
This paper should be referenced as:

Farkas, A.M., Dearle, A., Kirby, G.N.C., Cutts, Q.I., Morrison, R. & Connor, R.C.H.
“Persistent Program Construction through Browsing and User Gesture with some
Typing”. In Proc. 5th International Workshop on Persistent Object Systems, San Miniato,
Italy (1992).

Persistent Program Construction
through Browsing and User Gesture

with some Typing

Alex Farkas, Alan Dearle
Department of Computer Science, University of Adelaide

Adelaide, Australia

Graham Kirby, Quintin Cutts, Ron Morrison, Richard Connor
Department of Computational Science, University of St. Andrews

St. Andrews, Scotland

Abstract

One method of evaluating programs is for them to be prepared as self contained pieces of source,
then compiled, linked and executed. The last phase may involve binding to and manipulating
persistent values. When the persistent store is supported by a user interface, the program
construction can be augmented by the use of tokens as denotations for persistent values. That is,
the manipulation of the persistent store by gesture, for example by an iconic interface linked to a
mouse, can be used to provide tokens for persistent values. These tokens can be resolved to provide
bindings at run-time, compile-time, program construction time or any mixture of these.

In this paper the main styles of token resolution are described in terms of their influence on the
persistent program evaluation. This is done in tandem with a description of an example user
interface required to support these new styles of persistent programming. We note that other modern
user interfaces, such as OpenLook and the Macintosh Programming Environment also allow the
manipulation of files by user programs and by gesture. The difference here is that the technique is
uniform and that the persistent store is strongly typed with a greater variety of types.

Two prototype versions of these facilities have been implemented for the language Napier88.

Keywords: browser, binding, object oriented, persistence, programming environment.

2

1 Introduction

Most modern applications systems make use of an iconic interface linked to a mouse
controller. This allows many operations on data to be described by user gesture rather
than by the typing of a textual command. The advantages of this style of interface are well
understood and documented.

One area this style of interaction has not generally pervaded is the activity of software
construction. Some limited user gesture interaction may be possible, but in general
programs consist of a flat textual representation of code. Mostly this code is typed by a
programmer, although some systems provide support for a limited amount of automatic
code production according to a programmer's description at a higher level of abstraction.

The advantages of user gesture can, however, be incorporated into the construction
process for programs which make use of persistent data. Such programs normally
contain textual code which describes an access path to data within the persistent store. As
an alternative it may be envisaged that, rather than writing the textual form of this code, a
programmer may be provided with iconic tools which allow the browsing of the persistent
store, and then a particular value within the store may be indicated by some mouse
gesture. This method of interaction is the topic of this paper.

The essence of the method is to include a persistent store browser, along with the
notion of a token, as a part of the program construction environment. A value of interest
encountered during browsing may be denoted or "tagged" by the use of a token. This
token may then be used to construct a reference to the value it denotes.

The methodology of programming with tagged values is described in a practical
manner, by the description of a program construction environment. The purpose of this is
to make clear the potential use of such a mechanism in a practical context. Two prototype
versions of such a program construction environment [1,4] have been constructed for the
language Napier88 [6].

Three different schemes are described in this paper, the difference between them
being the time at which persistent data is bound into the program being constructed. None
of these schemes is intended to be used in isolation; indeed it is envisaged that a judicious
mixture of the three different binding times will be of use in a complex application.

In the first scheme, programs contain code to locate data and the data is dynamically
bound during the execution of the program in the normal fashion. In this scheme, the
browser provides an interface to the programmer through which the data to be bound may
be located. This in turn enables the programmer to construct an appropriate computation
to locate the data.

The second scheme allows values from the persistent store to be bound during
compilation, rather than execution. To achieve this the compiler must also be included in
the execution environment. The meaning of a token within a program is not resolved by
expansion into high-level code; instead when the program is compiled the value denoted
by the token is resolved by the compiler and bound directly into the executable code. The
meaning of a program in this system is dependent upon the environment in which it is
compiled, and is no longer self-contained.

The last scheme is known as hyper-programming. Hyper-programs are constructed
in a similar way to the other schemes described. Rather than the tokens being resolved
by the compiler, however, the user may indicate that the tagged value itself should be
included directly within the high-level program code. This requires a relatively
sophisticated program editing tool, as programs may no longer be represented as flat

3

textual structures. It may thus be seen that hyper-programs bear a similar relation to
normal programs as hyper-text does to normal text.

