The Napier88 Standard Library Reference Manual

Version 2.2

Compatible With Napier 88 Release 2.0
June 1994

Graham Kirby
Fred Brownt
Richard Connor
Quintin Cutts
Alan Dearlef
Vivienne Moore
Ron Morrison
Dave Munro

University of St Andrews, North Haugh, St Andrews, Fife KY 16 9SS, Scotland.
tUniversity of Adelaide, GPO Box 498, Adelaide, South Australia 5001, Australia.

This document should be referenced as:
“The Napier88 Standard Library Reference Manual Version 2.2".
University of St Andrews Technical Report CS/94/7.

Contents

1 FNEFOOUCTION. ...ttt sttt st sb e e b e 5
1.1 Accessing the Persistent StOreccceveeveeieesieesie e see e 5
2 The Napier 88 Programming ENVironment...........cccecveveeveeveeseeseeseese e 7
2.1 Hyper-Program WINAOWSccccceeieerieeieeerieesieeseesieesee e eseesseesneessee s 7
2.2 The Compilation Error Windowcccceceveeeieeieeseesee e e 10
2.3 TheBrowser WIindOWcccceeceririniineneeeesie s 10
2.3.1 Operations 0N WINAOWSccceereeiieiiesieeiie e eseeesieeseeens 10

2.3.2 ENVIFONMENTS......coiiiiiiieie e 11

2.3.3 SHUCKUIEScoieieieeeiee e 12

2.34 VATANMS. ..o 12

2.35 VECLOIS......eeeiiee et 12

2.3.6 IMAJES.....cceeiiiiieie e 12

2.37 PICHUMES ..ot 13

2.3.8 ProCEAUIES........cccoitiiieiecieeie et 14

2.3.9 ADSIract DatalyPesS.......ceeeveerieereeiieeieeieesieeseeseeeeeesseenseens 14

2.3.10 FlES.. it 14

2.3 11 UNIVEISES ...oviiieieiieeiee sttt sttt nae e 14

2.3.12 TYPES ettt s 15

2.3.13 The Browser Background Menu............ccccveveereeseesieeenenns 16

2.3.14 ThePanning TOOIcceeeeieeriieiiesie e s 16

2.4 DECIAralion SELScceeiiiriiriieiie et 17
2.4.1 Creating and Deleting Declaration Sets............ccccccvevvveenne 17

2.4.2 Adding ToaDeclaration Setccccceveveveeiievie e 18

2.4.3 DisplayingaDeclaration Setcccecveveenieesiiesiieeseeniens 18

2.4.4 Choosing Declaration Sets...........cceveeneeieesieesieesie e 19

25 The OULPUL WINAOW.........cciieieesieeseesie e see e see s see e sae e 20
2.6 TheBackground MENU..........ccceceereeiieniesieseesee e see e 21
2.7 PerSiStent WINOOWS.........coeiierieiieii ettt 21
2.8 Accessing the CUrrent SEate........cccveveereereesee e e 22
2.9 Using Napier88 from UNIXcccoveiierieriesee e see e see e 22
2.9. 1 NPSu i 22

2.9.2 NPCeeiiiiii it 23

2.9.3 DOF i e 24

2.9.4 NADIEI8Booeeeeeee e 24

2.9.5 NPIOC cuitiieiiiiee ettt 24

2.9.6 NPISEALS.....oiiiiiiiiie et 25

2.9.7 NPIrCOMPACEvvviiiieeeiiiee et 25

2.9.8 NPITOMMELooeeeeee e 25

2.9.9 NPISEINOSE........eeiieieieece e 25

2.9.10 NPIregisterNOStc.cciveveeieecee e 26

2.9.11 UNIX Environment Variables........ccocoovvrininiineniiencens 26

3 Graphical User Interface Programming........ccccccceeeeeieeseesieeseesiee e ssee e enseens 27
3.1 Windowsand Window ManagersS.........cceeceeeeereereeneeseesessessesseeenens 27
3.2 WINAOW ATITDULES.......ccueieeiieiceie e 27
3.3 Drawing 0N WIiNCOWScccueieerieereeieeieenieesieesieesieeseeeseesseesseesseenseees 28
34 Current and Selected WindOWS.........cccoovriineniinninie e 28
341 CUurrent WindOWS.........coereerierieniesiesiesee e 28

34.2 Saected WINOWScooviriirieieiieeesieseeee e 29

35 Applicationsand INPUt EVENES.........ccceviereeriesie e 29
3.5.1 Background Windows and Applications............c.ccevuveennen. 30

3.6 INterface INEraCIONS ...ccueeeeiereeese e s 30

3.7

The User INterfate EQITONt e e 30

37.1 INterfaCe DESIQN.....cccveeeeeceecee et 30

3.7.2 NesSted WINAOWS........cccveiiieeieeeceeiee et e e sivaeeee e 31

3.7.3 Running the EAItOr..........ccccvevieieevie e 31

374 MOUEBULLONS........coicteieee ettt eere et saee e 32

3.7.5 The Current Window Manager..........cccveveeriveeneeesersiveennnns 32

I A S T 1 1Y 1Y, = U R 33

BT7.6. 1 NEW ..ottt 33

RS T © [0 = ST 33

3.7.6.3 Load and Save........ccoocueeeeiiiiiiiiiee e 33

37.6.4 QUL oo e 33

377 INEraCtorS MENU......uueeeeiiiiiieieeeeeeee e 33

3.7.7.1 Layout MOdE.........ccceeeveeieeeie e 34

3.7.7.2 Creating an INteractorccceeveveereeerveennn. 34

3.7.7.3 BoOrder MENUSccccvveiieee e 34

3.7.8 COOE GENEIALIONcovvveieee et eer e e e s e srerea s 34

4 The Library ENVIFONMENT.........coiiie et saee e 36
41 F N 1101 1.1 R 36
4.2 2] (01T < 38
G T o o] o] I = S 39
44 CONCUITEINCY ..eeiirrereairesesseeesssseeesssseessassessassessssseeesassesesnssessanseessassenssnes 42
45 (D LCY o T 43
4.6 (DT ES 1] o111 (1o o T 45
47 [AV () 010101, | 47
4.8 Y < | S 47
49 [T A= 10 1< 47
g O T o o | 48
3 o O o 1 0T 49
I € - o oSS 50
ot T O 11 £ 11 1= T 50

O A - = (< 50

413 INteraCtiVEENVIFONMENT.......oveeieiiieeeeee ettt e e e e e 52
I S 1 0 (< g = o= o [0] 52
g S 1 L 52
4.15.1 PrimitiVEIO oottt 56

T TN 1 £ 59
A =0 o= S 61
T = (o) (= o (0] o 61
S T = = (U | 63
O B 1 oo 63
A Y £ [o o S 64
R - o [64
T I 11 01 65
R S U) (1 1 (1= 65
3 S TV A = i (o | (N 68
T o 68
R T o (0 (< £ 68

R I 0 R 1 0 (= = ' (Y 72

4.26.2 CUMENISIALEuueeeee e et e e e e e e e e e e e e eeeeaenes 74

4.26.2.1 CurrentBroWSEccooooveviiiiiieeeiiieeee e eeeeens 75

4.26.3 DEfAUILS.....ccceveeiie e 76

N X N €< a1 7= (0] £ 77

4.26.5 TMAOES.....eiiiiuiiie it steee st e e e e 93

R X IS < =7 1 o o [93

R A 10T S 94

4.26.7.1 EdItOrTOOIS.....ccoevieeiieeieiiee e 101

S T) 1 11 = 106

T e EITOr ENVIEONIMENT <.ttt e e e e e e e e e e e e e e e e e eaeeeeeens 107

51 ANTNMELIC ..ot 107
5.2 GraPhiCS ..cuiciecie ettt e ettt a e e nnee s 108
oI T 11 o SRS 111
5.4 SHUCIUIE ... 111
T TV = o (| SRR PRP 111
5.6 VANt it 112
5.7 ENVITONMENE....ciuiiiiiiiiiiisie ettt st sae e e 112
5.8 1O et 113
5.9 FOMMEL ... e 117
IR 1= = T T T 1SS 119
6.1 GENEE ..o s 119
6.2 Event DIStDULIONcccooiiiiee e 119
6.3 Windows and Window Managers.........cccccvereereeneeseesieeseesseesnseenseenns 119
6.4 Fontswindows and bindingsrs.........cccccveiieiieiiesie e 121
6.6 INETACE TOOIS ..c.viieeiiee e 122
6.7 Programming ENVIrONMENT.........ccccoveiieriee e 122
6.8 CONCUITENCY ...eveieiiieieeiiie ettt ettt sbe et snn e e nareeas 123
6.9 DISIITDULION ..o e 123
NaPIEr 88 REIGASESecveeiieiicie ettt te e reeae e teeeeeaesneeeneeas 124
7.1 Operating ENVIrONMENt........ccccveiiieiieiie e e esieesiee e see e s 124
7.2 Obtaining the Napier88 REI€aSEcccevvereevie e 124
7.3 Napier88 Mailing LiSt.......ccoviiieieeiesee e 124
A I (010 o] = o 1] oo 125
REFEIBNCES ... ettt se e 126

1 Introduction

This manual describes the contents of the persistent store as supplied with Napier88 Release
2.0. These contents are known as Version 2.2 of the Napier88 Standard Library.

This manual does not describe the Napier88 language, which is described in the Napier88
Reference Manual (Release 2.0) [MBC+944).

Version 2.2 of the Napier88 Standard Library is structured differently from the standard
environment of Napier88 Release 1.0 and contains considerable additional software.

1.1 Accessing the Persistent Store

The persistent store may be accessed from Napier88 programs by calling the predefined
procedure:

PS: proc(® any)
The result returned is the persistent root injected into the union type any. Its type may vary

between different persistent stores. In the Napier88 Release 2.0 store the persistent root is an
environment initially containing the following environments:

name environment contents

Error error handling procedures which are called when errors occur
during the execution of Napier88 programs

Externa | facilities provided by other sites

Library standard procedures and other data which may be used in
Napier88 programs

User available for user data

Table 1.1: Environment contents

The initial structure of Error and Library is described in detail in this manual. User and
External are local to a particular installation and users should consult the local administrator
for details. The majority of data items in the standard library are constant and may be used
but not updated by user programs. There are also some that may be updated in order to affect
the behaviour of the system. Theitemsin the library fall into a number of categories:

procedures for compiling Napier88 programs;
procedures for browsing the persistent store;
procedures for performing I/O;

procedures for constructing graphical user interfaces;
procedures for controlling concurrent threads;
procedures for accessing other Napier88 stores; and
other utilities.

Theinitial environment structure of the standard library is shown in Figure 1.1:

Error ——
Persistent External
Root

Library —

User

Arithmetic
Environment
Event
Format
Graphics

10

String
Structure
Variant
Vector

Arithmetic
Browser
Compiler
Concurrency
Device
Distribution
Environment
Event
FailvVaues
Font

Format

. Outline
Graphics —| Raster

I nteractiveEnvironment

10 | PrimitivelO

Lists

People

Protection

RasterRules

String

System

Tables

thmfi s Borders —— Interactive
CurrentState ———— CurrentBrowser

Vector

Wwin Defaults
Generators
Image —— | Images
Selection
Tools —— | EditorTools
Utilities

Figure 1.1: Initial environment structurein the standard library

2 TheNapier88 Programming Environment

Part of the standard library is an integrated programming environment, written in Napier88,
which allows the user to compose and execute Napier88 programs and examine their effects
on the persistent store. Section 4.13 describes how to start up the integrated programming
environment.

The programming environment supports hyper-programming, allowing the Napier88 source
programs to contain embedded direct references to values, locations and types in the
persistent store. The concept of hyper-programming is described in [FDK+92, Kir92,
KCC+92b, KC93, MBC+94b].

The programming environment provides several varieties of window:

multiple hyper-program windows;
acompilation error display window;
a browser window;

multiple declaration set windows; and
an output window.

The facilities provided by each window variety are now described.

2.1 Hyper-Program Windows

Hyper-program windows may be created by selecting New Editor from the background menu
described in Section 2.5. Each window contains a hyper-program text editing area, a scroll
bar and arow of light-buttons. The following operations are available in the text area:

operation method

enter text type at keyboard

position insertion point click mouse button 1

set current selection drag region of text with mouse
button 1

extend current selection click with mouse button 2

select word double click with mouse button 1

delete current selection type ‘backspace' or ‘delete’

cut current selection type ‘ctrl-x’

copy current selection type ‘ctrl-c¢’

paste type ‘ctrl-v’

insert hyper-program link type ‘ctrl-I’

evaluate selected text type ‘ctrl-¢

Table 2.1: Operationsin hyper-program text area

An example of a hyper-program window is shown in Figure 2.1:

@ HyperProgram

(Cut) (Enpy) (Faste) (Elear) (Find) (Lnad) (Save)

{ Retiame) (Linl-:) (Ewvaluate) (Source Sets) { Declare Types)

Figure 2.1: A hyper-program window

The operations available via the light-buttons are as follows:

operation

action

keyboard
equivalent

Cut

This cuts the current selection into a buffer shared among
al other hyper-program windows.

ctrl-x

Copy

This copies the current selection into the shared buffer.

ctrl-c

Paste

This replaces the current selection with the contents of the
shared buffer.

ctrl-v

Clear

This deletes the entire contents of the editor.

Find

This presents a dialogue alowing searching of the text for a
given fragment of hyper-program text, either forwards or
backwards from the end of the current selection.

Load

This presents a dialogue allowing text to be loaded into the
editor from afile.

Save

This presents a dialogue allowing the textual contents of the
editor to be saved to afile.

Rename

This presents a dialogue alowing the currently selected
light-button to be renamed. If no light-button is currently
selected it has no effect and the dialogue is not displayed.

Link

Thisinserts a hyper-program link to the currently selected
value, location or type. A light-button representing it is
inserted into the hyper-program text. Theinitial label on
the button is a string beginning with the characters"V: ",
"L:"or"T:" respectively. Therest of the label isthe name,
if any, associated with the selection (as, for example, when
itisalocation). The value, location or type associated with
a button can be displayed in the browser window by
pressing the button with mouse button 1.

ctrl-l

Evauate

This attempts to compile the currently selected hyper-
program text, executes the result if successful, and displays
any result in the browser window. If the currently selected
hyper-program text isavalid type expression then a
representation of that typeis displayed in the browser
window. If acompilation error occurs the compilation error
window is displayed (see Section 2.2).

ctrl-e

Source Sets

This displays a dialogue allowing the source declaration
sets to be set (see Section 2.4.4).

Declare Types

This attempts to compile the currently selected hyper-
program text and adds any type declarations in scope at the
end of the compilation to a selected declaration set (see
Section 2.4.2). Existing declarations with the same names
are over-written.

Table 2.2: Light-button operationsin hyper-program window

2.2 TheCompilation Error Window

The Compilation Error window is displayed when compilation errors are encountered in a
hyper-program. One sub-window shows the source code with the region of the first error
highlighted. The second sub-window shows a message describing the error. When multiple
errors are detected the Next and Previous buttons can be used to scroll through the errors. An
exampleis shown in Figure 2.2:

(%] Compilation Errors

Error: 1 Total Errors: 3 Line Number:

-5 int)

let temp
temp / 4.

Previous Hext

##44 [Indeclared name <j» haz heen used *#**

Figure 2.2: The compilation error window

2.3 TheBrowsar Window

The Browser window is displayed automatically when the programming environment first
starts up. It isused to display representations of values produced by the evaluation of hyper-
programs. The root structure of the persistent store can be displayed by selecting Show PS
from the background menu described in Section 2.3.13.

The form in which a value is represented depends on the type of the value. Integers, reals,
strings and booleans are written to the output window. The manner in which other types are
displayed is described in Sections 2.3.2—-2.3.10.

2.3.1 Operationson Windows
The following operations are available on all windows displayed in the browser window:

* Thewindow can be selected or deselected by clicking on the border with mouse button 1.
If the window is not already selected it becomes selected and any other selected windows
are deselected. If the window is aready selected it becomes deselected. When a window
is selected the corresponding value is also considered to be selected. Thisis of relevance
when inserting links into hyper-programs and when selecting certain operations from the
browser background menu which operate on the selected value.

* The window can also be selected or deselected by clicking on the border with mouse
button 2. In this case other windows are unaffected.

10

* A menu can be obtained by holding down mouse button 3 on the border. The entries in
the menu are Front, to bring the window to the front, Back, to put the window to the back,
and Dismiss, to undisplay the window.

2.3.2 Environments

To show an environment the browser displays a menu window containing an entry for each
binding in the environment. For base type values the corresponding entry shows the type
while for instances of constructed types only the type constructor is shown. An example is
shown in Figure 2.3:

2nv

Arithmetical : enwv

Browser : env

Compiler : env

EDHEHTPEHEF . EBIW

Figure 2.3: An environment menu
The operations available on an environment menu entry depend on the mouse button used:

» Clicking with mouse button 1 results in the menu entry being highlighted and any other
highlighted menu entries or windows being un-highlighted. The corresponding
environment location is selected.

» Clicking with mouse button 2 results in the menu entry being highlighted while other
selected menu entries or windows are unaffected.

» Holding down mouse button 3 results in a pop-up menu being displayed. Selecting Show
results in the value of the corresponding environment binding being displayed in the
browser. If the value is of such atype that a new window is displayed for it, an arrow is
drawn from the menu entry to the new window as shown in Figure 2.4. Selecting New
Universe also results in the value being displayed but in a separate universe as described
in Section 2.3.11.

bitwiseNot : proc * procedure

S0Arce

bitwizelr : proc

cos .« proc

epsilon : real

Figure 2.4: Link from environment location to value

11

2.3.3 Structures

Structures are displayed in the same way as environments. An example of a structure menuis
shown in Figure 2.5:

structure

charToTile : proc

font : =ztruct

stringToTile : proc

Figure 2.5: A structure menu

2.3.4 Variants

Variants are displayed in the same way as structures except that the entry for the branch of
the variant which is actually present is indicated by the prefix '+'. Selecting other entries has
no effect. An example of avariant menu is shown in Figure 2.6:

variant

Figure2.6: A variant menu

2.3.5 Vectors

Vectors are displayed in the same way as structures with an entry for each element of the
vector: Each entry shows the corresponding index number. An example of a vector menu is

shown in Figure 2.7:

vector

Figure2.7: A vector menu

2.3.6 Images

An example of an image window is shown in Figure 2.8:

12

Figure 2.8: An image window

The size of theimage in pixelsis shown in the bottom right corner of the window.

2.3.7 Pictures

Pictures are displayed in asimilar way to images, as shown in Figure 2.9:

picture

T
lapas
Pad Baron 11

>

Figure 2.9: A picturewindow

When a picture is first drawn it is scaled so that it fits completely into the display area.
Resizing the window enlarges or reduces the display area but does not alter the scale of the
picture. The scroll bars can be used to pan the display area to a different region of the
picture. The window also contains two arrow buttons on the left hand side which can be used

13

to enlarge or reduce the scale at which the picture is drawn. This makes it possible to zoom
in on aregion of interest or to move back to view the picture asawhole.

2.3.8 Procedures

To show a procedure the browser displays a menu with a single entry source. When this
entry is selected using any mouse button the browser displays a hyper-program window
containing the source code for the procedure. The source code may be selected and copied
but not altered. If the procedure does not have source code attached the browser displays a
message to this effect in the output window. An example of a procedure menu is shown in
Figure 2.10:

Sonrce

: int -3 int)

let result = 1 * 1
rezult

(Lopy) (Find)

procedure

Foarce

Figure 2.10: A procedurewindow

2.3.9 Abstract Datatypes

To shown an instance of an abstract datatype the browser displays a menu with no entries.
An example of an abstract datatype menu is shown in Figure 2.11:

abstype

Figure 2.11: An abstract datatype window
2.3.10 Files

To show afilethe browser displays its name in the output window.

2.3.11 Univer ses

The screen may become cluttered when the user browses a large data structure. Univer ses
can be used to organise the data space. A universeis created by selecting Universe from the
menu brought up with mouse button 3 over a structure, variant, vector or environment menu.
A new browser sub-window is then created and the corresponding value displayed inside it.
An example of a universe window is shown in Figure 2.12:

14

Iniverse

structure

]]

Figure 2.12: A universe window

The new value, the structure with field z in the example, is displayed by a new invocation of
the browser which operates entirely within the universe window. Any other objects
discovered from that new object will be confined to the window. In this way the object and
others accessible from it are kept separate from the rest of the visible data. Universes also
provide a grouping mechanism in that all the objects in a universe can be moved or deleted in
one action by operating on the window containing them. Any number of universes can be
created, and they can be nested to any degree.

2.3.12 Types

A representation of the type of a value in the browser window may be obtained by selecting
the corresponding window and selecting Show Type from the browser background menu.
The browser displays a window containing a canonical string representation of the value's
type. Note that a type representation is displayed only when a window is selected, not when
a menu entry is selected. This is in order to avoid confusion between the contents of a
location and itstype. An example of atype representation is shown in Figure 2.13:

rec type 10 iz structurel z :
&

t1 iz structurel a : int 3

(Lopy) (Find)

structure

Figure 2.13: A typerepresentation

The browser also displays a representation of a type linked into a hyper-program when the
corresponding light-button in the hyper-program window is pressed. In this case the
representation may be a canonical string as above or, where type constructor information is

15

available, the original source code is displayed as a hyper-program fragment. An example of
a type constructor source representation, with a hyper-program link to a component type, is
shown in Figure 2.14:

type constructor: T

gtructure({ x : int ; ¥ : bool

(Enpy) (Find)

Figure 2.14: A type constructor representation

2.3.13 The Browser Background Menu

A background menu may be obtained in the browser window by holding down mouse button
3. The menu provides the following operations:

operation action

Centre pans the browser window so that the first selected object isin
the centre of the window

Show PS displays the root of persistence

Show Type d;sl,pléalys acanonical representation of the type of the selected
vau

Clear removes all objects displayed in the browser window

Table 2.3: Browser background menu operations

2.3.14 The Panning Tool

The Panning Tool window allows the browser window to be panned over the unbounded
view space. The circle represents a joy-stick which can be dragged using mouse button 1.
While the joy-stick is off-centre the browser window pans in the same direction. The
panning increments are proportional to the amount the joy-stick is displaced from the centre.
The Panning Tool window is shown in Figure 2.15:

16

~_Pan Tool_

Figure 2.15: The panning tool

2.4 Declaration Sets

The user may create declaration sets containing named values, locations and types to use in
future program evaluation. Each declaration set has a unique name and may be thought of as
forming an additional outer scope for a program. Free identifiers in a program are resolved
by scanning the declaration sets associated with the program.

A type entry in a declaration set may represent either a type only, or a type constructor.
Which is obtained depends on the method used to create the entry. Both type and type
constructor names may be used as type denotations in programs, but only type constructor
names may be used to construct instances of types.

The declaration sets model is based on a number of earlier systems. Napier88 Release 1.0
[MBC+89a]; ABERDEEN [Far91]; and a previous version of the Napier88 programming
environment [KCC+92a].

The operations on declaration sets are:

create a new declaration set;

delete a declaration set;

add avalue, location or type to adeclaration set;

display the contents of a declaration set; and

choose an ordered list of declaration sets to use for compilation.

2.4.1 Creating and Deleting Declaration Sets
Creation and deletion of declaration sets is performed using the declaration sets menu

obtained by selecting Declaration Sets from the background menu described in Section 2.6.
The declaration sets menu is shown in Figure 2.16:

17

(7] Declaration Sets

implementationTypes

uzerlypes

Figure 2.16: The declaration sets menu

The menu contains a list of the existing declaration sets and light-buttons providing the
following operations:

operation action

New displays a dialogue prompting for a name for the new declaration set. If the
new name clashes with an existing declaration set name an error message is
displayed and the dialogue is re-presented. Otherwise a new empty
declaration set is created and the list is updated.

Remove permanently removes any selected declaration sets
Show displays the contents of any selected declaration sets
Done undisplays the declaration sets menu

Table 2.4: Declaration sets menu oper ations

2.4.2 Adding To a Declaration Set

One method of adding avalue, location or type to a declaration set involves the user selecting
the corresponding representation in the browser window. The user then selects Add to
Declaration Set from the background menu described in Section 2.6. If a named location is
selected that name is used; otherwise the user is prompted for a name. A dialogue then
allows the user to choose an existing declaration set or to create a new one. If an entry with
the same name already exists in the chosen declaration set that entry is overwritten by the
new one.

The user may add a group of type declarations to a declaration set by pressing the Declare
Types button in a hyper-program editor. This attempts to compile the selected code, or the
entire contents if none is selected, and if successful adds all the top-level type definitionsto a
declaration set chosen as above.

