
The Octopus Model and its Implementation

Alex Farkas and Alan Dearle

{alex,al}@cs.stir.ac.uk
Department of Computing Science

University of Stirling
Scotland, FK9 4LA

Abstract
The paper describes a new reflective language
mechanism and its implementation. The
mechanism called Octopus is designed to
support a wide variety of database
programming and software engineering
applications which previously required much
heavier weight mechanisms, such as the use of
a compiler at run-time, or unsafe language
mechanisms. The implementation of this
mechanism requires structured type
representations to be available for
manipulation at run-time and architecture
support for b o x e d values. These
implementation techniques are described and
the cost of these mechanisms is examined.

1 Introduction

In most programming languages, programs and data
form directed graphs with nodes consisting of
arbitrary values, such as program fragments (e.g.
procedures), records and arrays. Scalars form the
leaf nodes of the graphs; they may be referenced
but do not themselves reference other values.
Figure 1.1 shows a conceptual view of such a graph
in which the nodes represent values and the arcs
represent bindings between values. In general,
bindings have four components: a name, a value, a
type, and an indication as to whether or not the
value may be modified [10].

b

c
g

h
d e

f

a

Figure 1.1: A binding graph.

Applications consist of programs which construct or
navigate these graphs. Usually, the types of the
nodes over which programs operate are statically
known by the application programmer. Another
class exists in which the programmer does not
know the types of the data which may be
encountered by the program.

For example, the types of values that
applications such as object browsers and query
tools may encounter are unpredictable. Clearly
some dynamic typing is required in these cases.

However, few programming languages provide
mechanisms through which the types of these
values can be enumerated or discovered, if they are
unknown.

One solution to these problems is to make use
of some form of linguistic reflection [13].
Reflective systems permit their own structures to
be examined and altered from within. Linguistic
reflection has two basic forms: compile-time and
dynamic. Both permit the construction of new
program elements from within another program, the
difference is when reflection is performed.

Compile-time linguistic reflection is akin to
having a macro processor for the host language
which displays an understanding of the semantics
of that language. When dynamic linguistic
reflection is employed, new programs are
constructed dynamically and introduced to a
running program. For example, when the PS-algol
[4] and Napier88 [9] browsers encounter a value of
a type which has not previously been encountered,
they construct, compile and execute a new program
(procedure) to display the value.

2 The Octopus Model

Octopus is a new dynamic linguistically reflective
mechanism which provides a dynamic infinite
union type with a set of reflective operations.
These operations may be used to manipulate values
of any type without the expense of the dynamic
techniques described above. Octopus provides a
uniform abstract interface to values of any type,
this facilitates a number of higher level activities,
namely:

• construction of browsing tools,
• software debugging,
• querying over complex objects,
• evolution of programs and data, and
• distribution of complex object closures.

Octopus is an acronym for Object Closure
Transplantable to Other Persistent User Spaces. As
the name suggests, the technique also provides the
ability to isolate portions of closures, and copy
them to other locations, thus facilitating software
component and data distribution. Partial closures
may be cut from one location and rewired in
another, possibly in a different context, using the
interface supplied by Octopus.

A brief description of Octopus is given in this
section, and the reader is referred to [5] for a more
detailed discussion on the use of this mechanism.
The essence of the Octopus mechanism is to allow
values from the programming language value space
to be hoisted up to a meta level and manipulated in
ways which the programming language would not
otherwise permit. This is achieved using the
coerceToOctopus operation. When manipulation is
complete, an Octopus may be dropped back into
the value space, provided the encapsulated values
still conform to the language’s type system.
Dropp ing i s pe r fo rmed u s ing t he
coerceFromOctopus procedure†. Type signatures of
these two operations are shown below.

coerceToOctopus : proc(Value → Octopus)
coerceFromOctopus : proc(Octopus → Value)

In the procedure signatures above, the value
hoisted to and dropped from an Octopus has the
type Value . Since values of any type may be
represented as an Octopus, the type Value must be
an infinite union type, and type checking must be
performed dynamically. In Napier88 [11], this
functionality is delivered by the infinite union type
any, into which values of any type may be injected.
Values encapsulated in an any are type compatible
with each other even if the encapsulated values are
of different types.

