A Meta-Programming Framework for

Software Evolution

by

Katherine Elizabeth Mickan Enderling

Honours Computer Science (First Class),
The University of Adelaide, Australia, 2000

B.Sc. (Mathematical & Computer Sciences),
The University of Adelaide, Australia, 2000

Thesis submitted for the degree of
Doctor of Philosophy
in

The School of Computer Science
The University of St Andrews

November, 2005

Contents

Heading Page
Contents ii
Abstract viii
Statement of Originality ix
Acknowledgments X
Chapter 1. Software Evolution 1
1.1 ControlSystems 3
1.1.1 System Monitoring L 5

1.1.2 Open AdaptiveEngines 7

1.2 Software Architecture Based Approach to Evolution 8
1.2.1 Defining Software Architectures 9

1.3 Self-Adaptive Software Lo 10
1.3.1 Autonomics 12

1.4 Meta-Programming 13

1.5 Characteristics of Evolving Systems 14
151 WhentoEvolve L 14

1.5.2 What to Evolve - Change Categories 16

1.5.3 How to Evolve - Change Processes 17

154 Who Manages Evolution? 20

1.5.5 Where Evolution TakesPlace 23

1.6 Comparing Evolution Frameworks 23

1.7 Meta-Programming Framework 26

1.8 Summary 30

1.9 Contribution 30

Contents

Chapter 2. Software Architectures and Frameworks for Evolution 32
21 Darwin e 33
211 Dynamic Behaviour 35
2.1.2 Self-Organizing Systems based on Darwin 37

22 Gerel . ..o 41
23 Weaves 46
24 ArchJava e 50
241 Restricting Inter-Object Communication. 50

242 Restricting Data Sharing 51

2.4.3 Example Software Architecture 51

2.5 Wright, ACME and Rainbow 56
251 Wright 56
252 ACME e 59
253 Armani. 59
254 Rainbow 60

26 ArchStudioand C2 64
26.1 ArchStudio 65

2.7 Intentional Programming 69
28 Summary 74
29 Conclusion 75
Chapter 3. Orthogonal Persistence, Structural Reflection and Hypercode 76
31 MPFTechnologies 77
3.2 Orthogonal Persistence 78
3.2.1 Existing PersistentSystems 79

3.3 Structural Reflection oL 80
3.3.1 Definition of the Reflection Operation 81

332 Reification 82
3.3.3 Implementations of Structural Reflection 83

34 ProcessBase e 83
3.5 Hyper-Programming 85

Page iii

Contents

36 Hypercode 86
3.6.1 Propertiesof Hypercode 87

3.6.2 Entity and Representation Domains 88

3.6.3 Hypercode Operations 89

364 Octopus e 91

37 ArchWare. 92
3.7.1 Tools and Languages in the ArchWare Environment 94

3.72 ArchWare Runtime 95

373 ProcessModels 96

374 ArchWare ADL 96

3.7.5 Dynamic Change in ArchWare 99

3.8 Hypercodeforthe MPF. 103
39 Summary 103
Chapter 4. Hypercode Graphs and the MPF Operations 105
41 HypercodeGraphs 107
411 Structure 107

412 Type e 108

413 Example 111

42 Operations e 112
4271 Traverse e 113

422 Manipulateo Lo 116

423 Evolve 118

424 Unified Representation 119

43 Infosetsand DOMs 120
44 InterfaceDesign o o 121
45 Framework Independence oL oL 121
46 Summary 122
Chapter 5. Incremental Evolution 123
51 EvolutionProcess 124

Contents

52 Tools for Evolution 126
53 Incremental Evolution 127
5.3.1 Composition and Decomposition 127

532 Exampleof Evolution 128

5.3.3 Basic Update Evolution 129

5.3.4 Entity and Representation Domains 129

54 EvolutionPatterns 130
55 Summary 133
Chapter 6. Evolution Example 134
6.1 Initial System Configuration 135
6.1.1 Initial System Definition in ArchWare ADL 137

6.2 Decompose. 140
6.2.1 Decompose Systeml 142

6.22 LocatePo o o oo 142

6.2.3 Get Graph Representation of Producer 143

6.3 UpdateProducer 143
6.3.1 Create buildNewWidget 143

6.3.2 ReplaceHyperlink 145

6.4 RecomposeSysteml, 146
6.5 Summary 147
Chapter 7. Implementation 151
7.1 System Structure Lo o 152
7.2 Hypercode Graphs and Hypercode Representations 152
721 HypercodeGraphs 154

7.2.2 Hypercode Representations 157

723 Functions 159

724 DataValues 162

7.3 Implementing Hypercode Operations using Generators 162

7.3.1 Evaluate: Using Generators to Compile and Execute Hypercode . 163

Page v

Contents

7.3.2 Explode: Generating Hypercode Representations from Values . . 173

74 Operations 176
741 Traverse 176

742 Manipulate Lo o 177

74.3 Operations for Evolution 178

744 Evolution Patterns 00000 178

745 Extendingthe MPF 180

75 UserInterface 181
751 Edit. 181

752 Explode 181

753 Evaluate o 182

7.6 SUMMATY 182
7.6.1 DataStructures oo 184

7.6.2 HypercodeSystem 184

763 MPFOperations 185

764 Userlnterface oo 185
Chapter 8. Conclusion 186
81 Summary 187
8.2 Discussion 191
8.2.1 Evolution Patterns 191

8.2.2 Framework Evolution 192

8.2.3 Degree of Automation 193

824 Practicality. o 194

83 FutureWork 195
83.1 Technology Transfer 195

8.3.2 Software Architecture Extraction 195

833 Performance Lo 196

8.3.4 Integration with Intentional Programming 196

8.3.5 Multiple Programming Languages 196

8.3.6 Change Management Framework 197

83.7 Conclusion 197

Contents

Appendix A. Meta-Programming Framework CFS 199
A.1 Context Free Syntax of ArchWare ADLwith XML 200
Appendix B. Definition of MPF Operations in ArchWare ADL 205
B.1 GraphOperations 206
B.1.1 Hypercode GraphType 206

B.1.2 MPFOperations 206

B.1.3 Evolution Pattern Operations 216
Appendix C. Evolution Example Code 219
Appendix D. Framework Evolution 221
Appendix E. Tower Model 226
E.1 Evolutionin ArchWare 227
Bibliography 230
Glossary 239

Page vii

Abstract

Software systems are expensive to build and deploy, but their effectiveness diminishes
over time unless they are able to meet changing user requirements. This work is moti-
vated by the need to build, understand and manage software systems that can evolve
in order to adapt to changing environmental demands. Evolvable software requires
change management in the form of processes that determine when and what to change

and mechanisms to effect those changes.

This thesis introduces the Meta-Programming Framework (MPF), which provides me-
chanisms for automatic evolution, allowing meta-programs, or management compo-
nents, to introspect and evolve existing systems. A unique combination of technologies
supports an evolution process whereby a meta-program stops the relevant part of an
executing program using a decomposition operator, obtains and evolves a represen-
tation of it, and incorporates the changes back into the executing system using struc-
tural reflection. During the evolution process, introspection enables a meta-program
to obtain a Hypercode graph of any value in the system. Hypercode graphs present
a complete, up-to-date representation by encompassing both program syntax and clo-
sure. The implemented framework defines an interface for meta-programs to traverse,
manipulate and evolve Hypercode graphs. The evolution may proceed without the
evolved values losing their internal state, because it is preserved by the Hypercode

graph representation.

The key contributions of this approach are the support for incremental evolution, and
the Hypercode graph representation that provides introspection as well as giving me-
ta-programs the flexibility to both update existing values and introduce new behavi-
ours. In addition, because the MPF is constructed in itself, it can be evolved in the same
way as any other program. As part of an evolution framework that includes change

management tools, the MPF facilitates the automatic evolution of software systems.

Page viii

Statement of Originality

I, Katherine Mickan, hereby certify that this thesis, which is approximately 44 000
words in length, has been written by me, that it is the record of work carried out by

me, and that it has not been submitted in any previous application for a higher degree.

Date Signature of Candidate

I was admitted as a research student in January 2002 and as a candidate for the degree
of Doctor of Philosophy in January 2002; the higher study for which this is a record
was carried out in the University of St Andrews between 2002 and 2005.

Date Signature of Candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of Doctor of Philosophy in the University of
St Andrews and that the candidate is qualified to submit this thesis in application for

that degree.

Date Signature of Supervisor

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of
the University Library for the time being in force, subject to any copyright vested in
the work not being affected thereby. I also understand that the title and abstract will
be published, and that a copy of the work may be made and supplied to any bona fide

library or research worker.

Date Signature of Candidate

Page ix

Acknowledgments

I would like to sincerely thank my supervisors Prof. Ron Morrison and Dr. Graham
Kirby for their input, guidance and insightful comments. It has been excellent to have

the opportunity to work with them.

I would like to thank Dr. Dharini Balasubramaniam for her supervision and useful

discussions.

I would like to thank the other PhD students and people in the department for their
friendship and help.

I would like to thank Dr. Dave Munro from the University of Adelaide for setting me
on this path in the first place.

For financial support I would like to thank the EC Framework V project ArchWare
(IST-2001-32360) and the ORS Award Scheme.

For his generosity and bad jokes I would like to thank Dr. Frank Gunn-Moore - without

him I would never have got so far.

I would like to thank Norman and Alison Lillie for their kindness and for giving me a

home.

I would like to acknowledge the invaluable support of friends, especially Emily and
Mark.

Most of all I would like to thank Stefan for being understanding and supportive, pro-
viding me with encouragement, and making me happy, and my family who have al-

ways looked after me even though I am a long way away.

Katherine Mickan. November 2005.

Page x

Chapter 1

Software Evolution

his chapter discusses software evolution, why it is a relevant
problem for software systems, how it is defined, and different
approaches to solving it. These include self-adaptive software,
meta-programming and software architectures. Finally, a set of characteris-
tics of frameworks that aim to support software evolution is defined. Exist-

ing research will be compared against these in Chapter 2.

Page 1

Chapter 1 Software Evolution

Complex and dynamic software systems either evolve or their efficacy deteriorates
until they fall out of use. The term co-evolution is used to describe the co-dependent
relationship of dynamic change in commercial environments and the software that
supports them (Greenwood et al., 2000). As requirements change, software needs the
capacity to adapt to the altered environment in which it is used in order to avoid in-
creasing redundancy. Businesses, in turn, need to adopt new opportunities offered
by advances in software, for example, by opening up sales to an expanded market

through selling merchandise on a website.

Making use of the evolutionary potential in software is particularly important for large,
long-lived systems which are expensive to build and deploy. Lehman (1996) defines
eight laws representing a theory of the process of software development and evolution.
The first law is the law of continuing change, stating that a system must be continually
adapted or it will become progressively less satisfactory. The second law states that
as a system is evolved, its complexity will increase unless work is done to maintain
or reduce it. These two laws indicate why we need to develop systems that support
software evolution. Co-evolution, by taking the business process into account, can
assist in determining which parts of the software are no longer needed and can be

removed to achieve a less complex system.

The problem domain the work in this thesis aims to address is the development of soft-
ware that can adapt to a changing environment. Such software is able to incorporate
new functionality and thereby remain useful in a changing business and user environ-
ment. It is also able to recover from unexpected failure - complex software systems can
exhibit emergent behaviour, which, by definition cannot be predicted at development
time. This can occur once the software has already been deployed and requires live
fixing. Ideally, the part of the software that has failed can be isolated and fixed without

interfering with the rest of the system.

This thesis focuses on systems which have the following properties:

* They are long lived and it is therefore inevitable that requirements will change

over time and the system will need to evolve to meet the new requirements.

* They execute continuously and system down-time is not an option. Examples
such as the telephone network or a travel booking system are in constant use.

In addition to requiring continuous execution, these systems have internal data,

Page 2

Chapter 1 Software Evolution

which should be preserved over change. For example, the current state of a hol-
iday that has been half booked should not be lost when the booking component

is evolved.

¢ These systems are component based, allowing evolution to take place in one part
of the system without interfering with the execution of the rest of the system, i.e.,

change can be isolated.

Some examples of systems in the problem domain are continuously running business

process models, GRID applications, peer-to-peer routing systems and control systems.

Currently, research focuses on adapting systems to deal with situations such as variable
resources, e.g., changing bandwidth and availability of services, system errors, e.g.,
component and connection failure, and changing user priorities, e.g., requirements for
either high or low bandwidth streaming. The work is limited in that it deals with
change that can be predicted at development time and the mechanisms to perform

adjustments can be included then.

This thesis, on the other hand, is concerned with the evolution of systems. Evolution
includes the ability to respond to emergent properties exhibited by complex systems.
Because these cannot be predicted, the change mechanisms have to be flexible and
include developers who can interpret and develop solutions for emergent problems.
Additionally, evolving systems should be able to incorporate new functionality in re-
sponse to changing requirements. These two kind of changes should be unconstrained.
That is, change should be able to be applied equally to any part of the system whether
it is a large component or a single function. It should not be restricted to a particular

type of change, for example, component addition, replacement or variable updates.

1.1 Control Systems

The challenge faced by software systems, which must evolve to stay useful in a chang-
ing application environment, is also faced in hardware. Engineers use control systems to
model adaptation. Feedforward control systems are used to adjust a process to chang-

ing environmental input before its output is affected (Brosilow and Joseph, 2002).

In a control system, the feedforward controller is the component which adjusts the pro-

cess in response to environmental inputs. The feedback controller makes adjustments

Page 3

Chapter 1 Software Evolution

that are dependent on feedback from the process itself. Feedforward control is applied
when there is a disturbance that can be measured and eliminated before it affects pro-
cess output. It is always used in conjunction with feedback control, which examines
process output and alters the process to ensure its continuing correctness. A feedback
and feedforward control system is illustrated in Figure 1.1, which shows that the feed-
forward controller responds to environmental input and the feedback controller reacts

to the process output.

Environmental Input FEEDFORWARD
CONTROLLER

Feedforward
Control Effort

FEEDBACK
CONTROLLER

Output
—>

Feedback Control Effort

Figure 1.1. Control System. A feedforward and feedback control system.

Applying the control systems paradigm to software (Lehman, 1996), a software sys-
tem must adjust to user and business needs that diverge from the original require-
ments over time. In order that the software remains useful, the adjustments should
be performed before the software becomes ineffective to users. Therefore, “the software
evolution process ... constitutes a complex feedback system” (Lehman, 1996). In the sphere
of software evolution the controllers are adaptive engines and the process is a software

system. An adaptive engine is comprised of the components that drive evolution.

Open software systems can incorporate new functionality into their evolution (Oreizy
et al., 1999) to deal with alterations in the environmental conditions, such as changing
user requirements. Feedforward controllers correspond to adaptive engines in open
systems. Lehman’s positive feedback, which is defined to trigger or accelerate growth,
would be input to an open adaptive engine. The evolution of open systems is only

limited by the policies and mechanisms in the adaptive engine. These constrain the

Page 4

Chapter 1 Software Evolution

input it can receive from the environment and how it can interpret and act on that

input.

Closed software systems, like feedback control systems, detect changing system out-
puts or environmental inputs, such as Lehman’s negative feedback, and react by apply-
ing modifications to stabilize the system. As with feedforward and feedback control
systems, software applications use both open and closed adaptive engines in the same
system. The adaptive engine in a closed system makes modifications to maintain a
functioning system or level of performance, endeavouring to ensure that the system
operates within a set of constraints. It cannot introduce new behaviours and is there-
fore unable to respond to unanticipated business and user needs. Closed systems are

also incapable of addressing the effects of emergent properties in complex systems.

The input to both open and closed adaptive engines may come from within the soft-
ware as well from its environment. The difference is that an open adaptive engine can
access new functionality and incorporate it into the evolving system, whereas a closed

adaptive engine adjusts existing functionality to regulate or improve its performance.

Emergent phenomena are unexpected and unpredictable from a description and may
appear irrespective of changes in the external environment. Because a closed system
cannot incorporate new behaviour, it is unable to deal with these properties which
were unforeseeable at the time the adaptive engine was developed. Open systems can

incorporate new behaviour to deal with emergent properties.

1.1.1 System Monitoring

When the control system model is applied to software evolution, the controllers in
Fig. 1.1 become adaptive engines, which make changes motivated by system outputs
and environmental inputs. The gathering and interpretation of system outputs re-
quires some form of monitoring. This is commonly implemented using probes and

gauges.

Probes monitor an executing system to collect information such as the load on a server
or the bandwidth of a network path. Ideally probes should be non-intrusive and de-
signed for easy monitoring (Garlan and Schmerl, 2002). Gauges receive measurements
from the probes and interpret them according to a system model. If the measured
values fall outside an acceptable range, an alarm is raised to trigger mechanisms for

self-adaptation.

Page 5

Chapter 1 Software Evolution

One of the benefits of using probes and gauges is that they can externalize system mon-
itoring. A number of tools have been developed, which implement probes by collect-
ing information about a system and disseminating it to external tools or components.
Some of these monitor existing applications unobtrusively, for example, Remos (De-
Witt et al., 1998), which can be run on a separate machine from the application it is
measuring, has been used in Garlan et al. (2001) to gather information about host and
network loads. Another approach is to insert probes into an existing application. For
example, in Discotect (Schmerl et al., 2005), probes to monitor object instantiation have
been inserted using Aspect] (Kiczales et al., 2001), which allows code fragments to be
weaved into Java byte-code. Probes can also be inserted at development time, as is
the case with components built using Active Interfaces (Heineman, 1997). These com-
ponents have an adaptation interface along with their own interface. Probes can be

associated with before and after phases of a component’s methods.

Gauges interpret low-level events received from probes and generate high-level events,
which are meaningful in the context of a system model such as a software architecture.
Events created by a gauge can be received by a number of different management com-
ponents. Conversely, a management component may require events from more than
one gauge. Gauges usually depend on information from multiple probes and possibly
other gauges. Their applications can be extended beyond the standard task of ascer-
taining whether a system conforms to a set of constraints in policy driven systems.
Gauges have been developed that interpret system level events as architectural events,
from which the software architecture of a running application can be discovered (Yan
et al., 2004; Schmerl et al., 2005).

In an evolving system, probes and gauges should be able to change along with the
system. Figure 1.2 shows one method for implementing flexible probes (Balasubra-
maniam et al., 2004b; Balasubramaniam et al., 2005). The diagram shows the system
structured as a sink corresponding to the closed adaptive engine (feedback controller)
and a source corresponding to the evolving software system (process). The source ad-
vertises an interface exposing observations on its state that can be made by probes. The
sink uses information from the interface in constructing a probe. This probe is con-
nected to a gauge in the sink, which will trigger some change if the observed values
violate the system’s constraints. The sink sends the probe to the source using a probe

connection.

Page 6

Chapter 1 Software Evolution

Probe Connectiol

Interface advertising
observations available to
probes

Figure 1.2. Probes and Gauges. A structure for flexible probes in an evolving system, shown

before the probe is installed in the source.

On receiving the probe, the source installs it (Fig. 1.3). The probe, now inside the
source, sends its feedback directly to the gauge in the sink. This flexible approach
allows the sink (adaptive engine) to install probes as necessary without the source
(software system) having any knowledge of the probe’s internal functionality or the

system’s constraints.

lFeedbaCK connmol

Figure 1.3. Probes and Gauges. A structure for flexible probes in an evolving system, shown after

installing the probe in the source.

1.1.2 Open Adaptive Engines

An open adaptive engine in an evolving software system effects adaptations in re-
sponse to environmental change. The implementation of open adaptive engines is
largely an unsolved problem. Change in the business or user context is the environ-
mental input driving the evolution and is difficult to interpret. System monitoring
may also produce emergent behaviours. Consequently, it is complex to determine
what software changes should result from the environmental input and system out-
put, requiring user or developer intervention. Work in open adaptive engines predom-

inantly concentrates on how to incorporate the changes into the system. Accordingly,

Page 7

Chapter 1 Software Evolution

although adaptive engines are being developed that can alter the behaviour of a sys-
tem to deal with emergent properties, discovering the properties and then quantifying

them is complicated.

The ideal adaptive engine fulfills the following evolutionary goals:

* Changes are effected with minimal disruption to the unaffected parts of the sys-

tem so they may continue to execute during the change.
¢ The adaptive engine has a complete, up-to-date system representation.

* Unrestricted changes may be applied to the representation and then incorporated

into the process, or executing system.

¢ The changes can assimilate the system’s existing state.

These goals are applicable to both open and closed adaptive engines, except for the
third goal, which relates to unrestricted changes and is aimed at open systems. This
thesis examines the provision of mechanisms to support construction of an ideal adap-

tation engine for an open system.

1.2 Software Architecture Based Approach to Evolution

Evolution can occur at different levels of abstraction in a software system, from as-
signment into mutable locations at the language level, to the changing topology of a
software architecture. However, reasoning about evolution at a low level, which does
not separate application functionality from the process of change, makes it difficult
to manage the evolution of a complete system. A higher level of abstraction may as-
sist reasoning about evolution, both what to change and how and when to change it.
Evolution at the level of software architectures allows the complex details to be fil-
tered out, supporting evolution of a total system in contrast to small scale changes.
Design knowledge embodied in the software architecture encourages correctness in
evolution (Schmerl and Garlan, 2002). Modelling a system’s evolution using the soft-
ware architecture requires a flexible architecture that can express and accommodate

change.

Page 8

Chapter 1 Software Evolution

1.2.1 Defining Software Architectures

Software architectures model systems at a high level of abstraction, commonly in terms
of components and connectors (Oreizy et al., 1999). Details available at the source code
level are hidden in favour of representing the bigger picture. Components implement
application functionality and are not privy to information about who they are com-
municating with, or how the communication takes place. Connectors encapsulate the
communication and co-ordination between components. Software architectures also
have a set of properties defining and constraining their characteristics. Separation of
communication and computation, as well as loose coupling between components en-

courages flexible evolution. For example, a pipe and filter architecture (Fig. 1.4) has:

¢ Filter components containing the application functionality.
* Pipe connectors which control the communications between filters.

* A set of properties that constrain filters to be independent of each other.

Using this architecture, a filter component can be replaced by disconnecting the pipes
attached to it and reconnecting them to a new filter. The architectural properties ensure

that the other components are not affected by the update.

A definition of software architecture (Garlan and Perry, 1995) has been adapted into
the IEEE 1471-2000 standard (IEE, 2000) which states that a software architecture is:

The fundamental organization of a system embodied in its components, their re-
lationships to each other, and to the environment, and the principles guiding its

design and evolution.

Software architectures are usually defined using Architecture Description Languages
(ADLs). Some of these and the evolutionary mechanisms they support are discussed

in Chapter 2.

Software architecture families can be defined in terms of styles, which are described
as (Oreizy and Taylor, 1998):

Idiomatic patterns of system organization that characterize a particular application

domain.

The elements of a style are defined to be (Garlan and Shaw, 1996):

Page 9

Chapter 1 Software Evolution

Connectors
i

Components

Properties:
¢ Filters are independent computations and do not share state.
e Filters have no information about other components in the pipeline.

Figure 1.4. Pipe and Filter. A pipe and filter architecture is a set of components, connectors and

properties.

* A vocabulary of component and connector types.

* A set of constraints on how the components and connector types may be com-
bined.

* A set of semantic models which specify how to determine a system’s overall prop-

erties from the properties of its parts.

Some commonly used styles include client/server, pipe and filter, object oriented and
hierarchical layers. Styles may also be used to define process control systems, e.g.,
feedback control loops (Garlan and Shaw, 1996). A software system may contain a
number of styles, which may apply to separate parts of the system or be applied hi-
erarchically. For example, a large component may contain an internal style, as well as

being part of a different style in a wider context.

1.3 Self-Adaptive Software

Self-adaptive software adjusts itself in response to stimuli from its environment with-

out programmer interaction. Self-adaptation at a low level is inherent in programming

Page 10

Chapter 1 Software Evolution

languages and methods, for example, exception handling and conditional expressions.

Other commonly used forms of self-adaptation are:

* Online algorithms, e.g., paging algorithms chosen depending on current usage.
* Generic and parameterized algorithms.

* Machine learning techniques, which generate algorithms dependent on input
data (Oreizy et al., 1999).

These forms of adaptation present a limited range of possible changes. Adaptation at
a global level, for instance, the re-arrangement of a client/server system when a server
goes down, or detection of degrading performance, can be provided by approaching
the adaptation from a software architecture perspective. The wider perspective also of-
fers opportunities for change management (Sec. 1.5.4), allowing the above mentioned

forms of self-adaptation to be incorporated into the system.

A system may undertake self-adaptation in order to (Oreizy et al., 1999):

e Improve performance.
e Recover from failure.

* Accommodate new functionality.

Closed systems will only adapt under the first two conditions. The third condition

requires an open system that can incorporate information from its environment.

The information triggering an adaptation and the interpretation of that information are
crucial to a self-adaptive system, determining how and when the system will change.
Therefore, a key issue in designing self-adaptive systems is deciding what information
should be gathered about the system and how that information should be modelled. It

defines the ontology for the view of the system available to adaptive elements.

Interpreting the information with respect to the software architecture is complex. Con-
straints and properties of the software architectural model should be chosen carefully
as they limit the set of problems which can be detected. When adaptation becomes
necessary or possible, a repair strategy needs to be chosen which will improve the sys-
tem, or at least keep its performance constant. However, while constraints are useful

in determining if a system is operating within a set of parameters, it can be difficult

Page 11

Chapter 1 Software Evolution

to determine whether a complex system has improved or not. A system that allows
for evolving probes, constraints, architectural properties and repair strategies can ap-

proach evolution as a learning process adapting along with the system.

1.3.1 Autonomics

Autonomics is a sub-field of self-adaptive software, which aims to create software
systems that can adjust themselves without programmer intervention. The name is
drawn from the autonomic nervous system which regulates involuntary functions in
the human body. Autonomic systems aspire to be self-configuring, self-healing, self-

optimizing and self-protecting (Kephart and Chess, 2003; Kephart, 2005).

Conventionally, autonomic systems are made up of a set of autonomic elements (Kephart
and Chess, 2003). An autonomic element is comprised of a managed element under the
control of an autonomic manager, as shown in Fig. 1.5. The managed element contains the
application functionality. The autonomic manager is responsible for managing the state,
behaviour and interactions of the autonomic elements. Autonomic elements interact with
their environment via signals and messages and are part of a network of agents. In
an evolving system the autonomic manager could be evolved by other agents, or evolve

itself, possibly in response to stimuli from other agents.

Autonomic Manager
(meta-program)

Managed Element

Figure 1.5. Autonomic Element. An autonomic element contains a manager and a managed

element.

Autonomic systems attempt to support both fine-grained evolutions and re-organiza-
tions motivated by high level policies retained in each element. In the Unity system
developed at IBM Research (Chess et al., 2004), each element should be as far as pos-

sible self-managing, able to heal internal failures, able to optimize its own behaviour,

Page 12

Chapter 1 Software Evolution

and able to protect itself from attack. Individual elements do not maintain an overview
of the entire system. Instead there is a central registry to which they can refer to find
services offered by other elements. To exchange services, an element establishes a re-
lationship with other elements it has located using the registry. Another example of an
autonomic system where elements are as independent as possible is Self-Tuning Web
Servers, such as (Diao et al., 2003). The servers adapt to stay within a set of perfor-
mance parameters. Adaptation is performed without global knowledge of the system

in which they operate.

1.4 Meta-Programming

Meta-Programs are defined to be programs which manipulate other programs or them-
selves (Czarnecki and Eisenecker, 2000). In general, meta-programs can be either imper-
ative or declarative (Czarnecki and Eisenecker, 2000). Declarative programming focuses
on what a program should do. Imperative programming, on the other hand, defines
how a program should achieve its goal. Declarative meta-programs are easier to check
formally and the programmer does not have to reason about low-level details while
writing them. However, mapping a declarative program to compiled code is a com-
plex task. Imperative meta-programs may be difficult to write and require detailed
knowledge about the underlying system, but they also allow the programmer more
control over how the high level policies are realized. Commonly, software systems are
designed so that the higher layers are defined declaratively (in the software architec-

ture) and the lower layers imperatively (in the implementation).

Meta-programming environments are frameworks or languages where meta-programs
can be constructed and executed. A framework is defined here to be a system, or set
of components, that operates over another system. Environments that offer support
for generative programming allow changes to be made to existing code in a partially
automated way. Knowledge about evolution, such as when and how it should take

place, can be captured by the environment.

Another system, which takes advantage of Meta-Programming to evolve an execut-
ing system, is a framework for refactoring (Ebraert et al., 2004). The framework uses
Smalltalk (Goldberg and Robson, 1983) and is designed with a two level architecture.
The top level (meta-program) gathers information about the activities of the lower

level components by monitoring their communication. On deciding to make a change,

Page 13

Chapter 1 Software Evolution

Smalltalk’s reflective facilities are used to add, remove and change methods, add and
remove instance variables, and change class names. To preserve consistency, the ap-
plication must be forced into a quiescent state for the meta-program to perform the
evolution. This involves stopping the entire application and highlights the need for a
decompose operator (Sec. 5.3.1) to evolve systems where the execution should be con-

tinuous.

1.5 Characteristics of Evolving Systems

Three stages in the evolution of software architectures have been defined (Morrison
etal., 2004). Firstly, deciding when change is required, that is, appropriately responding
to some stimulus. Secondly, deciding what change is required, that is, determining
the appropriate change with respect to the stimulus and the environment. Thirdly,

deciding how change is applied and using the appropriate mechanisms to apply it.

This section discusses the when, what and how of evolution. It also considers where

evolution takes place, who initiates evolution, and management of the change process.

1.5.1 When to Evolve

Dynamically or Statically

Software can be evolved either during execution (dynamic), or by stopping the en-
tire system and replacing it with a new system incorporating the required alterations
(static). An example of an evolution which stops the execution is an operating system
update requiring the user to restart their computer in order to complete the installation.
This approach requires some down time and is therefore not suitable for applications
where the system must be available at all times, such as air traffic management. An-
other drawback to static change is that internal system state is lost when the execution
is stopped. Solutions to this problem usually require internal data to be written out to

a file or database, which is then used to restore the system state on restart.

Dynamic evolution is appropriate for systems that are large, complex and long lived.

In order to support dynamically changing architectures (Medvidovic, 1996):

1. Changes can be specified after a system has been built.

Page 14

Chapter 1 Software Evolution

2. Parts of an architecture can be modified without having to generate the whole

system again.

3. An architect can view parts of an architecture without having to see the whole

system.

Commonly, work at the software architecture level avoids addressing the second point
by assuming that the mechanisms for reflecting dynamic changes into the system will
be provided by the implementation. Systems implemented using reflection are excep-
tions, for example, ArchJava (Sec. 2.4) and ArchWare (Sec. 3.7.4).

A dynamic system should be able to perform the following actions at runtime:
¢ Introduce both extant and newly defined components.
* Update components while maintaining their state.

¢ Bind and unbind connections between components.

The two basic requirements for a system supporting dynamic addition and removal
of components are dynamic linking, and facilities to alter connections between com-
ponents (Oreizy et al., 1998). Ideally, the above actions are defined in the ADL, and
supported by the underlying system, thereby exposing the mechanisms for evolution

at the higher level of abstraction.

Reflective programming languages such as Lisp (Anderson et al., 1986), Smalltalk (Gold-
berg and Robson, 1983) and ProcessBase (Morrison et al., 1999a) support runtime change
at a fine granularity. In order to support these changes at the architectural level, ADLs
can leverage the techniques used in these programming languages (Medvidovic, 1996).
Reflective mechanisms increase the evolutionary power of systems at any level of ab-
straction. However, most ADLs concentrate on the software architecture as a separate
entity from the running system. The implementation is relied upon to provide mech-
anisms to evolve the running system, but these are not integrated into the architecture

or the change management process.

Lazy or Opportunistic

The time at which an evolution takes place can be determined either lazily or oppor-
tunistically (Oreizy et al., 1999). Lazy evolution takes place only when change becomes
imperative in order to fix a problem. Opportunistic evolution is performed when possi-

ble, for example, to improve degrading but acceptable performance.

Page 15

Chapter 1 Software Evolution

1.6.2 What to Evolve - Change Categories

One proposed set of changes that may be made to a software architecture at runtime
is (Medvidovic, 1996):

1. Addition of new components.
2. Upgrade of existing components.
3. Removal of unnecessary components either temporarily or permanently.

4. Reconfiguration of software architecture by disconnecting and connecting com-

ponents and connectors.

5. Reconfiguration of system architecture by modifying the mapping of components

to processors.

In Morrison et al. (2004), runtime change is classified into three categories. Dynamic
change is defined as change in the topology of the components and their interactions,
including the creation of new, predefined components during execution. This defi-
nition subsumes 4, above. Update change is the replacement of components, as in 2,
above. Evolutionary change is the alteration of component and interaction specifica-
tions during execution. It includes 1, above, but goes further to address changing

architectural styles and constraints.

A flexible software system, which can evolve to meet the needs of users under various
conditions of use, makes changes which either specialize the software making it more
useful to a subset of potential users, or generalize it making it appropriate for a larger
set of users. Some researchers argue that software should be able to meet the needs of

all users, both specialized and general (Kiczales et al., 1993).

Preservation of State

Support for preservation of internal state over change is a desirable property of systems
that support dynamic update. One way to achieve this is for components to be able to
divulge and install state information (Hofmeister, 1993). This is the approach taken
by C2 components (Sec. 2.6). An alternative, more flexible approach, which does not
require components to conform to any particular interface is taken by Hypercode (Sec.

3.5), where state is preserved by maintaining a representation of program closure using

Page 16

Chapter 1 Software Evolution

links to extant values in program code. Program closure is the set of a program and
all the values that are used in its execution. This includes that program’s data other
programs that are called during its execution. For example, a function closure is the
function code and a representation of the function’s lexical environment (i.e., the set of

available values) at the time when the function was created.

1.6.3 How to Evolve - Change Processes

There exists a spectrum of techniques for implementing evolution. These range from
systems using edit, re-compilation and re-binding through autonomics and compo-
nent based evolution. In the most basic evolution the execution is halted, the source
code edited, and the entire program recompiled and restarted. An advancement on
basic evolution allows certain values to be updated on the fly. However, the values
that can be changed are determined at development time. In the first step towards
incorporating new behaviours at runtime, evolution can be planned and included as
part of the software life cycle, causing less disturbance during changes. The least dis-
turbance is caused in systems that permit components to be replaced during execution.
In addition, the ideal evolving system can also be structurally evolved at runtime. This

involves reorganizing components’ connectivity.

The types of evolution needed in an open adaptive engine are: component replacement
and structural evolution. The former incorporates change types 1 - 3 in Section 1.5.2

and the latter covers 4 and 5 as well.

Basic

The basic process of constructing a system involves writing some source code and then
compiling, binding and executing it (Fig. 1.6). The most basic evolution entails subse-
quently changing the source code (assuming it is still accessible), then recompiling,
binding and executing what is effectively a new system. The evolution results in sys-
tem down time and any internal program state and data are lost. A system model in
the form of a software architecture, which could ensure correctness or guide under-

standing of the system before and after the change, is not used for these purposes.

Page 17

Chapter 1 Software Evolution

Figure 1.6. Basic evolution. The edit - compile - bind process.

Basic Update

An improvement on basic evolution is to design a system so that some of its parts can
be updated on the fly. This is one approach taken by autonomic systems, where compo-
nents have a set of properties which an adaptive engine, or management component,
can get and set. The adaptive engine reads the values of a component’s properties and
uses them to determine whether changes should be made. Changes are applied by
updating properties using the set methods. The advantage over the basic type of evo-
lution is that changes can be made without stopping the execution. The changes are,
however, restricted to a pre-defined set. Basic update is therefore useful for adapting

or optimizing a system, but incapable of incorporating unpredicted changes.

Planned Evolution

Advancing on techniques for basic evolution requires a degree of planning to incor-
porate evolutionary mechanisms into the original system. In order to evolve a system
and salvage existing program state, developers must have some way of serializing the

information and writing it out to the file system or a database.

Figure 1.7 shows an evolution cycle, which starts at edit and continues with compila-
tion, binding and execution. The first part of an evolution involves saving internal pro-
gram state and data. Then the source code must be obtained, after which it is changed
in the edit phase and then compiled. After compilation, the internal state and data that
was saved must be bound back into the system, for example, by reading it in from a
file.

This elementary approach to planning evolution still has limitations. The entire ex-
ecution is stopped to perform any changes, the consequences of which range from
annoying (e.g. an operating system update) to dangerous (e.g. an air traffic control

system). Internal program state is only maintained in a custom or ad-hoc way and

Page 18

Chapter 1 Software Evolution

Figure 1.7. Planned evolution. The edit - compile - bind - change cycle.

might not be valid in the context of the revised source code. At development time,
when the maintenance mechanisms are put in place, it could be difficult to correctly
determine which data should be preserved. Finally, obtaining access to the program

source code, in order to evolve it, can be difficult or impossible.