2.4.3 Displaying a Declaration Set
The contents of a particular declaration set may be displayed by pressing the Show button in

the declaration sets menu described in Section 2.4.1. This displays a further menu for each
selected declaration set. An exampleisshownin Figure 2.17:

18

@ userTypes

Appearance

Application

Area

BindingInfo

Border
BorderStyle
ButtonPaclk +
(Shuw) (Remuve) (Elear)
| S S S — |

Figure2.17: A declaration set menu

Each menu contains alist of the entries in that declaration set and light-buttons providing the
operations shown in Table 2.5:

operation action

Show displays any selected entries in the browser window

Remove permanently removes any selected entries from the declaration set
Clear permanently removes all entries from the declaration set

Table 2.5: Declaration set menu operations

A hyper-program link to an entry in a declaration set can be inserted into a hyper-program by
selecting the appropriate menu entry and pressing the Link light-button as described in
Section 2.1.

2.4.4 Choosing Declaration Sets

The user may associate a particular combination of declaration sets with a hyper-program
editor. These declaration sets are then used in evaluating program fragments in that editor.
When it isfirst created an editor has no declaration sets associated with it. Declaration sets
may be added by pressing the Source Sets light-button. This displays a dialogue as shown in
Figure 2.18:

19

Source Sets

Availahle i Promote)

implementationTypes

Dewaote

uzerTypes

Removwe

Cancel

0K

Figure 2.18: Dialogue for setting sour ce declaration sets

The Available list on the left shows all the existing declaration sets. The Use list on the right
shows those currently associated with the editor, scope level increasing down the list. If two
declaration sets associated with an editor both contain an entry with the same name, the one
in the declaration set nearer the top of the list will mask the other. This is analogous to
normal scoping rules.

The dialogue a so contains light-buttons providing the following operations:

operation action

Add adds any selected declaration sets in the Available list to the bottom of the
Uselist

Promote moves the selected declaration sets up one position in thelist if possible

Demote moves the selected declaration sets down one position in thelist if possible

Remove removes any selected declaration sets from the use list

Cancel undisplays the dialogue without altering the declaration sets associated with
the editor

OK undisplays the dialogue and associates the chosen declaration sets with the

editor

Table 2.6: Sour ce declaration sets menu oper ations

2.5 TheOutput Window

The Output window displays messages from the browser. Its contents may be scrolled and
cleared but not edited. A procedure to write messages to the Output window is initially
available in the CurrentState environment described in Section 4.26.2.

20

%] Output
a real: 3.1415849

(Copy) { Clear) { Find)

Figure 2.19: The output window

2.6 TheBackground Menu

A background menu may be brought up in the programming environment by holding down
mouse button 3. The menu provides the following operations:

operation action

New Editor creates a new hyper-program editor window and displays it

Add to Declaration | for each currently selected browser value, location or type,

Set adds a binding to a declaration set as described in Section
24.2

Declaration Sets displays the declaration set menu as described in Section 2.4.1

Show All Windows | displays all windows registered with the programming
environment as described in Section 2.7

Delete Non-Visible | unregisters windows not displayed, as described in Section 2.7

Stabilise calls the stabilise procedure described in Section 4.20

Quit quits the programming environment

Table 2.7: Background menu oper ations

2.7 Persistent Windows

Programming environment windows persist between sessions of the programming
environment. When the environment is shut down the positions and sizes of the windows are
recorded and restored when it is next started up.

When awindow is undisplayed by selecting Dismiss from its border menu, it is still retained
by the programming environment. The user can cause all such windows to be redisplayed by
selecting the entry Show All Windows from the background menu. It is possible however to
remove editor windows permanently from the programming environment by selecting the
entry Delete Non-Visible. This has the effect of deleting any editor windows not currently

displayed.

21

2.8 Accessing the Current State

To facilitate access to the programming environment from programs the following values are
available while the environment is active:

currentBuffer : Editor[Binding]
currentError : proc(string)
currentOutputPack : EditorPack[Binding]
currentWindowManager : WindowM anager
currentWriteString : proc(string)
CurrentBrowser : env

These are described in Section 4.26.2.

2.9 Using Napier88 from UNI X

There are a number of commands that control the execution of the Napier88 system from
UNIX.

2.9.1 nps: Compiling Type Declarations

For convenience, when a program is compiled it may be compiled against a set of pre-
compiled type declarations. This command is used to save such a set of type declarations and
is compatible with the declaration sets described in Section 2.4.

The source file must consist purely of type declarations or the command will fail and an error
message will be displayed. The general form of the command is:

nps [sourceFile declarationSet] [-1] [-t declarationSet] *

The first two parameters are the name of afile containing the type declarations and the name
of adeclaration set. The options are:

-l (list) Produce a source listing.

-t (types) Compile against existing sets of type declarations. This option may be
repeated. The first declaration set forms the outermost scope and the source
file forms the innermost scope.

For example, to save a set of type declarations given in the file typesl.N in the declaration set
typesl, the following could be used:

nps typesl1.N typesl

To save a further set of type declarations compiled against this set, with a listing, the
following could be used:

nps types2.N types2 -| -t typesl

If asourcefileis not specified as a parameter, the command enters interactive mode. First the
command prompts for a list of declaration sets against which a source file may be compiled.
Each declaration set is at an inner scope level with respect to any previously specified sets.
To finish specifying source declaration sets, return is entered in response to the command’'s
prompt Source type set:

22

Once any existing declaration sets have been specified, the command prompts for a source
file to be compiled and the declaration set name under which the type declarations should be
saved. The source file is compiled against al the declaration sets that have been specified.
When the type declarations have been saved the command prompts for another source file to
compile. To finish saving new declaration sets, return is entered in response to the
command’ s prompt Filename:

To interactively save a set of type declarations, given in the file types.N, in the set sometypes,
the following could be used:

nps I the command

Source type set: <return> I request for a declaration set to compile against;
I none to specify

Filename: types.N I the source file to compile

Destination type set: sometypes I request for new declaration set name

Filename: <return> I no more source files to be compiled

For backward compatibility with PS-algol implementations of Napier [MBC+89b], the non-
interactive version of nps allows a database name and password to be specified with each
declaration set name; these are ignored.

2.9.2 npc: Compiling Programs

This command is used to compile Napier88 programs and is parameterised by the name of

the source file. The source file must contain a void sequence [MBC+94a] or the command

will fail and an error message will be displayed. The general form of the command is:

npc [sourceFile] [-els] [-t declarationSet] *

The options are:

-e (execute) Execute the program if the compilation succeeds.

-1 (list) Produce a source listing.

-s (silent) Do not produce an object codefile.

-t (types) Compile against existing sets of type declarations. This option may be
repeated. The first declaration set forms the outermost scope and the source
file forms the innermost scope.

For example, to compile a program in a file prog.N without executing it, without a listing,

producing an object code file and using two existing type declaration sets, the following

could be used:

npc prog.N -t outer Types -t inner Types

In this case the result of the compilation is placed in afile prog.out. In cases where the source

filename does not end in .N the filename is constructed by appending .out to the source

filename.

To compile a program in a file prog.N and execute the result without producing an object
code file the following could be used:

npc prog.N -es

23

If asourcefileis not specified as a parameter, the command enters interactive mode. First the
command prompts for a list of declaration sets against which a source file may be compiled.
Each declaration set is at an inner scope level with respect to any previously specified sets.
To finish specifying declarations sets, return is entered in response to the command’ s prompt
Source type set:

Once any existing declaration sets have been specified, the command prompts for a source
file to be compiled. The source file is compiled against all the declaration sets that have been
specified. When the compilation is complete the command prompts for another source file to
compile. To finish compiling, return is entered in response to the command’'s prompt
Filename:

To interactively compile the program in the file prog.N, against the type declarations in the
set sometypes, the following could be used:

npc I the command

Source type set: sometypes I request for a declaration set to compile against
Source type set: <return> I request for another declaration set; no more to specify
Filename: prog.N I the source file to be compiled

Filename: <return> I no more source files to be compiled

A database name and password may be specified, and ignored, as for nps.

2.9.3 npr: Running Programs

This command is used to run the Napier88 system. The general formis:

npr [objectFile]

The command may be parameterised by the name of a file containing a compiled Napier88
program to be executed. Otherwise the Napier88 system is restarted from the state preserved
by the most recent stabilise operation.

For example, to execute the compiled version of the program prog.N, the following could be
used:

npr prog.out
2.9.4 napier88: Starting the Programming Environment

This command is used to start up the interactive programming environment. The general
form of the command is:

napier88 [-d screenDepth]
The optional parameter specifies the number of planes required in the display, subject to the

limitations of the display device. The command calls the procedure startProgrammingEnv
described in Section 4.13.

2.9.5 nprgc: Stable Store Garbage Collection

This command is used to perform a garbage collection of the stable store. No other programs
may be run against the store while the garbage collection is taking place. For example,

nprgc

24

Note that executing this command may actually increase the size of the UNIX file which
contains the stable store. See nprcompact.

2.9.6 nprstats: Stable Store Statistics

This command is used to display statistics about the stable store. No other programs may be
run against the store while the statistics gathering is taking place. For example,

nprstats

maxi mum space : 383. 609 Myytes

al | ocat ed space : 5.581 Miytes (85.7%
unal | ocat ed space : 0.281 Muytes (4.3%
unused space : 0.000 Moytes (0.0%
nmanagenment space : 0. 654 Moytes (10.0%
nunber of objects : 85671 objects

The followi ng configuration details are specified:
KEY_TO_ADDR

KEYS_ARE_| NDI RECT

REQUEST_STABI LI SE

KEY_RANGE

m ni mum key : 64000
maxi mum key : 17fffff8
key alignment : 8

The first set of statistics reflect the current state of the stable store. The second set reports
details of the particular stable store implementation in use.

2.9.7 nprcompact: Stable Store Compaction

This command is used to compact the UNIX file containing the stable store. No other
programs may be run against the store while the compaction istaking place. For example,

nprcompact

2.9.8 nprformat: Stable Store Initialisation

This command is used to create a new empty stable store. If the stable store directory as
described in Section 2.9.9 already contains a store, an error message is displayed and no
further action is performed. For example,

nprformat

2.9.9 nprsethost: Setting the Host

This command is used to set the host from which programs may run against the stable store.
The general form of the command is:

nprsethost [-n] [hostname]
By default the command may only be run from the host for which the storeis currently set. If
the -n flag is specified this constraint is over-ridden; this should be used with caution and

only when there is no possibility that there is currently a program running against the store.
If the hosthname parameter is omitted the name of the current host is used.

25

2.9.10 nprregisterhost: Registering a New Host

This command is used to register hosts with the Napier88 system. It takes as a command line
argument either the authorisation code for a single machine, or the name of a file containing
multiple authorisation codes. For example,

nprregister host fj8ahd3h7a2
nprregisterhost auth.codes

2911 UNIX Environment Variables

There are severa shell variables that allow the Napier system to be dynamically configured.
They are:

NPRDIR : this variable defines the pathname for the release directory. All the commands
held in the bin directory use this variable to construct the pathnames of the executable
programsto be run. By default thisis/usr/lib/napier88.

NPRSTORE : this variable defines the pathname for the UNIX directory containing the
stable store file. By default this is the name of the processor prefixed by $NPRDIR/sstore.
e.g. on a processor named panda the pathname would be $NPRDIR/sstore.panda. If the
desired size of stable storeistoo large for the disk partition containing the release directory, a
symbolic link can be used to map the store' s pathname onto a larger disk partition.

NPRHEAP : this variable defines the size of the local heap (in megabytes) used by the
Napier88 interpreter. By default thisis 8.

26

3 Graphical User Interface Programming

This section gives an outline of the user interface programming facilities provided by the
WIN window management system—which is also used to implement the programming
environment described in Section 2.

3.1 Windowsand Window Managers

The principal entitiesin WIN are windows and window managers. A window has two main
functions: to display a bitmapped image and to handle user input. A window manager is used
to display and manipulate windows. Aswell as providing program output facilities, windows
may be used to implement user interface interactors such as light-buttons, sliders, menus etc.

Each window has encapsulated in it:
» an application procedure which processes input events received by the window; and

* animage on which raster operations may be performed by the application procedure or by
other programs.

Windows exist independently of window managers. Since they are Napier88 values they
have full civil rights and thus may be held in the persistent store, assigned to variables, passed
as procedure parameters etc. All window operations may be accessed by programs
independently of whether a window is displayed by a window manager. When a window is
displayed by a window manager its image may become visible to the user. Its application
procedure may also receive input events directed to the window, via the window manager,
from the user.

Each window manager operates within a parent window. This recursive structure allows
nesting of window managers to any depth. The recursion is grounded by a distinguished root
window manager which operates directly on the display device.

The procedures for creating windows and window managers are described in Section 4.26.4.
A window is displayed by calling one of awindow manager’sinterface procedures, passing it
the window and information describing where to position it. The details are also described in
Section 4.26.4.

3.2 Window Attributes

A window has a number of attributes which may be read and set. These include:
o itssize

itstitle;
e jtsminimum and maximum size;

» its behaviour when its size is changed—used to allow the window display to be redrawn
appropriately;
» itsapplication procedure—determining how the window handles input events;

» itsborder style—used by the window manager to show the outline of the window and to
allow interactive window manipulation;

» itspriority for receiving input events,

27

» the number of planesin its display image—affecting how many colours can be displayed;
and

» the shape of the cursor when over the window.

The interface procedures which allow these attributes to be read and set are described in
Section 4.26.4.

3.3 Drawingon Windows

The display of a window may be updated via raster operations on its bitmap. Raster
operations may be performed between the window and another window or an image, in either
direction. The four possibilities are:

source destination
window image

image window
window another window
another window window

Table 3.1: Window raster operations

Straight line drawing on windows is also supported. The window drawing functions are
described in Section 4.26.4.

3.4 Current and Selected Windows

Windows displayed in the programming environment may be distinguished in two ways:. by
being current and by being selected.

3.4.1 Current Windows

A window may be current with respect to the window manager that is displaying it. No more
than one of the windows displayed by a particular window manager may be current. If there
is a current window then any keyboard input events received by the window manager are
directed to the application procedure of that window. If there is no current window then
keyboard events are discarded.

A window may be made current by calling the makeCurrent procedure of the window
manager displaying it. This is described in Section 4.26.4. A window may also be made
current interactively, either by moving the cursor over it or clicking with a mouse button
withinit.

A current window may be distinguished by its border. The border styles fixedX, menuX and

variableX, for example, indicate a current window by showing two parallel lines along the
title bar. These are described in Section 4.26.1.

28

3.4.2 Selected Windows

Any number of windows may be selected with respect to the programming environment as a
whole. The list of selected windows may be read by application programs and acted on
accordingly. For example, a command available in a drawing application might change the
size of al the selected windows.

A selected window may be distinguished by its border. The border styles fixedX, menuX and
variableX, for example, indicate a selected window by showing an inverted area along the
title bar. These are described in Section 4.26.1.

A window may be both current and selected simultaneously.

3.5 Applicationsand Input Events

Every window has an application, a procedure which processes input events received by the
window. Those input events may be keyboard events, if the window is current, or mouse
events within the window area. Input events are represented by instances of type Event:

type Event is variant(chars : string;
nmouse : Mouse;
sel ect, deselect : null)

type Mouse is structure(x,y : int ; buttons : *bool)

Keyboard events are represented by the chars branch. The string contains the characters
typed since the last keyboard event was issued. The length of the string is 3 1 since keyboard
events are generated only when keyboard input occurs. The time that must elapse between
key presses in order for separate events to be generated is not defined. Keyboard events are
generated only when keys are pressed down. No events are generated when keys are
released.

Mouse events are represented by the mouse branch. The structure contains the coordinates of
the mouse as two integers, and the state of the mouse buttons as a vector of booleans, each
element of which is true iff the corresponding mouse button is currently depressed. Mouse
events are generated repeatedly whenever there is no keyboard input. Consecutive mouse
events may thus contain the same information. To reduce the rate of structure creation, a
single mouse structure is used for all events. Where an application needs to retain the
information in a mouse event it is necessary to copy the contents of the structure, rather than
simply retaining a reference to the structure, since the contents will be overwritten when the
next mouse event is generated.

Each time WIN sends an event to a window application it compares that application with the
application that received the previous event. If they are different WIN sends a deselect event
to the previous application and then a select event to the new one, before sending the current
input event to the new application. Select and deselect events do not themselves carry user
input but they enable an application to perform particular actions when it first becomes the
focus of input and when it ceases to be the focus.

The type of an applicationis:
proc(Event)
By convention WIN applications do not perform busy waiting for input or call blocking 10

procedures. If this convention is not observed applications in other windows may be
prevented from receiving input directed to them.

29

3.5.1 Background Windows and Applications

By convention WIN applications do not call the raster operations of any window in which a
window manager is running. If this convention is not observed the display areas of windows
displayed by that window manager may be corrupted. It may be required, however, to draw
on the background of a window manager, for example in an application that shows links
between windows by drawing lines between them.

The facility is provided safely by alowing a window manager to display a window in the
background. Only one window may be so displayed at a time and a background window is
always behind all other windows, no matter what levelsthey are placed at. If the programmer
wishes to be able to draw anywhere on the background of the window manager this can be
done by creating a window the same size as the window containing the window manager,
displaying it in the background and then drawing on that window.

Alternatively the programmer may wish to have an application running in the background of
the window manager without the need to draw on the background. If a background window
is used there is an unnecessary memory overhead involved in storing the contents of the
window. It is possible to set a background application which processes any events not dealt
with by window applications.

3.6 Interfacelnteractors

The WIN library provides a number of pre-defined user interface interactors from which a
user interface may be composed. Each interactor is a window; interfaces are built up by
displaying interactor windows together in a parent window. The types of interactors provided
are;

light-buttons
diders

menus

check boxes
radio buttons
hyper-text editors

Various varieties of each interactor type may be created; the generator procedures are
described in Section 4.26.7.

3.7 TheUser Interface Editor

The user interface editor alows the programmer to create WIN user interfaces interactively
rather than textually. Thisaids both initial coding and later adjustment of an interface. It was
inspired by Luca Cardelli’ s paper Building User Interfaces by Direct Manipulation [Car88].

3.7.1 Interface Design

For the purposes of the editor, an interface is a collection of interactors generated using the
WIN library. Interactors are items such as menus, check-boxes, light-buttons etc.

The design of an interface involves the selection of the appropriate interactors to give the
desired functionality and layout of items. Having specified this, an instance of the interface
can be generated by the user specifying what happens when, for example, a light-button is
pressed or a menu option selected. The collection of interactors comprising an interface is
implemented as a single root window which can then be displayed by any window manager.

30

For example a simple painting tool could be implemented by the root window shown in
Figure 3.1:

Painting Tool

Colour: ‘ Black
O White
Point size:O 1
[P
O s
Clear| |Quit
Load | |Save

Figure 3.1: A root window

A window interactor is used for the drawing area, and light-buttons and groups of radio
buttons provide the means of control.

3.7.2 Nested Windows

Windows within interface designs may be nested using manager interactors. Each one
consists of awindow and associated window manager allowing sub-windows to be contained.

As an example of the use of nested windows, consider the painting tool example introduced
above. Imagine that the light-buttons and radio button groups are contained within a control
panel window (displayed with an invisible border). The hierarchy of this interface would be
as shown in Figure 3.2:

Painting Tool

O\

Drawing window Control Panel
Colour Colour radio Point size Clear Quit Load Save
image button group image button button button button

Figure 3.2: An interface hierarchy

Here the Control Panel could be implemented with a manager interactor.

3.7.3 Runningthe Editor

A window containing an interface editor may be created by calling the generator procedure
described in Section 4.14. The resulting window has a fixed size of 1000 by 700 pixels.

31

The editor window consists of two sections, a control panel and the main editor window in
which designs currently being edited are displayed. This layout and the contents of the
control panel areillustrated in Figure 3.3:

\V4 Interface Editor

File Interactors Mode OLayout OResize O Preview Current window manager: None +_control

7 AN 4 . 4 panel
1 X7

Light-buttons with menus Radio buttons used to Window manager which will
which pull-down when the select current mode be used to display any new
light-button is clicked of the editor: interactors which are created
i . <4-}—main
Filemenu: New, Load, Close, Save, Generate, Quit editor
window
Interactors menu: Window, Window Manager, Button, Menu, Slider,

Radio button group, Check box group, Simple Dialogue,
Generic Dialogue, Text editor, Textua Image

Figure 3.3: An interface editor window

3.7.4 Mode Buttons

Clicking on one of these changes the current mode. At present only Layout and Preview are
implemented but Resize isincluded in anticipation of future implementation.

The default mode is Layout in which designs may be constructed and laid out.

Preview mode allows the user to see what the interface will look like in its final state and
experiment with it, i.e. click on light buttons, select menu entries etc.

3.7.5 TheCurrent Window Manager

The current window manager is the window manager into which any new interactor is

placed. It can be associated with either the root window of a design or a manager interactor

within adesign. Initially the current window manager is unspecified.

The current window manager setting is displayed in the control panel. This is a textual

representation, akin to a pathname. For example "Test/ControlPanel” would refer to the

manager interactor titled "Control Panel” inside design "Test".

The current window manager setting can be changed in one of four ways:

» when anew design is created or an existing one |oaded;

» when amanager interactor is created;

» when the current window manager is 1) associated with the root window of a design which
is closed or 2) associated with a manager interactor which is deleted—in either case, the
program tries to select the most sensible current window manager; or

* by clicking with the right mouse button inside a root window or manager interactor inside

a design—the current window manager will be set to the associated window manager and
the field on the control panel will change to reflect this.

32

3.7.6 FileMenu

Options in this menu allow the user to start working on new designs, close current ones, load
and save designs and quit from the program (Generate, the remaining option, is discussed in
Section 3.7.8). When selected, each menu option brings up a dialogue box prompting the user
for further information. There is always the option to cancel an operation - i.e. not quit from
the program or not start working on a new design.

3.76.1 New

Selecting this menu option brings up a dialogue box containing editors for the design's name
(initially "Untitled") and initial dimensions (500 x 500 pixels) and two light buttons New
(=go-ahead) and Cancel. The user may start working on a new design by entering the desired
values into the editors and clicking on New.

The window which is generated by New is known as the root window of a design. It may be
moved about the main editor window and resized by dragging its borders. Clicking inside the
window with the middle mouse button re-displays the properties dialogue, allowing sizes to
specified explicitly and the window's title changed.

3.7.6.2 Close

An interface design can be closed by selecting Close from the File menu. This brings up a
dialogue asking which design to close. The required design is selected by clicking on it and
then clicking on Close.

3.7.6.3 Load and Save

Interface designs can be loaded and saved to both the persistent store and UNIX files.
Selecting Save brings up a dialogue similar to that for Close, giving a menu of designs
currently being edited and asking which isto be saved.

Having specified this a second dialogue appears asking whether the design is to be saved to
the persistent store or to a UNIX file and the pathname to be used.

For UNIX files the pathname is relative to the current directory. For a store, the pathname is
the path from the root of the store (not included), e.g.:

User/InterfaceDesigns/database

would mean that the interface design was to be saved in the store under the name database
within the environment InterfaceDesigns within the environment User in the root
environment.

A saved design can be loaded back into the editor with the option Load from the File menu.
3.7.6.4 Quit

Selecting the menu option Quit will undisplay the interface editor window.

3.7.7 Interactors Menu

Having created the overall window for an interface using the New option in the File menu,
the next stage isto lay out the interactors which will make up the interface.

33

3.7.7.1 Layout Mode

In Layout mode interactors are represented by windows of the appropriate size. Windows can
be resized directly, either by the properties dialogue (see Section 3.7.7.2) or by dragging out
the window to the required size. The size of windows for some other interactors, e.g. menus,
depends rather on the component parts of the interactor, e.g. how many entries a menu has
and how big awindow would be required to display them all.

The interactor types whose windows may be resized are: windows, window managers,
diders, simple and generic dialogues and text editors. All others are sized according to the
properties specified by the user in the associated properties dial ogue.

The type of each interactor is displayed textually within its window if the window is large
enough. Thus a window interactor would have "WINDOW" written inside it and a button
interactor would contain the text "BUTTON". If the dimensions of the window are such that
this identifying tag would not fit in horizontally but would fit in vertically if rotated 90
degrees anti-clockwise, then it is displayed in this way.

3.7.7.2 Creating an Interactor

To create an instance of an interactor, select the corresponding entry from the Interactors
menu. This brings up a dialogue window alowing the properties of the interactor to be
specified. Edit these as appropriate then click on Create to generate a window representing
the interactor. This window will be placed in the centre of the current window manager and
can be moved to the required position. Clicking with the middle mouse button on this
window re-displays the properties dialogue, alowing changes to be made to the interactor
after its creation.

3773 Border Menus

As well as handling move and resize operations, the borders of interactor windows contain
menus which are summoned by clicking with the right mouse button on the border area. The
menus contain three options: front, back and delete. The first two give the user control over
the ordering of overlapping interactor windows like the border menus of root windows of
designs. The last option allows an interactor, once created, to be deleted. Selecting this brings
up a dialogue window asking for confirmation that the interactor is to be deleted. Only if
confirmation is given will the interactor be deleted.

