, for example, when
it is a location). The value, location or type associated with
a button can be displayed in the browser window by
pressing the button with mouse button 1.

ctrl-l

Evaluate This attempts to compile the currently selected hyper-
program text, executes the result if successful, and displays
any result in the browser window. If the currently selected
hyper-program text is a valid type expression then a
representation of that type is displayed in the browser
window. If a compilation error occurs the compilation error
window is displayed (see Section 2.2).

ctrl-e

Source Sets This displays a dialogue allowing the source declaration
sets to be set (see Section 2.4.4).

Declare Types This attempts to compile the currently selected hyper-
program text and adds any type declarations in scope at the
end of the compilation to a selected declaration set (see
Section 2.4.2). Existing declarations with the same names
are over-written.

Table 2.2: Light-button operations in hyper-program window

9

2.2 The Compilation Error Window

The Compilation Error window is displayed when compilation errors are encountered in a
hyper-program. One sub-window shows the source code with the region of the first error
highlighted. The second sub-window shows a message describing the error. When multiple
errors are detected the Next and Previous buttons can be used to scroll through the errors. An
example is shown in Figure 2.2:

Figure 2.2: The compilation error window

2.3 The Browser Window

The Browser window is displayed automatically when the programming environment first
starts up. It is used to display representations of values produced by the evaluation of hyper-
programs. The root structure of the persistent store can be displayed by selecting Show PS
from the background menu described in Section 2.3.13.

The form in which a value is represented depends on the type of the value. Integers, reals,
strings and booleans are written to the output window. The manner in which other types are
displayed is described in Sections 2.3.2–2.3.10.

2.3.1 Operations on Windows

The following operations are available on all windows displayed in the browser window:

• The window can be selected or deselected by clicking on the border with mouse button 1.
If the window is not already selected it becomes selected and any other selected windows
are deselected. If the window is already selected it becomes deselected. When a window
is selected the corresponding value is also considered to be selected. This is of relevance
when inserting links into hyper-programs and when selecting certain operations from the
browser background menu which operate on the selected value.

• The window can also be selected or deselected by clicking on the border with mouse
button 2. In this case other windows are unaffected.

10

• A menu can be obtained by holding down mouse button 3 on the border. The entries in
the menu are Front, to bring the window to the front, Back, to put the window to the back,
and Dismiss, to undisplay the window.

2.3.2 Environments

To show an environment the browser displays a menu window containing an entry for each
binding in the environment. For base type values the corresponding entry shows the type
while for instances of constructed types only the type constructor is shown. An example is
shown in Figure 2.3:

Figure 2.3: An environment menu

The operations available on an environment menu entry depend on the mouse button used:

• Clicking with mouse button 1 results in the menu entry being highlighted and any other
highlighted menu entries or windows being un-highlighted. The corresponding
environment location is selected.

• Clicking with mouse button 2 results in the menu entry being highlighted while other
selected menu entries or windows are unaffected.

• Holding down mouse button 3 results in a pop-up menu being displayed. Selecting Show
results in the value of the corresponding environment binding being displayed in the
browser. If the value is of such a type that a new window is displayed for it, an arrow is
drawn from the menu entry to the new window as shown in Figure 2.4. Selecting New
Universe also results in the value being displayed but in a separate universe as described
in Section 2.3.11.

Figure 2.4: Link from environment location to value

11

2.3.3 Structures

Structures are displayed in the same way as environments. An example of a structure menu is
shown in Figure 2.5:

Figure 2.5: A structure menu

2.3.4 Variants

Variants are displayed in the same way as structures except that the entry for the branch of
the variant which is actually present is indicated by the prefix '+'. Selecting other entries has
no effect. An example of a variant menu is shown in Figure 2.6:

Figure 2.6: A variant menu

2.3.5 Vectors

Vectors are displayed in the same way as structures with an entry for each element of the
vector: Each entry shows the corresponding index number. An example of a vector menu is
shown in Figure 2.7:

Figure 2.7: A vector menu

2.3.6 Images

An example of an image window is shown in Figure 2.8:

12

Figure 2.8: An image window

The size of the image in pixels is shown in the bottom right corner of the window.

2.3.7 Pictures

Pictures are displayed in a similar way to images, as shown in Figure 2.9:

Figure 2.9: A picture window

When a picture is first drawn it is scaled so that it fits completely into the display area.
Resizing the window enlarges or reduces the display area but does not alter the scale of the
picture. The scroll bars can be used to pan the display area to a different region of the
picture. The window also contains two arrow buttons on the left hand side which can be used

13

to enlarge or reduce the scale at which the picture is drawn. This makes it possible to zoom
in on a region of interest or to move back to view the picture as a whole.

2.3.8 Procedures

To show a procedure the browser displays a menu with a single entry source. When this
entry is selected using any mouse button the browser displays a hyper-program window
containing the source code for the procedure. The source code may be selected and copied
but not altered. If the procedure does not have source code attached the browser displays a
message to this effect in the output window. An example of a procedure menu is shown in
Figure 2.10:

Figure 2.10: A procedure window

2.3.9 Abstract Datatypes

To shown an instance of an abstract datatype the browser displays a menu with no entries.
An example of an abstract datatype menu is shown in Figure 2.11:

Figure 2.11: An abstract datatype window

2.3.10 Files

To show a file the browser displays its name in the output window.

2.3.11 Universes

The screen may become cluttered when the user browses a large data structure. Universes
can be used to organise the data space. A universe is created by selecting Universe from the
menu brought up with mouse button 3 over a structure, variant, vector or environment menu.
A new browser sub-window is then created and the corresponding value displayed inside it.
An example of a universe window is shown in Figure 2.12:

14

Figure 2.12: A universe window

The new value, the structure with field z in the example, is displayed by a new invocation of
the browser which operates entirely within the universe window. Any other objects
discovered from that new object will be confined to the window. In this way the object and
others accessible from it are kept separate from the rest of the visible data. Universes also
provide a grouping mechanism in that all the objects in a universe can be moved or deleted in
one action by operating on the window containing them. Any number of universes can be
created, and they can be nested to any degree.

2.3.12 Types

A representation of the type of a value in the browser window may be obtained by selecting
the corresponding window and selecting Show Type from the browser background menu.
The browser displays a window containing a canonical string representation of the value’s
type. Note that a type representation is displayed only when a window is selected, not when
a menu entry is selected. This is in order to avoid confusion between the contents of a
location and its type. An example of a type representation is shown in Figure 2.13:

Figure 2.13: A type representation

The browser also displays a representation of a type linked into a hyper-program when the
corresponding light-button in the hyper-program window is pressed. In this case the
representation may be a canonical string as above or, where type constructor information is

15

available, the original source code is displayed as a hyper-program fragment. An example of
a type constructor source representation, with a hyper-program link to a component type, is
shown in Figure 2.14:

Figure 2.14: A type constructor representation

2.3.13 The Browser Background Menu

A background menu may be obtained in the browser window by holding down mouse button
3. The menu provides the following operations:

operation action

Centre pans the browser window so that the first selected object is in
the centre of the window

Show PS displays the root of persistence

Show Type displays a canonical representation of the type of the selected
value

Clear removes all objects displayed in the browser window

Table 2.3: Browser background menu operations

2.3.14 The Panning Tool

The Panning Tool window allows the browser window to be panned over the unbounded
view space. The circle represents a joy-stick which can be dragged using mouse button 1.
While the joy-stick is off-centre the browser window pans in the same direction. The
panning increments are proportional to the amount the joy-stick is displaced from the centre.
The Panning Tool window is shown in Figure 2.15:

16

Figure 2.15: The panning tool

2.4 Declaration Sets

The user may create declaration sets containing named values, locations and types to use in
future program evaluation. Each declaration set has a unique name and may be thought of as
forming an additional outer scope for a program. Free identifiers in a program are resolved
by scanning the declaration sets associated with the program.

A type entry in a declaration set may represent either a type only, or a type constructor.
Which is obtained depends on the method used to create the entry. Both type and type
constructor names may be used as type denotations in programs, but only type constructor
names may be used to construct instances of types.

The declaration sets model is based on a number of earlier systems: Napier88 Release 1.0
[MBC+89a]; ABERDEEN [Far91]; and a previous version of the Napier88 programming
environment [KCC+92a].

The operations on declaration sets are:

• create a new declaration set;
• delete a declaration set;
• add a value, location or type to a declaration set;
• display the contents of a declaration set; and
• choose an ordered list of declaration sets to use for compilation.

2.4.1 Creating and Deleting Declaration Sets

Creation and deletion of declaration sets is performed using the declaration sets menu
obtained by selecting Declaration Sets from the background menu described in Section 2.6.
The declaration sets menu is shown in Figure 2.16:

17

Figure 2.16: The declaration sets menu

The menu contains a list of the existing declaration sets and light-buttons providing the
following operations:

operation action

New displays a dialogue prompting for a name for the new declaration set. If the
new name clashes with an existing declaration set name an error message is
displayed and the dialogue is re-presented. Otherwise a new empty
declaration set is created and the list is updated.

Remove permanently removes any selected declaration sets

Show displays the contents of any selected declaration sets

Done undisplays the declaration sets menu

Table 2.4: Declaration sets menu operations

2.4.2 Adding To a Declaration Set

One method of adding a value, location or type to a declaration set involves the user selecting
the corresponding representation in the browser window. The user then selects Add to
Declaration Set from the background menu described in Section 2.6. If a named location is
selected that name is used; otherwise the user is prompted for a name. A dialogue then
allows the user to choose an existing declaration set or to create a new one. If an entry with
the same name already exists in the chosen declaration set that entry is overwritten by the
new one.

The user may add a group of type declarations to a declaration set by pressing the Declare
Types button in a hyper-program editor. This attempts to compile the selected code, or the
entire contents if none is selected, and if successful adds all the top-level type definitions to a
declaration set chosen as above.

2.4.3 Displaying a Declaration Set

The contents of a particular declaration set may be displayed by pressing the Show button in
the declaration sets menu described in Section 2.4.1. This displays a further menu for each
selected declaration set. An example is shown in Figure 2.17:

18

Figure 2.17: A declaration set menu

Each menu contains a list of the entries in that declaration set and light-buttons providing the
operations shown in Table 2.5:

operation action

Show displays any selected entries in the browser window

Remove permanently removes any selected entries from the declaration set

Clear permanently removes all entries from the declaration set

Table 2.5: Declaration set menu operations

A hyper-program link to an entry in a declaration set can be inserted into a hyper-program by
selecting the appropriate menu entry and pressing the Link light-button as described in
Section 2.1.

2.4.4 Choosing Declaration Sets

The user may associate a particular combination of declaration sets with a hyper-program
editor. These declaration sets are then used in evaluating program fragments in that editor.
When it is first created an editor has no declaration sets associated with it. Declaration sets
may be added by pressing the Source Sets light-button. This displays a dialogue as shown in
Figure 2.18:

19

Figure 2.18: Dialogue for setting source declaration sets

The Available list on the left shows all the existing declaration sets. The Use list on the right
shows those currently associated with the editor, scope level increasing down the list. If two
declaration sets associated with an editor both contain an entry with the same name, the one
in the declaration set nearer the top of the list will mask the other. This is analogous to
normal scoping rules.

The dialogue also contains light-buttons providing the following operations:

operation action

Add adds any selected declaration sets in the Available list to the bottom of the
Use list

Promote moves the selected declaration sets up one position in the list if possible

Demote moves the selected declaration sets down one position in the list if possible

Remove removes any selected declaration sets from the use list

Cancel undisplays the dialogue without altering the declaration sets associated with
the editor

OK undisplays the dialogue and associates the chosen declaration sets with the
editor

Table 2.6: Source declaration sets menu operations

2.5 The Output Window

The Output window displays messages from the browser. Its contents may be scrolled and
cleared but not edited. A procedure to write messages to the Output window is initially
available in the CurrentState environment described in Section 4.26.2.

20

Figure 2.19: The output window

2.6 The Background Menu

A background menu may be brought up in the programming environment by holding down
mouse button 3. The menu provides the following operations:

operation action

New Editor creates a new hyper-program editor window and displays it

Add to Declaration
Set

for each currently selected browser value, location or type,
adds a binding to a declaration set as described in Section
2.4.2

Declaration Sets displays the declaration set menu as described in Section 2.4.1

Show All Windows displays all windows registered with the programming
environment as described in Section 2.7

Delete Non-Visible unregisters windows not displayed, as described in Section 2.7

Stabilise calls the stabilise procedure described in Section 4.20

Quit quits the programming environment

Table 2.7: Background menu operations

2.7 Persistent Windows

Programming environment windows persist between sessions of the programming
environment. When the environment is shut down the positions and sizes of the windows are
recorded and restored when it is next started up.

When a window is undisplayed by selecting Dismiss from its border menu, it is still retained
by the programming environment. The user can cause all such windows to be redisplayed by
selecting the entry Show All Windows from the background menu. It is possible however to
remove editor windows permanently from the programming environment by selecting the
entry Delete Non-Visible. This has the effect of deleting any editor windows not currently
displayed.

21

2.8 Accessing the Current State

To facilitate access to the programming environment from programs the following values are
available while the environment is active:

currentBuffer : Editor[Binding]
currentError : proc(string)
currentOutputPack : EditorPack[Binding]
currentWindowManager : WindowManager
currentWriteString : proc(string)
CurrentBrowser : env

These are described in Section 4.26.2.

2.9 Using Napier88 from UNIX

There are a number of commands that control the execution of the Napier88 system from
UNIX.

2.9.1 nps: Compiling Type Declarations

For convenience, when a program is compiled it may be compiled against a set of pre-
compiled type declarations. This command is used to save such a set of type declarations and
is compatible with the declaration sets described in Section 2.4.

The source file must consist purely of type declarations or the command will fail and an error
message will be displayed. The general form of the command is:

nps [sourceFile declarationSet] [-l] [-t declarationSet]*

The first two parameters are the name of a file containing the type declarations and the name
of a declaration set. The options are:

-l (list) Produce a source listing.

-t (types) Compile against existing sets of type declarations. This option may be
repeated. The first declaration set forms the outermost scope and the source
file forms the innermost scope.

For example, to save a set of type declarations given in the file types1.N in the declaration set
types1, the following could be used:

nps types1.N types1

To save a further set of type declarations compiled against this set, with a listing, the
following could be used:

nps types2.N types2 -l -t types1

If a source file is not specified as a parameter, the command enters interactive mode. First the
command prompts for a list of declaration sets against which a source file may be compiled.
Each declaration set is at an inner scope level with respect to any previously specified sets.
To finish specifying source declaration sets, return is entered in response to the command’s
prompt Source type set:

22

Once any existing declaration sets have been specified, the command prompts for a source
file to be compiled and the declaration set name under which the type declarations should be
saved. The source file is compiled against all the declaration sets that have been specified.
When the type declarations have been saved the command prompts for another source file to
compile. To finish saving new declaration sets, return is entered in response to the
command’s prompt Filename:

To interactively save a set of type declarations, given in the file types.N, in the set sometypes,
the following could be used:

nps ! the command
Source type set: <return> ! request for a declaration set to compile against;

! none to specify
Filename: types.N ! the source file to compile
Destination type set: sometypes ! request for new declaration set name
Filename: <return> ! no more source files to be compiled

For backward compatibility with PS-algol implementations of Napier [MBC+89b], the non-
interactive version of nps allows a database name and password to be specified with each
declaration set name; these are ignored.

2.9.2 npc: Compiling Programs

This command is used to compile Napier88 programs and is parameterised by the name of
the source file. The source file must contain a void sequence [MBC+94a] or the command
will fail and an error message will be displayed. The general form of the command is:

npc [sourceFile] [-els] [-t declarationSet]*

The options are:

-e (execute) Execute the program if the compilation succeeds.

-l (list) Produce a source listing.

-s (silent) Do not produce an object code file.

-t (types) Compile against existing sets of type declarations. This option may be
repeated. The first declaration set forms the outermost scope and the source
file forms the innermost scope.

For example, to compile a program in a file prog.N without executing it, without a listing,
producing an object code file and using two existing type declaration sets, the following
could be used:

npc prog.N -t outerTypes -t innerTypes

In this case the result of the compilation is placed in a file prog.out. In cases where the source
filename does not end in .N the filename is constructed by appending .out to the source
filename.

To compile a program in a file prog.N and execute the result without producing an object
code file the following could be used:

npc prog.N -es

23

If a source file is not specified as a parameter, the command enters interactive mode. First the
command prompts for a list of declaration sets against which a source file may be compiled.
Each declaration set is at an inner scope level with respect to any previously specified sets.
To finish specifying declarations sets, return is entered in response to the command’s prompt
Source type set:

Once any existing declaration sets have been specified, the command prompts for a source
file to be compiled. The source file is compiled against all the declaration sets that have been
specified. When the compilation is complete the command prompts for another source file to
compile. To finish compiling, return is entered in response to the command’s prompt
Filename:

To interactively compile the program in the file prog.N, against the type declarations in the
set sometypes, the following could be used:

npc ! the command
Source type set: sometypes ! request for a declaration set to compile against
Source type set: <return> ! request for another declaration set; no more to specify
Filename: prog.N ! the source file to be compiled
Filename: <return> ! no more source files to be compiled

A database name and password may be specified, and ignored, as for nps.

2.9.3 npr: Running Programs

This command is used to run the Napier88 system. The general form is:

npr [objectFile]

The command may be parameterised by the name of a file containing a compiled Napier88
program to be executed. Otherwise the Napier88 system is restarted from the state preserved
by the most recent stabilise operation.

For example, to execute the compiled version of the program prog.N, the following could be
used:

npr prog.out

2.9.4 napier88: Starting the Programming Environment

This command is used to start up the interactive programming environment. The general
form of the command is:

napier88 [-d screenDepth]

The optional parameter specifies the number of planes required in the display, subject to the
limitations of the display device. The command calls the procedure startProgrammingEnv
described in Section 4.13.

2.9.5 nprgc: Stable Store Garbage Collection

This command is used to perform a garbage collection of the stable store. No other programs
may be run against the store while the garbage collection is taking place. For example,

nprgc

24

Note that executing this command may actually increase the size of the UNIX file which
contains the stable store. See nprcompact.

2.9.6 nprstats: Stable Store Statistics

This command is used to display statistics about the stable store. No other programs may be
run against the store while the statistics gathering is taking place. For example,

nprstats

maximum space : 383.609 Mbytes
allocated space : 5.581 Mbytes (85.7%)
unallocated space : 0.281 Mbytes (4.3%)
unused space : 0.000 Mbytes (0.0%)
management space : 0.654 Mbytes (10.0%)
number of objects : 85671 objects

The following configuration details are specified:
KEY_TO_ADDR
KEYS_ARE_INDIRECT
REQUEST_STABILISE
KEY_RANGE
minimum key : 64000
maximum key : 17fffff8
key alignment : 8

The first set of statistics reflect the current state of the stable store. The second set reports
details of the particular stable store implementation in use.

2.9.7 nprcompact: Stable Store Compaction

This command is used to compact the UNIX file containing the stable store. No other
programs may be run against the store while the compaction is taking place. For example,

nprcompact

2.9.8 nprformat: Stable Store Initialisation

This command is used to create a new empty stable store. If the stable store directory as
described in Section 2.9.9 already contains a store, an error message is displayed and no
further action is performed. For example,

nprformat

2.9.9 nprsethost: Setting the Host

This command is used to set the host from which programs may run against the stable store.
The general form of the command is:

nprsethost [-n] [hostname]

By default the command may only be run from the host for which the store is currently set. If
the -n flag is specified this constraint is over-ridden; this should be used with caution and
only when there is no possibility that there is currently a program running against the store.
If the hostname parameter is omitted the name of the current host is used.

25

2.9.10 nprregisterhost: Registering a New Host

This command is used to register hosts with the Napier88 system. It takes as a command line
argument either the authorisation code for a single machine, or the name of a file containing
multiple authorisation codes. For example,

nprregisterhost fj8ahd3h7a2
nprregisterhost auth.codes

2.9.11 UNIX Environment Variables

There are several shell variables that allow the Napier system to be dynamically configured.
They are:

NPRDIR : this variable defines the pathname for the release directory. All the commands
held in the bin directory use this variable to construct the pathnames of the executable
programs to be run. By default this is /usr/lib/napier88.

NPRSTORE : this variable defines the pathname for the UNIX directory containing the
stable store file. By default this is the name of the processor prefixed by $NPRDIR/sstore.
e.g. on a processor named panda the pathname would be $NPRDIR/sstore.panda. If the
desired size of stable store is too large for the disk partition containing the release directory, a
symbolic link can be used to map the store’s pathname onto a larger disk partition.

NPRHEAP : this variable defines the size of the local heap (in megabytes) used by the
Napier88 interpreter. By default this is 8.

26

3 Graphical User Interface Programming
This section gives an outline of the user interface programming facilities provided by the
WIN window management system—which is also used to implement the programming
environment described in Section 2.

3.1 Windows and Window Managers

The principal entities in WIN are windows and window managers. A window has two main
functions: to display a bitmapped image and to handle user input. A window manager is used
to display and manipulate windows. As well as providing program output facilities, windows
may be used to implement user interface interactors such as light-buttons, sliders, menus etc.

Each window has encapsulated in it:

• an application procedure which processes input events received by the window; and

• an image on which raster operations may be performed by the application procedure or by
other programs.

Windows exist independently of window managers. Since they are Napier88 values they
have full civil rights and thus may be held in the persistent store, assigned to variables, passed
as procedure parameters etc. All window operations may be accessed by programs
independently of whether a window is displayed by a window manager. When a window is
displayed by a window manager its image may become visible to the user. Its application
procedure may also receive input events directed to the window, via the window manager,
from the user.

Each window manager operates within a parent window. This recursive structure allows
nesting of window managers to any depth. The recursion is grounded by a distinguished root
window manager which operates directly on the display device.

The procedures for creating windows and window managers are described in Section 4.26.4.
A window is displayed by calling one of a window manager’s interface procedures, passing it
the window and information describing where to position it. The details are also described in
Section 4.26.4.

3.2 Window Attributes

A window has a number of attributes which may be read and set. These include:

• its size;

• its title;

• its minimum and maximum size;

• its behaviour when its size is changed—used to allow the window display to be redrawn
appropriately;

• its application procedure—determining how the window handles input events;

• its border style—used by the window manager to show the outline of the window and to
allow interactive window manipulation;

• its priority for receiving input events;

27

• the number of planes in its display image—affecting how many colours can be displayed;
and

• the shape of the cursor when over the window.