Component Replacement

Update evolution can be expanded from the basic approach, involving setting compo-
nents’ properties, to the replacement of the components themselves. A system capable
of component replacement can incorporate new behaviours at runtime, an important
step closer to an ideal setup for evolution. The realization of component replacement
requires mechanisms for change localization that permit components to be replaced
without system-wide disruption (Sec. 1.5.5). Mechanisms for runtime change (Sec.
1.5.1) are also necessary. The minimum support includes dynamic binding. Ideally, a
replaced component’s internal state can be preserved and transferred to a new compo-

nent.

Page 19

Chapter 1 Software Evolution

Structural Evolution

Structurally evolving a system reorganizes the connections between its components.
Structural evolution supports system-wide changes, usually with respect to a set of
inviolable constraints. In combination with the ability to dynamically introduce new
behaviours, it aids unanticipated evolutions, which may not be compatible with the
existing system structure. This type of evolution suits a system modelled using beha-
viours and their interactions (components and connectors), because otherwise connec-
tions between components are difficult to isolate and analyse. It requires that connec-

tions between behaviours are able to be created and destroyed at runtime.

1.56.4 Who Manages Evolution?

An evolving system may be changed in ways ranging from automatic to user driven.
When evolution is user driven, the human interaction may vary from a user initiat-
ing the evolution at a high level, to a developer changing the application behaviour.
As more of the evolution process becomes automatic, the questions of what changes
to make and when to make them become more challenging. Probes, gauges and con-
straints are usually used to motivate and manage changes for maintenance and opti-
mization. This approach attempts to prevent a system degrading over time, but is only
applicable to closed systems and does not address the issue of how to evolve to add

new functionality.

Change management (Oreizy et al., 1999; Oreizy and Taylor, 1998) supervises the pro-
cess of evolution. Change management components contain the policies determining
when, what, how and where to evolve as well as who initiates evolution. They structure
runtime change and reason about new systems to determine whether or not they repre-
sent an improvement, as well as calculating of the cost of adaptation and monitoring. A
general approach to change management, including support for unplanned modifica-
tions and new behaviours, distinguishes changes to system requirements from changes
to the implementation that do not alter requirements (Oreizy et al., 1998). The frame-

work suggested by the approach comprises:

* An explicit architectural model to help identify what part of a system is going to

be changed.

Page 20

Chapter 1 Software Evolution

¢ A technique for specifying modification descriptions in terms of the model, in

order to reason about and define change.
* Constraints to preserve system integrity over change.

¢ A runtime model of the software architecture that is consistent with the imple-

mentation.

* Tools to implement changes.

Understanding an Evolving System

Part of managing the process of evolution is to provide a view of the software con-
sistent with the current state of the executing system. As an evolving system changes
over time by definition a static software architecture is not sufficient. In particular, evo-
lution driven by architecture-level constraints relies on having a model of the software
architecture. Views of a software architecture are usually provided by a set of tools.
These either maintain a separate architectural model, which is updated alongside the

implementation, or generate a view of the architecture from the implementation.

In some systems, a model of the software architecture is kept apart from the imple-
mentation and provides a separation of concerns, e.g. (Garlan et al., 2004; Oreizy and
Taylor, 1998). Architectural concerns about system structure or topology are separated
from implementation details, such as application behaviour. The intention is to im-
prove the chances of evolution progressing correctly. Taking this approach necessitates
the use of tools to keep the architectural model in step with the implementation as it

changes.

Some systems take the approach of providing a number of architectural viewpoints
and views, as defined in the IEEE Standard (IEE, 2000), characterizing various aspects
of the architecture. For example, a structural viewpoint depicts the components, ports,
connectors and roles in an architecture. These views are usually connected to the im-
plementation via a tool, or not at all, in which case they must, over time, become out
of step with the evolving system. The alternative approach is to extract a model of the
software architecture from a running system. This model is guaranteed to be consis-
tent with the system at a given point in time. ArchJava (Sec. 2.4) is an example of a

system that generates architectural views from the implementation.

Page 21

Chapter 1 Software Evolution

Support for Styles

Architectural styles, in the form of constraints on the software architecture, support
evolution by ensuring that changes to the system do not violate original design de-
cisions. If these decisions were also evolved, the constraints would need to change,
but this has not yet been explored in research. In most systems, it is assumed that

constraints are inviolable for the lifetime of the system.

Some architectural styles are more suited to runtime reconfiguration than others (O-
reizy and Taylor, 1998). For example, the boundaries of change may not be clear in
nested systems where functionality is not encapsulated in components. Event-based
styles are amenable to change as components are not directly bound to each other and
a component is unaffected by the changes in the internal structure of its neighbours.
For example, a component can be stopped and replaced without holding up the execu-
tion of components to which it provides services. Characteristics of styles supporting

runtime change include:

* Asynchronous message passing.

* No assumption of shared address. space or shared thread of control to avoid

component and control dependencies.

* Independent architectural layers, to constrain the scope of changes.

Shared State

Change management takes responsibility for ensuring that evolutions do not cause
conflicts within a system. In an incrementally evolving system, where processes access
shared values, conflicts may be caused if processes are changed and their access to the
shared values is no longer properly synchronized. This is particularly likely to happen

in systems where access to internal state and data is preserved as a component changes.

The use of software architectures to direct evolution can restrict the granularity of
change to components and connectors in order that, by design, access to shared values
is not a problem. However, the evolution of complex systems with emergent proper-
ties cannot be predicted at design time. Components may be large and changes at a

finer granularity may be required.

The problem can be illustrated by the example of a pipeline system operating on a

shared value. Initially, the pipeline architecture controls access to the shared value and

Page 22

Chapter 1 Software Evolution

prevents conflicts. A meta-program, which has the power to make arbitrary changes,
may change the architecture and cause access problems. A change management system
can, for example, ensure that evolutions that break architectural constraints do not take

place.

1.5.5 Where Evolution Takes Place

Depending on the mechanisms available for evolution in a system, changing a small
part can affect the entire system’s execution or just a small part of it. Ideally, the effects
of change can be localized and the rest of the system can continue to execute undis-
turbed.

Some ADLs support change localization through connectors, which can control the
flow of messages, and therefore protect the system from the effects of a change. Con-
nectors are commonly recognized as first class entities in software architectures. A
primary motivation for this is to aid designers in both their reasoning about an archi-
tecture and their re-use of architectural elements. Also, first class connectors contain
an architecture’s interaction protocols to separate component behaviour from interac-
tion. For example, a component may be replaced by disconnecting it and reconnecting
a new component. This task is undertaken by the connectors and does not affect other

components in the system.

Connectors may be defined to use different protocols, such as asynchronous or syn-
chronous communication, or allow components written in different languages to inter-
operate. Moreover, first class connectors play a role in change management. They
encapsulate change management policies and allow the change scope to be estab-
lished (Schmerl and Garlan, 2002), as well as localizing the effects of change (Oreizy
and Taylor, 1998). An example of connectors which do both these things is in C2, where

connectors take control of component replacement so it happens gradually (Sec. 2.6).

1.6 Comparing Evolution Frameworks

The construction of evolvable software systems is a complex problem and has been
tackled in numerous ways. There is no single approach that is agreed to work sat-

isfactorily. In Table 1.1 a set of categories are defined, each considering a different

Page 23

Chapter 1 Software Evolution

aspect of the problem. The categories are distilled from the discussion on characteris-
tics of evolving systems in the previous section and they are used in the next chapter
to compare different approaches. Some of the categories overlap with those defined
in (Buckley et al., 2005; Mens et al., 2003), in which case the same names have been
used. However, their focus is on software systems that evolve, in contrast to this the-

sis, which focuses on properties of frameworks that support software evolution.

Page 24

Chapter 1

Software Evolution

Table 1.1. Categories. This table defines a set of categories for comparing evolution frameworks.

Dynamic Change

Possible Change

What kinds of changes can be made during execution?

Openness - Can both extant and newly defined components be

introduced?

Maintain State - Can components be updated while maintaining

their state?

Connections Bound and Unbound - Can connections be bound and

unbound at runtime to add and remove components?

Reflection

Are reflective facilities available to integrate changes into the ex-

ecuting system?

Autonomous Change

Automation

Does the system support automatic changes without user interac-

tion?

Automated Motivations for

Change

How are the questions of what autonomous changes to make and

when to make them addressed?

Automated Support for

Openness

What mechanisms / policies support autonomous change that in-

troduces new behaviours?

Model Available to

Management Components

Are there mechanisms to provide an up-to-date view of the system

for adaptive engines?

Change Localization

Higher Order Connectors

Are there first class connectors?

Programmable Connectors

Do the connectors encapsulate the policies for change manage-

ment?

Partial Decomposition

Can part of the system be changed without stopping the rest of

the system?

Change Management

Change Management

Is there a change management policy?

View of Executing System

Is there a view / model of the executing system?

Partial Views

Can a partial view of the executing system be generated?

Vocabulary for Specifying
Changes

How are changes specified?

Open Adaptation

Does the framework incorporate an open adaptive engine?

Closed Adaptation

Does the framework incorporate a closed adaptive engine?

Architectural Styles

Is there support for styles?

Page 25

Chapter 1 Software Evolution

1.7 Meta-Programming Framework

The Meta-Programming Framework presented in this thesis provides the mechanisms
to develop open adaptive engines for automatically evolving software systems. Meta-
programs use a set of operations to manipulate program representations. The opera-
tions are designed to enable the program’s evolution and can themselves be evolved
since they have been developed within the framework. The representations capture
program closure and meta-programs can consequently examine components’ internal

state and maintain it over evolutionary changes.

The primary elements of the MPF are:

* A program representation called a Hypercode graph, which includes both program

syntax and data and accordingly captures program closure.

* A set of operations for traversing, manipulating and evolving Hypercode graphs.
These operations are themselves represented as Hypercode graphs and can be

evolved.

In an open system, automatic evolution implies that the system responds to environ-
mental changes without programmer interaction. Construction of an adaptive engine
for automatic evolution requires tools to manage evolution. As part of this, the MPF
addresses the problem of how evolutionary changes can be applied by providing evo-
lutionary mechanisms for a meta-program in the form of an Application Programming
Interface, AP], to the running system. The interface both represents the executing sys-

tem to the adaptive engine and supports evolution of the representation.

The interface presented by the MPF can be programmed over and evolved in the same
way as any other component in the system. This is possible because the evolutionary
mechanisms operate over program representations. The interface contains a represen-

tation of itself and therefore its own mechanisms can be used to evolve it.

Change management components using the MPF can apply their own policies to deter-
mine the process of evolution. An example considered in this thesis is a process based
on a system’s decomposition into components, the replacing or modifying of those
components, and the re-composition of the evolved system (Morrison et al., 2000a).
Hypercode graphs enable the program closure of decomposed components to be cap-
tured. In other words, they provide a way of reverse engineering the executing com-

putation so that it may be programmed over.

Page 26

Chapter 1 Software Evolution

Each step in the evolution process is supported by operations in the MPF interface.
The operations rely on underlying system support for decomposition and the incor-
poration of changes into the executing system, which is modelled as components and
connections. Partial decomposition stops part of the system for it to be evolved while

the rest continues executing.

The types of evolution supported by the MPFE, in terms of those defined in Section 1.5.3,
are component replacement and structural evolution. Support for these encompasses
the basic and basic update types of evolution. The flavour of evolution provided by the
MPF is determined by the change management policy applied on top of it. Structural
evolution requires a change management framework to direct the changes. Because the
framework is generic enough to be transferred to another language, its benefits are not
restricted to the current evolution model. In order to be suitable for the MPF, languages
require the supporting technology of structural reflection, referential integrity and first

class code.

The MPF interface, comprising a set of operations, is used to evolve a representation of
the executing system. The program model available to the meta-program is a Hyper-
code graph. This is based on the Hypercode representation (Zirintsis, 2000) (Sec. 3.5)
and extends it by representing the program code in a graph structure defined by the
abstract syntax, instead of as flat text. It includes both program syntax and program
data to capture program closure. The same representation is used for both evolving

components and incorporating them into the new system.

The ability of a Hypercode graph to characterize program closure allows parts of a
system to be represented after decomposition without losing their context. Compo-
nent state is available for inspection by meta-programs and it may be preserved over
evolution. New components may be defined using the current state without having to

explicitly store and re-initialize values.

The MPF has the advantage over other systems that Hypercode can represent execut-
ing code. Since a Hypercode graph can represent closure it may be used as a represen-
tation for introspecting the executing system. The introspection allows a meta-program
to view parts of a system. Any data or code value may be viewed as a Hypercode graph
and the view always reflects the up-to-date value. The Hypercode graph is available
at any stage of the evolutionary process and the meta-program performs evolutions by

altering the graph and reflecting the changed graph into the executing system.

Page 27

Chapter 1 Software Evolution

In Table 1.2, the MPF is evaluated against the categories for evolving systems defined

earlier.

Page 28

Chapter 1 Software Evolution

Table 1.2. The Meta-Programming Framework. This table categorizes the support for evolution

in the MPF.
Dynamic Change

Openness

Extant and newly defined components can be introduced by spec-

ifying them as Hypercode graphs.

Maintain State

Hyperlinks are maintained over change to preserve internal state.

Connections Bound and
Unbound

Composition binds connections at runtime and decomposition un-

binds them.

Reflection

Language support for reflection.

Autonomous Change

Automation

The MPF provides an interface for automatic changes.

Automated Motivations for

Change

Contained in management components and not part of the MPF

itself.

Automated Support for

Openness

New behaviours can be introduced automatically using reflective

facilities in the programming language.

Model Available to

Management Components

Hypercode graphs.

Change Localization

Higher Order Connectors

No

Programmable Connectors

No

Partial Decomposition

Yes using the decomposition operator.

Change Management

Change Management

The mechanisms provided by the MPF can be used as part of a

change management system.

View of Executing System

Yes - a Hypercode graph representation of all values. Software
architecture and implementation level views can both be con-

structued using the MPF.

Partial Views

Yes - all values are viewable as Hypercode.

Vocabulary for Specifying
Changes

Changes can be specified in terms of MPF operations.

Open Adaptation

Yes - meta-programs can introduce new behaviours specified in

terms of Hypercode graphs.

Closed Adaptation

Yes - meta-programs can introspect the current system.

Architectural Styles

No

Page 29

Chapter 1 Software Evolution

1.8 Summary

This chapter begins by defining co-evolution as the process whereby software systems
evolve in tandem with the business processes for which they are used. Co-evolution
motivates the construction of systems that can evolve incrementally. A paradigm from
control systems, feedback and feedforward controllers, is used to illustrate the differ-
ence between open and closed adaptive engines in evolving systems. Open adaptive
engines evolve a system using feedback from environmental inputs and support the
introduction of new behaviours. Their implementation is not well understood and
they usually involve developers in the evolution process. In contrast, multiple imple-

mentations of closed adaptive engines exist, commonly using probes and gauges.

Software architectures are introduced, along with the advantages of approaching evo-
lution from a high level of abstraction. Meta-programming is presented as a way
of automatically manipulating executing systems, and therefore evolving them. The
characteristics of evolving systems are depicted in terms of when, what, how and where
systems are evolved and who drives the evolution. Following this, a set of categories
are defined to allow comparison between different frameworks for evolution. Existing

work is evaluated against these categories in the next chapter.

Finally, the Meta-Programming Framework is introduced as a mechanism to aid auto-
matic, incremental evolutions. Its principle components are defined to be a representa-
tion of program closure and an interface that allows the representations to be evolved.
This combination facilitates the incremental evolution of a running system. A table is

used to classify the MPF with respect to the defined categories.

1.9 Contribution

This thesis proposes the hypothesis that the Meta-Programming Framework provides
the mechanisms for automated evolution of software systems such that evolution pro-
ceeds with minimal disruption and is not restricted to any particular part of the system

or type of evolution.

The development of software systems capable of evolving requires mechanisms to sup-
port the evolution process. Change Management Frameworks have been developed in
order to manage software adaptation from a software architecture perspective. These

frameworks consist of a system model in the form of a software architecture and a set

Page 30

Chapter 1 Software Evolution

of constraints on that model to ensure it conforms to required behaviour. Components,
usually probes and gauges, are applied to test the running system. The results they de-
liver are evaluated against the constraints. If it is determined that the constraints are
violated then a repair strategy is used to change the system. The MPF can be integrated
into a Change Management Framework, providing it with an interface to the execut-
ing system. In this structure, software architecture styles and evolution policies, such
as timing and repair strategies, are taken care of by other components of the Change

Management Framework.

A Change Management Framework that applies the MPF can use introspection to test
the running system, an approach that is more powerful and flexible than probes and
gauges. It can also use the MPF’s mechanisms for unrestricted change that can be
automated or include developer interaction. Repair strategies can be formulated using
these mechanisms. In addition, the MPF interface is evolvable so it can be adapted to
suit different systems and change management policies and evolve with the system

over time.

The MPF provides a combination of technologies that support automatic and incre-
mental evolution. Decomposition allows part of an executing system to be stopped.
Hypercode graphs and the set of operations for their traversal, manipulation and evo-
lution make up an interface to the decomposed part. Meta-programs, as part of a
change management framework, use the interface to introspect and evolve the system.
Evolved parts are introduced back into the executing system using structural reflec-
tion. Internal state in the evolved part of the system may be retained over the change,

because Hypercode graphs capture program closure.

The MPF’s combination of technologies for incremental evolution contributes the mech-
anisms that a change management framework needs to automate the evolution of an
open system. Change management components can access a Hypercode graph rep-
resentation of any value in the system. This can be used to evolve programs without

losing state, introduce new behaviours and evolve the framework itself.

Page 31

Chapter 2

Software Architectures and
Frameworks for Evolution

his chapter is a review of work which has approached soft-

’ ware evolution from the perspective of software architectures.

The work discussed here is Darwin, Gerel, Weaves, ArchJava,

Wright, ACME and Rainbow, ArchStudio and C2, and Intentional Program-

ming. In each section, a table is shown which compares the system against

the framework characteristics defined in Chapter 1.

Page 32

Chapter 2 Software Architectures and Frameworks for Evolution

This chapter is a review of work which has approached software evolution from the
perspective of software architectures. The work discussed here is Darwin, Gerel, Wea-
ves, ArchJava, Wright, ACME and Rainbow, ArchStudio and C2, and Intentional Pro-
gramming. In each section, a table is shown which compares the system against the

framework characteristics defined in Chapter 1.

2.1 Darwin

Darwin (Magee et al., 1995; Magee et al., 1994, Magee and Kramer, 1996a; Kramer
and Magee, 1990) is an ADL developed for the design and specification of distributed
architectures. Its operational semantics are based on the monadic 7r-Calculus (Milner,
1999), to facilitate modelling of mobile communicating processes. Darwin has been
specifically developed as a declarative language, in order to provide a clear separation

of concerns and support automated reasoning about structural concepts.

Darwin architectures are defined as hierarchic compositions of interconnected compo-
nents. A system consists of a set of component types that have multiple instantiations.
Composite component types are constructed from other components. Primitive com-
ponent types have a behaviour and do not contain other components. Component
interaction is represented by bindings between the services required and provided by
components through their ports. A component may provide a service to many com-
ponents that require it, but a required service can only be connected to one provider.
Provided services may only be bound to required services and vice versa and binding

a provided and required service port connects them directly.

An example pipeline component is shown in Figure 2.1 (Magee et al., 1995). The
pipeline is a composite component constructed from n primitive filter components.
Filter components each have one required (input) and one provided (output) service
of type stream, shown in the diagram as white and black circles respectively. The
pipeline component instantiates an array of filter instances and binds the output ser-
vice of each filter to its successor’s input. The instantiation is defined by the keyword
inst. Binding takes place in the bind clause between services connected by —, as in
Flk+1].input — F[k].output. Because components may not communicate directly outside
of their containing component, the first and last filters in the pipeline are connected to

the pipeline’s input and output services.

Page 33

Chapter 2 Software Architectures and Frameworks for Evolution

Pipeline (n)

F[O] F[1] F[n-1]
Input Output

O—0 O ®--O

component filter {
provide output: stream;

require input stream;

component pipeline(int n) {
provide output;

require input;

array F[n]: filter;
forall k: 0..n-1 {

inst F[k];

when k < n-1;

bind F[k+1].input -- F[k].output;

}
bind

F[0] .input -- input;

output -- F[n-1].output;

Figure 2.1. Darwin. Filter and pipeline components (Magee et al., 1995).

Page 34

Chapter 2 Software Architectures and Frameworks for Evolution

2.1.1 Dynamic Behaviour

Support for evolution in Darwin is provided in the form of lazy and direct dynamic in-
stantiation. Lazily instantiated components are statically defined types that are only
instantiated when needed, that is, when their services are accessed by another com-
ponent. This allows a system to create new components according to a fixed pattern.
Using lazy instantiation, components are dynamically connected, viz., their context is
defined dynamically. In contrast, the context of components created through direct
dynamic instantiation must be statically defined and it is the component type that is

defined dynamically.

Lazy Instantiation Example

A pipeline that grows through lazy instantiation is shown in Fig. 2.2 (Georgiadis, 2002).
The top part of the figure shows a lazypipe, which expands into the pipeline shown in
the centre of the figure. The expansion takes place as the head component requires
services from the tail component, causing a new lazypipe be instantiated and extending
the tail. Note that the pipeline is extended as the tail lazypipe expands to a head and
a new tail, causing the pipeline to have increasing numbers of head components and

only one tail component.

Lazy instantiation happens only when a service user tries to access the service. In this
example, a new lazypipe is instantiated, adding a filter to the pipeline, when head.next
attempts to use a service provided by tail.output. When a lazypipe receives input, it is
sent to the head component. head then requires input from tail, causing tail, which is of

type lazypipe, to be instantiated.

The Darwin code at the bottom of the figure shows how a lazypipe is defined. It requires
input and provides output. A filter component (head) is instantiated using the keyword
inst. The tail component’s instantiation is prefixed with the keyword dyn, meaning it
will be lazily instantiated. The final part of the component’s code connects the various

provided and required services in the lazypipe.

Direct Dynamic Instantiation Example

Components created using direct dynamic instantiation have dynamically introduced
types. However, the services they will be connected to are required to be statically
defined. Whereas lazy instantiation only allows the creation of new component in-

stances, direct dynamic instantiation supports the introduction of new functionality at

Page 35

Chapter 2 Software Architectures and Frameworks for Evolution

lazypipe
head
output
:>nen i
output
inpu9/~\
AN
input
/
lazypipe (expanded)
lazypipe
head head
)next output) next
output l output output
input/\ input A~
input f‘T\/\J
input
/

component lazypipe {
require input;

provide output;

inst
head: filter;
tail: dyn lazypipe;
bind
input -- head.input;
head.output -- output;
head.next -- tail.output;

tail.input -- input;

Figure 2.2. Darwin. Lazy instantiation (Georgiadis, 2002).

Page 36

Chapter 2 Software Architectures and Frameworks for Evolution

runtime. Component types for direct dynamic instantiation are defined in a meta-level
configuration, essentially a Darwin script, and instantiation is driven by interpreting
this script at runtime. Component instances created using direct dynamic instantia-
tion are anonymous. In order to refer to services they provide, service references can

be sent in messages to form bindings dynamically.

Figure 2.3 (Georgiadis, 2002) depicts a client / server system that expands using di-
rect dynamic instantiation when the server component creates new client components.
New clients are created by the server’s new port as required by the server’s internal
computations. Each client component’s type is dynamically defined, but its interface

will always connect to context.input and server.comm.

The Darwin code for this example defines the interfaces for the client and server com-
ponents in lines 1-7. The server’s required port new is typed as <dyn> (line 5), an im-
plementation dependent type defining components that can be invoked dynamically.
In the context component, a server is instantiated in line 11. When it is bound in the
context component’s bind clause, its new port is used to create a dynamic instantiation
of a client component using the keyword dyn (line 14). Syntactically, direct dynamic
instantiation takes place in the bind clause, whereas lazy instantiation occurs in the

inst clause.

In summary, lazy instantiation allows new component instances to be added to a soft-
ware architecture. Direct dynamic instantiation allows the inclusion of new component

types, thereby adding new functionality.

2.1.2 Self-Organizing Systems based on Darwin

Darwin components have been shown to be suitable for describing self-organizing sys-
tems. One example of their use is as part of an environment for distributed configura-

tion management that reconfigures a system at runtime (Fossa and Sloman, 1996).

Constraints are used to restrict self-organizing systems so that they remain well formed
with respect to their configuration despite re-organizations, i.e. architectural proper-
ties are preserved (Magee and Kramer, 1996b). They have been used as the basis for
a self-organizing architecture (Georgiadis et al., 2002; Georgiadis, 2002) expressed in

Alloy (Jackson, 1999) but modelled on Darwin components. Alloy is an ADL that

Page 37

Chapter 2 Software Architectures and Frameworks for Evolution

context
server
new output
(output
input comm

component client {
require input, comm;
component server {
require new <dyn>;

provide comm, output;

}

N O ok W e

8 component context {
require input;
10 provide output;

11 inst s: server

12 bind

13 output -- s.output;

14 s.new —— dyn client;
15 s.comm -- client.comm;
16 client.input -- input;
17}

Figure 2.3. Darwin. Direct dynamic instantiation (Georgiadis, 2002).

Page 38

Chapter 2 Software Architectures and Frameworks for Evolution

has been used because of its automated analysis tools. The work has focused on dis-
tributed systems where components can fail arbitrarily, causing the architecture to be

re-organized accordingly.

Each component contains its implementation, a component manager and a configu-
ration view. The component manager contains a set of constraints, used as the basis
for deciding when and what reconfigurations to make. When a component manager
makes a change to its component’s bindings it updates the configuration view, which
is a current depiction of the entire system maintained in the component. It also broad-

casts the change to other component managers.

Constraints can be either local or global and are used to specify both structural and
evolutionary aspects of the architecture. Local constraints, for example, the constraint
that each component should have one provided and one required port, can be checked
by an individual component. This is done using Alloy tools (Jackson, 1999) to perform
an automated analysis. If a local constraint is broken, the component can perform a set
of actions to repair itself. Global constraints, for example, that a pipeline architecture
does not form a circle, are harder to enforce than local constraints and require actions
that are part of a distributed algorithm. One of the goals of the work is to derive the

action rules, currently a manual task, automatically from the set of constraints.

In Table 2.1, Darwin is compared against the categories defined in Table 1.1.

Page 39

Chapter 2

Software Architectures and Frameworks for Evolution

Table 2.1. Darwin. This table categorizes the support for evolution in Darwin.

Dynamic Change

Openness

Yes - using direct dynamic instantiation.

Maintain State

Continuity - No

Connections Bound and

Unbound

Components can be bound but not unbound at runtime because
Darwin is declarative. Unbinding is intended to be part of the

implementation framework.

Reflection

Reflection not in the Darwin ADL. Intended as part of the imple-

mentation framework.

Autonomous Change

Automation

Yes - in the work on self-organizing systems.

Automated Motivations for

Change

Constraints determine what changes to make and when to make

them.

Automated Support for

Openness

No

Model Available to

Management Components

Configuration managers maintain an up-to-date view of the entire

system for each component.

Change Localization

Higher Order Connectors

No - component ports are directly connected to each other.

Programmable Connectors

No

Partial Decomposition

Darwin permits runtime change to components which have
reached their reduction limit, described as quiescent. Essentially,

this means they are not communicating with other components.

Change Management

Change Management

In the work on self-organizing systems each component has its own

change manager.

View of Executing System

Yes - each component has its own up-to-date view of the system.

Partial Views

No

Vocabulary for Specifying
Changes

Alloy rules

Open and Closed
Adaptation

Yes - Darwin is able to describe systems which perform reconfig-
urations as well as introduce new behaviours and can therefore

represent both open and closed adaptive engines.

Architectural Styles

Uses Alloy

Page 40

Chapter 2 Software Architectures and Frameworks for Evolution

2.2 Gerel

Gerel (Endler and Wei, 1992) is a generic reconfiguration language and was one of
the earlier languages to incorporate dynamism at the level of software architectures.
It aims to support both ad-hoc and programmed changes to an architecture. Ad-hoc
changes alter functionality and are applied interactively. Programmed changes are
planned at development time and performed automatically. The programmed changes
are atomic and do not occur concurrently with ad-hoc changes to avoid leaving the sys-
tem in an inconsistent state. They are also generic in order to be robust to the system
evolution resulting from ad-hoc changes. The genericity of programmed changes is a
result of the dynamic selection of objects, over which the changes will operate, accord-
ing to their structural properties. Component instances are not explicitly named in the
change script. Programmed changes are only applied when a set of preconditions is

satisfied by the current configuration.

All programmed changes are restricted to the component in which the changes are de-
fined and affect the system’s connectivity structure. Components can be added and
removed, connected and disconnected. Structures are defined in terms of component
types and instances, portsets and ports. The approach supports a separation of struc-

tural reconfiguration and functional application programming concerns.

A system defined in Gerel consists of program and configuration type components. Pro-
gram components contain the application’s functionality and can be defined in any
programming language as long as they implement a common interface for ports. Con-
figuration components are defined in Gerel. They create instances of component types
and bindings between them. Configuration types also have a port interface. A config-
uration component may contain instances of other configuration components, forming

a hierarchical system.

The component types for an example client / server are shown in Figure 2.4 (adapted
from Endler and Wei (1992)). At the top left of the figure (1), an interface for communi-
cation between the client and server components is defined. The client_server_interface
definition uses an interface specification language and defines a set of ports and the
data type of the messages that can be sent on those ports. Ports are defined using the
keyword inport for input channels and outport for output channels. The type io_ports
defines a portset consisting of an input and and output channel. The in channel receives
a signal using asynchronous communication. The out channel uses synchronous com-

munication, sending something of type message and waiting on a result signal.

Page 41

Chapter 2

Software Architectures and Frameworks for Evolution

@ Interface Definition

/* Define an interface that both the
client and server will use */
unit client server interface
type message = (pulse: int);
type io ports = {
inport signal; /* Asynchronous */
outport message result signal;

ot 2

-

/* Synchronous */

in:
out:

}
end.

@ Client Component Type

component client;
use client server interface: io_ports
interface
client_io: io_ports;
end;
/*Component body in programming language*/

@ Server Component Type

server
out
in
out
in
out
in
\

component server (n: int);
use client server_interface: io_ports
interface
/* server has n portsets to connect to n
clients */
server_io[l..n]:
end;
/*Component body in programming language*/
end.

invert io_ports;

end.

Figure 2.4. Gerel. Component types for a client / server system in Gerel.

The client component (2) is defined to use the io_ports portset in the client_server_in-
terface. In the client’s interface one portset of type io_ports is instantiated and called
client_io. In the definition of the server component (3), the same interface is used, but
n instances of the portset are instantiated so that the server can communicate with n
clients. It also inverts the portset, reversing the directions of the communication chan-
nels. The result of inverting the portset is that an in port on the client has the same type

definition as an out port on the server.

The client and server are program component types. A configuration component is
used to instantiate server and client components and bind them together in a system
illustrated in Figure 2.5. The code for the client / server system (Fig. 2.6) uses the client
and server component types defined earlier (line 2). Three clients and two servers
are instantiated (lines 3-4). Each server has three server_io portsets and can therefore
connect to three different clients. The second server is redundant and can take over if

the first one fails. Clients are connected to the portsets of the first server using the bind

Page 42

Chapter 2 Software Architectures and Frameworks for Evolution

statement. A programmed change is included in the component (line 8) to disconnect
the clients from s[1] and reconnect them to s[2]. The change does not take place until it

is invoked by a server.

Figure 2.5. Gerel. The client / server configuration with two servers and three clients. On in-
vocation of the change script clients are disconnected from s[1] and reconnected to

s[2].

1 component system;

2 use client, server;

3 iterate i in [1..3] do create c[i] of client; end;

4 iterate j in [1..2] do create s[j] of server(3); end;
5 bind bind c[1].client io s[1].server_io[1]

6 bind bind c[2].client_io s[1].server_io[2]

7 bind bind c[3].client_io s[1].server_io[3]

8 change relinkclients; /* a programmed change */ end.
9

end.

Figure 2.6. Gerel. The configuration component for the client / server system.

Page 43

Chapter 2 Software Architectures and Frameworks for Evolution

A programmed change consists of:

* A precondition for the current configuration, i.e., a structural property that must

hold true before the change is executed.
e Structural properties of components, which can be selected to be changed.

¢ The change to be executed.

The preconditions for the change and the selection formulas are defined in Gerel-SL, a

typed first order logic language.

The programmed change relinkclients (Fig. 2.7) will disconnect any number of clients
from a server and reconnect each client to another server with a free port. In line three,
an inbuilt Gerel-SL function is used to check that the change script is being invoked by
a component of type server, meaning that clients cannot initiate their own reconnec-
tion. In lines five to eight, all clients j attached to the invoking server k are unbound
and then rebound to a server i with a free portset. The expressions client_portset and

free_portset are defined by separate Gerel-SL formulae. s_linked is an inbuilt function.

1 change relinkclients;

2 symbol i, j, k: portset io_ports;

3 condition c_type(invoker())=server;

4 execute

5 forall j: client_portset(j) do

6 select k: s_linked(k, j) dounbind j k end;
7 select i: free_portset(i) dobind i j end;
8 end;

9 end.

Figure 2.7. Gerel. A programmed change script to unlink all the clients from a server and attach

them to a new server.

In Table 2.2, Gerel is compared against the categories defined in Table 1.1.

Page 44

Chapter 2

Software Architectures and Frameworks for Evolution

Table 2.2. Gerel

Dynamic Change

. This table categorizes the support for evolution in Gerel.

Openness

Ad-hoc changes can introduce new behaviours.

Maintain State

No

Connections Bound and

Unbound

Yes - using the bind and unbind operations for connections.

Reflection

No

Autonomous Change

Automation

Yes - programmed changes operate automatically.

Automated Motivations for

Change scripts are executed when a structural precondition eval-

Change uates to true.

Automated Support for No - ad-hoc changes are not automatic.
Openness

Model Available to No

Management Components

Change Localization

Higher Order Connectors No

Programmable Connectors No

Partial Decomposition

Changes occur at runtime and are atomic so the system is not left

in an inconsistent state but there is no decomposition mechanism.

Change Management

Change Management

Concerns of structural and functional reconfiguration are separated

and the serialization of reconfigurations is managed by a system

process.
View of Executing System No
Partial Views No

Vocabulary for Specifying
Changes

Gerel and Gerel-SL

Open Adaptation

Yes - defined by ad-hoc changes.

Closed Adaptation

Yes - defined by programmed changes.

Architectural Styles

Gerel has constraints but they are not explicit.

Page 45

Chapter 2 Software Architectures and Frameworks for Evolution

2.3 Weaves

Weaves (Gorlick and Razouk, 1991) are networks of concurrently executing components
that communicate by passing objects. They are suited to real-time systems or those
which process large amounts of data and are focused on high performance flexible
connectors. In a weave architecture, components are referred to as tool fragments, which
send messages to each other via read and write ports. Tool fragments may themselves
be weaves, in which case they are referred to as subweaves. Ports are connected by
queues. The structure supports transparent, dynamic reconfiguration and insertion of

probes and subweaves.

An innovation in weaves is to separate system observation from data capture, now
commonly done using probes and gauges. Component boundaries are exploited in
weaves as convenient sites for gathering information. Probes are low-overhead and
can be inserted into the weave automatically to perform both debugging and anal-
ysis tasks. Observers behave like gauges. They collect information from probes and
may query the weave with a regular frequency or be triggered by an external compo-
nent. Changes to the weave, possibly instigated because of information gathered by
observers, are effected by Actors. They translate change requests into low-level com-
mands and apply them to the tool fragments and queues in the weave. For instance,
an actor may suspend or resume a tool fragment’s thread. Actors and observers were
used in the implementation of weaves to build a tool to provide an animation of a

weave. Each tool fragment and queue has:

¢ Its own observer that displays its current state and connectivity.
¢ Its own actor, which suspends or resumes it if the user clicks on the tool fragment

in the display.

Figure 2.8 shows a diagram of a simple weave. Tool fragments communicate via read
and write ports, which are in turn connected by queues. Tool fragments are constructed

with three parts:

* A vector of arguments that includes read and write ports.
* A routine implementing the tool’s behaviour.

e A thread to execute the behaviour.

Page 46

Chapter 2 Software Architectures and Frameworks for Evolution

Wrappers are used to include tool fragments that have not been specifically imple-

mented as weave components.

