Garbage Collecting the World:
One Car at a Time

Richard L. Hudson,¥ Ron Morris.on,'IL J. Eliot B. Moss,¥ &
David S. Munro

¥Department of Computer Science, University of
M assachusetts,
Ambherst, MA 01003, U.S.A.
Email: { hudson, moss} @cs.umass.edu

TSchooI of Mathematical and Computational Sciences,
University of St Andrews, North Haugh, St Andrews, Fife,
KY 16 9SS, Scotland
Email: {ron, dave} @dcs.st-and.ac.uk

Abstract

A new garbage collection agorithm for distributed
object systems, caled DMOS (Distributed Mature
Object Space), is presented. It is derived from two
previous algorithms, MOS (Mature Object Space),
sometimes called the train algorithm, and PMOS
(Persistent Mature Object Space). The contribution of
DMOS is that it provides the following unique
combination of properties for a distributed collector:
safety, completeness, non-disruptiveness,
incrementality, and scalability. Furthermore, the DMOS
collector is non-blocking and does not use global
tracing.

1 Introduction

Automatic storage management is an essential property of high
level programming systems providing an error-free abstraction
with which the programmer may manipulate space without
regard to the inessential details of physical storage. The
abstraction holds only until the store becomes full. Thusitis
important for the storage management system to distinguish
useful data from garbage, so that the space occupied by the
garbage may be reused. The technique used to identify the
unreferenced space automatically is called garbage collection
(see Wilson [Wilson92] for a survey of these techniques).

Here we are concerned with garbage collection in a
distributed system where each node in the system has its own
local storage and may communicate with other nodes only by
passing messages. The problem is difficult because of
asynchrony, implying lack of knowledge of global state, and
lack of globally atomic operators on that state.

We present a new garbage collection algorithm for
distributed object systems, called DMOS (Distributed Mature
Object Space). It derives from both the MOS (Mature Object
Space) [HM92], sometimes known as the train algorithm, and
PMOS (Persistent Mature Object Space) [MMH96] collectors.

The MOS collector is an incremental main memory copying
collector specifically designed to collect large, older
generations of a generational scheme in a non-disruptive
manner. The PMOS collector extends MOS to ensure
incrementality in a persistent context, while also limiting the
1/0 overhead.

The contribution of the DMOS collector is the following
unique combination of properties for a distributed collector
without the need for global tracing:

o Safety: the collector does not collect live (reachable)
objects.

« Completeness: the collector is complete in that all
garbage, including cyclic garbage that spans nodes, is
collected within afinite number of invocations.

* Non-disruptiveness: the collector bounds the amount of
collection work, thereby bounding the time and space
requirements, for each invocation.

* Incrementality: the collector reclams space
incrementally without global knowledge of reachability.

e Scalability: the collector is potentially scalable in that it
is decentralised, uses asynchronous communication, and has
no protocols that demand the involvement of all nodes.

* Non-blocking: the collector a a node need only
synchronise with other nodes in a few cases. Application
computation never need wait for such collector
synchronisation.

The collector assumes the following support in delivering the
above:

» Each node in the system has its own local storage and may
communicate with other nodes only by passing messages.

e Ordered delivery of messages is guaranteed without
omission, corruption, or duplication. Causal delivery is not
assumed.

* Nodes appear to operate correctly, without crashes or
Byzantine behaviour.

* No bounds are placed on the relative rates of computation of
the nodes.

 Eventsand actions a a given node are totally ordered,
yielding a partial ordering of eventsin the system as a
whole.

As presented, the collector iswell suited to distributed memory
multiprocessors and to applications that do not require fault-
tolerance. To widen the applicability of the collector, fault-
tolerance may be provided by lower levels of the system. While
others have chosen to build some of this support into garbage
collectors, we regard these facilities as being provided by lower
level protocols, upon which the garbage collector can be built,
in order to separate policy and mechanism and to keep the
levels of abstraction relatively understandable.

1.1 TheComputational Model

Our distributed computational model is made up of
computation, objects, and pointers.

Computation consists of one logical process, perhaps
with concurrent threads, per (logical) node with the processes
communicating via messages. Computation proceeds by
creating and mutating objects. A physical node may support
more than one logical node.

A (physical) object resides on a single node, which we
term the object’'s home, and may contain any number of
pointers (references to other objects) as well as non-pointer

data. DMOS moves (logical) objects within nodes and allows
applications to move objects across nodes, so it includes
algorithms to substitute one physical object for another and to
update the affected references.

Each node has zero or more root pointers to objects,
which we can view as being part of the node’s process's state.
If an object is not reachable via a chain of pointers through
objects originating from some root then the object is garbage
and may be reclaimed. Pointers may propagate to other nodes,
and be stored there, by being included in messages.

1.2 Overview

Our goal isafully distributed algorithm that will, concurrently
and incrementally, eventually detect and reclaim all garbage
while computation continues. Since DMOS builds on MOS and
PMOS, we describe it first by giving a concise summary of the
MOS collector, indicating how DMOS differs at a high level but
omitting details of distribution. The high level descriptionis
followed by presentations of several detailed protocols, for
keeping track of pointers to objects (and detecting when
objects are unreachable), for adjusting pointers when objects
are moved within (or across) nodes, and for managing the
internal data structures (trains and cars) of the DMOS collector.

Since object migration is a policy decision in a
distributed computation that mutators may not wish imposed
upon them, we will not consider it as a fundamental technique
required by the garbage collector. However, our collector does
allow objects to migrate.

2 TheDMOSCaollector

The DMOS collector is described, in the manner similar to the
MOS and PMOS descriptions, using the metaphor of trains
made up of cars The address space of each node is divided into a
number of disjoint blocks (cars). One car is collected in each
local invocation of the collector, by copying its potentially
reachable objects into other cars. Since only potentially
reachable data is copied, all garbage contained within one car
will be collected immediately. The number of cars per node and
the individual size of the carsis a matter of implementation
policy, but for each invocation of the collector the car size
bounds the time and space required for that invocation.

To collect cyclic garbage that spans more than one car,
cars are grouped together into trains. Each car resides on a
single node but a train may span more than one node. It is
again a matter of policy as to how many trains there are (there
must be at least two) and when new trains are created. By
ensuring that all the carsin atrain are collected by copying the
potentially reachable data into other trains, cyclic garbage will
be left behind and can be collected, if it can be marshalled into
the same train. The trick is to find the minimum constraint on
the order of collection to guarantee completeness. For thisit is
sufficient to order the trains in terms of the (logical) time they
are created. Hence we will refer to trains being older or younger
than other trains.

The DMOS collector uses the following rules for copying
data from a car during collection:

1 Datalocally reachablel from roots is copied to a younger
train, adding a car to that train if required.

2 Datalocally reachable from younger trains is copied to
those trains, adding a car if required. If an object is reachable

1 Object Y islocally reachable from pointer X if X refers to
Y, or there is a chain of pointers, all within the car, that
leadsfrom X toY.

from more than one younger train, it may be copied to any
younger train from which it is reachable.

3 Datalocally reachable from older trains is copied to any
other car of its current train, adding a car if required.

4 Datalocally reachable from other cars of the same train is
copied to any other car of the train, adding a car if required.

5 The remaining data is unreachable and is reclaimed
immediately.

It should be noted that the above rules are followed in order. To

complete the collection of cyclic garbage one more rule is

required:

0 If no object in atrain is reachable from outside the train,
reclaim the entire train. If necessary, create another train to
ensure that there are always at |east two trains.

The algorithm allows any car from any train to be selected for
collection.?