The interface procedures which allow these attributes to be read and set are described in
Section 4.26.4.

3.3 Drawing on Windows

The display of a window may be updated via raster operations on its bitmap. Raster
operations may be performed between the window and another window or an image, in either
direction. The four possibilities are:

source destination

window image

image window

window another window

another window window

Table 3.1: Window raster operations

Straight line drawing on windows is also supported. The window drawing functions are
described in Section 4.26.4.

3.4 Current and Selected Windows

Windows displayed in the programming environment may be distinguished in two ways: by
being current and by being selected.

3.4.1 Current Windows

A window may be current with respect to the window manager that is displaying it. No more
than one of the windows displayed by a particular window manager may be current. If there
is a current window then any keyboard input events received by the window manager are
directed to the application procedure of that window. If there is no current window then
keyboard events are discarded.

A window may be made current by calling the makeCurrent procedure of the window
manager displaying it. This is described in Section 4.26.4. A window may also be made
current interactively, either by moving the cursor over it or clicking with a mouse button
within it.

A current window may be distinguished by its border. The border styles fixedX, menuX and
variableX, for example, indicate a current window by showing two parallel lines along the
title bar. These are described in Section 4.26.1.

28

3.4.2 Selected Windows

Any number of windows may be selected with respect to the programming environment as a
whole. The list of selected windows may be read by application programs and acted on
accordingly. For example, a command available in a drawing application might change the
size of all the selected windows.

A selected window may be distinguished by its border. The border styles fixedX, menuX and
variableX, for example, indicate a selected window by showing an inverted area along the
title bar. These are described in Section 4.26.1.

A window may be both current and selected simultaneously.

3.5 Applications and Input Events

Every window has an application, a procedure which processes input events received by the
window. Those input events may be keyboard events, if the window is current, or mouse
events within the window area. Input events are represented by instances of type Event:

type Event is variant(chars : string;
mouse : Mouse;
select, deselect : null)

type Mouse is structure(x,y : int ; buttons : *bool)

Keyboard events are represented by the chars branch. The string contains the characters
typed since the last keyboard event was issued. The length of the string is ≥ 1 since keyboard
events are generated only when keyboard input occurs. The time that must elapse between
key presses in order for separate events to be generated is not defined. Keyboard events are
generated only when keys are pressed down. No events are generated when keys are
released.

Mouse events are represented by the mouse branch. The structure contains the coordinates of
the mouse as two integers, and the state of the mouse buttons as a vector of booleans, each
element of which is true iff the corresponding mouse button is currently depressed. Mouse
events are generated repeatedly whenever there is no keyboard input. Consecutive mouse
events may thus contain the same information. To reduce the rate of structure creation, a
single mouse structure is used for all events. Where an application needs to retain the
information in a mouse event it is necessary to copy the contents of the structure, rather than
simply retaining a reference to the structure, since the contents will be overwritten when the
next mouse event is generated.

Each time WIN sends an event to a window application it compares that application with the
application that received the previous event. If they are different WIN sends a deselect event
to the previous application and then a select event to the new one, before sending the current
input event to the new application. Select and deselect events do not themselves carry user
input but they enable an application to perform particular actions when it first becomes the
focus of input and when it ceases to be the focus.

The type of an application is:

proc(Event)

By convention WIN applications do not perform busy waiting for input or call blocking IO
procedures. If this convention is not observed applications in other windows may be
prevented from receiving input directed to them.

29

3.5.1 Background Windows and Applications

By convention WIN applications do not call the raster operations of any window in which a
window manager is running. If this convention is not observed the display areas of windows
displayed by that window manager may be corrupted. It may be required, however, to draw
on the background of a window manager, for example in an application that shows links
between windows by drawing lines between them.

The facility is provided safely by allowing a window manager to display a window in the
background. Only one window may be so displayed at a time and a background window is
always behind all other windows, no matter what levels they are placed at. If the programmer
wishes to be able to draw anywhere on the background of the window manager this can be
done by creating a window the same size as the window containing the window manager,
displaying it in the background and then drawing on that window.

Alternatively the programmer may wish to have an application running in the background of
the window manager without the need to draw on the background. If a background window
is used there is an unnecessary memory overhead involved in storing the contents of the
window. It is possible to set a background application which processes any events not dealt
with by window applications.

3.6 Interface Interactors

The WIN library provides a number of pre-defined user interface interactors from which a
user interface may be composed. Each interactor is a window; interfaces are built up by
displaying interactor windows together in a parent window. The types of interactors provided
are:

• light-buttons
• sliders
• menus
• check boxes
• radio buttons
• hyper-text editors

Various varieties of each interactor type may be created; the generator procedures are
described in Section 4.26.7.

3.7 The User Interface Editor

The user interface editor allows the programmer to create WIN user interfaces interactively
rather than textually. This aids both initial coding and later adjustment of an interface. It was
inspired by Luca Cardelli’s paper Building User Interfaces by Direct Manipulation [Car88].

3.7.1 Interface Design

For the purposes of the editor, an interface is a collection of interactors generated using the
WIN library. Interactors are items such as menus, check-boxes, light-buttons etc.

The design of an interface involves the selection of the appropriate interactors to give the
desired functionality and layout of items . Having specified this, an instance of the interface
can be generated by the user specifying what happens when, for example, a light-button is
pressed or a menu option selected. The collection of interactors comprising an interface is
implemented as a single root window which can then be displayed by any window manager.

30

For example a simple painting tool could be implemented by the root window shown in
Figure 3.1:

Painting Tool

Clear Quit

Load Save

Colour:

White

Black

Point size:

3

2

1

Figure 3.1: A root window

A window interactor is used for the drawing area, and light-buttons and groups of radio
buttons provide the means of control.

3.7.2 Nested Windows

Windows within interface designs may be nested using manager interactors. Each one
consists of a window and associated window manager allowing sub-windows to be contained.

As an example of the use of nested windows, consider the painting tool example introduced
above. Imagine that the light-buttons and radio button groups are contained within a control
panel window (displayed with an invisible border). The hierarchy of this interface would be
as shown in Figure 3.2:

Painting Tool

Drawing window Control Panel

Colour
image

Colour radio
button group

Point size
image

Clear
button

Quit
button

Load
button

Save
button

Figure 3.2: An interface hierarchy

Here the Control Panel could be implemented with a manager interactor.

3.7.3 Running the Editor

A window containing an interface editor may be created by calling the generator procedure
described in Section 4.14. The resulting window has a fixed size of 1000 by 700 pixels.

31

The editor window consists of two sections, a control panel and the main editor window in
which designs currently being edited are displayed. This layout and the contents of the
control panel are illustrated in Figure 3.3:

Radio buttons used to
select current mode
of the editor:

Interface Editor

Mode: Current window manager: NoneFile Interactors

Light-buttons with menus
which pull-down when the
light-button is clicked

LayoutO PreviewOResizeO

Window, Window Manager, Button, Menu, Slider,
Radio button group, Check box group, Simple Dialogue,
Generic Dialogue, Text editor, Textual Image

Interactors menu:

File menu: New, Load, Close, Save, Generate, Quit

Window manager which will
be used to display any new
interactors which are created

control
panel

main
editor
window

Figure 3.3: An interface editor window

3.7.4 Mode Buttons

Clicking on one of these changes the current mode. At present only Layout and Preview are
implemented but Resize is included in anticipation of future implementation.

The default mode is Layout in which designs may be constructed and laid out.

Preview mode allows the user to see what the interface will look like in its final state and
experiment with it, i.e. click on light buttons, select menu entries etc.

3.7.5 The Current Window Manager

The current window manager is the window manager into which any new interactor is
placed. It can be associated with either the root window of a design or a manager interactor
within a design. Initially the current window manager is unspecified.

The current window manager setting is displayed in the control panel. This is a textual
representation, akin to a pathname. For example "Test/ControlPanel" would refer to the
manager interactor titled "Control Panel" inside design "Test".

The current window manager setting can be changed in one of four ways:

• when a new design is created or an existing one loaded;

• when a manager interactor is created;

• when the current window manager is 1) associated with the root window of a design which
is closed or 2) associated with a manager interactor which is deleted—in either case, the
program tries to select the most sensible current window manager; or

• by clicking with the right mouse button inside a root window or manager interactor inside
a design—the current window manager will be set to the associated window manager and
the field on the control panel will change to reflect this.

32

3.7.6 File Menu

Options in this menu allow the user to start working on new designs, close current ones, load
and save designs and quit from the program (Generate, the remaining option, is discussed in
Section 3.7.8). When selected, each menu option brings up a dialogue box prompting the user
for further information. There is always the option to cancel an operation - i.e. not quit from
the program or not start working on a new design.

3.7.6.1 New

Selecting this menu option brings up a dialogue box containing editors for the design's name
(initially "Untitled") and initial dimensions (500 x 500 pixels) and two light buttons New
(=go-ahead) and Cancel. The user may start working on a new design by entering the desired
values into the editors and clicking on New.

The window which is generated by New is known as the root window of a design. It may be
moved about the main editor window and resized by dragging its borders. Clicking inside the
window with the middle mouse button re-displays the properties dialogue, allowing sizes to
specified explicitly and the window's title changed.

3.7.6.2 Close

An interface design can be closed by selecting Close from the File menu. This brings up a
dialogue asking which design to close. The required design is selected by clicking on it and
then clicking on Close.

3.7.6.3 Load and Save

Interface designs can be loaded and saved to both the persistent store and UNIX files.
Selecting Save brings up a dialogue similar to that for Close, giving a menu of designs
currently being edited and asking which is to be saved.

Having specified this a second dialogue appears asking whether the design is to be saved to
the persistent store or to a UNIX file and the pathname to be used.

For UNIX files the pathname is relative to the current directory. For a store, the pathname is
the path from the root of the store (not included), e.g.:

User/InterfaceDesigns/database

would mean that the interface design was to be saved in the store under the name database
within the environment InterfaceDesigns within the environment User in the root
environment.

A saved design can be loaded back into the editor with the option Load from the File menu.

3.7.6.4 Quit

Selecting the menu option Quit will undisplay the interface editor window.

3.7.7 Interactors Menu

Having created the overall window for an interface using the New option in the File menu,
the next stage is to lay out the interactors which will make up the interface.

33

3.7.7.1 Layout Mode

In Layout mode interactors are represented by windows of the appropriate size. Windows can
be resized directly, either by the properties dialogue (see Section 3.7.7.2) or by dragging out
the window to the required size. The size of windows for some other interactors, e.g. menus,
depends rather on the component parts of the interactor, e.g. how many entries a menu has
and how big a window would be required to display them all.

The interactor types whose windows may be resized are: windows, window managers,
sliders, simple and generic dialogues and text editors. All others are sized according to the
properties specified by the user in the associated properties dialogue.

The type of each interactor is displayed textually within its window if the window is large
enough. Thus a window interactor would have "WINDOW" written inside it and a button
interactor would contain the text "BUTTON". If the dimensions of the window are such that
this identifying tag would not fit in horizontally but would fit in vertically if rotated 90
degrees anti-clockwise, then it is displayed in this way.

3.7.7.2 Creating an Interactor

To create an instance of an interactor, select the corresponding entry from the Interactors
menu. This brings up a dialogue window allowing the properties of the interactor to be
specified. Edit these as appropriate then click on Create to generate a window representing
the interactor. This window will be placed in the centre of the current window manager and
can be moved to the required position. Clicking with the middle mouse button on this
window re-displays the properties dialogue, allowing changes to be made to the interactor
after its creation.

3.7.7.3 Border Menus

As well as handling move and resize operations, the borders of interactor windows contain
menus which are summoned by clicking with the right mouse button on the border area. The
menus contain three options: front, back and delete. The first two give the user control over
the ordering of overlapping interactor windows like the border menus of root windows of
designs. The last option allows an interactor, once created, to be deleted. Selecting this brings
up a dialogue window asking for confirmation that the interactor is to be deleted. Only if
confirmation is given will the interactor be deleted.

3.7.8 Code Generation

Selecting Generate from the File menu brings up a dialogue containing a menu of designs
currently being edited and asking which is to have code generated for it. Click on the
required design, then on the Generate button to start the generation. There will be a short
delay while the code is generated. When this is complete, an editor containing the generated
code will be displayed. The code can then be edited, saved, evaluated, etc, as required.

The structure of the generated code is as follows (comments in italics):

34

project PS() as root onto env :
use root with …

binding to locations in the store for use later, i.e. generators, failvalues etc.
in

proc(→ Window)
begin

procedure to generate a window implementing the interface design
end
default : proc(→ Window) ; windowFailValue

Figure 3.4: Structure of generated code

The action procedures for the interactors may be filled in to give the application-specific
behaviour of the interface. The appropriate sections of the code are highlighted with
comments.

35

4 The Library Environment
This section describes the contents of the standard Library environment. Each environment
within Library is described in a sub-section of the same name, thus for example Section 4.1
Arithmetic describes the contents of the environment Arithmetic within Library.

Most of the types used here are defined in Section 6. They are available in the declaration set
userTypes. The types Binding, TypeRep and TypeDescriptor are value-dependent types and
their use is described in Section 4.18.

4.1 Arithmetic

abs : proc(int → int)

This procedure returns the absolute value of the parameter. If the parameter is equal to

-maxint - 1

where the value of maxint is described later in this section, the procedure calls unaryInt in the
error environment described in Section 5.1, passing it the parameter. In this case, the result
obtained from the call of unaryInt is returned as the result of abs.

atan : proc(real → real)

This procedure returns the arctangent of the parameter x (given in radians) where:

−

π
2

< atan x() <
π
2

On an error, this procedure calls unaryReal in the error environment, passing it the parameter.
In this case, the result obtained from the call of unaryReal is returned as the result of atan.

bitwiseAnd : proc(int, int → int)

This procedure returns the logical (bitwise) and of the parameters.

bitwiseOr : proc(int, int → int)

This procedure returns the logical (bitwise) or of the parameters.

bitwiseNot : proc(int → int)

This procedure returns the logical (bitwise) not of the parameter.

36

cos : proc(real → real)

This procedure returns the cosine of the parameter (given in radians). On an error, this
procedure calls unaryReal in the error environment, passing it the parameter. In this case, the
result obtained from the call of unaryReal is returned as the result of cos.

epsilon : real

This is the largest value, ε, such that 1.0 + ε = 1.0 in the implementation.

exp : proc(real → real)

This procedure returns e raised to the power of the parameter. On an error, this procedure
calls unaryReal in the error environment, passing it the parameter. In this case, the result
obtained from the call of unaryReal is returned as the result of exp.

float : proc(int → real)

This procedure returns the parameter expressed as a real number.

ln : proc(real → real)

This procedure returns the logarithm to the base e of the parameter. If the parameter is not
greater than zero, this procedure calls unaryReal in the error environment, passing it the
parameter. In this case, the result obtained from the call of unaryReal is returned as the result
of ln.

maxint : int

This is the maximum integer possible in the implementation.

maxreal : real

This is the maximum real possible in the implementation.

pi : real

This is the value of π in the implementation.

rabs : proc(real → real)

This procedure returns the absolute value of the parameter.

37

shiftLeft : proc(int, int → int)

This procedure returns the value obtained by performing a bitwise shift left on the first
parameter by the number of places given by the second parameter. Zeros are brought in at
the low order end.

shiftRight : proc(int, int → int)

This procedure returns the value obtained by performing a bitwise shift right on the first
parameter by the number of places given by the second parameter. Zeros are brought in at
the high order end.

sin : proc(real → real)

This procedure returns the sine of the parameter (given in radians). On an error, this
procedure calls unaryReal in the error environment, passing it the parameter. In this case, the
result obtained from the call of unaryReal is returned as the result of sin.

sqrt : proc(real → real)

This procedure returns the positive square root of the parameter. If the parameter is negative
the procedure calls unaryReal in the error environment, passing it the parameter. In this case,
the result obtained from the call of unaryInt is returned as the result of sqrt.

truncate : proc(real → int)

This procedure returns the integer i such that for the parameter x,

i ≤ x ≤ i +1 where i * x ≥ 0.

On an error, this procedure calls truncate in the error environment, passing it the parameter.
In this case, the result obtained from the call of truncate is returned as the result.

4.2 Browser

graphicalBrowserGen : proc(WindowManager → proc(Binding))

This procedure creates a browser procedure that displays output on the given window
manager. The browser procedure displays a graphical representation of its parameter.

textualBrowserGen : proc(proc(string) → proc(Binding))

This procedure creates a browser procedure that displays textual output using the given
procedure. The browser procedure writes out a textual representation of its parameter.

38

4.3 Compiler

compileHyperSource : proc(HyperText[Binding] → CompilationResult[TypeDescriptor])

This procedure takes a hyper-program source representation and attempts to compile it. The
result is a variant with the following branches:

voidResult : proc()

This branch is obtained when a void sequence [MBC+94a] is compiled
successfully. Calling the procedure causes the sequence to be executed.

nonVoidResult : proc(→ any)

This branch is obtained when a non-void sequence is compiled successfully.
Calling the procedure causes the sequence to be executed and the result
returned, injected into any.

typeExpression : TypeDescriptor

This branch is obtained when a type expression is compiled successfully. The
value is a protected representation of a type and optional constructor
information.

error : *CompilationError

This branch is obtained when the compilation fails. The vector contains an
element for each reported compilation error. Each element is a structure
containing the following:

errorRegion : CodeRegion

This contains the character offsets of the beginning and end of the error
region. Note that this is the region in which the error was first
detected; the erroneous code may lie before this.

errorLine : CodeRegion

This contains the character offsets of the beginning and end of the line
containing the error region.

lineNumber : int

This is the number of the line containing the error region.

errorMessage : string

This is a message describing the nature of the error.

39

compileHyperSourceWith : proc(HyperText[Binding], *string →

CompilationResult[TypeDescriptor])

This procedure performs the same function as compileHyperSource. The additional vector
parameter contains the names of declaration sets against which the source is compiled. The
declaration set corresponding to the vector element with the lowest index forms the innermost
additional scope.

compileString : proc(string → CompilationResult[TypeDescriptor])

This procedure takes a string program representation and attempts to compile it. The result
has the same form as that of compileHyperSource. Calling this procedure has the same effect
as calling genericCompile with the environment produced by calling stringInput with the
string as parameter.

compileStringWith : proc(string, *string → CompilationResult[TypeDescriptor])

This procedure performs the same function as compileString. The additional vector
parameter contains the names of declaration sets against which the source is compiled. The
declaration set corresponding to the vector element with the lowest index forms the innermost
additional scope.

compileTypeDefinitions : proc(HyperText[Binding] →
TypeCompilationResult[TypeDescriptor])

This procedure takes a hyper-program source representation containing type definitions and
attempts to compile it. The result is a variant which takes one of the following branches:

typeDefinitions : Table[string, TypeDescriptor]

This branch is obtained when the source is compiled successfully. The table
contains those type definitions in scope at the end of the program.

error : *CompilationError

This branch gives compiler error messages and is obtained when the
compilation fails.

fileInput : proc(file → env)

This procedure takes a file descriptor and returns an environment containing lexical analysis
procedures to operate over that file.

genericCompile : proc(env → CompilationResult[TypeDescriptor])

This procedure takes an environment containing lexical analysis procedures operating over a
source representation and attempts to compile the source. The result has the same form as
that of compileHyperSource. A compiler error message is obtained if the environment does
not contain the following procedures:

40

eoi : proc(→ bool)

This procedure should return true iff the end of the source has been reached.

read : proc(→ string)

This procedure should return the next character from the source and advance
to the following character.

readName : proc(string → string)

This procedure should read an identifier name from the source and return it
appended to the parameter.

resetLex : proc()

This procedure should reset the current lexical position to the beginning of the
source.

sourceOffset : proc(→ int)

This procedure should return the current character offset into the source.

positionInfo : proc(int → ∗int)

This procedure should return, for a given offset into the source, a vector with a
lower bound of 1 and the following values in the first three elements: the
character offset of the start of the line containing the given offset, the character
offset of the end of the line containing the given offset, and the number of the
line containing the given offset. The offset parameter specifies a character in
the source, with 1 corresponding to the first character. The returned line start
and end offsets should correspond to the first and last characters of the line
excluding newline characters. The line numbering should start at 1.

sourceFragment : proc(int, int → string)

This procedure should return the fragment of the source between and
including the given character offsets.

getDeclarationSet : proc(string → Optional[Table[string, Binding]])

This procedure returns a table operating on the declaration set with the given name, if it
exists. This table can then be used to enter, look up, remove and scan bindings in the
declaration set.

41

newDeclarationSet : proc(string)

This procedure creates a new declaration set with the given name, unless one already exists in
which case it has no effect.

removeDeclarationSet : proc(string)

This procedure removes the declaration set with the given name, unless no such declaration
set exists in which case it has no effect.

scanDeclarationSets : proc(proc(string → bool))

This procedure calls the given procedure repeatedly, passing it the name of each declaration
set, until it has been called for all declaration sets or it returns false. The declaration sets are
scanned in increasing name order.

stringInput : proc(string → env)

This procedure takes a string and returns an environment containing lexical analysis
procedures to operate over that string.

4.4 Concurrency

semaphoreGen : proc(int → Semaphore)

This procedure takes an initial value for a semaphore and returns a structure containing
procedures to operate on the semaphore. If the parameter is negative an initial value of zero
is used. The operations on the semaphore are defined as in [SPG91] p. 153:

wait : proc()

The value of the semaphore is decremented. If the new value is less than zero
then the current thread is suspended and its dependency on the semaphore is
recorded.

signal : proc()

The value of the semaphore is incremented. If the new value is less than or
equal to zero, one of the threads suspended on the semaphore is selected and
made runnable.

threadPackage : ThreadPack

This abstract datatype instance contains procedures to operate on threads. Its closure contains
a set of threads, each of which may be runnable or suspended. At any time while the
Napier88 system is active, one or more of the runnable threads are executing. The
programmer may manipulate threads as witnesses of the abstract datatype. Denoting the
witness type as Thread, the operations are:

42

start : proc(proc() → Thread)

This procedure creates a new thread to execute the given void procedure, adds
the thread to the set of threads, marks the thread as runnable, and returns an
identifier for the thread.

getCurrentThread : proc(→ Thread)

This procedure returns the identifier of the thread executing it.

getAllThreads : proc(→ *Thread)

This procedure returns a vector containing identifiers for all the current
members of the set of threads.

kill : proc(Thread)

This procedure removes the thread denoted by the given identifier from the set
of threads. If the thread is currently executing it is terminated. If no runnable
threads remain the Napier88 system terminates.

restart : proc(Thread)

This procedure marks the thread denoted by the given identifier as runnable.
If the thread is currently executing the procedure has no effect.

suspend : proc(Thread)

This procedure marks the thread denoted by the given identifier as suspended.
If the thread is currently executing it is suspended immediately. If no runnable
threads remain the Napier88 system terminates.

live : proc(Thread → bool)

This procedure returns true iff the given thread identifier denotes a thread
which has not yet terminated.

getParent : proc(Thread → Optional[Thread])

This procedure returns the identifier of the thread from which the given thread
was started, if it has not yet terminated. The absent branch is returned if the
parent has terminated or if the given thread has no parent.

suspendUnlock : proc(string, Thread)

This procedure is for system use only and is password protected.