Self-Metric
Tool Fragment

Tool Fragment

Observer

Instrument Tool Fragment

Figure 2.8. Weaves. The components of a weave.

Queues are finite buffers and pass values by reference. They can be defined to im-
plement the queue operations optimally for a particular component connection. For
instance, they may be synchronous or asynchronous and have multiple readers and
writers. Concurrent access is allowed and must be managed by the tool fragments

individually.

Observers gather information from probes in different parts of the weave. Self-metric
queues and tool fragments contain built in probes that may be queried by the ob-
server. In addition, data is collected from instruments, which are transparent com-
ponents placed between tool fragments to monitor data flow. They are connected to

the tool fragments with queues and do not interfere with the weave’s execution. For

Page 47

Chapter 2 Software Architectures and Frameworks for Evolution

example, an instrument may count the number of objects passing through it, or count

the number of objects of a certain type.

The runtime behaviour of a weave may be modified by changing its topology, that is,
altering the connections between the tool fragments. In order to support incremental
construction, tool fragments do not know what they are connected to, or the semantics
of other tool fragments. New sub-weaves can be attached to weaves and tool fragments

can be replaced, as long as the new tool fragment has the same connectivity interface.

A weave implementation may be constructed manually, interactively using a graphical
editor, or generated from a set of high level goals and tool descriptions by a weaver. The
software architecture is directly represented in the weave implementation. Tool frag-
ments and queues are implemented as C++ objects, which present methods allowing

them to be manipulated to, for example, alter the weave topology.

In Table 2.3, Weaves is compared against the categories defined in Table 1.1.

Page 48

Chapter 2

Software Architectures and Frameworks for Evolution

Table 2.3. Weaves. This table categorizes the support for evolution in Weaves.

Dynamic Change

Openness

Yes - weaves are designed to be constructed incrementally.

Maintain State

Components do not retain state over a change but when a compo-
nent is detached from a queue the queue will maintain its internal
state and continue transmitting to the next component it is con-

nected to.

Connections Bound and
Unbound

Yes - elements in a Weave do not make assumptions about what
they are connected to, allowing changes in the topology to be

applied dynamically.

Reflection

No

Autonomous Change

Automation

Actors automatically apply change requests to the weave.

Automated Motivations for

Information gathered by observers provides a motivation for

Change change.

Automated Support for Yes because actors can automatically attach new behaviours to
Openness the weave.

Model Available to No

Management Components

Change Localization

Higher Order Connectors

Queues are higher order connectors.

Programmable Connectors

Yes

Partial Decomposition

Yes - a tool fragment can be isolated by disconnecting its ports

and then stopped by an actor.

Change Management

Change Management

No but explicit connectors aid reasoning about and understanding

of communication.

View of Executing System

No

Partial Views

No

Vocabulary for Specifying
Changes

Tool fragments provide an interface for actors. The minimum

interface is thread suspension and reactivation.

Open Adaptation

No

Closed Adaptation

There is no adaptive engine but observers and actors provide the

mechanisms to gather information and apply changes.

Architectural Styles

No

Page 49

Chapter 2 Software Architectures and Frameworks for Evolution

2.4 ArchlJava

ArchJava is a set of extensions to the Java programming language that integrates a soft-
ware architecture specification into the Java source code (Aldrich et al., 2002a; Aldrich
et al., 2002b; Aldrich et al., 2002c; Aldrich, 2003; Aldrich, 2005 (Submitted for publi-
cation)). A tool is used to automatically generate a visualization of the software ar-
chitecture from the ArchJava implementation code. The Arch]Java compiler statically
checks that the program conforms to the architecture by ensuring that communication
and data sharing only take place where they are explicitly allowed. This is referred to

as communication integrity.

The problem of ensuring communication integrity is broken down into two parts:
inter-object method calls and data sharing. Objects should only be allowed to call
methods on other objects where it is explicitly allowed by the architecture and data

may only be shared between objects when explicit permission is given.

2.4.1 Restricting Inter-Object Communication

To control inter-object method calls, ArchJava allows the specification of components,
connections and ports by extending the Java language. A component can only com-
municate with other components to which it is connected through its ports. A port
specifies which methods it provides and requires, as in Darwin. No other method calls
between components are allowed. A component’s required methods are called in the
component and defined in another component. Its provided methods are implemented
in the component and called by other components. A required port in one component
is attached to a provided port in another using the keyword connect. Although not part
of the language, ArchJava has been extended with first class connectors (Aldrich et al.,
2003). To guarantee communication integrity the type system ensures that components
can only call each other’s methods via ports. There is no way of breaking a connec-
tion between ArchJava components. They will stay connected until they are no longer

reachable and are therefore garbage collected.

Software architectures in ArchJava are strictly hierarchical: a component may not be
shared by two containing components. A component can only call the methods of
a component which is its sub-component and only components at the same architec-
tural level can be connected using the ArchJava connect construct. Communication

which crosses component boundaries at a higher architectural level is not allowed.

Page 50

Chapter 2 Software Architectures and Frameworks for Evolution

This means that sub-components may not communicate outside their enclosing com-

ponent.

2.4.2 Restricting Data Sharing

The second part of ensuring communication integrity is constraining data sharing be-
tween objects. This is done using another extension to Java called AliasJava, which
integrates with ArchJava. In AliasJava objects are assigned an ownership domain. Ob-
jects residing outside an ownership domain require explicit permission to access the
objects within. Permission is granted by linking one domain to another, allowing the
objects in the first domain to reference objects in the second. Ownership domains are
hierarchical and an object has permission to access objects in the domains that it de-

clares as well as other objects in the same domain.

Ownership domains are not suitable for modelling some data sharing behaviours, for
example, an object being passed along a pipeline when no persistent reference to the
object is created. In order to handle these behaviours, ownership domains are extended
to be able to define objects as either unique or lent. Unique objects may be passed
between ownership domains as long as there is only ever one reference to them. Lent
objects may be used outside their ownership domain but no persistent references to

them may be created.

The top level ownership domain shared contains all objects. Figure 2.9 illustrates the
relationship between ownership domains and objects. myObject is inside the top-level
shared ownership domain. The objects nested inside myObject are the objects declared
there. The domain owned inside myObject is a private domain contained in every object
by default. In addition, myObject declares the public domain accessible, whose objects
may be accessed from outside myObject. Creating a link from the accessible domain to

the owned domain allows objects declared inside accessible to access objects in owned.

2.4.3 Example Software Architecture

In ArchJava, the component model and ownership domains are combined. The com-
ponent hierarchy uses ownership domains and domains may be shared between com-

ponents by passing them along connections. An example of a pipeline architecture

Page 51

Chapter 2 Software Architectures and Frameworks for Evolution

shared

myObject

accessible ————-

Object |:| Ownership domain \

Link from one domain to another — — — »
Private ownership domain .
Inter-object reference ——»

Figure 2.9. ArchJava. Ownership Domains - adapted from (Aldrich, 2005 (Submitted for publica-
tion)).

(Fig. 2.10) illustrates ownership domains in the component hierarchy. In this exam-
ple, components in the pipeline cannot access objects concurrently, but they can share

objects by passing them along the pipeline.

The graphics pipeline in Figure 2.10 has three sub-components in it, to generate, trans-
form and rasterize images. The ArchJava code in the example first defines a Graphics-
Pipeline class and then defines one of its sub-components - Transform. The other two
sub-components are not shown. The classes in this example are defined using the com-

ponent keyword, but classes may also be declared that are not components.

The GraphicsPipeline class (line 1) defines three sub-components and their topology. It
instantiates three objects to form the pipeline: generate (line 2), transform (line 3), and
rasterize (line 4). Declaring these as owned means they are sub-components of Graphic-
sPipeline and contained in its default private domain, therefore they may not be refer-
enced by objects outside GraphicsPipeline. The next part of GraphicsPipeline (lines 5 - 6)
defines a communication pattern to which sub-components must conform when they
create connections at runtime. The pattern forms the pipeline shown in the diagram.

The keywords connect pattern indicate that the out port of a Generate type object may

Page 52

Chapter 2 Software Architectures and Frameworks for Evolution

GraphicsPipeline

generate transform rasterize

out C)‘C) in out C)—C) in

public component class GraphicsPipeline {

protected owned Generate generate = ...;

1
2
3 protected owned Transform transform = ...;
4

protected owned Rasterize rasterize -

5 connect pattern Generate.out, Transform.in;
6 connect pattern Transform.out, Rasterize.in;
7 public GraphicsPipeline() {

8 connect(generate.out, transform,in);

9 connect(transform.out, rasterize.in);
10 }

11 }

12 public component class Transform {

13 protected owned Trans3D currentTransform;
14 public port in {

15 provides void draw(unique Shape s);
16 }

17 public port out {

18 requires void draw(unique Shape s);
19 }

20 void draw(unique Shape s) {

21 currentTransform. apply(s);

22 out.draw(s) ;

23 }

24 }

Figure 2.10. ArchJava. The GraphicsPipeline architecture (Aldrich, 2005 (Submitted for publica-
tion)).

Page 53

Chapter 2 Software Architectures and Frameworks for Evolution

connect to the in port of a Transform type object. The ports of the generate, transform and
rasterize component objects are actually connected in the GraphicsPipeline constructor
(lines 8 - 9). The ArchJava compiler will check that these connections conform to the

connect patterns in lines 5 and 6.

The source code for the Transform class is shown in the second part of the figure (line
12). The class definition contains the types of its ports and implements its provided
method. Ports are declared with provided (line 15) and required (line 18) methods.
The in port provides a method draw, which may be called by other components and
passed a Shape. The keyword unique is used to ensure that the Shape object being sent
along the pipeline is not accessed concurrently by two components. Methods provided
on a port must be implemented inside the component, therefore Transform implements
the draw method. The definition of draw (line 20) applies a transformation and then
sends the Shape to the next component in the pipeline by sending a message to the

required method draw on the out port.

In Table 2.4, Arch]Java is compared against the categories defined in Table 1.1.

Page 54

Chapter 2

Software Architectures and Frameworks for Evolution

Table 2.4. ArchJava. This table categorizes the support for evolution in ArchJava.

Dynamic Change

Openness

New components may be instantiated at runtime but there is not

support for new behaviours.

Maintain State

No

Connections Bound and
Unbound

Components may be dynamically connected but not disconnected.

Reflection

Java reflection mechanisms are available.

Autonomous Change

Openness

Automation No
Automated Motivations for | No
Change

Automated Support for No

Model Available to

Management Components

The software architecture is explicit in the ArchJava source code

and ArchJava has classes to reify architectural constructs.

Change Localization

Higher Order Connectors

No - components are connected directly through their ports but

the language may be extended to include first class connectors.

Programmable Connectors

No

Partial Decomposition

No

Change Management

Change Management

No - and in expressing the software architecture in the implemen-
tation language, ArchJava loses the separation of architecture and

implementation.

View of Executing System

Yes - tools generate visualizations of the software architecture.

Partial Views

No

Vocabulary for Specifying No
Changes

Open Adaptation No
Closed Adaptation No
Architectural Styles No

Page 55

Chapter 2 Software Architectures and Frameworks for Evolution

2.5 Wright, ACME and Rainbow

2.5.1 Wright

Wright (Allen, 1997; Allen and Garlan, 1997; Allen et al., 1998) is an ADL formally
based on CSP (Hoare, 1985), that supports consistency checking with standard model
checkers. One of its defining characteristics is that connectors are distinguished as first
class entities. It is argued that, although connectors can be modelled as components,
having them as separate entities directly supports the abstractions used by software

architects in their designs as well as re-use.

A Wright component has ports to characterize its interactions and a computation to spec-
ify its functionality. A connector has roles that map to components’ ports, and glue to
define its behaviour. For example, a connector in a client / server system could have a
role for the server and a role for the client. Its glue would co-ordinate the roles of the
client and the server. Components and connector instances joined by attachments form

configurations.

Component and connector types are defined before being instantiated and attached in
a configuration. The types of elements for a client / server style system are defined in
Figure 2.11. There is a Client component, a Server component and a connector called

Link. These types, in addition to a set of constraints, form an architectural style.

In the example, it can be seen that components are described in terms of their inter-
faces, or ports, and their internal computation, which is defined using CSP-like nota-
tion. The Client component (line 2), for example, has one port p (line 3), which either
sends a request (request), receives a reply and starts again, or else it finishes (indicated
by §). The choice to finish is made internally by the Client component, shown by the
internal choice operator M. Wright has two choice operators: M and [J, which indicate
that a choice is determined internally or externally respectively. For example, in the
former case a component stops itself and in the latter case the component is stopped

by another component.

The Server component (line 5) receives a request on its port before sending a reply. In
the Server, the choice to finish is determined externally, meaning that the server will
not terminate until the client is ready. The Connector (line 8), which will link up the
client and server, is defined using Roles (lines 9 - 10) to characterize its interface and

Glue (line 11), which co-ordinates the activities between roles. Link has a role for the

Page 56

Chapter 2 Software Architectures and Frameworks for Evolution

(Component Component R

(server) (Client)

Computation

Computation

(63}

10
11
12
13

14
15

Style Client-Server

Component Client
Port p = request — reply — p M §

Computation = internalCompute — p.request — p.reply — Computation M §
Component Server
Port p = request — reply — p O §

Computation = p.request — internalCompute — p.reply — Computation [§

Connector Link

Role c = request — reply — ¢ M §
Role s = request — reply — s [§
Glue = c.request — s.request — Glue

O sreply — creply — Glue
0§

Constraints

dls € Component, ¥ ¢ € Component: TypeServer(s) A TypeClient(c) = connected(c,s)

16 EndStyle

Figure 2.11. Wright. Component type definitions for a client / server style system (Allen et al.,

1998).

Page 57

Chapter 2 Software Architectures and Frameworks for Evolution

client (line 9) and for the server (line 10). In the concrete system the connector’s ports
will be instantiated as the connector’s roles, the definitions of which match. The glue

in the connector definition can handle:

* A request from a client, which is sent on to the server.
* Or areply from the server that is forwarded to the client.

¢ Or it can finish.

The Constraints on the component and connector types restrict the architecture so that

there is only one server component (exists!s) and every client is connected to it.

The configuration of a client server system is shown in Figure 2.12. A Server com-
ponent, a Link connector and a Client component are instantiated. In the attachments
part of the configuration the client and server ports are instantiated as their respective

connector roles.

S: Server C: Client

Computation Computation

Configuration
Style Client-Server
Instances S: Server; L: Link; C: Client
Attachments S.p as L.s; C.p as L.c
EndConfiguration

Figure 2.12. Wright. Instantiating and attaching component types in a configuration (Allen et al.,
1998). This system uses the types defined in Figure 2.11.

To incorporate dynamism, Wright has been extended to incorporate the definition and
analysis of architectural reconfiguration. The system is initially defined as a set of ar-

chitectures, each with a different topology. Dynamic behaviour involves swapping

Page 58

Chapter 2 Software Architectures and Frameworks for Evolution

between these predefined topologies. Explicit points are identified in the protocols
defining components and connectors at which reconfiguration, or control, events can
take place. The approach aids change management by separating reconfiguration be-
haviour from the functional behaviour of the application. Reconfiguration behaviour
is contained in a configuror, which defines a number of topologies for the system and a

protocol that decides when to switch between them.

The Aesop toolkit (Garlan et al., 1994) complements Wright by supporting the genera-
tion of development environments customized for architectural styles and the integra-

tion of tools for formal analysis.

2.5.2 ACME

ACME was developed as an interchange language for ADLs (Garlan et al., 1997). It
aims to support language independent formal analysis of software architecture and
software architecture tool integration. Elements of Wright used in ACME include com-
ponents, ports, connectors, roles and attachments. In addition, ACME uses templates
to represent recurring systems, e.g., a client template would be defined for a client
/ server system. Styles are represented by sets of templates. To allow translation into
ACME from more specialized ADLs, an ACME description can be annotated with prop-

erties that include any extra information.

2.5.3 Armani

Armani is an ADL with support for specifying styles (Monroe, 1998). Its core elements
are in the same vein as those of ACME and Wright. In addition, it includes constructs

for:

Design vocabulary The set of element and property types in the system.

Design rules Rules to specify invariants, heuristics and composition constraints that

can be used to analyse architectures.

Architectural styles A collection of all the design elements for a system.

These correspond to the elements of a style described in Section 1.2.1.

Page 59

Chapter 2 Software Architectures and Frameworks for Evolution

2.5.4 Rainbow

In the Rainbow framework, self-adapting software has been implemented using style
constraints on a software architecture model of the executing system to drive changes
(Garlan et al., 2004; Garlan and Schmerl, 2002; Schmerl and Garlan, 2002; Garlan et al.,
2003). Managing adaptation at the software architecture level enhances understanding
and re-use of change policies and supports reasoning about the system as a whole. The
executing system can be analysed according to constraints on the architectural style to
establish when repairs are necessary. Repair strategies can be formulated in terms of
the software architecture, supporting system changes at a global level. Architectural
styles are used to determine what to measure in the executing system, what constraints

to evaluate, what to do when a constraint is violated, and how to repair the system.

The architecture model has a style defined as a set of component and connector types,
constraints, properties and analyses. Constraints restrict the interactions allowed be-
tween elements. Properties are attributes associated with particular elements. Anal-
yses return information about a system, such as whether it meets performance re-
quirements. Associated with each style are adaptation operators and adaptation strategies.
Adaptation operators define changes to a style instance, which may include changes to
component properties. Generic examples are operators to add or remove components,
but style specific operators may also be defined. Adaptation strategies determine the

cause of a constraint violation in the implementation and how to remedy it.

Keeping an external model of the software architecture introduces the need for mech-
anisms to bridge the gap between the model and the implementation. Rainbow has

mechanisms for both monitoring and changing the system.

Rainbow is a generic runtime framework to support runtime change based on an exter-
nal architectural model, which can be adapted to suit particular styles and properties.
The components of the framework are shown in Figure 2.13. Information about the
executing system is gathered by probes and a tool for resource discovery, which detects
new elements in the system. These report to gauges in the Architecture Layer. A Trans-
lation Infrastructure in-between maps implementation constructs to architecture level
constructs and vice versa. Relevant information from gauges is used to update the
properties in the architecture model manager. When a property is changed, the constraint
evaluator checks the new model with respect to the constraints. If it is determined that
a constraint has been violated, the adaptation engine is called. It signals the architec-

ture model to suspend the monitoring mechanisms and takes a snapshot of its current

Page 60

Chapter 2 Software Architectures and Frameworks for Evolution

state. It then determines the adaptations necessary to repair the violation and these
are carried out by the adaptation executor, which uses the interface proffered by the ef-
fectors to apply them to the executing system. After an adaptation the constraints are

re-evaluated to determine whether the repair was effective.

f Architecture Layer)
Constraint
Evaluator
Architecture
Model
Manager
‘ Gauges ‘
A\ J
Translation Infrastructure }

4 A
—_— - —— = = — — — — L
System API
| y Resource |

. Probes
| Discovery |

System Layer
- J

Figure 2.13. Rainbow Framework. (Garlan et al., 2004)

The Rainbow framework associates a software architecture with an executing system.
Probes and gauges monitor the executing system. Information received from gauges
is abstracted to relate it to the architectural model. The model is a hierarchical graph
of components (nodes) and connectors (arcs) annotated with a set of properties, for ex-
ample, load on a server component. When information received from the monitoring
system leads to the value of a property being changed, an analysis is activated. Anal-
ysis checks the current properties of the architecture against the architectural style,
which is defined as set of types, rules and constraints. On violation of a constraint,
repair handling is invoked. A repair strategy is chosen and translated to the running
system. Repair strategies are based on the architectural style and must be supported

by methods to modify the executing system.

Experimental work (Garlan et al., 2003) has shown that this externalized approach

to self adaptation causes significant slowdown and is therefore best suited for global

Page 61

Chapter 2 Software Architectures and Frameworks for Evolution

changes, and acting on long term behaviour trends. The coordination of multiple self-
management techniques for a single system has also been considered (Cheng et al.,
2004). This requires mediation facilities to decide which repair strategy to choose from

a conflicting set.

In Table 2.5, this work is compared against the categories defined in Table 1.1.

Page 62

Chapter 2

Software Architectures and Frameworks for Evolution

Table 2.5. Wright and ACME. This table categorizes the support for evolution in Wright, ACME

and Rainbow.

Dynamic Change

Openness

No - The work does not preclude the introduction of new behavi-
ours but concentrates on adaptation rather than the wider problem

of evolution.

Maintain State

No

Component Addition and

Removal

Yes - Dynamic Wright switches between different configurations

in order to add and remove components.

Connections Bound and
Unbound

Yes - In Dynamic Wright in the same way as component addition

and removal.

Autonomous Change

Automation

Rainbow automates closed adaptation.

Automated Motivations for

Change

Probes and gauges provide measurements that are evaluated in
terms of the architecture model and constraints. Change is initi-

ated if constraints are violated.

Automated Support for

Openness

No

Model Available to

Management Components

Rainbow has an explicit architecture model that is kept up to date

using information from the monitoring mechanisms.

Change Localization

Higher Order Connectors

Wright introduces connectors as first class entities.

Programmable Connectors

Yes

Partial Decomposition

Higher order connectors can isolate components.

Change Management

Change Management

Rainbow is a change management infrastructure that includes: an
architecture model; constraint evaluation; an adaptation engine;

and mechanisms to monitor and adapt an executing system.

View of Executing System

Yes - Architecture model is always up to date.

Partial Views

No

Vocabulary for Specifying
Changes

Rainbow’s adaptation strategies are defined using a set of style
specific actions (adaptation operators) and architectural properties

(component attributes).

Open Adaptation

No

Closed Adaptation

Rainbow is an external framework for closed adaptation.

Architectural Styles

Yes - Architectural analysis depends on the style constraints and

changes are defined in terms of styles.

Page 63

Chapter 2 Software Architectures and Frameworks for Evolution

2.6 ArchStudio and C2

C2 is an architectural style supported by a set of tools (ArchStudio) for the develop-
ment of robust, continuously available systems (Oreizy et al., 1999; Oreizy and Taylor,
1998; Oreizy et al., 1998). C2 and ArchStudio are designed to be able to “accommodate
unplanned changes and incorporate behaviour unanticipated by the original developers”. Evo-
lution is facilitated by the C2 architectural style, which specifies explicit connectors,

and runtime support for dynamic change in ArchStudio.

C2 is a hierarchical publish-subscribe style comprising a network of concurrent black-
box components, which implement the application’s functionality and are bound to-
gether by asynchronous connectors. Components can only be attached to connectors,
but connectors may be attached to other connectors. The topology is defined as hor-
izontal layers of components, with connectors between the layers. Figure 2.14 shows
an example C2 architecture, where it can be seen that connectors separate layers of
components. Both components and connectors are defined to have a top and bottom
in the architecture. The top of a component may only be connected to the bottom of
a connector and visa versa. Connections between two connectors must also be top to
bottom. Each component may be connected to at most one connector at the top and

one at the bottom. There is no such restriction on connectors.

C2 components can be started, stopped, connected and disconnected. Each component
contains a start method to initiate its execution and finish method to terminate it. The
default finish method allows a component to complete its current processing before
stopping. An implementation of C2 style architecture could also include methods for

components to export and import internal state to and from other components.

The use of event-based implicit invocation means C2 is suited to runtime reconfig-
uration. Event-based implicit invocation is a style where instead of communicating
directly, components broadcast events and receive events that they register interest
in (Garlan and Shaw, 1996). Components are only aware of services provided at higher
levels of the architecture, which they may make requests to use. Events, for example a
component’s internal state change, are broadcast to lower level connectors via notifica-

tions.

Page 64

Chapter 2 Software Architectures and Frameworks for Evolution

Component Component

Component

Component Component Component

Figure 2.14. C2. Horizontal layers of components and connectors in the C2 style.

In C2, the policy for evolution is encapsulated in the connectors and can be changed
without affecting the system’s components. Connectors separate component behavi-
our from interaction, and therefore separate application specific behaviour from deci-
sions regarding change application policy and change scope. Change application policy
controls how change is applied to a running system. During a component update,
for example, new requests for services could be directed to the new component and
requests for an established service could go to the old component, which would be
allowed to finish processing its existing requests before being disconnected. Different
connectors may implement different change application policies within the same ar-
chitecture. Change scope defines the extent to which different parts of a system are
affected by a change. During system evolution, connectors control change isolation by

holding requests to unavailable components in a queue.

2.6.1 ArchStudio

ArchStudio is based on the Java platform and provides tools to determine what evo-

lutions to apply, reason about the consequences of change and preserve application

Page 65

Chapter 2 Software Architectures and Frameworks for Evolution

integrity. The C2 style is implemented as a class framework where components, con-
nectors and messages are represented by abstract classes. They are therefore explicit
entities in the implementation as well as the architecture. There is also an architec-
ture class providing methods for architectural tools to manipulate the architecture, for
example, weld() and unweld() methods connect and disconnect components and con-
nectors. The architecture class subclasses the component class, as components may

contain internal architectures.

The interaction of the ArchStudio tools is shown in Figure 2.15 (Oreizy and Taylor,
1998). An architectural model is kept up to date during execution and saved to disk
when the system is down. The model takes input from various sources of architectural
change. These currently include a graphical tool, an interactive command line inter-
face and modification scripts. The tools can query the architectural model in order to
make changes that take the current configuration into account. An architectural evo-
lution manager evaluates the validity of any modifications to the system against a set
of constraints. It applies valid changes, specified in terms of styles, to the implemen-
tation. It also maintains the architectural model to keep it up-to-date with changes in
the implementation. The architectural evolution manager has implicit knowledge of

the C2 style rules. Additional constraints are specified using Armani (Monroe, 1998).

A summary of the main benefits of this approach is (Oreizy et al., 1998):

* Evolution at a high level of abstraction eases human understanding.

* There are no restrictions on component internals, allowing off the shelf compo-

nents to be incorporated.
¢ Change application policy is separated from application functionality.

¢ Control of change policy and scope is in the hands of the system architect.

In Table 2.6, C2 and ArchStudio are compared against the categories defined in Table
1.1.

Page 66

Chapter 2

Software Architectures and Frameworks for Evolution

Table 2.6. C2 and ArchStudio. This table categorizes the support for evolution in C2 and Arch-

Studio.

Dynamic Change

Openness

C2 is designed primarily to support runtime reconfiguration at
the component level but ArchStudio accepts change scripts which

could introduce new behaviour.

Maintain State

Not currently supported.

Connections Bound and
Unbound

Components are connected through explicit connectors and may

be connected and disconnected at runtime.

Reflection

Changes are applied using Java dynamic class loading and modi-

fication scripts.

Autonomous Change

Automation

ArchStudio supports autonomous change applied by the AEM.

Automated Motivations for

Change

Change scripts.

Automated Support for

Openness

Change scripts are a mechanisms for automatically introducing

new behaviours but not for defining them.

Model Available to

Management Components

AEM maintains an up-to-date model.

Change Localization

Higher Order Connectors

C2 Style requires higher order connectors.

Programmable Connectors

Yes

Partial Decomposition

Change localization can be achieved by disconnecting a component

and therefore isolating it.

Change Management

Change Management

ArchStudio supports a managed change process including archi-

tectural analysis on an explicit model.

View of Executing System

ArchStudio contains an explicit Architectural Model

Partial Views

No

Vocabulary for Specifying

Changes specified by methods in the implementation interface.

Changes

Open Adaptation New behaviours can be introduced through change scripts and user
interaction.

Closed Adaptation No

Architectural Styles

C2 is a specific style.

Page 67

Chapter 2 Software Architectures and Frameworks for Evolution

Sources of
Architectural Change

Design
environment

Changes applied
to model

Changes implicitly
*, affect implementation

v

Architectural Model Implementation

Architecture

Evolution

Manager \
External
Analysis

Modules

Figure 2.15. ArchStudio. High level interaction of ArchStudio tools (Oreizy and Taylor, 1998).

Page 68

Chapter 2 Software Architectures and Frameworks for Evolution

2.7 Intentional Programming

Intentional Programming (IP) is an Integrated Development Environment (IDE) where
program data is incorporated into the source code (Czarnecki and Eisenecker, 2000; van
Wyk et al., 2001; Simonyi, 1996; Simonyi, 1995). In order to incorporate data, programs
under development are modelled as syntax graphs, which include links to data values
stored outside the program, e.g., in the file system. The links are abstracted over in the
user interface. For example, data values from a database may be displayed diagram-
matically. The IP environment uses meta-programming techniques to convert program
text to the graph model and then display it to the user as the program is being written.
Meta-programming is also used at compile time to generate compilable code from the

graph.

The IP programming environment is supposed to support a style of programming
based on the developer’s intentions. Intentions express programming abstractions as
language features. They aim to avoid both loss of information and unnecessary pro-
gramming language clutter. Information that may otherwise be lost, when a program
is represented only as source code, includes documentation, as well as program data
stored in databases or files that may be moved. Unnecessary clutter, for example, com-
plicated syntax to define a matrix that could instead be displayed graphically, is ab-
stracted out by the input and display methods. The IP environment is developed us-
ing meta-programming and can be evolved, from within the environment, through the
definition of new intentions and alteration of existing intentions. The IDE is there-
fore customizable and extensible. Because it is designed for the introduction of new

intention abstractions, the IP environment is capable of open evolution.

The IP representation is based on an active source graph characterizing the program
under development. The graph is described as active because it is updated as the pro-
gram is written. Figure 2.16 shows the elements of the active source graph and the
transformations between them. The programmer interacts with a visual rendering of
the source code. As the programmer edits the code, a source graph is built up and
altered, prompting updates to the visualization. On compilation, the source graph is
transformed into a reduced code that can be processed by a compiler. Transformations
may include the addition of debugging information in the code, which will be passed

back to the programmer through the source graph.

The source graph is an abstract syntax tree augmented by edges between nodes and

their declarations, making it into a graph. An example of an if statement represented

Page 69

Chapter 2 Software Architectures and Frameworks for Evolution

Visual Rendering

visualize

debugging transformation

Reduced Code

Figure 2.16. Intentional Programming. The IP development process.

by a source graph is illustrated in Figure 2.17. In the upper left hand corner is a node
representing if. It is parameterized by: a condition node, a then node and an else node.
Parameterization is represented by an edge in the source graph. The if node is an
intention instance and contains a reference, another edge in the graph, to its intention
declaration. The intention declaration defines methods associated with an if statement
and itself references a declaration node defining methods associated with declarations.
Every node in the source graph is an instance of an abstraction, and every abstraction
has a corresponding declaration. Some declarations are built into the language, such

as the if statement. Others are created as program variables are defined.

Intention declarations are associated with a number of methods defining the behaviour
of the intention. They include, but are not restricted to, visualization, browsing, com-
pilation, debugging and versioning. These methods are called at programming time.

For example, the visualization method is called to display an instance of an intention:

Page 70

Chapter 2 Software Architectures and Frameworks for Evolution

Declaration

Reference

if
Parameterization = — —
\—> condition
— — — - — — —
> then
intention
abstraction
_—— — — —
intention
g else instance

Figure 2.17. Intentional Programming. The IP syntax tree.

in the case of a mathematical formula it might provide a graphical display. The com-
pilation method for the same formula might generate optimized C code. It is expected
that developers would construct their own domain specific intentions to tailor their

programming environment.

The foundation of the IP system is a reduction engine that produces reduced code from
the active source tree. The reduced code is a general set of low-level abstractions, such
as would be contained in a simple programming language. It is a necessary step for

intentions that are not expressed in a programming language.

Because the information about compilation and parsing in IP is localized, the represen-
tation permits programs constructed from multiple programming languages. Different
programming languages operating together must be mapped to the reduced code be-
fore being compiled. Many abstract syntaxes may be mapped to the single concrete
syntax of the reduced code. Object code, e.g., Java bytecode, is then generated from

the reduced code.

Page 71

Chapter 2 Software Architectures and Frameworks for Evolution

There are a number of similarities between the MPF and IP:
* Hypercode graphs and active source graphs both use a program representation
that includes program syntax and data .
* Both integrate changes using generative programming.
* Both systems are developed in themselves, allowing their respective frameworks

to be evolved.

Rather than being the same however, the systems are complementary, because IP con-
centrates on providing an environment for software at development time, whereas the

MPF focuses on an environment for evolving software at runtime.

In Table 2.7, IP is compared against the categories defined in Table 1.1.

Page 72

Chapter 2

Software Architectures and Frameworks for Evolution

Table 2.7. Intentional Programming. This table categorizes the support for evolution in Inten-

tional Programming.

Dynamic Change

Openness

Yes - New intentions can be defined from within the environment.

Maintain State

No

Connections Bound and
Unbound

Not applicable as IP is not modelled using software architectures.
However, new intentions can be added and existing intentions up-
dated.

Reflection

New intentions are compiled into Dynamically Linked Libraries

(DLLs) that are can be imported into the IP environment.

Autonomous Change

Automation No
Automated Motivations for | No
Change

Automated Support for No
Openness

Model Available to No
Management Components
Change Localization

Higher Order Connectors NA
Programmable Connectors NA
Partial Decomposition NA

Change Management

Change Management

IP is designed to incorporate changes in the form of new inten-
tions and changes to existing intentions. However, there is no

management for the change process.

View of Executing System

No

Partial Views

No

Vocabulary for Specifying
Changes

New intentions are defined using C programs that are compiled
into DLLs.

Open Adaptation

Yes - The introduction of new intentions.

Closed Adaptation

Existing intentions can be altered through developer interaction.

Architectural Styles

No

Page 73

Chapter 2 Software Architectures and Frameworks for Evolution

2.8 Summary

In this chapter, a number of ADLs and frameworks for evolution based on software

architectures are described.

Darwin An ADL that supports change through lazy and direct dynamic instantiation.
The former instantiates and connects predefined component types dynamically.
The latter allows newly defined component types to be instantiated in an envi-
ronment of predefined connections. Self-organizing systems based on Darwin

use constraints to motivate change.

Gerel An ADL for generic reconfiguration, changes in Gerel can be pre-programmed
to operate over a generic structure. Generic changes can remain valid as the

components and topology in the system evolve.

Weaves An ADL that separates system observation from data capture, Weaves paved
the way for probes and gauges, which are now used by most systems that imple-

ment a closed adaptive engine.

ArchJava ArchJava is an extension to Java to include software architecture constructs,
such as components and ports in program source code. The implication of inte-
grating the software architecture and source code is that ArchJava systems can

use a compiler to enforce architectural constraints in the implementation.

Wright, ACME and Rainbow An interchange language for ADLs, ACME is based on
Wright and has been used in a framework for evolution. The Rainbow framework
includes components to establish when, why and what evolution should take
place according to a set of constraints. Evolutions are applied to an executing
system that provides feedback to the management components using probes and

gauges.

ArchStudio and C2 ArchStudio is a framework to support evolution in systems built
in the C2 style, a hierarchical, publish-subscribe style that accommodates change.
An Architecture Evolution Manager compares the current state of a system again-
st a set of constraints. If constraints are violated, an Architectural Model and the
executing system are both adapted by the Evolution Manager, ensuring that the

Model is always in sync with the system.

Page 74

Chapter 2 Software Architectures and Frameworks for Evolution

Intentional Programming An environment for program development, IP differs from
the other systems described here in that it does not approach evolution from
an architectural perspective. It is, however, an example of a system using a
program representation that includes both source code and data. IP uses meta-
programming to manage the transformation from program representation to ex-

ecutable code.

2.9 Conclusion

ADLs are used to model software architectures and are suitable for understanding and
analyzing systems. The ADLs discussed in this chapter have an extra dimension in
that they model various aspects of evolving systems. However, because ADLs con-
sider software architectures separately from their implementations, they do not pro-
vide mechanisms for applying the changes they model to executing systems. ArchJava
is an exception in that it integrates software architecture and source code, but it does
not address the process of evolving the system. The MPF provides the mechanisms to

effect the evolutionary changes that are modelled by ADLs.

The evolution frameworks explore the process of evolution and include mechanisms
for change management as well as tools to apply changes. Rainbow (Sec. 2.5) is an
external framework for adaptation that relies on effector mechanisms to carry out the
adaptations. These could be supplied by the MPE, however that would require a sys-
tem designed for evolution and is therefore incompatible with the notion of external
adaptation. Changes applied by ArchStudio (Sec. 2.6) are restricted to the changes
allowed by a predefined interface. The MPF provides an interface to the executing sys-
tem that does not restrict the changes that can be applied. Instead, restrictions can be
layered on top of the MPF with respect to the policy of a particular change manage-
ment framework. It also makes available a representation of any value in the executing
system that is always complete and up-to-date and can be used for introspection and

analysis.