In the Octopus model all values conceptually
have special mappings, or wiring diagrams,
associated with them which contain information
about the bindings within those values. Wiring
diagrams are normally inaccessible to
programmers; however, they may be made
available using the hoisting procedure. An Octopus
may be thought of as a uniform viewing mechanism
with which values of any type and their associated
wiring diagrams may be viewed and manipulated.
An Octopus is implemented as a package of
functions contained in a structure; the hoisted value
is encapsulated in the closure of these functions
and the functions operate on the value’s wiring
diagram. The type declaration for an Octopus is
shown in Figure 2.1

type Octopus is
structure(getType: proc(→ TypeRep);

getSource: proc(→ Source
);

scan: proc(proc(Binding)
)

)

Figure 2.1: The structure of an Octopus.

The getType operation returns a representation of
the type of the value encapsulated in the Octopus.
This representation is a value in the programming

† In this paper the word procedure is used synonymously
with the word function.

language space and may not be used as a
denotation for a type. The nature of these
representations is described in more detail in
Section 3.

The g e t S o u r c e operation returns a
representation of the source code for the value. If
the value is a procedure, this source code is similar
to the hyper-program model of source code
described in [6], [7] and [8]. If the value
encapsulated in an Octopus is not a procedure, then
getSource returns a representation of the value
which is suitable for use in hyper-programs.

A scan procedure is provided to iterate over the
bindings contained in an Octopus; scan takes as its
single parameter a programmer specified procedure
which is iteratively applied to each binding in the
Octopus. The specified procedure may perform an
arbitrary computation on a binding; for example, it
may display a binding’s name or type.

type Binding is
structure(

cut : proc(→ bool);
add : proc(Value → bool);
get : proc(→ Value);
resolved : proc(→ bool);
getType : proc(→ TypeRep);
getName : proc(→ string))

Figure 2.2: The representation of a binding.

Each binding is represented as a package of six
operations, as shown above in Figure 2.2, which
behave as follows:

cut When applied, c u t causes the
associated binding to be dissolved. The
process of cutting a binding is simply a
meta level indication that the binding is
no longer resolved. Cut bindings may
still be accessed via direct bindings to
the naked value.

add The add operation allows an unresolved
binding to be rewired, or resolved, using
the given value. The operation fails if
the binding is already resolved or if the
supplied value is of the wrong type.

get When applied, get returns the current
value of the binding. If the binding is
unresolved, a fail value is returned.

resolved This operation returns true if the binding
is in a resolved state and f a l s e
otherwise.

getType This operation returns a representation
of the type of the corresponding bound
value.

getName This returns the name of the bound
value.

type Person is structure(name : string;
age : int)

let aPerson = Person("john", 42)

let scanner = proc(b : Binding)
begin

writeString(b(getName)())
if EqualType(INT, b(getType)()) then

writeString(" : int'n")
else
if EqualType(STRING, b(getType)()) then

writeString(" : string'n")
else

writeString(" : unknown type'n")
end

let olly = coerceToOctopus(aPerson)
olly(scan)(scanner)

Figure 2.3: A program to browse values.

name : string
age : int

Figure 2.4: Output of the above program.

To illustrate the use of Octopus, consider the
program in Figure 2.3 which displays the types of
the fields of the record denoted by aPerson. The
output of this program is shown in Figure 2.4. The
procedure scanner displays the name and type of a
binding; this procedure is iteratively applied to
each binding in the Octopus olly using the scan
operation. scanner obtains the type of each bound
value using the getType operation of the binding
and checks for type representation equality using
the EqualType operation provided by the Napier88
system. In this example, s c a n n e r only has
knowledge of two types, integer and string.
However a more sophisticated version of this
procedure could be written to display the type of an
arbitrary value.

The following sections describe the
implementation of the Octopus mechanism in
Napier88. Section 3 describes the implementation
platform provided by the Napier88 system, Section
4 describes an alternative implementation
architecture more suited to the Octopus model.
Section 5 describes how this architecture is used to
implement Octopus, Section 6 gives some
performance measurements and Section 7 offers
some conclusions.

3 Napier88 Implementation

The Octopus mechanism has been prototyped using
the Napier88 implementation platform. Therefore
prior to describing the implementation of the
Octopus mechanism per se, the Napier88
implementation platform is described. This section
deals with two implementation issues pertinent to
the implementation of the Octopus model, namely,
the representation of types and the storage
architecture of the system.

