
Changing Persistent Applications

Alex Farkas and Alan Dearle

{alex,al}@cs.adelaide.edu.au
Department of Computer Science, University of Adelaide

Adelaide, Australia

Abstract

During the lifetime of an application, the objects and bindings in a
persistent store may require modification in order to fix bugs or
incorporate changes. Two mechanisms, Octopus and Nodules,
supporting the evolution of persistent applications are presented. The
first, Octopus permits code and data values to be evolved, even if
they are encapsulated. Type evolution is addressed by the separation
of type information from the executable code. In many cases type
evolution is possible, without the expense of total or partial system
recompilation. Nodules are a complementary mechanism to Octopus
in that they allow generic templates to be defined independently of
any referencing environment. Nodules may be specialised in order to
yield instances by binding them to values and types. When combined
into a single system, Nodules and Octopus enable a rich collection of
information about the structure and state of applications to be
maintained and made available to programmers not only during the
construction phase, but during the entire lifetime of applications.

1 Introduction

Persistent applications consist of graphs in which the nodes are data objects and
the arcs are bindings between them. In a persistent programming language
which supports first class procedures1, such as Napier88 [10], the objects in the
store include procedures with bindings to data, and data with bindings to
procedures. Persistent systems support incremental construction [4] and
component reuse [9] by allowing components to be created, stored in the
persistent object store and bindings between them established. Bindings may be
established at different times: during program construction, at program compile
time and when the program is executing [7].

1Throughout this paper, the terms program, procedure and functions are used
synonymously.

type Part is structure(name : string ; id,quantity : int)

!** The database is encapsulated within the partsDatabase procedure whose
!** parameters are a command, a part name and a quantity.
let partsDatabase =
begin

let database = !** generate a b-tree for storing Parts.

!** Declare three procedures which are bound to and manipulate
!** the database.
let create = proc(partName : string ; amount : int)
begin

let newId = ... !** generate a new unique identifier.
let newPart = Part(partName,newId,amount)
database(enter)(newPart)

end

let update = proc(partName : string ; amount : int)
begin

let apart = database(lookup)(partName)
!** Next line is an error, rhs should be apart(quantity) + amount
apart(quantity) := apart(id) + amount

end

let display = proc(partName : string)
use PS() with IO in
use IO with writeInt : proc(int) ; writeString : proc(string) in
begin

let apart = database(lookup)(partName)
!** call a procedure to display the number of parts.
writeString(apart(name))
writeInt(apart(id))
writeInt(apart(quantity))

end

!** Define the partsDatabase procedure which is bound to the utility
!** procedures. This procedure is returned as the result of the
!** computation between the outermost begin and end.
proc(command,partName : string ; amount : int)
begin

case command of
"CREATE" : create(partName,amount)
"BUY" : update(partName,amount)
"SELL" : update(partName,–amount)
"PRINT" : display(partName)
default : !** error ...

end
end

Figure 1: A simple program creating a database of Parts.

During the lifetime of an application, the objects and bindings in the object store
may require modification in order to fix bugs or incorporate changes. In general,
evolution involves traversal of the object graph in order to modify, create and
delete objects and bindings. This may be achieved through the use of a
persistent store browser [3]: a general purpose tool which traverses object graphs
applying a function to the objects it encounters. This is analogous to providing a
generic map operation over an object graph. For example, a browser may be
used to find and update all the instances of a given type in a database. The use
of browsers to aid evolution has been proven in the context of Napier88
persistent object stores. However, a number of limitations have been
encountered, namely:

1. Encapsulated values in the object graph cannot be reached
using a browser, since it is impossible to browse through
functional interfaces.

2. Evolved code cannot be bound to existing data and evolved data
cannot be bound to existing code since the existing code and
data cannot be named or referenced.