Page 75

Chapter 3

Orthogonal Persistence,
Structural Reflection and

Hypercode .

his chapter explains the set of technologies on which the Meta-
Programming Framework is based. These include: persistence,

structural reflection, Hypercode and the ArchWare framework.

Page 76

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

3.1 MPF Technologies

The Meta-Programming Framework’s support for a software architecture approach to
evolution requires a set of base technologies that support an incremental evolution
process. These technologies have been developed by other researchers and the MPF

builds on their work.

¢ Orthogonal persistence provides referential integrity.

¢ Structural reflection creates new values during execution and allows introspec-

tion.
* Hypercode gives a representation of an executing program.

¢ An ADL is used to model software architectures and partially decompose exe-

cuting systems.

The referential integrity offered by orthogonal persistence guarantees that once a ref-
erence has been established, the value that it references will remain accessible for the
lifetime of the reference. This prevents errors occurring because of dangling references
to, for example, data stored in files or databases which has been moved or deleted. Ref-
erential integrity is particularly useful in long-lived, complex, evolving systems where
it may be difficult to establish the set of values that contain references to some data,
i.e., the set of values which would have to be updated if the data were moved. An

orthogonally persistent platform provides referential integrity for the MPFE.

The creation of new values during execution and introspection are made possible by
structural reflection. Support for the creation of new values during execution is a pre-
requisite for evolving an executing open system. In the MPF, introspection allows a
meta-program to access a component’s internal state. The information may be used
to determine whether or not the component needs to be evolved and the state may be

retained over a component update.

Hypercode is a program representation capable of characterizing executing programs.
This implies that Hypercode, in contrast to plain source code, is a complete represen-
tation that incorporates a program’s state and data. This is integral to the MPF where
a meta-program can evolve a system by operations on a Hypercode graph, a program

representation including both code and data.

Page 77

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

There are many ADLs available to model software architectures but the MPF requires
language support for evolutionary mechanisms. The ArchWare ADL, designed as part
of a framework for evolving software systems, is used as an experimental base. The
primary evolutionary mechanism distinguishing ArchWare ADL is the decompose op-
erator, which is used to partially stop a system so that it can be incrementally evolved

while the rest of the system continues to execute uninterrupted.

This chapter explains concepts fundamental to an understanding of the environment
in which the MPF has been developed. These are orthogonal persistence, structural
reflection, Hypercode, and the ADL and its framework. The properties of ProcessBase,
a programming language incorporating both orthogonal persistence and structural re-
flection which has been used to implement the MPF, are also described. The section on
Hypercode starts with an explanation of Hyper-Programming from which Hypercode
was developed. The chapter finishes with an explanation of a Hypercode implemen-
tation, for use in the MPF, that was constructed as part of the work for this thesis. It is
reusable for different programming languages and provides an interface to the Hyper-

code operations.

3.2 Orthogonal Persistence

Orthogonal persistence (Morrison et al., 1996; Atkinson and Morrison, 1995; Atkinson
et al., 1983) removes the unnecessary distinction between short and long term data.
The manner in which data is manipulated is independent of its persistence and the
same mechanisms operate on both short and long term data. Orthogonal persistence
implies that the lifespan of data is unrelated to its type or the way in which it was
created. In conventional programming environments, data storage mechanisms are
dependent on the lifetime of the data. For example, long term data is written out to the

file system or a database. Access to the data is determined by the storage mechanism.

Persistent systems are designed according to the following principles (Atkinson et al.,
1983):

The Principle of Persistence Independence The form of a program is independent of
the longevity of the data it manipulates. Programs look the same whether they

manipulate short-term or long-term data.

Page 78

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

The Principle of Data Type Orthogonality All data objects should be allowed the full
range of persistence irrespective of their type. There are no special cases where

objects are not allowed to be long-lived or are not allowed to be transient.

The Principle of Persistence Identification The choice of how to identify and provide
persistent objects is orthogonal to the universe of discourse of the system. The

mechanism for identifying persistent objects is not related to the type system.

The principle benefits of persistence are simpler semantics and referential integrity (At-
kinson et al., 1983; Atkinson and Morrison, 1995). Improved programming productiv-
ity follows from simpler semantics, because in a persistent environment a programmer
does not need to write code to transfer data between short and long term storage mech-
anisms. Without persistence ad hoc arrangements for long term data storage and data
translations are necessary. In addition to improving productivity, persistence can im-
prove accuracy, because type checking protection mechanisms operate over the whole
environment. Strong typing mechanisms mean that the type system extends over the
lifetime of the data, preventing mistakes that occur when, for example, data is input
from the file systems and cast into the wrong type. Referential integrity is automat-
ically supported in a persistent environment. This means that once a reference to an
object has been established that object will remain accessible for the lifetime of the ref-
erence. Type correctness is also implied. Referential integrity is one of the requirements

for Hypercode (Sec. 3.5).

Orthogonal persistence provides a programming environment which supports incre-
mental evolution in long-lived systems. All computation takes place within a persis-
tent environment and it is therefore possible to evolve the system while it is executing.
Programming support mechanisms have been built on top of persistent systems to
take advantage of the benefits provided by persistence. These include programming
languages and environments, such as ProcessBase and Hypercode, as well as structural

reflection.

3.2.1 Existing Persistent Systems

A number of persistent programming systems have been implemented. PS-algol (At-
kinson et al., 1982), which extends S-algol, and Napier88 (Morrison et al., 2000b) were
prototype persistent programming languages. PS-algol and Napier88 have:

Page 79

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

* A persistent store, in which all values are reachable from a root object.

* An infinite union type (Morrison et al., 1990), supporting dynamic injection and
projection operations. An injection operation takes values of type T and returns
values of type C(T), where C is some type constructor. Projection is the inverse

of injection.

¢ First class procedures (Atkinson and Morrison, 1985), which can be placed in the

persistent store and therefore access any other data value in the store.

ProcessBase (Morrison et al., 1999a) was developed based on the work done for PS-

algol and Napier88. It is more fully described in Section 3.4.

Other persistent languages include: DBPL (Schmidt and Matthes, 1994), which uses
modules to encourage good software engineering practices; O2 (Deux, 1990); Galileo
(Albano et al., 1985); E (Richardson and Carey, 1989), an OO persistent language based
on C++; and PJama (Atkinson et al., 1996a; Atkinson et al., 1996b), orthogonally per-
sistent Java. The Esprit project on Fully Integrated Data Environments resulted in a
body of published work on persistent systems (Atkinson and Welland, 2000). Many
other languages have been extended to include persistence. Examples include Small-
talk (Straw et al., 1989), and C and C++ (Hosking and Novianto, 1997).

The PJama Persistent Platform (Dmitriev, 2000) builds support for evolution on top
of PJama. It concentrates on increasing the safety of development time evolution by
preventing propagation of incompatible changes into the store. The system uses per-
sistent build technology to do smart compilations, where only changed classes are re-
compiled. It can also perform automatic object conversion on instances whose class

definitions have been changed.

3.3 Structural Reflection

Structural reflection provides the ability to incorporate new program fragments into
the ongoing computation (Stemple et al., 2000; Kirby, 1992; Dearle, 1987). 1t is there-
fore an essential tool in the development of systems which can be dynamically evolved
during execution. In a persistent environment, structural reflection supports type-safe
evolution of long-lived programs and data, and the specification of highly generic pro-
grams that may be re-used in many contexts. In strongly typed systems the reflection

process includes checking of the generated program fragments to ensure type safety.

Page 80

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

To support structural reflection a system requires (Morrison et al., 1996):

* A callable compiler.
e First class code.

* An infinite union type with injection and projection.

A callable compiler is necessary for structural reflection in strongly typed languages. It
is available as a function which takes a string parameter containing the code to be com-
piled at runtime. The compilation produces some object code, which must be bound
into the executing program to include it in the current computation. This is where a
coerceToValue function is needed to bind and type the result of compilation. It allows
the result of compilation to be introduced into the system as an executable function,
i.e., it casts the object code as a language type ensuring that the compiler produces a

value that can be used by the enclosing program in a type-safe system.

In a language with first class code, functions (or methods, or procedures) can be treated
in the same way as other language values. For example, they can be assigned to vari-
ables and passed as parameters. Structural reflection requires first class code in order

to introduce the result of compilation into the executing system.

In a strongly typed language, the callable compiler’s return type is defined in advance.
However, the type of the program it is compiling is determined dynamically. There-
fore, the result of compilation is an infinite union type. The dynamic projection opera-
tion is used to cast the value of infinite union type onto its specific type. At this point a

new program has been compiled and bound and the structural reflection is complete.

3.3.1 Definition of the Reflection Operation

The reflection operation is defined more rigorously in terms of mappings between do-
mains (Stemple et al., 2000). The language, or representation, domain R contains ex-
pressions in the programming language. The domain of values, or entities, E contains
data and executable programs. Reflection maps values from the R domain to the E

domain:

Reflection: R — E

Page 81

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

The process takes place in three stages:

1. Generate a program representation within R. For example, generate a string con-

sisting of valid program statements.

2. Transform the program representation in R into an executable value in E. For

example, use a callable compiler to compile the generated string.

3. Bind the executable into currently executing system. For example, use the coerce-
ToValue function to introduce the result of compilation into the current environ-

ment.

Generation, the first step, involves producing a string value containing source code
from the R domain. The generated code may depend on current program state or
conform to a static template. The second step is the task of the callable compiler which
converts a string from the R domain into object code. This is a mapping from R to
another language domain R’. In the third step, coerceToValue maps the value from R’ to

E. The progression can be defined:
Reflection: R — R" — E
The functions involved act in the following order:
bind (compile (code))

The code is compiled by the callable compiler. Then the coerceToValue function is used
to bind it into the currently executing system, producing a new value. An intuitive
description of the process states that: during the evaluation of a reflective procedure the
result of the evaluation is itself evaluated as an expression in the language (Stemple et al.,
2000).

3.3.2 Reification

Reification transforms an abstract entity into a concrete representation. In terms of the

R and E domains it is the opposite of reflection:

Reification: E — R

Page 82

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

Reflection is often used to create new values that depend on current values in the com-
putation. In the code generation step, these values must be represented in the language
domain. Reification can be used to transform the values in the currently executing
domain into a representation in the language domain. As an example, consider the

reification of the boolean value true, which could be represented as the string ‘true’.

As well as program and data values in the E domain, types may also be reified. A
typeOf function provides access to the types of the changing system. In programming
languages with an infinite union type, reification on the type system allows the specific
type of values to be discovered dynamically. For instance, a new function created using
reflection may have a statically unknown return type. The compiler initially casts it as
the infinite union type and reification of the type system is then used to find out what
type it actually returns. Code can then be generated to cast the new function onto the

correct type.

3.3.3 Implementations of Structural Reflection
Languages which provide runtime structural reflection include:

¢ Lisp (Anderson et al., 1986) and POP-2 (Burstall et al., 1971), which have untyped,

runtime structural reflection.

¢ PS-algol (Atkinson et al., 1982), Napier88 (Morrison et al., 2000b) and Process-
Base (Morrison et al., 1999a) are languages developed for a persistent environ-

ment with strongly typed, runtime structural reflection.

e CRML (Hook and Sheard, 1993) and its successor MetaML (Sheard, 1998) are

strongly typed, compile time reflective languages.

¢ Java has been augmented with strongly typed, runtime reflection (Kirby et al.,
1998).

3.4 ProcessBase

The ProcessBase Language (Morrison et al., 1999a) was developed collaboratively to
combine persistence with the language requirements for process modelling (Warboys
et al., 1999b). The language design is guided by three semantic principles (Strachey,
1967; Tennent, 1977):

Page 83

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

The principle of correspondence states that the rules governing the use of names and

bindings in a programming language should be consistent.

The principle of abstraction states that for all significant syntactic categories in the

language there should be an abstraction mechanism.

The principle of data type completeness states that any combination or construction
of data should be allowed in all types, resulting in all data objects in a language

being first class.

A ProcessBase system entails the ProcessBase language and its persistent environment.
The model of persistence is reachability from a root object. Types are sets of values
from the value space, including recursive types. They are mostly statically checkable

and exhibit structural equivalence.

The tools necessary for structural reflection are part of the ProcessBase language. A
callable compiler is implemented in ProcessBase. It is passed the code to be compiled
as a parameter of type string and returns the result of compilation as well as a data
structure describing the type definition of the compiled code. It is provided in the form

of a compile function. Consider the following example:

let newValue « compile('1l + 2')

The compile function is passed a string of ProcessBase code and the result of compila-
tion is stored in newValue. coerceToValue, the function that introduces new values into
the current environment, is part of the callable compiler. newValue is typed as any, the
infinite union type in ProcessBase. The callable compiler returns type any because the
type of the code is not known in advance. If the code does not return a value it will be

typed as a function. Otherwise, the type will be a function that returns an any.

The dynamic projection operation is used on newValue to cast it as a function type.
ProcessBase has first class code, meaning that functions can be passed as parameters

and returned as the result of other functions.

1 project newValue as X onto:
2 function — any: {

3 let result « XQ)

4 project result as Y onto:
5 int: Y ¢s 3

Page 84

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

6 default: Error

7}

8 default: Compilation Error

After the callable compiler returns, the result (newValue) is projected onto the type of
a function that returns an any (line 2). If the projection fails, meaning a compilation
error has occurred, the default clause is executed (line 8). In this example, the com-
piled code returns an integer (1 + 2 = 3). The code is executed (line 3) and the result

projected onto an integer type (line 5).

Reification of the type system is made possible in ProcessBase by the typerep function.
It takes a value of the infinite union type and returns a representation of the value’s
specific type. typerep is used to discover the statically unknown type of new values

created by structural reflection.

The properties of ProcessBase which support the MPF include:

¢ Structural reflection, which allows meta-programs to update other programs with-

out stopping the execution.

* Reification of the type system, which allows new values of statically unknown

type to be introduced into a strongly typed environment.

* A persistent store, which permits meta-programs to operate over persistent data

and provides referential integrity.

3.5 Hyper-Programming

Work on persistence, together with structural reflection, led to the idea of Hyper-
Programming (Kirby et al., 1992). In persistent languages with first class code, the
persistent store contains functions (or methods or procedures) that reference data and
other function values. A representation of their structure gives developers some un-
derstanding of the contents of the store and helps in writing new programs that use
values in the store. Provision of such a representation requires a model including both
data and function values. This is the basis for Hyper-Programming and Hypercode,

which advocate a single view of the computation space.

A hyper-program contains links embedded in the source code to data in the persis-

tent store. Hyper-programming allows the programmer to write less code, since a

Page 85

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

textual description of how to access data is replaced by a link to the data. It also leads
to more reliable code because type checking of linked items can be performed stati-
cally rather than dynamically. The first hyper-programming system, implemented for
Napier88 (Kirby et al., 1992), demonstrated how the technique could ease the task of
reflective programming and provide support for source representations of procedure

closures.

Hyper-programs are part of the persistent environment. Because persistent data val-
ues are available during program composition, direct links exist from a hyper-program
to the values it references. In addition, the hyper-program source is resident in the per-
sistent store. By this mechanism, a current version of a value’s hyper-program source
code is always available to the programmer. Reflection is used to support the con-
version of hyper-programs into executable programs. New sections are compiled in
isolation from the original source program and the results linked back into the execut-

ing program.

In the implementation of hyper-programming for Napier88 (Kirby et al., 1993) the user
views values from the persistent store through a browser. The browser provides a
visualization of the objects in the persistent store. A hyper-program is composed by

writing source code and copying hyperlinks from the store into the program.

3.6 Hypercode

Hypercode (Zirintsis, 2000) builds on the concepts introduced by hyper-programming
to abstract over the differences between source code, executable code and data for the
programmer. Thus the task of the programmer is made easier, as they are (Zirintsis
et al., 2001):

presented with a simpler environment in which the conceptually unnecessary dis-
tinction between these forms is removed. In terms of Brooks’ essences and acci-
dents (Brooks, 1987), this distinction is an accident resulting from inadequacies in
existing programming tools; it is not essential to the construction and understand-

ing of software systems.

In a Hypercode system the user composes Hypercode and the system executes it. The
user only sees a single view of the system and underlying operations are abstracted

over.

Page 86

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

As in hyper-programming, a Hypercode program is constructed from a mixture of text
and hyperlinks. The text is normal program source code and the hyperlinks point to
existing values. In a Hypercode system the user can compose programs interactively,
navigating the environment and selecting data items, including functions, to be incor-
porated into their program as hyperlinks (Kirby et al., 1992). Clicking on a hyperlink
allows the user to see a Hypercode representation of the value. The artificial distinc-
tion between source and executables is removed, therefore a Hypercode view can be

generated for any value in the system (Morrison et al., 1999b).

Hypercode requires referential integrity and structural reflection. Referential integrity
is necessary to ensure that representations including hyperlinks remain valid for their
lifetime. It can be provided by a persistent system. Structural reflection is used to
implement the introspective tools that allow Hypercode representations to be available
throughout the software life cycle. It is also necessary for the evaluation of Hypercode

programs.

3.6.1 Properties of Hypercode

Hypercode exhibits a number of properties that aid evolution in long-lived dynamic
systems. Hypercode representations characterize program closure at any stage of the
software life cycle, including execution. They therefore provide a programmer with a
comprehensive view of the program at any time, including the current state of internal
variables. Using a Hypercode model in the MPF allows the framework to provide an

interface that exposes program closure to meta-programs.

Sharing is modelled by permitting any number of links to the same value. In Figure 3.1,
which shows some Hypercode with three hyperlinks pointing to values, two separate

hyperlinks are pointing to the same value, which may be an executable or data value.

Another feature of Hypercode which underpins its usefulness in the evolutionary con-
text is its ability to preserve the state and shared data of a system during evolution.
This transpires because the Hypercode source, a mixture of text and links to values in
the store, is always available. When components in the system are changed or updated,
hyperlinks can be maintained since they exist in the Hypercode representation, (in the
representation domain), as well as in the executable, (in the entity domain). Underly-

ing persistence guarantees referential integrity, which implies that the hyperlinks will

Page 87

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

always be accessible, therefore internal state and shared data can be preserved over

changes in a dynamic system.

O O

Figure 3.1. Sharing. Hypercode permits any number of links to the same value.

Hypercode supports introspection and the Hypercode view of a value is always avail-
able. This eases the task of writing evolving processes, because the user can see a
concrete representation of the results of decomposition. Evolving processes can other-
wise be hard to write and understand because of the problem of dealing with extant
data, particularly if the required evolution depends on the current state of the process
being evolved (Greenwood et al., 2003). When introspection is combined with com-
pilation and binding the technique known as structural reflection results (Kirby et al.,
1998). Meta-programs can use introspection to determine the current state of program
values and retain it over changes. For example, probes could be implemented that use

introspection to gather information.

3.6.2 Entity and Representation Domains

Program and data values and their representations are different and serve distinct pur-
poses but are related because every value has an equivalent representation. Consid-
ering them to reside in two separate domains (Zirintsis, 2000), the entity domain for
values and the representation domain, aids understanding of their roles and interac-
tions. The entity domain contains all the first class values defined by the programming
language. The representation domain contains concrete representations of the values
in the entity domain. In the Hypercode context, values exist and execute in the entity

domain, but the user views the values in the representation domain.

Figure 3.2 shows the two domains. Values in the entity domain have corresponding
views in the representation domain. The links between values in the entity domain are

shown as hyperlinks in the representation domain.

Page 88

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

Switching between the two domains is achieved with the domain operations reflection
and reification. Reflection places Figure 3.2 shows the two domains. Values in the entity
domain have corresponding views in the representation domain. The links between

values in the entity domain are shown as hyperlinks in the representation domain.

Switching between the two domains is achieved with the domain operations reflection
and reification. Reflection produces an entity equivalent to a Hypercode representation.
In practice, this means compiling some Hypercode source to produce an executable or
data value. Reification gives a user viewable representation of an entity in the repre-
sentation domain. For example, the reification operation is used to produce a view for
the user of a function that is executing. The internal domain operations are execute, in

the entity domain, and transform, in the representation domain.

Entity Representation

M

reify

=
@y 4

\O —
f f

execute transform

Figure 3.2. Entity & Representation Domains. Hypercode values exist in the entity domain. The

user views them in the representation domain.

3.6.3 Hypercode Operations

Hypercode systems have been constructed for Java and ProcessBase (Zirintsis et al.,
2001). Both systems implement a set of Hypercode operations, through which a user
interacts with Hypercode. The Hypercode operations are described in Figure 3.3 (Zi-
rintsis, 2000).

Figure 3.4 is an example, in ProcessBase, of the user view of the explode operation. A

function processor is defined, inside which two calls to the process function are made,

Page 89

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

evaluate Compile, link and execute some Hypercode.

explode Give the programmer a Hypercode view of a value pointed

to by a hyperlink.
edit Conventional editing facilities.

implode Hide the view of an exploded value.

Figure 3.3. Hypercode Operations. The Hypercode operations define user interaction in a Hy-

percode programming environment.

with different input data. Inside processor are three hyperlinks, two of which point
to the same value: the process function. Clicking on a hyperlink to process reveals the
source code of the function. Clicking on a hyperlink to input1 reveals the string repre-
sentation of the value. There is no differentiation between the user views of the source
code and data value. The exploded hyperlinks can be imploded by closing the window
displaying the exploded value.

let processor <- fun()

{

process(input1)

process(input2) explode

}

| "some string data"

explode

let process <- fun(string:input)

{
}

Figure 3.4. Explode. Clicking on a hyperlink explodes it, returning a Hypercode representation of

the value.

The Hypercode operations are defined in terms of the entity and representation do-

mains:

evaluate Reflect a Hypercode representation into the entity domain where it executes.
Then the execution and its result are reified to produce visualizations in the rep-
resentation domain. If the execution does not return a result the reification is not

performed.

Page 90

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

explode Reify an entity to give its representation.

edit Transform a representation. Editing takes place entirely in the representation do-

main.

implode A subset of the editing facilities.

3.6.4 Octopus

Octopus (Farkas and Dearle, 1994) is a system that extends hyper-programming in
that it operates on a program representation including both source code and program
values and provides an API to object closure. A data graph is used to represent the
closure, where each node in the graph is an object containing a set of references to
other objects in its own closure. Octopus’s interface allows programs to traverse this
graph and manipulate it by adding and removing bindings, therefore evolving the
graph. A source code representation of objects is also available in Octopus. However,
source code does not contain direct links to the data graph. For example, the source
code of a procedure is available as text and the closure of that procedure is available
as a separate graph. The data graph in the MPF is similar to that in Octopus, but it is

integrated with a representation of the program syntax.

Octopus and the MPF use similar techniques to compile code that includes values from
the data graph. The code is wrapped in a function that can take the values as param-
eters after compilation. Therefore, existing values can be bound into a new function

without changing the compiler. The MPF’s method is further explained in Section 7.3.1.

In addition to the work on the data graph representation, Octopus provides a common
abstraction over all values, allowing values to be inspected or manipulated in a type
independent manner. The Octopus interface comprises a set of operations which can

be used to provide higher level tools based on the structural reflection in the language!.

Another aspect of the work is partially resolved hyper-programming, which enables the
production of templates. The templates allow programs to be constructed and com-
piled without the requirement that the values used by the program be present. In this
manner, individual components can be constructed independently and later assembled

to form a complete application.

IThanks to Alex Farkas for his comments.

Page 91

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

3.7 ArchWare

The ArchWare project (Morrison et al., 2004; Balasubramaniam et al., 2004b; Balasubra-
maniam et al., 2004a; Morrison et al., 2003; Greenwood et al., 2003) is concerned with
design and construction of an environment for the development of evolvable software.
The Meta-Programming Framework presented in this thesis has been applied in the

ArchWare Framework.

ArchWare aims to develop Active Architectures, which are defined to be:

¢ Dynamic in that the structure and cardinality of the components and interactions

are not statically known.
* Updateable in that components can be replaced dynamically.

¢ Evolvable in that the executing specification may be changed.
Elements of the ArchWare environment include

* An architecture description language: ArchWare ADL.

* Languages for analysis and refinement of software architectures.

A suite of tools based on the ArchWare ADL for design and analysis.

A runtime framework.

Process models for evolutionary architecture-centric development.

Evolutionary changes can be expressed differently for different levels of abstraction.
Ideally, software systems can be evolved at every level. In ArchWare, software systems
are divided into three levels of diminishing abstraction, each with its own evolution-
ary processes and mechanisms. Figure 3.5 illustrates the different levels: architectural
styles, software architectures and the ArchWare Virtual Machine (VM). Representa-
tions at higher levels of abstraction can be extracted from the lower levels. These same

representations can be instantiated to create systems at lower levels.

At the most abstract level are architectural styles. A style represents a class of systems
and can be evolved by changing the constraints on topology and behaviour. Instantiat-

ing a style generates a concrete software architecture, whose structure and behaviour

Page 92

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

P
(N

Extract Instantiate

-~
-

Extract Instantiate

‘ | s 4
C ArchWare VM

Figure 3.5. Evolution abstractions. Evolution takes place at three levels of abstraction, each with

its own evolutionary mechanisms and processes.

conform to the style. The architecture can be evolved through the set of changes to
components and connectors allowed within the style. The mechanisms for evolution

at the software architecture level are:

* Hypercode, which provides introspection and a program representation.

e Structural reflection, which supports the introduction of new program values at

runtime

* A set of language mechanisms available in the ArchWare ADL (Sec. 3.7.4).

The ArchWare VM is at the lowest level of abstraction. Concrete architectures from the
software architecture level are compiled to produce a set of executing behaviours for the
VM. Behaviours contain application functionality and are the ArchWare ADL incarna-
tion of components. Mutable locations and assignment are the mechanisms for change
at this level. Software architecture information can be extracted from the behaviours
running on the VM because Hypercode provides introspection on the executing sys-
tem. Architectural style information is contained in software architecture definitions

and can be extracted.

Software architectures developed using the ArchWare methodology are:

¢ Dynamic The structure and cardinality of the components may be changed at

runtime.

Page 93

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

¢ Updateable Components can be replaced.

* Decomposable The executing system may be partially stopped and split into its

constituent components.

* Reflective Specifications of components and their interactions may be evolved at

runtime.

Evolution in ArchWare is supported by the compose and decompose operations of the
ArchWare ADL (Sec. 5.3.1). Compose gives a handle to a set of communicating beha-
viours. Decompose breaks connections between the composed behaviours, which then
execute to their reduction limit. The reduction limit is reached if a behaviour finishes
executing or is blocked waiting on a communication from another behaviour. Decom-
posed behaviours will continue to communicate with behaviours outside the scope of

the composition, insulating them from the changes.

3.7.1 Tools and Languages in the ArchWare Environment

The set of tools to support the ArchWare environment are (Oquendo et al., 2004):

e A UML based visual editor.

* A graphical animator which simulates the behaviour of an architecture based on

cases defined to validate the architecture.
e A Model Checker.
e A Theorem Prover.

* A Refiner to assist in generating a concrete architecture from an architectural

style.

* A code generator, which takes the code generation rules of a target language and

produces a compiler from the ArchWare ADL to the target language.
A set of languages is also defined:

e The ArchWare ADL defines executable software architectures as a set of behavi-

ours and connections (Sec. 3.7.4).

Page 94

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

* The Architectural Analysis Language is used for the definition and verification
of constraints on architectural styles. It is a formal property expression language
designed to support automated verification. It allows specification of both struc-
tural and behavioural properties of a software architecture by combining predi-
cate and temporal logic. The Model Checking tool is used to determine whether
an architecture defined in ArchWare ADL satisfies the properties of a style de-
fined in the Architectural Analysis Language.

¢ The Architectural Refinement Language guides development of a correct archi-
tectural description by ensuring that, in an incrementally refined architecture,

refinements are correct according to a set of refinement conditions.

3.7.2 ArchWare Runtime

The ArchWare Runtime supports deployment and runtime evolution of executing soft-
ware architecture descriptions. Its components are an ArchWare ADL VM, a compiler
from the ArchWare ADL to the VM, and ArchWare ADL Hypercode. Together these
components provide the mechanisms to support evolution. Much of the work de-

scribed in this chapter has contributed to the ArchWare Runtime.

The compiler translates ArchWare ADL into ProcessBase, which is then compiled by a
ProcessBase compiler, and executed on the ProcessBase VM. Therefore, the ArchWare

ADL VM is implemented using ProcessBase.

The ArchWare ADL Hypercode system runs as part of the VM. The compiler accepts
Hypercode. Elements of the executing system can be inspected using the Hypercode
Editor, which displays a Hypercode Representation of any first class value in the lan-
guage. Structural reflection is used in combination with the Hypercode system to

evolve the executing software architecture.

The VM supports compliance by providing mechanisms for feedback from the execut-
ing system (Balasubramaniam et al., 2004b). Probes can be inserted in the VM and
gauges are defined to interpret the information collected by the probes. The probes
are flexible and therefore suitable for inclusion in an evolving system. Both are imple-
mented in the ArchWare ADL and were described in Section 1.1.1.

Page 95

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

3.7.3 Process Models

Process Models, written in the ArchWare ADL, co-ordinate software architecture de-
sign, analysis and evolution in the ArchWare environment. They are used to define a
software architecture based on a particular architectural style and then refine it from
an abstract to a concrete representation, whilst preserving the style constraints. In ad-
dition, Process Models co-ordinate the tasks of developers and the various tools they

use in the development and evolution of an architecture.

Process for Process Evolution (P2E) technology uses meta processes, which exploit
the architectural description of the system in controlling its own evolution. A sys-
tem is built hierarchically from components consisting of behaviour pairs, as shown in
Fig. 3.6. One element in the pair is the Producer, which is responsible for the main func-
tionality of the component. In the diagram it takes in raw values and produces wid-
gets. The other element is the Evolver, which manages the Producer’s evolution. The
Evolver is connected to the Producer by probe, feedback and change connections (Ba-
lasubramaniam et al., 2005; Balasubramaniam et al., 2004b). Fig. 3.7 shows how P2E
Components are composed into a system. Producer and Evolver are explained further

in Appendix E.

3.7.4 ArchWare ADL

ArchWare ADL is a computationally complete architecture description language de-
veloped as part of the ArchWare project. Providing direct implementation support for
software architecture represents a departure from the normal approach, which decou-
ples the software architecture from the implementation. The advantages of integration
are delineated in papers on ArchJava (Aldrich et al., 2002c; Aldrich et al., 2002a), an-

other system which integrates the software architecture and the implementation:

* Software architecture information is directly accessible in the source code.

* Conversely, the implementation is accessible from the software architecture so a

developer can see how a particular component is implemented.

* Views of the software architecture are automatically extracted from the imple-

mentation and are always up to date.

Page 96

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

Componenty;

Environmenty,

Evolvery,
Probe, Feedback and
Change connections

A -

Producery; >
Raw; v Widgetsos

) 4

Figure 3.6. P2E Element. A P2E Component is composed from an Evolver and a Producer.

¢ Inconsistencies between the software architecture and the implementation are

avoided.

* The implementation is guaranteed to obey architectural constraints. It follows

that analysis of the software architecture is relevant to the implementation.
* The architecture and code remain consistent as they evolve.

* The type system checks communication between components, as opposed to de-

velopers following guidelines that are not automatically enforced.

There are also some drawbacks to a computationally complete architectural descrip-
tion language. Firstly, developers are limited in their choice of language which can
impede the take up of the technology. Secondly, a stand alone architecture description
may have a number of alternative implementations for different platforms and envi-
ronments. The possibilities for generating multiple implementations are constrained

by merging the architecture and the implementation.

Page 97

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

\
|
\
|

|

[
\

—> —
Rawj, | Widgets1o

Figure 3.7. Hierarchical P2E Components. P2E Components are structured into hierarchical

systems.

The ArchWare ADL has a formal foundation based on the higher order 7-Calculus
(Milner, 1999). It is a strongly typed architectural description language with styles
layered on top, which provides executable specifications of evolvable systems. Its nov-
elty is in the combination of 7r-Calculus, persistence, decomposition, reflection, reifi-
cation and Hypercode. The three principles of abstraction, correspondence and type
completeness (page 83) were used in the language design. The language guarantees
syntactically consistent changes, because all changes are compiled and type checked

before being reflected into the system.

The change mechanisms available in the ArchWare ADL to enable incremental evolu-

tion are (Balasubramaniam et al., 2004b):

* A decomposition operator to incrementally break up the system (Sec. 5.3.1).

* A representation of executing code used for introspection (Hypercode).

Page 98

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

e Structural reflection provided by a callable compiler with a coerceToValue func-

tion.
* Type system introspection provided by the typeOf function.

* An infinite union type (any) with injection and projection operations.

3.7.5 Dynamic Change in ArchWare

The kinds of change in an ArchWare environment are:

* Replacement of components.
e Static and dynamic generation of new components.

* Dynamic evolution, involving decomposition, reification, reflection and recom-

position.

An ArchWare system is built by composing sets of communicating behaviours. Com-
position unifies communication channels between the behaviours and returns a handle
to the composed set. A behaviour is a unit of functionality and can communicate with
other behaviours through its connections. Any first class value in the language can be
sent along a connection. This includes behaviours as well as connections. Dynamic
interactions between components are created by unifying connections, using a unify

operator, inside a composition clause.

Decomposition is the language mechanism for partially stopping an executing system.
It is the inverse of renaming in the 77-Calculus. On decomposition, the set of composed
behaviours will be disconnected, but will continue to execute up to their respective
reduction limits. That is, connections which were unified, or connected, in the compo-
sition will be broken, and the components will continue to execute until they either
finish or are blocked waiting on a connection. In practice, this involves the suspen-
sion of the targeted threads in a multi-threaded system, while the rest of the system
continues executing. Behaviours should be programmed so that the reduction limit se-
mantics cause them to do something sensible when they are decomposed, for example,
waiting until their communication channels are reconnected, or stopping. The result

of a decompose operation is the set of behaviours in the composition.

Page 99

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

Compose and Decompose

Composition in the ArchWare ADL gives a single handle to a number of behaviours.
Behaviours may spawn new behaviours but these are not directly accessible from the
composition. Inside the compose statement, the connections between the behaviours

may be unified, allowing them to communicate with each other.

A compose statement in the ArchWare ADL returns a behaviour. An example of the use
of compose, taken from the ArchWare ADL reference manual (Balasubramaniam et al.,
2004a) is given in Fig. 3.8. A behaviour, b1, is defined which sends the value 100 along
channel c1 and then receives a string on channel c2. Another behaviour, b2, is defined
which receives an integer on channel c¢3 and then sends a string on channel c4. The
compose statement gives a single handle to the two behaviours and unifies their chan-
nels. In the first line of the compose, b1 is included in the composition and given the
label send_int_receive_string for the scope of the compose statement. In the second
line, b2 is included and renamed similarly. The where clause of the composition con-
nects the communication channels between the behaviours. c1 is connected to ¢3 and
c2 is connected to c4. Once the compose statement has been executed, the behaviours
will communicate with each other along the connected channels. The composed_system

is itself typed as a behaviour.

Decomposing breaks the unification of the connections which were unified in the com-
position. The decomposed behaviours will continue to execute until they reach their
reduction limits. This means that the processes will continue to execute until they are
waiting for a communication from another process, or they may simply finish execut-
ing. A decompose statement acts on a behaviour and returns a sequence of the behavi-
ours which were used to create the composition. The behaviours in the sequence have

the same ordering as in the compose statement.

An example of decompose, from the reference manual, is shown in Fig. 3.9. In the first
line, the composed_system is decomposed and the result assigned to behaviour_seq.
The second line shows how the behaviour b1 can be accessed from the sequence. The
final line shows how its label can be accessed. The label was associated with the beha-
viour in the original compose statement and can be used to identify it after decompo-

sition.

Page 100

Chapter 3

Orthogonal Persistence, Structural Reflection and Hypercode

Table 3.1. ArchWare

Dynamic Change

. This table categorizes the support for evolution in ArchWare.

Openness

ArchWare supports the creation of new component types and in-

stances to introduce new functionality.

Maintain State

Maintaining hyperlinks in a Hypercode graph representation allows

program state and internal data to be preserved over change.

Connections Bound and Un-

bound

In the ArchWare ADL connections can be bound in a composition

and later unbound using decomposition.

Reflection

Structural reflection is available to introduce new values into the

executing system.

Autonomous Change

Automation

No

Automated Motivations for

Constraints in the Architectural Analysis Language as well as flex-

Changes ible probes and gauges.
Automated Support for | The MPF allows new functionality to be automatically introduced
Openness into the system.

Model Available to Manage-

ment Components

Hypercode graphs provide a model of any value in the system and

allows introspection of current program state.

Change Localization

Higher Order Connectors

No

Programmable Connectors

No

Partial Decomposition

Yes - the decomposition operator can stop a small part of the

system so it can be evolved.