43

4.5 Device

getScreen : proc(file → image)

If the parameter is a raster device, this procedure returns the image associated with that
device. If the file is not a raster device, a call is made to the procedure getScreen in the error
environment with the parameter supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

locator : proc(file, *int)

If the file parameter is a mouse or tablet device, this procedure copies the locator information
into the vector parameter.

If the file is not a mouse or tablet device, a call is made to the procedure locator in the error
environment with the parameters supplied to the original call.

The elements of the vector are filled in as follows:

1 if the file is a tablet, its X dimension, otherwise 0,
2 if the file is a tablet, its Y dimension, otherwise 0,
3 the locator X position,
4 the locator Y position,
5 a date stamp,
6 the state of button 1, representing down as 1 and up as 0,
7...n the state of button i - 5 where i is the vector index.

If the vector has more elements than the information available, the extra elements are
ignored; if the vector has too few elements, only the elements present are set. If the file is a
tablet device or a mouse device associated with an X-window, the X and Y positions are
absolute. Otherwise the X and Y positions are relative to the those of the last call of locator.

colourMap : proc(file, pixel, int)

If the file parameter is a raster device, this procedure sets the colour map entry for the pixel
parameter to the integer parameter. The interpretation of the integer is device dependent.

If the file is not a raster device, a call is made to the procedure colourMap in the error
environment with the parameters supplied to the original call.

colourOf : proc(file, pixel → int)

If the file parameter is a raster device, this procedure returns the colour map entry associated
with the given pixel for that device.

If the file is not a raster device, a call is made to the procedure colourOf in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

44

getCursor : proc(file → image)

If the parameter is a raster device, this procedure returns the cursor associated with that
device.

If the file is not a raster device, a call is made to the procedure getCursor in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

setCursor : proc(file, image)

If the file parameter is a raster device, this procedure sets the cursor to be a copy of the image
parameter.

If the file is not a raster device, a call is made to the procedure setCursor in the error
environment with the parameters supplied to the original call.

getCursorInfo : proc(file, *int)

If the file parameter is a raster device, this procedure copies the cursor information for that
device into the vector parameter.

If the file is not a raster device, a call is made to the procedure getCursorInfo in the error
environment with the parameters supplied to the original call.

The elements of the vector are filled in as follows:

1 the cursor’s X position,
2 the cursor’s Y position,
3 the rasterop rule used to display the cursor.

The interpretation of the rasterop rule may be found in the description of rasterOp in Section
4.12.2.

If the vector has more than three elements, the extra elements are ignored. If the vector has
less than three elements, only the elements present are filled in.

setCursorInfo : proc(file, *int)

If the file parameter is a raster device, this procedure alters the cursor information for that
device according to the contents of the vector parameter.

If the file is not a raster device, a call is made to the procedure setCursorInfo in the error
environment with the parameters supplied to the original call.

The elements of the vector are interpreted as follows:

1 specifies the cursor’s X position,
2 specifies the cursor’s Y position,
3 specifies the rasterop rule used to display the cursor.

The interpretation of the rasterop rule may be found in the description of rasterOp in Section
4.12.2.

45

If the vector has more than three elements, the extra elements are ignored; if the vector has
less than three elements, only the elements present are set.

4.6 Distribution

remoteStoreTable : Table[string, RemoteStore]

This table contains mappings from symbolic remote store names to actual locations of stores.
The symbolic names are strings, while the store location structures each contain the name of a
remote host, the pathname of a store at that host, a user name and a password. The host name
may be specified as a local machine name or a full IP host name. The user name and
password may be empty strings. For example:

remoteStoreTable(enter)(
 "panda",
 RemoteStore("panda", "/pstore2/demoStore", "", ""))

remoteStoreTable(enter)(
 "aRemoteStore",
 RemoteStore("mcname.somewhere.edu", "/napier/store", "john", "napier"))

scan : proc(RemoteStore, string → RemoteResult[StoreScan[TypeRep]])

This procedure takes a remote store description and attempts to connect to that store and
return information about the contents of the store. If the store description is not valid the
result is a string describing the error. Otherwise the result depends on whether the store
contains an environment at the root of persistence.

If the store contains an environment the string parameter is interpreted as the pathname of an
environment accessible from the root environment, and the result is a list of structures
containing one element for each of the bindings present in the remote environment at the time
of the scan. Each element contains the name of the binding as a string and a representation of
the type of the binding. The pathname is given relative to the top level environment and
should consist of an initial slash followed by environment names separated by slashes, for
example:

"/Library/Distribution" ! Distribution contained in Library contained in top level.
"/" ! Top level environment.

If the pathname is not well formed the result is a string describing the error.

If the store does not contain an environment at the root of persistence, the string parameter is
ignored and the result is a representation of the type of the root of persistence.

The operation of this procedure depends on whether a Napier88 process is currently active in
the remote store. If so the procedure attempts to connect with the remote process at the
socket level and any user name or password provided with the remote store description is
ignored. If this attempt fails, or if no process is active in the remote store, the procedure
attempts to copy the remote store to the local machine in order to scan it. In this case the user
name and password, if present, may be used in the attempt to connect to the remote machine.

copyValue : proc(RemoteStore, string → RemoteResult[any])

This procedure takes a remote store description and attempts to copy a value from it. If the
store contains an environment at the root of persistence the string parameter is interpreted as a

46

pathname from the root environment in the same way as for scan above. In this case the
result is a copy of the remote binding injected into any. If the store does not contain an
environment, the pathname is not well formed or no binding with the given name is present,
the result is a string describing the error.

User name and password information is used in the same way as for scan.

copyStore : proc(RemoteStore → RemoteResult[any])

This procedure takes a remote store description and attempts to make a deep copy of its
contents. If the attempt fails the result is a string describing the error, otherwise the result is a
copy of the store contents injected into any.

User name and password information is used in the same way as for scan.

createStore : proc(RemoteStore, any → RemoteResult[null])

This procedure takes a remote store description and a value injected into any, and attempts to
create a new store containing that value. If the remote store already exists or the attempt to
create the store fails for some other reason, the result is a string describing the error.
Otherwise the result is nil.

User name and password information is used in the same way as for scan.

setListener : proc(bool)

This procedure turns listening in the local store on if the parameter is true and off otherwise.
Listening involves monitoring the network for incoming connection attempts from other
stores. If it is turned off no other store will be able to connect to the local store. The
performance of threads in the local store will however be increased.

4.7 Environment

environment : proc(→ env)

This procedure creates a new empty environment.

scan : proc(env, proc(string, TypeRep, bool))

This procedure calls the given procedure once for every binding in the given environment, in
alphabetical order of binding name. Each invocation of the procedure is passed the name of
the identifier in the binding, a representation of its type and a boolean to indicate whether or
not the location is constant.

4.8 Event

The Napier88 system recognises a small range of asynchronous events. These are a hangup
signal, an interrupt signal, a quit signal and a timer interrupt. On completion of a particular
event procedure, the procedure will return to the running program.

47

The Event environment contains the procedures that are called when one of these events is
detected by the system. These procedures are variables and the user may change them by
assignment. The default procedures are described below.

The UNIX signals referred to may be found in §3 of the UNIX Manual under Signal.

hangup : proc()

This procedure is called if the Napier88 system receives a UNIX SIGHUP signal. By default,
this procedure stops the Napier88 system.

interrupt : proc()

This procedure is called if the Napier88 system receives a UNIX SIGINT signal. By default,
this procedure does nothing.

quit : proc()

This procedure is called if the Napier88 system receives a UNIX SIGQUIT signal. By
default, this procedure stops the Napier88 system.

timer : proc ()

This procedure is called 30 times per second. By default, this procedure does nothing.

4.9 FailValues

The FailValues environment contains dummy instances of some commonly used types. The
types are defined in Section 5.

applicationFailValue : Application
bindingFailValue : Binding
bindingEditorFailValue : Editor[Binding]
borderStyleFailValue : BorderStyle
buttonPackFailValue : ButtonPack
choicePackFailValue : ChoicePack
displayInfoFailValue : DisplayInfo
envFailValue : env
fontFailValue : Font
fontPackFailValue : FontPack
hyperProgramPackFailValue : EditorPack[Binding]
hyperSourceFailValue : HyperText[Binding]
iconManagerFailValue : IconManager
indexFailValue : Index
intVectorFailValue : *int
levelFailValue : Level
limitFailValue : Limit
menuPackFailValue : MenuPack
posFailValue : Pos
rectFailValue : Rect
sizeFailValue : Size
sliderPackFailValue : SliderPack

48

soundFailValue : *int
stringVectorFailValue : *string
windowFailValue : Window
windowManagerFailValue : WindowManager
windowStateFailValue : WindowState

4.10 Font

The Font environment contains the following instances of type FontPack:

cmrB14

cmrR14

courB10 courB12 courB14

courR10 courR12 courR14

gallantR19

screenB12 screenB14

screenR7 screenR11 screenR12 screenR13

serifR10 serifR11 serifR12 serifR14

Table 4.1: Font names

Each instance is a structure with the following fields:

font : Font

This structure contains characters, a vector of images; fontHeight, the height
of the characters in pixels; descender, the distance from the bottom of a
character to the base line; and info, a string describing the font.

stringToTile : proc(string → image)

This procedure returns a new image onto which the characters of the given
string have been copied.

charToTile : proc(string → image)

This procedure returns the image corresponding to the first character of the
given string. This may be used as an optimisation of stringToTile in some
cases.

The widths of characters in a font may vary, but the programmer may examine these by
taking the x dimension of the appropriate image. For example:

49

this is the baseline

descender 4 pixels

height 15 pixels

width 8 pixels width 10 pixels

Figure 4.1: Character dimensions

4.11 Format

eformat : proc(real, int, int → string)

This procedure returns a string representation of the real parameter, with an exponent. The
first integer parameter gives the required number of digits before the decimal point and the
second the number of digits after the decimal point. If either integer parameter is negative, a
call is made to the procedure eformat in the error environment with the parameters supplied
to the original call. In this case, the result obtained from the call of the error procedure is
returned as the result.

fformat : proc(real, int, int → string)

This procedure returns a string representation of the real parameter. The first integer
parameter gives the required number of digits before the decimal point and the second the
number of digits after the decimal point. If the first integer is too small to represent the real
number, or the second integer is negative, a call is made to the procedure fformat in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

gformat : proc(real → string)

This procedure returns a string representation of the real parameter in the most suitable
format.

iformat : proc(int → string)

This procedure returns a string representation of the integer.

50

4.12 Graphics

4.12.1 Outline

makeDrawFunction : proc(string → drawFunction)

This procedure is for use with Outline graphics [Mor82, MBB+86]. It takes a string
parameter describing a device type and returns a procedure to display Outline pictures on that
device. The devices supported are:

"image" Napier88 raster image
"g6320" colour plotter

If the parameter is not one of the strings listed above the null branch of the variant is returned.
For the parameter "image" the result is of type:

proc(image, pic, real, real, real, real)

otherwise the result is of type:

proc(file, pic, real, real, real, real)

In either case the procedure returned takes a picture and a bounding rectangle in the infinite
two dimensional real space over which all pictures are defined. The real parameters give the
minimum x, maximum x, minimum y and maximum y bounds respectively. The picture is
clipped to the area of the bounding rectangle. The rectangle is then scaled and shifted to fit
the area of the device on which it is drawn.

If the x parameters are equal or the y parameters are equal then the bounding box has zero
size and a call is made to the Draw procedure in the graphical errors environment.

If the picture being drawn contains a text statement whose end points are coincident, a call is
made to the Text procedure in the graphical errors environment. The result returned by the
Text procedure is used to replace the erroneous text statement.

The mapping of a picture onto a device is performed using real arithmetic which, in certain
circumstances, may result in arithmetic errors. If any arithmetic errors do occur the
appropriate procedure in the arithmetical errors environment is called.

4.12.2 Raster

This environment contains procedures for use with raster graphics [MBD+86].

xDim : proc(image → int)

This procedure returns the X dimension of the image.

yDim : proc(image → int)

This procedure returns the Y dimension of the image.

51

zDim : proc(image → int)

This procedure returns the number of planes in the image.

pixelDepth : proc(pixel → int)

This procedure returns the number of planes in the pixel.

rasterOp : proc(image, image, int)

This procedure performs a raster operation from the first image S onto the second image D
using a rule given by dividing the integer parameter by 16 and interpreting the remainder as
follows:

0 S and ~S 8 S and D

1 ~ (S or D) 9 ~S xor D

2 ~S and D 10 D

3 ~S 11 ~S or D

4 S and ~D 12 S

5 ~D 13 S or ~D

6 S xor D 14 S or D

7 ~ (S and D) 15 S or ~S

Table 4.2: Raster rules

where on maps to true and off maps to false.

line : proc(image, int, int, int, int, pixel, int)

This procedure draws a line on the image parameter. The x and y coordinates of the first end
point are given by the first and second integer parameters respectively. The x and y
coordinates of the second end point are given by the third and fourth integer parameters
respectively. The line is drawn using the pixel parameter which is combined with the pixels
of the image using the raster rule given by the last parameter. The interpretation of the raster
rule is the same as for rasterOp.

getPixel : proc(image, int, int → pixel)

This procedure returns the pixel at the given position in the image. The first integer
parameter gives the x coordinate and the second integer parameter the y coordinate. If the
position lies outside the image a call is made to the procedure getPixel in the error
environment. In this case, the result obtained from the call of the error procedure is returned
as the result.

52

setPixel : proc(image, int, int, pixel)

This procedure sets the pixel at the given position in the image. The first integer parameter
gives the x coordinate and the second integer parameter the y coordinate. If the position lies
outside the image a call is made to the procedure setPixel in the error environment.

4.13 InteractiveEnvironment

startProgrammingEnv : proc()

This procedure starts the interactive programming environment at its previously stabilised
state. The procedure attempts to connect to the X-server indicated by the UNIX environment
variable DISPLAY and to create a window in which to run the programming environment. If
the display is opened successfully, hyper-programming and browser windows are displayed
as described in Section 2.

4.14 InterfaceEditor

interfaceEditorGen : proc(→ Window)

This procedure returns a window containing a user interface editor as described in Section
3.7.

4.15 IO

stdOut : file

This is a file variable that is initially connected to the UNIX control terminal for the Napier88
system.

writeByte : proc(int)

This procedure computes the bitwise and of the integer with 255 and writes the result as a
byte to the file stdOut. If an error occurs a call is made to the procedure writeByte in the error
environment.

writeString : proc(string)

This procedure writes the string to the file stdOut. If an error occurs a call is made to the
procedure writeString in the error environment.

writeBool : proc(bool)

This procedure writes the boolean to the file stdOut. If an error occurs a call is made to the
procedure writeBool in the error environment.

53

writeInt : proc(int)

This procedure writes the integer to the file stdOut. If an error occurs a call is made to the
procedure writeInt in the error environment.

writeReal : proc(real)

This procedure writes the real to the file stdOut. If an error occurs a call is made to the
procedure writeReal in the error environment.

integerWidth : int

Integers written out using writeInt are displayed, left justified, in this number of characters. If
the number does not fit within this space, the exact number of characters is used.
integerWidth is a variable with an initial value of 12.

realWidth : int

Reals written out using writeReal are displayed, left justified, in this number of characters. If
the number does not fit within this space, the exact number of characters is used. realWidth is
a variable with an initial value of 14.

spaceWidth : int

spaceWidth spaces are written out after any integer or real number written using writeInt or
writeReal. spaceWidth is a variable with an initial value of 2.

makeWriteEnv : proc(file → env)

This procedure creates an environment that contains the procedures writeByte, writeString,
writeBool, writeInt and writeReal, each of which operates on the given file rather than the file
stdOut. Each procedure may call the error procedures described above. The environment also
contains the variables integerWidth, realWidth and spaceWidth, to control the operation of
writeInt and writeReal on the file. The initial values of the three variables are 12, 14 and 2
respectively.

stdIn : file

This is a file variable that is initially connected to the UNIX control terminal for the Napier88
system.

endOfInput : proc(→ bool)

This procedure reads one byte as an integer from the file stdIn. If the read is successful, false
is returned. If an I/O error occurs the procedure calls the endOfInputIOE procedure in the
error environment. If the end of input is encountered the procedure returns true. The
procedure attempts to make the byte read available to the next endOfInput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readInt or readReal
operation. If the byte cannot be made available, a call is made to the endOfInputUnread

54

procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of endOfInput.

inputPending : proc(→ bool)

This procedure returns true iff there is input available to be read from the file stdIn.

readByte : proc(→ int)

This procedure reads one byte as an integer from the file stdIn. If an I/O error occurs the
procedure calls the readByteIOE procedure in the error environment. If the end of input is
encountered the procedure calls the readByteEOI procedure in the error environment. The
result obtained from either of the error procedures is returned as the result of readByte.

readChar : proc(→ string)

This procedure reads one character from the file stdIn. If an I/O error occurs the procedure
calls the readCharIOE procedure in the error environment. If the end of input is encountered
the procedure calls the readCharEOI procedure in the error environment. The result obtained
from either of the error procedures is returned as the result of readChar.

peekByte : proc(→ int)

This procedure reads one byte as an integer from the file stdIn. If an I/O error occurs the
procedure calls the peekByteIOE procedure in the error environment. If the end of input is
encountered the procedure calls the peekByteEOI procedure in the error environment. The
procedure attempts to make the byte read available to the next endOfInput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readInt or readReal
operation. If the byte cannot be made available, a call is made to the peekByteUnread
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of peekByte.

peekChar : proc(→ string)

This procedure reads one character from the file stdIn. If an I/O error occurs the procedure
calls the peekCharIOE procedure in the error environment. If the end of input is encountered
the procedure calls the peekCharEOI procedure in the error environment. The procedure
attempts to make the character read available to the next endOfInput, readByte, readChar,
peekByte, peekChar, readString, readLine, readBool, readInt or readReal operation. If the
character cannot be made available, a call is made to the peekByteUnread procedure in the
error environment. The result obtained from any of the error procedures is returned as the
result of peekChar.

readString : proc(→ string)

This procedure reads a string literal (a string in quotes) from the file stdIn. The layout
characters " ", "'t" and "'n" are ignored.

If the first character after any layout characters is not a double quote the procedure calls the
readStringBadChar procedure in the error environment. The erroneous character will have
been read. If an I/O error occurs the procedure calls the readStringIOE procedure in the error

55

environment. If the end of input is encountered the procedure calls the readStringEOI
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of readString.

readLine : proc(→ string)

This procedure reads characters from the file stdIn up to and including a newline character. It
concatenates the characters and returns them as a string without the newline character. If the
end of input is encountered during this operation the procedure calls the readLineEOI
procedure in the error environment. If an I/O error occurs the procedure calls the
readLineIOE procedure in the error environment. The result obtained from either of the error
procedures is returned as the result of readLine.

readBool : proc(→ bool)

This procedure reads one boolean from the file stdIn. The layout characters " ", "'t" and "'n"
are ignored. If the characters after any layout characters do not form a boolean the procedure
calls the readBoolBadChar procedure in the error environment. The characters up to and
including the first erroneous character will have been read. If an I/O error occurs, the
procedure readBool calls the readBoolIOE procedure in the error environment. If the end of
input is encountered the procedure calls the readBoolEOI procedure in the error environment.
The result obtained from any of the error procedures is returned as the result of readBool.

readInt : proc(→ int)

This procedure reads one integer from the file stdIn. The layout characters " ", "'t" and "'n"
are ignored. If the first character after any layout characters is not a digit or a sign which is
followed by a digit, the procedure calls the readIntBadChar procedure in the error
environment. The erroneous character will have been read. If the end of input is encountered
before the first digit the procedure calls the readIntEOI procedure in the error environment. If
an I/O error occurs the procedure calls the readIntIOE procedure in the error environment.

The procedure reads characters from the file stdIn until it has parsed an integer. The parsing
may involve reading the first character following the integer. When this occurs the procedure
attempts to make the extra character read available to the next endOfInput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readInt or readReal
operation. If the character cannot be made available a call is made to the readIntUnread
procedure in the error environment.

When an integer has been successfully parsed it is converted into an integer value. If an
arithmetic error occurs during the conversion, a call is made to the readIntOverflow
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of readInt.

readReal : proc(→ real)

This procedure reads one real from the file stdIn. The layout characters " ", "'t" and "'n" are
ignored. If the first character after any layout characters is not a digit or a sign which is
followed by a digit, the procedure calls the readRealBadChar procedure in the error
environment. The erroneous character will have been read. If the end of input is encountered
before the first digit the procedure calls the readRealEOI procedure in the error environment.
If an I/O error occurs the procedure calls the readRealIOE procedure in the error
environment.

56

This procedure reads characters from the file stdIn until it has parsed a real. The parsing may
involve reading the first character following the real. When this occurs the procedure
attempts to make the extra character read available to the next endOfInput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readInt or readReal
operation. If the character cannot be made available a call is made to the readRealUnread
procedure in the error environment.

When a real has been successfully parsed it is converted into a real value. If an arithmetic
error occurs during the conversion, a call is made to the readRealOverflow procedure in the
error environment. The result obtained from any of the error procedures is returned as the
result of readReal.

makeReadEnv : proc(file → env)

This procedure creates an environment that contains the procedures endOfInput,
inputPending, readByte, readChar, peekByte, peekChar, readString, readLine, readBool,
readInt and readReal, each of which operates on the given file rather than the file stdIn. Each
of these procedures may call the error procedures described above.