3. The lack of support for type evolution.

Encapsulation plays an important role in the construction of many applications.
Abstract Data Types (ADTs) [8] and the Object-oriented design methodology [1]
rely heavily on encapsulation in order to hide the underlying data structures of an
application. Such information hiding is often cited as an aid to system evolution
since the implementation of an abstract type can be changed without affecting
the programs that make use of that abstract type. However, abstract types can
cause difficulties when used as a mechanism to encapsulate persistent objects –
when the source of an abstract type is recompiled and a new abstract type
installed, the persistent state will be lost. If the interface to the abstract type is
complete, it may be possible to extract all the encapsulated data from the old
instance and place it in the new instance with no loss of information. However,
this is not always the case, as in the partsDatabase example shown in Figure 1
in which the data is encapsulated but cannot be accessed through the
(degenerate) functional interface.

System evolution consists of three activities: evolving data, evolving code
and evolving types. Evolution of data is perhaps the simplest activity: provided
that the data structure is not encapsulated and therefore reachable, a browser can
traverse it and create a new isomorphic data structure. However, in order to
ensure referential integrity, all the references to the old data structure must be
found and consistently updated. This is also possible using a browser (if a little
time consuming). However, bindings to data structures encapsulated within the
closures of functions, present a problem; for example, the binding to database
from create in Figure 1. There is no method of finding these bindings using
existing browser technology. A similar problem exists with evolved code – if
referential integrity is to be preserved, the evolved version of the code should
contain the same bindings as the old. Clearly some general purpose mechanism
is required that is capable of reaching all data regardless of whether it is bound
or encapsulated.

Applications generally make use of an arbitrary set of types. As an
application evolves, these types may undergo changes which effect the
application in two primary ways: firstly, programs which manipulate values of

the evolved types may also need to be evolved to reflect the change in type.
Secondly, programs which perform dynamic type checking and create instances
of the types must be updated.

In the remainder of this paper, we present evolutionary techniques which
address the problems discussed above. The mechanisms are based on the
principle that all mutable information should be removed from the code and
stored separately. The technique also provides a way in which generic
executable code may be obtained and reused with different values and types. A
mechanism called a Nodule is presented that allows such unbound code to be
specified and bound at a later time.

This paper is structured as follows. Section 2 describes Octopus, a
mechanism for interrogating and manipulating bindings, Section 3 describes a
mechanism for propagating type changes through existing programs, Section 4
describes Nodules and section 5 describes how these mechanisms form a part of
the programming environment.

2 Octopus

A mechanism called Octopus is described in [5] and [6] which allows all
bindings in an arbitrary graph of objects to be examined and manipulated. In
essence, Octopus provides a uniform viewing mechanism with which values and
bindings of any type may be viewed and manipulated using the same set of
operations. The mechanism allows values to be hoisted up to a meta level and
manipulated in ways which the programming language would not otherwise
permit. When manipulation is complete, values may be dropped back into the
value space provided they still conform to the language's type system.

An Octopus is a set of three operations which allow the bindings within a
value to be examined and manipulated. The corresponding type declaration for
an Octopus is shown in Figure 2. The getType operation returns a representation
of the type of the value encapsulated in the Octopus. This representation is a
value in the programming language space and may not be used as a denotation
for a type. A complete set of selector, constructor, equivalence and iterator
functions that operate on this representation are provided by the Napier88 system
[2]. Using these functions, the programmer can obtain any information about the
type.

type Octopus is structure(getType : proc(→ TypeRep);
getSource : proc(→ Source) ;
getBinding : proc(string → Binding) ;
scan : proc(proc(Binding)))

Figure 2: The structure of an Octopus.

The getSource operation returns a representation of the source code for the value.
If the value is a procedure, this source code is similar to the hyper-program
model of source code described in [7]. If the value encapsulated in an Octopus
is not a procedure, then getSource returns a representation of the value which is
suitable for use in hyper-programs. The getBinding operation returns the binding
associated with the given name if one exists. A scan procedure is provided to
iterate over the bindings contained in an Octopus. scan takes as its single
parameter a programmer specified procedure which is iteratively applied to each

binding in the Octopus. The specified procedure may perform an arbitrary
computation on a binding; for example, the procedure may be used to display a
binding’s value.