Change Management

Change Management

Process models contain the change management policy.

View of Executing System

No

Partial Views

Yes - Hypercode graphs.

Vocabulary for Specifying
Changes

Changes may either be specified as a set of MPF operations on a

Hypercode graph or else defined in the ArchWare ADL.

Open Adaptation

Yes

Closed Adaptation

Yes

Architectural Styles

The Architectural Analysis Language is used to define styles.

Page 101

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

value bl = behaviour {
via ¢c1 send 100

via c2 receive s : string

}
value b2 = behaviour {
via c3 receive i : integer
via c4 send 'Hello'
}

value composed_system = compose {
send_int_receive_string as bl
and receive_int_send_string as b2
where {
send_int_receive_string ::cl unifies receive_int_send_string ::c3 ,

send_int_receive_string ::c2 unifies receive_int_send string ::c4

}

Figure 3.8. ArchWare ADL compose statement. Composing two behaviours and unifying their

connections.

value behaviour_seq = decompose composed_system
value b_valuel = behaviour_seq::1.bhvr ! behaviour denoted by bl
value b_label2 = behaviour_seq::2.label ! label of bl

Figure 3.9. ArchWare ADL decompose statement. Decomposing the composed behaviours.

Page 102

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

3.8 Hypercode for the MPF

Orthogonal persistence, structural reflection, ProcessBase and the ArchWare ADL have
been used to build a Hypercode system for use as an experimental base in the MPE. A
new implementation technique makes Hypercode reusable and augments it with an

interface that allows Hypercode operations to be accessed by other programs.

Hypercode for the MPF can be transferred with minimal difficulty to provide the same
functionality for different programming languages, as long as they support structural
reflection, referential integrity and first class code. The transferral is made possible by
using algorithms for the Hypercode operations that are independent of language syn-
tax. These algorithms rely on Hypercode constructs that are inserted into programs
using mark-up. It is not possible to have a completely language independent Hyper-
code system because firstly, evaluation requires compilation and secondly, the explode
operation involves generating representations of program values in the programming
language. Therefore, transferring Hypercode to a new language necessitates plugging
in a new compiler and changing the generative code in the explode operation to pro-

duce the new language.

Initially, the Hypercode system was implemented in and for ProcessBase because it
provides orthogonal persistence, ensuring hyperlinks remain valid for their lifetime,
and structural reflection, which is needed for implementation of the evaluate and ex-
plode operations. Then, in order to provide support for an incremental evolution pro-
cess in the MPF, the Hypercode system was transferred to ArchWare ADL. This allows
Hypercode programs to be written that take advantage of the decompose operator to
partially stop an executing system. The ArchWare ADL Hypercode system has been

used as part of the Tower Browser described in Appendix E.

An interface to the Hypercode system exposes the Hypercode operations and facilitates
the development of other programs that use Hypercode. The interface is used by the
MPF to enable meta-programs to explode and evaluate Hypercode graphs. In addition,
a user-interface relies on the Hypercode operations to permit developers to program

and evolve Hypercode.

3.9 Summary

This chapter gives details of a set of technologies on which the MPF is based.

Page 103

Chapter 3 Orthogonal Persistence, Structural Reflection and Hypercode

Orthogonal Persistence A persistent store provides referential integrity for the MPF’s

program representations that include both source code and data.

Structural Reflection The creation and introduction of new values during execution

is made possible using structural reflection.

Hyper-Programming and Hypercode Hyper-programming used hyperlinks to inclu-
de extant values in program source code. Hypercode extended the concept to
abstract over the difference between code and data and provide introspection on

an executing system.

Entity and Representation Domains Program representations, e.g., Hypercode, and
their corresponding entities, e.g., executing programs and data, can be consid-
ered to reside in separate domains. The concept of entity and representation
domains supports reasoning about the mappings between entities and their rep-

resentations.

Hypercode Operations The explode, implode, evaluate and edit operations define the in-

terface to Hypercode.

ArchWare The MPF was developed as part of the ArchWare project, which provides
the ArchWare ADL, a technology to model software architectures. The composi-
tion and decomposition operators in the ArchWare ADL facilitate the partial de-
composition of executing programs, thereby supporting incremental evolution.
The ArchWare project has produced other tools and mechanisms for evolution,
including an environment for process evolutions that performs change manage-

ment.

MPF Hypercode A new Hypercode system has been developed for the MPF that is
easily re-used and has an interface that allows other programs to use the Hyper-

code operations. It also implements Hypercode for ArchWare ADL.

Page 104

Chapter 4

Hypercode Graphs and the
MPF Operations

he MPF provides two mechanisms for evolution: a model that
meta-programs can use to represent an executing system; and
a set of transformations on the model to describe evolutionary
changes. The model is the Hypercode graph and the transformations are

implemented by the MPF operations.

Page 105

Chapter 4 Hypercode Graphs and the MPF Operations

The MPF provides an environment in which management components in the form
of meta-programs can access representations of values in an executing system. The
representations, called Hypercode graphs, can be examined to determine the current
state of internal program values. Meta-programs can also use them for evolution in
a process that involves changing a Hypercode graph and then reflecting the altered

graph into the executing system.

An executing program can be represented by Hypercode graphs because they char-
acterize both program closure and internal state. Program code is merged with pro-
gram data using hyperlinks. They also include program syntax to give meta-programs
evolving a graph the full power of the programming language. The MPF defines
Hypercode graphs and an API, or set of operations, for meta-programs to interact
with them. The operations allow meta-programs to traverse, manipulate and evolve the

graphs.

A meta-program, starting with a handle to a value in the form of a hyperlink, can
dereference the hyperlink to obtain a Hypercode graph representing the value. It may
then, for example, traverse the graph to discover some internal state of the value stored
in a variable. The traversal involves using MPF operations to find the hyperlink that
references the variable using its name or position in the program. By following the

hyperlink, the meta-program can access the variable’s value.

In order to make changes to executing systems, meta-programs use the MPF opera-
tions to manipulate Hypercode graphs. For example, a meta-program can update a
hyperlink to reference a different value. Alternatively, it could alter a function to make
it use a different algorithm. In the latter case, the Hypercode graph representation of
program closure would allow the algorithm to be changed without the function losing
its internal state. These examples illustrate some possible manipulations, but the actual
changes a meta-program can make are only restricted by the programming language

being used.

After the changes, the process used by a meta-program evolving the system involves
evaluating the Hypercode graph. The result of evaluation is a new value, possibly
containing references to existing values, which can be incorporated into the executing
system. The way in which this is done depends on the change management structure
in the system. The new value may, for example, replace the old one in an updatable

location.

Page 106

Chapter 4 Hypercode Graphs and the MPF Operations

4.1 Hypercode Graphs

A Hypercode graph is a combination of an abstract syntax tree and a data graph. This
structure provides a meta-program with a complete program representation encom-
passing both closure and syntax. Any part of an executing program can be accessed

through traversal of the graph representation from its root.

4.1.1 Structure

Abstract syntax trees (Aho et al.,, 1986) are a standard format for internal program
representation (Czarnecki and Eisenecker, 2000). However, an abstract syntax tree by
itself is not sufficient to represent Hypercode, which encompasses not just program
syntax but also program closure. Therefore, the program structure provided by the
MPF combines an abstract syntax tree with a data graph. A similar approach is taken
in Intentional Programming, where a program is represented by a set of intentions and

an intention instance may refer to program data or program syntax (Sec. 2.7).

A Hypercode graph appears to a meta-program as an abstract syntax tree with refer-
ences to data values at appropriate points in the tree. For example, in a clause where
a value is assigned to an identifier, the value may be a reference to the data graph.
Following one of these references gives a meta-program access to a Hypercode graph

representation of the value. The meta-program can also access the value itself.

A meta-program traversing a Hypercode graph encounters two types of links, illus-
trated in Fig. 4.1. Firstly, links in the abstract syntax tree, which is a subset of a Hyper-
code graph, shown in black in the diagram, reference structures in the program source.
For example, an if statement references its condition and its branches. These are stan-
dard types of links which would be available to any meta-program dealing with an

abstract syntax tree representation.

Hypercode provides the second type of links, which are hyperlinks, coloured blue in
the diagram. Hyperlinks are pointers from syntax tree nodes to the data graph. They
allow a meta-program access to the program closure. To traverse the data graph, a
meta-program dereferences a hyperlink to access either another Hypercode graph, or
the value it represents. If Hyperlinks were not included in Hypercode graphs, they
would have a tree structure. The overall structure is a graph because hyperlinks give
access to the data graph and values in the data graph may include references back to

the program itself.

Page 107

Chapter 4 Hypercode Graphs and the MPF Operations

Link in the abstract
syntax tree

hyperlink

Hyperlink referencing Program or
an extant program or Data value
data value

Figure 4.1. Link Types. The two types of links in a Hypercode graph representing the code frag-
ment: 3 + hyperlink * 4.

4.1.2 Type

Figure 4.2 shows the basic structure of a Hypercode graph in the MPE. It is a bi-
directional graph where nodes have a parent - child relationship. Each node has one
parent and zero or more children, except for the root node, which has no parent. Nodes
may contain either program syntax information, program text or a hyperlink. Consider the
example of a Hypercode graph representing 4 4 3 in Figure 4.3. The top node (clause)
contains syntax information, as do the nodes in the middle row. The nodes at the bot-
tom contain program text, which is the same as program source code. This type of

node is always a terminal node with no children.

The previous example did not include a hyperlink, which is the third type of node.
Figure 4.4 shows a graph representing an expression, where 3 is added to an extant
value referenced by a hyperlink. The hyperlink node, shown in blue, has the name
hyperlink as well as an ID attribute. When a meta-program dereferences the hyperlink,
the ID is used by the MPF to find the associated value. The level of indirection allows
a Hypercode graph representation to retain its validity outside the MPF. The graphs
can therefore be used by other tools, such as the user interface (Sec. 7.5). Note that
the graph does not show the value of the integer referenced by the hyperlink, this is

because the meta-program needs to explicitly dereference the hyperlink to access it.

Page 108

Chapter 4 Hypercode Graphs and the MPF Operations

Figure 4.2. Hypercode Graph. The Hypercode graph is a bi-directional graph, where nodes have

a parent - child relationship.

Figure 4.3. Hypercode Graph Example. This Hypercode graph represents the expression: 4 + 3,

showing nodes containing program syntax and nodes containing program text

Page 109

Chapter 4 Hypercode Graphs and the MPF Operations

hyperlink
id=2

Figure 4.4. Hypercode Graph with Hyperlink. A Hypercode graph representing an expression

where the integer 3 is added to a value referenced by a hyperlink.

A pseudocode definition of the graph type in Figure 4.5 shows that a graph is a record
containing a node, a parent and a list of children. The ordering of the list of children is

important because it represents the order of statements in the program.

type graph is record
(
node: nodeType,
parent: graph,
children: list of type graph

type nodeType is record
(
name: string,
text: string,

attributes: list of (name, value) pairs

Figure 4.5. Hypercode Graph Definition. The type definition of a Hypercode graph.

Nodes, defined by nodeType in Figure 4.5, are records with three parts: a name, text
and a list of attributes. The form of a node instance depends on the type of information

it contains.

Page 110

Chapter 4 Hypercode Graphs and the MPF Operations

Program syntax nodes store a string in the name field, e.g., ‘integer’ (Fig. 4.6).

4’_—“ integer,’

empty
T attribute list

Figure 4.6. Program Syntax Node. A program syntax node for integer.

Program text nodes store a string in the text field, e.g., ‘3’ (Fig. 4.7).

w37

|
. =

empty
T attribute list

Figure 4.7. Program Text Node. A program text node for 3.

Hyperlink nodes store the string ‘hyperlink’ in the name field and their ID in the
attributes field (Fig. 4.8).

4.1.3 Example

A Hypercode graph representing a record of personal and work information is illus-
trated in Figure 4.9. The first part of the record contains a personal name, address and

email contact. The second part contains a company name, address and email. The

Page 111

Chapter 4 Hypercode Graphs and the MPF Operations

node
4» “hyperlink”
e
attributes

W*empty
attribute list

EE— next

Figure 4.8. Hyperlink Node. A hyperlink node with an ID value of 2.

data values, such as the person’s name, are all referenced by hyperlinks. This example
portrays how the abstract syntax tree part of the Hypercode graph (simplified in the
diagram) is connected to the data graph (circles) by hyperlinks. It also shows how mul-
tiple hyperlinks can reference the same data value. In this case the person’s personal
and work email addresses are the same. Because they are able to model sharing in this

way, Hypercode graphs can represent program closure.

4.2 Operations

The MPF operations provide an interface to Hypercode graphs through which meta-
programs can traverse, manipulate and evolve them. The operations for traversal al-
low meta-programs to locate parts of a Hypercode graph relevant to their purpose and
discover the current state of internal program values. Operations for manipulation
facilitate changes to existing Hypercode graphs and the creation of new ones. After
changes have been made, meta-programs use the operations for evolution to incorpo-

rate the changes into the executing system.

The definitions of all MPF operations are presented in two libraries, defined in Ap-

pendix B.

Page 112

Chapter 4 Hypercode Graphs and the MPF Operations

Two hyperlinks

information referencing the
same value

o[eress | ek ——~()

work

Abstract syntax tree nodes
Data graph .

nodes

Figure 4.9. Hypercode Graph. A Hypercode Graph incorporates program syntax and existing

values.
4.2.1 Traverse

Meta-programs traverse Hypercode graphs by following program syntax links to reach
syntax nodes and following hyperlinks to access function and data values. The full list

of operations for traversing Hypercode graphs is defined in Tables 4.1 and 4.2.

Operations that act on program syntax nodes (Fig. 4.1) are standard operations, which
could be performed on any tree, for example getChildNodes and getParentNode. The
latter is applied to nodes in the program syntax tree, which only ever have one parent.
It cannot be applied to values, which do not store information about references that

point to them.

Operations that act on hyperlink nodes allow meta-programs to access values from the
data graph. For example, getGraphFromHyperlink dereferences a hyperlink to return
a Hypercode graph representation of the value. Figure 4.10 depicts an example of
it being applied to part of the Hypercode graph from the example in Figure 4.9. In
step 1, the meta-program has a handle (shown as an arrow from the meta-program
cloud) to the hyperlink referencing the address part of the personal information. The

getGraphFromHyperlink operation is applied to the hyperlink in step 2 and returns a

Page 113

Chapter 4

Hypercode Graphs and the MPF Operations

Table 4.1. Traversal Operations. The operations available for traversing Hypercode graphs.

Name

Description

getAllHyperlinks (graph) — graph list

Get all the hyperlinks in the graph (in-order depth first

search).

getAllINodesWithName (string, graph) — graph
list

Get all the nodes with the given node name in the graph

(in-order depth first search).

getAttributes (graph) — attributes

Get the list of attributes from a graph node.

getAttributeValue (string,graph) — string

Get the value of an attribute, given its name.

getChildNodes (graph) — graph list

Get a node’s list of children.

getChildPosition (graph) — integer

Get the position of this graph node in the list of children

of its parent, as an integer.

getFirstChild (graph) — graph

Get the first child of this node.

getFirstChildWithName (string,graph) — graph

Get the first child of this node with the given node name.
Only searches the children of this graph node.

getFirstHyperlink (graph) — graph

Get the first hyperlink that is a descendent of a graph

node, searching in program source code order.

getFirstTagWithName (string,graph) — graph

Get the first program syntax node with the given name
that is a descendent of the given graph, searching in
program source code order. Searches the whole graph

descending from this node.

getGraphFromHyperlink (graph) — graph

Get the graph representation of a value referenced by a

hyperlink.

getGraphFromValue (any) — graph

Get the graph representation of the given value.

getLastChild (graph) — graph

Get the last child of this node.

getLocalName (graph) — string

Returns the name of this node. Only valid for program

syntax type nodes.

getNextSibling (graph) — graph

Get the node immediately following this node in the list

of its parent's children.

getNodeName (graph) — string

If this node is a program syntax node return its name. If
it is a program text node return the text. For a hyperlink

node return hyperlink.

getNodeType (graph) — string

If this node is a program syntax node or a hyperlink
return the string: element. Otherwise return the string:
text.

getNodeValue (graph) — string

If this node is a program text node get its text otherwise

return an empty string.

getNumberOfChildren (graph) — integer

Get the number of children of this node.

getParentNode (graph) — graph

Get the parent node of this node.

getPreviousSibling (graph) — graph

Get the node immediately preceding this node in the list

of its parent's children.

Page 114

Chapter 4 Hypercode Graphs and the MPF Operations

Table 4.2. Traversal Operations cont. The operations available for traversing Hypercode graphs.

getValueFromHyperlink (graph) — any Get the value referenced by a hyperlink (as an infinite
union type).
hasAttributes (graph) — boolean True if this node is a program syntax node or a hyperlink

and it has some attributes.

hasChildNodes (graph) — boolean True if this node has any children.

isEqualNode (graph,graph) — boolean Compares two graphs to see if they represent the same
program.

isSameNode (graph,graph) — boolean True if two graph nodes are the same node.

getXMLFromGraph (graph) — string Return graph represented as a string of XML.

Hypercode graph representing the address. This new Hypercode graph is shown in
step 3, where the meta-program has a handle to its root. To find out the current address,
the meta-program then uses getGraphFromHyperlink on the first hyperlink in the new
graph. This returns the string containing the street part of the address shown in step
4. By following hyperlinks, as in this example, meta-programs can access internal

program state and values.

Instead of dereferencing a hyperlink to obtain a Hypercode graph, a meta-program
may obtain the actual value referenced by the hyperlink. That is, traversal operations
over hyperlinks allow a meta-program to retrieve a value in two forms. FEither the
value itself may be accessed, e.g., an executing program, or its representation, e.g.,
the value’s associated Hypercode graph. The getValueFromHyperlink operation takes a
hyperlink node and returns the value it references. The Hypercode graph of any value
can be obtained using the getGraphFromValue operation without needing a hyperlink

that references the value.

The four operations getChildNodes, getParentNode, getGraphFromHyperlink and getValue-
FromHyperlink are all that is necessary for a meta-program to be able to traverse both
the syntax and the data parts of a Hypercode graph. The other operations that have

been defined are syntactic sugar and provide convenience.

A program’s closure is characterized by the data graph that is accessible through hy-
perlinks in a Hypercode graph. The getAllHyperlinks operation can be used by a meta-

program to gather the set of values representing the closure.

The get XMLFromGraph operation produces XML representations of Hypercode graphs,

allowing them to be exported and, for example, depicted in a user interface.

Page 115

Chapter 4 Hypercode Graphs and the MPF Operations

1. A meta-program uses traversal operations to reach the hyperlink node referencing the address.

personal

—>| address |—> hyperlink ——»
2. Apply the getGraphFromHyperlink operation to the hyperlink node.

personal
—

| address l—» hyperlink H‘

3. It returns Hypercode graph representing the record that contains address information.
hyperlink

P
—>| street |—> hyperlink H‘

4,| postcode |—> hyperlink —»‘

4. Apply the getGraphFromHyperlink operation to the hyperlink node referencing the street.

hyperlink —» “7 North Street”

Figure 4.10. The getGraphFromHyperlink Operation. getGraphFromHyperlink dereferences a

hyperlink to return a Hypercode graph representation of the value.

4.2.2 Manipulate

Operations to manipulate Hypercode graphs create, delete, add and remove nodes.
Meta-programs have the full power of the programming language when creating and
changing graphs. In addition, they can link extant values into the program by creating
new hyperlink nodes and update existing hyperlinks to reference different values. The

full list of operations for manipulating Hypercode graphs is defined in Table 4.3.

By manipulating Hypercode graphs, meta-programs can, for example, change the rep-
resentation of an existing function. Figure 4.11 illustrates a function (1) that calls foo,
passing it a hyperlinked counter value. The function is changed (2) to include a clause
incrementing the counter. Part 3 of the diagram portrays a Hypercode graph of the
function before the changes. The new clause (4) is added at the start of the function

using appendChild At position 0, appending it to the start of the function’s main clause.

Page 116

Chapter 4

Hypercode Graphs and the MPF Operations

Table 4.3. Manipulation Operations.
graphs.

The operations available for manipulating Hypercode

Name

Description

addAttribute (string,string,graph)

Takes an attribute pair (name, value) of strings and adds
it to a graph's list of attributes. For program syntax and

hyperlink nodes only.

appendChild (graph,graph) — graph

Adds a child to the end of the list of children of this
graph and returns the graph. |If the graph is nil, the

child is returned.

appendChildAt (graph,graph,integer) — graph

Adds a child at the given position in a graph's list of
children and returns the graph. If the graph is nil, the

child is returned.

appendChildDescend (graph,graph) — graph

Adds the child node to the end of the list of children of
the graph and returns the child.

Copy (graph) — graph

Create a copy of a graph.

copyHyperlink (graph) — graph

Create a copy of a hyperlink that can be inserted into a

different graph.

insertBefore (graph,graph) — graph

Inserts a graph before the given graph in the list of its
parent’s children. Returns an empty graph if the child is

not found in the list.

makeGraph (string) — graph

Construct a Hypercode graph representation of a pro-
gram from an XML representation. Inverse of getXML-

FromGraph.

newDeclarationGraphForGraph
(string,graph) — graph

Create a graph of a value declaration, where the value is

represented as a graph. (Takes a name and a graph.)

newElement (string,attributes) — graph

Creates a new graph node with a name and list of at-

tributes.

newHyperlinkElement (any,string,graph) —
graph

Create a new hyperlink node.

newTextElement (string) — graph

Creates a new program text graph node.

pasteHyperlink (graph,graph)

Paste a copied hyperlink (first parameter) into a new

graph as a child of the given node (second parameter).

removeChild (graph)

Removes this graph from the list of its parent’s children.

replaceChild (graph,graph)

Replaces the first instance of a graph in the list of its

parent’s children with the given graph.

setAttributeValue (string,string,graph)

Set the value of an attribute or create the attribute if it
does not exist. Only applicable to program syntax and

hyperlink graph nodes.

setNodeValue (string,graph)

Set the text value of this graph node, only applicable to

program text nodes.

updateHyperlinkLocation (graph,graph)

Update a mutable location referenced by a hyperlink.

Page 117

Chapter 4 Hypercode Graphs and the MPF Operations

@ @ function () =

function () = {

{ ﬁ counter ++

foo (counter) foo (counter)

; }

@ Y
clause w7
o | denter |~ courer

—»{ clause . S

» A\Y (I!
— identifier counter
» \\) ”

Figure 4.11. appendChildAt. Add a new clause into a function using the appendChildAt operation.

A meta-program can update the value in a location referenced by a hyperlink. An
example is shown in Figure 4.12, where the updateHyperlinkLocation operation is used
to change a person’s occupation from a green value to a red value. The difference in
colour represents that the value has changed. Using the getGraphFromHyperlink opera-
tion, the hyperlink could be dereferenced to find out what the actual occupation is. In
order for a meta-program to use this operation, the hyperlink must reference a mutable

location.

4.2.3 Evolve

The single operation that supports evolution is evaluate, which takes a Hypercode
graph and compiles and executes it before returning the result of the execution as a
graph. Meta-programs use evaluation to create new values that can be introduced into

the executing system in a variety of ways, such as using the updateHyperlinkLocation

Page 118

Chapter 4 Hypercode Graphs and the MPF Operations

— [ek ()

updateHLLocation ’perT‘
— e e ()

Abstract syntax tree nodes

Data graph
nodes .

Figure 4.12. updateHyperlinkLocation. Update a value in a location referenced by a hyperlink.

operation to place a new value into a location accessed by an existing program. New
values may also be incorporated with existing values using the incremental evolution
process described in Chapter 5. In an evolutionary system, the technique used is ulti-

mately decided by a change management policy implemented on top of the MPF.

4.2.4 Unified Representation

The MPF operations have been developed within the framework and are represented
in the same way as the entities over which they operate. Therefore, a meta-program can
evolve the MPF operations in the same way as any other value. A change management
policy might involve creating new operations to add to the framework. For example,
it is useful to create evolution patterns (Sec. 5.4) that support a particular evolution

process and ease the difficult task of writing meta-programs.

Page 119

Chapter 4 Hypercode Graphs and the MPF Operations

4.3 Infosets and DOMs

An Information Set (Infoset) is an abstract description detailing the properties of XML
documents (W3 Consortium, 2004). Definitions in an Infoset are used by XML tech-
nologies that examine, create or modify XML documents to describe what parts of the
document they operate on. XML documents are defined as a set of information items.

For example, attribute information items are the attributes in XML tags.

The Document Object Model (DOM) is a standard set of objects for representing XML
documents, paired with a standard interface for accessing and manipulating them (W3
Consortium, 2005a). It is a logical model for the abstract interface defined by the XML
Infoset, but not an implementation of that Infoset. The DOM may be implemented in

any convenient manner.

The MPF can be compared with Infosets and DOMs, as summarized in Table 4.4.
Where a DOM is a logical model for an XML document, a Hypercode graph is a logical
model for a function or data value. The set of objects representing XML documents
are equivalent to the parts of a Hypercode graph. The interface for accessing and ma-
nipulating the objects is equivalent to the MPF operations. In the same way that a
DOM is a logical model implemented differently for different platforms, the MPF’s op-
erations and program representation can be applied to and implemented for different

programming languages.

The XML Infoset is an abstract description for XML documents. Similarly, the MPF’s
program representation is an abstract description of executing programs consisting of
a program model with syntax and data information and a representation of closure

and sharing.

Table 4.4. Infoset, DOM and MPF Comparison. The parts of the MPF that are equivalent to
Infosets and DOMs.

Infoset / DOM MPF

Infoset Program representation that can represent an exe-
cuting program, represent program closure and data

sharing, and be evolved.

DOM standard set of objects | Hypercode graph

DOM standard interface MPF operations

Page 120

Chapter 4 Hypercode Graphs and the MPF Operations

4.4 Interface Design

The operations defined by the MPF support imperative meta-programming (Sec. 1.4)
over Hypercode graphs. Evolution policy is defined by the scheduling of the opera-
tions decided by the meta-programmer and depends on the application environment.
The MPF operations are sufficient for a meta-program to make any changes to existing

values and create new values.

The design of the MPF is based on experience, from the ArchWare project, of evolving
Hypercode through the user interface. In the user interface, the ArchWare ADL has
been used in conjunction with Hypercode to produce a system that supports managed
evolution through programmer interaction (Sec. E.1). Both the user-interface to Hyper-
code and the MPF use the same facilities to support the Hypercode operations evaluate
and explode (Sec. 3.6.3).

Each operation implemented for the MPF has been chosen either because it has been
shown to be useful for evolutions through the user interface, or else because it became
apparent, after modelling examples in the MPF, that the operation was necessary to
perform particular evolutions. As experience using the MPF is gained it is likely that

the set of operations will be extended.

4.5 Framework Independence

The MPF has been developed as part of the ArchWare project and uses the ArchWare
ADL. However, where possible, it has been implemented as a generic framework,
which could be adapted to other languages. The program representation encompasses
program closure by including both program syntax and data. This is a concept applica-
ble to any programming language with the necessary supporting technology including
structural reflection, referential integrity and first class functions. In addition, the op-
erations for traversing and manipulating program representations could be applied for

any progr amming language.

Some of the operations for evolution rely on the support of composition and decompo-
sition mechanisms in the underlying language. ArchWare ADL provides these mech-
anisms for the implementation in this thesis, but they could be implemented in other

languages. For example, decomposition can be modelled in Java using threads.

Page 121

Chapter 4 Hypercode Graphs and the MPF Operations

4.6 Summary

The MPF consists of Hypercode graphs that represent an executing system and a set of
operations that meta-programs can use to traverse, manipulate and evolve the graphs.
A Hypercode graph augments an abstract syntax tree with links to the data graph,
characterizing program closure. Meta-programs have access to a Hypercode graph
representation of any value, including themselves. Therefore, meta-programs can be
evolved in the same way as other programs in the MPE. An example is given in Ap-

pendix D.

Page 122

Chapter 5

Incremental Evolution

he Meta-Programming Framework supports the evolution of
long-lived, complex systems. This chapter explains a process for
these evolutions and how it fits in with the mechanisms avail-

able to support them.

Page 123

Chapter 5 Incremental Evolution

In the process for incremental evolution that will be described, the entity performing an
evolution (a developer or a meta-program) can reify parts of the executing program to
provide a representation of the active system and its current state. This representation
can be manipulated to apply unforeseen and unrestricted evolutionary changes and

the altered representation can then be integrated into the running system.

5.1 Evolution Process

This thesis proposes the following principles, according to which a software system

can be evolved in an ideal scenario:

The Principle of Minimal Disruption states that evolution of a software system should
proceed with minimal disruption to its execution. From this principle it can be inferred that
firstly, the evolution of part of an executing software system should entail minimal
interference with the execution of the rest the program; and secondly, a component
should be able to be evolved without losing its internal state and therefore be able to

carry on after the evolution with the least possible disturbance.

The Principle of Unconfined Evolution states that evolution should not be confined to a
particular part of a software system. Consequently every value in the system should be

able to be evolved regardless of its type or size.

Applying the Principle of Minimal Disruption aims to minimize the ripple effect, where
changes in one component cause additional changes in associated components. Com-
plexity as defined by McCabe (McCabe and Watson, 1994) depends on components’
fan-in and fan-out. Fan-in is a count of the calls to a component and fan-out is a count
of calls from a given module. In systems with high complexity the ripple effect can be
very disruptive and contribute to structural decay. This is a gradual drift away from
the original design specification that can lead to the system becoming too expensive to

maintain.

An evolutionary process that proceeds in accordance with these principles is illustrated
in Figure 5.1 where an executing system in the bottom left corner is evolved by merging
two of its components. The process has been published in the paper Process Support for

Evolving Active Architectures (Greenwood et al., 2003).

Initially, the components in the figure have some internal state, represented by star

shapes. The first step in the evolution is the decomposition of the executing system.

Page 124

Chapter 5 Incremental Evolution

— Component

—s
® ©

Figure 5.1. Evolution Process. A system is decomposed, evolved and then recomposed.

Evolved
Component

Composition -
—

Component
State

Connection

L

Process

Decomposition stops the component that is decomposed but allows other components
in the system to keep executing. The result of the decomposition is the set of sub-

components that constituted the decomposed component.

After decomposition, a reification of the components provides a representation which
can be manipulated to evolve them. In this example, the evolution merges two of the
resultant components to form a single one that encompasses the internal state of its
antecedents. The evolved representation must then be reflected to produce a value
that can be integrated into the executing system. The components and connections are
then recomposed to give an evolved system, which continues to execute using the same

internal state as its predecessor.

Effecting incremental evolutions of this type requires:

* A means of halting the execution of those parts of the system involved in the

change without stopping the whole system.
* A representation of the system to which changes can be applied.

* A mechanism to integrate changes into the executing system.

Page 125

Chapter 5 Incremental Evolution

In the MPF the tools used to meet these requirements are decomposition, Hypercode
graphs and structural reflection respectively. Decomposition has been implemented in
the ArchWare ADL but could also be implemented in other languages, for example, in

Java using groups of threads.

5.2 Tools for Evolution

In order to provide the mechanisms for the ideal evolutionary scenario we have:

¢ Decomposition to partially stop the system.

¢ A Hypercode graph representation of the active system that can be used by a

developer or a meta-program.

¢ Structural reflection and first class functions to support reification, recompilation

and rebinding.

Hypercode graphs can represent an executing program. The advantage of using them
as a program representation is their ability to capture closure, allowing parts of a sys-
tem to be represented after decomposition without losing state. Therefore, internal
program data can be preserved over evolution by maintaining hyperlinks and evolu-
tion can proceed in accordance with the Principle of Minimal Disruption. The graphs
provide a representation that can be used for both evolving the components and re-
composing them into the new system. The compose and decompose operations used
together with the Hypercode graph representation provide a powerful evolutionary

tool.

Other properties of the framework for evolution are:

* A computationally complete language.

e Static and dynamic typing - programs which have been statically checked can be

dynamically bound into the system.
¢ Components and connectors.

¢ Composition and decomposition with reduction limit semantics (Sec. 3.7.5).

Page 126

Chapter 5 Incremental Evolution

An automatically evolving system requires a policy to determine how and when trans-
formations are to be applied. The MPF provides the mechanisms for change, but does
not determine evolution policy, which is application specific. The incremental evolu-
tion process described in this chapter is one possible process for which the MPF can be
used. In the ArchWare Framework, process models provide a construction methodol-

ogy and a process for controlled evolution (Sec. 3.7.3).

5.3 Incremental Evolution

The Principle of Minimal Disruption can be applied in the MPF context by a change
management policy that defines an incremental evolution process. In this process, sys-
tems are decomposed at the level of individual components, giving a meta-program
access to their Hypercode graphs. Using the MPF operation getGraphFromHyperlink, a
meta-program can then explode the components to any level of granularity, conform-
ing to the Principle of Unconfined Evolution. The Hypercode graph representation
of the components can be altered by the meta-program to evolve the program whilst
maintaining existing state and data. Finally, the changes are reflected into the execut-

ing system.

5.3.1 Composition and Decomposition

Hierarchical systems built using composition are suitable for evolution in the MPF
context. Constructing the systems in this way allows decomposition to be used in the
evolution of small parts of the system. The result of composing a set of components
is another component that can be decomposed. A possible evolution, demonstrating
the use of decomposition, is replacing one of the components in a composition, whilst
retaining the others. After decomposition, a Hypercode graph gives a representation
of the closure of the component being replaced. The graph can be used to construct an
updated component with the same internal state. Using the MPF means the replace-

ment can be automated.

In most programming systems, composition methods are irreversible and there is no
controlled way of accessing the internal state and data of an executing program. Con-
ventional measures to get around this involve either managing the information loss,

or serializing the information and writing it out to the file system or a database. The

Page 127

Chapter 5 Incremental Evolution

appropriate tools to do this must be put in place at development time. In some systems
it may not be possible to break the encapsulation at all. In contrast to ad-hoc methods,

the MPF supports a controlled and structured decomposition process.

5.3.2 Example of Evolution

To further explain the use of compose and decompose operations in an evolving sys-
tem, an example is given following the scenario depicted in Figure 5.1. The original
system, in the bottom left of the figure, is a composition of three filter components con-
nected by two pipes. Two of the filter components refer to some data outside of the

connected components, represented by the star shapes.

The first step for a meta-program evolving the system is to decompose it into its com-
ponents. It starts with a handle to the system, which is a component in an updatable
location. Decomposing the system gives the meta-program a Hypercode graph that
references the filter components and stops communication between them. They may,
however, continue to communicate with other components outside the composition.

Note that the filter components still maintain their links to the data.

After the decomposition, two of the filters are combined into a single filter, creating a
new component. The new component maintains links to the data referred to by the
original filters. In order to effect the changes, the meta-program traverses the Hyper-
code graph resulting from decomposition to get the Hypercode graphs of the filter
components. Using MPF operations, the graphs are combined to create the graph of a
new filter with the same internal state as the filters it is replacing in the form of hyper-
links. Next, the meta-program uses the evaluate operation on the modified Hypercode

graph to create a new filter value.

Finally, a new system is formed by re-composing the new filter component with the
unchanged filter and the new system is placed in the updatable location. After the
evolution, a new system has been created, but its composition includes, from its pre-
decessor, the filter that was not replaced in the recomposition as well as existing state

from the previous filters.

Figure 5.1 can be interpreted from both an architectural and a process perspective.
From the architectural perspective, the diagram captures the structure of the current
and evolved systems and the relationships between them in terms of which compo-

nents are unchanged, modified or replaced. From a process perspective the diagram

Page 128

Chapter 5 Incremental Evolution

captures how to evolve from the current to the new system: decompose into parts,

replace some components and recombine in the new configuration.

This process would be part of the policy of a change management system. For exam-
ple, an autonomic system, following the structure shown in Fig. 1.5, or a hierarchical
system as in the ArchWare environment (Greenwood et al., 2003), where the compo-
sition of components into separate sub-systems supports minimal disruption during

evolution.

5.3.3 Basic Update Evolution

A system may be evolved by processes other then decomposition and re-composition.
For example, basic update can be used to change data values in an executing system.
A program value in an updatable location can also be replaced by a new program.
The advantage of decomposition over basic update is that evolutions can be applied to
executing programs. However, the two process can be combined and a basic update

can take place after decomposition as in the previous example.

5.3.4 Entity and Representation Domains

In terms of the entity (E) and representation (R) domains (Sec. 3.6.2), Hypercode
graphs characterize E values in R, where they are manipulated by meta-programs. The
R containing Hypercode graphs is not exactly the same as the R for Hypercode. In the
standard R, values are reified to produce a visual representation for the programmer,
in an environment where they may be edited, exploded and evaluated by hand. In
the MPF representation domain (Ry;p), values are reified to data structures that can be

interpreted by a meta-program.