3.7.8 Code Generation

Selecting Generate from the File menu brings up a dialogue containing a menu of designs
currently being edited and asking which is to have code generated for it. Click on the
required design, then on the Generate button to start the generation. There will be a short
delay while the code is generated. When this is complete, an editor containing the generated
code will be displayed. The code can then be edited, saved, evaluated, etc, as required.

The structure of the generated code is as follows (commentsin italics):

project PS() as root onto env :
use root with ...

binding to locations in the store for use later, i.e. generators, failvalues etc.
in

proc(® Wndow)
begi n
procedure to generate a window implementing the interface design
end
default : proc(® Wndow) ; w ndowrail Val ue

Figure 3.4: Structure of generated code
The action procedures for the interactors may be filled in to give the application-specific

behaviour of the interface. The appropriate sections of the code are highlighted with
comments.

35

4 ThelLibrary Environment

This section describes the contents of the standard Library environment. Each environment
within Library is described in a sub-section of the same name, thus for example Section 4.1
Arithmetic describes the contents of the environment Arithmetic within Library.

Most of the types used here are defined in Section 6. They are available in the declaration set

userTypes. The types Binding, TypeRep and TypeDescriptor are value-dependent types and
their useis described in Section 4.18.

4.1 Arithmetic

abs: proc(int® int)

This procedure returns the absolute value of the parameter. If the parameter is equal to
-maxint - 1

where the value of maxint is described later in this section, the procedure calls unaryint in the

error environment described in Section 5.1, passing it the parameter. In this case, the result
obtained from the call of unarylint isreturned as the result of abs.

atan : proc(real ® real)

This procedure returns the arctangent of the parameter x (given in radians) where:

- E <atan(x)<B
2 2

On an error, this procedure calls unaryReal in the error environment, passing it the parameter.
In this case, the result obtained from the call of unaryReal is returned as the result of atan.

bitwiseAnd : proc(int, int® int)

This procedure returns the logical (bitwise) and of the parameters.

bitwiseOr : proc(int, int® int)

This procedure returns the logical (bitwise) or of the parameters.

bitwiseNot : proc(int® int)

This procedure returns the logical (bitwise) not of the parameter.

36

cos: proc(real ® real)

This procedure returns the cosine of the parameter (given in radians). On an error, this
procedure calls unaryReal in the error environment, passing it the parameter. In this case, the
result obtained from the call of unaryReal is returned as the result of cos.

epsilon : real

Thisisthe largest value, e, such that 1.0 + e = 1.0 in the implementation.

exp : proc(real ® real)

This procedure returns e raised to the power of the parameter. On an error, this procedure
calls unaryReal in the error environment, passing it the parameter. In this case, the result
obtained from the call of unaryReal is returned as the result of exp.

float : proc(int® real)

This procedure returns the parameter expressed as areal number.

In: proc(real ® real)

This procedure returns the logarithm to the base e of the parameter. |If the parameter is not
greater than zero, this procedure calls unaryReal in the error environment, passing it the
parameter. In this case, the result obtained from the call of unaryReal is returned as the result
of In.

maxint : int

Thisisthe maximum integer possible in the implementation.

maxreal : real

Thisisthe maximum real possible in the implementation.

pi : real

Thisisthe value of p in the implementation.

rabs: proc(real ® real)

This procedure returns the absolute value of the parameter.

37

shiftLeft : proc(int, int® int)

This procedure returns the value obtained by performing a bitwise shift left on the first
parameter by the number of places given by the second parameter. Zeros are brought in at
the low order end.

shiftRight : proc(int, int® int)

This procedure returns the value obtained by performing a bitwise shift right on the first
parameter by the number of places given by the second parameter. Zeros are brought in at
the high order end.

sin: proc(real ® real)

This procedure returns the sine of the parameter (given in radians). On an error, this
procedure calls unaryReal in the error environment, passing it the parameter. In this case, the
result obtained from the call of unaryReal is returned as the result of sin.

sgrt : proc(real ® real)

This procedure returns the positive square root of the parameter. If the parameter is negative
the procedure calls unaryReal in the error environment, passing it the parameter. In this case,
the result obtained from the call of unaryint is returned as the result of sgrt.

truncate : proc(real ® int)
This procedure returns the integer i such that for the parameter X,
i€ £ il +1 wherei * x3 0.

On an error, this procedure calls truncate in the error environment, passing it the parameter.
In this case, the result obtained from the call of truncate is returned as the result.

4.2 Browser

graphicalBrowser Gen : proc(WindowManager ® proc(Binding))

This procedure creates a browser procedure that displays output on the given window
manager. The browser procedure displays a graphical representation of its parameter.

textual BrowserGen : proc(proc(string) ® proc(Binding))

This procedure creates a browser procedure that displays textual output using the given
procedure. The browser procedure writes out a textual representation of its parameter.

38

4.3 Compiler

compileHyper Source : proc(Hyper Text[Binding] ® CompilationResult[TypeDescriptor])

This procedure takes a hyper-program source representation and attempts to compile it. The
result is avariant with the following branches:

voidResult : proc()

This branch is obtained when a void sequence [MBC+94a] is compiled
successfully. Calling the procedure causes the sequence to be executed.

nonVoidResult : proc(® any)

This branch is obtained when a non-void sequence is compiled successfully.
Calling the procedure causes the sequence to be executed and the result
returned, injected into any.

typeExpression : TypeDescriptor

This branch is obtained when a type expression is compiled successfully. The
value is a protected representation of a type and optional constructor
information.

error : *CompilationError
This branch is obtained when the compilation fails. The vector contains an
element for each reported compilation error. Each element is a structure
containing the following:
errorRegion : CodeRegion
This contains the character offsets of the beginning and end of the error
region. Note that this is the region in which the error was first
detected; the erroneous code may lie before this.
errorLine : CodeRegion

This contains the character offsets of the beginning and end of the line
containing the error region.

lineNumber : int
Thisisthe number of the line containing the error region.
errorMessage : string

Thisis a message describing the nature of the error.

39

compileHyper SourceWith : proc(HyperText[Binding |, *string ®
CompilationResult[TypeDescriptor])

This procedure performs the same function as compileHyperSource. The additional vector
parameter contains the names of declaration sets against which the source is compiled. The
declaration set corresponding to the vector element with the lowest index forms the innermost
additional scope.

compileString : proc(string ® CompilationResult] TypeDescriptor |)

This procedure takes a string program representation and attempts to compile it. The result
has the same form as that of compileHyper Source. Calling this procedure has the same effect
as calling genericCompile with the environment produced by calling stringlnput with the
string as parameter.

compileSringWith : proc(string, *string ® CompilationResult] TypeDescriptor |)

This procedure performs the same function as compileSiring. The additional vector
parameter contains the names of declaration sets against which the source is compiled. The
declaration set corresponding to the vector element with the lowest index forms the innermost
additional scope.

compileTypeDefinitions : proc(HyperText[Binding] ®
TypeCompilationResult[TypeDescriptor |)

This procedure takes a hyper-program source representation containing type definitions and
attemptsto compileit. Theresult isavariant which takes one of the following branches:

typeDefinitions : Table[string, TypeDescriptor]

This branch is obtained when the source is compiled successfully. The table
contains those type definitions in scope at the end of the program.

error : *CompilationError

This branch gives compiler error messages and is obtained when the
compilation fails.

filelnput : proc(file® env)

This procedure takes a file descriptor and returns an environment containing lexical analysis
procedures to operate over that file.

genericCompile : proc(env® CompilationResult] TypeDescriptor |)

This procedure takes an environment containing lexical analysis procedures operating over a
source representation and attempts to compile the source. The result has the same form as
that of compileHyperSource. A compiler error message is obtained if the environment does
not contain the following procedures:

40

eoi : proc(® bool)

This procedure should return true iff the end of the source has been reached.

read : proc(® string)

This procedure should return the next character from the source and advance
to the following character.

readName : proc(string ® string)

This procedure should read an identifier name from the source and return it
appended to the parameter.

resetLex : proc()

This procedure should reset the current lexical position to the beginning of the
source.

sourceOffset : proc(® int)

This procedure should return the current character offset into the source.

positioninfo : proc(int® *int)

This procedure should return, for a given offset into the source, a vector with a
lower bound of 1 and the following values in the first three elements. the
character offset of the start of the line containing the given offset, the character
offset of the end of the line containing the given offset, and the number of the
line containing the given offset. The offset parameter specifies a character in
the source, with 1 corresponding to the first character. The returned line start
and end offsets should correspond to the first and last characters of the line
excluding newline characters. The line numbering should start at 1.

sourceFragment : proc(int, int® string)

This procedure should return the fragment of the source between and
including the given character offsets.

getDeclarationSet : proc(string ® Optional[Table[string, Binding]])

This procedure returns a table operating on the declaration set with the given name, if it
exists. This table can then be used to enter, look up, remove and scan bindings in the
declaration set.

41

newDeclarationSet : proc(string)

This procedure creates a new declaration set with the given name, unless one already existsin
which case it has no effect.

removeDeclarationSet : proc(string)

This procedure removes the declaration set with the given name, unless no such declaration
set existsin which case it has no effect.

scanDeclarationSets : proc(proc(string ® bool))

This procedure calls the given procedure repeatedly, passing it the name of each declaration
set, until it has been called for al declaration sets or it returns false. The declaration sets are
scanned in increasing name order.

stringlnput : proc(string® env)

This procedure takes a string and returns an environment containing lexical analysis
procedures to operate over that string.

4.4 Concurrency

semaphoreGen : proc(int ® Semaphore)

This procedure takes an initial value for a semaphore and returns a structure containing
procedures to operate on the semaphore. |If the parameter is negative an initial value of zero
isused. The operations on the semaphore are defined asin [SPG91] p. 153:

wait : proc()

The value of the semaphore is decremented. If the new value is less than zero
then the current thread is suspended and its dependency on the semaphore is
recorded.

signal : proc()

The value of the semaphore is incremented. |If the new value is less than or
equal to zero, one of the threads suspended on the semaphore is selected and
made runnable.

threadPackage : ThreadPack

This abstract datatype instance contains procedures to operate on threads. Its closure contains
a set of threads, each of which may be runnable or suspended. At any time while the
Napier88 system is active, one or more of the runnable threads are executing. The
programmer may manipulate threads as witnesses of the abstract datatype. Denoting the
witness type as Thread, the operations are:

42

start : proc(proc() ® Thread)

This procedure creates a new thread to execute the given void procedure, adds
the thread to the set of threads, marks the thread as runnable, and returns an
identifier for the thread.

getCurrentThread : proc(® Thread)

This procedure returns the identifier of the thread executing it.

getAllThreads : proc(® *Thread)

This procedure returns a vector containing identifiers for al the current
members of the set of threads.

kill : proc(Thread)

This procedure removes the thread denoted by the given identifier from the set
of threads. If the thread is currently executing it is terminated. If no runnable
threads remain the Napier88 system terminates.

restart : proc(Thread)

This procedure marks the thread denoted by the given identifier as runnable.
If the thread is currently executing the procedure has no effect.

suspend : proc(Thread)

This procedure marks the thread denoted by the given identifier as suspended.
If the thread is currently executing it is suspended immediately. If no runnable
threads remain the Napier88 system terminates.

live: proc(Thread ® bool)

This procedure returns true iff the given thread identifier denotes a thread
which has not yet terminated.

getParent : proc(Thread ® Optional[Thread])

This procedure returns the identifier of the thread from which the given thread
was started, if it has not yet terminated. The absent branch is returned if the
parent has terminated or if the given thread has no parent.

suspendUnlock : proc(string, Thread)

This procedure isfor system use only and is password protected.

45 Device

getScreen : proc(file® image)

If the parameter is a raster device, this procedure returns the image associated with that
device. If thefileis not araster device, acall is made to the procedure getScreen in the error
environment with the parameter supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

locator : proc(file, *int)

If the file parameter is a mouse or tablet device, this procedure copies the locator information
into the vector parameter.

If the file is not a mouse or tablet device, a call is made to the procedure locator in the error
environment with the parameters supplied to the origina call.

The elements of the vector arefilled in as follows;

if thefileisatablet, its X dimension, otherwise 0,

if thefileisatablet, itsY dimension, otherwise 0,

the locator X position,

the locator Y position,

adate stamp,

the state of button 1, representing down as 1 and up as 0,
..n the state of buttoni - 5 wherei is the vector index.

~NoOURhWNRE

If the vector has more elements than the information available, the extra elements are
ignored; if the vector has too few elements, only the elements present are set. If thefileisa
tablet device or a mouse device associated with an X-window, the X and Y positions are
absolute. Otherwisethe X and Y positions are relative to the those of the last call of locator.

colourMap : proc(file, pixel, int)

If the file parameter is a raster device, this procedure sets the colour map entry for the pixel
parameter to the integer parameter. The interpretation of the integer is device dependent.

If the file is not a raster device, a call is made to the procedure colourMap in the error
environment with the parameters supplied to the origina call.

colourOf : proc(file, pixel ® int)

If the file parameter is a raster device, this procedure returns the colour map entry associated
with the given pixel for that device.

If the file is not a raster device, a call is made to the procedure colourOf in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

getCursor : proc(file® image)

If the parameter is a raster device, this procedure returns the cursor associated with that
device.

If the file is not a raster device, a call is made to the procedure getCursor in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

setCursor : proc(file, image)

If the file parameter is araster device, this procedure sets the cursor to be a copy of theimage
parameter.

If the file is not a raster device, a call is made to the procedure setCursor in the error
environment with the parameters supplied to the original call.

getCursorinfo : proc(file, *int)

If the file parameter is a raster device, this procedure copies the cursor information for that
device into the vector parameter.

If the file is not a raster device, a call is made to the procedure getCursorinfo in the error
environment with the parameters supplied to the origina call.

The elements of the vector arefilled in asfollows:
1 the cursor’s X position,
2 the cursor’'s'Y position,
3 the rasterop rule used to display the cursor.

The interpretation of the rasterop rule may be found in the description of rasterOp in Section
4.12.2.

If the vector has more than three elements, the extra elements are ignored. If the vector has
less than three elements, only the elements present are filled in.

setCursorinfo : proc(file, *int)

If the file parameter is a raster device, this procedure aters the cursor information for that
device according to the contents of the vector parameter.

If the file is not a raster device, a call is made to the procedure setCursorinfo in the error
environment with the parameters supplied to the origina call.

The elements of the vector are interpreted as follows:
1 specifies the cursor’'s X position,
2 specifies the cursor's Y position,
3 specifies the rasterop rule used to display the cursor.

The interpretation of the rasterop rule may be found in the description of rasterOp in Section
4.12.2.

If the vector has more than three elements, the extra elements are ignored; if the vector has
less than three elements, only the elements present are set.

4.6 Distribution

remoteStoreTable : Tablg[string, RemoteStore |

This table contains mappings from symbolic remote store names to actual locations of stores.
The symbolic names are strings, while the store location structures each contain the name of a
remote host, the pathname of a store at that host, a user name and a password. The host name
may be specified as a loca machine name or a full IP host name. The user name and
password may be empty strings. For example:

renot eSt oreTabl e(enter)(
" panda",
Renot eStore("panda”, "/pstore2/denmoStore”, "", ""))

remot eSt oreTabl e(enter) (
"aRenot eSt ore",
Rerot eSt ore(" ntnarre. somewher e. edu”, "/ napier/store", "john", "napier"))

scan : proc(RemoteStore, string ® RemoteResult] StoreScan[TypeRep]])

This procedure takes a remote store description and attempts to connect to that store and
return information about the contents of the store. If the store description is not valid the
result is a string describing the error. Otherwise the result depends on whether the store
contains an environment at the root of persistence.

If the store contains an environment the string parameter is interpreted as the pathname of an
environment accessible from the root environment, and the result is a list of structures
containing one element for each of the bindings present in the remote environment at the time
of the scan. Each element contains the name of the binding as a string and a representation of
the type of the binding. The pathname is given relative to the top level environment and
should consist of an initial slash followed by environment names separated by slashes, for
example:

“/Library/D stribution" I Dstribution contained in Library contained in top |evel.
" ! Top | evel environnent.

If the pathname is not well formed the result is a string describing the error.

If the store does not contain an environment at the root of persistence, the string parameter is
ignored and the result is a representation of the type of the root of persistence.

The operation of this procedure depends on whether a Napier88 process is currently active in
the remote store. If so the procedure attempts to connect with the remote process at the
socket level and any user name or password provided with the remote store description is
ignored. If this attempt fails, or if no process is active in the remote store, the procedure
attempts to copy the remote store to the local machine in order to scan it. In this case the user
name and password, if present, may be used in the attempt to connect to the remote machine.

copyValue : proc(RemoteStore, string® RemoteResult[any])

This procedure takes a remote store description and attempts to copy a value from it. If the
store contains an environment at the root of persistence the string parameter is interpreted as a

46

pathname from the root environment in the same way as for scan above. In this case the
result is a copy of the remote binding injected into any. If the store does not contain an
environment, the pathname is not well formed or no binding with the given name is present,
the result is a string describing the error.

User name and password information is used in the same way as for scan.

copyStore : proc(RemoteStore ® RemoteResult] any])

This procedure takes a remote store description and attempts to make a deep copy of its
contents. If the attempt fails the result is a string describing the error, otherwise theresult isa
copy of the store contents injected into any.

User name and password information is used in the same way as for scan.

createStore : proc(RemoteStore, any ® RemoteResult[null])

This procedure takes a remote store description and a value injected into any, and attempts to
create a new store containing that value. If the remote store already exists or the attempt to
create the store fails for some other reason, the result is a string describing the error.
Otherwise the result is nil.

User name and password information is used in the same way as for scan.

setListener : proc(bool)

This procedure turns listening in the local store on if the parameter is true and off otherwise.
Listening involves monitoring the network for incoming connection attempts from other
stores. If it is turned off no other store will be able to connect to the local store. The
performance of threadsin the local store will however be increased.

4.7 Environment

environment : proc(® env)

This procedure creates a new empty environment.

scan : proc(env, proc(string, TypeRep, bool))

This procedure calls the given procedure once for every binding in the given environment, in
alphabetical order of binding name. Each invocation of the procedure is passed the name of
the identifier in the binding, a representation of its type and a boolean to indicate whether or
not the location is constant.

4.8 Event

The Napier88 system recognises a small range of asynchronous events. These are a hangup
signal, an interrupt signal, a quit signal and a timer interrupt. On completion of a particular
event procedure, the procedure will return to the running program.

47

The Event environment contains the procedures that are called when one of these eventsis
detected by the system. These procedures are variables and the user may change them by
assignment. The default procedures are described below.

The UNIX signals referred to may be found in 83 of the UNIX Manua under Signal.

hangup : proc()

This procedureis caled if the Napier88 system receivesa UNIX SIGHUP signal. By default,
this procedure stops the Napier88 system.

interrupt : proc()

This procedureis called if the Napier88 system receives a UNIX SIGINT signal. By default,
this procedure does nothing.

quit : proc()

This procedure is called if the Napier88 system receives a UNIX SIGQUIT signal. By
default, this procedure stops the Napier88 system.

timer : proc ()

This procedure is called 30 times per second. By default, this procedure does nothing.

49 FailvValues

The FailValues environment contains dummy instances of some commonly used types. The
types are defined in Section 5.

applicationFailValue: Application
bindingFailVaue: Binding
bindingEditorFailValue: Editor[Binding]
borderStyleFailVaue: BorderStyle
buttonPackFailVaue: ButtonPack
choicePackFailVaue: ChoicePack
displaylnfoFailVaue: Displaylnfo
envFalVaue: env
fontFailVaue: Font
fontPackFailValue: FontPack
hyperProgramPackFailVaue : EditorPack[Binding]
hyperSourceFailVaue: HyperText[Binding]
iconManagerFailValue: |conManager
indexFailValue: Index
intVectorFailVaue: *int
levelFallValue: Level
limitFailValue: Limit
menuPackFailValue : MenuPack
posFailVaue: Pos
rectFallValue: Rect
sizeFalVaue: Size
dliderPackFailValue: SliderPack

48

soundFailVaue: *int

stringVectorFailValue: *string
windowFailValue: Window
windowManagerFailVaue: WindowManager
windowStateFailVaue : WindowState
4.10 Font
The Font environment contains the following instances of type FontPack:
cmrB14
cmrR14
courB10 courB12 courB14
CourR10 COUrR12 courR14
gallantR19
screenB12 screenB14
screenR7 screenR11 | screenR12 | screenR13
serifR10 | serifR11 serifR12 serifR14

Table4.1; Font names

Each instance is a structure with the following fields:

font : Font

This structure contains characters, a vector of images,; fontHeight, the height
of the characters in pixels, descender, the distance from the bottom of a

character to the base line; and info, a string describing the font.

stringToTile: proc(string ® image)

This procedure returns a new image onto which the characters of the given

string have been copied.

charToTile: proc(string® image)

This procedure returns the image corresponding to the first character of the
given string. This may be used as an optimisation of stringToTile in some

cases.

The widths of characters in a font may vary, but the programmer may examine these by

taking the x dimension of the appropriate image. For example:

49

a1
hei ght 15 pi xels EE =
EEE N |
]] | [
| | [| EEENR
[| [|
2 am "z ==
this is the baseline | mew m || EEEE_ W |
|
descender 4 pixels EEEE
wi dth 8 pixels wi dth 10 pixels

Figure4.1: Character dimensions

4.11 Format

eformat : proc(real, int, int® string)

This procedure returns a string representation of the real parameter, with an exponent. The
first integer parameter gives the required number of digits before the decimal point and the
second the number of digits after the decimal point. If either integer parameter is negative, a
call is made to the procedure eformat in the error environment with the parameters supplied
to the original call. In this case, the result obtained from the call of the error procedure is
returned as the result.

fformat : proc(real, int, int® string)

This procedure returns a string representation of the real parameter. The first integer
parameter gives the required number of digits before the decimal point and the second the
number of digits after the decimal point. If the first integer istoo small to represent the real
number, or the second integer is negative, a call is made to the procedure fformat in the error
environment with the parameters supplied to the original call. In this case, the result obtained
from the call of the error procedure is returned as the result.

gformat : proc(real ® string)

This procedure returns a string representation of the real parameter in the most suitable
format.

iformat : proc(int® string)

This procedure returns a string representation of the integer.

50

4.12 Graphics
4121 Outline

makeDrawFunction : proc(string ® drawFunction)

This procedure is for use with Outline graphics [Mor82, MBB+86]. It takes a string
parameter describing a device type and returns a procedure to display Outline pictures on that
device. The devices supported are:

"image" Napier88 raster image
"g6320" colour plotter

If the parameter is not one of the strings listed above the null branch of the variant is returned.
For the parameter "image" the result is of type:

proc(image, pic, real, real, real, real)

otherwise the result is of type:

proc(file, pic, real, real, real, real)

In either case the procedure returned takes a picture and a bounding rectangle in the infinite
two dimensional real space over which all pictures are defined. The real parameters give the
minimum X, maximum X, minimum y and maximum y bounds respectively. The picture is
clipped to the area of the bounding rectangle. The rectangle is then scaled and shifted to fit
the area of the device on which it is drawn.

If the x parameters are equal or the y parameters are equal then the bounding box has zero
size and acall is made to the Draw procedure in the graphical errors environment.

If the picture being drawn contains a text statement whose end points are coincident, acall is
made to the Text procedure in the graphical errors environment. The result returned by the
Text procedure is used to replace the erroneous text statement.

The mapping of a picture onto a device is performed using real arithmetic which, in certain

circumstances, may result in arithmetic errors. If any arithmetic errors do occur the
appropriate procedure in the arithmetical errors environment is called.

412.2 Raster

This environment contains procedures for use with raster graphics [MBD+86].

xDim: proc(image® int)

This procedure returns the X dimension of the image.

yDim: proc(image® int)

This procedure returnsthe Y dimension of the image.

51

ZDim: proc(image® int)

This procedure returns the number of planesin the image.

pixelDepth : proc(pixel ® int)

This procedure returns the number of planesin the pixel.

rasterOp : proc(image, image, int)

This procedure performs a raster operation from the first image S onto the second image D
using arule given by dividing the integer parameter by 16 and interpreting the remainder as
follows:

0 Sand ~S 8 Sand D
1 ~(Sor D) 9 ~Sxor D
2 ~Sand D 10 D

3 ~S 11 ~Sor D
4 Sand ~D 12 S

5 ~D 13 Sor ~D
6 Sxor D 14 Sor D

7 ~(Sand D) 15 Sor ~S

Table4.2: Raster rules

where on maps to true and off mapsto false.

line: proc(image, int, int, int, int, pixel, int)

This procedure draws a line on the image parameter. The x and y coordinates of the first end
point are given by the first and second integer parameters respectively. The x and y
coordinates of the second end point are given by the third and fourth integer parameters
respectively. The lineis drawn using the pixel parameter which is combined with the pixels
of the image using the raster rule given by the last parameter. The interpretation of the raster
rule is the same as for rasterOp.

getPixel : proc(image, int, int ® pixel)

This procedure returns the pixel at the given position in the image. The first integer
parameter gives the x coordinate and the second integer parameter the y coordinate. If the
position lies outside the image a call is made to the procedure getPixel in the error
environment. In this case, the result obtained from the call of the error procedure is returned
asthe result.