3.1 Type Representations

The Napier88 system provides a module devoted to
manipulation of type representations. This module,
known as the types module, provides a complete
set of selector, constructor, equivalence and
iterator functions that operate on type
representations [2]. In practice, the types module
implements an abstract data type which hides the
representation of types. The Napier88 compiler
makes use of this module to construct, manipulate
and type check type representations during
compilation. The constructor functions are
primarily used at compile time to construct type
representation such as the one shown in
Figure 3.1.1. The selector functions are primarily
used by the compiler to perform tasks such as the
discovery of the types of fields of records and
arrays. One strict equivalence predicate EqualType
is provided, and is used at both compile time and
dynamically. Another predicate IsType is provided
that allows the class of a type to be discovered, for
example whether the type represents a record, a
procedure or an array.

type structure fields

type int

field name age type

type string

field name name type

offset

offset

3

2

Figure 3.1.1: A type representation.

Many compilation systems use scalar values, such
as integers, to represent compile time types.
Rather than using this approach, the Napier88 types
modules constructs graph representation of
Napier88 types. This technique is more expensive
than using scalars, however it is necessary due to a
number of features of the Napier88 system.

Firstly, Napier88 makes use of structural type
equivalence; two types which are syntactically
different may represent the same type.
Consequently, some structured canonical
representation of the types must be compared in
order to check equivalence. Secondly, the
orthogonal persistence provided by Napier88 allows
programs and data to be independently prepared
and combined at a later time. Since there is no
universal global mapping which maps types onto
scalar representations, the type representations
must contain (at least) all the information
contained in the original specification of the types.

For example, consider the following type
declaration shown in Figure 3.1.1 which declares a
record type with two fields with labels name and
a g e and types with types s tr ing and i n t eger
respectively.

type Person is structure(name : string;
age : int)

Figure 3.1.2: A simple type declaration.

When this type declaration is compiled, a
representation of the type is constructed, as shown
in Figure 3.1.1 above. The type representation
consists of a node indicating that the type is a
structure. This node points to a list of nodes, each
representing a field of the record type: the first
node in the list indicates that there is a field called
age which is an integer, and the second node
indicates that there is a field called name which is
a string. Field offsets are also recorded as part of
the type representation; these are an extension to
the types module described in [1] and the meaning
of these is described later. The nodes are stored in
a canonical (alphabetical) sequence in order to
make type checking more efficient.

Type representations are primarily used by the
compiler at compile-time. However, type
representations are also required at run-time to
support dynamic type checking. For example, the
infinite union type any , described earlier, may
encapsulate values of an arbitrary type. In the
implementation of any, a representation of the type
is stored alongside the encapsulated value. Such
values may be dynamically projected onto their
original types, this requires both the types module
and the type representations are available at run-
time.

3.2 The Persistent Abstract
Machine

This section describes the Napier88 block retention
mechanism and highlights those aspects which
prevent the Octopus mechanism as specified in the
introduction from being implemented.

Napier88 programs are compiled to produce
code for the persistent abstract machine, PAM,
which provides an interface to a persistent heap
based storage architecture in which all data is
stored in objects. Napier88 values are represented
by combinations of scalar words and pointers to
other heap objects. In order to make garbage
collection and persistent object management more
efficient, PAM objects conform to a canonical
format with all pointers stored before scalars as
follows:

word 0 object header + number of pointers
word 1 object size
words 2..n pointer fields
words n+1.. non-pointer fields

Napier88 is a block structured language which
supports first class procedures, that is procedures
form part of the value space of the language. PAM
creates a stack frame, stored in a separate heap
object, for each dynamic block invocation. Each
stack frame contains a dynamic link, pointing to

the object containing the frame of the calling
block, and a pointer to the object containing the
frame of the lexically enclosing block, the static
link . Values which are declared in statically
enclosing blocks are accessed by following static
links. The set of all frames reachable by following
static links is known as the static chain.

In order to comply with the canonical object
format, each frame contains two storage areas: one
for pointers and one for scalars. These areas are
used to store values created during the execution of
the block and as expression stacks, they are known
as the pointer stack and main stack respectively.
The format of a PAM frame is shown in
Figure 3.2.1.

Dynamic Link
Code Vector

Static Link
Pointer Stack

Main Stack

Resume Address
Main Stack Offset

Size
Header

Figure 3.2.1: A PAM frame object.