Figure 1 illustrates the algorithm, showing a sequence of
four collections, which collects intra-train and inter-train
cycles of garbage, and reclusters the live objects.

Since in DM OS trains may span nodes,3 in following
Rule 2 the collector may find that it wishes to add a car to a
train which is not represented on this node. Thus Rule 2 must
be amended as follows:

2 Datalocally reachable from younger trains is copied to
those trains, adding a car if required. If an object is reachable
from more than one younger train, it may be copied to any
younger train from which it is reachable. If the destination
train is not represented on this node, then the node should
join the train and create a new car in that train.

This, as we will see later, requires a distributed protocol as does
the detection of an empty train, Rule 0.

The completeness of the algorithm is based on four
constraints:

» Objects never move from a younger train to an older one,

» garbage can never move to atrain younger than its youngest
referent (as of some time), and

» each car is eventually collected, which implies that
» theoldest train is eventually evacuated.
A completeness argument for the distributed collector, which

also addresses the anomaly discovered by Seligmann and
Grarup [SG95], is given later.

2 Thework of Cook, Wolf, and Zorn [CWZ94] suggests that
aflexible selection policy allowing a collector to choose
which partition to collect can significantly increase the
amount of space reclaimed and, in an OODB context, reduce
the amount of 1/0.

3 An alternative is to restrict trains to a single node. This,
however, has the consequence to making object migration
compulsory if distributed cyclic garbage is to be
marshalled into asingle train.

Sequence of four collections with a starting

configuration of two trains, a reachable chain of

objects R,S,T, an intra-train garbage cycle C, D, E, F

and an inter-train cycle of garbage X,Y. In this

example there is a maximum of three objects per car.

1 Car mischosen for collection and moves R and X
to ayounger train. Object C moves into car o.

2 Car k ischosen for collection and moves R into a
newly created younger train. Note that train 2 i
now free.

3 Collection of car n moves Sinto train 3.

4 Finaly after car o iscollected, R, Sand T arein

the same train and train 1 can be discarded since

there are no pointersinto it.

root

Freed Car k leaving
Train 2 empty

|

=] [

freed Car m
Trainl Trainl

Carp
Train 3
B R
D E C
root root
F
freed Car n Caro Carq freed Car 0 Car q new Car r
Train 1 Train1

Figure 1: Example Sequence of Mature Object Space Collection

3 Addressing Objects

Since DMOS is a copying collector, it moves objects, and is
thus involved in issues of object addresses and locations. Put
another way, in DMOS objects are referred to with addresses
that encode at least alogical location, because location (e.g.,
within a car or train) is fundamental to how the collector works.
The MOS collector assumes that each object reference somehow
encodes the car and train containing the referent object. This
might be accomplished using tables that map regions of
address space to cars and trains. DM OS assumes that references
also somehow encode the home node of the referent object.

Object references might include an absolute address, or
might be based more on a location independent object
identifier. However, when an object is moved, references to its
old copy may survive for some time, so one must either defer
reusing the address space containing the old copy (not an
attractive alternative), or arrange that a complete object
reference includes information beyond a node and absolute
address at that node. We assume that car numbers at a node are
not reused, or else reused quite slowly. The car number can then
distinguish different periods of use for the same portion of
absolute address space allowing prompt reuse of vacated
memory.

4 Pointer Tracking

Collecting a car requires knowing external references (from
objects outside the car to objects inside the car). To avoid
global synchronisation we cannot demand that such knowledge
be entirely up-to-date. On the other hand, safety requires that
the collector never treats a reachable object as unreachable, and
completeness requires that a node eventually discovers when
there are no longer external references to alocal object.

The pointer tracking algorithm is designed to meet the
above criteria by ensuring that the home node H, of an object
o, isinformed of any relevant manipulation of a pointer to o by
another node. This ensures that H has sufficient information to
allow for either object substitution or reclamation of the
object. As we will see, object substitution requires H to know
which other nodes refer to o, and for reclamation H must know
that there are no pointers to o from other nodes.4

4.1 EventsRelated to Pointer Tracking

Our pointer tracking mechanism consists of handling
five events. The home node, H, is informed of these events via
asynchronous messages. Our initial description of these events
will be presented with a virtual message being generated for
each event in the system. This will be followed by an
optimisation strategy describing how the number of messages
and the size of each message may be reduced. The five events
aredetailed in Table 1.

4 The protocol is designed specifically to avoid any need for
causal messaging [Fidge96].

Event Description

<s, n, 0, A, B> | This (send) event indicates that node A has
sent to node B a pointer to 0. The number n
is chosen such that no other event
<s,m,0,A,B>hasm=n,i.e,n,o, A,
and B together uniquely identify the s event
for all time and space. This event is said to
happen at A (the sender), henceitisA’s
responsibility to inform H.

Intuition: This indicates that a new pointer
to o has been created in the virtual channel
A® B. The number nisused to match s
events with their corresponding r events.

<r,n, 0, A, B> | This (receive) event indicates that node B
has received a pointer to o sent by node A.
The number n is chosen to match the
corresponding s event. This event happens
at B.

Intuition: An r event indicates that the
pointer has been deleted from the virtual
channel A® B and has been created in a
message receive buffer at B.

<d, n, 0, A, B>| This (delete) event indicates that node B
has deleted from its message buffers the
received pointer to o uniquely identified by
n, A, and B. The number n corresponds to
the s and r messages previously described.
This event happens at B.

<+,m, o, A> This event indicates that node A has created
anew pointer, uniquely identified by m, to
object 0. This event happens at A.

<— m, 0, A> This event indicates that node A has deleted

the specific pointer, uniquely identified by
m, to object 0. This event happens at A.

Table 1: Pointer Tracking Events

Figure 2 illustrates a possible scenario of eventsin which
a pointer is sent from one node to another. Messages sent are
drawn as broken arrows and object pointers signified by
unbroken arrows. Node A sends a copy of the pointer to node B
and eventually informs H of the s event. Node B receives the
pointer in its receive buffer, and informs H of the r event. Node
B puts the pointer into its heap,5 eventually informing H of the
+ event. Finally, B deletes the pointer from its receive buffer
and eventually informs H of the d event.

There is no specific requirement for rapid delivery to H of
information about events at A and B. Thisisintentional, since
such information can normally be piggy-backed on other
communication, thereby reducing the overhead of the scheme.
Messages 2, 3, and 4 in Figure 2 arrive at H in that order. There
is, however, no constraint on the arrival of message 1, relative
to messages 2, 3, and 4.

5 Notethat thisis optional, and hence the * in the diagram.

Node A @ <s,n, 0, A, B>

0
Node H

Node A sends to node B a pointer to o

@ <r,n, oA, B>
@ <+,m, 0, B> *

@ <d,n, o, A, B>

Node B

200

>3 _

Node H - optional step

Node B receives the pointer, copiesit into its
heap and deletes it from the receive buffer

Figure 2: Node A Sends to Node B a Pointer to o

In Table 1, either A or B can be the home node, H. We
assume, however, that H isinformed immediately of events that
happen at H.

4.2 Constraintson Ordering of Events

It is useful to have some definitions relating to events and the
existence of pointers. First, we define the predicate any(o, Y,
E), which indicates whether node Y has any pointers to object o
in the situation described by the set of events E.

Definition: Given aset of events E, where each event
is of the form described in Table 1, any(o, Y, E) for an object o
and node Y holds iff E contains an event <r, n, o, X, Y> but
not the event <d, n, o, X, Y>, or E contains an event
<+, n, 0, Y> but not the event <—, n, 0, Y>.