Section 2 introduces an example Napier88 program which will be used throughout
the rest of the description. Sections 3,4 and 5 describe the use of the three different
binding styles to construct the example, and Sections 6 and 7 conclude with the
possibilities of future research in this area.

2 An example

2.1 An example persistent store

A Napier88 persistent store consists of a graph of values connected by pointers and may
be accessed from a single point known as the persistent root. The root of a persistent
store may be accessed by executing the predefined Napier88 function PS, which returns a
dynamically extensible collection of bindings known as an environment [2]. An important
property of environments is that they enable the programmer to make bindings to typed
locations as well as values.

PS

iconLib

Persistent root

images

procedures

iconTable
displayAt

Figure 1: Conceptual view of a simple icon management system.

To illustrate the use of a persistent store, consider as an example a simple icon
management facility structured as follows. In the root environment of the persistent store
another environment called iconLib containing a table of icons, iconTable, and a number
of procedures has been constructed. These procedures operate on icons which are of type
image, a Napier88 data type which consists of a rectangular array of pixels. The
iconTable consists of a table of icons indexed by a unique name in the form of a string.
The structure of this store is shown in Figure 1.

In order to manipulate values in a persistent store, a Napier88 program must first bind
to those values. In order for binding to occur, the value or values being bound must be
located and type checking must take place to ensure that they have the type expected by the
program. In the programming environment described in this paper, binding may take
place at three different times during a program’s life cycle:

• during program execution: the program binds to values at run-time,

4

• during compilation: binding takes place as the source code for a program is
compiled, and

• during program construction: binding occurs as the source code for the
program is constructed.

The sections which follow describe in more detail the manner in which each style of
binding may be achieved in a persistent programming environment. First we describe an
application that will be used as an example throughout the paper.

2.2 An example application

To demonstrate the different programming paradigms, the following application will be
used as an example. A procedure called wallPaper shall be constructed which behaves as
follows: when invoked, the procedure displays the icon associated with the name “John
Napier” in the iconTable. The procedure displays the icon a number of times so that it
“wallpapers”, i.e. completely covers, the screen. In order to achieve this, the procedure
makes use of a procedure known as displayAt, an application which causes an image to be
displayed at a single location on the screen. The wallPaper procedure always accesses the
most recent version of the displayAt procedure. It always uses the same icon to wallpaper
the screen. Figure 2 shows the structure of the store as it would appear after the
wallPaper application described above has been constructed. The double ellipse
surrounding the displayAt procedure indicates that the wallPaper procedure contains a
binding to a location containing the displayAt procedure. This enables the wallPaper
application to make use of the most recent version of displayAt contained in that location.

PS

iconLib

Persistent root

iconTable
displayAt

wallPaper

Figure 2: Conceptual view of the completed wallPaper application.

The following sections describe the way in which each of the various programming
environment features may be used to implement the wallPaper application described
above. For brevity, each section only describes the use of either run-time, compile-time
or composition-time context in constructing the application, although in general, any
combination of these programming styles may be used to construct a single application.

5

3 Run-time context

3.1 Programming using run-time binding

The first style of programming which shall be described is that in which a program binds
to values at run-time. Programs which bind in this fashion must perform a computation
which traverses the store to locate the values to be bound. Upon discovering the values in
the store, type checking must take place to ensure that the discovered values are of the
correct type. This requires the specification of the types in the program to be checked
against the types of the values found in the persistent store. For example, in the case of
the wallPaper application, a computation must be performed to locate the required icon and
the displayAt procedure.

The programmer is able to construct source code by making use of a text editor
known as an interaction window. This editor provides simple text editing features and
allows existing source code to be stored or recalled. For example, the application
described earlier to “wallpaper” an icon over the screen may be written as shown in the
interaction window in Figure 3. The programmer is able to compile and execute this code
by selecting the exec button.

copy paste load savecut clearexec

Interaction Window

type Table is structure(lookup : proc(string -> image);
 enter : proc(string,image))

type Position is structure(x,y : int)

use PS() with iconLib : env in
use iconLib with iconTable : Table;
 displayAt : proc(Position,image) in
begin
 let napier = iconTable(lookup)("John Napier")

 in iconLib let wallPaper = proc()
 begin
 for x = 1 to 30 do
 for y = 1 to 20 do
 displayAt(Position(x,y),napier)
 end
end

Figure 3: A window containing an expression to wallpaper an icon.