When Napier88 values are declared, their pointer
components are stored on the pointer stack and
their scalar components are stored on the main
stack of the currently active frame. For example,
the Napier88 record data type, s t ruc ture , is
implemented as a pointer to a heap object which
contains the fields of the record, with pointers
stored before non-pointers.

Of particular importance with respect to
Octopus is the implementation of procedures and
the values encapsulated with them. Napier88
procedure values are stored on the pointer stack
and are represented by two pointers collectively
known as the procedure closure. The first of these
is a reference to a code vector (a heap-object
containing the executable code of a procedure).
The second pointer is a reference to the frame of
the statically enclosing block of the procedure.
This pointer becomes the static link of the
procedure when it is invoked. Procedure closures
are formed dynamically by loading a pointer to the
code vector of the procedure and a pointer to the
current frame onto the current pointer stack.

3.3 Accessing a Static Environment

To illustrate the way in which a static environment
is accessed, consider the following program, which
declares a string, and two procedures, warning and
error, which make use of that string.

let prefix := "**** "

!** A procedure for displaying warning messages.
let warning = proc(s : string)

writeString(prefix ++ s)

!** A procedure for displaying error messages.
let error = proc(s : string)

writeString(prefix ++ s)

Both procedures, warning and error, are bound to
the string prefix . A conceptual view of this is
shown in Figure 3.3.1, in which the arcs denote the
bindings between the respective values.

"**** "

prefix

prefix

warning error

prefix

Figure 3.3.1: display, message and error.

In the implementation of Napier88, procedure
closures are stored in the frame of the block in
which they are declared. Therefore the string
denoted by prefix and the closures associated with
warning and error will be stored in the same heap
object as shown in Figure 3.3.2. In order to use
prefix, warning and error must follow their static
links to obtain the value.

frame "**** "

code vec

• • •

prefix

warning

error

string

1101000101101011

code vec
1101000101101011

Figure 3.3.2: prefix, warning and error.

frame "**** "

code vec

• • •

prefix

warning

error

string

1101000101101011

code vec
1101000101101011

frame for error

• • •

DL

CV

• • •

SL

Figure 3.3.3 A call to procedure error.

This representation allows values declared in
statically enclosing blocks to be shared.
Figure 3.3.3 shows an invocation of the procedure

error; the frame corresponding to the call of error
can access the values of prefix, warning and error
itself. It is precisely this sharing that prevents this
mechanism from being used when Octopus is
employed. Octopus permits bound values to be cut
and replaced with different bound value. For
example, the binding from error to prefix could be
replaced by another string as shown in Figure 3.3.4.

"**** "

prefix

pr
ef

ix

warning error

prefix

"**** ERROR ****"

Figure 3.3.4: The updated procedures.

!** Procedure to wire new binding.
let cutAndRewire = proc(b : Binding)

if b(getName)() = "prefix" and
EqualType(b(getType)(),STRING) do

begin
let ok = b(cut)()
if ~ok do error(..)
ok := b(add)("**** ERROR **** ")

end

let octopus = coerceToOctopus(error)
octopus(scan)(cutAndRewire)

Figure 3.3.5: A program to rewire a new prefix.

In Octopus, this is achieved using a program such
as the one in Figure 3.3.5. In this program a
procedure c u t A n d R e w i r e is declared which
examines a binding to see if it has type string and
has the name prefix. If so, the binding is cut and
replaced with the new value, "**** ERROR **** ".
Finally, the error procedure is hoisted into an
Octopus and the cu tAndRewire procedure is
supplied to the scan operation of the Octopus.

Using the Napier88 implementation described
above, the desired semantics could not be
achieved: it is not possible to alter the value bound
to the procedure error without also changing the
value bound to warning. In order to implement
Octopus as described above, the implementation
architecture of the Napier88 system requires
modification.

4 Block Retention in PCASE

The main drawback of PAM as a vehicle for
supporting the Octopus model is that parts of a
static chain may be shared by any number of
different procedures. Manipulating a single frame
in a static chain may affect the operation of any
procedure which shares that chain.