The intuition is that a node has a pointer if it has received
it in a message buffer but not yet deleted it, or created it in the
heap but not yet destroyed it.

Using the any predicate we define absence, which
indicates when there are no pointers to an object o, except
possibly on 0’s home node.

Definition: absence(o, E) is true iff any(o, X, E) is
false for al nodes X other than H, the home node of o, and E
has no event <s, n, 0, A, B> such that the corresponding
receive event <r, n, o, A, B>isnotinE.

Claim: Let E be the set of events known at H involving
o; we call thisH’s view. If absence(o, E) then no node other
than H has a pointer to o.

A detailed correctness argument appears in [HMMM97].
The intuition is that absence(o, E) is a stable condition if no
pointers are being sent in messages, and thus H’s view is up-to-
date.

4.3 Pointer Tracking Optimisations

We consider six optimisations to the pointer tracking
algorithm: removing unique numbers in events; reducing the
number of messages; reducing the bookkeeping at H; piggy-
backing messages; compressing multiple event information
into messages; and combining d and — events.

4.3.1 Removing the unique numbers from events

We argue that the unique numbers (nand min Table 1) can be
removed by counting the number of events of similar form to
obtain an equivalent pointer tracking algorithm.

For sand r events related to any given virtual channel
A® B, the r events occur in exactly the same order as the s
events, because the channel preserves message order. We now
require that H isinformed of events that happen at any node in
the order in which they happen at that node.® Thus, all events
are matched in H’'s view if the number of <r, o, A, B> events
equals the number of <s, o0, A, B> events.

For r and d events, the number of pointersto o in receive
message buffers at B is exactly the number of <r, o, A, B>
events minus the number of <d, o, A, B> events. It does not
matter that the order of receives may differ from the order of
deletes, only that for any(o, B, E) to be false, the number of r
and d events for o at B must be equal.

For + and — events, as for the r and devents, the net
number of heap pointersto o at B is the number of + events
minus the number of — events, and again, for any(o, B, E) to
be false, the number of + events must equal the number of —
events.

This optimisation depends on the fact that d events occur
only after their corresponding r events, and likewise for —
events after + events.

4.3.2 Referring fewer eventsto H

We need to inform H of a + (respectively, —) event only if it
causes any(o, B, E) to change from false to true (respectively,
true to false). Thisis correct since H does not need to know the
actual number of pointers at B, only whether or not there are
any.

For future purposes, we observe that we can tell H
independently about whether or not each car has any pointers
to the object in question. Again, the key point is that H will
correctly know whether or not there are any pointers at all.

6 Thisis simplified by our assumption of in-order message
delivery.

4.3.3 Further reducing the detail required at H

Incorporating the first optimisation means that H will keep
only net counts based on (o, A® B) for pointers to o sent from
A to B, net counts inHeap(o, B) for pointersto o in the heap at
B, and inBuffers(o, B) for pointers in message receive buffers.
Can we reduce the number of counts further? It turns out that we
need counts of sends and receives (only) for each receiving
node, and counts of numbers of pointers at each node (see
[HMMM97] for details).

4.3.4 Piggy-backing and compressing messages

As previously observed, messages informing home nodes of
pointer events can be held and piggy-backed on other
communications. Further, sequences of events can be
compressed, especially if they are guaranteed to be delivered all
at once. For example, anr event, then a + event, then a d event
can be processed to compress the r and d events together. We
will not pursue the issue further here, since it does not relate to
correctness or completeness of our algorithms, though the
performance improvements may be important in practice.

4.3.5 Combining events

It is possible to combine the dand — events as long as it is
remembered that the r event acts as both a + event a the
receiver and abalance for s in the virtual channel.’ The effect of
thisis to alter the counts kept at H for_pointer tracking and to
reduce theany predicate from (#r 1 #d) U (#+ 1 #-) to #+ 1 #—.
While this optimisation does not reduce the number of events
generated dynamically, it does simplify the calculation of any
by reducing the number of kinds of events from five to four and
it reduces the size of the bookkeeping data.

If we incorporate all the optimisations above, then only
two counts for each object and node are required: an
inTransit(o, ® B) count to record the number of pointers to
object o sent out to node B but not yet received, and a
pointersTo(o, B) count to record whether node B has any
pointers to object 0. The effect on these counts of messages
arriving at H is summarised in Table 2.

Event Effect at H
inTransit(o, ® B || pointersTo(o, B)

<s, o0, B> +

<r, o, B> - +

<+, 0, B> +

<—, 0, B> -

Table 2: Optimised Counts at H

The inTransit count can take on any integer vaue
including negative numbers. The pointersTo count can be only
0 or 1, and the collection of these counts for a single object o
encodes what we will call the current remembered set, the set of
nodes currently known to possess pointers to o.

5 Object Substitution Protocol

DMOS is a copying collector. When it copies an object, all
references to the old copy must be updated to refer to the new

7 Note that the r and + events cannot be combined since the r
event is required to balance the s event.

copy. While DMOS does not need to make copies across nodes,
we have designed the object substitution protocol to support
cross-node copying (object migration). A mutator, or a
collector with a different policy, may take advantage of this
capability.

Any object substitution protocol must
» work while references are being updated (safety), and

» find and update all references eventually (completeness).

The above must be combined with our goal of asynchrony.

The specific goal of object substitution is to replace
object o, home node H, with object o', home node H' (where H'
may or may not be H), and to have all pointersto o in the entire
system eventually replaced with pointersto o'.

To support object substitution, home nodes, H, maintain
for each moved object 0, KnownNodes(0), the set of nodes that
H knows have had pointers to o since the decision was made to
substitute o' for o. Likewise, al nodes maintain object
relocation tables with entries of the form oP o', meaning that
0 has been substituted by o'.

The algorithm is described through the messages required
to support it and how nodes should respond to those
messages:8
e When o is substituted by o', H adds oP o' to its relocation

table, and initialises KnownNodes(0) to contain those nodes
X for which any(o, X, E) istruein H’s current view E. Then H
sends a message [m, o0, 0'] (misfor move) to each node in
KnownNodes(o). Note that the m message should be
considered an s event for o', but not for o, in the pointer
tracking algorithm.

e When anode X receives a message [m, o, 07, it adds oP o' to
its object relocation table. The m message should be treated
asan r event of o' but not o, and the relocation table entry
should count as an occurrence of o' but not of o.

e Once X hasinserted arelocation table entry oP o', it should
(at its leisure, but before deleting the table entry) replace
any receive buffer or heap pointers to o with pointersto o'.
Such replacement is considered a <—, o', X> event and a
<+, 0, X> event.

e If X receives a pointer to o while it has obP o' in its
relocation table, it should replace o with o', causing events
<r, 0, X>, <+, 0', X>, and <—, 0, X>.

» If HhasobP o'initsrelocation table and is informed of an
event of the form <s, 0, X>, <r, 0, X>, <—, 0, X>, or
<+, 0, X> then it should check whether X is in
KnownNodes(o); if it is not, then it should be added and an m
message sent to X.

» Since H deletes the contents of o during the substitution, a
<—, ...>eventisinduced at H for each pointer in o. Likewise
a<+, ...>event isinduced at H' for each pointer in o'. If
Ht H' then appropriate s and r events are also induced. As
soon as the contents of o have been copied either directly
into o' or into a message to H' then the space occupied by o
may be reclaimed. This works since the object identifier ois
unique and will not be reused.

e IfH® H', then the creation and management of the copy
requires more steps. H sends a message to H' indicating that
it would like to migrate o and requesting a pointer to the
copy o' that H' will allocate. This message includes the
contents of o0, and is considered an s event at H for each

8 From now on we will use the optimisations given in
Section 4.

pointer in the contents of o, but this communication to H'
should not be considered an s event of o to H'. H' sends back
aresponse to H with the new pointer, which is considered an
s event of 0'. H proceeds as described above. This protocol
does not allow H' to reject the request.