The first three lines of the program declare types; the first two lines define a record type
called Table. This type contains two fields: lookup and enter, both of which are
procedures. The second type, Position, which is a record type, is used to represent a
point on the Cartesian plane. Following these declarations are two use clauses, which
define the names and types of locations expected to be found in the persistent store at run-
time. The block following the use clauses is statically type checked with respect to these
use clauses. A once only check is required at run time to ensure that the values found in
the store conform to the types specified in the use clauses. The bindings to the persistent

6

store that are created when the use clauses are executed are bindings to locations. Next,
the program declares an identifier called napier which is bound to the result of executing
the lookup procedure from the Table structure in the store. The last declaration in the
block declares a procedure called wallPaper. This declaration is made in the environment
denoted by iconLib rather than the current scope. The procedure calls the procedure
displayAt which has been found in the store with a Position record and an icon of John
Napier as parameters.

The behaviour of the wallPaper procedure is such that whenever the procedure is
invoked, the most recent version of the displayAt procedure is used to display the icon
originally assigned to the identifier napier. This is due to the fact that the program binds to
the location in the persistent store which contains the displayAt procedure but binds to the
actual value of the image retrieved from the iconTable.

A program such as the one described above contains in the source code all of the
information necessary to locate values and perform type checking. The process of
compilation performs as much type checking as possible. However, correct execution
relies on the expected values being present in the store and having the same type as
specified by the program.

3.2 Inspecting values

One of the difficulties in constructing programs which bind to values at run-time is that the
location and/or types of values in a persistent store may be unknown. For example, a
programmer may be aware that a persistent store contains an icon library but may not
know how to construct a computation which locates it. To assist the programmer, a tool
known as a persistent store browser [3] may be used to inspect the contents of a persistent
store in order to discover the location and types of the values in it.

type Table is structure(lookup : proc(string -> image);
 enter : proc(string,image))

use PS() with iconLib : env in
use iconLib with iconTable : Table in
 iconTable(lookup)("John Napier")

copy paste load savecut clearexec

Interaction Window
image

string

proc

→ image

idolLib : env

env

 iconLib : env

fish : env

env

displayAt : proc

invert : proc

iconTable : structure lookup : proc

structure

enter : proc

Figure 4: Finding values in a persistent store.

In the context of the icon manager example, the programmer may be unaware of the
appearance of the icons in the icon table and may not know which icon manipulation
procedures are available. A browsing tool may be used to discover the location and types
of this data by traversing the store as shown in Figure 4. The browser allows the
topology and content of the persistent store to be discovered, thus enabling the
programmer to find the information necessary to construct the required program.

7

The browsing session shown in Figure 4 commences with the traversal of the
persistent root displayed on the left hand side of the diagram. The user has selected the
field labelled iconLib with the mouse resulting in the iconLib environment being displayed
on the screen. Next, the field labelled iconTable was selected causing the table iconTable
to be displayed. Similarly, the field representing the lookup procedure has been selected
resulting in a representation of the procedure being displayed on the screen.

We will assume that the programmer knows the names of the icons in the iconTable.
However, the icons in that table are encapsulated within the closure of the procedures
lookup and enter. In order to examine one of these icons the lookup procedure from the
table must be invoked with the name of the required icon as a parameter; in general, this
requires a program to be written. This may be achieved by entering and executing a small
program such as the one shown in the interaction window in Figure 4.

The programmer is required to enter code describing how the values used by the
program are located. This is achieved with use clauses as described earlier. The result of
executing the program is the icon associated with the name “John Napier” and is displayed
by the browser as shown on the right hand side of the diagram. The result is displayed
because in addition to viewing the contents of the store, the browser may be used to
display values returned by expressions entered in an interaction window. In fact the
content of the interaction window is treated as a single Napier88 expression which may or
may not yield a result upon execution – if an expression yields a result, the result is passed
to the browser to be displayed. Having discovered the icons and applications in the
persistent store, the programmer is now able to construct a program such as the one
shown earlier in Figure 3 which wallpapers the icon onto the screen.

The browser allows the topology of the store to be discovered and allows the
programmer to discover information about the location and types of values in the
persistent store. However, sometimes in order to manipulate the values and types
encountered by the browser a program must be constructed. The code which must be
written in order to perform the necessary computation becomes more verbose as the
number of values to be bound and the complexity of the path from the root to those values
increases.