A fundamental difference between programmers and meta-programs is that whereas
programmers operate exclusively in the R domain, meta-programs may access values
in both Rysp and E. This is possible because the meta-programs themselves exist in E as
opposed to programmers, who are outside it. For this reason, Rp;p can be considered
a sub-domain of E. The relationship between the three domains is illustrated in Figure
5.2. When reasoning about operations performed by meta-programs, such as evalua-
tion, it is more intuitive to think of Ry;p and E in the same relationship as the standard

domains.

Page 129

Chapter 5 Incremental Evolution

REFLECT E|

REIFY ———

Vale Q

Representation |:|

foruser
Hypercode graph %‘:
Hyperlnk —

Figure 5.2. Domains. The Ry p domain exists inside the E domain. Meta-programs use hyperlinks
to access both Hypercode graphs and the values they represent. In the R domain

hyperlinks can only be used to access Hypercode representations.

Editing of a Hypercode graph takes place entirely in Rpp in the same way as editing of
a visual Hypercode representation takes place in R. The evaluate and explode opera-
tions used by meta-programs have equivalent definitions in E and Rysp to those of the
standard evaluate and explode in E and R. Meta-programs can, however, have direct
access to values in the E domain. When traversing a Hypercode graph, a hyperlink
may be dereferenced to give a value rather than the graph representation of that value
that would be returned by explode. The Hypercode operations are shown in Figure 5.3

in terms of E and Ry;p.

5.4 Evolution Patterns

Change management systems create evolution patterns for frequently used evolutions.

They make the task of defining meta-programs easier by promoting re-use. Rainbow

Page 130

Chapter 5 Incremental Evolution

E execute ;
EVALUATE
EXPLODE
S R

Value Q and its associated Hypercode graph %: (same colour)
Hyperlink ——»

Figure 5.3. Domains Operations. Edit, evaluate, explode and execute can be described in terms
of E and Rpsp. However, hyperlinks in Ry;p give direct access to values as well as their

representations.

(Sec. 2.5.4) calls evolution patterns architectural operators and associates them with par-
ticular styles. For example, a style that uses services defines the addService and re-

moveService operators.

As part of using the MPF for an incremental evolution process, an evolution pattern
has been defined to recompose a set of decomposed components. It eases the task of
a meta-program replacing one component in a composition with a new component.
Without the pattern, a meta-program has to explicitly reconnect all the components
as part of the re-composition. Assuming that the connections have not changed since
before the decomposition, the pattern takes care of reconnecting them in the same way
as before. This is just one example of an evolution pattern, in general they can be
defined to do anything a meta-program can do, i.e., anything within the power of the

programming language.

This evolution pattern is specific to the ArchWare ADL, where decomposing a compo-
nent disconnects the connections between its sub-components. In order for the sub-
components to continue communicating after the evolution they must be reconnected.

The pattern deals with the case where one of the sub-components is replaced and its

Page 131

Chapter 5 Incremental Evolution

replacement is a component that has the same connectivity. This new component may

be an evolution of the sub-component it is taking the place of.

A sequence of MPF operations are used to define the evolution pattern. They are used
in a given order at particular points in an incremental evolution. One set of operations
is used at the decomposition stage to preserve information about the connections. An-
other set of operations is then used at the re-composition stage to reconnect the com-
ponents in the same way using the information that was preserved. Table 5.1 defines

the operations.

Table 5.1. Evolution Pattern Operations. The operations that make up an evolution pattern

which replaces one sub-component of a decomposed component.

Name Description

newDecomposeGraph (any) — graph Create a graph representing the decompose clause for

the given value, which must be a composed component.

decomposeGraph (graph) — decomposed graph, | Decompose a composed component, return the decom-
saved connections pose sequence represented as a graph and a list of
the connections which the decompose has disconnected.
These two values are used by newComposeReplaceGraph

to recompose a new system.

newComposeReplaceGraph (decomposed Construct a graph representing a compose statement
graph, saved connections, new graph, name) — graph | that replaces one component of a composition with a

new component.

Decomposition is broken down into two operations. The first is newDecomposeGraph,
which takes a composed component and returns a graph representing a decompose
statement for that value. The second operation is decomposeGraph, which evaluates the
graph created by newDecomposeGraph. It returns a record containing the decomposed
parts, as well as information about connections. This information is used in the re-

composition to recreate the same connectivity as before the decomposition.

Re-composition is supported by an operation that constructs a graph to represent a
composition and then evaluates it. In the graph, one sub-component of the previously
decomposed component is replaced with a new component. The operation is newCom-

poseReplaceGraph. It takes as parameters:

¢ The decompose sequence and connection information returned by the decompose-

Graph operation.

Page 132

Chapter 5 Incremental Evolution

* A Hypercode graph representing the new component.

¢ The name of the component that is being replaced.

It constructs and evaluates the composition, the result of which is a graph of a hyper-
link referencing the recomposed component. newComposeReplaceGraph saves a meta-
program having to extract the sub-components it is not updating from a decomposition
sequence. It also saves the meta-program having to rewire the connections between

components, a process which can otherwise be complicated in the ArchWare ADL.

5.5 Summary

The process of incremental evolution involves:

e Partially stopping an executing system using decomposition.

* Acquiring a Hypercode graph representation of the system to which changes are

applied.

* Incorporating the changes into the executing system using structural reflection

through the evaluate operation.

The evolution should proceed according to the Principles of Minimal Disruption and

Unconfined Evolution.

Evolution patterns characterize common evolution processes in a change management
framework. An evolution pattern for incremental evolution has been defined, which
preserves information about a component’s internal topology before decomposition. It
then reconnects the sub-components in the same way when the component is recom-

posed after replacing one sub-component.

Page 133

Chapter 6

Evolution Example

his chapter presents an example of using the Meta-

Programming Framework to automate the evolution of an exe-

cuting system according to the Principle of Minimal Disruption.

Page 134

Chapter 6 Evolution Example

An evolution of an executing system using the MPF and following the Principle of Min-
imal Disruption is explained step by step. The example takes place in a Widget process-
ing factory. One component in the factory’s process produces Widgets, while another
component consumes them. In the evolution, the producing component is updated to
use a new function for Widget production. This involves replacing a component inside

the producer, without interrupting the components executing in the consumer.

The steps taken by a meta-program to perform the evolution are as follows:

1. Start with a handle to a composed component.

2. Decompose the component to get a sequence of its sub-components.
3. Find the component in the sequence that is to be be updated.

4. Get a graph representation of it.

5. Alter the graph representation.

6. Evaluate the altered graph representation to get a new component value that has

internal state from the old component.

7. Recompose the sequence of sub-components - replacing the updated one with

the new component value.

The meta-program is an open adaptive engine, because it updates a component to use
a function defined outside the system. The evolution is an illustration of component
replacement (Sec. 1.5.3). It uses the evolution pattern defined in Section 5.4 to decom-

pose, evolve and recompose a component.

6.1 Initial System Configuration

The initial system, depicted in Fig. 6.1, contains five components composed into two
separate sub-systems. The first system contains two components: one produces Wid-
gets and the other controls the operation. The second system contains a consumer and
a controller. The components that operate on Widgets have shared state as they operate

on objects in the same location, referenced from within the components by hyperlinks.

Page 135

Chapter 6 Evolution Example

System1
P
P_Controller Producer buildWidget
Type: Controller /
hyperlink $\
System?2
C
C_Controller Consumer
Type: Controller

Component |:| Value Q

Connection I Composition |:|

Figure 6.1. Initial System. The initial system where components operate on a Widget under the

supervision of Controllers.

This system is a single producer / consumer pair example and does not provide a tem-

plate for general producer / consumer systems or systems that can be evolved with
the MPF.

System1 composes P_Controller (a Controller) and P (a Producer), which produces Wid-
gets. P_Controller initiates Widget production by signalling to P on its starting connec-
tion. This causes P to produce a Widget before signalling to P_Controller that it has fin-
ished on its p_output connection. P_Controller then loops and the execution continues
indefinitely. System2 composes C_Controller (a Controller) and C (a Consumer), which

consumes a Widget before signalling its completion to C_Controller.

System1 will be evolved by updating the Producer to use a new function to produce
Widgets. Figure 6.2 shows the definitions of Producer and the component that is pro-

duced by the evolution, Producerl. The difference between them is that Producer uses

Page 136

Chapter 6 Evolution Example

buildWidget to create a Widget whereas Producer]l uses a newly defined buildNewWid-
get function. Producer and Producer] operate on a Widget in the same location because
currentWidget, the hyperlink referencing it, has not been changed. This means that the

new component operates on the same data as the component it is replacing.

Producer

behaviour

{ S
value p_input = connection() buildWidget
value p_output = connection()

replicate {
via p_input receive
currentWidget := buildWidget()
via p_output send

Widget

Producer1 buildNewWidget

behaviour

{

value p_input = connection()
value p_output = connection()

replicate {
via p_input receive

currentWidget := buildNewWidget()
via p_output send

}
}
hyperlink ——

behaviour O
function or data value O

Figure 6.2. Updating the call to buildWidget. Producer and Producerl differ in the function
used to produce currentWidget.

The example uses two systems to demonstrate that one system can continue to execute
while the other is decomposed and evolved. It also shows how an evolution pattern is

used to disconnect and reconnect components (P_Controller and P.

6.1.1 Initial System Definition in ArchWare ADL

This evolution has been implemented using the MPF with ArchWare ADL. In the im-

plementation, components are defined using ArchWare ADL behaviours (component

Page 137

Chapter 6 Evolution Example

instances) and abstractions (parameterized component types). In Figure 6.1 the Con-
trollers are defined as abstractions and the other components are behaviours. Abstrac-

tions are applied to create component instances.

Producer’s definition is shown in Figure 6.3. It initially waits for a signal, an empty
message, on the p_input connection (line 6). On receipt of the signal it produces a Wid-
get, assigns it to the currentWidget (line 7) and signals that it is finished on the p_output
connection (line 8). Producer will be evolved by replacing the call to buildWidget (line 7)

with a call to a new function called buildNewWidget.

1 value Producer = behaviour

2 {

3 value p_input = connection() ! a connection for empty messages
4 value p_output = connection()

5 replicate {

6 via p_input receive ! receive start signal

7 currentWidget := buildWidget() ! produce a Widget
8 via p_output send ! signal completion

s}

10 }

Figure 6.3. Producer. The definition of Producer in ArchWare ADL.

currentWidget and the call to buildWidget (line 7) are both hyperlinks. The currentWidget
hyperlinks in the Producer and the Consumer reference the same value, as was shown

in Figure 6.1.

The replicate clause (line 5) corresponds to the 7r-calculus concept of replication and
causes a new process (thread) to be started each time a signal is received on p_input.

The new process executes the code inside the replicate clause.

Consumer is defined in Figure 6.4. It waits for a message on c_input (line 6) before calling
the currentWidget’s consume function (line 7). When Consumer is finished it signals on
the c_output connection (line 8). In System2’s composition, c_output will be unified with

the finished connection in C_Controller.

The Controller (Fig. 6.5) abstraction manages a process by sending a start signal (line 6)
and waiting for a finish signal (line 7) before starting the process again. A while loop

(line 5) is used instead of a replicate clause because the first statement inside the loop

Page 138

Chapter 6 Evolution Example

value Consumer = behaviour

{

value c_input = connection() ! a connection for empty messages

value c_output = connection()

via c_input receive ! receive start signal

'currentWidget.consume ()

1

2

3

4

5 replicate {
6

7

8 via c_output send ! signal completion
9

Figure 6.4. Consumer. The definition of Consumer in ArchWare ADL.

sends a message. A replicate clause must start with the receipt of a message to prevent
infinitely many processes being spawned. Controller is applied in both System1 and
System?2 to keep the systems running indefinitely. Defining it as an abstraction allows

two separate instances to be created.

abstraction ()

value Controller

{

1

2

3 value starting = connection() ! a connection for empty messages
4 value finished = connection()

5 while true do {

6 via starting send ! send start signal

7

8

9

via finished receive ! receive finished signal

}

done

Figure 6.5. Controller. The definition of Controller in the ArchWare ADL.

System1 in Figure 6.6 composes Producer, labelled as P (line 2), and a Controller instance,
labelled as P_Controller (line 3). As a result of the unifications (lines 5-6), P_Controller
will send message to P to start it. On completion, P will signal back to P_Controller’s
finished connection. System1 is a mutable location (line 1) in order that it may be up-
dated with an evolved version of the system after evolution. Figure 6.7 shows System2,

which composes the Consumer (line 2) together with a Controller (line 3).

Page 139

Chapter 6 Evolution Example

1 value Systeml = location(compose {
2 P as Producer ! Producer labelled as P
! an instance of Controller labelled as P_Controller

3 and P_Controller as Controller()

4 where { ! unify the components' connections
P_Controller::starting unifies P::p_input, ! P_Controller starts P
! P finishes and signals to P_Controller

6 P::p_output unifies P_Controller::finished

7 }

8 1

Figure 6.6. Systeml. Systeml defined in ArchWare ADL. It composes Producer with a Controller.

1 value System2 = location(compose {

2 C as Consumer ! Consumer labelled as C

! an instance of Controller labelled as C_Controller

3 and C_Controller as Controller()
4 where { ! unify the components' connections
5 C_Controller::starting unifies C::c_input, I C_Controller start C
! C finishes and informs the C_Controller
6 C::c_output unifies C_Controller::finished
}
8 P

Figure 6.7. System2. System2 defined in ArchWare ADL. It composes Consumer and a Controller.

The system defined here is executing at the time the example starts. Code fragments

in the following sections are from the meta-program performing the evolution.

6.2 Decompose

Decomposing the executing program breaks connections that were unified in the com-
position but does not stop the execution. This allows access to components which were

encapsulated by the composition, as it returns a sequence of the composition’s parts.

Page 140

Chapter 6 Evolution Example

In combination with the program representation provided by the MPF, this means that
starting with a single handle to a composed system, a value inside the system can be
located and, if it is in a mutable location, updated. This evolution can occur without
affecting parts of the system that are not communicating directly with components in

the decomposed part.

The meta-program is an ArchWare ADL program in the same execution space as the ex-
ample system. It starts with a handle to a mutable location containing System1, which it
decomposes before locating P inside the decomposed system. Figure 6.8 shows the sys-
tem after the decomposition, where the connections between P_Controller and P have

been broken. The next section shows the code a meta-program uses to perform this

decomposition.
System1
P_Controller Producer buildWidget
Type: Controller hyperllnk /
hyperllnk N
System?2
C
C_Controller Consumer
Type: Controller

Component |:| Value Q

Connection I Composition |:|

Figure 6.8. Systeml Decomposed. The system after Systeml's decomposition. The difference

from the initial configuration is that P_Controller and P are no longer connected.

Page 141

Chapter 6 Evolution Example

6.2.1 Decompose Systeml

According to the evolution pattern, the first step in a decomposition is to use the new-
DecomposeGraph operation to construct a graph representing a program that decom-
poses the value. Passing System1 as a parameter to newDecomposeGraph gives a Hyper-

code graph which, when evaluated, will decompose System]1.

! Construct a graph representing the decomposition.

value decomposeGraph = newDecomposeGraph(Systeml)

The second step is to evaluate this graph using the decomposeGraph operation, which
causes System1 to be decomposed, as pictured in Figure 6.8. The operation preserves
information about which connections were unified before the decomposition. This
information is used later, when System1 is recomposed after the evolution, enabling

the connections to be re-unified automatically.

! Evaluate the decomposition graph.

value decomposeResult = decomposeGraph(decomposeGraph)

decomposeGraph returns a record with two parts: saved_connections and decompose_se-
quence. The former is used for re-composition in order that the components can be
re-connected in the same way as they were before the decomposition. The latter is the
result of the standard decompose operation and allows the meta-program access to the
components in the composition. Itis a sequence of two components, P and P_Controller,

expressed as a graph (Fig. 6.9).

! Get the sequence returned by the decompose statement.

value decomposeSequence = decomposeResult.decompose_sequence

6.2.2 Locate P

The meta-program needs to know something about the composed system in order to
locate the component to be replaced, e.g., the label of the component (in this case P) or
its position in the sequence. In this example, the meta-program knows that Producer is

the first component in System1’s composition.

To get a handle to Producer, the meta-program traverses the graph representing the
sequence returned by decompose. The function getFirstBehaviourFromDecompose con-

veniently does the traversal, returning a hyperlink that references the component:

Page 142

Chapter 6 Evolution Example

sequence
. P
P h){gerllnk . Producer
. P_Controller
P_Controller h Yy Qerl ink Type: Controller

Figure 6.9. Decomposition Sequence. The decomposition sequence references the two sub-

components in System1.

value ProducerHyperlink = getFirstBehaviourFromDecompose (decomposeSequence)

6.2.3 Get Graph Representation of Producer

At this point, the meta-program has a hyperlink to Producer. The getGraphFromHyper-
link function is used to dereference the hyperlink and get a handle to a graph represen-

tation of Producer. This graph will be altered to produce a graph for Producer1.

value ProducerGraph = getGraphFromHyperlink(ProducerHyperlink)

6.3 Update Producer

Producer will be updated by changing the hyperlink that references buildWidget to a
hyperlink that points to buildNewWidget. Figure 6.10 shows Producer’s graph and the
hyperlink which will be changed. First, the function value that the new hyperlink will
reference must be created. Then the meta-program will traverse the graph to find the

hyperlink to be replaced.

6.3.1 Create buildNewWidget

To replace a hyperlink correctly, the meta-program needs to know the type of the value
it references. Replacing a hyperlink with one referencing a value of a different type

may cause a compilation error. A new function, buildNewWidget, with the same type

Page 143

Chapter 6 Evolution Example

Graph for Source code for
g Producer - behaviour
—~—

" Producer

—

value p_input = connection()
value p_output = connection()

behaviour

IK

replicate {
via p_input receive

———» currentWidget := buildWidget()

via p_output send

value - }

}

replicate |---»

F---m| receive
clause

currentWidget ——» Widget

buildWidget H
X

\

\
Meta-progam will change this hyperlink

i

Figure 6.10. Producer Graph. The meta-program has the graph representation of Producer, from
which it will make Producerl by changing the hyperlink.

will replace buildWidget. The meta-program can find out the type of buildWidget by

parsing the type information available in its hyperlink node.

buildNewWidget is defined using a string of ArchWare ADL supplied by a developer,
whose intervention is necessary to introduce new functionality. The compile function
(Sec. 3.7), which is part of the standard function set available in the ArchWare ADL
is used to reflect the string representation of buildNewWidget into an ArchWare ADL
value. It takes a string representing the code to be compiled and returns the compiled

value.

The following process is used to create the new function and a hyperlink referencing
it:

1. Define buildNewWidget as a string of ArchWare ADL.

value buildNewWidgetString = " "

Page 144

Chapter 6 Evolution Example

2. Compile the buildNewWidget function.

value compilationResult = compile(buildNewWidgetString)

3. The result of compilation is a function, typed as an infinite union type, that must
be executed to get a handle to buildNewWidget. Before it can be executed it must

be projected onto a function type.

1 value buildNewWidget = project compilationResult.result as X onto
2 function[]— any: X() ! The result of X() is the buildNewWidget functiomn.
3 default: any("")

The result of compilation is projected onto a function type in line 2 and then
executed. If the compilation was not successful the default clause in line 3 will be

executed instead. The meta-program now has a handle to buildNewWidget.

4. A hyperlink that references buildNewWidget is created and associated with Pro-
ducer’s graph using the newHLElement operation. Hyperlinks need to be associ-
ated with a graph to add the values they reference to the closure of the program

the graph represents.

value buildNewWidgetHyperlink =
newHLElement (buildNewWidget, "buildNewWidget" ,Producer)

6.3.2 Replace Hyperlink

Producer’s Hypercode graph is updated by replacing the hyperlink to buildWidget with
the new hyperlink to buildNewWidget. The result is a Hypercode graph representing

Producerl.

The meta-program uses traversal operations on Producer’s Hypercode graph to find
the hyperlink that will be replaced. getAllHyperlinks returns a list of the hyperlinks in
Producer’s graph, providing an easy way for the meta-program to find the buildWidget
hyperlink without knowing anything about the structure of the rest of the graph.

value hyperlinkList = getAllHyperlinks(ProducerGraph)

The following code in the meta-program searches through the list of hyperlinks until

one is found called buildWidget:

Page 145

Chapter 6 Evolution Example

value list = location(hyperlinkList) ! variable to store the search result

! search the list until a hyperlink with the name buildWidget is found
while 'list.node.name <> "buildWidget" do list := '('list.next)

value buildWidgetHyperlink = 'list.node ! assign search result

The replaceChild function is used to replace the buildWidget hyperlink with the newly
created buildNewWidget hyperlink.

replaceChild(buildWidgetHyperlink,buildNewWidgetHyperlink)

Apart from the hyperlink that has been replaced, the hyperlinks in Producer have been
preserved over these changes. When the graph is evaluated a new component is cre-
ated containing hyperlinks referencing the same values as in the original component.
For example, currentWidget, seen as a hyperlink in Figure 6.3, still refers to the same

extant value after the evaluation.

At this stage, Producer] exists in the form of Producer’s altered graph representation.
The graph’s evaluation returns a hyperlink referencing the new value Producer1. Before
evaluation, the operation newDeclarationGraphForGraph is called to extend the graph to

be a definition of a new value with the name Producerl.

value Producer1Graph = newDeclarationGraphForGraph("Producerl",ProducerGraph)

The evaluateGraph operation performs the evaluation.

value Producerl = evaluateGraph(Producer1Graph)

6.4 Recompose Systeml

The final part of the evolution pattern involves re-composing System1 using Producer]
and the original P_Controller component. As described in Chapter 5, in the evolution
pattern, recompose is distinguished from a standard composition because it uses in-
formation about connections that was saved during decomposition. Connections that

were unified in the original compose statement are re-unified.

The parameters for the newComposeReplaceGraph operation used to recompose are:

Page 146

Chapter 6 Evolution Example

decomposeResult.decompose_sequence The sequence obtained by decomposing Sys-
tem1 (Fig. 6.9).

decomposeResult.saved_connections The set of connections between components as

they were before decomposition.
Producerl The new component.

P The label of the component being replaced. This label was attributed to Producer in

the initial composition shown in Figure 6.1.

value composeGraph =
newComposeReplaceGraph(decomposeResult.decompose_sequence,
decompose_sequence.saved_connections,

Producerl, "P")

The result of newComposeReplaceGraph is a graph representing a compose statement for
Systemla. Figure 6.11 shows its components and connections, as well as the source

code for the compose statement.

The compose graph is evaluated as follows:

value Systemla = evaluateGraph (composeGraph)

It remains for the meta-program to update the location that contained System1 using

the updateHyperlinkLocation operation:

updateHyperlinkLocation(Systeml,evolvedSystem)

The meta-program is complete and the system has been evolved. State has been pre-
served by maintaining hyperlinks over the change (currentWidget in Producer) and the
rest of the system continued to execute during the evolution. The use of MPF op-
erations and an evolution pattern means that, if some program values were param-
eterized, the meta-program could be used to update another system with the same

structure.

6.5 Summary

This chapter gives an example of evolution where one component in an executing sys-

tem is updated by a meta-program. The example follows the Principle of Minimal

Page 147

Chapter 6 Evolution Example

System1a

P

Producer1
P_Controller

Type: Controller hyperlink
hyperlink

buildNewWidget

compose {
P as Producer1
and P_Controller as Controller()

where {
P_Controller::starting unifies P::p_input,
P::p_output unifies P_Controller::finished
}
}

Figure 6.11. Systemla. Systemla composes Controller (unchanged from System1) and Producerl.
The Hypercode graph produced by newComposeReplaceGraph represents the code for

the compose statement shown here.

Disruption as other components continue to execute during the evolution and extant
state in the updated component is preserved. The code for the example is in Appendix
C.

The steps taken by the meta-program are:

1. Start with a handle to a composition of components.

2. Decompose to get the sequence of sub-components.

3. Find the component in the sequence that will be updated.
4. Get a graph representation of it.

5. Alter the graph representation.

Page 148

Chapter 6 Evolution Example

6. Evaluate the altered graph representation to get a new component value.

7. Recompose the set of sub-components - replacing one with the new component

value.

The diagram in Figure 6.12 illustrates this process. A component is decomposed (1) to
get a sequence of sub-components. Dereferencing a hyperlink in the sequence gives a
Hypercode graph representing the sub-component (2). The graph is updated (3) and
evaluated (4) to create a new value. The component is then recomposed (5) to include

the new sub-component.

Page 149

Chapter 6 Evolution Example

sequence

(—»={ behaviour | hyperlink--—--»
—[_Tabel | hyperlink----#
- connections | hyperlink-—-»
[behaviour | hyperlink -
—»[__Tabel __}—#=hyperlink—»
L= connections | hyperlink -

value declaration “value”
—»[_identifier | “foo”
- o
L[clause |- hyperlink —

clause

value declaration “value”
—»[_identifier | “bar”
[
hyperlink ----»

value declaration
[identifier |—p» “foo”

clause

—» “value”

updated -
hyperlink

value declaration
[identifier | “bar”

“value”

hyperlink ----m

R

Figure 6.12. Evolution. The steps taken by a meta-program updating a component in a composi-

tion.

Page 150

Chapter 7

Implementation

his chapter details the implementation of the Meta-
Programming Framework including the data structures

used for Hypercode graphs, the use of generative programming
techniques to evaluate and explode Hypercode graphs, and the MPF

operations.

Page 151

Chapter 7 Implementation

The MPF defines Hypercode graphs and an API that can be used to evolve executing
systems. Hypercode graphs represent executing programs and implementing them re-
quires a means of representing every data type in the universe of discourse, including:
scalars, user defined types and reference types. The Hypercode operations evaluate
and explode allow Hypercode graphs to be executed and introspected. The API, an
interface for meta-programs to interact with Hypercode graphs, is defined by the MPF

operations.

A summary of the overall structure is followed by a specification of the data structures
used to represent Hypercode graphs. The use of generators to realize the evaluate
and explode operations is explained and the MPF operations are described. Finally, an
interface that allows users to interact with Hypercode graphs using the same mechan-

isms as meta-programs is presented.

7.1 System Structure

Figure 7.1 gives an overview of the framework’s software architecture, where each
layer uses mechanisms provided by the layer below. It shows that a meta-program
uses operations provided by the MPFE, which in turn uses the functionality of a Hyper-
code system. The Hypercode system includes Hypercode Representations and uses the
ArchWare ADL compiler.

Meta-programs interact with Hypercode graphs using the MPF operations. These op-
erations rely on the Hypercode operations evaluate and explode, which use data struc-
tures called Hypercode Representations to model the graphs. The ArchWare ADL com-

piler is used as part of the evaluation process.

In addition to the MPF’s interface for meta-programs, there is a user interface, which
provides the Hypercode operations edit and implode. A user may view, edit and evolve

Hypercode programs through the interface.

7.2 Hypercode Graphs and Hypercode Representations

Hypercode graphs represent programs by augmenting program syntax with hyper-
links to the data graph. Within the Hypercode system, Hypercode graphs are imple-

mented using data structures called Hypercode Representations (HCRs).

Page 152

Chapter 7 Implementation

User

Meta-Program B
User Interface

e e

1

Meta-Programming Framework — MPF Operations

G G
1

Evaluate Explode

Hypercode System

Data Structures

Hypercode Representations

SR e
1

ArchWare ADL
Compiler

Figure 7.1. Architecture Overview. The components in the Framework implementation and their

main functions. Each layer uses the mechanisms provided by the layer below.

Page 153

Chapter 7 Implementation

Fine grained manipulation of Hypercode graphs is supported to allow unrestricted
changes by meta-programs. Hypercode graphs and values are associated with each
other and both available to meta-programs so that a meta-program dereferencing a
hyperlink can access either a Hypercode graph representation or the value itself. The
implementation is reusable in that the Hypercode graphs and Hypercode operations

can be re-used for different programming languages.

In a Hypercode graph implementation:

* Graphs must be able to be generated at runtime to show the current state of vari-

ables and to allow for the representation of user defined types.

* Hyperlinks are used to model reference types. Multiple identifiers in a program’s
source code that represent the same value should become hyperlinks that refer-

ence the same value.

* Program source and closure must be available to support the generation of Hy-

percode graphs for code values.

7.2.1 Hypercode Graphs

The type of a Hypercode graph was described in Chapter 4 and the definition is re-
peated here in Figure 7.2. Graphs have three types of nodes: program syntax, text and
hyperlink. An illustration of a Hypercode graph is shown in Figure 7.3 (repeated from
Chapter 4). It shows how hyperlinks from the abstract syntax tree allow traversal of

the full program closure.

Meta-programs can access a Hypercode graph for any first class value. Graphs for
data values are generated by the Hypercode system when they are accessed by a meta-
program. Graphs for code values are created at compilation time and stored in their
closure. A compilation time syntax parse returns the source code marked up! with
syntax information (Sec. 7.2.1), which is used to generate the graph. Identifiers in
the code are turned into hyperlinks at the same time. The parsing could take place
outside the compiler, however, because a full syntax analysis is required to generate
the abstract syntax tree, it is most efficient to include it in the syntax analysis performed

at compilation time.

IMark-up languages, e.g., TeX and XML, combine text with extra information about the text.

Page 154

Chapter 7 Implementation

type graph is record
(
node: nodeType,

parent: graph,
children: list of type graph

type nodeType is record
(
name: string,
text: string,

attributes: list of (name, value) pairs

Figure 7.2. Hypercode Graph Definition. The type definition of a Hypercode graph in pseu-

docode.

. . Two hyperlinks
information referencing the
same value
e[ssies | noerins ——~(J)
work

Abstract syntax tree nodes
Data graph .

nodes

Figure 7.3. Hypercode Graph. A Hypercode Graph incorporates program syntax and existing

values.

Page 155

Chapter 7 Implementation

Hyperlinks

Hyperlink nodes reference values with a level of indirection. The value of an ID at-
tribute (shown in Fig. 7.4) is used to locate a hyperlink in the list of hyperlinks that
is part of an HCR data structure. Using indirect rather than direct references to val-
ues allows the Hypercode graph to remain valid outside the domain of the executing
system. This permitted the construction of a visualizer and user-driven development
interface for Hypercode (Sec. 7.5). The user interface is written in Java but can oper-
ate with Hypercode graphs in any language because the graph does not contain direct

references to, for example, ArchWare ADL values.

node
4» “hyperlink”
e
attributes

- »empty
attribute list

EE— next

Figure 7.4. Hyperlink Node. A hyperlink node with an ID value of 2.

The IDs of hyperlinks are valid within the context of their HCR. To copy a hyperlink
from one graph to another, a meta-program uses the copyHyperlink and pasteHyperlink
operations. copyHyperlink creates a graph that is a hyperlink node contained in its HCR.
pasteHyperlink uses the ID information in the graph from copyHyperlink to dereference
the hyperlink. It then adds the obtained value to the list of hyperlinks associated with
the new graph into which the hyperlink is being pasted. Finally, it inserts the hyperlink
as a child of the graph node. These operations ensure that the hyperlink is valid within
the context of the graph into which it has been pasted.

XML

The abstract syntax tree and hyperlink structure of a Hypercode graph is stored in the
HCR using XML. Advantages of the approach include:

Page 156

Chapter 7 Implementation

¢ XML is a convenient way of representing a tree.

* XML representations are easily viewable making development and debugging

simpler.
¢ The standard format allows use of standard XML parsers.

* Hypercode graphs can be re-used by other programs, e.g., the user interface, that

can easily import the XML format.

¢ In order to accommodate outside interactions and open evolutions, a meta-pro-
gram may read in predefined Hypercode programs from a file to introduce them

into the system. The XML format makes this process straightforward.

* The existing graph representation may be extended by the addition of new XML

tags, e.g., to define new abstractions such as software architecture properties.

Extending the context free syntax (defined in Appendix A.1) requires only the addition
of the relevant new XML tags. These must be incorporated in the syntax parser, which
generates an XML representation from source code. Adding new tags to the definition
should not affect the XML parser, which produces a Hypercode graph from the XML
document, as it relies only on the structure provided by start and end tags and does
not use information in the tag names. Operations over the abstract syntax tree remain

unaffected because they ignore the tags they do not directly use.

The XML representation can be re-used for different programming languages. The
program source code and some of the tags change but the Hypercode graph structure

remains unchanged.

7.2.2 Hypercode Representations

Hypercode Representations (HCRs) are records containing a field for source code,
typed as a string of XML, and a field for a list of hyperlink values. References from
the source code to the list of hyperlinks are hyperlink tags.

An illustration of the elements in a HCR is shown in Figure 7.5 along with a type defi-
nition in pseudocode. Both HCRs and Hyperlinks have an id, a unique identifier, and
are typed as records. HCR IDs identify HCRs in a table of those in current use. This ta-

ble is maintained by the Hypercode system, which is session based. This is necessary

Page 157

Chapter 7 Implementation

because Hypercode graphs use IDs as indirect pointers to values. The values them-
selves are not included in the graphs. As long as a meta-program is using a Hypercode
graph the Hypercode system needs to keep the HCR data structure so that it can deref-
erence the hyperlinks. Sessions are needed to allow the HCRs that accumulate in the

Hypercode system to be garbage collected.

The source code of an HCR is stored as a string of XML and its hyperlinks are in a
HyperlinkTable, which is a linked list. Hyperlink IDs are used to locate hyperlinks in

the HyperlinkTable. Hyperlinks contain their ID and a reference to an extant value.

HCR

/hyperlinks : HyperlinkTable

source : string

“<her id=12>
<hl id=1>hl1</h1> - - - ~N
</hcr>” hyperlink : Hyperlink

HyperlinkTable

/next : HyperlinkTable

O RN

N\
\ J

N\

/ N\

nil (HyperlinkTable)

Hyperlink

id : string entity : any

w1

type Hyperlinkisrecord (id: string, entity: any)
type HyperlinkTableislist (hyperlink: Hyperlink, next: HyperlinkTable)
type HCRisrecord (id: string, source: string, hyperlinks: HyperlinkTable)

Figure 7.5. Hyperlink and HCR Type Definition. The type definitions for Hyperlinks and HCRs

graphically and in pseudocode.

Page 158

Chapter 7 Implementation

7.2.3 Functions

The HCRs for code values are generated at compilation time and stored in the object
closure of the value that is created. Source code must be retained at compilation time
since original program source code cannot be generated from a code value. (Reverse
engineering may be able to generate program source code but it will not necessarily be

the same as the original and it is faster and simpler to retain it.)

In the implementation of Hypercode for ArchWare ADL, there are three types that
require source code retention: abstractions, behaviours and functions. All three will be
referred to as code values. The first task in creating an HCR is generating an abstract
syntax tree from the source code. The second is replacing identifiers with hyperlinks,
which involves generating code for hyperlinks referencing values that may not exist at
compile time. These are values that will be created during the execution of the code to
be compiled, as opposed to hyperlinks that are already in the code before compilation

and reference extant values.

Generate XML from Original Source

The abstract syntax tree is generated as XML mark-up in the program source code. To
generate the XML, functions in the compiler are modified to output XML as well as
object code. After the modification, the compiler generates a separate string of XML.
This string contains all the code that the compiler has read in, interspersed with XML
tags containing syntax information. For example, the function which processes strings
outputs: <string> processed string </string>. After the compiler parses a code
value, i.e. after generating the object code containing the code value definition, it out-
puts object code in which a new HCR is created and the string of XML assigned to its
source field. When the code is executed, the HCR is stored in the closure of the code

value as shown in Figure 7.6.

This process is clear cut when considering the complete original source code, which
is represented in a single HCR. However, it becomes more complicated when taking
into account multiple nested code values. Each of these code values must have its own
HCR containing the relevant portion of the source code. The multiple, nested portions
of source code are handled by maintaining a data structure with all the source code for
each scope. The source code for a particular code value is the source code stored for

the relevant scope level. Code is only stored for one code value at a time in the current

Page 159

Chapter 7 Implementation

function

Figure 7.6. Code values with HCRs. Code values, e.g., functions, have an HCR in their closure.

scope level. At the end of a code value definition, its code is discarded at that level.

The code may still be retained as part of a definition in an outer scope.

Hyperlinks in Code Values

The compiler considers hyperlinks in two categories. The first category comprises hy-
perlinks extant in the original source code. These are processed by including their
hyperlink tags and IDs in the XML output string. The second category contains hyper-

links created in the compilation process.