« IfH! H', and H receives a message to manipulate o, then in
addition to the protocol steps above, H forwards the request
toH".

5.1 Cleaning up the Tables

Upon detection of absence(o, E) using the pointer tracking
algorithm and completion of substitution of o' for o at H, H
sends [e, 0, 0'] (e is for end move) to each node X in
KnownNodes(0), deletes KnownNodes(o), and removes oP o
from its relocation table. This last step is a<—, o', H> event.
An[e, 0, 0'] message is not an s event for either o or o'.
When node X receives [g, 0, 0'], it removes oP o' from
its relocation table which is a<—, o', A> event.
Note that the substitution protocol
asynchronous and never delays computation.

5.2 Multiple Subgtitutions

Suppose we have a series of substitutions in progress for the
same object, e.g., oP o' and o'P o". It is simplest if we
maintain multiple relocation table entries and view the
substitutions as happening one after the other. However, we
need not notify H' of the pairs of <+, o', ...> and <—, 0', ...>
events, and in effect we directly substitute 0" for 0. With care
one could flag this directly in the relocation table.

5.3 OpaqueAddressing

An obvious optimisation to the basic DMOS collector can be
made if object addressing is opaque or semi-opaque, that is, if
nodes maintain a mapping from external references to local
addresses. Substituting an object within the node becomes a
matter only of updating the local map. This is a simple
operation if an indirection table is employed but may be
slightly more complicated in the presence of pointer
swizzling. In either case it does not entail the participation of
other nodes since the external address does not change. Thus
the object substitution protocol may be greatly simplified.
Note also, however, that since the substituted object usually
resides in a different car, appropriate — and + events usually
occur for every pointer in the contents of the substituted
object.

The solution does not, however, work for object
migration, where we have to revert to our original method.

6 Car and Train Management

is entirely

To support the DMOS collector, we refine the pointer tracking
algorithm to indicate at 0's home node H which cars have
pointersto o at H. That is, H will maintain tables indicating
the cars C that have one or more pointers to o, and + and —
messages will indicate the cars gaining and losing any pointers
to 0. Another way of understanding this is that the pointer
tracking algorithm is the DM OS correlate of remembered set
maintenance.

In order to solve a completeness problem that we explain
later, we distinguish between the current remembered set for o
and the sticky remembered set for 0. The current remembered set
is as previously described in the pointer tracking algorithm, as
refined to track on a per car basis. The sticky remembered set
accumulates every car that is ever known by H to point to o and
is deleted when o is substituted by another object. The current

remembered set will thus always be a subset of the sticky
remembered set.

The DMOS collector rules constrain the choices of where
to move objects from a car C in order to evacuate C. DMOS uses
the object substitution algorithm to accomplish those
movements. C is evacuated and its space can be reclaimed once
all of C'sreachable objects have been copied.

DMOS does require some additional protocols, described
in more detail below. Firstly, it must be able to create and
delete cars and trains, and clean up any associated data
structures. Secondly it must be able to detect when a train’s
sticky remembered set is empty (i.e., there are no pointers to
objects in the train from outside of the train), to reclaim the
entire train.

6.1 Basic Train Management

We identify each train with apair n:A, where the positive
integer n indicates the logical birth date® of the train (i.e.,
higher numbers are younger), and A is the node that created the
train (we term it the train’s master node). The number n is
unique within the master node, thus n:A is unique within the
whole system. We assume that nodes are also ordered (e.g., by
some kind of node numbers), and n:A <m:B iff n < m or
(n=mand A <B), i.e., lexicographic ordering. The master
node A of train n:A isresponsible for creating, managing, and
cleaning up the train.

Although node A created train n:A, any number of nodes
may contain cars of n:A. All nodes holding cars of n:A are
linked together in alogical token passing ring, where each
node X in the n:A ring knows its successor, written
successor(X, n:A), a any given time. Initially
successor(A, n:A) isA. Nodes may join or leave the train
independently.

Joining a ring: If anode X wishes to create a car at X
in n:A but is not currently in the n:A ring, it sends a
[join, X, n:A] message to A. When A receives that message, it
sends the message [succ, successor(A, n:A), n:A] to X and
updates successor(A, n:A) to be X. That is, A inserts X after A
in the circularly linked list of nodes in the n:A ring.

Leaving a ring: If node X has no cars of n:A but is
still in the nA ring, it can send a message
[leave, X, successor(X, n:A), n:A] to its successor, to start
exiting the ring. The general idea is that the [leave, ...]
message propagates around the ring to X’s predecessor, which
then cuts X out of the ring (using the knowledge of X's
successor that X thoughtfully provided in the leave message)
and informs X that it has in fact been removed. In the meantime
X must continue to pass messages around the ring.

However, multiple nodes may be trying to exit thering at
the same time, so the complete algorithm is a little more
complicated, and we describe it according to how nodes should
process leave messages. Suppose the message
[leave, Y, Z, n:A] arrives at node X; X responds according to
these cases and actions:

Case 1: Y =successor(X, n:A), i.e, X isY’s predecessor: X
sets successor(X, n:A) to be Z (Y's successor) and sends the
message [left, n:A] to Y.

Case 2: Z =X and X isnot in the process of leaving the ring:
X sends the message [leave, Y, Z, n:A] to successor(X, n:A).

9 The birth date need not indicate a date or time but is used
only to indicate relative ages of trains.

Case 3: Z =X and X isin the process of leaving the ring: X
sends a [leave, Y, successor(X, n:A), n:A] message to
successor(X, n:A).

The first two cases are fairly obvious, but the third one is more
subtle because it passes a modified message further along the
ring. It pertains when X's predecessor, Y in this case, starts to
remove itself from the ring while X is being removed.
Modifying the message guarantees that Y’ s predecessor will cut
both Y and X from the ring. The technique is general and will
work for any number of simultaneous deletions from the ring.
The algorithm depends on the fact that messages flowing

Note that while a node is in the process of being deleted
from the n:A ring, it cannot create carsin n:A. We will return to
this point in the discussion of the train reclamation algorithm.

The approach we have described allows any node to create
new trains without synchronising with other nodes. It also
requires minimal synchronisation (with atrain’s master node,
and only if the train is not locally represented) to add cars to
existing trains. A train can even come into existence, be
reclaimed, and be created again, with no ill effect.

When are trains created in DMOS? New young trains can
be created at any time; we do not specify any particular policy.
However, each node should have at least two trains and should

[leave, Y, Z, n:X]

1. BothY and Z leavethetrain

{x}

X Y ' X
[left, n:X]

3. Y sends|[left, ...] message to Z and changes its successor.
X sendsleft, ...] messageto Y and changesits successor

{Y}

[leave, Z, X, n:X]

{2}

Z changesthe[leave, ...] message fromY

[left, n:X]

Figure 3: Two Nodes Leave a Train Ring at the Same Time

around the ring cannot pass one another.