52

setPixel : proc(image, int, int, pixel)

This procedure sets the pixel at the given position in the image. The first integer parameter
gives the x coordinate and the second integer parameter the y coordinate. |If the position lies
outside the image a call is made to the procedure setPixel in the error environment.

4.13 InteractiveEnvironment

startProgrammingEnv : proc()

This procedure starts the interactive programming environment at its previously stabilised
state. The procedure attempts to connect to the X-server indicated by the UNIX environment
variable DISPLAY and to create a window in which to run the programming environment. |f
the display is opened successfully, hyper-programming and browser windows are displayed
as described in Section 2.

4.14 |InterfaceEditor

interfaceEditorGen : proc(® Window)

This procedure returns a window containing a user interface editor as described in Section
3.7.

415 10

stdOut : file

Thisisafilevariable that isinitially connected to the UNIX control terminal for the Napier88
system.

writeByte : proc(int)

This procedure computes the bitwise and of the integer with 255 and writes the result as a
byte to the file stdOut. If an error occurs a call is made to the procedurewriteByte in the error
environment.

writeString : proc(string)

This procedure writes the string to the file stdOut. If an error occurs a call is made to the
procedure writeString in the error environment.

writeBool : proc(bool)

This procedure writes the boolean to the file stdOut. If an error occurs a call is made to the
procedure writeBool in the error environment.

53

writelnt : proc(int)

This procedure writes the integer to the file stdOut. If an error occurs a call is made to the
procedure writelnt in the error environment.

writeReal : proc(real)

This procedure writes the real to the file stdOut. If an error occurs a call is made to the
procedure writeReal in the error environment.

integerWidth : int

Integers written out using writelnt are displayed, left justified, in this number of characters. If
the number does not fit within this space, the exact number of characters is used.
integerWidth is a variable with an initial value of 12.

realWidth : int

Reals written out using writeReal are displayed, left justified, in this number of characters. If
the number does not fit within this space, the exact number of charactersis used. realWidth is
avariablewith aninitial value of 14.

spaceWidth : int

spaceWidth spaces are written out after any integer or real number written using writelnt or
writeReal. spaceWidth isavariable with an initial value of 2.

makeWriteEnv : proc(file® env)

This procedure creates an environment that contains the procedures writeByte, writeString,
writeBool, writelnt and writeReal, each of which operates on the given file rather than the file
stdOut. Each procedure may call the error procedures described above. The environment also
contains the variables integerWidth, realWidth and spaceWidth, to control the operation of
writelnt and writeReal on the file. The initial values of the three variables are 12, 14 and 2
respectively.

stdin : file

Thisisafilevariable that isinitially connected to the UNIX control terminal for the Napier88
system.

endOflnput : proc(® bool)

This procedure reads one byte as an integer from the file stdin. If the read is successful, false
is returned. If an 1/O error occurs the procedure calls the endOfinputl OE procedure in the
error environment. If the end of input is encountered the procedure returns true. The
procedure attempts to make the byte read available to the next endOfinput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readint or readReal
operation. If the byte cannot be made available, a call is made to the endOflnputUnread

54

procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of endOflnput.

inputPending : proc(® bool)

This procedure returnstrue iff there isinput available to be read from the file stdin.

readByte : proc(® int)

This procedure reads one byte as an integer from the file stdin. If an 1/O error occurs the
procedure calls the readBytel OE procedure in the error environment. If the end of input is
encountered the procedure calls the readByteEOI procedure in the error environment. The
result obtained from either of the error proceduresis returned as the result of readByte.

readChar : proc(® string)

This procedure reads one character from the file stdin. If an 1/O error occurs the procedure
calls the readChar | OE procedure in the error environment. |If the end of input is encountered
the procedure calls the readCharEOQI procedure in the error environment. The result obtained
from either of the error proceduresis returned as the result of readChar.

peekByte : proc(® int)

This procedure reads one byte as an integer from the file stdin. If an 1/O error occurs the
procedure calls the peekBytel OE procedure in the error environment. If the end of input is
encountered the procedure calls the peekByteEOI procedure in the error environment. The
procedure attempts to make the byte read available to the next endOfinput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readint or readReal
operation. If the byte cannot be made available, a call is made to the peekByteUnread
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of peekByte.

peekChar : proc(® string)

This procedure reads one character from the file stdin. If an 1/O error occurs the procedure
calls the peekChar | OE procedure in the error environment. If the end of input is encountered
the procedure calls the peekCharEQI procedure in the error environment. The procedure
attempts to make the character read available to the next endOflnput, readByte, readChar,
peekByte, peekChar, readString, readLine, readBool, readint or readReal operation. If the
character cannot be made available, a call is made to the peekByteUnread procedure in the
error environment. The result obtained from any of the error procedures is returned as the
result of peekChar.

readString : proc(® string)

This procedure reads a string literal (a string in quotes) from the file stdin. The layout
characters™ ", "'t" and "'n" are ignored.

If the first character after any layout characters is not a double quote the procedure calls the

readStringBadChar procedure in the error environment. The erroneous character will have
been read. If an 1/O error occurs the procedure calls the readStringl OE procedure in the error

55

environment. If the end of input is encountered the procedure calls the readStringeQl
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of readString.

readLine: proc(® string)

This procedure reads characters from the file stdin up to and including a newline character. It
concatenates the characters and returns them as a string without the newline character. If the
end of input is encountered during this operation the procedure calls the readLineEQOI
procedure in the error environment. If an 1/O error occurs the procedure cals the
readLinel OE procedure in the error environment. The result obtained from either of the error
procedures is returned as the result of readLine.

readBool : proc(® bool)

This procedure reads one boolean from the file stdin. The layout characters" ", "'t" and "'n"
are ignored. If the characters after any layout characters do not form a boolean the procedure
calls the readBoolBadChar procedure in the error environment. The characters up to and
including the first erroneous character will have been read. If an I/O error occurs, the
procedure readBool calls the readBool | OE procedure in the error environment. |If the end of
input is encountered the procedure calls the readBool EOI procedure in the error environment.
The result obtained from any of the error procedures is returned as the result of readBool.

readint : proc(® int)

This procedure reads one integer from the file stdin. The layout characters ™ ", "'t" and "'n"
are ignored. If the first character after any layout charactersis not a digit or a sign which is
followed by a digit, the procedure calls the readintBadChar procedure in the error
environment. The erroneous character will have been read. If the end of input is encountered
before the first digit the procedure calls the readlntEQI procedure in the error environment. If
an 1/0 error occurs the procedure calls the readintl OE procedure in the error environment.

The procedure reads characters from the file stdin until it has parsed an integer. The parsing
may involve reading the first character following the integer. When this occurs the procedure
attempts to make the extra character read available to the next endOfinput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readint or readReal
operation. If the character cannot be made available a call is made to the readintUnread
procedure in the error environment.

When an integer has been successfully parsed it is converted into an integer value. If an
arithmetic error occurs during the conversion, a cal is made to the readintOverflow
procedure in the error environment. The result obtained from any of the error procedures is
returned as the result of readint.

readReal : proc(® real)

This procedure reads one real from the file stdin. The layout characters ™ ", "'t" and "'n" are
ignored. If the first character after any layout characters is not a digit or a sign which is
followed by a digit, the procedure calls the readRealBadChar procedure in the error
environment. The erroneous character will have been read. If the end of input is encountered
before the first digit the procedure calls the readReal EOI procedure in the error environment.
If an I/O error occurs the procedure calls the readReallOE procedure in the error
environment.

56

This procedure reads characters from the file stdin until it has parsed areal. The parsing may
involve reading the first character following the real. When this occurs the procedure
attempts to make the extra character read available to the next endOflnput, readByte,
readChar, peekByte, peekChar, readString, readLine, readBool, readint or readReal
operation. If the character cannot be made available a call is made to the readRealUnread
procedure in the error environment.

When a rea has been successfully parsed it is converted into a real value. If an arithmetic
error occurs during the conversion, a call is made to the readReal Overflow procedure in the
error environment. The result obtained from any of the error procedures is returned as the
result of readReal.

makeReadEnv : proc(file® env)
This procedure creates an environment that contains the procedures endOflnput,
inputPending, readByte, readChar, peekByte, peekChar, readString, readLine, readBool,

readint and readReal, each of which operates on the given file rather than the file stdin. Each
of these procedures may call the error procedures described above.

4151 Primitivel O

The procedures in this environment map the 1/0 facilities of UNIX onto the Napier88 system.

create: proc(string, int® file)

This procedure creates a file with the given name. The integer parameter specifies the
decimal value of the (UNIX) file protection bitmap. If the creation fails, nilfile is returned.

open: proc(string, int ® file)

This procedure opens the file with the given name in access mode given by the integer
parameter interpreted as follows:

0 read only
1 write only
2 read and write

If the open fails, nilfileis returned.

A particular file type and attributes may be specified by prefixing the file name with one of
the following prefixes:

“DISK:", “TTY:", “STDIN:", “STDOUT:", “STDERR:",
“ACCEPT:”, “CONNECT:”, “SHELL:", “WINDOW:"

If no recognised prefix is given the host operating system is interrogated after a file is
opened/created to determine its type.

Disk file objects are created whenever afile is opened or created in an external
file system. The filename prefix for adisk fileis"DISK:", for example:

open("D SK nyfile", 2)

57

58

Terminal file objects are created whenever a termina device is opened. The
filename prefix is"TTY:". If the filename prefixes "STDIN:", "STDOUT:" or
"STDERR:" are specified then file objects are created for the Napier system’s
standard input, output and error. These files are permanently open and are
assumed to be terminal devices. For "STDIN:", "STDOUT:" and "STDERR"
the access mode parameter isignored For example:

open("TTY:/dev/ttypl", 2)
open("STDIN", 2)
open("STDQUT:", 2)
open("STDERR ", 2)

A socket file object is created whenever an incoming network connection is
accepted or a connection to a remote Napier system is successful. The
filename prefixes for a socket are "ACCEPT:", "CONNECT:" and "SHELL:".
The access mode parameters are ignored.

"ACCEPT:" is used to accept a connection from any remote Napier system.
The remainder of the filename is ignored. If no other Napier system is
attempting to connect then nilfile is returned. For example:

open("ACCEPT:", 2)

"CONNECT:" is used to connect to a remote Napier system. Thisis specified
by a host identifier, followed by a double colon and the path name of a Napier
store directory. The host identifier may be either alocal name or full internet
address. If the connection attempt fails then nilfile is returned. Possible
reasons for failure include:

. the host identifier is not avalid address;

. the store directory does not exist or does not contain a valid Napier
store; or

. thereis no interpreter currently running against the remote store.

For example:

open(" OONNECT: panda: : / pst ore2/ demoStore", 2)
open(" CONNECT: ntcnane. sonewher e. edu: : / pst or e2/ demoStore”, 2)

"SHELL:" isused to specify a socket connected to acommand line interpreter.
The command line interpreter is started when the Napier system isinvoked. In
aUNIX system the interpreter is a shell.

open("SHELL:", 2)

A window file object is created whenever a raster window is opened. The
filename prefix for awindow is "WINDOW:". If no window name is given a
default window is opened in the host environment. For example, a shell
variable DISPLAY may have been set to specify an X display to use.
Alternatively it may be possible to access the local frame buffer and use that to
simulate awindow.

A window filename may include specifications of the x, y and z dimensions of
the window as well as its initial x and y positions. The specifications are
encoded by prefixing a number by either "XDIM:", "YDIM:", "ZDIM:",
"XPOS:" or "YPOS:" respectively. Each of these attributes is prefixed by a
space character to separate them from the rest of the filename. If possible these
specifications will be used. If no z dimension is specified a default of 1 is
assumed. For example:

open("WNDOW XDIM 600 YDIM 600 XPOS: 50 YPCS: 50 ZDIM 8", 2)

close: proc(file® int)

This procedure closes the file associated with the given file descriptor. The integer returned
isQif the operation was successful and -1 otherwise.

seek : proc(file, int, int® int)

This procedure sets the position of the next read or write from the given file. The first integer
parameter gives the offset in the file relative to the position determined by the second integer
parameter as follows:

0 start of file
1 current position
2 end of file

The procedure returns the position in the file if the operation was successful and -1 otherwise.

ioctl : proc(file, *int, int® int)

The ioctl commands correspond exactly to those supported by the UNIX ioctl system call.
The ioctl instruction will not execute the specified command unless it is applicable to a
compatible terminal and the vector of integers contains sufficient integer elements to hold the
parameters or results of the specified command. The supported commands are:

TIOCSETP TIOCSETN TIOCSETC TIOCSLTC TIOCSETD
TIOCFLUSH TIOCSTI TIOCSPGRP TIOCLBIS TIOCLBIC

TIOCEXCL TIOCNXCL TIOCHPCL TIOCSBRK TIOCCBRK
TIOCSDTR TIOCCDTR TIOCSTOP TIOCSTART TIOCGETP
TIOCGETC TIOCGLTC TIOCGETD TIOCGPRG TIOCOUTQ
FIONREAD FIONBIO

readBytes : proc(file, *int, int, int® int)

This procedure reads bytes from the given file into the vector of integers. The first integer
parameter gives the byte offset from the start of the vector's elements. The second integer

59

parameter gives the maximum number of bytesto beread. The procedure returns the number
of bytesread if the operation completes successfully and -1 otherwise. The number of bytes
read is not necessarily the maximum possible.

writeBytes : proc(file, *int, int, int® int)

This procedure writes bytes to the given file from the vector of integers. The first integer
parameter gives the byte offset from the start of the vector’s elements. The second integer
parameter gives the maximum number of bytes to be written. The procedure returns the
number of bytes written if the operation completes successfully and -1 otherwise. The
number of bytes written is not necessarily the maximum possible.

getByte: proc(int, int® int)

This procedure returns a byte from the word given by the first parameter. The second
parameter gives the byte index from the start of the word, O indicating the first byte. If an
illegal index is specified a call is made to the getByte procedure in the error environment.

setByte : proc(int, int, int® int)

This procedure returns the integer obtained by replacing a byte in the word given by the first
parameter. The second parameter gives the byte index from the start of the word, O indicating
the first byte. The third parameter gives the byte with which it isto be replaced. If anillegal
index is specified a call is made to the setByte procedure in the error environment.

errorNumber : proc(® int)
This procedure returns the error number of the last primitive 1/O operation executed by the

current thread. The error numbers are those returned by the last UNIX /O operation and are
described in intro(2) in the UNIX Manual.

4.16 Lists

listPackGen : proc[T](® ListPack[T])

This procedure returns a structure containing procedures to manipulate a list with elements of
type T. The list implementation maintains a current position in the list, represented by an
integer specifying the number of list elements before the current position. This may range
between 0 and the number of elements in the list. Initially the list is empty and the current
positionis 0. The procedures are:

insert: proc(T)

This procedure inserts an element into the list at the current position. The
current position now lies after the new element.

60

replace: proc(T)

This procedure has no effect if the list is empty. Otherwise it replaces the
element at the current position with the given element. The current position
now lies at the new element.

clear : proc()

This procedure deletes al the elementsin thelist.

delete : proc()

This procedure has no effect if the current position is equal to the number of
list elementsi.e. at the end of the list. Otherwise it deletes the element at the
current position. The current position remains unchanged.

element : proc(® Optional[T])

This procedure returns the absent branch if the list is empty or the current
position is equal to the number of list elements i.e. at the end of the list.
Otherwise it returns the element at the current position. The current position
remains unchanged.

length : proc(® int)

This procedure returns the number of elementsin the list.

pos: proc(® int)

This procedure returns the current position.

ateEnd : proc(® bool)

This procedure returnstrue iff the current position lies at the end of the list.

go: proc(int)

This procedure sets the current position to the given value. If the valueisless
than O or greater than the number of list elements the procedure has no effect.

goNext : proc()

This procedure increments the current position by 1. If the current position is
aready at the end of the list the procedure has no effect.

61

goPrev : proc()

This procedure decrements the current position by 1. If the current position is
aready at the start of the list the procedure has no effect.

find : proc(proc(T® bool) ® int)

This procedure scans the elements of the list in order from the start of the list,
applying the given procedure to each element, until trueis obtained or the end
of the list is reached. The procedure returns the position of the element for
which true was obtained, or -1 if there was no such element.

4.17 People

This environment contains the following:

a : image

carl : image
craig : image
dave: image
dharini : image
fred : image
graham : image
john : image
malcolm : image
quintin : image
richard : image
ron : image
snoopy : pic
stephan : image
vivienne : image

Al Dearle, University of Adelaide

Carl Warren, University of St Andrews
Craig Baker, University of St Andrews
Dave Munro, University of St Andrews
Dharini Subramaniam, University of St Andrews
Fred Brown, University of Adelaide
Graham Kirby, University of St Andrews
John Napier, University of St Andrews
Malcolm Atkinson, University of Glasgow
Quintin Cutts, University of St Andrews
Richard Connor, University of St Andrews
Ron Morrison, University of St Andrews
Snoopy the Beagle, Peanuts

Stephan Scheuerl, University of St Andrews
Vivienne Moore, University of St Andrews

4.18 Protection

protectedPackGen : proc[T](T® ProtectedPack| T])

This procedure takes an initialising instance of the specialising type and returns a structure
allowing instances of the specialising type to be protected. The components of the structure
are;

protected : Protected

This is an abstract datatype whose witness type abstracts over the specialising
type.

setProtected : any
This encapsulates a procedure of type proc(Abs) where Abs is the witness

type of the abstract datatype protected. It records the given abstract reference
to an instance of the specialising type.

62

getProtected : any

This encapsulates a procedure of type proc(® Abs) where Abs is the witness
type of the abstract datatype protected. It returns an abstract reference to the
currently recorded instance of the specialising type.

setConcrete : proc(T)

This procedure records the given instance of the specialising type.

getConcrete: proc(® T)

This procedure returns the currently recorded instance of the specialising type
in its concrete form.

The first program below illustrates how a value may be put into the persistent store in an
abstract form:

| et protectedlntPack = protectedPackGen[int](0)

project PS() as root onto env :

begi n
inroot let protectedl ntPack = protectedl nt Pack
use protectedl ntPack(protected) as X Protectedint] in
proj ect protected ntPack(getProtected) as getProtectedlnt onto
proc(-> Protectedint) :
begi n
pr ot ect edl nt Pack(setConcrete)(7)
inroot let aProtectedlnt = getProtectedl nt()
end
default : witeString("an error")
end
default : {}

The next program illustrates how the value may be retrieved and converted back to its
concrete form:

project PS() as root onto env :

use root with protectedlntPack : ProtectedPack[int] in

use protectedl ntPack(protected) as X Protectedint] in

use root with aProtectedint : Protectedint in
proj ect protected ntPack(setProtected) as setProtectedlnt onto
proc(Protectedint) :

begi n
setProtectedlnt (aProtectedint)
| et seven = protectedl ntPack(getConcrete)()
end
default : witeString("an error")
default : {}

These procedures may be used to provide protected access to a set of values of a particular
type as follows:

» cal protectedPackGen specialised to the appropriate type;

» make the abstract datatype protected generally accessible; and

63

* restrict access to the other components of the structure, for example by password
protection [CDM+90].

protectedBinding : Protected

This abstract datatype provides access to the protected type Binding which represents entities
that may be passed to the browser or linked into hyper-programs. The code below shows an
example of its use:

project PS() as root onto env :

use root with Library : env in

use Library with Browser,Protection : env in

use Protection with protectedBinding : Protected in

use protectedBinding as X Binding] in

use Browser with graphical BrowserGen : proc(Wndowvanager -> proc(Binding)) in

protectedTypeDescriptor : Protected

This abstract datatype provides access to the protected type TypeDescriptor which represents
instances of type constructor information. It isused in the same way as protectedBinding.

protectedTypeRep : Protected
This abstract datatype provides access to the protected type TypeRep which represents types.
It is used in the same way as protectedBinding.

4.19 RasterRules

This environment contains the following integers which represent raster rules for use with
window operations:

copyRule andRule orRule xorRule
notRule norRule nandRule xnorRule
4.20 String

length : proc(string® int)

This procedure returns the number of charactersin the given string.

asciiToString : proc(int® string)

This procedure returns the single character string corresponding to the ASCII code given by
calculating i rem 128, wherei is the parameter.

stringToAsCii : proc(string® int)

This procedure returns the ASCII code for the first character of the given string, unless the
string is the empty string, in which case O is returned.

64

letter : proc(string ® bool)

This procedure returns true if the first character of the string is a lower case or upper case
letter.

digit : proc(string® bool)

This procedure returnstrue if the first character of the string is a decimal digit.

4.21 System

stabilise : proc()

This procedure records the entire state of the Napier88 system on non-volatile storage. It is
called automatically on normal program termination.

diskgc : proc()

This procedure performs a garbage collection of the entire persistent store.

abort : proc()

This procedure terminates the currently executing thread. No stabilisation is performed.

4.22 Tables

comparelnt : Comparison| int]

This structure contains procedures to test equality and ordering on integers, and may be used
with tableGen to generate tables keyed by integers.

compareString : Comparison[string]

This structure contains procedures to test equality and ordering on strings, and may be used
with tableGen to generate tables keyed by strings.

tableGen : proc[Key, Data](Comparison[Key] ® Table[Key, Data])

This procedure returns a structure containing procedures to manipulate an associative table
with keys of type Key and associated data of type Data. The parameter is a variant that is
either a structure containing procedures to compare key values for equality and ordering, or a
structure containing only a procedure to test for equality. A more efficient implementation is
obtained when both procedures are supplied. The proceduresin the table structure are:

65

enter : proc(Key, Data)

This procedure inserts an entry into the table. If the table already contains an
entry with the given key the existing value is overwritten.

lookup : proc(Key ® Optional[Data])

This procedure returns either the data associated with the given key or the
absent branch if the key is not found.

remove : proc(Key)

This procedure removes the data associated with the given key from the table.
If the key is not found the procedure has no effect.

scan : proc(proc(Key, Data® bool))

This procedure calls the given procedure repeatedly, passing it each key
present in the table and the associated data, until it has been called for al
entries or it returns false. If the table has an ordering defined for it the entries
are scanned in increasing key order. Otherwise the entries are scanned in the
order in which the keys were inserted.

4.23 Time

date: proc(® string)
This procedure gives the current date and time in the format illustrated bel ow:

"Sat Oct 16 16:05:25 BST 1993"

time: proc(® int)

This procedure returns the CPU time used by the Napier88 system since it was initialised.
The time is measured in 60th of a second clock ticks.

4.24 Utilities

concatenateHyperText : proc[T](HyperText[T], HyperText[T] ® HyperText[T])

This procedure concatenates the given fragments of hyper-text.

concatenateStrings : proc(*string ® string)

This procedure returns the string obtained by concatenating together the strings in the given
vector.

66

error : proc(string)

This procedure displays the given error message.

executeAsThread : proc(proc())

This procedure executes the given procedure as a separate thread. The current thread is
suspended until the new thread terminates. Any fatal run-time errors will not affect the
current thread.

extractHyperText : proc[T](HyperText[T], int,int® HyperText[T])

This procedure extracts the part of the given fragment of hyper-text lying between the two
given character positionsinclusive.

find : proc(string, string, int® int)

This procedure searches the string given by the first parameter for the target string given by
the second parameter, starting at the given offset into the string and wrapping back to the
beginning if necessary. If the target is found the result is the offset at which the target occurs
inthe string. If the target is not found the result is zero.

getArgs: proc(® *string)

This procedure returns the command line arguments used to invoke the current Napier88
session. The vector contains an element for each word, with a lower bound of 1. For
example, if asessionisinitiated by typing

npr nyProg. out argl

at the command line, then a call to getArgs during the session will return the vector :

vector @ of ["npr", "nyProg.out", "argl"]

getEnv : proc(® *string)

This procedure returns the values of the shell environment variables in effect at the
invocation of the current Napier88 session. The vector contains an element for each variable,
with alower bound of 1. An exampleis shown below:

vector @ of ["D SPLAY=panda", "NPRD R=/napi er/rel ease", "NPRSTCRE=/ napi er/store"]

getHyper ProgramPack : proc(bool, bool ® EditorPack] Binding])

This procedure returns a structure containing procedures to operate on a hyper-program
editor, as described for hyperProgramPackGen in Section 4.26.4. The first parameter
specifies whether the contents of the editor can be edited interactively. The second parameter
specifies whether the editor window contains cut, copy and paste buttons.