The Octopus model provides the ability to cut and rewire the bindings
within hoisted values. When a value from the value space is hoisted up to the
meta level, all of its bindings are treated as hooks from the hoisted value to the
bound values. A binding is cut by detaching the hook from the bound value, and
is rewired by attaching the hook to another value of the same type; it is not
possible to rewire values of an incompatible type. Neither is it possible to drop
the hoisted value back into the value space until all bindings are correctly
rewired.

type Binding is structure(cut : proc(→ bool);
add : proc(Value → bool);
get : proc(→ Value);
resolved : proc(→ bool);
getType : proc(→ TypeRep);
getName : proc(→ string))

Figure 3: The representation of a binding.

A binding is represented as a package of six operations, as shown in Figure 3.
The operations on bindings behave as follows:

cut causes the associated binding to be dissolved; the process of
cutting a binding is simply a meta level indication that the
binding is no longer resolved. Cut bindings may still be
accessed via direct bindings to the naked value.

add permits an unresolved binding to be rewired, or resolved,
using the given value. The operation fails if the binding is
already resolved or if the supplied value is of the wrong
type.

get returns the current value of the binding. If the binding is
unresolved, a fail value is returned.

resolved returns true if the binding is in a resolved state and false
otherwise.

getType returns a representation of the type of the corresponding
bound value.

getName returns the name of the bound value.

2.1 Implementation of Octopus

Octopus has the ability to traverse and manipulate arbitrary object graphs,
including encapsulated values. The ability of Octopus to access encapsulated
bindings requires special attention in the implementation architecture. To
illustrate this, we will describe how the partsDatabase application is represented
and how Octopus manipulates this representation. Readers are referred to [5] for
a more detailed description of the Octopus architecture.

In systems supporting Octopus, all bindings encapsulated in procedures are
stored separately from executable code. All procedural values are represented by
two entities: a structure containing only executable code, known as a code
vector, and a structure containing the encapsulated bindings, known as an

environment vector. Together, a code vector and environment vector form the
closure of a procedure. The partsDatabase procedure is represented as shown in
Figure 4.

On the left hand side of the figure, the closure for the partsDatabase
procedure is shown. The environment vector contains bindings to each of the
three operations create, update and display. Similarly, the environment vector of
each operation contains a binding to the database.

closure for
create

•••

•••

closure for
update

•••

closure for
display

•••

closure for
partsDatabase

code vec
010100011111

•••

display

create

up
date

database
database

database

da
ta

ba
se

code vec
1101000101101011

code vec
011101010100101

code vec
010101010000101

Figure 4: Conceptual view of the partsDatabase application.

closure for
create

code vec
1101000101101011 •••

•••

closure for
update

code vec
011101010100101

•••

closure for
display

code vec
010101010000101 •••

closure for
partsDatabase

•••

display

create

up
date

database
database

da
ta

ba
se

•••
code vec

111111110100101
dummyDatabase

du
m

m
yD

at
ab

as
e

•••

closure for
newUpdate

database
code vec
010100011111

Figure 5: View of newUpdate, the replacement procedure for update.

Octopus may be used to traverse object graphs, access encapsulated values, and
perform rebinding of new values. For example, consider the update procedure
used by partsDatabase, update is faulty as it increments the id field of a part
instead of the quantity field, so it needs to be replaced. There are two steps
involved in making this change:

1. The new procedure must be created and bound to database, and
2. the partsDatabase application must be bound to the new

procedure.

In order to bind the new procedure to database, it must be located. This may be
achieved by traversing the object graph of the partsDatabase application using
the Octopus operations. Once located, the new procedure may be bound to
database. This could be achieved using the Octopus add operation or, since the
location containing the database used by the new procedure is known, by
assignment. Finally the rewired procedure may be bound into the partsDatabase
application using the Octopus add operation. This process is illustrated in
Figures 5 and 6.