Figure 3 shows the sequence of [leave, ...] messages when
two adjacent nodes leave a train ring at the same time. In the
diagram there are three nodes X, Y, and Z, with X as the master
node. The successor of anode is indicated in braces beside the
node. Nodes Y and Z each send a [leave, ...] message to their
respective successors. Node Z isin the process of leaving when
the [leave, ...] message arrives from Y, so it aters Y's
successor in the message to its own successor X and sends the
amended message to X. Y knows that its successor is Z, so
when Y receives Z's [leave, ...] message it changes its
successor to the successor in the message and sends a [left, ...]
message to Z thereby cutting Z out of the ring. Similarly the
[leave, ...] messagefrom Y arrivesat X (Y's predecessor) and X
sets its successor to the one in the message, cutting Y from the
ring, and sends a [left, ...] messageto Y.

We do need one special rule, though: A may not delete
itself from the n:A ring unless and until it is the only node in
n:A. Thisis because A is the authority for adding nodes to n:A.
If A could delete itself before n:A is otherwise empty then we
could end up with two independent rings.

work to move objects reachable from local roots to younger
trains. Other than new trains, the collector may create a new
representative of an existing (or previously existing) train T at
anode, if local objects have references from T in their sticky
remembered set. These are the only ways in which trains are
created in DM OS. Note that after a certain point, the DMOS
collector will not create trains of a given birth date, i.e., once
that date is earlier than the birth date of any train currently in
the system. In our approach, trains are cleaned up without any
global knowledge. Thus, we have achieved train management
that is simple, fully distributed, and minimally synchronised.

6.2 Train Reclamation

The original MOS algorithm, as well as the PMOS and DMOS
algorithms, depends on being able to detect when there are no
pointers into a train from outside of the train, allowing the
whole train to be reclaimed at once. Such detection istrivial for
MOS and PMOS because they are neither distributed nor
asynchronous; as might be expected, we need a more subtle
algorithm for DMOS.

AEEHEEE

Time at which no node in the train has an A 4
externa pointer to any of its objects

Range of time during which

there are certainly no external
pointers to objects at node C

Figure 4: lllustration of Correctness of the Train Reclamation Algorithm

The basic idea in detecting that there are no pointers into
atrainisto pass a token around the train’s ring. We first
describe a protocol that works if no objects can be created in
the train or added to the train during detection. We later describe
a problem with that restriction, and extend the basic algorithm
to relax the restriction.

At any given time the token resides at a single node in
the ring, and under specific circumstances is passed from the
current token holder to that holder’ s successor in the ring. The
token also bears a value, which indicates a node in the ring
where a current round of detection of absence of external
pointers began. An external pointer is a pointer from outside
the train to an object in the train; significantly, aroot pointer
is considered external.

Each node X in n:A maintains a changed bit related to
n:A, which indicates whether X has been aware of any external
pointers to objects in n:A at X, since the last time the token
was held by X. When X joins the ring, its changed bit is
initialised to true. A’s changed bit is likewise true initially. If
an external pointer is entered into a sticky remembered set at X
then X will set the appropriate changed bit to true.

Initial state: The token for n:A starts at node A; itsinitial
valueisA.

Starting the token: If node X holds the token, and goes
from having external pointersin its sticky remembered sets to
having none,10 it sets its changed bit to false and sends the
token to its successor, with value X.

Receiving the token: If node Y receives the token, it
either holds it or passes it on, according to these rules:

Rule 1: If Y has external pointersin its sticky remembered
sets for the train, then Y retains the token, and must wait until
none of its sticky remembered sets contain external pointers,
at which timeY will start the token.

Rule 2: If Y has no external pointersin its sticky remembered
sets for the train, but its changed bit is true, Y passes the

10 while no individual sticky remembered set has pointers
removed, car collection causes entire sets to be deleted,
thus possibly removing external pointers in sticky
remembered sets at the node.

token, but with the value set to Y. At the sametime, Y setsits
changed bit to false.

Rule 3: 1f Y has no external pointersin its sticky remembered
sets for the train, and its changed bit is false, Y passes the
token with the value as Y received it. As a special case, if the
received value is Y, then we have detected that there are no
external pointersto the train, at any node of the train, and the
train can be reclaimed.

Though we will need to extend this algorithm, let us first
gain understanding of how it works under the assumption that
no new objects are added to the train. We want to demonstrate
that we detect no external pointersif and only if there arein
fact no external pointers. Note that if at some instant of time
there are no external pointersto a given train, none will be
created in the future: since the objects are unreachable, the
mutator will not create external pointers; since the collector
moves objects to other trains only if they are reachable from a
root or pointed to from another train, the collector will not
create external pointers either.

The “if” part is easy: once there are no external pointers,
the token will make at most two circuits of the ring, setting the
changed bits to false on the first circuit and accomplishing its
detection pass on the second circuit. Note also that since no
objects are created in the train, no nodes will be joining the
ring, etc.

The “only if” part of the argument is a little harder.
Suppose we detect no external pointers via a token that starts
and ends at node X (see Figure 4). We claim that at the time X
started the token, there were in fact no external pointers (which
is a stable condition). Call that time Xp-1; clearly X had no
external pointers at time Xp-1. Consider any other node on the
ring, Y; let Y, be the time that the token most recently passed
Y, and Yp-1 thetime it left Y on the previous pass. Now
Yn-1 < Xp-1 < Y. Further Y had no external pointers at
timeYn-1, and, since Y’s changed bit isfalseat time Yp,, Y had
no pointers at any time between Yp.1 and Y, so Y had no
external pointers at time Xp-1. This argument holds for all
other nodes in the ring, so none of the nodes in the ring had
external pointers a time Xp-1. Figure 4 argues this
diagrammatically.11

11 The time argument does not rely on any notion of global

We observe that our token ring algorithm is a particular
kind of distributed termination algorithm, i.e., an algorithm
that discovers a stable global property in a distributed system,
in this case the non-existence of external pointersto objects
on a set of nodes. There have been many distributed
termination algorithms published [DFG83, CM86, Mattern87],
and we suspect that just about any of them could be adapted and
used to solve the train reclamation problem. Why, then did we
choose this one? We felt that a token passing ring would be
simple and convincing, even in the face of changing
membership in the train. Also, we believe that the token ring’s
overhead is low and that its latency is not problematic in this
case since train reclamation is not urgent. In any case, the
particular distributed termination algorithm used is not of
importance to the completeness of the DM OS collector.

6.2.1 The Unwanted Relative Problem

The token ring algorithm just described assumes that no
objects are added to the train while the algorithm is running. To
prevent new objects from being added, each node always marks
one or more of its oldest trains as closed, meaning no new
objects may be created in the train, and starts or passes atrain's
token only if the train is closed at the node.12 It is hard to
prevent the collector from trying to move objects into a train,
as shown by the following scenario (illustrated in Figure 5),
which we term the unwanted relative:

In Figure 5, train n:A has no external pointers in its
sticky remembered set but has a pointer to an object in an older
train m:B. Train i:C is younger than train n:A and also has a
pointer to the same object. When collecting the car in train
m:B the collector moves the object into train n:A thereby
creating an external pointer fromi:C to n:A.

We considered the following design options, rejecting
each for the reasons indicated:

* Disallow moving unwanted relatives into n:A. This is
undesirable since it implies a synchronous inter-node
protocol for the collector to check whether a relative is
unwanted.

» Delay moving the relative in until the train’s status is better
determined. Thisis messy, and the delay cannot be bounded.
Again, it introduces delays and dependencies into a
collection process where we prefer to avoid inter-node
interaction.

» Since the problem does not occur if n:A isthe oldest train,
attempt to reclaim atrain only if it is the oldest. Thiswould
delay train reclamation needlessly; it would also require a
global protocol to determine when atrain is oldest.