67

getType: proc(any ® TypeRep)

This procedure returns an abstract representation of the type of the given value.

max : proc(int, int® int)

This procedure returns the maximum of the two integers.

min : proc(int, int® int)

This procedure returns the minimum of the two integers.

mkBlankString : proc(int® string)

This procedure returns a string containing the given number of space characters. If the
parameter is negative the empty string is returned. The procedure is designed to minimise the
number of object creations.

mkCompareHyperText : proc[T](® Comparison] HyperText[T]])

This procedure returns a structure containing procedures to test equality and ordering on
instances of hyper-text.

mKEnvLocBinding : proc(env, string® Binding)

This procedure returns a binding denoting the location with the given name in the given
environment. If no such location exists then bindingFailValue is returned.

mkHyperLink : proc[T](string, LinkPack[T] ® HyperText[T])

This procedure returns a fragment of hyper-text consisting of a single link to the given value
with the given name.

mkSructLocBinding : proc(any, string® Binding)

This procedure returns a binding denoting the location with the given name in the given
structure. If no such location exists then bindingFailVValue is returned.

mkTypeBinding : proc(TypeRep ® Binding)

This procedure converts the given type representation to a binding.

mkTypeDescriptorBinding : proc(TypeDescriptor ® Binding)

This procedure converts the given type descriptor to a binding.

68

mkValueBinding : proc(any ® Binding)

This procedure converts the given value to a binding.

showBinding : proc(Binding, int)

This procedure displays the binding denoted by the given abstract representation. The integer
parameter isignored.

showType : proc(TypeRep ® string)

This procedure returns a string representation of the given abstract type representation.

stringToHyper Source : proc(string ® HyperText[Binding])

This procedure returns a fragment of hyper-text consisting of the given string with no links.

stringTolnt : proc(string® int)
This procedure converts the given string representation of an integer to the corresponding

integer. If the string contains any non-digit characters other than a single leading "-" the
result is zero.

4.25 Vector

Iwb: proc[t](*t® int)

This procedure returns the lower bound of the vector.

upb: proc[t](*t® int)

This procedure returns the upper bound of the vector.

4.26 Win
4.26.1 Borders

double : BorderStyle

This border style produces a border with a double line around the window.

69

1

non-current current
Figure 4.2: double borders
The interactive operations provided by the border are:
* Thewindow can be brought to the front by clicking on the border with mouse button 1.

* Thewindow can be moved by dragging the border with mouse button 2.
» Thewindow can be undisplayed by clicking on the border with mouse button 3.

fixedX : Border Style

This border style produces an Open Look™ [Sun89] style border with atitle bar and a close
box.

untitled (%] untitled

]

non-current, non-sel ected current, non-selected

[

Unlilled [¥] tulilled |
non-current, selected current, selected

Figure 4.3: fixedX borders

The interactive operations using the border are:

70

* Thewindow can be selected or deselected by clicking on the border with mouse button 1.
If the window is not already selected it becomes selected and any other selected windows
are deselected. If the window is already selected it becomes desel ected.

* The window can also be selected or deselected by clicking on the border with mouse
button 2. Inthis case other selected windows are unaffected.

* A menu can be obtained by holding down mouse button 3 on the border. The entries in
the menu are Front, to bring the window to the front, Back, to put the window to the back,
and Dismiss, to undisplay the window.

» Thewindow can be closed to itsicon by clicking on the close box with mouse button 1.

This border styleis equivalent to genericXBorderGen(false, true, true, true).

genericXBorderGen : proc(bool, bool, bool, bool ® BorderStyle)

This procedure produces a border style which in turn produces an Open Look style border.
The first parameter specifies whether the border has a close box; the second parameter
specifies whether the border has resize handles; the third parameter specifies whether a
border menu is provided; the fourth parameter specifies whether a thin box is drawn around
the inside of the border. Subject to these options the interactive operations on the border are
the same as for fixedX.

invisible : BorderStyle

This border style produces a border with no visible parts and no interactive operations.

menuX : BorderStyle

This border style produces the same border as that produced by fixedX, without a close box or
inner rectangle.

71

Untitled Untitled

non-current, non-selected current, non-sel ected

Unlilled L Unlilled |

non-current, selected current, selected
Figure 4.4: menuX borders

This border styleis equivaent to genericXBorderGen(false, false, false, false).

plain : BorderStyle

This border style produces a border with a single line around the window and no interactive
operations.

Figure4.5: A plain border

shadow : BorderStyle

This border style produces a border with a single line and a shadow around the window and
no interactive operations.

72

Figure 4.6: A shadow border

variableX : BorderStyle

This border style produces the same border as that produced by fixedX, with the addition of
resize handles at the four corners.

= Untitled 1 C® Untitled

non-current, non-selected current, non-selected

Onlilled

non-current, selected current, selected
Figure4.7: variableX borders
The window can be resized by dragging aresize handle with mouse button 1.
This border style is equivalent to genericXBorderGen(true, true, true, true).
426.1.1 | nteractive

This section describes how the user can define new styles of borders. A border is defined by
splitting it up into a number of areas using the following types:

type BorderStyle is proc(Wndow -> Border)

73

type Border is List[Area]
type Area i s structure(currentlmage, nonCurrent| mage : image ;
pos : Pos ; distributeEvent : Application)

A border style is represented as a procedure which takes as its parameter a window and
returns alist of values of type Area. Each of these is a structure that contains two images for
apart of the border. One of the images is displayed when the window is current and the other
when itisnot. The border as awhole is built up from the separate areas. Each structure also
contains the position of the origin of the area relative to the origin of the window and an
application that processes mouse events that occur over the area. No keyboard events are
sent to border applications. Mouse events sent to border applications are transated so that
the positions are relative to the origin of the window.

A border style could be split into four areas asillustrated in Figure 4.8:

U

Elzl Title 1

U
Figure 4.8: Border styleareas

A new border style is made by constructing a procedure of type Border Style which takes a
window as its parameter and returns a list of border areas. The procedure will use the size of
the window to calculate the sizes and positions of the areas. The only restriction on the
appearance of a border style is that its outline should be rectangular. If thisis not adhered to
the border may not be displayed correctly.

A number of predefined procedures are available for performing interactive window
manipulation and these can be incorporated into a new border style. The move procedure, for
example, displays an outline of the window and moves it around following the position of the
mouse until the mouse button is released, when it calls the window manager's move
procedure to move the window to its new position.

The procedures can be incorporated into a border style by using them within the applications
for the border areas.

delete : proc(Window, Event, EventTest, proc(), proc())

This procedure undisplays the given window. The second parameter isignored and is present
only for compatibility with the other procedures in the environment. Before undisplaying the
window, delete calls the first of the void procedure parameters. After undisplaying the
window it loops until the EventTest parameter returns false on the current event and then calls
the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as a ‘ delete window’ command.

74

iconise : proc(Window, Event, EventTest, proc(), proc())

This procedure closes the given window. The second parameter is ignored and is present
only for compatibility with the other procedures in the environment. Before closing the
window, iconise calls the first of the void procedure parameters. After closing the window it
loops until the EventTest parameter returns false on the current event and then calls the
second of the void procedure parameters.

A typical use of this procedure is for a border style to cal it when a mouse down event is to
be interpreted as a‘* close window’ command.

move : proc(Window, Event, EventTest, proc(), proc())

This procedure allows the given window to be moved interactively. The Event parameter is
interpreted as the event which caused the procedure to be invoked. Before moving the
window, move calls the first of the void procedure parameters. It then displays an outline of
the given window and allows it to be dragged by the mouse until the EventTest parameter
returns false on the current event. It then moves the window to the current position of the
outline and calls the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as a‘move window’ command.

pushPop : proc(Window, Event, EventTest, proc(), proc())

This procedure brings the given window to the front, unless the window is already at the
front, in which case it sends the window to the back. The second parameter isignored and is
present only for compatibility with the other procedures in the environment. Before moving
the window, pushPop calls the first of the void procedure parameters. After moving the
window it loops until the EventTest parameter returns false on the current event and then calls
the second of the void procedure parameters.

A typical use of this procedure is for a border style to call it when a mouse down event is to
be interpreted as an ‘alter window depth’ command.

resize : proc(Window, Event, EventTest, proc(), proc())

This procedure allows the given window to be resized interactively. The second parameter is
ignored and is present only for compatibility with the other procedures in the environment.
Before resizing the window, resize calls the first of the void procedure parameters. It then
displays an outline of the given window and allows its size to be altered by dragging the
mouse until the EventTest parameter returns false on the current event. If the cursor is
initially close to a corner of the window then the position of that corner is altered during the
resize. Otherwise the position of the window edge nearest the cursor is atered. The
procedure then moves the window to the current position of the outline and calls the second
of the void procedure parameters.

windowCreatorGen : proc(WindowManager, proc(Sze, WindowManager, int ® Window),
Sze® Application)

This procedure returns an application which allows a rectangular outline to be dragged out
using any mouse button, subject to the minimum size given by the third parameter. When the

75

mouse button is released the application creates a window by calling the second parameter
and displays it at the position of the outline. The window manager parameter should be the
window manager running in the window in which the application is set. The integer
parameter passed to the second parameter is the number of the mouse button being used.

4.26.2 CurrentState

currentBuffer : Editor[Binding]

This variable contains a cut/copy/paste buffer shared among hyper-program editors created
by calling hyper ProgramPackGen described in Section 4.26.4.

currentError : proc(string)

This variable contains a procedure which may be used to display error messages.

currentOutputPack : EditorPack| Binding]
This variable contains an editor which may be used to display hyper-program messages.

currentWindowManager : WindowManager

This variable contains the top-level window manager currently active.

currentWriteString : proc(string)
This variable contains a procedure which may be used to display string messages.
4.26.2.1 CurrentBrowser

browser : proc(Binding)

This procedure displays the given value using the currently active browser.

deselect : proc(Binding)

This procedure deselects the given value. It isremoved from the selection list and its browser
representation assumes the unsel ected appearance.

select : proc(Bindinglnfo[Binding], bool)

This procedure selects the value in the given structure. If the boolean parameter is false any
other selected values are deselected. The selected value is added to the selection list and its
browser representation assumes the selected appearance. The other structure fields contain a
name for the binding, which may be blank, and, for a location, the vertical offset from the
base of the parent menu both in pixels and in numbers of entries. For non-locations these
fields are ignored.

76

selected : proc(Binding ® bool)

This procedure returnstrue iff the given value isin the selection list.

getSelectedBindinglnfo : proc(® List[Bindinglnfo[Binding]])
This procedure returns the current selection list.

4.26.3 Defaults

defaultBoldFont : FontPack

This variable contains the default bold font. Initialy it is set to courB14.

defaultBorder Syle : BorderStyle

This variable contains the default border style. Initialy it is set to variableX.

defaultBorder Thickness : int

This variable contains the default border thickness. Initialy itisset to 2.

defaultColourMap : *int

This variable contains the default colour map used when the programming environment is
initialised.

defaultFont : FontPack

This variable contains the default font. Initially it is set to courR14.

defaultlcon : image

This variable contains the default icon image. Initially it is set to the image shown below:

defaultLinkMarker : string

This variable contains the marker used by hyper-program editors to denote embedded link
information in files. Initialy it isset to "!@E3$". See Section 4.26.4.

77

defaultOuter Scopes : *string

This variable contains the names of the default declaration sets associated with a newly
created hyper-program editor. Initialy it is set to stringVectorFailValue, denoting no
declaration sets.

defaultWindowCursor : image

This variable contains the default cursor image. Initially it is set to the image shown below:

o

defaultWindowDepth : int

This variable contains the default image depth for windows. Initially it isset to 1.

defaultWindowSze: Sze

This variable contains the default size for windows. Initialy it is set to Sze(300, 200).

defaultXWindowPos : Pos

This variable contains the default position for X windows relative to the top left corner of the
screen. Initialy itisset to Pos(10, 10).

defaultXWindowSze: Sze
This variable contains the default size for X windows. Initially it isset to Sze(1100, 770).

4.26.4 Generators

editorGen : proc[HyperLink](Window ® Editor[HyperLink])

This procedure returns a hyper-text editor running in the given window. The type parameter
specifies the type of the hyper-links which may be embedded in the text of the editor. The
editor is implemented as an abstract data type containing procedures which fall into several
categories:

» procedures for reading and writing hyper-text to and from the editor;

» procedures for navigating around the hyper-text in the editor;

e procedures for controlling interactive input and the appearance of the window display;
and

» procedures for setting and reading attributes of the editor.

Although the editor returned by this procedure operates on a window it is possible to de-
couple the editor from its window and later re-couple it to the same or a different window.

78

This makes it possible to retain text in the persistent store within an editor without the
potentially large overhead of storing the associated window by storing the editor in its
unbound state. While an editor is de-coupled from its window the procedures specific to the
window display are disabled. Operations on the hyper-text may still be performed but the
effects are not visible in any window.

An editor manipulates a number of lines of hyper-text separated by carriage returns. Thereis
no limit on the length of aline. Each line may contain both characters and links to instances
of the parameter type HyperLink. The editor records the current selection, which isa pair of
points in the hyper-text, all the hyper-text between the points being considered as selected.
The points may coincide, in which case the selection is empty. Editing functions such as cut,
copy and paste operate on the current selection.

Instances of the witness type of the abstract type Editor are used to represent positions within
the hyper-text. The user is unable to perform any operations on such values except to use
them as parameters to editor functions. Thus the user cannot discover the interna repre-
sentation of the hyper-text or manipulate it other than through the editor interface.

If aline of text istoo long to fit on one line in the window, it wraps onto subsequent window
lines. No word wrapping is performed. The text is displayed in a single fixed-width font
only. The font can be set by the user. The user can turn highlighting on or off. When it is
on, the text currently selected (if visible in the window) is shown ininverse video. Whenitis
off the selection is displayed as normal, although it is still possible for the user to invert
arbitrary regions of text using the invert procedure.

The editor’s initial font is given by the current value of defaultFont in the environment
Defaults.

The procedures in an editor with witness type TextPointer and parameterised by type
HyperLink are:

copyText : proc(Editor[HyperLink])

This procedure takes as parameter another editor of the same type to act as a
buffer, and copies the currently selected text to the buffer. The current
selection is unaffected but the previous contents of the buffer are over-written.

cutText : proc(Editor[HyperLink])

This procedure performs the same actions as copyText except that the current
selection is deleted.

clearText : proc()

This procedure del etes the current selection.

pasteText : proc(Editor[HyperLink])

This procedure over-writes the current selection with the contents of the given
buffer.

79

80

insertText : proc(HyperText[HyperLink], bool)

This procedure over-writes the current selection with the given hyper-text. If
the boolean parameter is true the window display is updated incrementaly as
the text isinserted. If the parameter is false the display is updated only after
the insertion has been completed. This option gives better performance when
large sections of hyper-text are inserted. If no window is currently coupled to
the editor, the boolean parameter has no effect.

readFromFile: proc(file)

This procedure over-writes the current selection with the contents of the given
file. Thiswill result in text only without any hyper-links.

writeToFile: proc(file)

This procedure writes the textual contents of the editor out to the given file.
The title of each hyper-link button iswritten out at the appropriate position.

select : proc(TextPointer, TextPointer)

This procedure sets the current selection to the hyper-text between the given
positions. Note that text positions cannot be created by the user but can only
be obtained by calling editor procedures.

firstSelection : proc(® TextPointer)

This procedure returns the starting position of the current selection.

lastSelection : proc(® TextPointer)

This procedure returns the finishing position of the current selection.

firstLine: proc(® TextPointer)

This procedure returns the position of the beginning of the first text line.

lastLine: proc(® TextPointer)

This procedure returns the position of the beginning of the last text line.

topLine: proc(® TextPointer)

This procedure returns the position of the start of the top-most window line.
This need not be at the beginning of a text line. 1f no window is currently
coupled to the editor an error is reported using the procedure error as
described in Section 4.26.8 and the position returned is the beginning of the
first text line.

bottomLine: proc(® TextPointer)

This procedure returns the position of the start of the bottom-most window
line. This need not be at the beginning of a text line. If no window is
currently coupled to the editor an error is reported using the procedure error as
described in Section 4.26.8 and the position returned is the beginning of the
first text line.

frontOfLine : proc(TextPointer ® TextPointer)

This procedure returns the position of the beginning of the text line containing
the given position.

endOfLine : proc(TextPointer ® TextPointer)

This procedure returns the position of the end of the text line containing the
given position.

nextLine : proc(TextPointer ® TextPointer)

This procedure returns the position of the beginning of the text line following
the text line containing the given position. If the given position isin the last
text line, the position of the end of that line is returned.

previousLine : proc(TextPointer ® TextPointer)

This procedure returns the position of the beginning of the text line preceding
the text line containing the given position. If the given position is in the first
text line, the position of the beginning of that line is returned.

peek : proc(® HyperText[HyperLink])

This procedure returns the next character or hyper-link after the current
selection, or the empty string if the current selection is at the end of the hyper-
text. A newline character isreturned if the current selection ends at the end of
atext line.

read : proc(® HyperText[HyperLink])

This procedure performs the same actions as peek except that the current
selection is advanced so that it begins and ends at the point after the character
or hyper-link read, unlessit is already at the end of the hyper-text.

readLine: proc(® HyperText[HyperLink])

This procedure returns the remainder of the text line after the current selection,
not including the newline character at the end, and advances the current
selection to the beginning of the following text line. If it aready ends in the
last line, the current selection is moved to the end of that line.

81

82

selectedText : proc(® HyperText[HyperLink])

This procedure returns the hyper-text in the current selection.

before : proc(TextPointer, TextPointer ® bool)

This procedure returns true iff the first position lies before the second position
in the hyper-text.

endOfText : proc(® bool)

This procedure returns true iff the end of the current selection is at the end of
the last text line.

getFont : proc(® FontPack)
This procedure returns the font used to display the hyper-text.

getHighlight : proc(® bool)

This procedure returns tr ue iff the current selection is highlighted.

getProgressindicator : proc(® proc(string, real))

This procedure returns the user-set procedure used to display file I/O progress.

getcrollAction : proc(® proc(int, bool))

This procedure returns the user-set procedure that is called whenever the
hyper-text is scrolled.

getWindow : proc(® Window)

This procedure returns the window currently coupled to the editor or a fall
valueif thereis no such window.

interactiveEdit : proc(Editor[HyperLink], EventTest, EventTest, EventTest
® Application)

This procedure generates an application which can be used to allow the user to
enter and edit text in the window interactively. It takes as parameters an editor
to use as an editing buffer and procedures to detect point, extend and other
mouse button presses. Note that the application for the window must be set
explicitly to allow interactive editing.

The interactive operations supported by the application are as follows:

operation method

enter text type at keyboard

position insertion point click mouse button 1

set current selection drag region of text with
mouse button 2

extend current selection click with mouse button 2

select word double click with mouse
button 1

delete current selection type ‘backspace’ or ‘delete’

cut current selection type ‘ctrl-x’

copy current selection type ‘ctrl-¢’

paste type ‘ctrl-v’

Table 4.3: Interactive operations

On some terminals the codes for cut, copy and paste may not work due to the
characters being trapped before reaching the WIN system.

invert : proc(TextPointer, TextPointer)

This procedure inverts the pixels of the characters between the two given text
positions.

lineCount : proc(® int)

This procedure returns the number of text lines currently held in the editor.

new : proc()

This procedure deletes all the text in the editor.

offset : proc(TextPointer, bool ® Index)

This procedure returns the distance from the start of the text to the given
position. The distance is returned as a variant, being the number of characters
if the given boolean value is true and otherwise a structure containing the
number of lines and an offset within aline.

position : proc(Pos® TextPointer)

This procedure returns the position in the text which is currently closest to the
given position in the window display relative to the bottom left of the window.

83

redisplay : proc(TextPointer)

This procedure redraws the contents of the window with the given text
position at the top. If the text position is not at the beginning of atext line, the
procedure uses instead the first text position before the given one which would
normally fall at the beginning of a window line. This ensures that a text line
always starts at the beginning of awindow line.

scanLinks : proc(proc(Substitution] LinkPack[HyperLink]] ® bool))

This procedure applies the given procedure successively to each link in the
hyper-text, in their order within the hyper-text, until either the procedure
returns false or it has been called for all the links.

scroll : proc(int, bool)

This procedure scrolls the window display up or down. If the boolean
parameter is true then the display is scrolled up by the given number of
window lines, a negative number giving downwards scrolling. If the boolean
is false then the integer parameter gives the absolute position to scroll to, as a
number of text lines from the beginning of the text.

search : proc(Hyper Text[HyperLink], bool ® bool)

This procedure searches for the given hyper-text, starting from the end of the
current selection, moving forwards or backwards depending on the given
boolean value. The boolean value returned is true iff the hyper-text is found,
in which case the hyper-text is selected. A link in the target hyper-text
matches alink in the editor iff they areidentical.

seek : proc(Index ® TextPointer)

This procedure returns the position corresponding to the given offset from the
start of the text.

setFont : proc(FontPack)

This procedure sets the font used to display the text. The font is checked to
make sure that it contains all the necessary characters and that they are al the
same size. |If so, the contents of the window are redrawn in the new font,
otherwise the procedure has no effect.

setHighlight : proc(bool)

This procedure sets the highlight on if the argument is true, or off otherwise.
When the highlight is on the current selection isinverted whenever it isvisible
in the window.

setProgressindicator : proc(proc(string, real))

This procedure sets the procedure used to display file 1/0 progress. The string
parameter specifies the type of I/O and the real parameter specifies the fraction
of the 1/0 compl eted.

setScrollAction : proc(proc(int, bool))

This procedure sets the procedure that is called whenever the hyper-text is
scrolled. The parameters are the same as those passed to scroll.

setWindow : proc(Window)

This procedure sets the display window for the editor. Any existing contents
of the window are erased and the text is displayed in it starting from the
beginning of the first text line. If the editor is already coupled to awindow the
procedure has no effect.

unbindWindow : proc()

This procedure de-couples the editor from its display window. If there is no
window coupled to the editor the procedure has no effect.

eventMonitorGen : proc(proc(® bool), Application ® proc())

This procedure returns a procedure (an event monitor) that repeatedly gathers user input
events and passes them to the given application. It calls the first procedure parameter after
passing each event, and terminates when that procedure returnstrue.

This could be used, for example, to initiate a WIN session without starting the programming
environment, asillustrated below:

| et aWndowManager = screenW ndowVanager Gen(1)
inroot let finished := fal se I make vari abl e accessi bl e by other prograns
I et em= eventMnitorGn(proc(-> bool) ; finished,
aW ndowManager (get Di spl ayWndow) () (get Application)())
ent)

hyper ProgramPackGen : proc(Sze, bool, bool, proc(® List[Table[string, Binding]])
® EditorPack[Binding])

This procedure returns an instance of EditorPack specialised to links of type Binding. The
first parameter specifies the size of the window. The contents of the editor are interactively
editable iff the second parameter istrue. Iff the third parameter is true the window contains
al the light-buttons described in Section 2.1.

The fourth parameter is a procedure that returns a list of tables mapping string names to
Bindings. Thislist is used to form a series of outer scopes during compilation of the editor
contents.

When the contents of the hyper-program editor are written out to a file the editor records,
where possible, information about the positions in the store of the Binding links. In some

85

cases this enables the links to be reconstructed when the hyper-program is read back from the
file. Such a case arises when a Binding is accessible through a chain of environments from
the root of persistence. Since, however, the information recorded for each such case is the
path from the persistent root, there is no guarantee that the reconstructed link is the same as
the original.

The string defaultLinkMarker, described in Section 4.26.3, is used to indicate the presence of
alink record in thefile. It may be updated if it clashes with genuine text in the editor. If itis
set to the empty string then the editor does not attempt to record or interpret any link
information on file writes and reads.

The resulting Editor Pack contains the following fields:

window : Window

This window contains the editor window and associated scroll bar and light-
buttons.

editor : Editor[Binding]
Thisisthe editor itself.

getTitle: proc(® string)

This procedure returns the title of the source code currently being edited.

getText : proc(® HyperText[Binding])

This procedure returns the entire contents of the editor.

append : proc(HyperText[Binding])

This procedure inserts the given hyper-text after the existing contents of the
editor.

screenWindowManager Gen : proc(int ® WindowManager)

This procedure returns a window manager which operates directly on the screen or on an X
window. The parameter gives the depth of the display area in planes. The procedure first
attempts to open the screen as araw device. If thisfails, for example because a (non-Napier)
window manager is running, the procedure attempts to connect to the X-server indicated by
the UNIX environment variable DISPLAY and to create an X window on which to operate
the window manager. If thisalso failsafail valueis returned.

unboundEditorGen : proc[HyperLink](® Editor[HyperLink])

This procedure returns an editor with no display window coupled to it.

86

windowGen : proc(® Window)

This procedure returns a window. The window’s initial icon, cursor, size, pixel depth and
border style are given respectively by the current values of defaultlcon,
defaultWindowCursor, defaultWindowSze, defaultWindowDepth and defaultBorderStyle in
the environment Defaults.