In Figure 5, a procedure newUpdate has been created to be used as the
replacement for update. Initially, newUpdate is bound to a dummy database; this
is to be replaced by a binding to the database used in partsDatabase.

closure for
create

code vec
1101000101101011 •••

•••

closure for
update

code vec
011101010100101

•••

closure for
display

code vec
010101010000101 •••

closure for
partsDatabase

•••

display

create

database
database

da
ta

ba
se

•••
code vec

111111110100101

dummyDatabase

dummyData
bas

e

•••

closure for
newUpdateupdate

database
code vec
010100011111

Figure 6: View of partsDatabase after wiring in newUpdate.

Figure 6 shows the application after newUpdate has been bound to the database
and partsDatabase to newUpdate. There are no other bindings to the old update
procedure or the dummy database and these will be garbage collected by the
system. The Napier88-like pseudo code in Figure 7 shows how these steps are
achieved.

The first line of the program constructs a dummy instance of a database.
Next, a procedure newUpdate intended as a replacement for the faulty update
procedure is declared; this procedure is bound to dummyDatabase . Then,
newUpdate and partsDatabase are hoisted into Octopuses using the special
function coerceToOctopus. The getBinding operation of the hoisted database is
used to obtain a binding to the original update procedure, which is then hoisted.
Similarly, the getBinding operation of the hoisted original update procedure is
used to obtain the binding to the old database, which is then assigned to
dummyDatabase. Finally, the binding to the old update procedure is cut and the
newUpdate procedure wired in.

Octopus allows arbitrary object graphs to be interrogated, but only allows
values within the graphs to be manipulated or replaced. No support is given to
enable changes in schema to be propagated through the graphs. For example, if
the type Part in the parts database is extended to include the year in which a
part was manufactured, then three activities need to occur. Firstly, the source
code for the application needs to be modified to use the new type. Secondly, the
programs need to be recompiled and lastly, the values in the database need to be
evolved to be consistent with the new type. This may be achieved by traversing
the database using Octopus and constructing an isomorphic graph of values

which include the new field. The new database may then be wired into the new
application.

let dummyDatabase := ... !** declare a dummy value.

!** The new version of update
let newUpdate = proc(partName : string ; amount : int)
begin

let part = dummyDatabase(lookup)(partName)
part(quantity) := part(quantity) + amount

end

let hoistedDb = coerceToOctopus(partsDatabase)
let oldUpdateBinding = hoistedDb(getBinding)("update")
let oldUpdate = oldUpdateBinding(get)()
let hoistedOldUpdate = coerceToOctopus(oldUpdate)
let oldDbBinding = hoistedOldUpdate(getBinding)("database"
)
dummyDatabase := oldDbBinding(get)()

let ok := oldUpdate(cut)()
ok := oldUpdate(add)(newUpdate)

Figure 7: Replacing the update procedure using Octopus.

3 Propagating Type Changes

On its own, the Octopus mechanism is not suitable for evolving programs in
which changes of type have occurred. This section describes an extension of the
Octopus mechanism which allows type dependent information inside programs to
be manipulated. The mechanism is an extension of Octopus in that type specific
information is extracted from executable code and stored inside the environment
vector.

When a type used by a program changes, it is not always necessary to
make syntactic changes to the program in order to reflect the new type. For
example, if the type of Part in the partsDatabase example is extended with a
new field, the update operation does not need to be changed syntactically, but
must be recompiled in order to update any type specific information in its
executable form.

The create and display operations must be modified to include the new
field. The nature of the resulting changes in executable code depend on how
each procedure uses the type information.

In general, programs depend on types in three ways. These are classified
as:

1. signature,
2. field, and
3. constructor.

The nature of these dependencies and their effects on the executable forms of
programs are described below.