The alternative we adopt is to introduce the notion of epochs of
object creation in atrain. Each node in the train ring associates
each of its carsin the train with either the old epoch or the new
epoch. When node X starts the token for n:A, it associates all
of its n:A cars with the old epoch and sets its changed bit to
false. Cars added at node X when the changed bit is false are
added to the new epoch; cars added when the changed bit is true
are added to the old epoch. Further, if the changed bit switches
from false to true at X, all n:A cars at X become associated with
the old epoch. The changed bit for n:A at X isset only if X sees
an external pointer to an object in an old epoch car of n:A at X.

We claim that the token ring algorithm, modified as just
described, correctly detects that the old epoch n:A cars are not
reachable and can be discarded. The only way in which the
previous arguments could fail isif a new epoch object n points

Train i:C

Train n:A

—»O

Train m:B

Train i:C

Train n:A

Tranm:B

Figure 5: The “Unwanted Relative” Problem

Further, note that n:A need no longer actually point to
the object in m:B, since m:B’s information can be out of date
because of asynchrony in the system.

time, but only on the inherent causal ordering of eventsin
the system.

12 Receiving the token may indicate that the train is a good
one to close.

to an old epoch object o (and n isitself reachable). Since the
train was closed, n was moved into the train from outside and
had a pointer to 0. So there was an external pointer to o at a
time o was unreachable, a contradiction.

A key observation hereis that at the time the token starts
its last circuit, not only do all of the nodes in the n:A ring
believe that there are no external pointers to their (old epoch)
n:A objects, itisin fact true. That is, their perception is up to
date. The reasoning is similar to that used in arguing the
correctness of the pointer tracking algorithm.

6.2.2 Cleaning up Trains

Once the old epoch has been detected as unreachable, the new
epoch becomes the old one, the new one becomes empty, and
the system starts all over. Thisis accomplished by sending an
[end-of-epoch, X] message around the ring, where X is the
node that started the token. As each node receives the message,
it deletes its old epoch cars, marks any new epoch ones as old,
and passes on the end-of-epoch message. When X receives the
end-of-epoch message, it restarts the token passing algorithm
on the new epoch.

But this leaves the question: how do we ever get rid of a
train if we can keep creating new epochs in it? One answer is
that, as previously mentioned, eventually the train will become
the oldest in the system and will no longer have objects moved
into it. However, we believe that taking advantage of this fact
requires a protocol to detect the oldest train.

The problem is somewhat easier than that since the
collector can be designed so that when it moves an object from
one train to another, it does so only within a single node.13
Thus, we can decide to remove a node X (other than A) from the
n:A ring if X has no objectsin n:A or older trains. Once we
start removing X from n:A, we disallow moving objects into
n:A at X until X receivesthe [left, X, n:A] message, at which
timeit can rejoin n:A if necessary or desired. So, we prohibit
some object substitutions temporarily. This temporary
prohibition will not affect the collector’s completeness since
it merely slows the collector down.14

If we reach a situation where A is the only node in the n:A
ring, and the n:A train is empty a A, we can delete n:A
entirely. Due to asynchrony, it is possible that another node X
might later request to join n:A, and we can simply recreate n:A
at A at that time.

7 Collector Safety and Completeness Arguments

As with many algorithms for continuously running systems,
correctness of incremental garbage collection algorithms
breaks down into two distinct parts. One is safety, in this case
that the collector never deletes a reachable object. The other is
liveness (or progress), in this case that the collector eventually
reclaims every unreachable object, which has come to be called
completeness.

7.1 Safety

We now argue that the collector never discards a reachable
object. Let us first consider the atomicity of object
substitution. If o' is substituted for o with both o' and o at node
H, H can ensure that the substitution is atomic locally. Other
nodes can only pass around pointers to o, and the object
substitution protocol ensures that pointersto o will be replaced
with pointers to o', provided the number of nodes involved is
bounded. Further, the substitution algorithms work by making
the substitution atomically at each affected node, as the
information reaches that node. Any later messages containing
pointers to o are updated before the mutator can see them.

13 The only constraint this imposes is that inter-node
migration of objects must be done by having the new and
old versions of the object in the same train, which in no
way inhibits migration from node to node.

14 Alternatively, we can thread the n:A ring through the cars
of n:A (instead of the nodes), which supports adding new
cars (at a possibly different position in the ring) while old
cars are being deleted.

If o and o' are on different home nodes H and H', H' takes
over responsibility for the migrated object as soon as the
information arrives at H', and H gives up manipulating o as
soon asit sendsit to H'. Thereis a period of time during which
H does not know the new identifier o' for o at H', and will have
to refer application requests concerning o to H' under the
identifier o, but H' will use its relocation table to rewrite the
incoming pointer to o', so everything works out without
indefinite waits.

Our point is that object deletion related to object
substitution is not a problem. Observe also that since object
relocation tables are considered to contain pointers to the new
objects (o' in the example), the new object will not be deleted
until we have cleaned up all pointers to the old one, or the new
object isitself substituted.

Where else does the algorithm delete objects? In car
collection and train reclamation. The car collection algorithm
discards only objects not reachable from outside the car. These
objects must be in the absence(o, E) condition as used in the
pointer tracking algorithm. Therefore, they can be reached
only through other objects on the same node; but remembered
sets are always accurate with respect to references from our own
node, so there is no path to the objects del eted.

The train reclamation algorithm was separately argued:
the old epoch objects in the train were unreachable from outside
the train, and also unreachable from new epoch objects in the
train, and so are unreachable and it is correct to discard them.

7.2 Completeness

The completeness argument is similar to those found in Bishop
[Bishop77], Hudson and Moss [HM92], Moss et al. [MMH96],
and Seligmann and Grarup [SG95]. The argument proceeds in
two main steps. Firstly, we show that the oldest train will
eventually be evacuated and secondly that all garbage in trains
present at agiven timet will be eventually collected.

First we argue that the oldest train will be eventually
collected. Consider the set of carsC inatrain T at timet, and
consider the situation after each car in C has been collected. If
there are no external sticky remembered set entries with
pointers into train T then the entire train is eventualy
collected by the train reclamation protocol. If there are such
entries then as we collect the cars these objects are evacuated
thus showing progress collecting the train during each pass
through the cars of the train. If the train is the oldest then no
new objects can be created in or moved into the train so each
pass through the cars reduces the number of objectsin T and by
induction T will eventually be completely evacuated. Note that
the stickiness of sticky remembered set entries (i.e., that the
sticky remembered set may be a superset of the current
remembered set) is crucial to guaranteeing progress in the case
that there are external sticky remembered set entries, sinceit is
one of these entries that will be used to identify an object to be
moved out of the train. Otherwise the mutator could move
pointers around such that there were no current external
pointers at any car when we collected that car, but that there
were such pointers for other cars. Thisisthe problem identified
by Seligmann and Grarup [SG95].

We now argue that garbage is eventualy reclaimed.
Consider atimet; let G be the set of unreachable objects at t,
and S be the set of trains existing at that time. Remembered set
entries at timet can only be from trainsin S. Since garbage is
immutable, remembered set entries for objectsin G will never
mention trains not in S so garbage will not move to trains not
in S. Eventually the oldest train in Swill be evacuated, and then
the next oldest and thus eventually every train in S will be
evacuated, and at that point all objectsin G will have been

collected. The final inductive step in the argument depends on
two additional properties: that mutators do not allocate new
objects in the oldest train, and that only a finite number of
trains can be created of ages intermediate between two trains
(which is ensured because train numbers n:A are formed from
positive integers n, and node names A from afinite set of
nodes).