The compilation process produces an HCR for each code value in the program and
each one contains only that part of the source code that is in the scope of the code. For
example, the code here could be a function definition within a larger program. The
function definition may contain references to identifiers that are declared in an outer
scope. The HCR for this function contains only its own code and when viewed in iso-
lation, the identifiers declared elsewhere are undefined within the function. Therefore,
in order that the HCR for the nested code value (i.e. the function) contains a correct
program, identifiers declared in the outer scope are turned into hyperlinks. Figure
7.7 shows a function nested in a behaviour definition. The HCR for the function has

hyperlinks in its source referencing counter, a variable declared in an outer scope.

The same problem, i.e., retaining references to variables declared in an outer scope, is
faced when writing compilers for languages with first class procedures. A first class
procedure can execute outside the domain in which it was declared. Therefore, the pro-
cedure’s environment must be accessible from the procedure. Either a single pointer
(static link) to the environment, or a pointer for each individual variable value can

be used. The latter approach has been taken for the Hypercode implementation. The

Page 160

Chapter 7 Implementation

function {
counter = 0
function() {
process = function() ({ counter := counter + 1
counter := counter + 1
e e e }
}
process ()
}
The source code for the main The source code for process’s
HCR contains a nested function HCR contains hyperlinks to
definition counter Which is declared in

an outer scope

Figure 7.7. Hyperlinks in nested code values. An example showing that identifiers declared in
an outer scope of a nested function become hyperlinks. The source code is shown as in

a user interface.

same technique was used in the implementation of the PamCase Machine (Cutts et al.,

2000), an abstract machine for a persistent system.

Creating a hyperlink in the compiler requires firstly, a hyperlink tag to be output into
the generated XML, and secondly, a reference to the value to be added to the HCR’s
list of hyperlinks. A hyperlink tag is generated by creating a unique ID. Creating a
reference to the value presents more of a problem because at compilation time the value
does not exist. Therefore, the compiler generates object code to create the reference

after the value is created. It uses the following algorithm:

1. If the declaration of the current identifier was in an outer scope:

(a) Generate code that creates a reference to the value and adds the reference to
the list of hyperlinks in the HCR.

Page 161

Chapter 7 Implementation

(b) Concatenate the generated code to the code containing the definitions of

other hyperlinks in the code.

(c) If the end of the code value’s scope is reached, output the generated code

into the code stream being created by the compiler.

Instead of just identifiers declared in an outer scope, all identifiers in the original source
code may become hyperlinks, but this is not a requirement for a valid Hypercode rep-
resentation. Identifiers declared in an outer scope are undefined in the code value,
which is therefore not a valid program in its own right unless it includes hyperlinks
to such values. On contrast, identifiers declared within the code value are defined and

do not need to be hyperlinked for the code to be valid.

7.2.4 Data Values

The Hypercode graph of a data value is generated every time the value is accessed by a
meta-program using the getGraphFromHyperlink operation. This guaranteeing that the
graphs of mutable values are always up to date. For example, consider the hyperlink
to counter in Figure 7.7. The meta-program will get a correct value for the counter
every time it accesses the value through the hyperlink even though the value of counter
may change. The explode operation, explained in Section 7.3.2, is used to generate the

graphs of data values.

7.3 Implementing Hypercode Operations using Genera-

tors

The Hypercode system has been implemented using generative technology (Czarne-
cki and Eisenecker, 2000). Generators are used to transform a Hypercode graph into
an equivalent program without hyperlinks that can be compiled with a standard com-
piler. Transformations are applied to the Hypercode graph according to a set of rules.
This allows the construction of a Hypercode system that can be applied to different
programming languages by changing the output of the generator’s transformations.
The generative programming technique used is source-to-source transformation. It al-
lows the Hypercode system to use existing compilers and have a small core that only

contains the generators instead of a complete Hypercode compiler.

Page 162

Chapter 7 Implementation

The generic design of the Hypercode system means it can be applied to different pro-
gramming languages with relative ease. Hypercode graphs can model values in any
language and the graphs can be evaluated by plugging a small set of rules into the
generator and then using a standard compiler. The explode operation, which gener-
ates Hypercode graphs for data values, uses another set of rules that can be plugged
in.

Both the evaluate and explode operations were originally constructed for a ProcessBase
Hypercode system. Minimal changes were necessary to convert the implementation
to ArchWare ADL Hypercode. The system operates on the Hypercode graph struc-
ture and the programming language is largely irrelevant. Changes included use of an
ArchWare ADL compiler instead of the ProcessBase compiler, and updating some gen-
erators to produce ArchWare ADL code equivalent to the ProcessBase code they were

previously outputting. The examples in this section are in pseudocode.

7.3.1 Evaluate: Using Generators to Compile and Execute Hyper-

code

The evaluate operation compiles and executes a Hypercode graph and returns a Hy-
percode graph representation of the result of execution. The challenge in implement-
ing evaluate lies in linking existing values, referenced by hyperlinks in the Hypercode
graph, into the executable code. Part of this work has been published in the ACSC pa-
per: Using Generative Programming to Visualise Hypercode in Complex and Dynamic
Systems (Mickan et al., 2004).

Evaluate operates on a Hypercode graph in four steps: transformation, compilation,
binding and execution. The progression, shown in Figure 7.8, produces a Hypercode
graph representation. Generators map the original Hypercode onto some target code
according to a set of rules. Compiling, binding and executing the target code completes

the evaluation process.

Figure 7.9 shows how evaluate can be defined in terms of the functions applied to the

Hypercode, where h is some Hypercode.

A Hypercode graph can be flattened to an XML string which is the HCR source. How-
ever, the graph is still a mixture of source code and hyperlinks and are therefore not
suitable for compilation by a standard compiler, which operates on purely textual rep-

resentations and is not able to incorporate the extant values referenced by hyperlinks

Page 163

Chapter 7

Implementation

Hypernode System

(Compilation

N

< Execution

N

Figure 7.8. evaluate. The steps of the evaluation process.

evaluate (h) = explode (execute (compile (transform (h))))

Figure 7.9. evaluate. Applying evaluate to a Hypercode representation

into its output. The generators produce a program equivalent to the Hypercode graph,

which can be compiled because it contains only text and no hyperlinks.

Reducing a Hypercode graph to a textual representation causes the references to extant

values to be lost. The transformed code may be compilable but it is not equivalent to

the Hypercode graph unless the extant values are bound into it. Therefore, these values

are bound in after compilation using a generator function, which takes the values as

parameters. Executing generator produces an executable and complete version of the

original Hypercode graph. The two steps shown in red in Figure 7.8, transformation

and binding, will be described in the following sections.

Page 164

Chapter 7 Implementation

An overview of the steps of evaluate is depicted in Figure 7.10. The input is a Hyper-

code graph representation including hyperlinks.

value filter = function(in_stream: string) -> string
spacer ++ in stream ++ spacer

filter (in pipe)
| \‘ \‘

input

evaluate

Hypercode > ™
text Generative Engine

4 N
Compilation
o %

-
Execution
o

output

Figure 7.10. evaluate. The steps of the evaluate operation

The following steps define the algorithm for evaluation:

1. The Hypercode graph is input to the generative engine, which outputs the gen-

erated source code and a list of hyperlink values.

Page 165

Chapter 7 Implementation

2. The source code is then fed to the compiler which produces the function exe-

cutable generator.

3. The binding step involves executing generator, which takes the hyperlink values
as parameters. Generator returns a function called wrapper that wraps the original

source code and in which the hyperlink values are bound.
4. The final step is executing wrapper and returning the resultant value as a Hyper-
code graph.
Transforming Hyperlinks

The example code in Figure 7.11 will be used to show how the transformation pro-
gresses in the generative engine. It defines a function filter, which takes a string as a
parameter and returns that string concatenated with two spacers. The spacer hyperlinks
both reference the same value. The filter function is called with the hyperlink in_pipe as
its input parameter. This produces a value which, expressed as a Hypercode graph, is

the final result of the evaluation process.

filter = function(in_stream: string) — string

spacer ++ in_stream ++ spacer

filter(in_pipe)

Figure 7.11. Example code. A short example shown as in a user visualization. The filter function
is defined, which takes a string parameter and returns the string concatenated with a

spacer at either end. The function is then called.

The hyperlinks are replaced with standard identifiers recognizable by the compiler in

the following steps:

1. Replace each hyperlink with a newly generated unique identifier name.
2. Generate a type definition for each hyperlinked value.
3. Generate code to associate the type definitions with the identifiers.

4. Concatenate the generated type definitions with the rest of the source code.

Page 166

Chapter 7 Implementation

The example program has three hyperlinks and in the first part of the transformation

each hyperlink is replaced with a new, unique name (step 1).

filter = function(in_stream: string) — string

hyperlinkl ++ in_stream ++ hyperlinkl

filter (hyperlink2)

hyperlink1 replaces spacer and hyperlink2 replaces in_pipe. Introducing these new identi-
fiers into the code in a strictly typed language requires type coercion (step 2). Most of

the code generated by the following transformations is concerned with this task.

The code fragment above, containing undeclared identifiers, is made into legal code by
including declarations for the new names, hyperlinkl and hyperlink2. These names do
not define new values, instead the declaration must associate the new names with the
existing values referenced by the hyperlinks. The hyperlink values are not currently
in the scope of the transformed source. They will be introduced as parameters to the
generator function, which is elaborated on in the next section (Sec. 7.3.1). The result
of introducing the values in this way is that they are in scope and typed as any, the

infinite union type.

In the code, the new identifier names are the actual type of their associated value rather
than the infinite union type. Hence, the first step is the generation of code defining the
value’s type. The second step is the projection of the value onto the new type. The final

step is the declaration of the new identifier as the result of the projection.

The first two lines of the generated code in Figure 7.12 are the definitions of the types
of the new hyperlink values (red). The type definitions are obtained using reification
of the type system. That is, the Hypercode system applies the typeOf function (Sec.

3.3.2) to the infinite union typed values. It returns a code string representing the type.

Lines 4 to 9 contain the code to project the hyperlink values onto their specific types.
The values have been introduced as a linked list parameter to the generator function.
getFromList is used to extract a hyperlink value with the given name from the list, which
is a list of name, value pairs. The project statement casts the value from the infinite
union type onto the type corresponding to the hyperlink and defined above (lines 1 and
2). That is, the identifier with name hyperlink1 is assigned the value projected onto type
hyperlink1 _type, which is string. The definition of the getFromList function is not shown

Page 167

Chapter 7 Implementation

! Type declarations
1 type hyperlinkl_type is string
2 type hyperlink_type is string

! Define the function getFromList (only part shown here)

3 getFromList = function(name: string) — any

! Projections - fetch the values and cast them onto their correct types

4 hyperlinkl = project getFromList("hyperlinkl") as X onto
5 hyperlinkl type: X
6 default: nil (hyperlinkl type)

7 hyperlink2 = project getFromList("hyperlink2") as X onto

(e0]

hyperlink2 type: X

©

default: nil (hyperlink2 type)

10 filter =function(in_stream: string) — string

11 hyperlinkl ++ in_stream ++ hyperlinkl

12 filter (hyperlink2)

Figure 7.12. Example. Include type declarations and projections for the new identifiers (lines 1 to

9).

here. It finds a value in a linked list according to a given key (e.g. hyperlink1). The
default clause (lines 6 and 9) is executed when the hyperlink value is not of the correct
type. It returns a nil value of the correct type. This clause would only be executed in
the case of an error in the Hypercode system causing it to generate the wrong type for

a value, in which case an exception would be raised.

The code in Figure 7.12 forms a correct program where the hyperlinks are replaced by

normal identifiers and can therefore be compiled with the standard compiler.

The generator Function

In the evaluation of a Hypercode graph, existing values referenced by hyperlinks are
bound into the executable code after compilation by the generator function. It encloses

the entire program code and takes a list of values as its parameter. This list is created

Page 168

Chapter 7 Implementation

by the generative engine (coloured blue in Fig. 7.10) and associates values with the

identifier names that have replaced the hyperlinks.

Figure 7.13 shows the type of the list, which is a record. It has an id field to hold the
name and an entity field, of the infinite union type any, to hold the value. The use
of a list is an implementation decision. The getFromList function used in Figure 7.12

operates over a list of this type.

type list_type isrecord(id: string, entity: any, next: list_type)

Figure 7.13. Example. The type definition of the list of hyperlinks

In Figure 7.14, the generator function definition (coloured red) is added around the
code. It takes as a parameter the linked list of hyperlink values. The generator func-
tion is so called because it generates an executable version of the Hypercode (called

wrapper).

The generator function is invoked from the context of the Hypercode system and passed
the list of hyperlink values as its parameter in order to bind them into the program.
Because the Hypercode system is a fixed context, generator must have a fixed type.
Its return type is function() — any, a function which returns a value of type any. This

function is the wrapper, defined at the end of the code (red).

wrapper encloses the original Hypercode, so that it can later be executed alone with-
out the overhead of projections during the execution of generator. Its return type (re-
turn_type) is the same type returned by the original code. This type is obtained by
compiling the code in Figure 7.12.

After the definition of wrapper, a function is defined which calls wrapper and returns
the result inside an infinite union type. This function is the value returned by gener-
ator. generator should return the wrapper function, so the Hypercode can be executed
without the projections overhead, but the type of wrapper is only discovered during the
transformation. Therefore the call to wrapper is enclosed in a function which returns a
value of type any. The final line in Figure 7.14 is generator, hence the result of executing

the code is the generator function itself.

Page 169

Chapter 7 Implementation

type list_type ...
generator < function (list: list_type) — function() — any {

getFromList « function (id: string) — any ... ! get a value from the list

type hyperlinkl_type is string
type hyperlink2_type is string
hyperlinkl « project ...
hyperlink2 « project ...

type return_typeis string
wrapper < function () — return type {
filter «— function (in_stream: string) — string
hyperlinkl ++ in_stream ++ hyperlinkl

filter (hyperlink2)

! generator returns a function which calls wrapper
function() — any
any (wrapper())
}

generator

Figure 7.14. Example. The generator and wrapper functions enclose the program.

Generator Rules

The generative engine is defined by the following set of rules. Red labels refer to the

transformed code that results from applying a rule.

1. Replace each hyperlink in the code with a newly generated unique identifier

name, where id is the hyperlink’s ID number. A

hyperlink — code ++ hyperlink<d ++ code

2. Generate a type definition for each hyperlinked value using the typeOf function
to obtain the type. B

hyperlink — type hyperlinkid_type is typeOf (value)

3. Generate code to associate the type definitions with the identifiers. generate-

NilType creates an empty value of the correct type for the error case. C

Page 170

Chapter 7 Implementation

hyperlink —
hyperlinkid = project getFromList ('hyperlinkid') as X onto
hyperlinkid_type: X
default = generateNilType(typeldf (value))

4. Create wrapper definition. Compile the result of the first three rules to find the

return type of the code. D

type return_typeis typeOf (compile(B + C + A))
wrapper < function () — return type {

A

5. Create generator definition.

type list_type ...
generator < function (list: list_type) — function() — any {

getFromList « function (id: string) — any

! generator returns a function which calls wrapper
fun() — any

any (wrapper())

Binding Hyperlinks

Having completed the transformation, the generated code is compiled and executed
- this is the binding step in Figure 7.10. Executing the generator function causes the
hyperlink values to be bound into the program. The Hypercode can then be executed
as the wrapper function. This section explains the code in the Hypercode system, which

acts on the transformed Hypercode to execute it.

When the Hypercode system executes the code in Figure 7.14, it obtains the generator
function. The execution of generator returns a function, and executing this function
returns the result of executing wrapper, which is a string, inside an any. Executing
the function returned by generator is equivalent to executing the original Hypercode

program.

Page 171

Chapter 7 Implementation

!call the compiler with code (the transformed Hypercode)

1 compilationresult «— compile (code)

!project the result of compilation onto the type of generator
2 project compilation result.resultas X onto

function () — any: {

4 Y «— X () ! Y is the generator function

5 project Y as generator onto

6 function (list_type) — function()— any: {
7 hypercode_function «— generator (list)
8 hypercode result « hypercode_function()
9 explode (hypercode_result)

10 }

11 function (list_type) — function (): {

12 hypercode function « generator (list)
13 hypercode_function ()

14 }

15 default: raise exception

16 }

17 default: raise exception

Figure 7.15. Compilation. Compiling and executing the Hypercode

Line 1 of Figure 7.15 shows the compiler being called with code, the transformed Hyper-
code, as its parameter. Note that this code is part of the Hypercode system as opposed
to the previous examples, which were code from the Hypercode graph being evalu-
ated. The compiler returns a structure with the executable function in result. In the
first project statement (line 2) the result of compilation is projected onto type function()
— any and executed. The execution returns Y, which is the generator function wrapped
in an infinite union type. This is in turn projected onto the specific type of generator,
and then executed. The parameter list passed to generator is the list of hyperlinks built
up during the transformation. Executing generator gives a function, hypercode_function
(line 7) and executing this is equivalent to running the original Hypercode. The re-
turn value of the Hypercode is declared as hypercode_result (line 8), which has type any.
To extract a value of the correct type from hypercode_result, the Hypercode operation

explode (Sec. 7.3.2) is used to reify the value (line 9).

Page 172

Chapter 7 Implementation

The second part of the project statement (line 11), where Y is projected onto function
(list _type) — function(), is used when evaluating a Hypercode program that does not
return a value. In this case, generator returns a function that returns nothing. The
third part of the project statement raises an exception and is chosen when neither of
the previous types matches the value. This would only occur if there were an error in
one of the generation functions in the Hypercode system, in which case an exception

would be raised.

7.3.2 Explode: Generating Hypercode Representations from Values

The explode operation returns a Hypercode graph of the current value of a program
element (Sec. 3.6.3). A meta-program explodes a hyperlink via the getGraphFromHy-
perlink operation provided by the MPF.

The Hypercode system is faced with a value from which a Hypercode graph must be
generated. This can be done by firstly determining its type and then using a technique
for representing values of that type. Code values (including ArchWare ADL func-
tions, abstractions and behaviours) and data values are considered as separate cases.
A value’s type can be determined using the reflective facilities that support dynamic
type discovery. The value, initially represented as an infinite union type, can then be

projected onto its specific type.

Code Values

For code values, an HCR is generated at compile time and stored as part of the clo-

sure (Fig. 7.6). If a value is determined to be code then:

1. Project the value onto its correct type.
2. If the type is a code type:

(a) Get the HCR from the closure and

(b) Return the source part of the HCR.

The source is a string of XML. An MPF operation parses it to produce a graph data

structure that is returned to the meta-program.

Page 173

Chapter 7 Implementation

Data

If it is determined that the value being exploded is a data value then there are two
cases: it may be either a base type or a complex type. An exploded representation of a
base type is obtained by displaying the value itself. Base types and an example of their

Hypercode representation is shown in Table 7.1.

Type Representation

integer | 1

real 1.0

boolean | true

string ‘a string’

Table 7.1. Exploding Base Types. Base types and examples of their exploded representations.

In contrast to base types, that can be represented by a single string, complex types are
exploded one level at a time. For example, a record is exploded to show a definition
with hyperlinks to each of its elements (Fig. 7.16). Exploding these hyperlinks, which
according to their types reference base values, would show that the name is Bob and
the age is 29. Other complex types may have more than one level and recursive types
may have an infinite number. When exploding cyclic structures, exploding a part of the
structure that has already been visited will return the same representation as before,

but the Hypercode system uses a stored representation rather than re-generating it.

Because complex types can be user defined, the algorithm for exploding them involves
generating code on the fly. This is because code cannot be written to project a value
onto its correct type if that type is not known. The type can be obtained dynamically
and then the code to project the type can be generated. A similar technique is used in
object browsers for PS-Algol (Dearle and Brown, 1988), Napier88 (Kirby and Dearle,
1990) and Java (Kirby and Morrison, 1997).

As an example, the following algorithm is used to generate the representation of a

record value (r). Initially is typed as the infinite union type.

1. Get the type representation (t) of r. t is a data structure with a label determining
it to be a record and a list containing the types and names (1) of the record’s

elements.

2. Generate a code string (s) that defines the type represented by t.

Page 174

Chapter 7 Implementation

her

L record

» “=

—»‘ clause }—»‘ hyperlink }»————»‘

Ap—

*ﬁ clause H hyperlink %————».

view (age = hyperlink, name = hyperlink)

Figure 7.16. Exploded View. An exploded view with two parts (name and age) and hyperlinks

referencing their values.

3. Generate code projecting r onto t using s. Inside the project statement select an

element (e = X.n) from the record and return it.

project r as X onto
s: any (X.n)

default : Error in generation code - raise exception

4. Compile and run the generated code. Assign the result to e.
5. Create a hyperlink referencing e.

6. Repeat for all elements in the record. This gives a list of hyperlinks referencing

all the elements.

7. Generate an XML representation of a record including all the hyperlinks as shown
at the bottom of Figure 7.16.

Page 175

Chapter 7 Implementation

The hyperlinks to the individual elements do not need to be created one at a time, as

in this example. Instead the code (in step 3) could return an array.

7.4 Operations

MPF operations traverse, manipulate and evolve Hypercode graphs. Their imple-
mentation is extendible in that they can be augmented and evolved in the same way
as other Hypercode values. The implementation of the operations and the process
of evolving existing operations and adding new operations to the framework is ex-

plained.

The implementation of the majority of these functions is a straightforward manipu-
lation of the graph data type and will not be described further. Some operations are

described here because their implementation is not necessarily obvious.

7.4.1 Traverse

getAllHyperlinks

getAllHyperlinks performs an in-order depth first search and returns a list of all the

hyperlink nodes in a graph in program order.

getFirstHyperlink

This operation performs an in-order depth first search of the graph to find the first hy-
perlink in source code order. The implementation simply uses the getFirstTagWithName

operation.

getFirstTagWithName

This function returns the first program syntax node in a graph which has the given tag
name. This function performs an in-order depth first search of the graph structure to

recreate program order.

This search does not follow hyperlinks, they are treated as terminal nodes. An alter-
native implementation could use the getGraphFromHyperlink operation to expand the

search space to include hyperlinks.

Page 176

Chapter 7 Implementation

getGraphFromHyperlink

This operation gets the Hypercode graph of the value referenced by a hyperlink. Its im-
plementation gets the hyperlink value from the HCR data structure and then explodes
the value to get the Hypercode graph, as described in Section 7.3.2.

getGraphFromValue
Obtaining a graph from a value is the same as exploding the value. This function is
implemented using the explode operation in the Hypercode system (Sec. 7.3.2).

getValueFromHyperlink

Dereference a hyperlink and returns the value. The function finds the enclosing HCR
and searches through its list of hyperlinks for the element with the required hyperlink
ID.

getXMLFromGraph

getXMLFromGraph returns the XML representation of a graph. In an in-order depth
first search, program syntax nodes are converted to XML tags and program text nodes

to text strings, i.e. source code.

isEqualNode

The isEqualNode returns true if two graphs produce identical programs. This is in con-
trast to isSameNode which returns true if two graphs are the same value. isEqualNode
uses getXMLFromGraph to produce an XML representation of both graphs and then

compares the resultant strings.

7.4.2 Manipulate

copyHyperlink

copyHyperlink extracts the hyperlink ID and the HCRID of a hyperlink node and creates
a new graph where the hyperlink is a child of the HCR (with the given IDs). The
hyperlink can then be pasted into a new graph using the pasteHyperlink operation.

Page 177

Chapter 7 Implementation

newHyperlinkElement

newHyperlinkElement creates a new hyperlink. Its parameter is a value that will be
referenced by the hyperlink. The function creates the new hyperlink and places it in a
new HCR data structure. A Hypercode graph of the HCR containing the hyperlink is

returned.

pasteHyperlink

pasteHyperlink inserts a hyperlink as a child of the given graph node. It also adds
the value referenced by the hyperlink to the list in the graph’s HCR. This places the
hyperlinked value in the closure of the graph.

updateHyperlinkLocation

Generate a Hypercode graph to update a location referenced by a hyperlink. The new
value of the location is represented by a Hypercode graph. The resultant graph must

be evaluated using the evaluateGraph operation for the update to take place.

7.4.3 Operations for Evolution

evaluateGraph

Evaluating a graph involves compiling and executing the graph. The function im-
plementation uses the evaluate operation in the Hypercode system defined in Section
7.3.1. evaluate operates on a string of code containing hyperlinks, so the graph is first

converted to XML using get XMLFromGraph.

7.4.4 Evolution Patterns

The following operations were developed for the evolution pattern described in Sec-
tion 5.4 and are specific to the ArchWare ADL.

newDecomposeGraph

A meta-program decomposes a component in order to evolve its components. This
function takes as its parameter a component and creates a Hypercode graph to de-

compose it. The Hypercode graph is a program representation of the decomposition.

Page 178

Chapter 7 Implementation

The value is not decomposed until this graph is evaluated. The implementation of
newDecomposeGraph simply creates the graph for a decompose statement and inserts a

hyperlink to the component value at the appropriate place.

decomposeGraph

decomposeGraph performs the evaluation of the graph produced by newDecomposeGraph.
The graph could also be evaluated using the standard evaluateGraph operation. How-
ever, if the meta-program is going to recompose the same set of components at a later
stage then the components” communication channels will need to be reconnected in
the same way as before decomposition. In this situation, the decomposeGraph operation

is used.

decomposeGraph returns the sequence of components resulting from decomposition as
well as a list of the connection pairings in the original composition. This list can be
used by newComposeGraph or newComposeReplaceGraph to compose the components and

connect their original communication channels.

Connections in the ArchWare ADL are unified within compose statements making this
operation necessary. Another language implementing composition and decomposi-
tion may take another approach enabling hyperlinks to connections and making the

retention of information about communication channels unnecessary.

newComposeReplaceGraph

newComposeReplaceGraph generates a Hypercode graph for a compose statement. It
works on the basis that it is constructing a re-composition of a component originally
decomposed using the decomposeGraph operation. It composes the same set of compo-
nents as in the original composition, with one being replaced by a new component.
The same connections are unified in the composition as were unified in the original

component. The parameters to the function are:

¢ The decompose sequence obtained as a result of the decomposition.
* The saved connections collected by the decomposeGraph operation.

* The new component that is replacing one of the components in the original com-

position.

Page 179

Chapter 7 Implementation

* The label of the component being replaced.
The following algorithm is used to generate the graph:

1. For each of the components in the decompose sequence loop

2. Get the hyperlink referencing the component value.

3. Get the component’s label.

4. If the label is the label of the component being replaced then
5. Create a clause assigning the label to the new component.

6. Else create a clause assigning the label to the hyperlink from 2.
7. End loop.

8. For each pair of connections in the list of saved connections create a clause to

unify them.

9. Join the labelling and unification clauses together and insert them into a compose

statement.
10. Create an HCR for the graph containing the hyperlinks to the components.

11. Return the graph.

The isAbstraction operation is used when including the components to determine if an

abstraction must be applied to obtain the component.

This operation has a shortcoming, in that if the component to be replaced has new
connection names the connections will not be correctly unified. However, it could be
extended to include changed connection names if a meta-program required that func-
tionality. The operation could also be extended to replace more than one component

in the composition.

7.4.5 Extending the MPF

All the operations delineated here have been implemented in ArchWare ADL. They
are retrieved using a google function, which takes the function’s name and returns its

value (typed as any). This value can be exploded to access its Hypercode graph.

Page 180

Chapter 7 Implementation

Hence, all these operations are available to a meta-program that may use the function
value to perform an MPF operation or access the Hypercode graph to evolve the func-
tion. A meta-program may also evolve the framework by adding new operations by

placing them in the store.

7.5 User Interface

A user interface to Hypercode has been written to provide a visualization of Hyper-
code for programmers. It also allows the operations evaluate, explode and edit to be ap-
plied to Hypercode. Because the Hypercode graph representation is available in XML,
it is straightforward to develop interfaces in addition to the meta-programming one.
The user interface has most of the functionality available to meta-programs, the dif-
ference being that programmers cannot directly access values, or operate over generic

program structures in the same way as meta-programs can using evolution patterns.

The user interface has been developed to work together with the Tower Browser (Sec.
E.1) to evolve an ArchWare environment. For historical reasons, the user interface in
this implementation is not built on top of the MPF as depicted in Figure 7.1. Instead it
interacts directly with the Hypercode system.

7.5.1 Edit

An example of some ArchWare ADL Hypercode being edited in the user interface is
shown in Figure 7.17. The editor has the usual functionality of a text editor, with ad-
ditional functionality to accommodate hyperlinks, which are displayed in blue under-
lined text. A panel at the bottom of the editor is used to display messages about current

status or progress to the user.

7.5.2 Explode

Clicking on a hyperlink in the editor explodes it. The top of Figure 7.18 shows an edit-
ing window in the user interface with a hyperlink. Exploding the hyperlink gives
the second window, showing a Hypercode representation of the value referenced by
the hyperlink. The example shows the hyperlink exploded to two levels. The first

click would have resulted in a sequence containing three hyperlinks being displayed.

Page 181

Chapter 7 Implementation

/5] - (0] x]
File Edit Hypercode Help

L ahstraction 3
S
; value debugy = connection { string)
5 walue successful = process { myData)
& if not successftul do {
7 wia debug send "Error occured in processorl”
3 done

10 |

11 T

1z

13

14

15

18

17

128

1%

20

1

A s

Figure 7.17. Edit. The user interface allows editing of Hypercode programs.

Then clicking on the first of those hyperlinks explodes it as well, giving the Hypercode
shown in the picture. Hyperlinks can be imploded by clicking on the red coloured,

exploded text.

7.5.3 Evaluate

Hypercode programs can be evaluated by choosing the evaluate menu item from the
window menu. The result of evaluation is either a hyperlink to the value created, or
if the evaluation did not return a value, a message indicating whether the evaluation

was successful.

7.6 Summary

This chapter focuses on the implementation of the MPF. It starts with a description

of the framework structure (Fig. 7.1). At the top level, a meta-program uses the MPF

Page 182

Chapter 7 Implementation

-0 x|
File Edit Hypercode Help
N
S any(hl)
4
5
| Received ADL value from Server \i‘
> Noddysystem T = B

File Edit Hypercode Help

anv{sequenceview{bhvr = hl, bhvr_connections = hl, Tabel = h13, hl, h13)

Received ADL value from Server

Figure 7.18. Explode. A hyperlink in the first picture is exploded to obtain its Hypercode repre-

sentation in the second picture.

" ypertodedtor ——————— [alp]

File Edit Help
1 proce| Connectto Server
3 Stop Server
4 Evaluate
E Compile
. Identifier Tracking
9 Store Browser
11
1z
‘,.!‘ ..

Figure 7.19. Evaluate. A Hypercode program is evaluated using the evaluate menu item.

Page 183

Chapter 7 Implementation

interface consisting of Hypercode graphs and a set of operations that can be applied to
them. The interface relies on a Hypercode system to provide the Hypercode operations
evaluate and explode. The system is also utilized by a user interface that exposes
Hypercode graphs and operations to the developer. Hypercode graphs are stored as
Hypercode Representations (HCR) inside the system.

7.6.1 Data Structures

The program representation in the MPF aims to:

¢ Allow fine grained manipulation by meta-programs.
¢ Provide an association between values and their representations.

¢ Be extensible and reusable.

A Hypercode graph is an abstract syntax tree with hyperlinks that reference values
in the data graph. In the Hypercode system, Hypercode graphs are represented by
HCRs. An HCR is a record, where the graph is stored as XML. Attributes in hyperlink
tags reference values in the other part of the record, which is a list of values. The XML
representation allows HCRs to be exploited to create the user interface and provide an

alternative way of manipulating Hypercode.

HCRs for code values are stored in the closure of the object that represents them. The
HCRs of data values are generated on the fly using the explode operation in the Hy-
percode system. This ensures that variable values always have an up to date represen-

tation.

7.6.2 Hypercode System

Generative programming is used to implement the Hypercode operations: evaluate
and explode. The evaluate operation transforms, compiles, binds and executes some
Hypercode. In order to use a standard compiler as part of this process, the Hypercode
is transformed into an equivalent program without hyperlinks. The values referenced
by the hyperlinks must then be bound into the compiled program. The evaluate pro-

cess is as follows:

Page 184

Chapter 7 Implementation

1. Transform a Hypercode graph into XML code.

2. Wrap the code in a generator function that takes a list of the values referenced by

hyperlinks as its parameter.
3. Compile the generator code

4. Bind the hyperlinks into the compiled program by executing the generator func-
tion and passing it a list of hyperlinks.

5. Executing the resultant value is equivalent to executing the original Hypercode.

Explode generates a Hypercode graph from a value. The HCRs of code values are
stored in their closure. Therefore, they can be exploded by accessing the HCR and
parsing the XML to generate a Hypercode graph structure. Data values are exploded

by:
* Reifying the value’s type using the typeOf function.
* Projecting the value onto this type.

* Then generating code to represent the value as that type.

User defined types can be broken down into a series of types and exploded one level

at a time.

7.6.3 MPF Operations

The operations in the MPF can be applied to traverse, manipulate and evolve Hyper-
code graphs. An evolution pattern has been developed that relies on support for com-
position and decomposition in the ArchWare ADL. The pattern allows a meta-program

to evolve a Hypercode graph with only limited knowledge of its internal structure.

7.6.4 User Interface

The user interface supports the Hypercode operations evaluate, explode, implode and
edit and allows developers to perform the same evolutionary processes on Hypercode
as the meta-programs can using the MPFE. The data structure used to represent Hyper-

code for the MPF is re-used in the user interface.

Page 185

Chapter 8

Conclusion

his chapter concludes and summarizes the thesis and discusses
future work.

Page 186

Chapter 8 Conclusion

The unique combination of technologies in the Meta-Programming Framework may
be used for the automatic evolution of long-lived, complex systems with emergent
properties. A decomposition mechanism for partially stopping the system means that
components being evolved can be isolated from the rest of the executing system. A
representation of program closure allows meta-programs to make changes to a com-
plete and current model of the dynamic state of the components. Evolved components

can then be reintroduced to the executing system using structural reflection.

The main contribution of this thesis is a set of mechanisms for automating evolution.
It presents a meta-programming interface to executing systems and a process for incre-
mentally evolving them that involves a novel combination of technologies: decompo-

sition; a representation for executing programs; and structural reflection.

These technologies support the process for incrementally evolving systems depicted
in Figure 8.1. A meta-program stops part of the system by decomposing it (1). It
retrieves a representation of the parts of the decomposed component (2) in the form of a
Hypercode graph. The Hypercode graph is updated, or replaced, by the meta-program
and a new component value is created using structural reflection (3). In this example,
one of the circle type parts of the component has been replaced by a star type. Note
that the hyperlinks, shown as blue arrows, refer to the same values in the executing
system before and after evolution. In this way, internal state can be preserved over the

changes. The final step is placing the new value into the executing system (4).

8.1 Summary

The work in this thesis takes place in the context of evolving software systems, which
continue to execute as some part of the system is stopped, changed and restarted by
a management component referred to as a meta-program. An analogy is made be-
tween control systems and evolving software, where feedback controllers correspond
to closed adaptive engines and feedforward controllers to open adaptive engines. A
closed adaptive engine uses internal information to adapt existing functionality and
is often implemented using probes and gauges. An open adaptive engine introduces
novel functionality into the system. The MPF supports the introduction of new func-
tionality by an open adaptive engine, but does not answer the question of how to

gather and interpret environmental input.

Page 187

Chapter 8 Conclusion

Meta-Program

[oeaviou - bupern—
bupern—

Executing System

Figure 8.1. Evolution Process. A meta-program stops part of an executing system (1). It gets a
representation of the system (2) and makes some changes to the representation before
evaluating it to get a new value (3). The new value is placed in the executing system
(4). Note that internal state and data is maintained over the changes (blue arrows) and

other components continue to execute uninterrupted.

Software architectures approach system design from a high level of abstraction, mod-
elling software in terms of its components and their interactions. In an evolving sys-
tem, a software architecture assists understanding about the effects of evolution on
the system as a whole. Constraints on software architectures are often used to direct

evolution and ensure that it does not violate original design intentions.

There is a spectrum of techniques for evolving software, from fully automatic to user
driven. Simple automatic changes, e.g., updating a variable, are used in most sys-

tems. More complex changes, such as altering existing components or adding new

Page 188

Chapter 8 Conclusion

components, are difficult to understand and apply, necessitating developer interven-
tion. Meta-programming is a way of making complex changes automatically. In a soft-
ware architecture, meta-programs act as change management components that direct

and apply evolution in other components.

Evolving software systems can be categorized in terms of the aspects of evolution they

support. Characteristics to consider include:

* When evolution takes place.

What changes can be made.

How the changes are applied.

Who drives the evolution process.

Where changes take place.

Whether there is a structure for change management.