4.15.1 PrimitiveIO

The procedures in this environment map the I/O facilities of UNIX onto the Napier88 system.

create : proc(string, int → file)

This procedure creates a file with the given name. The integer parameter specifies the
decimal value of the (UNIX) file protection bitmap. If the creation fails, nilfile is returned.

open: proc(string, int → file)

This procedure opens the file with the given name in access mode given by the integer
parameter interpreted as follows:

0 read only
1 write only
2 read and write

If the open fails, nilfile is returned.

A particular file type and attributes may be specified by prefixing the file name with one of
the following prefixes:

“DISK:”, “TTY:”, “STDIN:”, “STDOUT:”, “STDERR:”,
“ACCEPT:”, “CONNECT:”, “SHELL:”, “WINDOW:”

If no recognised prefix is given the host operating system is interrogated after a file is
opened/created to determine its type.

Disk file objects are created whenever a file is opened or created in an external
file system. The filename prefix for a disk file is "DISK:", for example:

open("DISK:myfile", 2)

57

Terminal file objects are created whenever a terminal device is opened. The
filename prefix is "TTY:". If the filename prefixes "STDIN:", "STDOUT:" or
"STDERR:" are specified then file objects are created for the Napier system’s
standard input, output and error. These files are permanently open and are
assumed to be terminal devices. For "STDIN:", "STDOUT:" and "STDERR"
the access mode parameter is ignored For example:

open("TTY:/dev/ttyp1", 2)
open("STDIN:", 2)
open("STDOUT:", 2)
open("STDERR:", 2)

A socket file object is created whenever an incoming network connection is
accepted or a connection to a remote Napier system is successful. The
filename prefixes for a socket are "ACCEPT:", "CONNECT:" and "SHELL:".
The access mode parameters are ignored.

"ACCEPT:" is used to accept a connection from any remote Napier system.
The remainder of the filename is ignored. If no other Napier system is
attempting to connect then nilfile is returned. For example:

open("ACCEPT:", 2)

"CONNECT:" is used to connect to a remote Napier system. This is specified
by a host identifier, followed by a double colon and the path name of a Napier
store directory. The host identifier may be either a local name or full internet
address. If the connection attempt fails then nilfile is returned. Possible
reasons for failure include:

• the host identifier is not a valid address;

• the store directory does not exist or does not contain a valid Napier
store; or

• there is no interpreter currently running against the remote store.

For example:

open("CONNECT:panda::/pstore2/demoStore", 2)
open("CONNECT:mcname.somewhere.edu::/pstore2/demoStore", 2)

"SHELL:" is used to specify a socket connected to a command line interpreter.
The command line interpreter is started when the Napier system is invoked. In
a UNIX system the interpreter is a shell.

open("SHELL:", 2)

58

A window file object is created whenever a raster window is opened. The
filename prefix for a window is "WINDOW:". If no window name is given a
default window is opened in the host environment. For example, a shell
variable DISPLAY may have been set to specify an X display to use.
Alternatively it may be possible to access the local frame buffer and use that to
simulate a window.

A window filename may include specifications of the x, y and z dimensions of
the window as well as its initial x and y positions. The specifications are
encoded by prefixing a number by either "XDIM:", "YDIM:", "ZDIM:",
"XPOS:" or "YPOS:" respectively. Each of these attributes is prefixed by a
space character to separate them from the rest of the filename. If possible these
specifications will be used. If no z dimension is specified a default of 1 is
assumed. For example:

open("WINDOW: XDIM: 600 YDIM: 600 XPOS: 50 YPOS: 50 ZDIM:8", 2)

close : proc(file → int)

This procedure closes the file associated with the given file descriptor. The integer returned
is 0 if the operation was successful and -1 otherwise.

seek : proc(file, int, int → int)

This procedure sets the position of the next read or write from the given file. The first integer
parameter gives the offset in the file relative to the position determined by the second integer
parameter as follows:

0 start of file
1 current position
2 end of file

The procedure returns the position in the file if the operation was successful and -1 otherwise.

ioctl : proc(file, *int, int → int)

The ioctl commands correspond exactly to those supported by the UNIX ioctl system call.
The ioctl instruction will not execute the specified command unless it is applicable to a
compatible terminal and the vector of integers contains sufficient integer elements to hold the
parameters or results of the specified command. The supported commands are:

TIOCSETP TIOCSETN TIOCSETC TIOCSLTC TIOCSETD
TIOCFLUSH TIOCSTI TIOCSPGRP TIOCLBIS TIOCLBIC
TIOCEXCL TIOCNXCL TIOCHPCL TIOCSBRK TIOCCBRK
TIOCSDTR TIOCCDTR TIOCSTOP TIOCSTART TIOCGETP
TIOCGETC TIOCGLTC TIOCGETD TIOCGPRG TIOCOUTQ
FIONREAD FIONBIO

readBytes : proc(file, *int, int, int → int)

This procedure reads bytes from the given file into the vector of integers. The first integer
parameter gives the byte offset from the start of the vector’s elements. The second integer

59

parameter gives the maximum number of bytes to be read. The procedure returns the number
of bytes read if the operation completes successfully and -1 otherwise. The number of bytes
read is not necessarily the maximum possible.

writeBytes : proc(file, *int, int, int → int)

This procedure writes bytes to the given file from the vector of integers. The first integer
parameter gives the byte offset from the start of the vector’s elements. The second integer
parameter gives the maximum number of bytes to be written. The procedure returns the
number of bytes written if the operation completes successfully and -1 otherwise. The
number of bytes written is not necessarily the maximum possible.

getByte : proc(int, int → int)

This procedure returns a byte from the word given by the first parameter. The second
parameter gives the byte index from the start of the word, 0 indicating the first byte. If an
illegal index is specified a call is made to the getByte procedure in the error environment.

setByte : proc(int, int, int → int)

This procedure returns the integer obtained by replacing a byte in the word given by the first
parameter. The second parameter gives the byte index from the start of the word, 0 indicating
the first byte. The third parameter gives the byte with which it is to be replaced. If an illegal
index is specified a call is made to the setByte procedure in the error environment.

errorNumber : proc(→ int)

This procedure returns the error number of the last primitive I/O operation executed by the
current thread. The error numbers are those returned by the last UNIX I/O operation and are
described in intro(2) in the UNIX Manual.

4.16 Lists

listPackGen : proc[T](→ ListPack[T])

This procedure returns a structure containing procedures to manipulate a list with elements of
type T. The list implementation maintains a current position in the list, represented by an
integer specifying the number of list elements before the current position. This may range
between 0 and the number of elements in the list. Initially the list is empty and the current
position is 0. The procedures are:

insert : proc(T)

This procedure inserts an element into the list at the current position. The
current position now lies after the new element.

60

replace : proc(T)

This procedure has no effect if the list is empty. Otherwise it replaces the
element at the current position with the given element. The current position
now lies at the new element.

clear : proc()

This procedure deletes all the elements in the list.

delete : proc()

This procedure has no effect if the current position is equal to the number of
list elements i.e. at the end of the list. Otherwise it deletes the element at the
current position. The current position remains unchanged.

element : proc(→ Optional[T])

This procedure returns the absent branch if the list is empty or the current
position is equal to the number of list elements i.e. at the end of the list.
Otherwise it returns the element at the current position. The current position
remains unchanged.

length : proc(→ int)

This procedure returns the number of elements in the list.

pos : proc(→ int)

This procedure returns the current position.

atEnd : proc(→ bool)

This procedure returns true iff the current position lies at the end of the list.

go : proc(int)

This procedure sets the current position to the given value. If the value is less
than 0 or greater than the number of list elements the procedure has no effect.

goNext : proc()

This procedure increments the current position by 1. If the current position is
already at the end of the list the procedure has no effect.

61

goPrev : proc()

This procedure decrements the current position by 1. If the current position is
already at the start of the list the procedure has no effect.

find : proc(proc(T → bool) → int)

This procedure scans the elements of the list in order from the start of the list,
applying the given procedure to each element, until true is obtained or the end
of the list is reached. The procedure returns the position of the element for
which true was obtained, or -1 if there was no such element.

4.17 People

This environment contains the following:

al : image Al Dearle, University of Adelaide
carl : image Carl Warren, University of St Andrews
craig : image Craig Baker, University of St Andrews
dave : image Dave Munro, University of St Andrews
dharini : image Dharini Subramaniam, University of St Andrews
fred : image Fred Brown, University of Adelaide
graham : image Graham Kirby, University of St Andrews
john : image John Napier, University of St Andrews
malcolm : image Malcolm Atkinson, University of Glasgow
quintin : image Quintin Cutts, University of St Andrews
richard : image Richard Connor, University of St Andrews
ron : image Ron Morrison, University of St Andrews
snoopy : pic Snoopy the Beagle, Peanuts
stephan : image Stephan Scheuerl, University of St Andrews
vivienne : image Vivienne Moore, University of St Andrews

4.18 Protection

protectedPackGen : proc[T](T → ProtectedPack[T])

This procedure takes an initialising instance of the specialising type and returns a structure
allowing instances of the specialising type to be protected. The components of the structure
are:

protected : Protected

This is an abstract datatype whose witness type abstracts over the specialising
type.

setProtected : any

This encapsulates a procedure of type proc(Abs) where Abs is the witness
type of the abstract datatype protected. It records the given abstract reference
to an instance of the specialising type.

62

getProtected : any

This encapsulates a procedure of type proc(→ Abs) where Abs is the witness
type of the abstract datatype protected. It returns an abstract reference to the
currently recorded instance of the specialising type.

setConcrete : proc(T)

This procedure records the given instance of the specialising type.

getConcrete : proc(→ T)

This procedure returns the currently recorded instance of the specialising type
in its concrete form.

The first program below illustrates how a value may be put into the persistent store in an
abstract form:

let protectedIntPack = protectedPackGen[int](0)

project PS() as root onto env :
begin

in root let protectedIntPack = protectedIntPack

use protectedIntPack(protected) as X[ProtectedInt] in
project protectedIntPack(getProtected) as getProtectedInt onto
proc(-> ProtectedInt) :
begin

protectedIntPack(setConcrete)(7)
in root let aProtectedInt = getProtectedInt()

end
default : writeString("an error")

end
default : {}

The next program illustrates how the value may be retrieved and converted back to its
concrete form:

project PS() as root onto env :
use root with protectedIntPack : ProtectedPack[int] in
use protectedIntPack(protected) as X[ProtectedInt] in
use root with aProtectedInt : ProtectedInt in

project protectedIntPack(setProtected) as setProtectedInt onto
proc(ProtectedInt) :
begin

setProtectedInt(aProtectedInt)
let seven = protectedIntPack(getConcrete)()

end
default : writeString("an error")

default : {}

These procedures may be used to provide protected access to a set of values of a particular
type as follows:

• call protectedPackGen specialised to the appropriate type;

• make the abstract datatype protected generally accessible; and

63

• restrict access to the other components of the structure, for example by password
protection [CDM+90].

protectedBinding : Protected

This abstract datatype provides access to the protected type Binding which represents entities
that may be passed to the browser or linked into hyper-programs. The code below shows an
example of its use:

project PS() as root onto env :
use root with Library : env in
use Library with Browser,Protection : env in
use Protection with protectedBinding : Protected in
use protectedBinding as X[Binding] in
use Browser with graphicalBrowserGen : proc(WindowManager -> proc(Binding)) in
...

protectedTypeDescriptor : Protected

This abstract datatype provides access to the protected type TypeDescriptor which represents
instances of type constructor information. It is used in the same way as protectedBinding.

protectedTypeRep : Protected

This abstract datatype provides access to the protected type TypeRep which represents types.
It is used in the same way as protectedBinding.

4.19 RasterRules

This environment contains the following integers which represent raster rules for use with
window operations:

copyRule andRule orRule xorRule
notRule norRule nandRule xnorRule

4.20 String

length : proc(string → int)

This procedure returns the number of characters in the given string.

asciiToString : proc(int → string)

This procedure returns the single character string corresponding to the ASCII code given by
calculating i rem 128, where i is the parameter.

stringToAscii : proc(string → int)

This procedure returns the ASCII code for the first character of the given string, unless the
string is the empty string, in which case 0 is returned.

64

letter : proc(string → bool)

This procedure returns true if the first character of the string is a lower case or upper case
letter.

digit : proc(string → bool)

This procedure returns true if the first character of the string is a decimal digit.

4.21 System

stabilise : proc()

This procedure records the entire state of the Napier88 system on non-volatile storage. It is
called automatically on normal program termination.

diskgc : proc()

This procedure performs a garbage collection of the entire persistent store.

abort : proc()

This procedure terminates the currently executing thread. No stabilisation is performed.

4.22 Tables

compareInt : Comparison[int]

This structure contains procedures to test equality and ordering on integers, and may be used
with tableGen to generate tables keyed by integers.

compareString : Comparison[string]

This structure contains procedures to test equality and ordering on strings, and may be used
with tableGen to generate tables keyed by strings.

tableGen : proc[Key, Data](Comparison[Key] → Table[Key, Data])

This procedure returns a structure containing procedures to manipulate an associative table
with keys of type Key and associated data of type Data. The parameter is a variant that is
either a structure containing procedures to compare key values for equality and ordering, or a
structure containing only a procedure to test for equality. A more efficient implementation is
obtained when both procedures are supplied. The procedures in the table structure are:

65

enter : proc(Key, Data)

This procedure inserts an entry into the table. If the table already contains an
entry with the given key the existing value is overwritten.

lookup : proc(Key → Optional[Data])

This procedure returns either the data associated with the given key or the
absent branch if the key is not found.

remove : proc(Key)

This procedure removes the data associated with the given key from the table.
If the key is not found the procedure has no effect.

scan : proc(proc(Key, Data → bool))

This procedure calls the given procedure repeatedly, passing it each key
present in the table and the associated data, until it has been called for all
entries or it returns false. If the table has an ordering defined for it the entries
are scanned in increasing key order. Otherwise the entries are scanned in the
order in which the keys were inserted.

4.23 Time

date : proc(→ string)

This procedure gives the current date and time in the format illustrated below:

"Sat Oct 16 16:05:25 BST 1993"

time : proc(→ int)

This procedure returns the CPU time used by the Napier88 system since it was initialised.
The time is measured in 60th of a second clock ticks.

4.24 Utilities

concatenateHyperText : proc[T](HyperText[T], HyperText[T] → HyperText[T])

This procedure concatenates the given fragments of hyper-text.

concatenateStrings : proc(*string → string)

This procedure returns the string obtained by concatenating together the strings in the given
vector.

66

error : proc(string)

This procedure displays the given error message.

executeAsThread : proc(proc())

This procedure executes the given procedure as a separate thread. The current thread is
suspended until the new thread terminates. Any fatal run-time errors will not affect the
current thread.

extractHyperText : proc[T](HyperText[T], int, int → HyperText[T])

This procedure extracts the part of the given fragment of hyper-text lying between the two
given character positions inclusive.

find : proc(string, string, int → int)

This procedure searches the string given by the first parameter for the target string given by
the second parameter, starting at the given offset into the string and wrapping back to the
beginning if necessary. If the target is found the result is the offset at which the target occurs
in the string. If the target is not found the result is zero.

getArgs : proc(→ *string)

This procedure returns the command line arguments used to invoke the current Napier88
session. The vector contains an element for each word, with a lower bound of 1. For
example, if a session is initiated by typing

npr myProg.out arg1

at the command line, then a call to getArgs during the session will return the vector :

vector @1 of ["npr", "myProg.out", "arg1"]

getEnv : proc(→ *string)

This procedure returns the values of the shell environment variables in effect at the
invocation of the current Napier88 session. The vector contains an element for each variable,
with a lower bound of 1. An example is shown below:

vector @1 of ["DISPLAY=panda", "NPRDIR=/napier/release", "NPRSTORE=/napier/store"]

getHyperProgramPack : proc(bool, bool → EditorPack[Binding])

This procedure returns a structure containing procedures to operate on a hyper-program
editor, as described for hyperProgramPackGen in Section 4.26.4. The first parameter
specifies whether the contents of the editor can be edited interactively. The second parameter
specifies whether the editor window contains cut, copy and paste buttons.

67

getType : proc(any → TypeRep)

This procedure returns an abstract representation of the type of the given value.

max : proc(int, int → int)

This procedure returns the maximum of the two integers.

min : proc(int, int → int)

This procedure returns the minimum of the two integers.

mkBlankString : proc(int → string)

This procedure returns a string containing the given number of space characters. If the
parameter is negative the empty string is returned. The procedure is designed to minimise the
number of object creations.

mkCompareHyperText : proc[T](→ Comparison[HyperText[T]])

This procedure returns a structure containing procedures to test equality and ordering on
instances of hyper-text.

mkEnvLocBinding : proc(env, string → Binding)

This procedure returns a binding denoting the location with the given name in the given
environment. If no such location exists then bindingFailValue is returned.

mkHyperLink : proc[T](string, LinkPack[T] → HyperText[T])

This procedure returns a fragment of hyper-text consisting of a single link to the given value
with the given name.

mkStructLocBinding : proc(any, string → Binding)

This procedure returns a binding denoting the location with the given name in the given
structure. If no such location exists then bindingFailValue is returned.

mkTypeBinding : proc(TypeRep → Binding)

This procedure converts the given type representation to a binding.

mkTypeDescriptorBinding : proc(TypeDescriptor → Binding)

This procedure converts the given type descriptor to a binding.

68

mkValueBinding : proc(any → Binding)

This procedure converts the given value to a binding.

showBinding : proc(Binding, int)

This procedure displays the binding denoted by the given abstract representation. The integer
parameter is ignored.

showType : proc(TypeRep → string)

This procedure returns a string representation of the given abstract type representation.

stringToHyperSource : proc(string → HyperText[Binding])

This procedure returns a fragment of hyper-text consisting of the given string with no links.

stringToInt : proc(string → int)

This procedure converts the given string representation of an integer to the corresponding
integer. If the string contains any non-digit characters other than a single leading "-" the
result is zero.

4.25 Vector

lwb : proc[t](*t → int)

This procedure returns the lower bound of the vector.

upb : proc[t](*t → int)

This procedure returns the upper bound of the vector.

4.26 Win

4.26.1 Borders

double : BorderStyle

This border style produces a border with a double line around the window.

69

currentnon-current

Figure 4.2: double borders

The interactive operations provided by the border are:

• The window can be brought to the front by clicking on the border with mouse button 1.
• The window can be moved by dragging the border with mouse button 2.
• The window can be undisplayed by clicking on the border with mouse button 3.

fixedX : BorderStyle

This border style produces an Open Look™ [Sun89] style border with a title bar and a close
box.

non-current, non-selected current, non-selected

non-current, selected current, selected

Figure 4.3: fixedX borders

The interactive operations using the border are:

70

• The window can be selected or deselected by clicking on the border with mouse button 1.
If the window is not already selected it becomes selected and any other selected windows
are deselected. If the window is already selected it becomes deselected.

• The window can also be selected or deselected by clicking on the border with mouse
button 2. In this case other selected windows are unaffected.

• A menu can be obtained by holding down mouse button 3 on the border. The entries in
the menu are Front, to bring the window to the front, Back, to put the window to the back,
and Dismiss, to undisplay the window.

• The window can be closed to its icon by clicking on the close box with mouse button 1.

This border style is equivalent to genericXBorderGen(false, true, true, true).

genericXBorderGen : proc(bool, bool, bool, bool → BorderStyle)

This procedure produces a border style which in turn produces an Open Look style border.
The first parameter specifies whether the border has a close box; the second parameter
specifies whether the border has resize handles; the third parameter specifies whether a
border menu is provided; the fourth parameter specifies whether a thin box is drawn around
the inside of the border. Subject to these options the interactive operations on the border are
the same as for fixedX.

invisible : BorderStyle

This border style produces a border with no visible parts and no interactive operations.

menuX : BorderStyle

This border style produces the same border as that produced by fixedX, without a close box or
inner rectangle.

71

non-current, non-selected current, non-selected

non-current, selected current, selected

Figure 4.4: menuX borders

This border style is equivalent to genericXBorderGen(false, false, false, false).

plain : BorderStyle

This border style produces a border with a single line around the window and no interactive
operations.

Figure 4.5: A plain border

shadow : BorderStyle

This border style produces a border with a single line and a shadow around the window and
no interactive operations.

72

Figure 4.6: A shadow border

variableX : BorderStyle

This border style produces the same border as that produced by fixedX, with the addition of
resize handles at the four corners.

non-current, non-selected current, non-selected

non-current, selected current, selected

Figure 4.7: variableX borders

The window can be resized by dragging a resize handle with mouse button 1.

This border style is equivalent to genericXBorderGen(true, true, true, true).

4.26.1.1 Interactive

This section describes how the user can define new styles of borders. A border is defined by
splitting it up into a number of areas using the following types:

type BorderStyle is proc(Window -> Border)

73

type Border is List[Area]
type Area is structure(currentImage,nonCurrentImage : image ;

pos : Pos ; distributeEvent : Application)

A border style is represented as a procedure which takes as its parameter a window and
returns a list of values of type Area. Each of these is a structure that contains two images for
a part of the border. One of the images is displayed when the window is current and the other
when it is not. The border as a whole is built up from the separate areas. Each structure also
contains the position of the origin of the area relative to the origin of the window and an
application that processes mouse events that occur over the area. No keyboard events are
sent to border applications. Mouse events sent to border applications are translated so that
the positions are relative to the origin of the window.

A border style could be split into four areas as illustrated in Figure 4.8:

❶

❷

❸

❹

Title

Figure 4.8: Border style areas

A new border style is made by constructing a procedure of type BorderStyle which takes a
window as its parameter and returns a list of border areas. The procedure will use the size of
the window to calculate the sizes and positions of the areas. The only restriction on the
appearance of a border style is that its outline should be rectangular. If this is not adhered to
the border may not be displayed correctly.

A number of predefined procedures are available for performing interactive window
manipulation and these can be incorporated into a new border style. The move procedure, for
example, displays an outline of the window and moves it around following the position of the
mouse until the mouse button is released, when it calls the window manager’s move
procedure to move the window to its new position.