8 Reated Work

Work in distributed garbage collection has become
increasingly active as distributed systems become increasingly
important; we do not attempt to cover all related work, but
focus on the most relevant contributions. Plainfossé and
Shapiro [PS95] offer a survey. Previous and ongoing research
in this area falls into three categories: object migration,
reference counting, and tracing. Some proposed algorithms are
hybrids that combine these techniques. We will discuss the
approaches one at atime and indicate how they have been
combined.

8.1 Migration

Bishop presents a non-distributed garbage collection
algorithm that divides the heap into multiple areas [Bishop77].
Users specify the area in which each object is allocated. These
areas are designed to be garbage collected individually so that
the collections do not interfere with processes that do not use
the area being collected. In order to alow independent
collection, each area keeps track of pointers both into the area
and out of the area. Referencing an object in another areais
accomplished using alevel of indirection.

Bishop points out that related areas could be collected at
the same time. He handles multiple area cycles of garbage
either by collecting all areas involved in the cycle at the same
time, or by moving objects to consolidate the cycle of objects
into one area. He presents an inductive proof to show that his
technique of moving objects guarantees that all unreachable
objects are collected. Bishop does not bound the size of an area
or provide ways to collect individual areas incrementally. The
obvious distributed version of Bishop’s algorithm uses one
area per node, which requires object migration to collect inter-
node cyclic garbage. Our algorithm does not require migration
and is also incremental.

8.2 Reference Counting

Reference counting has been used to collect distributed objects.
The advantage of reference counting is that the rules appear
simple; but reference counting aone cannot guarantee
completeness (because of cyclic data structures), and making a
copy of areference requires contacting the owner of the referent
object.

Bevan [Bevan87] and Watson and Watson [WW87]
introduce a refinement to traditional reference counting called
weighted reference counting where each reference count is
divided into a partial weight and a total weight. Unlike the
DMOS collector, weighted reference counting avoids the need
to send a message to the owner of an object whenever an object
reference is passed from node to node. However, it is still a
reference counting scheme and suffers from inability to collect
cycles.

In reference listing [BEN+93] an entry is maintained for
each node holding a reference to an object, while reference
counting maintains only the count of such references.
Reference listing uses more space than reference counting, but
messages are idempotent so the system is resilient against
message duplication and loss. Again reference listing does not
handle cyclic garbage.

Both reference listing and reference counting schemes
require that cyclic garbage be rare and sufficient memory be
provided to tolerate the leakage. Extensions to reference
listing to handle cycles include optimised weighted reference
counting augmented with background global tracing
[Dickman91], and reference listing with partial tracing [RJ96].

8.3 Tracing

Hughes [Hughes85] uses time stamps based on global time to
trace live objects. Each trace initiated on a node uses the time
stamp to mark objects. Each outgoing pointer uses the time
stamp whenever it propagates the trace to other nodes. The
algorithm requires a globally synchronised clock, and message
delivery time must be bounded. Given these reguirements,
Hughes shows that any object with a time stamp older than a
certain time is garbage and can be collected. The termination
algorithm used by Hughes is not scalable and reclamation of
distributed garbage can be blocked until the slowest node in the
system performs alocal garbage collection.

Liskov and Ladin [LL86] propose using a centralised
server to calculate global accessibility of objects. The ideais
that each node informs the centralised (but possibly replicated)
server of any pointersinto and out of the node. The local
collector is responsible for determining the connectivity
between the incoming and outgoing references. Rudalics
[Rudalics90] points out an error in the original algorithm that
is corrected by Ladin and Liskov [LL92] using an adaptation of
Hughes's time stamp algorithm. Their solution also uses the
centralised server clock to simplify Hughes's termination
algorithm.

Lang, Queninnec, and Piquer [LQP92] propose a technique
where spaces (or nodes) are grouped. Any garbage cycle
completely within a group is collected using a mark/sweep
algorithm. The groups can be hierarchically ordered so that
increasingly large groups are traced. Ultimately, the entire
system needs to be traced in order to collect garbage not located
entirely within a previously associated group. Thisis therefore
not scalable and requires a considerable amount of co-
ordination between the nodes. Maheshwari and Liskov [ML97]
claim that the algorithm will not terminate correctly if the
object graph is mutated concurrently with tracing.

Ferreira and Shapiro [FS96] propose a system that allows
replication of segments at multiple sites. Each segment
maintains a list of incoming and outgoing pointers and is
traced using these pointers as roots. Segments that appear at
the same site are collected together so cyclic structures that
span segments can be collected only if they are gathered at a
single site. The co-ordination of segments is not a problem
since replication is assumed.

Maheshwari and Liskov [ML97] describe a partitioned
garbage collector that piggy-backs global marking with the
marking of partitioned data. Their scheme is guaranteed to
terminate correctly, and while not as yet distributed, is
optimised for efficient tracking of a partition’s incoming and
outgoing pointers.

8.4 Garbage Tracing

Vestal [Vestal87] suggests selecting objects suspected of being
pat of a cyclic garbage structure, and on a trial basis
decrementing the reference count. If this causes all connected
objects' counts to drop to zero, then the structure is garbage.
Lins and Jones [LJ91] propose combining weighted
reference counting with mark and sweep where the marking is
not started with roots but with any object that experiences a
reference deletion. The reference count is copied and then
decremented. If the trace returns to the start then the object is

part of acyclic graph and can be deleted. While this does
collect cyclic garbage it appears to be expensive.

Maeda et al. [MKI+95] and Fuchs [Fuchs95] suggest
techniques where potentially cyclic garbage is traced to seeif it
reaches aroot. Fuchs traces the inverse graph to see if it
reaches aroot while Maeda et al. trace potential garbage to see
if it forms an isolated cycle.

All these schemes attempt to discover garbage and suffer
from the same difficulty: they need a heuristic to select
suspected cyclic garbage. There are no completeness arguments
for any of these schemes and all could result in much tracing of
live objects.

9 Conclusions

We have presented a new garbage collection algorithm for
distributed systems, DMOS (Distributed Mature Object Space).
It is unique among distributed collectors in that it is safe,
complete, non-disruptive, incremental, scalable, and non-
blocking, as defined in the introduction. DMOS is an advance
in that no prior distributed collector has possessed all these
desirable properties. DMOS thus overcomes significant
limitations in previous collectors: it is complete (unlike
reference counting and partial tracing techniques), it is non-
disruptive, incremental, and scalable (unlike global tracing),
and it does not require object migration.

Like the MOS and PMOS algorithms on which DMOS is
based, each collection processes a bounded size region of
objects, in this case on a single node, copying them to other
regions, according to a set of rules that ultimately guarantee
that all garbage is collected. We track cross-region and cross-
node pointers, using a distributed termination algorithm to
detect when an object has no more references. We also
introduce a distributed termination algorithm to detect when a
distributed set of regions (atrain) has no pointersinto it from
outside, and distributed algorithms for managing trains.

Interesting work remaining to be done including
implementation and practical evaluation, algorithmic
performance analysis, and extensions to tolerate node and
communications failures, which we intend to address in future
work.

10 Acknowledgements

We thank Peter Bailey, Huw Evans, Al Dearle, and anonymous
OOPSLA referees for their constructive comments regarding
this paper. The work was supported by NSF grants IRI-
9632284 and INT-9600216 and by EPSRC Grant GR/J67611.

11 References
[Bakker+87] W. Jacobus Bakker, L. Nijman, and Philip C.
Treleaven, editors. Parallel Architectures and
Languages Europe, numbers 258, 259 in
Lecture Notes in Computer Science, Springer-
Verlag, June 1987.