3.3 Tagging browsed values

The browser supports a mechanism known as “tagging”. This mechanism allows the
programmer to select a value or location encountered by the browser and to associate a
token, or tag, with that value or location. The effect of tagging a value or location is to
create a mapping from the tag name to the value or location. Hence tagging represents a
way in which tokens may be declared as denoting values or locations.

In order to tag a value, the programmer selects the title bar of the window
representing that value with the mouse. This causes a dialogue box to be displayed
prompting the user for a string to use as the name for the value. The user may enter any
string provided it constitutes a valid Napier88 identifier and this string is displayed on the
top left hand corner of the tagged value.

The method for tagging a location containing a value is similar to the method used for
tagging a value but differs in two distinct ways. The first difference is that instead of
selecting the title bar of the value window, the programmer must select a menu entry. The
second difference is that when a token has been supplied for the location, it is displayed
on the top left hand corner of the value inside a box with a double line border.

In addition to values and locations, the browser also allows types to be traversed.
The tagging mechanism may also be used to tag the types encountered by the browser and

8

is the same as the method used to tag values. However, in this case the tag is used to
denote a type; in Napier88 there is never any ambiguity over the meaning of this since
types are not values.

3.4 Using tags to effect run-time binding

One way to reduce the amount of programmer effort required to produce source code for
programs which bind at run-time is to use the browser’s tagging mechanism. For
example, the two use clauses in Figure 4 may be automatically generated using the
tagging mechanism as shown in Figure 5.

type Table is structure(lookup : proc(string -> image);
 enter : proc(string,image))

 iconTable(lookup)("John Napier")

copy paste load savecut clearexec

Interaction Window

idolLib : env

env

 iconLib : env

fish : env

env

displayAt : proc

invert : proc

iconTable : structure lookup : proc

structure

enter : proc
string

proc

→ image

bind

Bind style

 compile-time

composition-time

Figure 5: Tagging a value encountered by the browser.

Firstly, the programmer has tagged the environment location containing iconTable with the
name table. This is indicated by the double line border surrounding the tag. Next, the
programmer has selected the tag using the mouse and has pressed the bind button in the
interaction window. This has caused the menu entitled Bind style to be displayed. At this
point, the programmer is required to select which of the three styles of binding the tag is to
be resolved into. In this example, selecting the field labelled run-time in the Bind style
menu will cause the two use clauses shown earlier to be inserted into the source text at the
text cursor’s position.

In addition to constructing computations to locate values or locations in the store, the
tagging mechanism may be used to construct a textual form for types encountered by the
browser. A textual representation of a type may be inserted into source text using the
same method as the method for inserting a computation to locate a value or location.

3.5 Reusing programs which bind at run-time

Programs which bind at run-time consist entirely of a textual source code representation.
The text editing features provided by the interaction window permit sections of source
code to manipulated using facilities such as cut, copy and paste. As with traditional
systems, portions of existing code may be reused.

In addition to source code, values placed in the persistent store by one program may
be used by other programs which bind to those values during execution. For example, the

9

wallPaper procedure makes use of the displayAt procedure defined in another source code
segment. Programs which bind at run-time provide the most flexibility in binding to
persistent values as they do not require the values to be present at the time the program is
compiled or constructed.

4 Compile-time context

4.1 Programming using compile-time binding

Programs that bind to values at compile-time may be constructed in a similar fashion to
programs which bind at run-time: the source code for the program may be entered and
manipulated through the interaction window text editor. However, the nature of the
source code is different in that source code contains direct references to values in the form
of tokens, which are to be resolved at compile-time. When such a program is compiled,
the source code of the program is passed to the compiler along with a mapping from
tokens to values. The compiler resolves the bindings so that the executable code produced
contains references to values and locations. This reduces the verbosity of source code and
ensures that referenced values are present at the time the source code is compiled rather
than during program execution.

In the programming environment described in this paper there are two kinds of token
which may appear in the source code of a program: tokens denoting values or locations
and tokens denoting types.

4.1.1 Tokens denoting values or locations

As shown earlier, there is a tendency for the code which must be written in order to locate
values to become verbose. Programs which bind to values or locations at compile-time
reduce this verbosity by allowing direct references to values in the form of identifiers, or
tokens. The mapping from tokens to values and locations generated through tagging is
passed to the compiler each time a program is compiled, enabling the compiler to resolve
these references.

copy paste load savecut clearexec

Interaction Window

bind

image

idolLib : env

env

 iconLib : env

fish : env

env

displayAt : proc

invert : proc

iconTable : structure lookup : proc

structure

enter : proc
string

proc

→ image

get

get("John Napier")

proc

structure

image

Figure 6: A session showing the application of a tagged procedure.