The procedures can be incorporated into a border style by using them within the applications
for the border areas.

delete : proc(Window, Event, EventTest, proc(), proc())

This procedure undisplays the given window. The second parameter is ignored and is present
only for compatibility with the other procedures in the environment. Before undisplaying the
window, delete calls the first of the void procedure parameters. After undisplaying the
window it loops until the EventTest parameter returns false on the current event and then calls
the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as a ‘delete window’ command.

74

iconise : proc(Window, Event, EventTest, proc(), proc())

This procedure closes the given window. The second parameter is ignored and is present
only for compatibility with the other procedures in the environment. Before closing the
window, iconise calls the first of the void procedure parameters. After closing the window it
loops until the EventTest parameter returns false on the current event and then calls the
second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as a ‘close window’ command.

move : proc(Window, Event, EventTest, proc(), proc())

This procedure allows the given window to be moved interactively. The Event parameter is
interpreted as the event which caused the procedure to be invoked. Before moving the
window, move calls the first of the void procedure parameters. It then displays an outline of
the given window and allows it to be dragged by the mouse until the EventTest parameter
returns false on the current event. It then moves the window to the current position of the
outline and calls the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as a ‘move window’ command.

pushPop : proc(Window, Event, EventTest, proc(), proc())

This procedure brings the given window to the front, unless the window is already at the
front, in which case it sends the window to the back. The second parameter is ignored and is
present only for compatibility with the other procedures in the environment. Before moving
the window, pushPop calls the first of the void procedure parameters. After moving the
window it loops until the EventTest parameter returns false on the current event and then calls
the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as an ‘alter window depth’ command.

resize : proc(Window, Event, EventTest, proc(), proc())

This procedure allows the given window to be resized interactively. The second parameter is
ignored and is present only for compatibility with the other procedures in the environment.
Before resizing the window, resize calls the first of the void procedure parameters. It then
displays an outline of the given window and allows its size to be altered by dragging the
mouse until the EventTest parameter returns false on the current event. If the cursor is
initially close to a corner of the window then the position of that corner is altered during the
resize. Otherwise the position of the window edge nearest the cursor is altered. The
procedure then moves the window to the current position of the outline and calls the second
of the void procedure parameters.

windowCreatorGen : proc(WindowManager, proc(Size, WindowManager, int → Window),
Size → Application)

This procedure returns an application which allows a rectangular outline to be dragged out
using any mouse button, subject to the minimum size given by the third parameter. When the

75

mouse button is released the application creates a window by calling the second parameter
and displays it at the position of the outline. The window manager parameter should be the
window manager running in the window in which the application is set. The integer
parameter passed to the second parameter is the number of the mouse button being used.

4.26.2 CurrentState

currentBuffer : Editor[Binding]

This variable contains a cut/copy/paste buffer shared among hyper-program editors created
by calling hyperProgramPackGen described in Section 4.26.4.

currentError : proc(string)

This variable contains a procedure which may be used to display error messages.

currentOutputPack : EditorPack[Binding]

This variable contains an editor which may be used to display hyper-program messages.

currentWindowManager : WindowManager

This variable contains the top-level window manager currently active.

currentWriteString : proc(string)

This variable contains a procedure which may be used to display string messages.

4.26.2.1 CurrentBrowser

browser : proc(Binding)

This procedure displays the given value using the currently active browser.

deselect : proc(Binding)

This procedure deselects the given value. It is removed from the selection list and its browser
representation assumes the unselected appearance.

select : proc(BindingInfo[Binding], bool)

This procedure selects the value in the given structure. If the boolean parameter is false any
other selected values are deselected. The selected value is added to the selection list and its
browser representation assumes the selected appearance. The other structure fields contain a
name for the binding, which may be blank, and, for a location, the vertical offset from the
base of the parent menu both in pixels and in numbers of entries. For non-locations these
fields are ignored.

76

selected : proc(Binding → bool)

This procedure returns true iff the given value is in the selection list.

getSelectedBindingInfo : proc(→ List[BindingInfo[Binding]])

This procedure returns the current selection list.

4.26.3 Defaults

defaultBoldFont : FontPack

This variable contains the default bold font. Initially it is set to courB14.

defaultBorderStyle : BorderStyle

This variable contains the default border style. Initially it is set to variableX.

defaultBorderThickness : int

This variable contains the default border thickness. Initially it is set to 2.

defaultColourMap : *int

This variable contains the default colour map used when the programming environment is
initialised.

defaultFont : FontPack

This variable contains the default font. Initially it is set to courR14.

defaultIcon : image

This variable contains the default icon image. Initially it is set to the image shown below:

defaultLinkMarker : string

This variable contains the marker used by hyper-program editors to denote embedded link
information in files. Initially it is set to "!@£$". See Section 4.26.4.

77

defaultOuterScopes : *string

This variable contains the names of the default declaration sets associated with a newly
created hyper-program editor. Initially it is set to stringVectorFailValue, denoting no
declaration sets.

defaultWindowCursor : image

This variable contains the default cursor image. Initially it is set to the image shown below:

defaultWindowDepth : int

This variable contains the default image depth for windows. Initially it is set to 1.

defaultWindowSize : Size

This variable contains the default size for windows. Initially it is set to Size(300, 200).

defaultXWindowPos : Pos

This variable contains the default position for X windows relative to the top left corner of the
screen. Initially it is set to Pos(10, 10).

defaultXWindowSize : Size

This variable contains the default size for X windows. Initially it is set to Size(1100, 770).

4.26.4 Generators

editorGen : proc[HyperLink](Window → Editor[HyperLink])

This procedure returns a hyper-text editor running in the given window. The type parameter
specifies the type of the hyper-links which may be embedded in the text of the editor. The
editor is implemented as an abstract data type containing procedures which fall into several
categories:

• procedures for reading and writing hyper-text to and from the editor;

• procedures for navigating around the hyper-text in the editor;

• procedures for controlling interactive input and the appearance of the window display;
and

• procedures for setting and reading attributes of the editor.

Although the editor returned by this procedure operates on a window it is possible to de-
couple the editor from its window and later re-couple it to the same or a different window.

78

This makes it possible to retain text in the persistent store within an editor without the
potentially large overhead of storing the associated window by storing the editor in its
unbound state. While an editor is de-coupled from its window the procedures specific to the
window display are disabled. Operations on the hyper-text may still be performed but the
effects are not visible in any window.

An editor manipulates a number of lines of hyper-text separated by carriage returns. There is
no limit on the length of a line. Each line may contain both characters and links to instances
of the parameter type HyperLink. The editor records the current selection, which is a pair of
points in the hyper-text, all the hyper-text between the points being considered as selected.
The points may coincide, in which case the selection is empty. Editing functions such as cut,
copy and paste operate on the current selection.

Instances of the witness type of the abstract type Editor are used to represent positions within
the hyper-text. The user is unable to perform any operations on such values except to use
them as parameters to editor functions. Thus the user cannot discover the internal repre-
sentation of the hyper-text or manipulate it other than through the editor interface.

If a line of text is too long to fit on one line in the window, it wraps onto subsequent window
lines. No word wrapping is performed. The text is displayed in a single fixed-width font
only. The font can be set by the user. The user can turn highlighting on or off. When it is
on, the text currently selected (if visible in the window) is shown in inverse video. When it is
off the selection is displayed as normal, although it is still possible for the user to invert
arbitrary regions of text using the invert procedure.

The editor’s initial font is given by the current value of defaultFont in the environment
Defaults.

The procedures in an editor with witness type TextPointer and parameterised by type
HyperLink are:

copyText : proc(Editor[HyperLink])

This procedure takes as parameter another editor of the same type to act as a
buffer, and copies the currently selected text to the buffer. The current
selection is unaffected but the previous contents of the buffer are over-written.

cutText : proc(Editor[HyperLink])

This procedure performs the same actions as copyText except that the current
selection is deleted.

clearText : proc()

This procedure deletes the current selection.

pasteText : proc(Editor[HyperLink])

This procedure over-writes the current selection with the contents of the given
buffer.

79

insertText : proc(HyperText[HyperLink], bool)

This procedure over-writes the current selection with the given hyper-text. If
the boolean parameter is true the window display is updated incrementally as
the text is inserted. If the parameter is false the display is updated only after
the insertion has been completed. This option gives better performance when
large sections of hyper-text are inserted. If no window is currently coupled to
the editor, the boolean parameter has no effect.

readFromFile : proc(file)

This procedure over-writes the current selection with the contents of the given
file. This will result in text only without any hyper-links.

writeToFile : proc(file)

This procedure writes the textual contents of the editor out to the given file.
The title of each hyper-link button is written out at the appropriate position.

select : proc(TextPointer, TextPointer)

This procedure sets the current selection to the hyper-text between the given
positions. Note that text positions cannot be created by the user but can only
be obtained by calling editor procedures.

firstSelection : proc(→ TextPointer)

This procedure returns the starting position of the current selection.

lastSelection : proc(→ TextPointer)

This procedure returns the finishing position of the current selection.

firstLine : proc(→ TextPointer)

This procedure returns the position of the beginning of the first text line.

lastLine : proc(→ TextPointer)

This procedure returns the position of the beginning of the last text line.

topLine : proc(→ TextPointer)

This procedure returns the position of the start of the top-most window line.
This need not be at the beginning of a text line. If no window is currently
coupled to the editor an error is reported using the procedure error as
described in Section 4.26.8 and the position returned is the beginning of the
first text line.

80

bottomLine : proc(→ TextPointer)

This procedure returns the position of the start of the bottom-most window
line. This need not be at the beginning of a text line. If no window is
currently coupled to the editor an error is reported using the procedure error as
described in Section 4.26.8 and the position returned is the beginning of the
first text line.

frontOfLine : proc(TextPointer → TextPointer)

This procedure returns the position of the beginning of the text line containing
the given position.

endOfLine : proc(TextPointer → TextPointer)

This procedure returns the position of the end of the text line containing the
given position.

nextLine : proc(TextPointer → TextPointer)

This procedure returns the position of the beginning of the text line following
the text line containing the given position. If the given position is in the last
text line, the position of the end of that line is returned.

previousLine : proc(TextPointer → TextPointer)

This procedure returns the position of the beginning of the text line preceding
the text line containing the given position. If the given position is in the first
text line, the position of the beginning of that line is returned.

peek : proc(→ HyperText[HyperLink])

This procedure returns the next character or hyper-link after the current
selection, or the empty string if the current selection is at the end of the hyper-
text. A newline character is returned if the current selection ends at the end of
a text line.

read : proc(→ HyperText[HyperLink])

This procedure performs the same actions as peek except that the current
selection is advanced so that it begins and ends at the point after the character
or hyper-link read, unless it is already at the end of the hyper-text.

readLine : proc(→ HyperText[HyperLink])

This procedure returns the remainder of the text line after the current selection,
not including the newline character at the end, and advances the current
selection to the beginning of the following text line. If it already ends in the
last line, the current selection is moved to the end of that line.

81

selectedText : proc(→ HyperText[HyperLink])

This procedure returns the hyper-text in the current selection.

before : proc(TextPointer, TextPointer → bool)

This procedure returns true iff the first position lies before the second position
in the hyper-text.

endOfText : proc(→ bool)

This procedure returns true iff the end of the current selection is at the end of
the last text line.

getFont : proc(→ FontPack)

This procedure returns the font used to display the hyper-text.

getHighlight : proc(→ bool)

This procedure returns true iff the current selection is highlighted.

getProgressIndicator : proc(→ proc(string, real))

This procedure returns the user-set procedure used to display file I/O progress.

getScrollAction : proc(→ proc(int, bool))

This procedure returns the user-set procedure that is called whenever the
hyper-text is scrolled.

getWindow : proc(→ Window)

This procedure returns the window currently coupled to the editor or a fail
value if there is no such window.

interactiveEdit : proc(Editor[HyperLink], EventTest, EventTest, EventTest
→ Application)

This procedure generates an application which can be used to allow the user to
enter and edit text in the window interactively. It takes as parameters an editor
to use as an editing buffer and procedures to detect point, extend and other
mouse button presses. Note that the application for the window must be set
explicitly to allow interactive editing.

The interactive operations supported by the application are as follows:

82

operation method

enter text type at keyboard

position insertion point click mouse button 1

set current selection drag region of text with
mouse button 2

extend current selection click with mouse button 2

select word double click with mouse
button 1

delete current selection type ‘backspace’ or ‘delete’

cut current selection type ‘ctrl-x’

copy current selection type ‘ctrl-c’

paste type ‘ctrl-v’

Table 4.3: Interactive operations

On some terminals the codes for cut, copy and paste may not work due to the
characters being trapped before reaching the WIN system.

invert : proc(TextPointer, TextPointer)

This procedure inverts the pixels of the characters between the two given text
positions.

lineCount : proc(→ int)

This procedure returns the number of text lines currently held in the editor.

new : proc()

This procedure deletes all the text in the editor.

offset : proc(TextPointer, bool → Index)

This procedure returns the distance from the start of the text to the given
position. The distance is returned as a variant, being the number of characters
if the given boolean value is true and otherwise a structure containing the
number of lines and an offset within a line.

position : proc(Pos → TextPointer)

This procedure returns the position in the text which is currently closest to the
given position in the window display relative to the bottom left of the window.

83

redisplay : proc(TextPointer)

This procedure redraws the contents of the window with the given text
position at the top. If the text position is not at the beginning of a text line, the
procedure uses instead the first text position before the given one which would
normally fall at the beginning of a window line. This ensures that a text line
always starts at the beginning of a window line.

scanLinks : proc(proc(Substitution[LinkPack[HyperLink]] → bool))

This procedure applies the given procedure successively to each link in the
hyper-text, in their order within the hyper-text, until either the procedure
returns false or it has been called for all the links.

scroll : proc(int, bool)

This procedure scrolls the window display up or down. If the boolean
parameter is true then the display is scrolled up by the given number of
window lines, a negative number giving downwards scrolling. If the boolean
is false then the integer parameter gives the absolute position to scroll to, as a
number of text lines from the beginning of the text.

search : proc(HyperText[HyperLink], bool → bool)

This procedure searches for the given hyper-text, starting from the end of the
current selection, moving forwards or backwards depending on the given
boolean value. The boolean value returned is true iff the hyper-text is found,
in which case the hyper-text is selected. A link in the target hyper-text
matches a link in the editor iff they are identical.

seek : proc(Index → TextPointer)

This procedure returns the position corresponding to the given offset from the
start of the text.

setFont : proc(FontPack)

This procedure sets the font used to display the text. The font is checked to
make sure that it contains all the necessary characters and that they are all the
same size. If so, the contents of the window are redrawn in the new font,
otherwise the procedure has no effect.

setHighlight : proc(bool)

This procedure sets the highlight on if the argument is true, or off otherwise.
When the highlight is on the current selection is inverted whenever it is visible
in the window.

84

setProgressIndicator : proc(proc(string, real))

This procedure sets the procedure used to display file I/O progress. The string
parameter specifies the type of I/O and the real parameter specifies the fraction
of the I/O completed.

setScrollAction : proc(proc(int, bool))

This procedure sets the procedure that is called whenever the hyper-text is
scrolled. The parameters are the same as those passed to scroll.

setWindow : proc(Window)

This procedure sets the display window for the editor. Any existing contents
of the window are erased and the text is displayed in it starting from the
beginning of the first text line. If the editor is already coupled to a window the
procedure has no effect.

unbindWindow : proc()

This procedure de-couples the editor from its display window. If there is no
window coupled to the editor the procedure has no effect.

eventMonitorGen : proc(proc(→ bool), Application → proc())

This procedure returns a procedure (an event monitor) that repeatedly gathers user input
events and passes them to the given application. It calls the first procedure parameter after
passing each event, and terminates when that procedure returns true.

This could be used, for example, to initiate a WIN session without starting the programming
environment, as illustrated below:

let aWindowManager = screenWindowManagerGen(1)
in root let finished := false ! make variable accessible by other programs
let em = eventMonitorGen(proc(-> bool) ; finished,
 aWindowManager(getDisplayWindow)()(getApplication)())
em()

hyperProgramPackGen : proc(Size, bool, bool, proc(→ List[Table[string, Binding]])
→ EditorPack[Binding])

This procedure returns an instance of EditorPack specialised to links of type Binding. The
first parameter specifies the size of the window. The contents of the editor are interactively
editable iff the second parameter is true. Iff the third parameter is true the window contains
all the light-buttons described in Section 2.1.

The fourth parameter is a procedure that returns a list of tables mapping string names to
Bindings. This list is used to form a series of outer scopes during compilation of the editor
contents.

When the contents of the hyper-program editor are written out to a file the editor records,
where possible, information about the positions in the store of the Binding links. In some

85

cases this enables the links to be reconstructed when the hyper-program is read back from the
file. Such a case arises when a Binding is accessible through a chain of environments from
the root of persistence. Since, however, the information recorded for each such case is the
path from the persistent root, there is no guarantee that the reconstructed link is the same as
the original.

The string defaultLinkMarker, described in Section 4.26.3, is used to indicate the presence of
a link record in the file. It may be updated if it clashes with genuine text in the editor. If it is
set to the empty string then the editor does not attempt to record or interpret any link
information on file writes and reads.

The resulting EditorPack contains the following fields:

window : Window

This window contains the editor window and associated scroll bar and light-
buttons.

editor : Editor[Binding]

This is the editor itself.

getTitle : proc(→ string)

This procedure returns the title of the source code currently being edited.

getText : proc(→ HyperText[Binding])

This procedure returns the entire contents of the editor.

append : proc(HyperText[Binding])

This procedure inserts the given hyper-text after the existing contents of the
editor.

screenWindowManagerGen : proc(int → WindowManager)

This procedure returns a window manager which operates directly on the screen or on an X
window. The parameter gives the depth of the display area in planes. The procedure first
attempts to open the screen as a raw device. If this fails, for example because a (non-Napier)
window manager is running, the procedure attempts to connect to the X-server indicated by
the UNIX environment variable DISPLAY and to create an X window on which to operate
the window manager. If this also fails a fail value is returned.

unboundEditorGen : proc[HyperLink](→ Editor[HyperLink])

This procedure returns an editor with no display window coupled to it.

86

windowGen : proc(→ Window)

This procedure returns a window. The window’s initial icon, cursor, size, pixel depth and
border style are given respectively by the current values of defaultIcon,
defaultWindowCursor, defaultWindowSize, defaultWindowDepth and defaultBorderStyle in
the environment Defaults.

The fields of the window are as follows:

windowRaster : proc(Limit, Limit, Window, int, bool)

This procedure performs a raster operation between the window and another
given window. The first limit specifies the region in the window and the
second the region in the other window. The integer parameter specifies the
raster rule to be used according to the values in the RasterRules environment.

The boolean parameter specifies the direction of the raster operation. If it is
true the raster operation is from the other window to the window, otherwise
the operation is from the window to the other window. If the source region is
larger than the destination region it is clipped on the top and right sides as
necessary. If it is smaller than the destination the new pixels are drawn
starting at the bottom left of the destination region.

For example, the following code xors an area of 10 by 10 pixels starting at
position (0,0) from window1 onto window2 at the position (10,20):

let destination = Limit(Pos(10,20), Size(10,10))
let source = Limit(Pos(0,0),Size(10,10))
window2(windowRaster)(destination, source, window1, xorRule, true)

imageRaster : proc(Limit, image, int, bool)

This procedure performs a raster operation between the window and a given
image. The limit parameter specifies the region in the window. The integer
parameter specifies the raster rule to be used according to the values in the
RasterRules environment.

The boolean parameter specifies the direction of the raster operation. If it is
true the raster operation is from the image to the window, otherwise it is from
the window to the image. Clipping of the window region is performed as for
windowRaster.

drawLine : proc(Pos, Pos, pixel, int)

This procedure draws a line on the window between the given points, using
the given pixel and raster rule. If either point lies outside the window the line
is clipped to the boundaries of the window.

setInputOption : proc(InputOption)

This procedure specifies how the window receives input events when it is the
current window displayed by a window manager. The parameter is interpreted
according to its branch as follows:

87

all : the window receives all input events detected by the window
manager until the input option is reset;

normal : the window receives mouse events over the window region and all
text events;

none : the window receives no input events until the input option is reset.

getInputOption : proc(→ InputOption)

This procedure returns the input option currently associated with the window.

setSize : proc(Rect)

This procedure changes the size of the window to that of the specified
rectangle. The rectangle’s coordinates are given relative to the current origin
of the window. The existing contents of the window are redrawn at the old
origin of the window, after being clipped if necessary. The bottom left corner
of the resized window becomes the new origin of the window’s coordinate
system.

For example, the following code creates a window of the default size
(assumed to be 100 by 100 pixels) and then enlarges it by 10 pixels in both
directions. Blank space is added at the left and bottom of the window and the
old contents are drawn on the window starting at the point (10,10).

let windowOne = windowGen()
windowOne(setSize)(Rect(Pos(-10, -10), Pos(100, 100)))

getSize : proc(→ Size)

This procedure returns the current size of the window.

setApplication : proc(Application)

This procedure sets the application for the window. The application is a
procedure which takes an input event as its parameter and performs some
action.

getApplication : proc(→ Application)

This procedure returns the application currently associated with the window.

setTitle : proc(string)

This procedure sets the title for the window.

getTitle : proc(→ string)

This procedure returns the title currently associated with the window.

88

setResizeControl : proc(ResizeControl)

This procedure sets the resize behaviour for the window. It allows the
programmer of an application to specify how to regenerate the display when
the window in which it is running is resized. The fields of the structure
parameter are interpreted as follows:

before : proc(Rect → Rect)

This procedure is called immediately the window’s setSize
procedure is called, before any changes are made to the
window. The parameter gives the proposed new size of the
window. The procedure may perform any actions necessary
before the window is resized. The result of the procedure is the
actual permitted new size of the window, which may be
different from the proposed new size. If the result is equal to
rectFailValue in the environment FailValues the entire resize
operation is vetoed.

after : proc(Rect)

This procedure is called after a window has been resized, with
the new size passed to it.

For example, the following code shows the procedures being set for a window
whose application displays a view onto an image which is larger than the
window. To conserve memory the application does not keep a separate copy
of the part of the image which is shown in the window. The procedure before
copies from the window any parts of the image that will cease to be visible,
while after draws on any parts of the image that have newly become visible.

let resizeControl =
begin

let before = proc(newRect : Rect → Rect)
begin

… !*** Copy parts that become invisible after resize.
newRect

end

let after = proc(newRect : Rect)
begin

… !*** Fill in parts that become visible after resize.
end

ResizeControl(before,after)
end

imageViewerWindow(setResizeControl)(resizeControl)

getResizeControl : proc(→ ResizeControl)

This procedure returns the resize control structure currently associated with
the window.