One solution to this problem is to avoid the use
of a static chain altogether. This method is
employed in the PCASE (Persistent Code vector,
Argument, Stack and Environment) model [3] in

which the static chain is replaced by a f l a t
environment, a single record containing pointers to
each value used within a procedure. The
construction of this environment is performed at
procedure closure formation time. Using this
technique, each value must be boxed [12]; that is
encapsulated in a heap object. Closures consist of
a pointer to a code vector and pointer to a record,
the environment vector, containing pointers to the
boxed values.

•••

•••

closure for
warning

closure for
error

code vec
1101000101101011

code vec
1101000101101011

"**** "

prefix

•••

•••

pr
ef

ix

Figure 4.1: The warning and error procedures
in PCASE.

In the PCASE model, the warning and error
procedures described earlier are represented as
shown in Figure 4.1. Clearly the environments for
warning and error are divorced, allowing bound
values in the static environment of one procedure
to be manipulated without affecting the semantics
of the other. For example, each binding labelled
prefix in Figure 4.1 may be made to refer to a
different boxed value. A variation approach is used
in the Octopus implementation and is described in
the next section.

5 An Architecture to Support
Octopus

5.1 Block Retention

In the PCASE model, a flat environment is created
for each anonymous block and procedure closure in
a program. Within a single procedure invocation,
an arbitrary number of anonymous blocks may be
entered; using the PCASE model this would require
a flat environment to be constructed for each
anonymous block entered. This expense is not
required to support Octopus since anonymous
blocks cannot be treated as values.

The prototype implementation of Octopus
described in this paper is therefore implemented
upon a hybrid architecture which uses PCASE style
flat environments within procedure closures and
retains static links for anonymous blocks. A
procedure closure consists of a pair of pointers; one

to an environment vector and another to the
corresponding code vector.

5.2 Wiring Diagrams

To allow bindings to be manipulated, the higher
level operations provided by Octopus require the
presence of wiring diagrams describing those
bindings. The nature of a wiring diagram depends
on the type of the hoisted value, in particular
whether the values are procedural or non-
procedural. For a non-procedural value,
information about that value, and hence a wiring
diagram, may be deduced from its type. For
procedural values, wiring diagrams must be
constructed at compile-time and stored in their
code vectors.

As described earlier, the Napier88 types module
may be used to discover information about a type
representation and Octopus utilises this ability.
Values that are injected into an Octopus using the
c o e r c e T o O c t o p u s procedure are always
encapsulated within a dynamic type. These
dynamic types always carry a representation of
their type with them. When a value is hoisted, the
type representation is extracted from the dynamic
type and examined using the IsType predicate from
the types module to determine if the value is
procedural or non-procedural. The implementation
of the Octopus operations is determined by the
class of the extracted type.

5.3 Non-procedural Values

Type representation contain complete information
for non-procedural types, for example, it is possible
to determine the names, types and number of fields
in a record. It is also possible to discover the field
offsets in the objects representing instances of
these types. This information is presented in a
sanitised manner via the operations on bindings in
an Octopus as shown in Figure 2.1.

However, wiring diagrams contain more
information than that stored in type representations.
In particular, the state of bindings within a value
(i.e. whether they are cut or not) must be recorded.
For example, in the case of a Napier88 structure,
an array of boolean values is maintained indicating
the state of each field. A pointer to this vector is
stored in a field of the structure which is invisible
to the application programmer, and only accessible
via the Octopus operations. To illustrate this,
consider the type Person declared in Figure 3.1.1.
Suppose that an instance of this type is created as
shown below.

let aPerson = Person("fred",87)

The resulting value is represented by the graph of
objects shown in Figure 5.3.1.

Header

Size = 5

87

Header

Size = 6

1

2

true

true

Header

Size = 4

4

f r e d

vector lower bound
vector upper bound

string length

Binding Info

Person

age resolved?
name resolved?

name
age

Figure 5.3.1: Representation of aPerson.

5.4 Wiring Diagrams for
Procedures

Unlike non-procedural values, the representation of
the type of a procedure does not contain sufficient
information to enable the bindings within the
procedure to be determined. Therefore, to obtain
the wiring diagram for a procedure, it is necessary
for the compiler to record information about the
bindings within that procedure. This information
needs to be available at run-time; this may be
achieved by the compiler planting wiring diagrams
in the code vector of every procedure.