The fields of the window are as follows:

windowRaster : proc(Limit, Limit, Window, int, bool)

This procedure performs a raster operation between the window and another
given window. The first limit specifies the region in the window and the
second the region in the other window. The integer parameter specifies the
raster rule to be used according to the values in the Raster Rules environment.

The boolean parameter specifies the direction of the raster operation. If itis
true the raster operation is from the other window to the window, otherwise
the operation is from the window to the other window. If the source regionis
larger than the destination region it is clipped on the top and right sides as
necessary. |If it is smaler than the destination the new pixels are drawn
starting at the bottom left of the destination region.

For example, the following code xors an area of 10 by 10 pixels starting at
position (0,0) from windowl onto window?2 at the position (10,20):

| et destination = Limt(Pos(10,20), Size(10,10))
let source = Limt(Pos(0,0),Size(10,10))
wi ndow2(wi ndowRaster)(destination, source, w ndowl, xorRule, true)

imageRaster : proc(Limit, image, int, bool)

This procedure performs a raster operation between the window and a given
image. The limit parameter specifies the region in the window. The integer
parameter specifies the raster rule to be used according to the values in the
Raster Rules environment.

The boolean parameter specifies the direction of the raster operation. If it is
true the raster operation is from the image to the window, otherwise it is from
the window to the image. Clipping of the window region is performed as for
windowRaster.

drawLine : proc(Pos, Pos, pixel, int)

This procedure draws a line on the window between the given points, using
the given pixel and raster rule. If either point lies outside the window the line
is clipped to the boundaries of the window.

setlnputOption : proc(InputOption)
This procedure specifies how the window receives input events when it is the

current window displayed by awindow manager. The parameter isinterpreted
according to its branch as follows:

87

88

al : the window receives all input events detected by the window
manager until the input option is reset;

normal : the window receives mouse events over the window region and all
text events;

none: thewindow receives no input events until the input option is reset.

getlnputOption : proc(® InputOption)

This procedure returns the input option currently associated with the window.

setSze: proc(Rect)

This procedure changes the size of the window to that of the specified
rectangle. The rectangle’s coordinates are given relative to the current origin
of the window. The existing contents of the window are redrawn at the old
origin of the window, after being clipped if necessary. The bottom left corner
of the resized window becomes the new origin of the window’s coordinate
system.

For example, the following code creates a window of the default size
(assumed to be 100 by 100 pixels) and then enlarges it by 10 pixels in both
directions. Blank space is added at the left and bottom of the window and the
old contents are drawn on the window starting at the point (10,10).

| et wi ndowne = wi ndowGen()
wi ndowtne(setSize)(Rect(Pos(-10, -10), Pos(100, 100)))

getSze: proc(® Sze)

This procedure returns the current size of the window.

setApplication : proc(Application)

This procedure sets the application for the window. The application is a
procedure which takes an input event as its parameter and performs some
action.

getApplication : proc(® Application)

This procedure returns the application currently associated with the window.

setTitle: proc(string)

This procedure sets the title for the window.

getTitle: proc(® string)

This procedure returns the title currently associated with the window.

setResizeControl : proc(ResizeControl)

This procedure sets the resize behaviour for the window. It alows the
programmer of an application to specify how to regenerate the display when
the window in which it is running is resized. The fields of the structure
parameter are interpreted as follows:

before : proc(Rect ® Rect)

This procedure is called immediately the window’s setSze
procedure is called, before any changes are made to the
window. The parameter gives the proposed new size of the
window. The procedure may perform any actions necessary
before the window isresized. The result of the procedure isthe
actual permitted new size of the window, which may be
different from the proposed new size. If the result is equal to
rectFailValue in the environment FailValues the entire resize
operation is vetoed.

after : proc(Rect)

This procedure is called after a window has been resized, with
the new size passed to it.

For example, the following code shows the procedures being set for a window
whose application displays a view onto an image which is larger than the
window. To conserve memory the application does not keep a separate copy
of the part of the image which is shown in the window. The procedure before
copies from the window any parts of the image that will cease to be visible,
while after draws on any parts of the image that have newly become visible.

| et resizeControl

begi n
let before = proc(newRect : Rect ® Rect)
begi n
I*** Copy parts that becone invisible after resize.
newRect
end
let after = proc(newRect : Rect)
begi n
I*** F || in parts that becone visible after resize.
end
Resi zeControl (before, after)
end

i mageVi ewer Wndow(set Resi zeControl)(resizeControl)

getResizeControl : proc(® ResizeControl)

This procedure returns the resize control structure currently associated with
the window.

89

90

setMinSze: proc(Sze)

This procedure sets the minimum size to which the window can be resized.
Subsequent calls to resize with a size smaller than the minimum in either
direction will have no effect. If the window is currently smaller than the
minimum specified then the minimum is not set.

getMinSze: proc(® Sze)

This procedure returns the minimum size currently associated with the
window.

setMaxSze : proc(Sze)

This procedure sets the maximum size to which the window can be resized.
Subsequent calls to resize with a size larger than the maximum in either
direction will have no effect. If the window is currently larger than the
maximum specified then the maximum is not set.

getMaxSze: proc(® Sze)

This procedure returns the maximum size currently associated with the
window.

setDepth : proc(int)

This procedure sets the pixel depth of the window. If the new depth is greater
than the existing depth then planes of off are added behind the existing planes.
If the new depth is less than the existing depth then planes from the back are
discarded.

getDepth : proc(® int)

This procedure returns the current pixel depth associated with the window.

setBorder Syle : proc(BorderStyle)

This procedure sets the border style used to display the window in a window
manager.

getBorderStyle : proc(® BorderStyle)

This procedure returns the current border style associated with the window.

getBorder : proc(® Border)

This procedure returns the border currently associated with the window. If the
window is not displayed by a window manager the list is empty.

setCursor : proc(image)

This procedure sets the image displayed when the cursor moves over the
window.

getCursor : proc(® image)

This procedure returns the cursor image currently associated with the window.

getWindowManager : proc(® WindowManager)

This procedure returns the window manager currently displaying the window.
If the window is not displayed the fail value windowManagerFailValue is
returned.

setVirtualWindow : proc(string, Window)

This procedureisfor system use only and is password protected.

windowManager Gen : proc(Window ® WindowManager)

This procedure returns a window manager operating in the given parent window. The fields
of the window manager are as follows:

display : proc(Displaylnfo, bool)

This procedure displays a window. The first parameter is a structure
containing the window, its required position on the window manager display
relative to the bottom left corner and its level relative to other windows. |ff
the boolean parameter is true the window is displayed in the background
behind all other windows. The window is not displayed if it is aready
displayed by another window manager or if an attempt is made to display it in
the background when a background window aready exists.

undisplay : proc(Window)

This procedure removes the given window from the window manager display.

makeCurrent : proc(Window)

This procedure sets the window manager’ s current window to be the specified
window. Any existing current window is made non-current.

setPos : proc(Window, Pos)

This procedure moves the given window to the given position.

91

92

getPos : proc(Window ® Pos)

This procedure returns the position of the origin of the given window relative
to the bottom left corner of the parent window.

setlLevel : proc(Window, Level)

This procedure moves the given window to the given level relative to other
windows. If the boolean field in the second parameter is true then the integer
parameter isinterpreted as the number of windows from the front, otherwise as
the number of windows from the back. Thus Level(true, 1) puts the window
at the front, while Level(false, 2) putsit second from the back.

getLevel : proc(Window, bool ® Level)

This procedure returns the level of the given window. If the boolean
parameter istruethe result isrelative to the front, otherwise it isrelative to the
back. Any background window isignored.

getWindows : proc(® *Window)

This procedure returns a vector containing the windows currently displayed by
the window manager, with a lower bound of 1, starting with the window
nearest the front.

getWindowAtPos : proc(Pos® Window)

This procedure returns the front-most window which overlaps the given
position. If thereis none then windowFailValue is returned.

getNotifier : proc(string ® Notifier)

This procedureisfor system use only and is password protected.

getDisplayWindow : proc(® Window)

This procedure returns the window in which the window manager is running.

getlconManager : proc(® lconManager)

This procedure returns an icon manager for the window manager. The fields
are asfollows:

close: proc(Window)

This procedure undisplays the given window and displays an
iconinits place, itself awindow.

open : proc(Window)

This procedure undisplays the given icon and redisplays the
corresponding window at its original position.

getlconState : proc(Window ® Displaylnfo)

This procedure returns a structure containing information about
the icon associated with the given window. The fields of the
structure can be updated to change the way that the icon will be
displayed when the window is next closed.

getWindowSate : proc(Window ® Displaylnfo)

This procedure returns a structure containing information about
the window associated with the given icon. The fields of the
structure can be updated to change the way that the window
will be displayed when the icon is next opened.

setBackgroundApp : proc(Application)

This procedure sets an application to run in the background of the window
manager. The application receives keyboard events when there is no current
window, and mouse events which do not occur over awindow.

getBackgroundApp : proc(® Application))

This procedure returns the current background application.

4.26.5 I mages

This environment contains the following images:

borderCursor : image
downArrow : image
iconiseCursor : image
leftArrow : image
magnify : image
moveCursor : image
resizeCursor : image
rightArrow : image
UpArrow : image

waitCursor : image

M S ED 04 e

windowlcon : image

4.26.6 Sdlection

deselect : proc(Window)

This procedure deselects the given window. If the window is not already selected the
procedure has no effect.

select : proc(Window, bool)

This procedure selects the given window. If the window is already selected the procedure has
no effect. If the boolean parameter is true the procedure does not affect other windows. If
the parameter is false any other selected windows are desel ected.

selected : proc(Window ® bool)

This procedure returnstrue iff the given window is selected.

selectedWindows : List[Window]

Thislist contains the windows that are currently selected.

94

refinements : Table] WindowManager, proc(Window, bool, bool)]

This table maps window managers to procedures that refine the manner in which their
windows are selected and deselected. When a window is selected or deselected the table is
searched for the parent window manager. If it isfound the corresponding procedureis called.
The first boolean parameter is true for a selection and false for a deselection. The second
boolean parameter is equal to the parameter to select for a selection and false for a
deselection.

WindowMaps : env

This environment is intended to contain application-specific mappings from s to vaues, and
may be added to. For example, a drawing application might provide a mapping from
windows used to display objects, to the data about the corresponding objects. Each mapping
is a procedure which takes awindow and returns an optional Binding.

browser : proc(Window ® Optional[Binding]

This procedure maps browser windows to the corresponding values, locations
and types.

4.26.7 Tools

checkBoxGroupGen : proc(* Appearance, *proc(int, bool), int, int, int ® ChoicePack)
This procedure generates a window displaying a group of check boxes. The interpretation of

the parameters is the same as that for genericChoiceGen. An example of a check box
window is shown in Figure 4.9:

(<] Option 1
[] Option 2
(<] Option 3
[<] Option 4

Figure 4.9: A check box window

dialogueGen : proc(Sze, string, string, string, proc(int), proc(int) ® Window)

This procedure generates a dialogue window with one or two choices. The parameters are:
the size of the window; a prompt string; the titles of the two light-buttons; and the procedures
to be called when the light-buttons are pressed. If the second title is empty the second light-
button is not displayed. An example of adialogue window is shown in Figure 4.10:

95

Delete databhasze entry”

Figure 4.10: A dialogue window

genericButtonGen : proc(Appearance, proc(int), bool, proc(int, bool), bool ®
ButtonPack)

This procedure is used to implement lightButtonGen and trillButtonGen and it may also be
called directly. The parameters are:

» alabel to be displayed on the button;

e aprocedure that is called when the button is pressed, passing it the number of the mouse
button used;

» aboolean that specifies whether the button procedure should be called continualy while
the button is pressed (true) or whether it should only be called once the button has been
released (false);

e aprocedure that is called whenever the button changes state from pressed to released and
vice-versa, passing it the number of the mouse button used and a boolean that specifies
whether the button has become pressed (true) or released (false); and

* a boolean that specifies whether the button should have rounded ends (true) or
rectangular (false). If an image rather than a string is supplied for the button label this
parameter isignored.

The structure returned by the generator contains a window that implements the light-button
and a procedure that when called makes the light-button flash as though pressed and released.
A light-button window cannot be resized.

genericChoiceGen : proc(*Appearance, *proc(int, bool), boal, int, int, int ®
ChoicePack)

This procedure is used to implement checkBoxGroupGen and radioButtonGroupGen and it
may aso be called directly. The procedure generates a group of check boxes or radio
buttons. The first parameter is a vector of labels to be displayed by the boxes/buttons. The
second parameter is a vector of procedures to be called when the states of the boxes/buttons
are atered by clicking on them with a mouse button. The integer parameter to each
procedure gives the mouse button used and the boolean parameter is true iff the box/button
has just become selected.

The boolean parameter is true for check boxes and false for radio buttons. The integer
parameters specify how the boxes/buttons are to be arranged. The first gives the number per
column; the second gives the vertical separation; the third gives the horizontal separation
between columns.

96

The states of check boxes can be altered independently of one another. The states of radio
buttons are inter-dependent in that whenever a radio button becomes selected the previously
selected radio button becomes de-sel ected.

The resulting structure contains a window on which the boxes/buttons are displayed and the
following procedure:

set : proc(int, int, bool)

This procedure sets the state of the box/button given by the first parameter to
selected if the boolean parameter is true and unselected otherwise. The effect
isthe same asiif the state had been set interactively by clicking with the mouse
button specified by the second integer parameter.

genericDialogueGen : proc(Sze, string, * Appearance, *proc(int), int, int, int, int, int
® Window)

This procedure generates a dialogue window with an arbitrary number of choices. The
parameters are: the size of the window; a prompt string; the labels for the light-buttons; the
procedures to be called when the light-buttons are pressed; the horizontal offset of the
message from the left side of the dialogue, the vertical offset of the bottom of the message
from the top of the dialogue, the number of buttons in each column of buttons, the horizontal
separation between columns of buttons and the vertical separation between rows of buttons.
An example of such adialogue window is shown in Figure 4.11:

Save As:

Hormal

Text Unly

g

(Pnstscript)

Figure4.11: A dialogue window

genericMenuExpandableGen : proc(* Appearance, * proc(int, MouseEvent), * Appearance,
*proc(int), proc(bool, bool, boal, int), boal,
bool, bool ® MenuPack)

This procedure generates a window containing a menu and associated light-buttons. The
parameters are the same as those to genericMenuGen, except for the third and fourth
parameters which specify the labels and actions for the light-buttons. An example of such a
menu window is shown in Figure 4.12:

97

d (=] Shared Types b

BrowserType

ButtonInfo

ButtonPaclk

CheckBoxFack :
ChoicePack +
(remove) { clear) { watch)

Figure4.12: A menu window

genericMenuGen : proc(*Appearance, *proc(int, MouseEvent),
proc(bool, bool, booal, int), bool, bool, bool ® MenuPack)

This procedure is used to implement menuGen, scrollingMenuGen and
genericMenuExpandableGen, and it may also be called directly. The parameters are:

» avector containing labels for the menu entries;

* a vector containing procedures that are called whenever an entry is selected or its
highlight state changes;

e aprocedure that is called whenever the menu is scrolled; and

* booleans that specify whether the menu may be scrolled, whether entries may be added
and removed from the menu and whether the scroll bar, if present, is on the left of the
menu.

Whenever a mouse button is pressed or released over a menu entry the corresponding element
of the vector of procedures is called, passing it the number of the menu entry and a
description of the event type. This also occurs when the cursor moves over or leaves a menu
entry while a mouse button is down.

The scroll procedure is called whenever the up or down scroll buttons are used. Its first
boolean parameter is true when either button is pressed down initialy, the second is true
when either button is released and the third is true if the scrolling is in the up direction. The
number of the mouse button used is also passed to it. The procedure is caled continualy
while either scroll button is held down, in which case the first two parameters are false.

The resulting structure contains the menu window, a table mapping entry numbers to
structures containing labels and actions, and the following procedures:

setTop : proc(int)
This procedure scrolls the menu so that the given entry lies at or near the top

of the menu, subject to the constraint that the maximum possible number of
entries for the current window size are always displayed. Thus if the given

98

entry is the last it will never be displayed higher than the bottom position. If
the menu is non-scrollable then the procedure has no effect.

getTop : proc(® int)

This procedure returns the number of the entry currently displayed at the top
of the menu.

setNoVisible : proc(int)

This procedure sets the size of the menu window so that the given number of
entries are visible. The procedure has no effect if the given number is less
than one. The change in size is subject to the menu window’s usual
constraints on minimum and maximum size.

getNoVisible : proc(® int)

This procedure returns the number of entries currently visible in the menu.

setHighlight : proc(int, bool)

This procedure sets the highlighted state of the given entry to on or off
depending on the boolean parameter. A value of true gives a highlighted
entry and false a non-highlighted entry.

getHighlight : proc(int® bool)
This procedure returns the highlighted state of the given entry.

getNoEntries: proc(® int)

This procedure returns the number of entries currently in the menu.

genericSiderGen : proc(int, int, real, real, real, bool, proc(int, real),

proc(int, bool) ® SiderPack)

This procedure is used to implement sliderGen and it may also be called directly. The
parameters are:

the X and Y dimensions of the slider;
the minimum and maximum real values associated with the dider;
the amount to be skipped when a mouse click occurs off the thumb;

a boolean that specifies whether the dider is oriented horizontally (true) or vertically
(false);

a procedure that is called when the value of the dlider is changed, passing it the mouse
button used and the new value;

99

» aprocedure that is called at the start and finish of a change in the value of the dider.
When the value starts to change it is passed the mouse button used and the value true.
When the value finishes changing it is passed the mouse button used and the value false.

The resulting structure contains the slider window and the following procedures:

set : proc(real)

This procedure sets the value of the dlider.

setBounds : proc(real, real, real)

This procedure adjusts the minimum and maximum values of the dlider and
the skip increment.

lightButtonGen : proc(Appearance, proc(int) ® ButtonPack)

This procedure generates a light-button with the given label. When the button is pressed it is
highlighted. When it is released the given procedure is called, passing it the mouse button
used. The structure returned contains the light-button window and a procedure that when
called makes the light-button flash as though pressed and released. A light-button window
cannot beresized. An example of alight-button window is shown in Figure 4.13:

Figure 4.13: A light-button window

menuGen : proc(* Appearance, *proc(int) ® MenuPack)

This procedure generates a fixed size, non-scrollable menu with the given labels and
associated actions. The fields of the resulting structure are described above for
genericMenuGen. An example of a menu window is shown in Figure 4.14:

entry 1

entry 2

entry 3

entry 4

entry &

Figure4.14: A menu window

radioButtonGroupGen : proc(* Appearance, *proc(int, bool), int, int, int ® ChoicePack)
This procedure generates a group of radio buttons. The interpretation of the parametersisthe

same as that described for genericChoiceGen above. An example of a radio button window
isshown in Figure 4.15:

100

® Option 1
() Option 2
() Option 3
() Option 4

Figure 4.15: A radio button window

scrollingMenuGen : proc(* Appearance, *proc(int) ® MenuPack)

This procedure generates a variable size scrollable menu with the given labels and associated
actions. The fields of the resulting structure are described above for genericMenuGen.
Entries may not be added to or removed from the menu. The number of entries initialy
visibleis not defined. An example of a scrolling menu window is shown in Figure 4.16:

Figure 4.16: A scrolling menu window

diderGen : proc(int, int, real, real, real, bool, proc(int, real) ® SiderPack)

This procedure generates a dlider. The interpretation of the parameters is the same as that
described for genericSiderGen above. An example of a slider window is shown in Figure
4.17:

Figure4.17: A dider window

trillButtonGen : proc(Appearance, proc(int) ® ButtonPack)

This procedure generates a light-button with the given label. When the button is pressed it is
highlighted and the given procedure is called repeatedly, passing it the mouse button used,
until the button is released. The structure returned contains the light-button window and a
procedure that when called makes the light-button flash as though pressed and released. The
light-button window cannot be resized.

101

4.26.7.1 EditorTools

copyClearEditorToolGen : proc[HyperLink](Sze, Editor[HyperLink] ®
EditorPack| HyperLink])

This procedure generates an editor pack that provides buttons for copying and clearing the
hyper-text. The parameters are the size of the editor window and an editing buffer. An
example of such an editor window is shown in Figure 4.18:

(%] Untitled

(Copy) (Clear) (Find)

Figure 4.18: An editor window with copy and clear

full Editor Tool ExpandableGen : proc[HyperLink](Sze, Editor[HyperLink], *string,
*proc(int) ® EditorPack] HyperLink])

This procedure generates an editor pack that provides all the buttons described for
genericEditorToolGen and also user defined buttons. The parameters are the size of the
editor window, an editing buffer, a vector of string labels for the user defined buttons and a
vector of associated actions. An example of such an editor window is shown in Figure 4.19:

%] Untitled

(Cut) { Copy) { Paste) (Clear) { Find)

{ Load) { Save) (Custowm 1) { Custow 2)

Figure4.19: An editor window with all operations and user defined buttons

fullEditor ToolGen : proc[HyperLink](Sze, Editor[HyperLink] ® EditorPack[HyperLink])
This procedure generates an editor pack that provides all the buttons described for

genericEditorToolGen. The parameters are the size of the editor window and an editing
buffer. An example of such an editor window is shown in Figure 4.20:

102

%] Untitled

(Cut) { Copy) { Paste) { Clear)

(Find) (Lclau:l) (Save)

Figure 4.20: An editor window with all operations

genericEditorToolGen : proc[HyperLink](Sze, Editor[HyperLink], bool, bool, bool, boal,
bool, bool, *string, *proc(int)
® EditorPack] HyperLink])
This procedure is used to implement the other editor generators and it may also be called
directly. The parameters are the size of the editor window, an editing buffer, boolean
parameters described below, a vector of string labels for user defined buttons and a vector of
actions for the user defined actions. The boolean parameters specify whether the following
options are enabled, respectively:
» ability to select hyper-text interactively using the mouse;
» ability to copy selected hyper-text into the given buffer;
» ability to clear the hyper-text in the editor;
» ability to edit the hyper-text interactively;
» ability to load and save text from and to the file system; and
* presence of ascroll bar.
The number of light-buttons displayed at the bottom of the editor window depends on which
of the options are enabled. The possible buttons are cut, copy, paste, clear, find, load and

save. The dependencies are shown in Table 4.4, in which a tick indicates that a particular
option must be enabled for the corresponding button to appear:

103

option enabled

select copy clear edit load/save

cut O O

copy 0

paste O O

button clear 0

find 0

load 0
save O O

Table 4.4: Editor tool light-buttons

User defined buttons are displayed after the pre-defined buttons. The resulting structure
contains the editor window, the editor and the following procedures:

getTitle: proc(® string)

This procedure returns the current title of the text being edited. This title
corresponds to the most recent file name if text has been loaded from or saved
to the file system.

getText : proc(® HyperText[HyperLink])

This procedure returns the current contents of the editor.

append : proc(Hyper Text[HyperLink])

This procedure inserts the given hyper-text at the end of the existing hyper-
text.

genericSngleLineDialogueGen : proc[HyperLink](Sze, string, * Appearance,
*proc(int, HyperText[HyperLink]),
EditorPack] HyperLink], int, int, int,
int, int, int, int ®
DialoguePack[HyperLink])

This procedure is used to implement singleLineDialogueGen and it may also be called
directly. It generates a dialogue window containing a single line hyper-text editor and a
number of user defined light-buttons. The parameters are as follows:

» the size of the dialogue window;

e aprompt label;

» avector of labelsfor the light-buttons;

104

» avector of procedures to be called when the light-buttons are pressed, each one taking as
parameters the mouse button used and the current contents of the editor;

» theeditor to be displayed;

» the X offset of the prompt from the left of the dialogue; the Y offset of the prompt from
the top of the dialogue; the X offset of the editor from the left of the dialogue; the Y offset
of the editor from top of the dialogue; the number of light-buttons per column; the
horizontal separation of the light-buttons; and the vertical separation of the light-buttons.

The resulting structure contains the dialogue window and the following procedure:

set : proc(HyperText[HyperLink])

This procedure replaces the contents of the editor with the given hyper-text.

readOnlyEditor Tool ExpandableGen : proc[HyperLink](Sze, Editor[HyperLink], *string,
*proc(int) ®
EditorPack] HyperLink])

This procedure generates an editor pack with user defined buttons that does not allow
interactive selecting, copying or editing of the hyper-text. The parameters are the size of the
editor window, an editing buffer, a vector of string labels for the user defined buttons and a
vector of associated actions. An example of such an editor window is shown in Figure 4.21.