89

setMinSize : proc(Size)

This procedure sets the minimum size to which the window can be resized.
Subsequent calls to resize with a size smaller than the minimum in either
direction will have no effect. If the window is currently smaller than the
minimum specified then the minimum is not set.

getMinSize : proc(→ Size)

This procedure returns the minimum size currently associated with the
window.

setMaxSize : proc(Size)

This procedure sets the maximum size to which the window can be resized.
Subsequent calls to resize with a size larger than the maximum in either
direction will have no effect. If the window is currently larger than the
maximum specified then the maximum is not set.

getMaxSize : proc(→ Size)

This procedure returns the maximum size currently associated with the
window.

setDepth : proc(int)

This procedure sets the pixel depth of the window. If the new depth is greater
than the existing depth then planes of off are added behind the existing planes.
If the new depth is less than the existing depth then planes from the back are
discarded.

getDepth : proc(→ int)

This procedure returns the current pixel depth associated with the window.

setBorderStyle : proc(BorderStyle)

This procedure sets the border style used to display the window in a window
manager.

getBorderStyle : proc(→ BorderStyle)

This procedure returns the current border style associated with the window.

getBorder : proc(→ Border)

This procedure returns the border currently associated with the window. If the
window is not displayed by a window manager the list is empty.

90

setCursor : proc(image)

This procedure sets the image displayed when the cursor moves over the
window.

getCursor : proc(→ image)

This procedure returns the cursor image currently associated with the window.

getWindowManager : proc(→ WindowManager)

This procedure returns the window manager currently displaying the window.
If the window is not displayed the fail value windowManagerFailValue is
returned.

setVirtualWindow : proc(string, Window)

This procedure is for system use only and is password protected.

windowManagerGen : proc(Window → WindowManager)

This procedure returns a window manager operating in the given parent window. The fields
of the window manager are as follows:

display : proc(DisplayInfo, bool)

This procedure displays a window. The first parameter is a structure
containing the window, its required position on the window manager display
relative to the bottom left corner and its level relative to other windows. Iff
the boolean parameter is true the window is displayed in the background
behind all other windows. The window is not displayed if it is already
displayed by another window manager or if an attempt is made to display it in
the background when a background window already exists.

undisplay : proc(Window)

This procedure removes the given window from the window manager display.

makeCurrent : proc(Window)

This procedure sets the window manager’s current window to be the specified
window. Any existing current window is made non-current.

setPos : proc(Window, Pos)

This procedure moves the given window to the given position.

91

getPos : proc(Window → Pos)

This procedure returns the position of the origin of the given window relative
to the bottom left corner of the parent window.

setLevel : proc(Window, Level)

This procedure moves the given window to the given level relative to other
windows. If the boolean field in the second parameter is true then the integer
parameter is interpreted as the number of windows from the front, otherwise as
the number of windows from the back. Thus Level(true, 1) puts the window
at the front, while Level(false, 2) puts it second from the back.

getLevel : proc(Window, bool → Level)

This procedure returns the level of the given window. If the boolean
parameter is true the result is relative to the front, otherwise it is relative to the
back. Any background window is ignored.

getWindows : proc(→ *Window)

This procedure returns a vector containing the windows currently displayed by
the window manager, with a lower bound of 1, starting with the window
nearest the front.

getWindowAtPos : proc(Pos → Window)

This procedure returns the front-most window which overlaps the given
position. If there is none then windowFailValue is returned.

getNotifier : proc(string → Notifier)

This procedure is for system use only and is password protected.

getDisplayWindow : proc(→ Window)

This procedure returns the window in which the window manager is running.

getIconManager : proc(→ IconManager)

This procedure returns an icon manager for the window manager. The fields
are as follows:

close : proc(Window)

This procedure undisplays the given window and displays an
icon in its place, itself a window.

92

open : proc(Window)

This procedure undisplays the given icon and redisplays the
corresponding window at its original position.

getIconState : proc(Window → DisplayInfo)

This procedure returns a structure containing information about
the icon associated with the given window. The fields of the
structure can be updated to change the way that the icon will be
displayed when the window is next closed.

getWindowState : proc(Window → DisplayInfo)

This procedure returns a structure containing information about
the window associated with the given icon. The fields of the
structure can be updated to change the way that the window
will be displayed when the icon is next opened.

setBackgroundApp : proc(Application)

This procedure sets an application to run in the background of the window
manager. The application receives keyboard events when there is no current
window, and mouse events which do not occur over a window.

getBackgroundApp : proc(→ Application))

This procedure returns the current background application.

93

4.26.5 Images

This environment contains the following images:

borderCursor : image

downArrow : image

iconiseCursor : image

leftArrow : image

magnify : image

moveCursor : image

resizeCursor : image

rightArrow : image

upArrow : image

waitCursor : image

windowIcon : image

4.26.6 Selection

deselect : proc(Window)

This procedure deselects the given window. If the window is not already selected the
procedure has no effect.

select : proc(Window, bool)

This procedure selects the given window. If the window is already selected the procedure has
no effect. If the boolean parameter is true the procedure does not affect other windows. If
the parameter is false any other selected windows are deselected.

selected : proc(Window → bool)

This procedure returns true iff the given window is selected.

selectedWindows : List[Window]

This list contains the windows that are currently selected.

94

refinements : Table[WindowManager, proc(Window, bool, bool)]

This table maps window managers to procedures that refine the manner in which their
windows are selected and deselected. When a window is selected or deselected the table is
searched for the parent window manager. If it is found the corresponding procedure is called.
The first boolean parameter is true for a selection and false for a deselection. The second
boolean parameter is equal to the parameter to select for a selection and false for a
deselection.

WindowMaps : env

This environment is intended to contain application-specific mappings from s to values, and
may be added to. For example, a drawing application might provide a mapping from
windows used to display objects, to the data about the corresponding objects. Each mapping
is a procedure which takes a window and returns an optional Binding.

browser : proc(Window → Optional[Binding]

This procedure maps browser windows to the corresponding values, locations
and types.

4.26.7 Tools

checkBoxGroupGen : proc(*Appearance, *proc(int, bool), int, int, int → ChoicePack)

This procedure generates a window displaying a group of check boxes. The interpretation of
the parameters is the same as that for genericChoiceGen. An example of a check box
window is shown in Figure 4.9:

Figure 4.9: A check box window

dialogueGen : proc(Size, string, string, string, proc(int), proc(int) → Window)

This procedure generates a dialogue window with one or two choices. The parameters are:
the size of the window; a prompt string; the titles of the two light-buttons; and the procedures
to be called when the light-buttons are pressed. If the second title is empty the second light-
button is not displayed. An example of a dialogue window is shown in Figure 4.10:

95

Figure 4.10: A dialogue window

genericButtonGen : proc(Appearance, proc(int), bool, proc(int, bool), bool →
ButtonPack)

This procedure is used to implement lightButtonGen and trillButtonGen and it may also be
called directly. The parameters are:

• a label to be displayed on the button;

• a procedure that is called when the button is pressed, passing it the number of the mouse
button used;

• a boolean that specifies whether the button procedure should be called continually while
the button is pressed (true) or whether it should only be called once the button has been
released (false);

• a procedure that is called whenever the button changes state from pressed to released and
vice-versa, passing it the number of the mouse button used and a boolean that specifies
whether the button has become pressed (true) or released (false); and

• a boolean that specifies whether the button should have rounded ends (true) or
rectangular (false). If an image rather than a string is supplied for the button label this
parameter is ignored.

The structure returned by the generator contains a window that implements the light-button
and a procedure that when called makes the light-button flash as though pressed and released.
A light-button window cannot be resized.

genericChoiceGen : proc(*Appearance, *proc(int, bool), bool, int, int, int →
ChoicePack)

This procedure is used to implement checkBoxGroupGen and radioButtonGroupGen and it
may also be called directly. The procedure generates a group of check boxes or radio
buttons. The first parameter is a vector of labels to be displayed by the boxes/buttons. The
second parameter is a vector of procedures to be called when the states of the boxes/buttons
are altered by clicking on them with a mouse button. The integer parameter to each
procedure gives the mouse button used and the boolean parameter is true iff the box/button
has just become selected.

The boolean parameter is true for check boxes and false for radio buttons. The integer
parameters specify how the boxes/buttons are to be arranged. The first gives the number per
column; the second gives the vertical separation; the third gives the horizontal separation
between columns.

96

The states of check boxes can be altered independently of one another. The states of radio
buttons are inter-dependent in that whenever a radio button becomes selected the previously
selected radio button becomes de-selected.

The resulting structure contains a window on which the boxes/buttons are displayed and the
following procedure:

set : proc(int, int, bool)

This procedure sets the state of the box/button given by the first parameter to
selected if the boolean parameter is true and unselected otherwise. The effect
is the same as if the state had been set interactively by clicking with the mouse
button specified by the second integer parameter.

genericDialogueGen : proc(Size, string, *Appearance, *proc(int), int, int, int, int, int
→ Window)

This procedure generates a dialogue window with an arbitrary number of choices. The
parameters are: the size of the window; a prompt string; the labels for the light-buttons; the
procedures to be called when the light-buttons are pressed; the horizontal offset of the
message from the left side of the dialogue, the vertical offset of the bottom of the message
from the top of the dialogue, the number of buttons in each column of buttons, the horizontal
separation between columns of buttons and the vertical separation between rows of buttons.
An example of such a dialogue window is shown in Figure 4.11:

Figure 4.11: A dialogue window

genericMenuExpandableGen : proc(*Appearance, *proc(int, MouseEvent), *Appearance,
*proc(int), proc(bool, bool, bool, int), bool,
bool, bool → MenuPack)

This procedure generates a window containing a menu and associated light-buttons. The
parameters are the same as those to genericMenuGen, except for the third and fourth
parameters which specify the labels and actions for the light-buttons. An example of such a
menu window is shown in Figure 4.12:

97

Figure 4.12: A menu window

genericMenuGen : proc(*Appearance, *proc(int, MouseEvent),
proc(bool, bool, bool, int), bool, bool, bool → MenuPack)

This procedure is used to implement menuGen, scrollingMenuGen and
genericMenuExpandableGen, and it may also be called directly. The parameters are:

• a vector containing labels for the menu entries;

• a vector containing procedures that are called whenever an entry is selected or its
highlight state changes;

• a procedure that is called whenever the menu is scrolled; and

• booleans that specify whether the menu may be scrolled, whether entries may be added
and removed from the menu and whether the scroll bar, if present, is on the left of the
menu.

Whenever a mouse button is pressed or released over a menu entry the corresponding element
of the vector of procedures is called, passing it the number of the menu entry and a
description of the event type. This also occurs when the cursor moves over or leaves a menu
entry while a mouse button is down.

The scroll procedure is called whenever the up or down scroll buttons are used. Its first
boolean parameter is true when either button is pressed down initially, the second is true
when either button is released and the third is true if the scrolling is in the up direction. The
number of the mouse button used is also passed to it. The procedure is called continually
while either scroll button is held down, in which case the first two parameters are false.

The resulting structure contains the menu window, a table mapping entry numbers to
structures containing labels and actions, and the following procedures:

setTop : proc(int)

This procedure scrolls the menu so that the given entry lies at or near the top
of the menu, subject to the constraint that the maximum possible number of
entries for the current window size are always displayed. Thus if the given

98

entry is the last it will never be displayed higher than the bottom position. If
the menu is non-scrollable then the procedure has no effect.

getTop : proc(→ int)

This procedure returns the number of the entry currently displayed at the top
of the menu.

setNoVisible : proc(int)

This procedure sets the size of the menu window so that the given number of
entries are visible. The procedure has no effect if the given number is less
than one. The change in size is subject to the menu window’s usual
constraints on minimum and maximum size.

getNoVisible : proc(→ int)

This procedure returns the number of entries currently visible in the menu.

setHighlight : proc(int, bool)

This procedure sets the highlighted state of the given entry to on or off
depending on the boolean parameter. A value of true gives a highlighted
entry and false a non-highlighted entry.

getHighlight : proc(int → bool)

This procedure returns the highlighted state of the given entry.

getNoEntries : proc(→ int)

This procedure returns the number of entries currently in the menu.

genericSliderGen : proc(int, int, real, real, real, bool, proc(int, real),
proc(int, bool) → SliderPack)

This procedure is used to implement sliderGen and it may also be called directly. The
parameters are:

• the X and Y dimensions of the slider;

• the minimum and maximum real values associated with the slider;

• the amount to be skipped when a mouse click occurs off the thumb;

• a boolean that specifies whether the slider is oriented horizontally (true) or vertically
(false);

• a procedure that is called when the value of the slider is changed, passing it the mouse
button used and the new value;

99

• a procedure that is called at the start and finish of a change in the value of the slider.
When the value starts to change it is passed the mouse button used and the value true.
When the value finishes changing it is passed the mouse button used and the value false.

The resulting structure contains the slider window and the following procedures:

set : proc(real)

This procedure sets the value of the slider.

setBounds : proc(real, real, real)

This procedure adjusts the minimum and maximum values of the slider and
the skip increment.

lightButtonGen : proc(Appearance, proc(int) → ButtonPack)

This procedure generates a light-button with the given label. When the button is pressed it is
highlighted. When it is released the given procedure is called, passing it the mouse button
used. The structure returned contains the light-button window and a procedure that when
called makes the light-button flash as though pressed and released. A light-button window
cannot be resized. An example of a light-button window is shown in Figure 4.13:

Figure 4.13: A light-button window

menuGen : proc(*Appearance, *proc(int) → MenuPack)

This procedure generates a fixed size, non-scrollable menu with the given labels and
associated actions. The fields of the resulting structure are described above for
genericMenuGen. An example of a menu window is shown in Figure 4.14:

Figure 4.14: A menu window

radioButtonGroupGen : proc(*Appearance, *proc(int, bool), int, int, int → ChoicePack)

This procedure generates a group of radio buttons. The interpretation of the parameters is the
same as that described for genericChoiceGen above. An example of a radio button window
is shown in Figure 4.15:

100

Figure 4.15: A radio button window

scrollingMenuGen : proc(*Appearance, *proc(int) → MenuPack)

This procedure generates a variable size scrollable menu with the given labels and associated
actions. The fields of the resulting structure are described above for genericMenuGen.
Entries may not be added to or removed from the menu. The number of entries initially
visible is not defined. An example of a scrolling menu window is shown in Figure 4.16:

Figure 4.16: A scrolling menu window

sliderGen : proc(int, int, real, real, real, bool, proc(int, real) → SliderPack)

This procedure generates a slider. The interpretation of the parameters is the same as that
described for genericSliderGen above. An example of a slider window is shown in Figure
4.17:

Figure 4.17: A slider window

trillButtonGen : proc(Appearance, proc(int) → ButtonPack)

This procedure generates a light-button with the given label. When the button is pressed it is
highlighted and the given procedure is called repeatedly, passing it the mouse button used,
until the button is released. The structure returned contains the light-button window and a
procedure that when called makes the light-button flash as though pressed and released. The
light-button window cannot be resized.

101

4.26.7.1 EditorTools

copyClearEditorToolGen : proc[HyperLink](Size, Editor[HyperLink] →
EditorPack[HyperLink])

This procedure generates an editor pack that provides buttons for copying and clearing the
hyper-text. The parameters are the size of the editor window and an editing buffer. An
example of such an editor window is shown in Figure 4.18:

Figure 4.18: An editor window with copy and clear

fullEditorToolExpandableGen : proc[HyperLink](Size, Editor[HyperLink], *string,
*proc(int) → EditorPack[HyperLink])

This procedure generates an editor pack that provides all the buttons described for
genericEditorToolGen and also user defined buttons. The parameters are the size of the
editor window, an editing buffer, a vector of string labels for the user defined buttons and a
vector of associated actions. An example of such an editor window is shown in Figure 4.19:

Figure 4.19: An editor window with all operations and user defined buttons

fullEditorToolGen : proc[HyperLink](Size, Editor[HyperLink] → EditorPack[HyperLink])

This procedure generates an editor pack that provides all the buttons described for
genericEditorToolGen. The parameters are the size of the editor window and an editing
buffer. An example of such an editor window is shown in Figure 4.20:

102

Figure 4.20: An editor window with all operations

genericEditorToolGen : proc[HyperLink](Size, Editor[HyperLink], bool, bool, bool, bool,
bool, bool, *string, *proc(int)
→ EditorPack[HyperLink])

This procedure is used to implement the other editor generators and it may also be called
directly. The parameters are the size of the editor window, an editing buffer, boolean
parameters described below, a vector of string labels for user defined buttons and a vector of
actions for the user defined actions. The boolean parameters specify whether the following
options are enabled, respectively:

• ability to select hyper-text interactively using the mouse;

• ability to copy selected hyper-text into the given buffer;

• ability to clear the hyper-text in the editor;

• ability to edit the hyper-text interactively;

• ability to load and save text from and to the file system; and

• presence of a scroll bar.

The number of light-buttons displayed at the bottom of the editor window depends on which
of the options are enabled. The possible buttons are cut, copy, paste, clear, find, load and
save. The dependencies are shown in Table 4.4, in which a tick indicates that a particular
option must be enabled for the corresponding button to appear:

103

option enabled

select copy clear edit load/save

cut ✔ ✔

copy ✔

paste ✔ ✔

button clear ✔

find ✔

load ✔

save ✔ ✔

Table 4.4: Editor tool light-buttons

User defined buttons are displayed after the pre-defined buttons. The resulting structure
contains the editor window, the editor and the following procedures:

getTitle : proc(→ string)

This procedure returns the current title of the text being edited. This title
corresponds to the most recent file name if text has been loaded from or saved
to the file system.

getText : proc(→ HyperText[HyperLink])

This procedure returns the current contents of the editor.

append : proc(HyperText[HyperLink])

This procedure inserts the given hyper-text at the end of the existing hyper-
text.

genericSingleLineDialogueGen : proc[HyperLink](Size, string, *Appearance,
*proc(int, HyperText[HyperLink]),
EditorPack[HyperLink], int, int, int,
int, int, int, int →
DialoguePack[HyperLink])

This procedure is used to implement singleLineDialogueGen and it may also be called
directly. It generates a dialogue window containing a single line hyper-text editor and a
number of user defined light-buttons. The parameters are as follows:

• the size of the dialogue window;

• a prompt label;

• a vector of labels for the light-buttons;

104

• a vector of procedures to be called when the light-buttons are pressed, each one taking as
parameters the mouse button used and the current contents of the editor;

• the editor to be displayed;

• the X offset of the prompt from the left of the dialogue; the Y offset of the prompt from
the top of the dialogue; the X offset of the editor from the left of the dialogue; the Y offset
of the editor from top of the dialogue; the number of light-buttons per column; the
horizontal separation of the light-buttons; and the vertical separation of the light-buttons.

The resulting structure contains the dialogue window and the following procedure:

set : proc(HyperText[HyperLink])

This procedure replaces the contents of the editor with the given hyper-text.

readOnlyEditorToolExpandableGen : proc[HyperLink](Size, Editor[HyperLink], *string,
*proc(int) →
EditorPack[HyperLink])

This procedure generates an editor pack with user defined buttons that does not allow
interactive selecting, copying or editing of the hyper-text. The parameters are the size of the
editor window, an editing buffer, a vector of string labels for the user defined buttons and a
vector of associated actions. An example of such an editor window is shown in Figure 4.21:

Figure 4.21: A read only editor window with user defined buttons

readOnlyEditorToolGen : proc[HyperLink](Size, Editor[HyperLink] →
EditorPack[HyperLink])

This procedure generates an editor pack that does not allow interactive selecting, copying or
editing of the hyper-text. The parameters are the size of the editor window and an editing
buffer. An example of such an editor window is shown in Figure 4.22:

105

Figure 4.22: A read only editor window

simpleEditorToolGen : proc[HyperLink](Size, Editor[HyperLink]
→ EditorPack[HyperLink])

This procedure generates an editor pack that allows interactive selecting and editing of the
hyper-text but provides no light-buttons. The parameters are the size of the editor window
and an editing buffer. An example of such an editor window is shown in Figure 4.23:

Figure 4.23: A simple editor window

singleLineDialogueGen : proc[HyperLink](Size, string, string, string,
proc(HyperText[HyperLink]),
proc(HyperText[HyperLink]) →
DialoguePack[HyperLink])

This procedure generates a dialogue window containing a single line hyper-text editor and
two user defined light-buttons. The parameters are: the size of the dialogue; a prompt label;
labels for the light-buttons; and procedures that are called when the light-buttons are pressed,
passing them the current contents of the editor. An example of such a dialogue window is
shown in Figure 4.24:

Figure 4.24: A single line dialogue window

106

4.26.8 Utilities

button1Down,button2Down,button3Down : proc(Event → bool)

These procedures return true iff the corresponding mouse button of the given event is down.

changeCursor : proc(string)

This procedure sets the cursor image to the image denoted by the given string. The cursors
available are "border", "iconise", "move", "resize" and "wait".

fileToImage : proc(file → image)

This procedure reads a representation of an image from the given file in the format produced
by imageToFile and converts it to an image.

fileToSound : proc(file → *int)

This procedure reads a representation of a sound from the given file in Sun audio format and
converts it to a vector of integers.

getBorderExtent : proc(Window → Rect)

This procedure returns the extent of the window’s current border. The coordinates of the
corners are given relative to the origin of the window.

imageToFile : proc(image, file)

This procedure writes a representation of the given image to the given file.

playSound : proc(*int)

This procedure attempts to play the sound represented by the given vector through the
machine’s loudspeaker.

setColourMap : proc(*int, int)

This procedure sets the Napier system colour map to the given map. The second parameter
specifies the screen depth in planes.

tiffFileToImage : proc(file → Pair[image, *int])

This procedure reads a representation of an image from the given file in 1-bit, 4-bit or 8-bit
TIFF format and converts it to an image and an associated colour map. The procedure was
written by Ying-Jean Kuo of Glasgow University.