Wiring diagrams may be thought of as a table
containing one entry for each binding in the
procedure. Each entry contains the name of the
binding, its type and its offset within the
procedure's environment vector. Each entry is
created by the compiler upon encountering a
reference to a value which is declared at an earlier
lexical level than the procedure, i.e. if the value is
declared outside the procedure body.

name type offset state
prefix string 2 resolved

writeString proc(string) 3 resolved

Figure 5.4.1: The wiring diagram for warning.

For example, consider the program shown in
Figure 3.3.1. The procedures warning and error are
both bound to two values: writeString and prefix.
The wiring diagram created for the procedure
warning is as shown in Figure 5.4.1.

Like the information recorded for non-
procedural values this information is used by the
higher level Octopus operations.

5.5 Implementation Overview

To illustrate the combination of the various features
described above, consider the following program in
which the warning procedure declared earlier is
hoisted into an Octopus, octopus, and the binding
to the string prefix cut.

let octopus = coerceToOctopus(warning)
let scanner = proc(b : Binding)
begin

if b(getName)() = "prefix" do
begin

let ok = b(cut)()
end

end

octopus(scan)(scanner)

The result of executing this program is shown in
Figure 5.5.1, in which the wiring diagram for
warning contains a dissolved state for the binding
named prefix.

warning environment

"**** "

•••

code vec
1101000101101011

3

name type offset state
prefix 2 dissolved

writeString resolved

wiring diagram

octopus

scan getSource

getType

•••

type rep for "proc(string)"
type rep for "string"

Figure 5.5.1: An Octopus representing warning.

The pointer from the environment vector of warning
to the string denoted by prefix remains intact, even
though the state of the binding is considered cut at
the meta level. Therefore, any value bound to
warning may safely execute the procedure without
adverse effects. The difference is that if octopus is
transplanted, then the string associated with the
name prefix is not copied and must be rewired
before the encapsulated procedure may be
extracted. When a new string is wired in then all
values bound to warning will instantly see the new
value.

6 Performance

type Person is structure(name : string;
age : int)

type System is
structure(add: proc(string,int);

find: proc(string → Person)
)

let nilPerson = Person("",-1)
let database := vector 1 to SIZE of nilPerson
let current := 1

let addPerson = proc(name : string ; age : int)
begin

database(current) := Person(name,age)
current := current + 1

end

let findPerson = proc(name : string → Person)
begin

let tmp := 1
let found := false
while tmp <= current and ~found do
begin

if database(tmp)(name) = name then
found := true

else
tmp := tmp + 1

end
if found then database(tmp)
else nilPerson

end

in PS() let anExampleDataBase =
System(addPerson,findPerson)

Figure 6.1: A simple Napier88 application.

The use of the hybrid block retention architecture
described above has an effect on the performance
of the Napier88 system. Some of these effects
enhance performance, some are detrimental.

The most notable performance cost of the
hybrid architecture is the requirement to wrap each
declared value in a heap object. For example,
integers which are directly stored on the main stack
of the current frame in the PAM architecture, are
wrapped in a heap object in the hybrid. This incurs
a two fold cost – firstly an additional heap object
must be created, secondly an additional
dereference is required on use. However, the
hybrid technique is more efficient for looking up
intermediate free variables since they can be found
using a single dereference of the environment
vector rather than a search of the static chain.

In the hybrid architecture, the formation of
procedure closures is considerably more expensive
than the PAM architecture. At the point of closure
formation, each value referenced by the procedure
must be loaded into a newly created environment
vector. This expense is not as bad as it might first

seem, since it is only incurred when the closure is
formed and this is a relatively infrequent
occurrence. Calls to the procedure are no more
expensive than using the PAM.

One benefit of the use of a flat static
environment is the reduction in the amount of
retained data in procedure closures. One of the
drawbacks of the PAM architecture is that all
values in the static chain are retained whenever a
procedure closure is created. Since Napier88
programs commonly use higher order procedures to
provide interfaces to encapsulated data this is a
serious consideration. This problem is removed by
only retaining that data which is used by a
procedure.

Consider the simple Napier88 database
application program in Figure 6.1 which maintains
an database of records of type Person . This
program is encapsulated in a package of type
System containing two procedures: add and find
which, respectively, create a new person and find
an existing person. This package is placed in the
persistent store by the last line of the program. The
database is implemented as a vector of records and
is restricted to no more than SIZE entries. The
procedures addPerson and findPerson operate over
this vector. These procedures maintain a reference
to the vector and an integer representing the start of
free space in their closures.