10

The programmer may create tokens using the tagging mechanism described earlier. In this
case, however, the programmer must select the compile-time entry of the Bind style menu
in order insert a compile-time reference to the value into the source text. The resulting
reference is simply the name of the tag in the form of an identifier. To illustrate this
mechanism, consider the programming environment session in Figure 6 showing a tag on
the lookup procedure of the icon table iconTable. The procedure has been tagged with the
name get indicating that the token get has been declared as a denotation for the procedure.

The programmer may now invoke the lookup procedure of the iconTable with the
string “John Napier” as a parameter as shown in the interaction window of Figure 6. The
expression binds to the lookup procedure at compile-time through the reference to the
token get. The binding takes place when the programmer selects the exec button, which
causes the expression to be compiled and executed. The icon returned by the expression
is passed to the browser and displayed as shown on the right hand side of Figure 6.

The second method of tagging allows a location containing a value to be tagged.
Using a combination of the two tagging methods, the programmer is able to construct the
wallPaper procedure described in Section 2. This may be achieved by tagging the
necessary values and locations and constructing the source code for the procedure as
shown in the interaction window in Figure 7.

type Position is structure(x,y : int)
in lib let wallPaper = proc()
begin
 for x = 1 to 30 do
 for y = 1 to 20 do
 disp(Position(x,y),sleepyEyedJohn)
end

copy paste load savecut clearexec

Interaction Window

bind

idolLib : env

env

 iconLib : env

fish : env

env

displayAt : proc

invert : proc

iconTable : structure

lookup : proc

structure

enter : proc
string

proc

→ image

image

sleepyEyedJohn

lib

proc

structure

image

disp

Figure 7: Constructing the wallPaper procedure using compile-time
binding.

The procedure displayAt has been tagged with the name disp in a box with double line
borders, indicating that the binding is to the location containing the displayAt procedure
rather than its value. Next, the environment iconLib and the icon returned by the
expression in Figure 6 have been tagged with the names lib and sleepyEyedJohn
respectively. The plain boxes indicate that these tokens represent bindings to actual values
rather than locations containing values. Lastly, the code entered in the interaction window
declares the type Position and the procedure wallPaper. The program places the wallPaper
procedure in the iconLib environment by declaring the procedure in the environment
denoted by the token lib.

11

4.1.2 Tagging types

In the above example the program must declare the type Position because it is used to
construct a value supplied as a parameter to the procedure disp. However, as the
complexity and number of type declarations required by a program increases, the source
code once again becomes verbose. Furthermore, an increasing proportion of the time
taken by a programmer to construct a program is spent entering these type declarations.

By tagging the appropriate type and inserting a compile-time binding to that type, the
code shown in Figure 7 may be rewritten as shown in Figure 8.

in lib let wallPaper = proc()
begin
 for x = 1 to 30 do
 for y = 1 to 20 do
 disp(Coord(x,y),sleepyEyedJohn)
end

copy paste load savecut clearexec

Interaction Window

bind

idolLib : env

env

 iconLib : env

fish : env

env

displayAt : proc

invert : proc

iconTable : structure
lookup : proc

structure

enter : proc
string

proc

→ image

image

sleepyEyedJohn

lib

disp

proc

structure

image

structure type

x : int

y : int

Coord

Figure 8: Using a tagged type in a program.

The programmer has selected the first entry of the displayAt procedure and this has caused
the type of the first formal parameter of the procedure to be displayed. This type has been
tagged with the name Coord and a compile-time reference to the type has been inserted in
the source code in place of the first actual parameter supplied to the disp procedure. The
declaration of the type Position has been omitted.

Thus, using compile-time references to tagged types, the verbosity of the code may
be further reduced. Moreover, the process of compilation becomes more efficient since
the need to recompile type declarations is reduced, or sometimes removed.

4.1.3 Tokens denoting types

An instance of a required type may not currently exist in the persistent store. Therefore
some alternative method for creating tokens that represent types is required. The Napier88
programming environment supports a structure known as a type environment: a mapping
from names to types which may be passed to the compiler to permit the use of types that
have not been declared in the source program. This is achieved by the compiler resolving
references to types contained in the type environment and used, but not declared, in the
source program. The compiler is also used to create type environments, a string
containing type declarations is passed to the compiler and a type environment is returned.
This presents an alternative means by which tokens denoting types may be created and
stored.