Programs which contain signature dependencies contain code to perform
type checking on values dynamically. For example consider the display
procedure in the parts database example. This procedure attempts to locate
procedures called writeString and writeInt in the persistent store. Locating the
procedures requires type checking to be performed dynamically. For this reason,
representations of the types of the procedures are kept in the persistent store. In
order to locate the procedures, the executable code of display contains a
representation of the expected types of the procedures and uses them to compare
with the representation encountered in the persistent store.

The executable form of a program containing a signature dependency is
bound to a representation of the type. In the event that a change occurs in the
signature, the source code may or may not require modification. However, the
only change required in the executable form is that it should be bound to the new
type representation.

Field dependencies arise in programs which dereference or assign to record
fields. For example, the update procedure makes both a dereference and
assignment to a Part field. The executable code contains information about the
offset of the quantity field in the part. If, for example, a new field were added to
Part, then the source code for update would remain the same: the only difference
would be that the executable code would require updated information about the
offset of the quantity field in the Part record. In such cases, recompilation could
be avoided by updating the offset information bound to the executable code.

A constructor dependency arises when a program constructs an instance of a
type. For example, in the case of the create procedure, the executable code
constructs an instance of the type Part using the values passed as parameters to
the procedure. If the type Part changes, the program create would also need to
be changed. This involves syntactically changing the source code of create and
recompiling it.

3.1 Operations for Evolving Types

The dependencies described above indicate that not all programs need to
undergo recompilation if the types they use change. More specifically, if
programs contain only signature and/or field dependencies, the programs may be
evolved without the expense of recompilation if the types they use are evolved.
The three operations in Figure 8 provide a way in which the type dependencies
of programs may be queried, and the programs updated without recompilation
where possible.

The updateType operation replaces representations of type old with
representations of type new in the procedure aProc. If aProc contains field
dependencies then the offsets are also updated. If the procedure contains
occurrences of structurally equivalent types, then all such instances are updated;
it is necessary to recompile the procedure if a subset of all equivalent types
requires updating*. The getDepend operation returns a value indicating the
nature of the dependency of aProc on the type theType . These values are
integers combined from the following:

0 no dependency,

*In programming languages which employ name equivalence on types, this would not
necessarily be the case.

1 signature dependency,
2 field dependency,
4 constructor dependency, and
8 semantic dependency of some other kind.

updateType : proc(aProc : any ; old,new : Type → bool)
getDepend : proc(aProc : any ; theType : Type → int)
scanTypes : proc(aProc : any ;

user : proc(aType : Type ;
aDep : int))

Figure 8: Operations for type evolution and dependency querying.

Combinations are produced by adding the appropriate values; for example, the
value 5 indicates a constructor and signature dependency. The final operation,
scanTypes, allows a user specified procedure to be iteratively applied to each
dependent type of the procedure aProc. The operations described above may be
used to more efficiently evolve an application in which type changes occur.
However, the operations do not provide a way of avoiding recompilation in all
cases: if a program requires syntactic change, then recompilation is unavoidable.

4 Nodules

The operations provided to support type evolution behave in a similar fashion to
the Octopus operations. In Octopus, all bindings are removed from the
executable code stream and stored separately in an environment vector. This
principle is extended to support type evolution by extracting all type
representations and field offsets from the code stream and planting them in the
environment vector with the bindings. For example, Figure 9 shows the
environment vector of the update procedure in the parts database storing the
offset of the quantity field inside a part.

•••

closure for
update

code vec
011101010100101 •••

database

data
base

4

offset of quantity field

Figure 9: Storing type information in environment vectors.

The result is that all attributes of the executable code which may be modified
without recompilation are stored separately. Consequently, the reusability of
executable code is considerably extended: the same executable code may be
used with a different environment vector to operate on different values with
different types.