107

5 The Error Environment
The Error environment contains the following items:

Arithmetic : env
Environment : env
Format : env
Graphics : env
IO : env
String : env
Structure : env
Variant : env
Vector : env

The procedures that are called in the event of an error are stored in these environments. Each
procedure is a variable and the user may change them by assignment. By default, all the error
procedures write out an appropriate error message and halt the execution of the current
thread.

5.1 Arithmetic Errors

unaryInt : proc(string, int → int)

This procedure may be called during the operations unary minus and abs with a string
parameter of "-" and "abs" respectively. The second parameter is the integer on which the
original operation was attempted.

Int : proc(string, int, int → int)

This procedure may be called during the operations plus, times, minus, div and rem with a
string parameter of "+", "*", "-", "div" and "rem" respectively. The other parameters are the
integers on which the original operation was attempted.

unaryReal : proc(string, real → real)

This procedure may be called during the operations unary minus, sin, cos, exp, ln, sqrt, atan
and truncate with a string parameter of "-", "sin", "cos", "exp", "ln", "sqrt", "atan" and
"truncate" respectively. The second parameter is the real number on which the original
operation was attempted.

Real : proc(string, real, real → real)

This procedure may be called during the operations plus, times, minus and divide with a
string parameter of "+", "*", "-" and "/" respectively. The other parameters are the real
numbers on which the original operation was attempted.

108

getByte : proc(int, int → int)

This procedure may be called during execution of the getByte procedure in PrimitiveIO. It is
called when the byte index supplied to getByte is not between 0 and 3. The parameters to the
error procedure are those supplied to the original call of getByte.

setByte : proc(int, int, int → int)

This procedure may be called during execution of the setByte procedure in PrimitiveIO. It is
called when the byte index supplied to setByte is not between 0 and 3. The parameters to the
error procedure are those supplied to the original call of setByte.

truncate : proc(real → int)

This procedure may be called during execution of the truncate procedure in Arithmetic. It is
called when the result would be outwith the implementation dependent bounds for legal
integers. The parameter to the error procedure is that supplied to the original call of truncate.

5.2 Graphics Errors

Draw : proc(pic, real, real, real, real)

This procedure may be called during execution of the procedure returned by the
makeDrawFunction procedure in Outline. It is called when the two x parameters or the two y
parameters are equal. The parameters to the error procedure are the picture to be drawn and
the attempted clipping region.

Text : proc(string, real, real, real, real → pic)

This procedure may be called during creation of a picture using the text statement. It is
called when the end points of the text are coincident. The parameters to the error procedure
are the text string, the coordinates of the first end point and the coordinates of the second end
point.

getPixel : proc(image, int, int → pixel)

This procedure may be called during execution of the getPixel procedure in Raster. It is
called when the coordinates lie outwith the bounds of the image. The parameters to the error
procedure are those supplied to the original call of getPixel.

setPixel : proc(image, int, int, pixel)

This procedure may be called during execution of the setPixel procedure in Raster. It is
called when the coordinates lie outwith the bounds of the image. The parameters to the error
procedure are those supplied to the original call of setPixel.

109

pixelOverflow : proc(pixel → pixel)

This procedure may be called during the pixel concatenation operation ++. It is called when
the depth of the resulting pixel overflows the implementation size (the maximum pixel depth
is 24 pixels in the current implementation of Napier88). The parameter to the error procedure
is a pixel containing the first 24 planes of the result.

subPixel : proc(pixel, int, int → pixel)

This procedure may be called during the pixel indexing operation |. It is called when the start
plane is less than zero, when the start plane is greater than or equal to the pixel depth, when
the number of planes requested is less than one, or when the planes selected are not a subset
of the original pixel. The parameters to the error procedure are the original pixel, the start
plane and the number of planes.

makeImage : proc(int, int, pixel → pixel)

This procedure may be called during the image creation operation. It is called when either
the x or the y dimension is less than one. The parameters to the error procedure are the x and
y dimensions and the initialising pixel.

subImage : proc(image, int, int → image)

This procedure may be called during the image indexing operation |. It is called when the
start plane is less than zero, when the start plane is greater than or equal to the image depth,
when the number of planes requested is less than one, or when the planes selected are not a
subset of the original image. The parameters to the error procedure are the original image,
the start plane and the number of planes.

limitAt : proc(image, int, int → image)

This procedure may be called during the 'limit i at x, y' operation. It is called when x < 0 or x
≥ xDim (i) or y < 0 or y ≥ yDim (i). The parameters to the error procedure are the original
image and the x and y coordinates.

limitAtBy : proc(image, int, int, int, int → image)

This procedure may be called during the 'limit i to x1 by y1 at x2, y2' operation. It is called
when x2 < 0 or x2 ≥ xDim (i) or y2 < 0 or y2 ≥ yDim (i) or when the sub-image requested is
not totally enclosed within the original image. The parameters to the error procedure are the
original image, the x coordinate, the x dimension, the y coordinate and the y dimension.

imagePixelConstant : proc(image)

This procedure is called when a raster update operation is attempted on an image of constant
pixels. The parameter to the error procedure is the original image.

110

getScreen : proc(file → image)

This procedure may be called during execution of the getScreen procedure in Device. It is
called when the file is not a raster device. The parameter to the error procedure is the original
file.

locator : proc(file, *int)

This procedure may be called during execution of the locator procedure in Device. It is
called when the file is not a mouse or tablet device. The parameters to the error procedure are
those supplied to the original call of locator.

colourMap : proc(file, pixel, int)

This procedure may be called during execution of the colourMap procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of colourMap.

colourOf : proc(file, pixel → int)

This procedure may be called during execution of the colourOf procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of colourOf.

getCursor : proc(file → image)

This procedure may be called during execution of the getCursor procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of getCursor.

setCursor : proc(file, image)

This procedure may be called during execution of the setCursor procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of setCursor.

getCursorInfo : proc(file, *int)

This procedure may be called during execution of the getCursorInfo procedure in Device. It
is called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of getCursorInfo.

setCursorInfo : proc(file, *int)

This procedure may be called during execution of the setCursorInfo procedure in Device. It
is called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of setCursorInfo.

111

closedWindow : proc(file, image)

This procedure may be called during a raster operation on an image associated with a window
file. It is called when the window file is closed. The parameters to the error procedure are
the window file and the image.

5.3 String Errors

concatenate : proc(string, string → string)

This procedure may be called during the string concatenation operation ++. It is called when
the length of the resulting string overflows the implementation size (the maximum string
length is maxint characters in the current implementation of Napier88). The parameters to the
error procedure are the two strings to be concatenated.

subString : proc(string, int, int → string)

This procedure may be called during the substring indexing operation |. It is called when the
string to be dereferenced is an empty string, when the start position is less than one, when the
length is less than zero, or when the finish position is after the end of the string. The
parameters to the error procedure are the original string, the start position and the number of
characters.

5.4 Structure Errors

structureFieldConstant : proc()

This procedure may be called during an assignment to a field within a structure. It is called
when the field is constant.

5.5 Vector Errors

vectorElementConstant : proc[t](*t, int, t)

This procedure may be called during an assignment to a location within a vector. It is called
when the elements of the vector are constant. The parameters to the error procedure are the
original vector, the index and the value to be assigned to the location.

vectorIndexAssign : proc[t](*t , int, t)

This procedure may be called during an attempted assignment to a location within a vector. It
is called when the attempted index is less than the lower bound of the vector or greater than
the upper bound of the vector. The parameters to the error procedure are the original vector,
the index and the value to be assigned to the location.

112

vectorIndexSubs : proc[t](*t, int → t)

This procedure may be called during an attempted access to a location within a vector. It is
called when the attempted index is less than the lower bound of the vector or greater than the
upper bound of the vector. The parameters to the error procedure are the original vector and
the index.

makeVector : proc[t](int, int, t → *t)

This procedure may be called during an attempted vector creation. It is called when the lower
bound is greater than the upper bound. The parameters to the error procedure are the lower
bound, the upper bound and the initialising value.

5.6 Variant Errors

varProject : proc(TypeRep, string, string)

This procedure may be called during a variant projection. It is called when the variant is
projected onto an incorrect branch. The parameters to the error procedure are a
representation of the variant type, the name of the expected branch and the name of the actual
branch.

The Napier88 system cannot continue after a variant projection error and the current thread
will terminate even if the error handling procedure returns normally.

5.7 Environment Errors

envRedeclaration : proc(env, string, TypeRep, bool)

This procedure may be called during a declaration within an environment. It is called when
an attempt is made to declare a new binding with an identifier already present in the
environment. The parameters to the error procedure are the original environment, the name
of the identifier, a representation of the type of the new binding and a boolean that is true iff
the new binding was to be constant.

envProject : proc(env, string, TypeRep, bool)

This procedure may be called during a projection from an environment. It is called when no
binding with the required signature can be found in the environment. The parameters to the
error procedure are the original environment, the name of the identifier being searched for, a
representation of the expected type and a boolean that is true iff the binding was expected to
be constant.

envDrop : proc(env, string)

This procedure may be called during the dropping of a binding from an environment. It is
called when no binding with the required identifier can be found in the environment. The
parameters to the error procedure are the original environment and the name of the identifier
that was to be dropped.

113

5.8 IO Errors

writeByte : proc(file, int, int)

This procedure may be called during execution of the writeByte procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, the
byte being written and the I/O number indicating the error.

writeString : proc(file, string, int, int)

This procedure may be called during execution of the writeString procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, the
string being written, the number of characters successfully written and the I/O number
indicating the error.

writeBool : proc(file, string, int, int)

This procedure may be called during execution of the writeBool procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the boolean being written, the number of characters successfully
written and the I/O number indicating the error.

writeInt : proc(file, string, int, int)

This procedure may be called during execution of the writeInt procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the integer being written, the number of characters successfully
written and the I/O number indicating the error.

writeReal : proc(file, string, int, int)

This procedure may be called during execution of the writeReal procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the real being written, the number of characters successfully written
and the I/O number indicating the error.

endOfInputIOE : proc(file, int → bool)

This procedure may be called during execution of the endOfInput procedure in IO. It is
called when an error occurs. The parameters to the error procedure are the file being read and
the I/O number indicating the error.

readByteIOE : proc(file, int → int)

This procedure may be called during execution of the readByte procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

114

readByteEOI : proc(file → int)

This procedure may be called during execution of the readByte procedure in IO. It is called
when the end of input is encountered. The parameter to the error procedure is the file being
read.

readCharIOE : proc(file, int → string)

This procedure may be called during execution of the readChar procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

readCharEOI : proc(file → string)

This procedure may be called during execution of the readChar procedure in IO. It is called
when the end of input is encountered. The parameter to the error procedure is the file being
read.

peekByteIOE : proc(file, int → int)

This procedure may be called during execution of the peekByte procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

peekByteEOI : proc(file → int)

This procedure may be called during execution of the peekByte procedure in IO. It is called
when the end of input is encountered. The parameter to the error procedure is the file being
read.

endOfInputUnread : proc(file, int, int → int)

This procedure may be called during execution of the endOfInput procedure in IO. It is
called when the byte read cannot be made available to the next read operation on the same
file. The parameters to the error procedure are the file being read, the byte read and the I/O
number indicating the error.

peekByteUnread : proc(file, int, int → int)

This procedure may be called during execution of the peekByte procedure in IO. It is called
when the byte read cannot be made available to the next read operation on the same file. The
parameters to the error procedure are the file being read, the byte read and the I/O number
indicating the error.

peekCharIOE : proc(file, int → string)

This procedure may be called during execution of the peekChar procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

115

peekCharEOI : proc(file → string)

This procedure may be called during execution of the peekChar procedure in IO. It is called
when the end of input is encountered. The parameter to the error procedure is the file being
read.

peekCharUnread : proc(file, int, int → string)

This procedure may be called during execution of the peekChar procedure in IO. It is called
when the character read cannot be made available to the next read operation on the same file.
The parameters to the error procedure are the file being read, the byte corresponding to the
character read and the I/O number indicating the error.

readBoolIOE : proc(file, string, int → bool)

This procedure may be called during execution of the readBool procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the I/O number indicating the error.

readBoolEOI : proc(file, string → bool)

This procedure may be called during execution of the readBool procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readBoolBadChar : proc(file, string → bool)

This procedure may be called during execution of the readBool procedure in IO. It is called
when an erroneous character is read. The parameters to the error procedure are the file being
read and the characters that had been read, up to and including the erroneous character,
excluding any layout characters.

readStringIOE : proc(file, string, int → string)

This procedure may be called during execution of the readString procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding the leading double quote,
and the I/O number indicating the error.

readStringEOI : proc(file, string → string)

This procedure may be called during execution of the readString procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding the leading double quote.

116

readStringBadChar : proc(file, string → string)

This procedure may be called during execution of the readString procedure in IO. It is called
when a double quote character is not the first non-layout character found. The parameters to
the error procedure are the file being read and the character that was read instead of the
expected double quote.

readLineIOE : proc(file, string, int → string)

This procedure may be called during execution of the readLine procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred and the I/O number indicating the
error.

readLineEOI : proc(file, string → string)

This procedure may be called during execution of the readLine procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected.

readIntIOE : proc(file, string, int → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the I/O number indicating the error.

readIntEOI : proc(file, string → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readIntBadChar : proc(file, string → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when a digit or a sign character followed by a digit is not the first non-layout character found.
The parameters to the error procedure are the file being read and the character that was read
instead of the expected digit or sign character.

readIntUnread : proc(file, string, int, int → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when an extra character read while parsing an integer cannot be made available to the next
read operation on the same file. The parameters to the error procedure are the file being read,
the characters that form the integer, the byte corresponding to the extra character read and the
I/O number indicating the error.

117

readIntOverflow : proc(file, string → int)

This procedure may be called during execution of the readInt procedure in IO. It is called
when an arithmetic error occurs converting the integer parsed into an integer value. The
parameters to the error procedure are the file being read and the characters that form the
integer.

readRealIOE : proc(file, string, int → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the I/O number indicating the error.

readRealEOI : proc(file, string → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readRealBadChar : proc(file, string → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when a digit or a sign character followed by a digit is not the first non-layout character found.
The parameters to the error procedure are the file being read and the character that was read
instead of the expected digit or sign character.

readRealUnread : proc(file, string, int, int → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when an extra character read while parsing a real cannot be made available to the next read
operation on the same file. The parameters to the error procedure are the file being read, the
characters that form the real, the byte corresponding to the extra character read and the I/O
number indicating the error.

readRealOverflow : proc(file, string → real)

This procedure may be called during execution of the readReal procedure in IO. It is called
when an arithmetic error occurs converting the real parsed into a real value. The parameters
to the error procedure are the file being read and the characters that form the integer.

5.9 Format Errors

fformat : proc(real, int, int → string)

This procedure may be called during execution of the fformat procedure in Format. It is
called when the real number is too large to be written with the required number of digits
before the point, or when the required number of digits after the point is negative. The

118

parameters to the error procedure are the real number and the required numbers of digits
before and after the point.

eformat : proc(real, int, int → string)

This procedure may be called during execution of the eformat procedure in Format. It is
called when either of the required number of digits before and after the point is negative. The
parameters to the error procedure are the real number and the required numbers of digits
before and after the point.

119

6 Type Definitions
The Napier88 types required for programming using WIN are listed below. They are
contained in the declaration set userTypes.

6.1 General

type Pos is structure(x,y : int)
type Size is structure(x,y : int)
type Limit is structure(pos : Pos ; size : Size)
type Rect is structure(origin,corner : Pos)
type Level is structure(fromFront : bool ; position : int)
type InputOption is variant(all,none,normal : null)

type Optional[T] is variant(present : T ; absent : null)

rec type List[T] is variant(cons : structure(hd : T ; tl : List[T]) ; tip : null)

rec type DoubleList[T] is variant(
 cons : structure(hd : T ; before,after : DoubleList[T]) ; tip : null)

type Pair[S,T] is structure(fst : S ; snd : T)

6.2 Event Distribution

type Mouse is structure(x,y : int ; buttons : *bool)
type Event is variant(chars : string;
 mouse : Mouse;
 select,deselect : null)
type EventType is variant(up,down,enter,leave,click,doubleClick : null)
type MouseEvent is structure(button : int ; event : EventType)

type Application is proc(Event)

type EventTest is proc(Event -> bool)

type Notification is structure(examineEvent : EventTest ; processEvent : Application)

type Notifier is structure(distributeEvent : Application;
 addNotification : proc(Notification,Level -> proc()))

6.3 Windows and Window Managers

type ResizeControl is structure(before : proc(Rect -> Rect) ; after : proc(Rect))

rec type DisplayInfo is structure(window : Window ; pos : Pos ; level : Level)

& Window is structure(windowRaster : proc(Limit,Limit,Window,int,bool);
 imageRaster : proc(Limit,image,int,bool);
 drawLine : proc(Pos,Pos,pixel,int);
 setInputOption : proc(InputOption);
 getInputOption : proc(-> InputOption);
 setSize : proc(Rect);
 getSize : proc(-> Size);
 setApplication : proc(Application);
 getApplication : proc(-> Application);
 setTitle : proc(string);
 getTitle : proc(-> string);
 setResizeControl : proc(ResizeControl);
 getResizeControl : proc(-> ResizeControl);

120

 setMinSize : proc(Size);
 getMinSize : proc(-> Size);
 setMaxSize : proc(Size);
 getMaxSize : proc(-> Size);
 setDepth : proc(int);
 getDepth : proc(-> int);
 setBorderStyle : proc(BorderStyle);
 getBorderStyle : proc(-> BorderStyle);
 getBorder : proc(-> Border);
 setCursor : proc(image);
 getCursor : proc(-> image);
 getWindowManager : proc(-> WindowManager);
 setVirtualWindow : proc(string, Window))

& WindowManager is structure(display : proc(DisplayInfo,bool);
 undisplay : proc(Window);
 makeCurrent : proc(Window);
 setPos : proc(Window,Pos);
 getPos : proc(Window -> Pos);
 setLevel : proc(Window,Level);
 getLevel : proc(Window,bool -> Level);
 getWindows : proc(-> *Window);
 getWindowAtPos : proc(Pos -> Window);
 getNotifier : proc(string -> Notifier);
 getDisplayWindow : proc(-> Window);
 getIconManager : proc(-> IconManager);
 setBackgroundApp : proc(Application);
 getBackgroundApp : proc(-> Application))

& IconManager is structure(close : proc(Window);
 open : proc(Window);
 getIconState : proc(Window -> DisplayInfo);
 getWindowState : proc(Window -> DisplayInfo))

& BorderStyle is proc(Window -> Border)
& Border is List[Area]
& Area is structure(currentImage,nonCurrentImage : image ;
 pos : Pos ; distributeEvent : Application)

6.4 Fonts, Tables and Lists

type Font is structure(characters : *image ; fontHeight,descender : int ; info : string)
type FontPack is structure(font : Font ; stringToTile,charToTile : proc(string -> image))

type Table[Key,Data] is structure(enter : proc(Key,Data);
 lookup : proc(Key -> Optional[Data]);
 remove : proc(Key);
 scan : proc(proc(Key,Data -> bool)))

type Comparison[Key] is variant(
 ordered : structure(equal,lessThan : proc(Key,Key -> bool));
 unordered : structure(equal : proc(Key,Key -> bool)))

type ListPack[T] is structure(insert,
 replace : proc(T);
 clear,
 delete : proc();
 element : proc(-> Optional[T]);
 length,
 pos : proc(-> int);
 atEnd : proc(-> bool);
 go : proc(int);
 goNext,
 goPrev : proc();
 find : proc(proc(T -> bool) -> int))

121

6.5 Editors

type Index is variant(characters : int;
 lines : structure(line,char : int))

type CodeRegion is structure(start,finish : int)

type Substitution[T] is structure(value : T ; region : CodeRegion)

type LinkPack[HyperLink] is structure(link : HyperLink ;
 showLink : proc(HyperLink,int))

type HyperText[HyperLink] is structure(
 characters : string ; links : Optional[*Substitution[LinkPack[HyperLink]]])

rec type Editor[HyperLink] is abstype[TextPointer](
 copyText : proc(Editor[HyperLink]);
 cutText : proc(Editor[HyperLink]);
 clearText : proc();
 pasteText : proc(Editor[HyperLink]);
 insertText : proc(HyperText[HyperLink],bool);
 readFromFile : proc(file);
 writeToFile : proc(file);
 select : proc(TextPointer,TextPointer);
 firstSelection : proc(-> TextPointer);
 lastSelection : proc(-> TextPointer);
 firstLine : proc(-> TextPointer);
 lastLine : proc(-> TextPointer);
 topLine : proc(-> TextPointer);
 bottomLine : proc(-> TextPointer);
 frontOfLine : proc(TextPointer -> TextPointer);
 endOfLine : proc(TextPointer -> TextPointer);
 nextLine : proc(TextPointer -> TextPointer);
 previousLine : proc(TextPointer -> TextPointer);
 peek : proc(-> HyperText[HyperLink]);
 read : proc(-> HyperText[HyperLink]);
 readLine : proc(-> HyperText[HyperLink]);
 selectedText : proc(-> HyperText[HyperLink]);
 before : proc(TextPointer,TextPointer -> bool);
 endOfText : proc(-> bool);
 getFont : proc(-> FontPack);
 getHighlight : proc(-> bool);
 getProgressIndicator : proc(-> proc(string,real));
 getScrollAction : proc(-> proc(int,bool));
 getWindow : proc(-> Window);
 interactiveEdit : proc(Editor[HyperLink],EventTest,EventTest,EventTest ->
 Application);
 invert : proc(TextPointer,TextPointer);
 lineCount : proc(-> int);
 new : proc();
 offset : proc(TextPointer,bool -> Index);
 position : proc(Pos -> TextPointer);
 redisplay : proc(TextPointer);
 scanLinks : proc(proc(Substitution[LinkPack[HyperLink]] -> bool));
 scroll : proc(int,bool);
 search : proc(HyperText[HyperLink],bool -> bool);
 seek : proc(Index -> TextPointer);
 setFont : proc(FontPack);
 setHighlight : proc(bool);
 setProgressIndicator : proc(proc(string,real));
 setScrollAction : proc(proc(int,bool));
 setWindow : proc(Window);
 unbindWindow : proc())

122

6.6 Interface Tools

type Appearance is variant(graphical : image ; textual : string)

type EditorPack[HyperLink] is
 structure(window : Window;
 editor : Editor[HyperLink];
 getTitle : proc(-> string);
 getText : proc(-> HyperText[HyperLink]);
 append : proc(HyperText[HyperLink]))

type HyperTextPack is EditorPack[any]

type MenuEntry is structure(appearance : Appearance ; action : proc(int, MouseEvent))

type MenuPack is structure(window : Window;
 setTop : proc(int);
 getTop : proc(-> int);
 setNoVisible : proc(int);
 getNoVisible : proc(-> int);
 setHighlight : proc(int,bool);
 getHighlight : proc(int -> bool);
 getNoEntries : proc(-> int);

 entryTable : Table[int, MenuEntry])

type ButtonPack is structure(window : Window ; flash : proc())

type SliderPack is structure(window : Window;
 set : proc(real);
 setBounds : proc(real,real,real))

type ChoicePack is structure(window : Window ; set : proc(int,int,bool))

type DialoguePack[HyperLink] is structure(window : Window ;
 set : proc(HyperText[HyperLink]))

6.7 Programming Environment

type Protected is abstype[i](absHolder : structure(abs : i))

type ProtectedPack[T] is structure(protected : Protected;
 setProtected : any;
 getProtected : any;
 setConcrete : proc(T) ;
 getConcrete : proc(-> T))

type WindowState is structure(window : Window ; pos : Pos ; level : Level;
 open,displayed : bool)

type CompilationError is structure(errorRegion,
 errorLine : CodeRegion;
 lineNumber : int;
 errorMessage : string)

type CompilationResult[TypeDescriptor] is variant(
 voidResult : proc();
 nonVoidResult : proc(-> any);
 typeExpression : TypeDescriptor;
 error : *CompilationError)

type TypeCompilationResult[TypeDescriptor] is variant(
 typeDefinitions : Table[string, TypeDescriptor];
 error : *CompilationError)

type BindingInfo[Binding] is structure(binding : Binding;

123

 name : string;
 menuOffset : int;
 fieldNo : int)

6.8 Concurrency

type ThreadPack is abstype[Thread](start : proc(proc() -> Thread);
 getCurrentThread : proc(-> Thread);
 getAllThreads : proc(-> *Thread);
 kill,
 restart,
 suspend : proc(Thread);
 suspendUnlock : proc(string,Thread))

type Semaphore is structure(wait,signal : proc())

6.9 Distribution

type RemoteStore is structure(host, storeDir, userName, password : string)

type EnvEntry[TypeRep] is structure(entryName : string ; entryType : TypeRep)

type StoreScan[TypeRep] is variant(envDescription : List[EnvEntry[TypeRep]];
 typeDescription : TypeRep)

type RemoteResult[T] is variant(successful : T ; error : string)

124

7 Napier88 Releases

7.1 Operating Environment

Napier88 Release 2.0 runs on the following configurations:

• Sun SPARC running SunOs1 Version 4.1.3.