12

In the programming environment described in this paper, the following interface is
provided to ease the creation of type environments. Types may be declared in a separate
window known as the types window; this window is similar to the interaction window in
that it consists of a text editor. However, rather than allowing arbitrary Napier88
programs to be entered, the types window only permits the declaration of types. Figure 9
shows the appearance of the type window when the types Table and Position are declared.

When the programmer presses the comp button, the text in the types window is
compiled and a type environment is created. This type environment is implicitly part of
the compilation environment of the interaction windows provided by the user interface.
Therefore once a type environment is created, the programs do not need to declare the
types being used. In this example this means that the types Table and Position may be
used without declaring them in the source code.

copy paste load savecut clearcomp

Types Window

type Table is structure(lookup : proc(string -> image);
 enter : proc(string,image))

type Position is structure(x,y : int)

Figure 9: Declaring types in the type window.

In the example shown in this paper, we make two assumptions for simplicity, they are:

1. there is only one type environment in existence, and
2. the type environment implicitly forms part of the compilation context for

interaction windows.

In practice, a programmer needs to use many different type environments – each tailored
to the task in hand. Therefore the system needs to permit more than one type environment
to exist and provide some mechanism to associate an arbitrary collection of type
environments with an interaction window.

In addition to removing the need to recompile type declarations, type environments
provide a means by which different programs may share type declarations as well as
reducing the verbosity of programs which use a large number of types.

4.2 Editing compile-time context programs

The programmer is able to manipulate the source text of a program which binds at
compile-time in the same ways as described in the previous section. However, by
changing the mapping from tokens to values or types, the programmer is able to construct
different applications using the same source text. For example, the programmer may bind
the token sleepyEyedJohn shown in Figure 7 to a different icon in order to change the
semantics of the application without having to alter the source text. More generally, the
same source code may be used with different token mappings in order to produce a
sequence of applications which vary depending on the values to which they are bound at

13

compile-time. In this way, the nature of programs written using compile-time binding
changes in comparison to programs which use only run-time binding.

5 Composition-time context

Binding to values at program composition-time is supported by hyper-programming [5].
A hyper-program is a source code representation that contains embedded bindings. This
section outlines the main differences between this style of programming and the style
described in the previous section.

5.1 Hyper-program source representations

In a hyper-program, the bindings embedded in a hyper-program are an integral part of the
program. This contrasts with the compilation-time binding style where the source
program and the mapping from tokens to values are distinct entities that are presented to
the compiler separately. The physical realisation of that mapping depends on the interface
provided to the programmer: with the tagging mechanism described earlier, the mapping is
implicit in the tags that are present at the time of compilation. As described earlier, the
source code of programs which make use of compile-time binding may be compiled with
different mappings (by tagging different values) to give different executable programs. In
a hyper-program, however, the bindings from tokens to values do not need to be resolved
by the compiler as the resolution takes place earlier, at the time the program is constructed.

To provide flexibility, a hyper-programming system should support all three styles of
binding and allow the programmer to choose the appropriate style for each application
component. This would allow a source program to contain tokens that are already bound
to values, tokens that will be matched with values at compilation-time, and expressions
that will be evaluated to give values at run-time. As previously described, for brevity the
example in the next section shows only composition-time binding.

5.2 Constructing hyper-programs

5.2.1 Method of construction

A hyper-program is constructed in a similar way to the construction of programs that
contain compilation-time bindings. The programmer types textual code into an interaction
window and uses browsing tools to navigate the persistent store to locate values to be
bound into the program. The difference is in how the binding is effected; with
compilation-time binding the programmer attaches a tag or token name to each value
required and enters the corresponding token name at the appropriate point in the source
text. The tokens in the code and the tokens attached to the value representations are
matched by the compiler. To achieve composition-time binding, the programmer first tags
the desired value and then selects the composition-time entry of the Bind style menu
described earlier to bind that value into the program. The system inserts a button into the
text to act as a place-holder and to allow the programmer to later examine the bound value.
When that button is pressed subsequently, a representation of the value is displayed by the
browsing tool.

The system allows the programmer to insert bindings to values themselves or to
environment locations. As described earlier, the way in which a tag is effected will
determine whether a binding is to a location or value.