The following sections attempt to quantify the
performance of the hybrid architecture with that of
the original PAM architecture. Performance is
compared with respect to three metrics: the amount
of retained data, space utilisation and speed.

6.1 Block retention

The first measurement illustrates the amount of
retained data in the two implementations. These
measurements are taken with the size of the vector
being ten (SIZE=10) and no entries in the database.
Using PAM the total number of objects within the
closure of the database is 29. These objects are
distributed as shown in the histogram in
Figure 6.1.1. The large peak of objects of size 6
and 9 reflect the retention of the type
representations for Person and System. The object
of size 169 is the code vector for the main program.
These objects do not strictly need to be retained in
order for the application to execute.

3 4 5 6 7 8 9 14 20 23 32 169

object size (in words)

nu
m

be
r

of
 o

bj
ec

ts

Figure 6.1.1: Object distribution in PAM.

3 4 6 8 9 15 25 40

nu
m

be
r

of
 o

bj
ec

ts

object size (in words)

Figure 6.1.2: Object distribution in hybrid.

The hybrid architecture produced the results
indicated in Figure 6.1.2 which has a dramatically
different object size distribution. Note that there
are only 11 objects retained rather than the 29 for
the PAM implementation. This reflects the fact
that this architecture retains only that data actually
needed by the application. The object size
distribution is also dramatically different; the two
largest objects represent code vectors, the object of
size 15 is the vector containing the database. The
smaller objects represent a record, boxes and
environment vectors.

6.2 Space Utilisation

Size Number
3 1
4 4003
5 4002
6 6
7 2
8 1
9 9
20 1
23 1
32 1

182 1
4004 1

Total number of objects = 8029
Total size of objects = 40425 words

Figure 6.2.1: Space Utilisation in PAM.

The next performance test measures the overall
space efficiency of the two systems. In this test,
the size (SIZE) of the vector was set to 4000 and
the database was populated with random data.
Figure 6.2.1 shows the object size distribution for
the PAM implementation whereas Figure 6.2.2
represents the distribution for the hybrid. The total
space used is roughly equal in both systems; the
dominant factors in this application are the records
in the vector (and the strings contained in them)
and the vector itself. These are represented by the
4000 objects of size 4–6 in the tables and the
single object of size 4004(5).

Size Number
3 1
4 4003
6 4001
8 2
9 1

25 1
40 1

4005 1

Total number of objects = 8011
Total size of objects = 44100 words

Figure 6.2.2: Space Utilisation in hybrid.

6.3 Speed

The speed of program execution was measured by
testing the time taken to load 4000 items into the
database. With the PAM system this took an
average of 0.4417 seconds, with the hybrid system
this took 0.6583 seconds. Thus for insertion the
hybrid system suffers a 50% increase in execution
time. When an instruction trace is taken, it is
revealed that this time consists almost entirely of
calls to the object allocator. This is entirely due to
the boxing of values in the hybrid.

A second measurement was made by testing the
time taken to lookup an item in the database 10000
times. The results were consistent with those
above in that the hybrid system displayed an
approximately 50% increase in execution time.
These results reflect the intrinsic cost of object
allocation in the Persistent Abstract Machine
architecture; the additional 50% increase in
execution time stems largely from the layered,
object-based architecture of the PAM. An
investigation of an alternative PAM architecture
[14] is the topic of further research.

7 Conclusions

This paper describes the Octopus mechanism and
the issues relating to its implementation. The
Octopus mechanism provides a uniform abstract
interface to values of any type. The approach is to
provide a simple, yet powerful reflective
mechanism and to use this to construct higher level

tools. This relatively simple mechanism provides
enough power to allow many reflective applications
to be written which previously required much
heavier weight mechanisms, such as the use of a
compiler at run-time, or unsafe language
mechanisms. In particular, the Octopus mechanism
may be used to support database operations such as
browsing and querying. It may also be used to
support a variety of software engineering tasks,
such as debugging, incremental system evolution
and distribution of software components. These are
currently a major topic of research.

The use of a types module such as the one
provided by the Napier88 system is crucial to the
implementation of Octopus. The functionality
provided by this module is used to implement
wiring diagrams and to supply programs using
Octopuses with type information.