• Sun SPARC running Solaris Version 1.1.

• DEC Alpha running OSF/12 Versions 1.0 or 2.0. This may require modification of the
kernel configuration: mail the address given in Section 7.4 for details.

7.2 Obtaining the Napier88 Release

The Napier88 Installation Guide [KBC+94] describes how to obtain a Napier88 release.
Napier88 Release 2.0 is Copyright © University of St Andrews 1994 and is subject to a
licence fee. If you have a licence for an earlier release of Napier88, however, Release 2.0 is
free. The current licence fee is specified in the file:

pub/Napier88/release2.0/README

which may be obtained by anonymous ftp from the site:

ftp-fide.dcs.st-andrews.ac.uk

7.3 Napier88 Mailing List

If you wish to be added to an electronic mailing list3 which carries notifications of future
releases and papers, send an e-mail request of the following form:

To: mailbase@mailbase.ac.uk
Subject:

join napier88-users <your-first-name> <your-last-name>
stop

where the bracketed words are replaced as appropriate. For example:

join napier88-users John Napier

The request will be processed automatically and your name added to the mailing list. To
send e-mail to all members of the mailing list, send your message to:

napier88-users@mailbase.ac.uk

1SunOs™ and Solaris™ are trademarks of Sun Microsystems, Inc.

2OSF/1™ is a trademark of the Open Software Foundation.

3The mailing list is run by Mailbase™, a service provided by the University of Newcastle upon Tyne.

125

7.4 Troubleshooting

In the event of problems with downloading a release, or to report any other bugs, send e-mail
to:

napier@dcs.st-andrews.ac.uk

126

8 References
[Car88] Cardelli, L. “Building User Interfaces by Direct Manipulation”. In Proc. ACM

Symposium on User Interfaces (1988) pp 152-166.

[CDM+90]* Connor, R.C.H., Dearle, A., Morrison, R. & Brown, A.L. “Existentially
Quantified Types as a Database Viewing Mechanism”. In Lecture Notes in
Computer Science 416, Bancilhon, F., Thanos, C. & Tsichritzis, D. (ed),
Springer-Verlag, Proc. 2nd International Conference on Extending Database
Technology, Venice, Italy (1990) pp 301-315.

[Far91] Farkas, A.M. “ABERDEEN: A Browser allowing intERactive DEclarations
and Expressions in Napier88”. University of Adelaide (1991).

[FDK+92]* Farkas, A.M., Dearle, A., Kirby, G.N.C., Cutts, Q.I., Morrison, R. & Connor,
R.C.H. “Persistent Program Construction through Browsing and User Gesture
with some Typing”. In Persistent Object Systems, Albano, A. & Morrison,
R. (ed), Springer-Verlag, Proc. 5th International Workshop on Persistent
Object Systems, San Miniato, Italy (1992) pp 376-393.

[KBC+94]* Kirby, G.N.C., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A.,
Morrison, R. & Munro, D.S. “The Napier88 Release 2.0 Installation Guide”.
University of St Andrews (1994).

[KC93]* Kirby, G.N.C. & Cutts, Q.I. “The Implementation of a Hyper-Programming
System”. University of St Andrews Technical Report CS/93/5 (1993).

[KCC+92a] Kirby, G.N.C., Cutts, Q.I., Connor, R.C.H., Dearle, A. & Morrison, R.
“Programmers’ Guide to the Napier88 Standard Library, Edition 2.1”.
University of St Andrews (1992).

[KCC+92b]* Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. &
Morrison, R. “Persistent Hyper-Programs”. In Persistent Object Systems,
Albano, A. & Morrison, R. (ed), Springer-Verlag, Proc. 5th International
Workshop on Persistent Object Systems, San Miniato, Italy (1992) pp 86-106.

[Kir92]* Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent
Programming Systems”. Ph.D. Thesis, University of St Andrews (1992).

[MBB+86] Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearle, A. “A
Persistent Graphics Facility for the ICL PERQ Computer”. Software –
Practice and Experience 16, 4 (1986) pp 351-367.

[MBC+89a]* Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The Napier88
Reference Manual”. Universities of Glasgow and St Andrews Technical
Report PPRR-77-89 (1989).

[MBC+89b] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “Napier88 Release
1.0”. University of St Andrews (1989).

[MBC+94a]* Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby,
G.N.C. & Munro, D.S. “The Napier88 Reference Manual (Release 2.0)”.
University of St Andrews Technical Report CS/94/8 (1994).

127

[MBC+94b] Morrison, R., Baker, C., Connor, R.C.H., Cutts, Q.I. & Kirby, G.N.C.
“Approaching Integration in Software Environments”. To Appear: Computer
Journal (1994).

[MBD+86] Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P. “An Integrated
Graphics Programming Environment”. Computer Graphics Forum 5, 2 (1986)
pp 147-157.

[Mor82] Morrison, R. “Low Cost Computer Graphics for Micro Computers”. Software
– Practice and Experience 12, 8 (1982) pp 767-776.

[SPG91] Silberschatz, A., Peterson, J.L. & Galvin, P.B. Operating System Concepts.
Addison-Wesley, Reading, Massachusetts (1991).

[Sun89] Sun Microsystems Open Look™ Graphical User Interface Functional
Specification. Addison-Wesley, Mountain View, California (1989).

Those references marked * are available via ftp from the site:

ftp-fide.dcs.st-andrews.ac.uk/pub/persistence.papers

or via World Wide Web from the URL:

http://www-fide.dcs.st-andrews.ac.uk:8080/Publications.html

128

9 Index
abort 65 button2Down 107
abs 36 button3Down 107
abstract datatypes 14 ButtonPack 123
ACCEPT 58 buttonPackFailValue 48
after 89
andRule 64 changeCursor 107
Appearance 123 chars 29
append 86, 104 charToTile 49
Application 120 checkBoxGroupGen 95
application 29 ChoicePack 123
applicationFailValue 48 choicePackFailValue 48
Area 74, 121 clear 61
arguments 67 clearText 79
Arithmetic 36, 108 close 59, 92
asciiToString 64 closedWindow 112
atan 36 CodeRegion 122
atEnd 61 colour map 107

colourMap 44, 111
Back 71 colourOf 44, 111
background menu command line arguments 67

browser 16 compaction 25
programming environment 21 compareInt 65

background window 30 compareString 65
before 82, 89 Comparison 121
Binding 36 CompilationError 123
bindingEditorFailValue 48 CompilationResult 123
bindingFailValue 48 compileHyperSource 39
bitwiseAnd 36 compileHyperSourceWith 40
bitwiseNot 36 Compiler 39
bitwiseOr 36 compileString 40
Border 74, 121 compileStringWith 40
borderCursor 94 compileTypeDefinitions 40
Borders 69 compiling
BorderStyle 73, 121 programs 23
borderStyleFailValue 48 type declarations 22
bottomLine 81 concatenate 112
Browser 38 concatenateHyperText 66
browser 76, 95 concatenateStrings 66
browser 10 Concurrency 42

background menu 16 CONNECT 58
displaying abstract datatypes 14 copyClearEditorToolGen 102
displaying environments 11 copyRule 64
displaying files 14 copyStore 47
displaying images 12 copyText 79
displaying pictures 13 copyValue 46
displaying procedures 14 cos 37
displaying structures 12 create 57
displaying type constructors 15 createStore 47
displaying types 15 current state 22
displaying variants 12 current window 28
displaying vectors 12 CurrentBrowser 22, 76
panning 16 currentBuffer 22, 76
universes 14 currentError 22, 76

button1Down 107 currentOutputPack 22, 76

129

CurrentState 76 endOfInput 54
currentWindowManager 22, 76 endOfInputIOE 114
currentWriteString 22, 76 endOfInputUnread 115
cutText 79 endOfLine 81

endOfText 82
date 66 enter 66
declaration sets 17 envDrop 113

adding to 18, 21 EnvEntry 124
choosing 19 envFailValue 48
creating 17 Environment 47, 113
deleting 17 environment variables 67
displaying 18 environment 47

default values 77 environments 11
defaultBoldFont 77 envProject 113
defaultBorderStyle 77 envRedeclaration 113
defaultBorderThickness 77 eoi 41
defaultColourMap 77 epsilon 37
defaultFont 77 Error 5
defaultIcon 77 error 39, 40, 67
defaultLinkMarker 77 errorLine 39
defaultOuterScopes 78 errorMessage 39
Defaults 77 errorNumber 60
defaultWindowCursor 78 errorRegion 39
defaultWindowDepth 78 Event 47, 120
defaultWindowSize 78 event monitor 85
defaultXWindowPos 78 event 29
defaultXWindowSize 78 asynchronous 47
delete 61, 74 eventMonitorGen 85
deleting windows 21 EventTest 120
dependent types 36 EventType 120
deselect 29, 76, 94 executeAsThread 67
Device 43 exp 37
dialogueGen 95 External 5
DialoguePack 123 extractHyperText 67
digit 65
DISK 57 FailValues 48
diskgc 65 fformat 50, 118
Dismiss 71 file
display 91 disk 57
DisplayInfo 120 displaying 14
displayInfoFailValue 48 socket 58
Distribution 46 terminal 58
double 69 window 59
DoubleList 120 fileInput 40
downArrow 94 fileToImage 107
Draw 109 fileToSound 107
drawLine 87 find 62, 67

firstLine 80
Editor 122 firstSelection 80
editor 86 fixedX 70
editor float 37

creating 21 Font 49, 121
user interface 30 font 49

editorGen 78 fontFailValue 48
EditorPack 123 FontPack 121
EditorTools 102 fontPackFailValue 48
eformat 50, 119 Format 50, 118
element 61 Front 71

130

frontOfLine 81 getWindow 82
ftp site 125 getWindowAtPos 92
fullEditorToolExpandableGen 102 getWindowManager 91
fullEditorToolGen 102 getWindows 92

getWindowState 93
garbage collection 24 gformat 50
Generators 78 go 61
genericButtonGen 96 goNext 61
genericChoiceGen 96 goPrev 62
genericCompile 40 graphicalBrowserGen 38
genericDialogueGen 97 Graphics 51, 109
genericEditorToolGen 103
genericMenuExpandableGen 97 hangup 48
genericMenuGen 98 heap size 26
genericSingleLineDialogueGen 104 host
genericSliderGen 99 registering 26
genericXBorderGen 71 setting for store 25
getAllThreads 43 hyper-program window 7
getApplication 88 hyper-programming 7
getArgs 67 hyperProgramPackFailValue 48
getBackgroundApp 93 hyperProgramPackGen 85
getBorder 90 hyperSourceFailValue 48
getBorderExtent 107 HyperText 122
getBorderStyle 90 HyperTextPack 123
getByte 60, 109
getConcrete 63 iconise 75
getCurrentThread 43 iconiseCursor 94
getCursor 44, 91, 111 IconManager 121
getCursorInfo 45, 111 iconManagerFailValue 48
getDeclarationSet 41 iformat 50
getDepth 90 imagePixelConstant 110
getDisplayWindow 92 imageRaster 87
getEnv 67 Images 94
getFont 82 images 12
getHighlight 82, 99 imageToFile 107
getHyperProgramPack 67 Index 122
getIconManager 92 indexFailValue 48
getIconState 93 initialising stable store 25
getInputOption 88 InputOption 120
getLevel 92 inputPending 55
getMaxSize 90 insert 60
getMinSize 90 insertText 80
getNoEntries 99 Int 108
getNotifier 92 integerWidth 54
getNoVisible 99 Interactive 73
getPixel 52, 109 interactiveEdit 82
getPos 92 InteractiveEnvironment 53
getProgressIndicator 82 interactor 30
getProtected 63 InterfaceEditor 53
getResizeControl 89 interfaceEditorGen 53
getScreen 43, 111 interrupt 48
getScrollAction 82 intVectorFailValue 48
getSelectedBindingInfo 77 invert 83
getSize 88 invisible 71
getText 86, 104 IO 53, 114
getTitle 86, 88, 104 ioctl 59
getTop 99
getType 68 kill 43

131

kill moveCursor 94
a thread 43

nandRule 64
lastLine 80 Napier88 24
lastSelection 80 heap size 26
Layout 32 obtaining a release 125
leftArrow 94 reference manual 5
length 61, 64 release 1.0 5
letter 65 release 2.0 5
Level 120 release directory 26
levelFailValue 48 stable store directory 26
Library 5 standard library 5
lightButtonGen 100 new 83
Limit 120 newDeclarationSet 42
limitAt 110 nextLine 81
limitAtBy 110 nonVoidResult 39
limitFailValue 48 norRule 64
line 52 Notification 120
lineCount 83 Notifier 120
lineNumber 39 notRule 64
LinkPack 122 npc 23
List 120 npr 24
ListPack 121 nprcompact 25
listPackGen 60 NPRDIR 26
Lists 60 nprformat 25
ln 37 nprgc 24
locator 44, 111 NPRHEAP 26
lookup 66 nprregisterhost 26
lwb 69 nprsethost 25

nprstats 25
magnify 94 NPRSTORE 26
makeCurrent 91 nps 22
makeDrawFunction 51
makeImage 110 offset 83
makeReadEnv 57 open 57, 93
makeVector 113 Optional 120
makeWriteEnv 54 orRule 64
max 68 Outline 51
maxint 37 outline 51
maxreal 37 output window 20
MenuEntry 123
menuGen 100 Pair 120
MenuPack 123 pasteText 79
menuPackFailValue 48 peek 81
menuX 71 peekByte 55
min 68 peekByteEOI 115
mkBlankString 68 peekByteIOE 115
mkCompareHyperText 68 peekByteUnread 115
mkEnvLocBinding 68 peekChar 55
mkHyperLink 68 peekCharEOI 116
mkStructLocBinding 68 peekCharIOE 115
mkTypeBinding 68 peekCharUnread 116
mkTypeDescriptorBinding 68 People 62
mkValueBinding 69 persistent store 5
Mouse 120 pi 37
mouse 29 pictures 13
MouseEvent 120 pixelDepth 52
move 75 pixelOverflow 110

132

plain 72 readIntUnread 117
playSound 107 readLine 56, 81
Pos 120 readLineEOI 117
pos 61 readLineIOE 117
posFailValue 48 readName 41
position 83 readOnlyEditorToolExpandableGen 105
positionInfo 41 readOnlyEditorToolGen 105
Preview 32 readReal 56
previousLine 81 readRealBadChar 118
PrimitiveIO 57 readRealEOI 118
procedures 14 readRealIOE 118
programming environment 7 readRealOverflow 118

background menu 21 readRealUnread 118
declaration sets 17 readString 55
output window 20 readStringBadChar 117
persistent windows 21 readStringEOI 116
showing windows 21 readStringIOE 116
starting up 24 Real 108

programs realWidth 54
compiling 23 Rect 120
running 24 rectFailValue 48

Protected 123 redisplay 84
protected 62 references 127
protectedBinding 64 refinements 95
ProtectedPack 123 registering new host 26
protectedPackGen 62 RemoteResult 124
protectedTypeDescriptor 64 RemoteStore 124
protectedTypeRep 64 remoteStoreTable 46
Protection 62 remove 66
PS 5 removeDeclarationSet 42
pushPop 75 replace 61

resetLex 41
quit 48 resize 75

ResizeControl 120
rabs 37 resizeCursor 94
radioButtonGroupGen 100 restart 43
Raster 51 rightArrow 94
raster rules 64 running programs 24
rasterOp 52
RasterRules 64 scan 46, 47, 66
read 41, 81 scanDeclarationSet 42
readBool 56 scanLinks 84
readBoolBadChar 116 screenWindowManagerGen 86
readBoolEOI 116 scroll 84
readBoolIOE 116 scrollingMenuGen 101
readByte 55 search 84
readByteEOI 115 seek 59, 84
readByteIOE 114 select 29, 76, 80, 94
readBytes 59 selected 77, 94
readChar 55 selected window 29
readCharEOI 115 selectedText 82
readCharIOE 115 selectedWindows 94
readFromFile 80 Selection 94
readInt 56 Semaphore 124
readIntBadChar 117 semaphore 42
readIntEOI 117 semaphoreGen 42
readIntIOE 117 set 97, 100, 105
readIntOverflow 118 setApplication 88

133

setBackgroundApp 93 standard library 6
setBorderStyle 90 start 43
setBounds 100 starting WIN 85, 86
setByte 60, 109 startProgrammingEnv 53
setColourMap 107 statistics 25
setConcrete 63 STDERR 58
setCursor 45, 91, 111 stdIn 54
setCursorInfo 45, 111 STDIN 58
setDepth 90 stdOut 53
setFont 84 STDOUT 58
setHighlight 84, 99 store directory 26
setInputOption 87 StoreScan 124
setLevel 92 String 64, 112
setListener 47 stringInput 42
setMaxSize 90 stringToAscii 64
setMinSize 90 stringToHyperSource 69
setNoVisible 99 stringToInt 69
setPixel 53, 109 stringToTile 49
setPos 91 stringVectorFailValue 48
setProgressIndicator 85 Structure 112
setProtected 62 structureFieldConstant 112
setResizeControl 89 structures 12
setScrollAction 85 subImage 110
setSize 88 subPixel 110
setTitle 88 Substitution 122
setTop 98 subString 112
setVirtualWindow 91 suspend 43
setWindow 85 suspendUnlock 43
shadow 72 System 65
shell variables 26
SHELL 58 Table 121
shiftLeft 38 tableGen 65
shiftRight 38 Tables 65
showBinding 69 Text 109
showType 69 textualBrowserGen 38
signal 42 ThreadPack 124
simpleEditorToolGen 106 threadPackage 42
sin 38 threads
singleLineDialogueGen 106 getting current thread 43
Size 120 killing 43
sizeFailValue 48 restarting 43
sliderGen 101 starting 43
SliderPack 123 suspending 43
sliderPackFailValue 48 TIFF 107
socket 58 tiffFileToImage 107
soundFailValue 48 Time 66
sourceFragment 41 time 66
sourceOffset 41 timer 48
spaceWidth 54 Tools 95
sqrt 38 topLine 80
stabilise 65 trillButtonGen 101
stable store truncate 38, 109

compaction 25 TTY 58
directory 26 type constructor 15
garbage collection 24 type declarations
initialisation 25 compiling 22
setting host 25 TypeCompilationResult 123
statistics 25 typeDefinitions 40

134

TypeDescriptor 36 WindowState 123
typeExpression 39 windowStateFailValue 48
TypeRep 36 writeBool 53, 114
types 15 writeByte 53, 114

writeBytes 60
unaryInt 108 writeInt 54, 114
unaryReal 108 writeReal 54, 114
unbindWindow 85 writeString 53, 114
unboundEditorGen 86 writeToFile 80
undisplay 91 WWW server 128
universes 14
UNIX xDim 51

environment 26, 67 XDIM 59
interface to Napier88 22 xnorRule 64

upArrow 94 xorRule 64
upb 69 XPOS 59
User 5
user interface editor 30 yDim 51
Utilities 66, 107 YDIM 59

YPOS 59
value-dependent types 36
variableX 73 zDim 52
Variant 113 ZDIM 59
variants 12
varProject 113
Vector 69, 112
vectorElementConstant 112
vectorIndexAssign 112
vectorIndexSubs 113
vectors 12
voidResult 39

wait 42
waitCursor 94
Win 69
WIN 27

starting 85, 86
window 86
window manager 27
window 27

attributes 27
background 30
corresponding value 95
current 28
deleting 21
selected 29
updating 28

Window 120
WINDOW 59
windowCreatorGen 75
windowFailValue 48
windowGen 87
windowIcon 94
WindowManager 121
windowManagerFailValue 48
windowManagerGen 91
WindowMaps 95
windowRaster 87

135