14

It is also possible to bind a type into a program using the same method as the method
for binding values into a program. This may also be achieved by selecting a type in the
type environment window and pressing the bind type button. This mechanism reduces the
number of type definitions that the programmer has to enter. As with values, a bound
type can be examined by pressing the associated button

5.2.2 An example

This section illustrates how the wallPaper application described earlier may be constructed
in a hyper-programming system. The first step is, as before, to tag the procedure that
performs a look-up on the icon table and to execute some code to invoke the procedure in
order to obtain the icon for John Napier. This process was illustrated earlier in Figure 6
of Section 4. Next, the programmer enters the textual part of the application, leaving gaps
where values are to be bound into the code as shown in Figure 10. Note that the source
code of the expression contained in the interaction window represents the declaration of a
procedure – hence the result of evaluating the expression is the value of the procedure
itself and not the execution of the body of the procedure.

proc()
begin
 for x = 1 to 30 do
 for y = 1 to 20 do
 (Position(x,y),)
end

copy paste load save clearcut exec bind type

Interaction Window
image

proc

structure

image

string

proc

→ image

idolLib : env

env

 iconLib : env

fish : env

lookup : proc

structure

enter : proc

env

invert : proc

IconTable : structure

displayAt : proc

lib

napier

Figure 10: Binding a location into source code.

To bind the location of the displayAt procedure into the hyper-program the programmer
uses the browsing tool to locate and tag a representation of the location and then presses
the bind button in the interaction window. When the Bind style menu is displayed, the
programmer selects the composition-time entry in order to insert a binding at the current
text position. This is illustrated in Figure 10.

This inserts a button into the text to denote the binding to the selected environment
location. The name displayed in the light button is the name of the tag. However,
although a name for the button is not essential, we are accustomed to names in our
programs so this probably makes the program easier to read.

A similar procedure is followed to bind the icon into the hyper-program but this time
the programmer must tag the value of the icon in order to bind to the icon itself rather than

15

its location. Note that in this case there is no corresponding location which may be bound
to. The appearance of the interaction window at this stage is shown in Figure 11.

proc()
begin
 for x = 1 to 30 do
 for y = 1 to 20 do
 disp (Position(x,y),)
end

copy paste load save clearcut exec bind type

Interaction Window

image

Figure 11: A light button in the source text indicating a binding to the
location of the displayAt procedure.

The completed program is shown in Figure 12. To execute the program the programmer
presses the exec button which will cause a representation of the resulting procedure to be
displayed.

proc()
begin
 for x = 1 to 30 do
 for y = 1 to 20 do
 disp (Position(x,y), napier)
end

copy paste load save clearcut bind type

Interaction Window

bind

Figure 12: A complete hyper-program.

To make the procedure persist the programmer creates a binding to it in the environment
iconLib. For example, one way to achieve this is by tagging the representations of the
environment and the new procedure and executing some code to create the binding as
shown in Figure 13.

The new application is now complete and may be accessed from the environment
iconLib. In order to prevent the icon from being removed or corrupted by the actions of
other programs, the value of the icon is bound into the application. Assignments to the
environment location containing the displayAt procedure, however, will affect the
wallPaper application: it will always use the procedure assigned to that location at the time

16

the application is executed. The application’s access to the displayAt procedure does not
depend on the path that the programmer initially followed through the store when binding
it into the hyper-program. For example, the binding to displayAt may be dropped from
the iconLib environment without affecting the application or the hyper-program that
represents it.

idolLib : env

env

 iconLib : env

fish : env

env

invert : proc

iconTable : structure

myEnv

displayAt : proc

proc

newApplication

copy paste load save clearcut bind type

Interaction Window

in myEnv let wallPaper := newApplication

bind

Figure 13: Placing the wallPaper application into the icon library.

5.3 Editing hyper-programs

The programmer can later refine the implementation of the application whilst leaving the
bindings to its components intact. For example, the for loops may be changed so that the
icon is drawn only around the edge of the screen rather than over the whole screen. To
achieve this, the programmer selects the representation of the procedure and directs the
system to supply its source code. This results in the display of a new interaction window
containing a copy of the original hyper-program. Although a copy, it contains bindings to
the same values and locations as the original source code. The programmer then edits the
text of the new hyper-program and presses the exec button. If compilation is successful
the representation of a new procedure is displayed by the browser.