The Octopus mechanism has been implemented
using the Napier88 implementation platform. This
platform has proven deficient as a vehicle for
Octopus due to the Persistent Abstract Machine
block retention architecture. A modification to this
architecture has been proposed and an prototype
implementation of it has been assessed with regard
to performance. The hybrid architecture performs
better than the PAM with respect to block
retention. This property is especially important
when first order information hiding is employed
using first class procedures, as is common in
Napier88 programs. The overall size of the data
when boxing is employed is comparable in the two
systems. Currently, all values are indiscriminately
boxed, and there is considerable room for
optimisation in this regard since local values that
are not used by other procedures need not be boxed.
These optimisations will further reduce the number
of objects created within the Napier88 system and
thus improve store utilisation and performance.
These optimisations are under investigation at the
time of writing.

Acknowledgements

This work is supported in part by the Defence
Science and Technology Organisation of Australia
through their assistance in the PIPE project, and by
the Australian Research Council.

This paper also benefits from discussions with
Francis Vaughan and Dave Hulse.

References

1. Connor, R. "The Napier Type-Checking
Module", Persistent Programming Research
Report 58, University of St. Andrews, 1988.

2. Connor, R. C. H., Brown, A. L., Cutts, Q. I.,
Dearle, A., Morrison, R. and Rosenberg, J.
"Type Equivalence Checking in Persistent
Object Systems", in The Proceedings of the
Fourth International Workshop on Persistent
Object Systems, Morgan-Kaufmann, Martha's
Vineyard, Massachusetts, pp. 151-164, 1990.

3. Davie, A. J. T. and McNally, D. J. "PCASE -
A Persistent Lazy Version of an SECD
Machine", Research Report, The University of
St. Andrews, CS/92/7, 1992.

4. Dearle, A. and Brown, A. L. "Safe Browsing in
a Strongly Typed Persistent Environment",
The Computer Journal, vol. 31, 6, pp. 540-545,
1988.

5. Farkas, A. and Dearle, A. "Octopus: A
Reflective Language Mechanism for Object
Manipulation", in The Proceedings of the
Fourth International Workshop on Database
Programming Languages, Springer-Verlag,
New York City, 1993.

6. Farkas, A. M., Dearle, A., Kirby, G., Cutts, Q.,
Morrison, R. and Connor, R. "Persistent
Program Construction through Browsing and
User Gesture with some Typing", in T h e
Proceedings of the Fifth International
Workshop on Persistent Object Systems, Pisa,
pp. 376-393, 1992.

7. Kirby, G. N. C. "Reflection and Hyper-
Programming in Persistent Programming
Systems", Ph.D. Thesis, University of St.
Andrews, 1993.

8. Kirby, G. N. C., Connor, R. C. H., Cutts, Q. I.,
Dearle, A., Farkas, A. and Morrison, R.
"Persistent Hyper-Programs", in T h e
Proceedings of the Fifth International
Workshop on Persistent Object Systems, Pisa,
pp. 86-106, 1992.

9. Kirby, G. N. C. and Dearle, A. "An Adaptive
Browser for Napier88", Research Report
90/16, University of St. Andrews, 1990.

10. Morrison, R., Atkinson, M. P., Brown, A. L.
and Dearle, A. "On the Classification of
Binding Mechanisms", Information Processing
Letters, vol. 34, 2, pp. 51-55, 1990.

11. Morrison, R., Brown, A. L., Connor, R. and
Dearle, A. "The Napier88 Reference Manual",
University of St. Andrews, PPRR-77-89, 1989.

12. Peyton-Jones, S. "The implementation of
functional languages", Prentice-Hall, 1987.

13. Stemple, D., Stanton, R. B., Sheard, T.,
Philbrow, P., Morrison, R., Kirby, G., Fegaras,
L., Cooper, R. L., Connor, R. C. H., Atkinson,
M. P. and Alagic, S. "Type-Safe Linguistic
Reflection: A Generator Technology",
ESPRIT BRA Project 3070 FIDE Technical
Report, FIDE/92/49, 1991.

14. Vaughan, F., Schunke, T., Koch, B., Dearle,
A., Marlin, C. and Barter, C. "A Persistent
Distributed Architecture Supported by the
Mach Operating System", in the Proceedings
of the 1st USENIX Conference on the Mach
Operating System, pp. 123-140, 1990.