(%] Untitled

{ Custom 1) { Custom 2)

Figure4.21: A read only editor window with user defined buttons

readOnlyEditor ToolGen : proc[HyperLink](Sze, Editor[HyperLink] ®
EditorPack] HyperLink])

This procedure generates an editor pack that does not allow interactive selecting, copying or

editing of the hyper-text. The parameters are the size of the editor window and an editing
buffer. Anexample of such an editor window is shown in Figure 4.22:

105

(7] Untitled

Figure4.22: A read only editor window

simpleEditorToolGen : proc[HyperLink](Sze, Editor[HyperLink]
® EditorPack] HyperLink])

This procedure generates an editor pack that alows interactive selecting and editing of the
hyper-text but provides no light-buttons. The parameters are the size of the editor window
and an editing buffer. An example of such an editor window is shown in Figure 4.23:

[¥] Untitled

Figure 4.23: A simple editor window

singleLineDialogueGen : proc[HyperLink](Sze, string, string, string,
proc(Hyper Text[HyperLink]),
proc(HyperText[HyperLink]) ®
DialoguePack[HyperLink])

This procedure generates a dialogue window containing a single line hyper-text editor and
two user defined light-buttons. The parameters are: the size of the dialogue; a prompt label;
labels for the light-buttons; and procedures that are called when the light-buttons are pressed,
passing them the current contents of the editor. An example of such a dialogue window is
shown in Figure 4.24:

Environment Name: '

Figure 4.24: A single line dialogue window

106

4.26.8 Utilities

button1Down,button2Down,button3Down : proc(Event ® bool)

These procedures return true iff the corresponding mouse button of the given event is down.

changeCursor : proc(string)

This procedure sets the cursor image to the image denoted by the given string. The cursors
available are "border”, "iconise", "move", "resize" and "wait".

fileTolmage : proc(file® image)

This procedure reads a representation of an image from the given file in the format produced
by imageToFile and convertsit to an image.

fileToSound : proc(file® *int)

This procedure reads a representation of a sound from the given file in Sun audio format and
convertsit to avector of integers.

getBorderExtent : proc(Window ® Rect)

This procedure returns the extent of the window’s current border. The coordinates of the
corners are given relative to the origin of the window.

imageToFile : proc(image, file)

This procedure writes a representation of the given image to the given file.

playSound : proc(*int)

This procedure attempts to play the sound represented by the given vector through the
machine’s loudspeaker.

setColourMap : proc(*int, int)

This procedure sets the Napier system colour map to the given map. The second parameter
specifies the screen depth in planes.

tiffFileTolmage : proc(file® Pair[image, *int])
This procedure reads a representation of an image from the given file in 1-bit, 4-bit or 8-bit

TIFF format and converts it to an image and an associated colour map. The procedure was
written by Ying-Jean Kuo of Glasgow University.

107

5 TheError Environment

The Error environment contains the following items:

Arithmetic : env
Environment: env
Format : env
Graphics: env
10: env
String : env
Structure : env
Variant : env
V ector : env

The procedures that are called in the event of an error are stored in these environments. Each
procedure is a variable and the user may change them by assignment. By default, all the error
procedures write out an appropriate error message and halt the execution of the current
thread.

5.1 Arithmetic Errors

unarylnt : proc(string, int® int)

This procedure may be called during the operations unary minus and abs with a string
parameter of "-" and "abs" respectively. The second parameter is the integer on which the
original operation was attempted.

Int : proc(string, int, int® int)

This procedure may be called during the operations plus, times, minus, div and rem with a
string parameter of "+", "*" "-" "div" and "rem" respectively. The other parameters are the
integers on which the original operation was attempted.

unaryReal : proc(string, real ® real)

This procedure may be called during the operations unary minus, sin, cos, exp, In, sgrt, atan
and truncate with a string parameter of "-", "sin", "cos', "exp", "In", "sgrt", "atan" and
"truncate” respectively. The second parameter is the real number on which the original

operation was attempted.

Real : proc(string, real, real ® real)
This procedure may be called during the operations plus, times, minus and divide with a

string parameter of "+", "*", "-" and "/" respectively. The other parameters are the real
numbers on which the original operation was attempted.

108

getByte : proc(int, int® int)

This procedure may be called during execution of the getByte procedure in Primitivel O. Itis
called when the byte index supplied to getByte is not between 0 and 3. The parameters to the
error procedure are those supplied to the original call of getByte.

setByte : proc(int, int,int® int)

This procedure may be called during execution of the setByte procedure in Primitivel O. It is
called when the byte index supplied to setByte is not between 0 and 3. The parameters to the
error procedure are those supplied to the original call of setByte.

truncate : proc(real ® int)
This procedure may be called during execution of the truncate procedure in Arithmetic. It is

called when the result would be outwith the implementation dependent bounds for legal
integers. The parameter to the error procedure is that supplied to the original call of truncate.

5.2 GraphicsErrors

Draw : proc(pic, real, real, real, real)

This procedure may be called during execution of the procedure returned by the
makeDrawFunction procedure in Outline. It is called when the two x parameters or the two y
parameters are equal. The parameters to the error procedure are the picture to be drawn and
the attempted clipping region.

Text : proc(string, real, real, real, real ® pic)

This procedure may be called during creation of a picture using the text statement. It is
called when the end points of the text are coincident. The parameters to the error procedure
are the text string, the coordinates of the first end point and the coordinates of the second end
point.

getPixel : proc(image, int, int® pixel)

This procedure may be called during execution of the getPixel procedure in Raster. It is
called when the coordinates lie outwith the bounds of the image. The parameters to the error
procedure are those supplied to the original call of getPixel.

setPixel : proc(image, int, int, pixel)
This procedure may be called during execution of the setPixel procedure in Raster. It is

called when the coordinates lie outwith the bounds of the image. The parameters to the error
procedure are those supplied to the original call of setPixel.

109

pixelOverflow : proc(pixel ® pixel)

This procedure may be called during the pixel concatenation operation ++. It is called when
the depth of the resulting pixel overflows the implementation size (the maximum pixel depth
is 24 pixelsin the current implementation of Napier88). The parameter to the error procedure
isapixel containing the first 24 planes of the result.

subPixel : proc(pixd, int, int® pixel)

This procedure may be called during the pixel indexing operation |. It is called when the start
plane is less than zero, when the start plane is greater than or equal to the pixel depth, when
the number of planes requested is less than one, or when the planes selected are not a subset
of the original pixel. The parameters to the error procedure are the original pixel, the start
plane and the number of planes.

makelmage : proc(int, int, pixel ® pixel)

This procedure may be called during the image creation operation. It is called when either
the x or the y dimension is less than one. The parameters to the error procedure are the x and
y dimensions and the initialising pixel.

sublmage : proc(image, int, int ® image)

This procedure may be called during the image indexing operation |. It is called when the
start plane is less than zero, when the start plane is greater than or equal to the image depth,
when the number of planes requested is less than one, or when the planes selected are not a
subset of the original image. The parameters to the error procedure are the original image,
the start plane and the number of planes.

[imitAt : proc(image, int, int ® image)

This procedure may be called during the 'limit i at x, y' operation. Itiscalled when x <0 or x
8 xDim (i) ory<0ory?3 yDim (i). The parameters to the error procedure are the origina
image and the x and y coordinates.

[imitAtBYy : proc(image, int, int, int, int ® image)

This procedure may be called during the 'limit i to x1 by y1 at x2, y2' operation. Itis called
when x2 <0 or x23 xDim (i) or y2 <0 or y2 3 yDim (i) or when the sub-image requested is
not totally enclosed within the original image. The parameters to the error procedure are the
original image, the x coordinate, the x dimension, the y coordinate and the y dimension.

imagePixel Constant : proc(image)

This procedure is called when araster update operation is attempted on an image of constant
pixels. The parameter to the error procedureis the original image.

110

getScreen : proc(file® image)

This procedure may be called during execution of the getScreen procedure in Device. It is
called when thefileis not araster device. The parameter to the error procedure is the original
file.

locator : proc(file, *int)

This procedure may be called during execution of the locator procedure in Device. It is
called when the fileis not a mouse or tablet device. The parameters to the error procedure are
those supplied to the original call of locator.

colourMap : proc(file, pixel, int)

This procedure may be called during execution of the colourMap procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of colourMap.

colourOf : proc(file, pixel ® int)

This procedure may be called during execution of the colourOf procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of colourOf.

getCursor : proc(file® image)

This procedure may be called during execution of the getCursor procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of getCursor.

setCursor : proc(file, image)

This procedure may be called during execution of the setCursor procedure in Device. It is
called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of setCursor.

getCursorlInfo : proc(file, *int)

This procedure may be called during execution of the getCursorinfo procedure in Device. It
is called when the file is not araster device. The parameters to the error procedure are those
supplied to the original call of getCursorlnfo.

setCursorinfo : proc(file, *int)
This procedure may be called during execution of the setCursorinfo procedure in Device. It

is called when the file is not a raster device. The parameters to the error procedure are those
supplied to the original call of setCursorinfo.

111

closedWindow : proc(file, image)

This procedure may be called during a raster operation on an image associated with a window
file. It is called when the window file is closed. The parameters to the error procedure are
the window file and the image.

53 StringErrors

concatenate : proc(string, string® string)

This procedure may be called during the string concatenation operation ++. It is called when
the length of the resulting string overflows the implementation size (the maximum string
length is maxint characters in the current implementation of Napier88). The parameters to the
error procedure are the two strings to be concatenated.

subString : proc(string, int, int ® string)

This procedure may be called during the substring indexing operation |. It is called when the
string to be dereferenced is an empty string, when the start position is less than one, when the
length is less than zero, or when the finish position is after the end of the string. The
parameters to the error procedure are the origina string, the start position and the number of
characters.

54 StructureErrors

structureFieldConstant : proc()

This procedure may be called during an assignment to a field within a structure. It is called
when the field is constant.

55 Vector Errors

vector ElementConstant : proc[t](*t, int, t)

This procedure may be called during an assignment to a location within a vector. It iscalled
when the elements of the vector are constant. The parameters to the error procedure are the
original vector, the index and the value to be assigned to the location.

vectorIndexAssign : proc[t](*t,int, t)

This procedure may be called during an attempted assignment to alocation within avector. It
is called when the attempted index is less than the lower bound of the vector or greater than
the upper bound of the vector. The parameters to the error procedure are the original vector,
the index and the value to be assigned to the location.

112

vectorIndexSubs : proc[t](*t,int® t)

This procedure may be called during an attempted access to a location within a vector. Itis
called when the attempted index is less than the lower bound of the vector or greater than the
upper bound of the vector. The parameters to the error procedure are the original vector and
the index.

makeVector : proc[t](int, int,t® *t)
This procedure may be called during an attempted vector creation. It is called when the lower

bound is greater than the upper bound. The parameters to the error procedure are the lower
bound, the upper bound and the initialising value.

56 VariantErrors

varProject : proc(TypeRep, string, string)

This procedure may be called during a variant projection. It is caled when the variant is
projected onto an incorrect branch. The parameters to the error procedure are a
representation of the variant type, the name of the expected branch and the name of the actual
branch.

The Napier88 system cannot continue after a variant projection error and the current thread
will terminate even if the error handling procedure returns normally.

57 EnvironmentErrors

envRedeclaration : proc(env, string, TypeRep, bool)

This procedure may be called during a declaration within an environment. It is called when
an attempt is made to declare a new binding with an identifier already present in the
environment. The parameters to the error procedure are the original environment, the name
of the identifier, a representation of the type of the new binding and a boolean that istrueiff
the new binding was to be constant.

envProject : proc(env, string, TypeRep, bool)

This procedure may be called during a projection from an environment. It is called when no
binding with the required signature can be found in the environment. The parameters to the
error procedure are the original environment, the name of the identifier being searched for, a
representation of the expected type and a boolean that is true iff the binding was expected to
be constant.

envDrop : proc(env, string)

This procedure may be called during the dropping of a binding from an environment. It is
called when no binding with the required identifier can be found in the environment. The
parameters to the error procedure are the original environment and the name of the identifier
that was to be dropped.

113

58 IOErrors

writeByte : proc(file, int, int)

This procedure may be called during execution of the writeByte procedure in 10. It is called
when an error occurs. The parameters to the error procedure are the file being written to, the
byte being written and the I/O number indicating the error.

writeString : proc(file, string, int, int)

This procedure may be called during execution of thewriteString procedurein 10. Itiscalled
when an error occurs. The parameters to the error procedure are the file being written to, the
string being written, the number of characters successfully written and the I/O number
indicating the error.

writeBool : proc(file, string, int, int)

This procedure may be called during execution of the writeBool procedurein 1O. Itiscaled
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the boolean being written, the number of characters successfully
written and the I/O number indicating the error.

writelnt : proc(file, string, int, int)

This procedure may be called during execution of the writelnt procedure in 10. It is called
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the integer being written, the number of characters successfully
written and the 1/0 number indicating the error.

writeReal : proc(file, string, int, int)

This procedure may be called during execution of the writeReal procedurein 1O. It iscalled
when an error occurs. The parameters to the error procedure are the file being written to, a
string representation of the real being written, the number of characters successfully written
and the I/O number indicating the error.

endOflnputl OE : proc(file, int ® bool)

This procedure may be called during execution of the endOflnput procedure in 10. It is
called when an error occurs. The parametersto the error procedure are the file being read and
the 1/0 number indicating the error.

readBytel OE : proc(file, int® int)
This procedure may be called during execution of the readByte procedure in 1O. It is called

when an error occurs. The parameters to the error procedure are the file being read and the
[/O number indicating the error.

114

readByteEOI : proc(file® int)

This procedure may be called during execution of the readByte procedure in 1O. It is caled
when the end of input is encountered. The parameter to the error procedure is the file being
read.

readCharlOE : proc(file, int® string)

This procedure may be called during execution of the readChar procedurein IO. Itiscalled
when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

readCharEOI : proc(file® string)

This procedure may be called during execution of the readChar procedurein IO. Itiscalled
when the end of input is encountered. The parameter to the error procedure is the file being
read.

peekBytel OE : proc(file, int® int)

This procedure may be called during execution of the peekByte procedure in [O. It is called
when an error occurs. The parameters to the error procedure are the file being read and the
I/0O number indicating the error.

peekByteEOI : proc(file® int)

This procedure may be called during execution of the peekByte procedure in 10. Itiscalled
when the end of input is encountered. The parameter to the error procedure is the file being
read.

endOfinputUnread : proc(file, int, int® int)

This procedure may be called during execution of the endOflnput procedure in 10. It is
called when the byte read cannot be made available to the next read operation on the same
file. The parameters to the error procedure are the file being read, the byte read and the I/0O
number indicating the error.

peekByteUnread : proc(file, int, int® int)

This procedure may be called during execution of the peekByte procedure in 1O. It is caled
when the byte read cannot be made available to the next read operation on the same file. The
parameters to the error procedure are the file being read, the byte read and the 1/0 number
indicating the error.

peekCharlOE : proc(file, int® string)
This procedure may be called during execution of the peekChar procedurein IO. Itiscalled

when an error occurs. The parameters to the error procedure are the file being read and the
I/O number indicating the error.

115

peekCharEOQI : proc(file® string)

This procedure may be called during execution of the peekChar procedurein 10. Itiscaled
when the end of input is encountered. The parameter to the error procedure is the file being
read.

peekCharUnread : proc(file, int, int® string)

This procedure may be called during execution of the peekChar procedurein IO. Itiscalled
when the character read cannot be made available to the next read operation on the same file.
The parameters to the error procedure are the file being read, the byte corresponding to the
character read and the I/O number indicating the error.

readBool |OE : proc(file, string, int ® bool)

This procedure may be called during execution of the readBool procedure in 10. It iscalled
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the I/O number indicating the error.

readBool EQI : proc(file, string ® bool)

This procedure may be called during execution of the readBool procedurein IO. Itiscalled
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readBoolBadChar : proc(file, string® bool)

This procedure may be called during execution of the readBool procedurein 1O. It is called
when an erroneous character isread. The parameters to the error procedure are the file being
read and the characters that had been read, up to and including the erroneous character,
excluding any layout characters.

readSringl OE : proc(file, string, int ® string)

This procedure may be called during execution of the readString procedurein 1O. Itiscalled
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding the leading double quote,
and the I/O number indicating the error.

readSringEQI : proc(file, string ® string)

This procedure may be called during execution of the readString procedurein 1O. Itiscalled
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding the leading double quote.

116

readStringBadChar : proc(file, string® string)

This procedure may be called during execution of the readString procedurein 1O. Itiscalled
when a double quote character is not the first non-layout character found. The parameters to
the error procedure are the file being read and the character that was read instead of the
expected double quote.

readLinel OE : proc(file, string, int® string)

This procedure may be called during execution of the readLine procedure in 10. It iscalled
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred and the I/O number indicating the
error.

readLineEOI : proc(file, string® string)

This procedure may be called during execution of the readLine procedure in [O. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected.

readIntlOE : proc(file, string, int ® int)

This procedure may be called during execution of the readint procedure in 1O. It is called
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the 1/0 number indicating the error.

readIntEOI : proc(file, string® int)

This procedure may be called during execution of the readint procedure in 1O. It is called
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readintBadChar : proc(file, string® int)

This procedure may be called during execution of the readint procedure in 1O. It is called
when a digit or asign character followed by adigit is not the first non-layout character found.
The parameters to the error procedure are the file being read and the character that was read
instead of the expected digit or sign character.

readintUnread : proc(file, string, int, int® int)

This procedure may be called during execution of the readint procedure in 1O. It is caled
when an extra character read while parsing an integer cannot be made available to the next
read operation on the same file. The parameters to the error procedure are the file being read,
the characters that form the integer, the byte corresponding to the extra character read and the
I/O number indicating the error.

117

readintOverflow : proc(file, string® int)

This procedure may be called during execution of the readint procedure in 1O. It is caled
when an arithmetic error occurs converting the integer parsed into an integer value. The
parameters to the error procedure are the file being read and the characters that form the
integer.

readReal IOE : proc(file, string, int® real)

This procedure may be called during execution of the readReal procedurein 10. It iscalled
when an error occurs. The parameters to the error procedure are the file being read, the
characters that had been read when the error occurred, excluding any layout characters, and
the I/O number indicating the error.

readReal EQI : proc(file, string® real)

This procedure may be called during execution of the readReal procedurein 10. It iscalled
when the end of input is encountered. The parameters to the error procedure are the file
being read and the characters that had been read when the end of input was detected,
excluding any layout characters.

readReal BadChar : proc(file, string® real)

This procedure may be called during execution of the readReal procedurein |O. Itiscalled
when a digit or asign character followed by adigit is not the first non-layout character found.
The parameters to the error procedure are the file being read and the character that was read
instead of the expected digit or sign character.

readRealUnread : proc(file, string, int, int® real)

This procedure may be called during execution of the readReal procedurein |O. Itiscalled
when an extra character read while parsing a real cannot be made available to the next read
operation on the same file. The parameters to the error procedure are the file being read, the
characters that form the real, the byte corresponding to the extra character read and the 1/0
number indicating the error.

readReal Overflow : proc(file, string® real)
This procedure may be called during execution of the readReal procedure in IO. It is called

when an arithmetic error occurs converting the real parsed into areal value. The parameters
to the error procedure are the file being read and the characters that form the integer.

59 FormatErrors

fformat : proc(real, int, int® string)
This procedure may be called during execution of the fformat procedure in Format. It is

called when the real number is too large to be written with the required number of digits
before the point, or when the required number of digits after the point is negative. The

118

parameters to the error procedure are the real number and the required numbers of digits
before and after the point.

eformat : proc(real, int, int® string)

This procedure may be called during execution of the eformat procedure in Format. It is
called when either of the required number of digits before and after the point is negative. The
parameters to the error procedure are the real number and the required numbers of digits
before and after the point.

119

6 TypeDefinitions

The Napier88 types required for programming using WIN are listed below. They are
contained in the declaration set user Types.

6.1 General

type Pos is structure(x,y : int)

type Size is structure(x,y : int)

type Limt is structure(pos : Pos ; size : Size)

type Rect is structure(origin,corner : Pos)

type Level is structure(fronfFront : bool ; position : int)

type InputQoption is variant(all,none,nornal : null)
type Qptional[T] is variant(present : T ; absent : null)
rec type List[T] is variant(cons : structure(hd : T ; tI : List[T]) ; tip: null)

rec type DoubleList[T] is variant(
cons : structure(hd : T ; before,after : DoubleList[T]) ; tip: null)

type Pair[S, T] is structure(fst : S; snd: T)

6.2 Event Distribution

type Mouse is structure(x,y : int ; buttons : *bool)
type Event is variant(chars : string;
rmouse : Mouse;
sel ect,deselect : null)
type Event Type is variant(up,down, enter,|eave,click,doubleQick : null)
type MouseEvent is structure(button : int ; event : EventType)
type Application is proc(Event)
type EventTest is proc(Event -> bool)
type Notification is structure(exam neEvent : EventTest ; processEvent : Application)

type Notifier is structure(distributeEvent : Application;
addNotification : proc(Notification,Level -> proc()))

6.3 Windowsand Window Managers

type ResizeControl is structure(before : proc(Rect -> Rect) ; after : proc(Rect))

rec type Displaylnfo is structure(window: Wndow ; pos : Pos ; level : Level)
& Wndow i s structure(w ndowRaster : proc(Limt,Limt, Wndow int, bool);

i mageRaster : proc(Limt,inage,int,bool);

drawLi ne : proc(Pos, Pos, pi xel ,int);

set | nput ption : proc(InputQption);

get | nput Qpti on : proc(-> InputQption);

set Si ze : proc(Rect);

getS ze : proc(-> Size);

set Application : proc(Application);

get Application : proc(-> Application);

setTitle : proc(string);

getTitle : proc(-> string);

set Resi zeControl : proc(ResizeControl);
get Resi zeControl : proc(-> ResizeControl);

120

setM nSi ze : proc(Size);

get M nSi ze : proc(-> Size);

set MaxSi ze : proc(Size);

get MaxSi ze : proc(-> Size);
setDepth : proc(int);

get Depth : proc(->int);
setBorderStyle : proc(BorderStyle);
get BorderStyle : proc(-> BorderStyle);
get Bor der : proc(-> Border);
setQursor : proc(inage);

get Qursor : proc(-> inmage);

get WndowManager : proc(-> Wndowvanager);
setVirtual Wndow : proc(string, Wndow))

& Wndowvanager is structure(display : proc(Displaylnfo, bool);
undi spl ay : proc(Wndow);
makeCQurrent : proc(Wndow);
set Pos : proc(Wndow, Pos);
get Pos : proc(Wndow -> Pos);
set Level : proc(Wndow, Level);
get Level : proc(Wndow, bool -> Level);
get Wndows : proc(-> *Wndow);
get W ndowAt Pos : proc(Pos -> Wndow);
getNotifier : proc(string -> Notifier);
get D spl ayWndow : proc(-> Wndow);
get | conManager : proc(-> |conManager);

set Backgr oundApp : proc(Application);
get BackgroundApp : proc(-> Application))

& lconManager is structure(close : proc(Wndow);
open : proc(Wndow);
getlconState : proc(Wndow -> D splaylnfo);

getWndowsState : proc(Wndow -> D splaylnfo))

& BorderStyle is proc(Wndow -> Border)
& Border is List[Area]
& Area is structure(currentlnage, nonQurrentlnage : inage ;
pos : Pos ; distributeEvent : Application)

6.4 Fonts, Tablesand Lists

type Font is structure(characters : *inmage ; fontHeight,descender : int ; info: string)
type FontPack is structure(font : Font ; stringToTile,charToTile : proc(string -> inmage))

type Table[Key,Data] is structure(enter : proc(Key,Data);
| ookup : proc(Key -> ptional[Data]);
remove : proc(Key);

scan : proc(proc(Key,Data -> bool)))
type Conparison[Key] is variant(
ordered : structure(equal,lessThan : proc(Key, Key -> bool));
unordered : structure(equal : proc(Key,Key -> bool)))

type ListPack[T] is structure(insert,
replace : proc(T);
cl ear,
delete : proc();
element : proc(-> Qptional[T]);

| engt h,

pos : proc(->int);

at End : proc(-> bool);

go : proc(int);

goNext ,

goPrev : proc();

find : proc(proc(T ->bool) ->int))

121

6.5 Editors

type Index is variant(characters :

lines :

int;
structure(line,char : int))

type CodeRegion is structure(start,finish: int)

type Substitution[T]

is structure(value : T ; region : CodeRegion)

type LinkPack][HyperLink] is structure(link : Hyper Li nk ;

type Hyper Text[HyperLink]

rec type Editor[HyperLink]

122

characters : string ;

copyText

cut Text

cl ear Text

past eText

i nsert Text
readFronFil e :
witeToFile :
sel ect :
firstSelection :
| ast Sel ection :
firstLine :

| ast Li ne :

t opLi ne :
bot t onLi ne :
frontfLine :
endCr Li ne :
next Li ne :
previ ousLi ne :
peek :

read :

readLi ne :

sel ect edText :
before :

endCr Text

get Font :
getH ghlight :

get Progressl ndi cator :

get Scrol | Action :
get Wndow :
interactiveEdit

i nvert :

| i neCount
new :

of fset :
posi tion :
redisplay :
scanLi nks :
scrol |
search :
seek :

set Font
setH ghlight :

set Progressl ndi cator :

set Scrol | Action :
set Wndow :
unbi ndW ndow :

showLi nk : proc(HyperLink,int))

is structure(

links :

proc(
proc(
proc()
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(

proc(
pr oc(

proc();

proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc(
pr oc(
proc(
proc()

ptional [*Substitution[LinkPack[HyperLink 1 1 1)

is abstype[TextPointer](

Editor[HyperLink]);
Editor[HyperLink]);