Bekkers and Cohen, editors. In Proceedings of
the International Workshop on Memory
Management, St. Malo, France, 1992.
Published as number 637, Lecture Notes in
Computer Science, Springer-Verlag, 1992.

[BCY2]

[BEN+93] Andrew Birrell, David Evers, Greg Nelson,
Susan Owicki, and Edward Wobber.
Distributed garbage collection for network
objects. Digital Equipment Corporation,
Systems Research Center Tech. Rep. 116, 15

December 1993.

[Bevan87]

[Bishop77]

[CM86]

[CWZ94]

[DFG83]

[Dickman91]

[Fidge96]

[FS96]

[Fuchs95]

[HM92]

[HMMM97]

[Hughes85]

[IWMM95]

David I. Bevan. Distributed garbage
collection using reference counting. In
[Bakker+87].

Peter B. Bishop. Computer systems with a
very large address space and garbage
collection. Ph.D. thesis, published as
Technical Report MIT/LCS/TR-178,
Massachusetts Institute of Technology, 1977.

K. M. Chandy and J. Misra. An example of
stepwise refinement of distributed programs:
quiescence detection. ACM Trans. on Prog.
Lang. and Systems 8,326 (1986).

Johnathan E. Cook, Alexander L. Wolf, and
Benjamin G. Zorn. Partition selection
policies in object database garbage
collection. In Proceedings of the 1994 ACM
SIGMOD International Conference on
Management of Data (S GMOD ‘94)
(Minneapolis, MN, May 1994), pp. 371-382.

E. W. Dijkstra, H. H. J. Feijen, and A. J. M.
van Gasteren. Derivation of atermination
detection algorithm for distributed
computation. Information Processing L etters
16,217 (1983).

Peter Dickman. Distributed object
management in a non-small graph of
autonomous networks with few failures. PhD
thesis, University of Cambridge, United
Kingdom, September 1991.

C. J. Fidge. Fundamentals of distributed
system observation. |EEE Software, 13(6):77-
83, November 1996.

Paulo Ferreiraand Marc Shapiro. Larchant:
Persistence by reachability in distributed
shared memory through garbage collection. In
Proceedings of the 16th International
Conference on Distributed Computing
Systems, |EEE Press, 1996.

Matthew Fuchs. Garbage collection on an
open network. In [I[WMM95], pp. 251-266.

Richard L. Hudson and J. Eliot B. Moss.
Incremental garbage collection for mature
objects. In [BC92].

Richard L. Hudson, Ron Morrison, J. Eliot B.
Moss, David S. Munro. Training distributed
garbage: The DMOS collector. Submitted for
publication. Also available as a University of
St Andrews, Dept. of Computer Science
Technical Report (http://www-fide.dcs.st-
and.ac.uk/Publications/1997.html#dmos).

R. John M. Hughes. A distributed garbage
collection algorithm. In Proceedings of the
1985 Conference on Functional Programming
and Computer Architecture, number 201,
Lecture Notes in Computer Science, pp. 256-
272, Springer-Verlag, 1985.

Proceedings of the 1995 International
Workshop on Memory Management (Kinross,

[LJ91]

[LL86]

[LL92]

[LQP92]

[MK1+95]

[Mattern87]

[ML97]

[MMH96]

[PS95]

[RJ96]

[Rudalics90]

[SG95]

Scotland, United Kingdom). Published as
number 986, Lecture Notes in Computer
Science, Springer-Verlag.

Rafael D. Lins and Richard E. Jones. Cyclic
weighted reference counting. Technical
Report 95, University of Kent, Canterbury,
United Kingdom, December 1991.

Barbara Liskov and Rivka Ladin. Highly-
available distributed services and fault-
tolerant distributed garbage collection. In
Fifth ACM Symposium on the Principles of
Distributed Computing, pp. 29-39, 1986.

Rivka Ladin and Barbara Liskov. Garbage
collection of adistributed heap. In
Proceedings of the International Conference
on Distributed Computing Systems, |IEEE
Press, 1992.

Bernard Lang, Christian Queinniec, and Jose
Piquer. Garbage collecting the world. In
Proceedings of the ACM Symposium on
Principles of Programming Languages,

pp. 39-50, ACM Press, 1992.

M. Maeda, H. Konake, Y. Ishikawa, T.
Tomokiyo, A. Hori, and J. Nolte. On the fly
global garbage collection based on partly
mark-sweep. In [IWMM95], pp. 283-296.

F. Mattern. Algorithms for distributed
termination detection. Distributed
Computing, 2,161 (1987).

Umesh Maheshwari and Barbara Liskov.
Partitioned garbage collection of alarge
object store. In Proceedings of ACM

SIGMOD ’'97, Phoenix, Arizona, 1997.

J. Eliot B. Moss, David S. Munro, and Richard
L. Hudson. PMOS: A complete and coarse-
grained incremental garbage collector for
persistent object stores. In Proceedings of the
7th International Workshop on Persistent
Object Systems, pp. 140-150, Morgan
Kaufmann, 1996.

[Vestal87]

[WW87]

[Wilson92]

David Plainfossé and Marc Shapiro. A survey
of distributed garbage collection techniques.
In Proceedings of International Workshop on
Memory Management, Kinross, Scotland,
pp. 211-249, September 1995.

Helena Rodrigues and Richard Jones. A cyclic
distributed garbage collector for Network
Objects. In Proceedings of 10th International
Workshop on Distributed Algorithms (WDAG
‘96) Bologna (Italy) 9-11 October 1996.

Martin Rudalics. Correctness of distributed
garbage collection algorithms. Technical
Report 90-40.0, Johannes Kepler Universitat,
Linz Austria, 1990.

Jacob Seligmann and Steffen Grarup.
Incremental mature garbage collection using
the train algorithm. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP ‘95) (Aarhus,

Denmark, August 1995), no. 952 in Lecture
Notes in Computer Science, Springer-Verlag,
pp. 235-252.

S. C. Vestal. Garbage collection: An exercise
in distributed, fault-tolerant programming.
PhD thesis, University of Washington,
Seattle, Washington, January 1987.

P. Watson and |. Watson. An efficient garbage
collection scheme for parallel computer
architecture. In [Bakker+87], pp. 432-443.

Paul R. Wilson. Uniprocessor garbage
collection techniques. In [BC92].

	Abstract
	1 Introduction
	1.1 The Computational Model
	1.2 Overview

	2 The DMOS Collector
	3 Addressing Objects
	4 Pointer Tracking
	4.1 Events Related to Pointer Tracking
	4.2 Constraints on Ordering of Events
	4.3 Pointer Tracking Optimisations
	4 .3 .1 Removing the unique numbers from events
	4 .3 .2 Referring fewer events to H
	4 .3 .3 Further reducing the detail required at H
	4 .3 .4 Piggy-backing and compressing messages
	4 .3 .5 Combining events

	5 Object Substitution Protocol
	5.1 Cleaning up the Tables
	5.2 Multiple Substitutions
	5.3 Opaque Addressing

	6 Car and Train Management
	6.1 Basic Train Management
	6.2 Train Reclamation
	6 .2 .1 The Unwanted Relative Problem
	6 .2 .2 Cleaning up Trains

	7 Collector Safety and Completeness Arguments
	7.1 Safety
	7.2 Completeness

	8 Related Work
	8.1 Migration
	8.2 Reference Counting
	8.3 Tracing
	8.4 Garbage Tracing

	9 Conclusions
	10 Acknowledgements
	11 References