One method of constructing general purpose code is to use generators [4].
This technique involves parameterising a procedure with all relevant
intermediate free variables. For example, the update procedure needs to be
bound to a database, so a generator may be constructed which takes a database
as a parameter and returns an update procedure bound to that database as shown
in Figure 4.2.

let updateGen = proc(db : Database → proc(string,int))
begin

proc(partName : string ; amount : int)
begin

let part = db(lookup)(partName)
part(quantity) := part(quantity) + amount

end
end

Figure 10: A generator for update procedures.

The generator in Figure 10 has a single parameter db of type Database. All the
instances of update produced by updateGen may be potentially bound to different
databases which have the same type, namely Database . This may be
generalised by the construction of a generator which is parameterised by the type
of the database, i.e. to use a form of polymorphism. However, it is not possible
to construct an unbounded universally quantified polymorphic generator since
there are implicit constraints on the type of the database. Each generated
procedure requires that the database has a field called lookup which is a
procedure that takes a string as a parameter and returns a record. Furthermore,
the returned record must have an integer field called quantity. These constraints
require bounded universal quantification.

Constructing bounded universally quantified procedures adds considerable
complexity to the applications being constructed. Ideally, such complexity
would be hidden by appropriate tools in the programming environment. A new
mechanism called a Nodule (Napier module) [11] is introduced which provides
this ability. Nodules provide a way in which generic code may be specified and
reused. They may be highly parameterised by the values and types used by a
program, thus forming a template from which specialised instances may be
obtained. Each specialised instance of a Nodule is bound to the same generic
executable code as illustrated in Figure 11.

•••

Nodule

Parameter
Template

Executable
Code

Nodule Instance

Specialised
Parameters

Nodule Instance

Specialised
Parameters

Binding to
executable code

of nodule

Binding to
executable code

of nodule

Figure 11: Conceptual view of Nodules and instances.

Nodules consist of five parts: type parameters, value parameters, functional
parameters, executable code and an interface description of each Nodule
instance. A Nodule is constructed and instantiated independently. Nodule

instantiation involves supplying some or all of the necessary parameters to the
Nodule in order to produce either a complete specialised instance or a more
restricted Nodule. The latter technique is akin to currying and results in a new
Nodule with fewer unbound parameters.

The Nodule in Figure 12 describes a parameterised version of the update
procedure used in constructing the partsDatabase application.

NODULE UpdateNodule
PARAMETERS

TYPE Database
VALUE database: Database

INTERFACE
update: proc(string,int)

SOURCE
let update= proc(name : string ; amount : int)
begin

let part= database(lookup)(name)
part(quantity) := part(quantity) + amount

end

Figure 12: A Nodule describing a parameterised update procedure.

The type Database and the database instance are parameters to the Nodule.
There are no explicit constraints upon the type of the database; however,
implicit constraints do exist: firstly, the Nodule code constrains the type
Database to be a type which has the appropriate functionality. In this context,
the type Database must contain the function lookup , which takes as its
parameter a string, and returns a record which must contain an integer field,
quantity. When a concrete type Database is supplied to the Nodule along with a
database, a fully bound executable procedure of type proc(string,int) is
obtained. The generic code contained in a Nodule represents a form of bounded
universal quantification. However, this polymorphism is not provided by the
programming language, Nodules are a mechanism used within the programming
environment.

5 Environment Support

Nodules are not a feature of the programming language, instead they reside in
the programming environment. In addition to tools which provide a graphical
user interface to Nodules, the programming environment contains tools which
allow the persistent store to be navigated, and for types and values to be located.
Using a combination of these tools, users may locate Nodules, use a browser to
discover values and types, and instantiate Nodules using the discovered entities.
Thus, applications may be constructed without the need to write programs.

Nodule Instance

Specialised
Parameters

Nodule Instance

Specialised
Parameters

Type
Rep. #1

Type
Rep. #2

•••

•••

Figure 13: Storing type dependencies in Nodule instances.