Editor[HyperLink]);

Hyper Text[HyperLink], bool);
file);

file);

Text Poi nter, Text Pointer);

-> TextPointer)
-> TextPointer)
-> TextPointer)
-> TextPointer)
-> TextPointer)
-> Text Pointer);

Text Poi nter -> TextPointer);
Text Poi nter -> TextPointer);
Text Poi nter -> TextPointer);
Text Poi nter -> TextPointer);
-> Hyper Text[HyperLink]);
-> HyperText[HyperLink]);
-> Hyper Text[HyperLink]);
-> Hyper Text[HyperLink]);
Text Poi nter, Text Pointer -> bool);

-> bool);

-> Font Pack);

-> bool);

-> proc(string,real));

-> proc(int,bool));

-> Wndow);

Editor[HyperLink], Event Test, Event Test, Event Test ->
Application);

Text Poi nter, Text Pointer);

->int);

Text Poi nter, bool -> Index);

Pos -> TextPointer);

Text Poi nter);

proc(Substitution[LinkPack[HyperLink]] -> bool));
i nt, bool);

Hyper Text[HyperLink], bool -> bool);

I ndex -> Text Pointer);

Font Pack);

bool);

proc(string,real));

proc(int,bool));
W ndow) ;
)

6.6

type Appearance is variant(graphical

type

type
type

type

type
type

type
type

6.7

type

type

type

type

type

type

type

Interface Tools

Edi t or Pack[HyperLink] is

structure(w ndow : W ndow;
editor : Editor[HyperLink];
getTitle : proc(-> string);
get Text : proc(-> HyperText[HyperLink]);
append : proc(HyperText[HyperLink]))

Hyper Text Pack i s EditorPack[any]

MenuEntry is structure(appearance :

MenuPack i s structure(

w ndow :

set Top :

get Top :
setNoVisible :
getNoVisible :
setH ghlight :
getH ghlight :
get NoEntri es :
entryTabl e :

i mage ; textual

Appear ance ;

W ndow,

proc(int);
proc(-> int
proc(int);
proc(->int

proc(->int

Tabl e[int,

ButtonPack is structure(w ndow : Wndow ; flash :

SliderPack is structure(w ndow :

set :
set Bounds :

W ndow,
proc(real);

string)

action : proc(int,

)
)

proc(int,bool);
proc(int -> bool);

)

MenuEntry])

proc())

proc(real,real,real))

Choi cePack is structure(window: Wndow ; set : proc(int,int,bool))

D al oguePack|[HyperLink]

Programming Environment

Protected is abstype[i

ProtectedPack[] T] is structure(protected :

getProtected : any;
setConcrete : proc(T) ;
getConcrete : proc(->T))
WndowState is structure(window: Wndow ; pos : Pos ; |evel
open, di spl ayed : bool)
Conpi |l ationError is structure(errorRegion,
errorlLine : CodeRegi on;
| i neNunber : int;
errorMessage : string)
Conpi | ati onResul t[TypeDescriptor] is variant(
voi dResul t : proc();
nonVoi dResult : proc(-> any);
t ypeExpressi on : TypeDescriptor;
error : *Conpi | ati onError)
TypeConpi | ationResul t[TypeDescriptor] is variant(
typeDefinitions : Table[string, TypeDescriptor];
error : *Conpi | ati onError)
Bindinglnfo[Binding] is structure(binding : Bi ndi ng;

1(absHol der :

set

structure(

is structure(w ndow : Wndow ;
set : proc(HyperText[HyperLink]))

abs : i))

Pr ot ect ed;

Protected : any;

Level ;

MouseEvent))

123

nane : string;

menuCffset : int;
fiel d\No : int)
6.8 Concurrency
type ThreadPack is abstype[Thread](start : proc(proc() -> Thread);
getQurrent Thread : proc(-> Thread);
get Al |l Threads : proc(-> *Thread);
kill,
restart,
suspend : proc(Thread);
suspendUnl ock : proc(string, Thread))

type Semaphore is structure(wait,signal : proc())

6.9 Distribution

type RenoteStore is structure(host, storeDir, userNane, password : string)
type EnvEntry[TypeRep] is structure(entryNane : string ; entryType : TypeRep)

type StoreScan[TypeRep] is variant(envDescription : List][EnvEntry[TypeRep] 1;
typeDescription : TypeRep)

type RenoteResult][T] is variant(successful : T ; error : string)

124

7 Napier88 Releases

7.1 Operating Environment

Napier88 Release 2.0 runs on the following configurations:
e Sun SPARC running SunOs! Version 4.1.3.

* Sun SPARC running SolarisVersion 1.1.

e DEC Alpha running OSF/12 Versions 1.0 or 2.0. This may require modification of the
kernel configuration: mail the address given in Section 7.4 for details.

7.2 Obtaining the Napier 88 Release

The Napier88 Installation Guide [KBC+94] describes how to obtain a Napier88 release.
Napier88 Release 2.0 is Copyright © University of St Andrews 1994 and is subject to a
licence fee. If you have alicence for an earlier release of Napier88, however, Release 2.0 is
free. The current licence fee is specified in thefile:

pub/ Napi er 88/ r el ease2. 0/ READVE

which may be obtained by anonymous ftp from the site:

ftp-fide.dcs. st-andrews. ac. uk

7.3 Napier88 Mailing List

If you wish to be added to an electronic mailing list® which carries notifications of future
releases and papers, send an e-mail request of the following form:

To: mai | base@mi | base. ac. uk
Subj ect :

j oi n napi er 88-users <your-first-name> <your-| ast-nane>
st op

where the bracketed words are replaced as appropriate. For example:
j oi n napi er88-users John Napi er

The request will be processed automatically and your name added to the mailing list. To
send e-mail to al members of the mailing list, send your message to:

napi er 88- user s@mi | base. ac. uk

1SunOs™ and Solaris™ are trademarks of Sun Microsystems, Inc.
20SF/1™ is atrademark of the Open Software Foundation.

3The mailing list is run by Mailbase™, a service provided by the University of Newcastle upon Tyne.

125

7.4 Troubleshooting

In the event of problems with downloading arelease, or to report any other bugs, send e-mail
to:

napi er @ics. st - andrews. ac. uk

126

8 References

[Car8s]

[CDM+90]*

[Far91]

[FDK+92]*

[KBC+94]*

[KC93]*

[KCC+924]

[KCC+92b]*

[Kirg2]*

[MBB+86]

[MBC+89a]*

[MBC+890]

[MBC+94a]*

Cardélli, L. “Building User Interfaces by Direct Manipulation”. In Proc. ACM
Symposium on User Interfaces (1988) pp 152-166.

Connor, R.C.H., Dearle, A., Morrison, R. & Brown, A.L. “Existentially
Quantified Types as a Database Viewing Mechanism”. In Lecture Notes in
Computer Science 416, Bancilhon, F., Thanos, C. & Tsichritzis, D. (ed),
Springer-Verlag, Proc. 2nd International Conference on Extending Database
Technology, Venice, Italy (1990) pp 301-315.

Farkas, A.M. “ABERDEEN: A Browser allowing intERactive DEclarations
and Expressionsin Napier88”. University of Adelaide (1991).

Farkas, A.M., Dearle, A., Kirby, G.N.C., Cutts, Q.l., Morrison, R. & Connor,
R.C.H. “Persistent Program Construction through Browsing and User Gesture
with some Typing”. In Persistent Object Systems, Albano, A. & Morrison,
R. (ed), Springer-Verlag, Proc. 5th International Workshop on Persistent
Object Systems, San Miniato, Italy (1992) pp 376-393.

Kirby, G.N.C., Brown, A.L., Connor, R.C.H., Cutts, Q.l., Dearle, A.,
Morrison, R. & Munro, D.S. “The Napier88 Release 2.0 Installation Guide”.
University of St Andrews (1994).

Kirby, G.N.C. & Cutts, Q.I. “The Implementation of a Hyper-Programming
System”. University of St Andrews Technical Report CS/93/5 (1993).

Kirby, G.N.C., Cutts, Q.l., Connor, R.C.H., Dearle, A. & Morrison, R.
“Programmers Guide to the Napier88 Standard Library, Edition 2.1".
University of St Andrews (1992).

Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. &
Morrison, R. “Persistent Hyper-Programs’. In Persistent Object Systems,
Albano, A. & Morrison, R. (ed), Springer-Verlag, Proc. 5th International
Workshop on Persistent Object Systems, San Miniato, Italy (1992) pp 86-106.

Kirby, G.N.C. *“Reflection and Hyper-Programming in Persistent
Programming Systems’. Ph.D. Thesis, University of St Andrews (1992).

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJT. & Dearle, A. “A
Persistent Graphics Facility for the ICL PERQ Computer”. Software —
Practice and Experience 16, 4 (1986) pp 351-367.

Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The Napier88
Reference Manua”. Universities of Glasgow and St Andrews Technical
Report PPRR-77-89 (1989).

Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “Napier88 Release
1.0". University of St Andrews (1989).

Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby,

G.N.C. & Munro, D.S. “The Napier88 Reference Manua (Release 2.0)".
University of St Andrews Technical Report CS/94/8 (1994).

127

[MBC+94b]

[MBD-+86]

[Mor82]

[SPGO1]

[Sunsg]

Morrison, R., Baker, C., Connor, R.C.H., Cutts, Q.I. & Kirby, G.N.C.
“Approaching Integration in Software Environments’. To Appear: Computer
Journal (1994).

Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P. “An Integrated
Graphics Programming Environment”. Computer Graphics Forum 5, 2 (1986)
pp 147-157.

Morrison, R. “Low Cost Computer Graphics for Micro Computers’. Software
— Practice and Experience 12, 8 (1982) pp 767-776.

Silberschatz, A., Peterson, J.L. & Galvin, P.B. Operating System Concepts.
Addison-Wesley, Reading, Massachusetts (1991).

Sun Microsystems Open Look™ Graphical User Interface Functional
Specification. Addison-Wesley, Mountain View, California (1989).

Those references marked * are available via ftp from the site:

ftp-fide.dcs. st-andrews. ac. uk/ pub/ persi st ence. papers

or viaWorld Wide Web from the URL:

http://wwefide. dcs. st-andrews. ac. uk: 8080/ Publ i cati ons. htm

128

9 Index

abort 65

abs 36

abstract datatypes 14
ACCEPT 58

after 89

andRule 64
Appearance 123
append 86, 104
Application 120
application 29
applicationFailValue 48
Area 74,121
arguments 67
Arithmetic 36, 108
asciiToString 64
atan 36

atEnd 61

Back 71

background menu
browser 16
programming environment 21

background window 30

before 82, 89

Binding 36

bindingEditorFailValue 48

bindingFailVValue 48

bitwiseAnd 36

bitwiseNot 36

bitwiseOr 36

Border 74, 121

border Cursor 94

Borders 69

BorderStyle 73, 121

border StyleFail Value 48

bottomLine 81

Browser 38

browser 76, 95

browser 10
background menu 16
displaying abstract datatypes 14
displaying environments 11
displaying files 14
displaying images 12
displaying pictures 13
displaying procedures 14
displaying structures 12
displaying type constructors 15
displaying types 15
displaying variants 12
displaying vectors 12
panning 16
universes 14

button1Down 107

button2Down 107
button3Down 107
ButtonPack 123
buttonPackFail Value 48

changeCursor 107
chars 29
charToTile 49
checkBoxGroupGen 95
ChoicePack 123
choicePackFailValue 48
clear 61
clearText 79
close 59, 92
closedWindow 112
CodeRegion 122
colour map 107
colourMap 44, 111
colourOf 44, 111
command line arguments 67
compaction 25
comparelnt 65
compareString 65
Comparison 121
CompilationError 123
CompilationResult 123
compileHyper Source 39
compileHyper SourceWith 40
Compiler 39
compileString 40
compileStringWith 40
compileTypeDefinitions 40
compiling

programs 23

type declarations 22
concatenate 112
concatenateHyper Text 66
concatenateStrings 66
Concurrency 42
CONNECT 58
copyClearEditor ToolGen 102
copyRule 64
copySore 47
copyText 79
copyValue 46
cos 37
create 57
createSore 47
current state 22
current window 28
CurrentBrowser 22, 76
currentBuffer 22, 76
currentError 22, 76
currentOutputPack 22, 76

129

CurrentSate 76

currentWindowManager 22, 76

currentWriteString 22, 76
cutText 79

date 66

declaration sets 17
adding to 18, 21
choosing 19
creating 17
deleting 17
displaying 18

default values 77

defaultBoldFont 77

defaultBorder Style 77

defaultBor der Thickness 77

defaultColourMap 77
defaultFont 77
defaultlcon 77
defaultLinkMarker 77
defaultOuter Scopes 78
Defaults 77
defaultWindowCursor 78
defaultWindowDepth 78
defaultWindowSize 78
defaultXWindowPos 78
defaultXWindowS ze 78
delete 61, 74

deleting windows 21
dependent types 36
deselect 29, 76, 94
Device 43

dialogueGen 95
DialoguePack 123

digit 65

DISK 57

diskgc 65

Dismiss 71

display 91

Displaylnfo 120
displaylnfoFailValue 48
Distribution 46

double 69

DoubleList 120
downArrow 94

Draw 109

drawLine 87

Editor 122
editor 86
editor

creating 21

user interface 30
editorGen 78
EditorPack 123
EditorTools 102
eformat 50, 119
element 61

130

endOflnput 54
endOflnputl OE 114
endOflnputUnread 115
endOfLine 81
endOfText 82
enter 66
envDrop 113
EnvEntry 124
envFailValue 48
Environment 47, 113
environment variables 67
environment 47
environments 11
envProject 113
envRedeclaration 113
eoi 41
epsilon 37
Error 5
error 39, 40, 67
errorLine 39
errorMessage 39
errorNumber 60
errorRegion 39
Event 47, 120
event monitor 85
event 29
asynchronous 47
eventMonitor Gen 85
EventTest 120
EventType 120
executeAsThread 67
exp 37
External 5
extractHyper Text 67

FailValues 48
fformat 50, 118
file
disk 57
displaying 14
socket 58
terminal 58
window 59
filelnput 40
fileTolmage 107
fileToSound 107
find 62, 67
firstLine 80
firstSelection 80
fixedX 70
float 37
Font 49, 121
font 49
fontFailValue 48
FontPack 121
fontPackFail Value 48
Format 50, 118
Front 71

frontOfLine 81

ftp site 125

full Editor Tool ExpandableGen 102
full Editor Tool Gen 102

garbage collection 24
Generators 78
genericButtonGen 96
genericChoiceGen 96
genericCompile 40
genericDialogueGen 97
genericEditor ToolGen 103
genericMenuExpandableGen 97
genericMenuGen 98
genericSngleLineDialogueGen 104
genericSiderGen 99
genericXBorderGen 71
getAll Threads 43
getApplication 88
getArgs 67
getBackgroundApp 93
getBorder 90

getBorder Extent 107
getBorder Style 90
getByte 60, 109
getConcrete 63
getCurrentThread 43
getCursor 44, 91, 111
getCursorinfo 45, 111
getDeclarationSet 41
getDepth 90
getDisplayWindow 92
getEnv 67

getFont 82

getHighlight 82, 99
getHyper ProgramPack 67
getlconManager 92
getlconSate 93
getlnputOption 88
getLevel 92

getMaxSze 90
getMinSze 90
getNoEntries 99
getNotifier 92
getNoVisible 99

getPixel 52, 109

getPos 92
getProgressindicator 82
getProtected 63
getResizeControl 89
getScreen 43, 111
getScroll Action 82
getSelectedBindinglnfo 77
getSze 88

getText 86, 104

getTitle 86, 88, 104
getTop 99

getType 68

getWindow 82
getWindowAtPos 92
getWindowManager 91
getWindows 92
getWindowSate 93
gformat 50

go6l

goNext 61

goPrev 62

graphical Browser Gen 38
Graphics 51, 109

hangup 48
heap size 26
host

registering 26

setting for store 25
hyper-program window 7
hyper-programming 7
hyper ProgramPackFailValue 48
hyper ProgramPackGen 85
hyper Sour ceFail Value 48
Hyper Text 122
Hyper TextPack 123

iconise 75

iconiseCursor 94
IconManager 121
iconManager Fail Value 48
iformat 50

imagePixel Constant 110
imageRaster 87

Images 94

images 12

imageToFile 107

Index 122
indexFailValue 48
initialising stable store 25
InputOption 120
inputPending 55

insert 60

insertText 80

Int 108

integer Width 54
Interactive 73
interactiveEdit 82

I nter activeEnvironment 53
interactor 30
InterfaceEditor 53
interfaceEditor Gen 53
interrupt 48

intVector FailValue 48
invert 83

invisible 71

1053, 114

ioctl 59

kill 43

131

kill
athread 43

lastLine 80
|lastSelection 80
Layout 32
|eftArrow 94
length 61, 64
|etter 65

Level 120
levelFail Value 48
Library 5
lightButtonGen 100
Limit 120

limitAt 110
l[imitAtBy 110
limitFailValue 48
line 52

lineCount 83
lineNumber 39
LinkPack 122
List 120

ListPack 121
listPackGen 60
Lists 60

In 37

locator 44, 111
lookup 66

lwb 69

magnify 94
makeCurrent 91
makeDrawFunction 51
makelmage 110
makeReadEnv 57
makeVector 113
makeWriteEnv 54

max 68

maxint 37

maxreal 37
MenuEntry 123
menuGen 100
MenuPack 123
menuPackFailValue 48
menuX 71

min 68

mkBlankString 68
mkCompareHyper Text 68
mKkEnvLocBinding 68
mkHyperLink 68
mkStructLocBinding 68
mkTypeBinding 68

mkTypeDescriptor Binding 68

mkValueBinding 69
Mouse 120

mouse 29
MouseEvent 120
move 75

132

moveCursor 94

nandRule 64

Napier88 24
heap size 26
obtaining arelease 125
reference manual 5
release 1.0 5
release 2.0 5
release directory 26
stable store directory 26
standard library 5

new 83

newDeclarationSet 42

nextLine 81

nonVoidResult 39

norRule 64

Notification 120

Notifier 120

notRule 64

npc 23

npr 24

nprcompact 25

NPRDIR 26

nprformat 25

nprgc 24

NPRHEAP 26

nprregisterhost 26

nprsethost 25

nprstats 25

NPRSTORE 26

nps 22

offset 83

open 57, 93
Optional 120
orRule 64
Outline 51
outline 51

output window 20

Pair 120

pasteText 79

peek 81

peekByte 55
peekByteEOI 115
peekBytel OE 115
peekByteUnread 115
peekChar 55
peekCharEOI 116
peekCharlOE 115
peekCharUnread 116
People 62

persistent store 5

pi 37

pictures 13

pixel Depth 52
pixelOverflow 110

plain 72

playSound 107

Pos 120

pos 61

posFailValue 48

position 83

positioninfo 41

Preview 32

previousLine 81

Primitivel O 57

procedures 14

programming environment 7
background menu 21
declaration sets 17
output window 20
persistent windows 21
showing windows 21
starting up 24

programs
compiling 23
running 24

Protected 123

protected 62

protectedBinding 64

ProtectedPack 123

protectedPackGen 62

protectedTypeDescriptor 64

protectedTypeRep 64

Protection 62

PS5

pushPop 75

quit 48

rabs 37
radioButtonGroupGen 100
Raster 51

raster rules 64
rasterOp 52

Raster Rules 64

read 41, 81

readBool 56
readBoolBadChar 116
readBoolEQOI 116
readBool|OE 116
readByte 55
readByteEOI 115
readBytel OE 114
readBytes 59
readChar 55
readCharEQI 115
readCharlOE 115
readFromFile 80
readint 56
readintBadChar 117
readIntEOI 117
readintlOE 117
readlntOverflow 118

readintUnread 117
readLine 56, 81
readLineEOI 117
readLinel OE 117
readName 41
readOnlyEditor Tool ExpandableGen 105
readOnlyEditor ToolGen 105
readReal 56

readReal BadChar 118
readReal EOI 118
readReal |OE 118
readReal Overflow 118
readRealUnread 118
readString 55
readStringBadChar 117
readStringeOl 116
readStringl OE 116

Real 108

realWidth 54

Rect 120

rectFailValue 48
redisplay 84

references 127
refinements 95
registering new host 26
RemoteResult 124
RemoteStore 124
remoteStoreTable 46
remove 66
removeDeclarationSet 42
replace 61

resetLex 41

resize 75

ResizeControl 120
resizeCursor 94

restart 43

rightArrow 94

running programs 24

scan 46, 47, 66
scanDeclarationSet 42
scanLinks 84
screenWindowManager Gen 86
scroll 84
scrollingMenuGen 101
search 84

seek 59, 84

select 29, 76, 80, 94
selected 77, 94
selected window 29
selectedText 82
selectedWindows 94
Selection 94
Semaphore 124
semaphore 42
semaphoreGen 42

set 97, 100, 105
setApplication 88

133

setBackgroundApp 93
setBorder Style 90
setBounds 100
setByte 60, 109
setColourMap 107
setConcrete 63
setCursor 45, 91, 111
setCursorinfo 45, 111
setDepth 90
setFont 84
setHighlight 84, 99
setlnputOption 87
setlevel 92
setListener 47
setMaxSize 90
setMinSze 90
setNoVisible 99
setPixel 53, 109
setPos 91
setProgressindicator 85
setProtected 62
setResizeControl 89
setScroll Action 85
setSze 88
SetTitle 88
setTop 98
setVirtualWindow 91
setWindow 85
shadow 72
shell variables 26
SHELL 58
shiftLeft 38
shiftRight 38
showBinding 69
showType 69
signal 42
simpleEditor Tool Gen 106
sin 38
singleLineDialogueGen 106
Sze 120
sizeFailValue 48
sliderGen 101
SiderPack 123
dliderPackFailValue 48
socket 58
soundFailValue 48
sourceFragment 41
sourceOffset 41
spaceWidth 54
sgrt 38
stabilise 65
stable store
compaction 25
directory 26
garbage collection 24
initialisation 25
setting host 25
statistics 25

134

standard library 6

start 43

starting WIN 85, 86
startProgrammingEnv 53
statistics 25

STDERR 58

stdin 54

STDIN 58

stdOut 53

STDOUT 58

store directory 26
SoreScan 124

Sring 64, 112
stringlnput 42
stringToAscii 64
stringToHyper Source 69
stringTolnt 69
stringToTile 49
stringVector FailValue 48
Structure 112
structureFieldConstant 112
structures 12

sublmage 110

subPixel 110
Substitution 122
subString 112

suspend 43
suspendUnlock 43
System 65

Table 121

tableGen 65

Tables 65

Text 109

textual Browser Gen 38

ThreadPack 124

threadPackage 42

threads
getting current thread 43
killing 43
restarting 43
starting 43
suspending 43

TIFF 107

tiffFileTolmage 107

Time 66

time 66

timer 48

Tools 95

topLine 80

trillButtonGen 101

truncate 38, 109

TTY 58

type constructor 15

type declarations
compiling 22

TypeCompilationResult 123

typeDefinitions 40

TypeDescriptor 36
typeExpression 39
TypeRep 36

types 15

unaryint 108
unaryReal 108
unbindWindow 85
unboundEditor Gen 86
undisplay 91
universes 14
UNIX
environment 26, 67
interface to Napier88 22
upArrow 94
upb 69
User 5
user interface editor 30
Utilities 66, 107

value-dependent types 36
variablexX 73

Variant 113

variants 12

varProject 113

Vector 69, 112

vector ElementConstant 112
vectorIndexAssign 112
vector | ndexSubs 113
vectors 12

voidResult 39

wait 42
waitCursor 94
Win 69
WIN 27
starting 85, 86
window 86
window manager 27
window 27
attributes 27
background 30
corresponding value 95
current 28
deleting 21
selected 29
updating 28
Window 120
WINDOW 59
windowCreatorGen 75
windowFailValue 48
windowGen 87
windowl con 94
WindowManager 121

windowManager Fail Value 48

windowManager Gen 91
WindowMaps 95
windowRaster 87

WindowSate 123
windowSateFail Value 48
writeBool 53, 114
writeByte 53, 114
writeBytes 60

writelnt 54, 114
writeReal 54, 114
writeString 53, 114
writeToFile 80

WWW server 128

xDim 51
XDIM 59
xnorRule 64
xorRule 64
XPOS 59

yDim 51
YDIM 59
YPOS 59

zDim 52
ZDIM 59