This new procedure has different behaviour from the original application but contains
the same bindings. Finally the programmer tags the new procedure and the location
wallPaper in iconLib and executes some code to assign the procedure to the location as
shown in Figure 14.

The technique of refining implementation whilst retaining state may be used in other
cases. For example the programmer may discover that there is a bug in the
implementation of the procedures that operate over the table of icons. By editing copies of
the hyper-program source the programmer may correct the error and install a new version
without losing the existing contents of the table. More generally, this provides a
mechanism for repairing abstract data types without throwing away their state.

17

idolLib : env

env

 iconLib : env

fish : env

proc

wallPaper

env

invert : proc

iconTable : structure

myEnv

displayAt : proc

wallPaper : proc

proc

newVersion

copy paste load save clearcut bind type

Interaction Window

wallPaper := newVersion

bind

Figure 14: Updating the value in the location of the wallPaper procedure.

6 Current status and future work

To date two experimental systems [1,4] have been constructed to allow the exploration of
the ideas described in this paper. Both the prototypes support the compile-time binding
paradigm described in the paper. In addition, a system which permits composition-time
binding has been constructed at the University of St. Andrews. Our plans for the future
involve integrating the best features of these prototypes and we expect these facilities to
manifest themselves in future releases of the Napier88 programming environment. A final
field of research which remains untapped is the program development environment
required to support this new kind of programming. This will be the subject of future
research.

7 Conclusions

In this paper we have described a mechanism for program construction and manipulation
using gesture. Such a paradigm differs greatly from conventional programs which consist
of denotations which describe an algorithm and some values which may be constructed at
run-time. The mechanisms described in this paper permit this conventional style of
programming but augment it with the ability to describe values which exist at compilation-
or construction-time. The new programming style allows programs to be constructed
which are shorter than those previously expressible using persistent languages like
Napier88. This brevity is not achieved without cost, the programs are more tightly bound
than other Napier88 programs. We do not imagine that such a mechanism will be
appropriate for all programming tasks. Instead, we assert that the new style of
programming which emerges from this ability will augment techniques already at the
disposal of the programmer.

18

Acknowledgments

This work is supported in part by ESPRIT III Basic Research Action 6309 – FIDE 2 and
SERC grant GR/F 02953. Richard Connor is supported by SERC Post Doctoral
Fellowship B/91/RFH/9078.

We would also like to thank the Defence Science and Technology Organisation of
Australia for their assistance through the PIPE project, The University of Adelaide
through its University Grants Scheme and the Australian Research Council.

References

[1] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A. and Morrison, R.,
"Programmer's Guide to the Napier88 Standard Library (Edition 2)", Reference
Manual, 1991, University of St. Andrews.

[2] Dearle, A., "Environments: A Flexible Binding Mechanism to Support System
Evolution", in Proceedings of the 22nd Hawaii International Conference on System
Sciences, 1989.

[3] Dearle, A. and Brown, A.L., "Safe Browsing in a Strongly Typed Persistent
Environment", The Computer Journal, 1988. Vol. 31, No. 6: pp. 540-545.

[4] Farkas, A.M., "ABERDEEN: A Browser allowing intERactive DEclarations and
Expressions in Napier88", Honours Report, 1991, University of Adelaide.

[5] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. and
Morrison, R., "Persistent Hyper-Programs", in Proceedings of the Fifth International
Workshop on Persistent Object Systems, San Miniato, Italy, 1992.

[6] Morrison, R., Brown, A.L., Connor, R. and Dearle, A., "The Napier88 Reference
Manual", 1989, University of St. Andrews.

19

	Abstract
	1 Introduction
	2 An example
	2.1 An example persistent store
	2.2 An example application

	3 Run-time context
	3.1 Programming using run-time binding
	3.2 Inspecting values
	3.3 Tagging browsed values
	3.4 Using tags to effect run-time binding
	3.5 Reusing programs which bind at run-time

	4 Compile-time context
	4.1 Programming using compile-time binding
	4.1.1 Tokens denoting values or locations
	4.1.2 Tagging types
	4.1.3 Tokens denoting types

	4.2 Editing compile-time context programs

	5 Composition-time context
	5.1 Hyper-program source representations
	5.2 Constructing hyper-programs
	5.2.1 Method of construction
	5.2.2 An example

	5.3 Editing hyper-programs

	6 Current status and future work
	7 Conclusions
	Acknowledgments
	References