Once Nodule instances have been created, they may be used as parts of other
applications. The instances are values in the programming language space and
therefore, if necessary, they may be manipulated by Octopus and the type
evolution operations. Furthermore, Nodule instances contain information about
the types on which they depend. By querying an application using Octopus, the
Nodule instances dependent on a particular type may be discovered in addition
to the types on which any particular Nodule instance depends. Therefore, given
a particular application constructed using Nodules, if a change occurs in the
schema of the application then all affected nodes may be located. Using the
evolutionary mechanisms described earlier, the necessary components may then
be evolved. This arrangement is shown in Figure 13.

6 Conclusions

We have presented a number of mechanisms which provide support for evolution
and reuse in a persistent programming environment. Octopus permits systems of
code and data to be evolved, even if they are encapsulated. This is achieved by
separating pure code from bound values and providing meta level operations on
all values, regardless of their type. The difficult problem of type evolution is
addressed by extending the Octopus architecture to separate type information
from the executable code. In many cases type evolution is possible, without the
expense of total or partial system recompilation.

Nodules, a programming environment mechanism for specifying reusable
components, has also been described. Nodules are complementary to the
mechanisms described above and allow parameterised templates to be defined
independently of any referencing environment. Nodules may be specialised in
order to yield components by binding them to values and types. Since this is
supported by the environment, the activity of application construction may be
performed without the need to write programs. Nodules also provide added
support for evolution by recording the relationship between the schema and
bound Nodule instances.

Acknowledgements

We would like to thank John Rosenberg, Karen Wyrwas, Sam Bushell and David
Hulse for their comments on this paper. This work was supported by the Defence
Science and Technology Organisation of Australia.

References
1. Booch, G. “Object Oriented Design”, Benjamin-Cummings, 1991.

2. Connor, R. C. H. “The Napier Type-Checking Module”, Universities of
Glasgow and St Andrews, Technical Report PPRR-58-88, 1988.

3. Dearle, A. and Brown, A. L. “Safe Browsing in a Strongly Typed Persistent
Environment”, The Computer Journal, vol 31, 6, pp. 540-545, 1988.

4. Dearle, A., Cutts, Q. and Connor, R. “Using Persistence to Support
Incremental System Construction”, Microprocessors and Microsystems, vol
17, 3, pp. 161-171, 1993.

5. Farkas, A. and Dearle, A. “The Octopus Model and its Implementation”, in
Proceedings of the 17th Australian Computer Science Conference, Australian
Computer Science Communications, vol 16, pp. 581-590, 1994.

6. Farkas, A. and Dearle, A. “Octopus: A Reflective Language Mechanism for
Object Manipulation”, in Proceedings of the Fourth International Workshop
on Database Programming Languages, New-York, Springer-Verlag, 1994.

7. Kirby, G. N. C., Connor, R. C. H., Cutts, Q. I., Dearle, A., Farkas, A. M. and
Morrison, R. “Persistent Hyper-Programs”, 5th International Workshop on
Persistent Object Systems, San Miniato, Persistent Object Systems,
Springer-Verlag, Workshops in Computing, pp. 86-106, 1992.

8. Liskov, B. H. and Zilles, S. N. “Programming with Abstract Data Types”,
SIGPLAN Notices, vol 9, 4, 1974.

9. Morrison, R., Brown, A. L., Connor, R. C. H. and Dearle, A. “Polymorphism,
Persistence and Software Reuse in a Strongly Typed Object Oriented
Environment”, Universities of Glasgow and St Andrews, Technical Report
PPRR-32-87, 1987.

10. Morrison, R., Brown, A. L., Connor, R. C. H. and Dearle, A. “The Napier88
Reference Manual”, University of St Andrews, Technical Report PPRR-77-
89, 1989.

11. Farkas, A. and Dearle, A. “Integrated Support for Incremental Software
Development and Evolution”, University of Adelaide, Technical Report PS-
24, May 1994.