In an ideal framework change is effected with minimal disruption, evolutions are ap-
plied to an accurate model of the system, unrestricted changes may be applied, and

new components can incorporate the system’s extant state.

The MPF defines Hypercode graphs, a representation that captures the program clo-
sure of an executing system. Hypercode graphs give meta-programs an accurate model
of the system to which evolutions can be applied. The MPF operations support unre-
stricted changes to Hypercode graphs, which can be integrated back into the system
using structural reflection. New and updated components can include extant values
and therefore preserve system state over evolution, because their Hypercode graphs
are a complete model including program state and data. In the MPF, Hypercode graphs
and structural reflection are used in combination with decomposition, which stops a
small part of the system so it can be evolved. Consequently, the MPF provides the

characteristics of an ideal framework for evolution.

Other frameworks for software evolution concentrate on different aspects of the prob-
lem. ADLs have been developed to model evolving software architectures. Some ex-
amples of these are Darwin, Gerel and Weaves. Arch]Java integrates a software archi-
tecture with program source code. This is one way of making sure the implementation

is an accurate reflection of the software architecture as it evolves. The same goal is

Page 189

Chapter 8 Conclusion

achieved by frameworks that include tools to mediate between a software architecture
model and the executing system. These tools apply changes to both so that they stay
in sync. Examples are ArchStudio (Sec. 2.6) and Rainbow (Sec. 2.5). A system that
concentrates on mechanisms for applying change, similarly to the MPF, is Intentional
Programming. It uses a program representation incorporating source code and data.
Meta-programs perform transformations on this representation to, for example, com-

pile or display it.

In the MPF, structural reflection provides the ability to introduce new values into the
current environment. Hypercode facilitates introspection and an abstraction over the
difference between code and data. With introspection, a meta-program can obtain a
Hypercode graph representation of any value in the executing system in order to ex-
amine its current state and / or evolve it. Abstracting over the difference between
code and data implies that the Hypercode graph representation of a code value takes
the same form as that of a data value. ProcessBase, the platform used to implement
the MPF provides first class functions as well as orthogonal persistence and structural
reflection. Support for modelling and evolving software architectures in the MPF is
provided by ArchWare ADL. In particular the decompose operation, that stops part of

an executing system, is necessary for the incremental evolution process.

A Hypercode graph uses an amalgamation of an abstract syntax tree and a data graph
to represent program syntax and program closure. A set of operations on Hypercode
graphs defines an interface for meta-programs. The operations allow meta-programs
to create and change Hypercode graphs, which is equivalent to writing and editing
programs. Operations to support an evolution pattern where a component in a com-

position is updated have also been produced.

Using the evolution pattern defined in this thesis, a meta-program can update a com-
ponent in a composition following the process that was illustrated in Figure 8.1. An
operation is available to decompose a composed component and retain information
about its internal connections. To recompose after changes have been made, another
operation uses the information about connections to reconnect the components as they
were before the evolution. The internal state of components in the composition is re-

tained over the evolution by virtue of hyperlinks in the Hypercode graphs.

The implementation of the MPF is both extensible and reusable. The MPF operations
are extensible because they are programmed in the MPF and can therefore be evolved

in the same way as other values. New operations can be created and the existing ones

Page 190

Chapter 8 Conclusion

changed. Hypercode graphs are implemented using a general framework that could
be applied to other platforms. This is demonstrated by the adaptation of a ProcessBase
Hypercode framework to an ArchWare ADL framework. The Hypercode graph rep-
resentation can also be re-used as demonstrated by the user interface, which allows a

programmer to interact directly with Hypercode.

The parts of the MPF implementation are:

A data structure to represent Hypercode.

MPF operations that allow meta-programs to interact with Hypercode graphs.

The Hypercode operations evaluate and explode, implemented using generative

programming.

A user interface for evolving Hypercode.

8.2 Discussion

The MPF provides an API that allows meta-programs to create, introspect and evolve
components. It is combined with other technologies to provide the mechanisms for in-
cremental evolution. Building software that can evolve incrementally allows the soft-

ware to be adapted concurrently with the business processes that use it.

8.2.1 Evolution Patterns

The changes a meta-program can make to another component using the MPF are only
restricted by the capability of the programming language and semantic correctness.
Therefore, the MPF can be used as part of an open adaptive engine, which introduces
new functionality into the system and reacts to emergent behaviour. The advantage of
this approach is that the MPF model is suitable for use by a wide range of applications.
Applications can decide their own change management procedures and apply these
on top of the MPF. The disadvantage is that, unless restrictions are applied, evolutions

are complex to define and difficult to automate.

Future work on the MPF includes the definition of evolution patterns to be used as

part of a change management framework. Change management components can then

Page 191

Chapter 8 Conclusion

choose appropriate evolution patterns to apply under certain conditions. This thesis
defines one pattern, the update of a component in a composition, and the MPF op-
erations to support it. Defining more patterns would involve determining common
evolutions, defining the processes by which they take place, and writing the MPF op-

erations to support those processes.

In addition to using evolution patterns, a change management system has to control
conflicts that may be caused in an evolving system. For example, parallel evolutions
may result in an inconsistent system. Change management is responsible for the syn-

chronization of evolving components that use shared data.

8.2.2 Framework Evolution

The MPF has been constructed in itself and is able to be evolved in the same way as
any other value. Therefore, new MPF operations can be created, for example, in order
to define a new evolution pattern. Existing operations can be specialized or updated
to reflect the needs of a particular application. Hypercode graphs can be extended to,

for example, include software architecture information and constraints.

There are a number of difficulties in evolving the framework. Writing new operations
is not trivial because it requires an understanding of the underlying data structure,
namely, the Hypercode graph. Making changes to existing operations has an effect on
programs that depend on those operations, raising issues of system safety and correct-

ness.

MPF operations can be evolved dynamically. In the implementation, programs fetch
an MPF operation from a mutable location before using it. Therefore, replacing an
operation simply involves updating the value in the mutable location. The limit on
evolution of the standard MPF operations is the evaluate and explode mechanisms
provided by the Hypercode system. These are not developed in the MPF and cannot
be represented as Hypercode graphs. The system must be stopped in order to change
them. This is because evaluate and explode use a number of tools developed outside
the MPE. Firstly, they generate code and compile it. This is clearly necessary for eval-
uation, and is required in explode in order to introspect user defined types. Secondly,
both of them introspect the running system. The MPF explode operation makes it ap-
pear as if introspection returns Hypercode graphs of the system. In order to do this, it

translates ProcessBase types into ADL and then into Hypercode graphs.

Page 192

Chapter 8 Conclusion

Another value that cannot be evolved through the MPF interface is one of the oper-
ations in the evolution pattern presented in this thesis - decomposeGraph. It re-unifies
connections as they were before a decomposition and relies on internal knowledge of
the compiler to find out information about the status of connections at decomposition

time.

The information in Hypercode graphs can be evolved by extending or altering the pro-
gram syntax. Applying the Hypercode graph representation to a new programming
language requires no changes to the graph structure. The only difference in the graphs
of different programming languages is in the names of program syntax nodes. The
evaluate and explode operations that generate Hypercode graphs have to be altered
to generate nodes for the new language and to use a new compiler. In order to make
these changes, and any that involve altering the Hypercode system, it is necessary to

stop the system.

The structure of Hypercode graphs can be extended by adding new node types and
using node attributes, which are currently only used for hyperlink IDs. For example,
a Hypercode graph can be augmented with software architecture information. Such
changes only involve updating the compiler, not the Hypercode system, and can be
done on the fly. The compiler is changed to either ignore the extra information, or
check it. Then the mutable location containing the compiler can be updated without

bringing the system down.

There are two restrictions on the evolution of the Hypercode graph structure. Firstly,
the graph should be able to be converted to a string of XML. Secondly, hyperlink tags
must retain their ID attribute in order that the Hypercode system can retrieve the val-
ues they reference. Additionally, changing the structure of the Hypercode graph may
involve altering some or all of the MPF operations. Extending a Hypercode graph by
adding program syntax nodes containing new information does not change the struc-

ture of the graph and does not affect any of the standard MPF operations.

8.2.3 Degree of Automation

The addition of new MPF operations is equivalent to the introduction of new values
into the application and brings up the same difficulties with respect to automation.

There is not yet a process by which new components can be defined automatically.

Page 193

Chapter 8 Conclusion

This thesis gave an example of a new function being introduced into the system auto-
matically, but the function, i.e., the code containing new functionality, was defined by

a programmer and the meta-program simply read in the file.

Automating change to existing components is a more tractable problem. For exam-
ple, the update of a component can be automated and if the component conforms to
some defined structure, the same generic pattern can be used to update multiple com-
ponents. An adaptive engine can use probes and gauges to automatically determine
which adjustments to apply to existing components by choosing them from a set of

possible changes.

8.2.4 Practicality

The manipulation of existing programs is difficult due to the complexity of under-
standing extant code and how it can be programmed over. Previous experience with
string manipulation for structural reflection has indicated that although it is a power-
ful technique, it is hard to use. Hypercode graphs allow the developer to operate at a
higher level of abstraction. This makes reflective programming slightly easier, but is

still not straightforward.

The example in Chapter 6 gives an indication of the difficulty involved in developing
a meta-program. An understanding of the current structure of the Hypercode graph,
over which the meta-program is operating, is required in order to write each line of
code. A similar problem is faced by programmers using the DOM interface to manipu-
late XML documents. This has led to the development of languages such as XPath (W3
Consortium, 1999) and XQuery (W3 Consortium, 2005b). Generic evolution patterns

are required to make the MPF more usable.

Consider the existing evolution pattern that replaces a single behaviour in a composed
component. It is not hard to understand or apply. The whole example in Chapter 6
could be generalized into an evolution pattern. The pattern replaces a hyperlink, with
a given name, in one of the sub-components of a composition, with a new hyperlink.
These evolution patterns abstract over the code manipulation and can be usefully ap-

plied to an evolving system.

It may not be practical to use the MPF only for multiple, distinct evolutions to a system
because of the effort necessary to program each evolution. However, there is a trade off

between genericity and complexity. A generic meta-program that is difficult to write

Page 194

Chapter 8 Conclusion

may be worth the effort if it can become an evolution pattern that is used frequently.
A change management framework should use a set of evolution patterns to make the
most common changes. The MPF has the power to represent generic evolution patterns

and the flexibility to allow new patterns to be developed over time.

8.3 Future Work

8.3.1 Technology Transfer

The technologies on which the MPF is based are not widely used. Future work in-
volves transferring the MPF to a well used platform where it could be further eval-
uated. The Hypercode graphs and operations are based on XML and would not be
difficult to transfer. The combination of technologies that support incremental evo-
lution, i.e., decomposition, introspection and structural reflection, can be provided in

another language, for example, Java.

An existing implementation of Hypercode for Java (Zirintsis et al., 2001) shows that
it is possible to transfer the Hypercode system to Java. This includes introspection
and structural reflection. The remaining technology, decomposition, can be imple-
mented using Java. One approach is for components to implement the Runnable in-
terface so they can be started, stopped and made to wait. A Connector class would be
defined to allow components to send synchronized messages to each other. It would
use semaphores to make components wait on messages if they have been decomposed.
Composition would start a set of components. Decomposition would disconnect the
components, using Connector, and return a set of handles to them. This approach im-
plements decomposition in the same way as in the ArchWare ADL. Components con-
tinue to execute until they reach a reduction limit, where they are either finished, or
waiting to send or receive a message. An alternative is for decomposition to stop the

execution of the components.

8.3.2 Software Architecture Extraction

A desirable extension to the MPF is an interface to extract the software architecture
from the implementation. Access to a model of the software architecture is essential

for change management tools that rely on architectural constraints to drive evolution.

Page 195

Chapter 8 Conclusion

The architecture could be extracted by introspection on the executing system. A Hy-
percode graph representation will contain architectural information if that information
is part of the programming language it represents. It could include information about
elements in the software architecture as well as constraints and links to analysis func-

tions.

The ArchWare ADL contains explicit architectural constructs, but connections are not
tirst class values. Therefore, architectural topology cannot be determined by inspecting
a Hypercode graph based on ArchWare ADL. This may change on application of the

technology to a new platform.

8.3.3 Performance

The MPF implementation is not particularly efficient for two reasons. Firstly, it uses
generative programming techniques and structural reflection extensively. Secondly,
it uses XML, requiring that strings to be frequently parsed to create data structures.
There is a trade off between an implementation that is more efficient and one which is
transferable and reusable. In applying the MPF to other platforms, it may be appropri-
ate to make the implementation more efficient and therefore more attractive for use as

part of an evolution framework.

8.3.4 Integration with Intentional Programming

An interesting MPF extension would be its integration with the Intentional Program-
ming Framework. IP represents a program at development time and would be com-
plemented by the MPF representation that extends for the lifetime of the program. The
IP development environment could then be used to develop and evolve programs. The
integration would not be straightforward because the existing MPF infrastructure does

not map to the IP model.

8.3.56 Multiple Programming Languages

Another possible extension to the MPF, suggested by integration with IP, is using a
Hypercode graph to represent a program written in multiple languages. In the same
way that generative programming techniques are used to remove hyperlinks, the Hy-

percode graph could be reduced to a compilable program in a single language. For

Page 196

Chapter 8 Conclusion

example, the inclusion of software architecture information in the source code could

be achieved by combining an ADL and another programming language.

8.3.6 Change Management Framework

The MPF needs to be integrated into a change management framework and used to
evolve real software systems before claims about its usefulness can be proven. Study-
ing its use would provide insight into how the MPF could be improved. There are
undoubtedly many more MPF operations that would benefit evolving systems and

new evolution patterns would hopefully emerge over time.

Research on a real application is also necessary to determine how much of the response
to emergent behaviour in complex systems can be automated. For example, could the

system detect the need for programmer intervention or suggest potential changes?

8.3.7 Conclusion

This thesis has proposed that the Meta-Programming Framework enables the develop-
ment of open adaptive engines for automatically evolving software systems according
to the Principles of Minimal Disruption and Unrestricted Evolution. By definition, nei-
ther the behaviour nor the evolution of long-lived systems, with emergent properties,
can be predicted at development time. To address the problem, the thesis presented
mechanisms that can operate during execution to provide insight into the state of the

system and introduce unplanned and unrestricted changes.

Some evolutions, or parts of evolutions, can be completely automated, but program-
mer intervention will always be necessary to deal with emergent properties and intro-
duce new functionality in open systems. The support of automation provided by the
MPF and the change management framework is required to make the programmer’s
task tractable.

This thesis introduced an innovative mix of technologies to support evolution by meta-
programs. It contributes an interface to executing systems and a methodology for
evolving them. The technology has been implemented as the Meta-Programming

Framework.

Meta-programs are presented with an interface that provides a representation of every

value in the system, including itself, in the form of a Hypercode graph. The interface

Page 197

Chapter 8 Conclusion

can be evolved along with the system. Hypercode graphs model executing programs

and support continuity by allowing component updates that preserve internal state.

New and existing technologies are combined in an incremental evolution process.
Firstly, decomposition stops part of the system. Then using the MPF interface, a meta-
program evolves Hypercode graph representations of the relevant components. Fi-
nally, the changes are incorporated into the executing system using structural reflec-
tion. An experimental example in the thesis demonstrated the incremental evolution

process and the Hypercode graph representation by updating an executing system.

A top-down approach to evolving software restricts system design by prescribing par-
ticular software architectures for change. The definition of a set of possible changes
at development time limits evolution to changes that can be foreseen before it is even
used. In contrast, the MPF provides powerful tools for introspection and evolution
that concentrate on underlying support for unrestricted change. Change management
frameworks can therefore layer their own evolution processes and policies on top and
adapt them in the face of emergent behaviour. For example, a change management
framework contains the policies of when and how to make change, and ensures the
safety of changes. Without this structure, the change enabled by the MPF could be
ad-hoc and unsafe. The technology in this thesis provides a useful contribution to the
development of frameworks that can automate evolution. It provides an interface for

adaptation infrastructures to extract information from and effect changes on systems.

In the future, a set of experiments is required that incorporates the MPF in a change
management framework and applies it to a system with real users and changing re-
quirements to reveal its strengths and weaknesses. Claims to the usefulness of the
change mechanisms cannot be proven until they have been tested in more than a small
example. The process of evolving a real system provides insight into interesting prob-

lems of software evolution, such as what changes to make and when to make them.

Page 198

Appendix A

Meta-Programming
Framework CFS

his appendix defines the context free syntax (CFS) of the Arch-
Ware ADL with XML mark-up.

Page 199

Appendix A Meta-Programming Framework CFS

A.1 Context Free Syntax of ArchWare ADL with XML

Hypercode graphs are marked up with syntax information and stored as XML in HCRs.
This chapter defines the context free syntax of the ArchWare ADL marked up with
XML tags. The standard syntax is extended to include hyperlinks.

Declaration

program ::= <hypercode> description </hypercode>

description ::= declaration [; description] | clause [; description]

declaration ::= <declaration> type_declaration | value_declaration </declaration>

Type Declaration

type_declaration ::= <typedeclaration> type type_definition </typedeclaration> |
<typedeclaration> <recursive/> recursive type type_definition [
& type_definition]* </typedeclaration>

type_definition ::= <typedefinition> identifier is type </typedefinition>

Type Descriptor
type = <type> type.def </type>

type_def = <integer> integer < /integer> |
<real> real </real> |
<boolean> boolean < /boolean> |
<string> string </string> |
<any> any </any> |
<connection> connection [[type_list]] </connection> |
<behaviour> behaviour </behaviour> |
<abstraction> abstraction [[type_list]] </abstraction> |
<identifier> identifier </identifier> |
<view> view [identifier_type_list] </view> |
<function> function [[type_list]] — <result> type </result>
< /function> |

Page 200

Appendix A Meta-Programming Framework CFS

type_def (cont.) 1= <location> location [type] </location> |

<sequence> sequence [type] </sequence>
type_list = type [, type_list]
identifier_type_list ::= identifier : type [, identifier_type_list]
Value Declaration
value_declaration ::= <valuedeclaration> value identifier_clause_list

< /valuedeclaration> | <valuedeclaration> <recursive/> recursive

value identifier_literal_list </valuedeclaration>

identifier_clause_list ::= identifier = clause [, identifier_clause_list]

identifier_literal_list ::= identifier = literal [& identifier_literal_list]

Clause

clause = <clause> clause_def <clause>

clause_def = <if> if clause <then>then clause </then> <else> else clause

<Jelse> < /if> |

<if> if clause <do> do clause </do> </if> |

<while> while clause <do> do clause </do> </while> |
<replicate> replicate clause < /replicate> |

<compose> compose {parallel_list [<where> where {unification}
< /where>] [<free> free labelled_identifier_list </free>]
[<precedence> precedence precedence_list </precedence>|}

< /compose> |

<decompose> decompose clause </decompose> |

prefix |

<choose> choose { choice_list } </choose> |

<project> project clause <as>as identifier </as> onto
project_list <default> default : clause </default> < /project> |
expression <assignment> := < /assignment> clause |

<iterate> iterate clause [<by> by identifier : type <by>]
<from> from identifier = clause </from> <accumulate>
accumulate clause </accumulate> [<as> as identifier </as>]

< /iterate> | expression

Page 201

Appendix A Meta-Programming Framework CFS

parallel_list ::= <composedbehaviour> label as clause </composedbehaviour>

[<and> and </and> parallel_list]

unification ::= <unification> labelled_identifier unifies dynamic_identifier

< /unification> [, unification]

labelled_identifier .= label :: identifier

labelled_identifier_list ::= labelled_identifier [, labelled_identifier]

dynamic_identifier ~ ::= labelled_identifier

precedence_list ::= identifier > identifier [, precedence_list]

choice_list ::= <choice> clause </choice> [<or> or </or> choice_list]*
project._list 1= <onto> type : clause </onto>; [project_list]

prefix = <prefix> via identifier <send> send [clause_list] </send>

< /prefix> | <prefix> via identifier <receive> receive
[identifier2_type_list] </receive> < /prefix> | <prefix>

unobservable < /prefix>

identifier_type_list ~ ::= identifier_type [, identifier_type_list]
identifier2_type_list ::= identifier_type [: type] [, identifier2_type_list]
identifier_type ::= identifier : type

Expression

expression = (clause) |

{<description> description < /description>} |
<behaviour> behaviour clause </behaviour> |
literal |

<not> not < /not> expression |

expression <and> and </and> expression |
expression <or> or </or> expression |

add_operator expression |

Page 202

Appendix A Meta-Programming Framework CFS

expression (cont.) ::= expression relational_operator expression |
expression add_operator expression |
expression multiply_operator expression |
expression <concatenate> ++ </concatenate> expression
expression (clause | clause) |
expression ([clause_list]) |
<view> view (identifier_clause_list) </view> |
clause . identifier |
<location> location (clause) </location> |
“clause |
<sequence> sequence (clause_list) </sequence> |
<sequence> sequence <for> for identifier = clause </for> <to>
to clause </to> <using> using clause </using> </sequence> |
expression :: clause |
expression <including> including expression </including> |
expression <excluding> excluding expression < /excluding> |

<size> size (clause) </size> |

identifier |
hyperlink
clause_list ::= clause [, clause_list]
identifier_list ::= identifier [, identifier_list]
relational_operator ::= equality_operator | ordering_operator
equality_operator ::= <equal> = </equal> | <notequal> = </notequal>
ordering_operator 1= <lessthan> < </lessthan> | <lessthanorequal> <=

< /lessthanorequal> | <greaterthan> > </greaterthan> |
<greaterthanorequal> => < /greaterthanorequal>

hyperlink = <hl id="label" > <type> <name> label </name>
type_declaration </type> label </hl>

add_operator = <plus> + </plus> | <minus> - </minus>

Page 203

Appendix A

Meta-Programming Framework CFS

multiply_operator

integer_multiply_operator ::

real_multiply_operator

Literal

literal

integer_literal

real_literal

boolean_literal

string_literal

connection_literal

behaviour_literal

abstraction_literal

view_literal

sequence_literal

function_literal

Identifier

identifier

label

integer_multiply_operator | real_multiply_operator

<multiply> * </multiply> | <div> div </div> | <rem> rem
</rem>

<multiply> * </multiply> | <divide> /< /divide>

integer_literal | real_literal | boolean_literal | string_literal |

connection_literal | behaviour_literal | abstraction_literal |

view_literal | sequence._literal | function_literal

<integer> [add_operator| digit [digit]* </integer>

<real> integer_literal.[digit]*[e integer_literal] < /real>

<boolean> true </boolean> | <boolean> false </boolean>

<string> "character” </string>

<connection> connection (type_list) </connection>

<behaviour> done < /behaviour>

<abstraction> abstraction (identifier_type_list); clause

< /abstraction>

<nilview> nilview (type) <nilview>

<nilsequence> nilsequence (type) </nilsequence>

<function> function ([identifier_type_list |) [— <result>

type </result> | ; clause </function>

<identifier> letter[letter|digit|_|* </identifier>

<label> identifier </label>

Page 204

Appendix B

Definition of MPF
Operations in ArchWare
ADL

T his appendix defines the MPF operations on Hypercode graphs.

Page 205

Appendix B Definition of MPF Operations in ArchWare ADL

B.1 Graph Operations

The ArchWare ADL MPF operations for Hypercode graphs are defined in this ap-
pendix. They support the traversal, manipulation and evolution of Hypercode graph

structures.

B.1.1 Hypercode Graph Type

recursive type graphis view [node: location[tagType],
parent: location[graph],

children: location[graphList]]
& tagTypeis view [name, text: string, attributes: location[attributeList]]
& graphlistis view [node: graph, next: location[graphList]]

& attributeListis view [name, val: string, next: location[attributeList]]

B.1.2 MPF Operations

addAttribute

Adds an attribute to a node’s list of attributes. Only works for element type nodes -
not text nodes. The first parameter is the attribute name. The second parameter is the
attribute value. The third parameter is the graph element to which the attribute will be
added.

Parameter: string
Parameter: string

Parameter: graph

appendChild

Adds a child node to the end of the list of children of this graph node. The first pa-
rameter is a graph representing the child node. The second parameter is the graph to
which the child will be added. Returns a graph with the child node appended, or the
child node itself if the graph was empty.

Page 206

Appendix B Definition of MPF Operations in ArchWare ADL

Parameter: graph
Parameter graph

Return Type: graph

appendChildAt

Adds the node ‘child” at the given position in a graph’s list of children, starting at
position 0. The first parameter is a graph to be added as a child node. The second
parameter is the graph to which the child will be added. The third parameter is the
position to add the child. Returns a graph with the child node in its list of children, or
the child node itself if the graph was empty.

Parameter: graph
Parameter: graph
Parameter: int

Return Type: graph

appendChildDescend

Adds the child node to the end of the list of children of the graph node and returns the
child. The first parameter is a graph to be added as a child node. The second parameter
is the graph to which the child will be added. Returns the child node.

Parameter: graph A graph to be added as a child node. Parameter: graph The main
graph.
Return Type: graph

copy

Create a copy of a graph.

Parameter: graph A graph to be copied.
Return Type: graph
copyHyperlink

Create a copy of a hyperlink node that can be inserted into a different graph.

Parameter: graph A hyperlink node to be copied.
Return Type: graph

Page 207

Appendix B Definition of MPF Operations in ArchWare ADL

evaluateGraph

Evaluate a graph Returns the result of the evaluation represented as a graph.

Parameter: graph

Return Type: graph

extractADL

Extract an ArchWare ADL string from an XML representation. The parameter is a
string of XML. Returns a string of ArchWare ADL.

Parameter: string

Return Type: string

getAlINodesWithName

Get all the nodes with the given tag name (type string) in the given graph (in-order
depth first search). Returns a list of graphs containing all the names with the given tag

in the graph.

Parameter: string
Parameter: graph

Return Type: graphList

getAllHyperlinks

Get all the hyperlinks in a graph (in-order depth first search). Returns a list of graphs
containing all the hyperlinks in the graph.

Parameter: graph

Return Type: graphList

getAttributes

Get the attributeList from a graph node. Returns a list of attributes.

Parameter: graph

Return Type: attributeList

Page 208

Appendix B Definition of MPF Operations in ArchWare ADL

getAttributeValue

Get the value of this attribute, not applicable to text nodes. The first parameter is the
attribute name. The second parameter is the graph element whose attributes are being

searched. Returns the attribute value if found, an empty string otherwise.

Parameter: string
Parameter: graph

Return Type: string

getChildNodes

Get a node’s list of child nodes. Returns the child node as a graphList.

Parameter: graph

Return Type: graphList

getChildPosition

Get the position of this graph node in the list of children of its parent. Returns an

integer representing the position (starting from 0), or -1 if not found.

Parameter: graph

Return Type: int

getFirstChild

Get the first child of this node. Returns the child graph node.

Parameter: graph

Return Type: graph

getFirstChildWithName

Get the first child of this node which has the given name. The first parameter is the
name of the child node to be found. The second parameter is the graph whose children

will be searched. Returns the child node, if found, or an empty graph.

Parameter: string
Parameter: graph

Return Type: graph

Page 209

Appendix B Definition of MPF Operations in ArchWare ADL

getFirstHyperlink

Get the first hyperlink which is a descendant of a graph node (depth first search) -
i.e. finds the first hyperlink which would appear in the expanded XML representation.
Returns a graph representing the first hyperlink which is a descendant of this graph

node.

Parameter: graph

Return Type: graph

getFirstTagWithName

Get the first graph with the given name which is a descendant of the given graph
(in-order depth first search). Equivalent to finding the first tag with this name which
would appear in the expanded XML representation. The first parameter is the tag
name of the graph element we are looking for. The second parameter is the graph

being searched. Returns a graph and a nil graph if not found.

Parameter: string
Parameter: graph

Return Type: graph

getGraphFromHyperlink

Get the graph representation of a value referenced by a hyperlink. Returns the graph

or nil(graph) if the value isn’t found.

Parameter: graph

Return Type: graph

getGraphFromValue

Get the graph representing a value. Returns the graph.

Parameter: any

Return Type: graph

getHyperlink

Get the hyperlink referenced by this node - which has the following type definition:

Page 210

Appendix B Definition of MPF Operations in ArchWare ADL

recursive type Hyperlink isview [id, source: string;
entity: any;
exploded: location[string];
isType: boolean;
references: location[*Hyperlink]]
recursive type HyperlinkTable isview [hyperlink : Hyperlink;
next : location[HyperlinkTable]]

Returns the hyperlink or nilview(Hyperlink).

Parameter: graph

Return Type: Hyperlink

getLastChild

Get the last child of this node. Returns the child graph node.

Parameter: graph

Return Type: graph

getLocalName

Returns the name of this node. Only valid for program syntax nodes - program text

nodes do not have names.

Parameter: graph

Return Type: string

getNextSibling

Get the node immediately following this node in the list of its parent’s children. Re-

turns the child’s successor in the list of children or an empty graph if not found.

Parameter: graph

Return Type: graph

getNodeName

The name of this node, depending on its type. The name, if it’s an element node, or the

text, if it’s a text node.

Parameter: graph

Return Type: string

Page 211

Appendix B Definition of MPF Operations in ArchWare ADL

getNodeType

The type of this node, which is a string either element or text.

Parameter: graph

Return Type: string

getNodeValue

Get the value of this node if it is a text node, or the empty string if it is an element node

Parameter: graph

Return Type: string

getNumberOfChildren

Get the number of children of this node.

Parameter: graph

Return Type: int

getParentHCR

Get the HCR which contains this node Returns the graph representing the HCR or
nilview(HCR).

Parameter: graph

Return Type: graph

getParentNode

Return the parent of this node.

Parameter: graph node

Return Type: graph

getPreviousSibling

The node immediately preceding this node in the list of its parent’s children, or an

empty graph if not found.

Parameter: graph

Return Type: graph

Page 212

Appendix B Definition of MPF Operations in ArchWare ADL

getValueFromHyperlink

Get the value referenced by a hyperlink. Returns the value or any(-1) if the value isn’t

found.

Parameter: graph

Return Type: any

getXMLFromGraph

Convert graph to a string of XML. Returns a string of XML.

Parameter: graph

Return Type: string

hasAttributes

Returns true if this node is an element type and it has some attributes.

Parameter: graph

Return Type: bool

hasChildNodes

Returns true if this node has any children.

Parameter: graph

Return Type: bool

insertBefore

Inserts the new node before the existing child node in the list of its parent’s children.
The first parameter is the new child node. The second parameter is the existing child
node. Returns the parent graph with the new child inserted or an empty graph if the

original child is not found.

Parameter: graph
Parameter: graph

Return Type: graph

Page 213

Appendix B Definition of MPF Operations in ArchWare ADL

isEqualNode

Compares two graphs to see if they represent the same program. This works by com-
paring the XML representations returned by getXMLFromGraph. The first and second
parameters are the graphs to be compared. Returns true if the XML representations are

the same.

Parameter: graph
Parameter: graph

Return Type: boolean

isSameNode

Return true if the two graph elements reference the same node value.

Parameter: graph
Parameter: graph

Return Type: bool

makeGraph

Construct a graph representation of a Hypercode program from an XML representa-
tion. The parameter is a string of XML. Returns the graph representation. Raises an

error if it encounters mismatching XML tags.

Parameter: string

Return Type: graph

newElement

Creates a new graph node with a name and a list of attributes. The first parameter is
the name of the graph node. The second parameter is the attributeList. Returns the

new graph node.
Parameter: string
Parameter: attributeList
Return Type: graph

newHCRElement

Create a new HCR element. Returns a graph representing a new HCR element.

Return Type: graph

Page 214

Appendix B Definition of MPF Operations in ArchWare ADL

newHyperlinkElement

Create a new hyperlink element. The first parameter is the value which will be ref-
erenced by the hyperlink. The second parameter is the name of the hyperlink. The
third parameter is the graph representing the HCR to which the hyperlink will belong.
Returns a graph representing the hyperlink.

Parameter: any
Parameter: string
Parameter: graph

Return Type: graph

new TextElement

Creates a new graph node which only contains text. The parameter is the text contents

of the node. Returns the new graph node.

Parameter: string

Return Type: graph

pasteHyperlink

Paste a copied hyperlink into a new graph as a child of the given graph node. The
first parameter is the hyperlink node. The second parameter is the node to which the

hyperlink will be attached as a child.

Parameter: graph

Parameter: graph

removeChild

Removes the first instance of this graph element in the list of children of its parent.

Parameter: graph

replaceChild

Replaces the first instance of the old graph element, in the list of its parent’s children,
with the new one. The first parameter is the element to be replaced. The second pa-

rameter is the new child element.

Parameter: graph

Parameter graph

Page 215

Appendix B Definition of MPF Operations in ArchWare ADL

setAttributeValue

Set the value of an attribute of the graph element, only applicable to element nodes.
If the attribute does not yet exist, then add it. The first parameter is the name of the
attribute. The second parameter is the new value of the attribute. The third parameter

is the graph whore attribute will be set.

Parameter: string
Parameter: string

Parameter: graph

setNodeValue

Set the value of this graph element, only applicable to text nodes. The first parameter

is a string (the text value). The second parameter is the graph element.

Parameter: string

Parameter: graph

updateHyperlinkLocation

Update a location referenced by a hyperlink. The first parameter is a graph represent-
ing the hyperlink which is to be updated - it must reference a location. The second
parameter is a graph representing the value which will be placed in the location - must

be the correct type for the location.

Parameter: graph
Parameter: graph
wrapHyperlinkiInHCR

Wrap the graph in its parent HCR. Returns a graph representing the hyperlink in its
HCR.

Parameter: graph

Return Type: graph

B.1.3 Evolution Pattern Operations

Page 216

Appendix B Definition of MPF Operations in ArchWare ADL

decomposeGraph

Decompose a composed behaviour, return the decompose sequence represented as a
graph and a list of the connections, which the decompose has disconnected. These two
values are used by newComposeReplaceGraph to recompose a new system. The param-
eter is a graph representing the code to decompose a value (which can be created by
newDecomposeGraph). Returns a view with parts: decompose_sequence, which is a graph
representing the sequence returned by the decompose operator; and str4List, which is
a list containing information about which connections were connected in the decom-

pose.

Parameter: graph

Return Type: view[decompose_sequence:graph;saved_connections:str4List]

getFirstBehaviourFromDecompose

Get a handle to the first behaviour in a decompose sequence. Returns a graph which

represents a hyperlink to the first behaviour in the decompose sequence.

Parameter: graph
Return Type: graph
getFirstBehaviourRepresentationFromDecompose

Get a graph representation of the first behaviour in a decompose sequence. Returns a

graph which represents a hyperlink to the first behaviour in the decompose sequence.

Parameter: graph
Return Type: graph
newBehaviourGraph

Create a graph representing an empty behaviour, which does nothing. Returns a graph

representing an empty behaviour.

Return Type: graph

newComposeReplaceGraph

Construct a graph representing the compose statement to replace one behaviour in a

composition with a new behaviour. The first parameter is a graph representing the

Page 217

Appendix B Definition of MPF Operations in ArchWare ADL

sequence returned by the decompose operator (obtained from decomposeGraph). The
second parameter is a list containing information about which connections were con-
nected in the decompose (obtained from decomposeGraph). The third parameter is a
graph containing a hyperlink referencing the new behaviour for the composition. The
fourth parameter is the name of the behaviour that is being replaced. Returns a graph

representing a new compose statement.

Parameter: graph
Parameter: str4List
Parameter: graph
Parameter: string

Return Type: graph

newDeclarationGraphForGraph

Create a graph representing the declaration of a given value, represented as a graph.
The first parameter is the name of the value to be declared. The second parameter is
a graph representing the value. Returns a graph representing a declaration of the new
value. Parameter: string

Parameter: graph

Return Type: graph

newDecomposeGraph

Create a graph representing the decompose clause for the given value, which must
be a composed behaviour. The parameter is a composed behaviour. Returns a graph

representing a decompose statement for this behaviour.

Parameters: any

Return Type: graph

Page 218

Appendix C

Evolution Example Code

his appendix contains the code for the example presented in
Chapter 6.

Page 219

Appendix C Evolution Example Code

! Construct a graph representing the decomposition.

value decomposeGraph = newDecomposeGraph('System1)

! Evaluate the decomposition graph.

value decomposeResult = decomposeGraph(decomposeGraph)

! Get the sequence returned by the decompose statement.

value decomposeSequence = decomposeResult.decompose_sequence

value ProducerHyperlink = getFirstBehaviourFromDecompose (decomposeSequence)

value ProducerGraph = getGraphFromHyperlink(ProducerHyperlink)

value buildNewWidgetString = " "

value compilationResult = compile(buildNewWidgetString)

value buildNewWidget = project compilationResult.result as X onto
function[]— any: X() ! The result of X() is the buildNewWidget function.
default: any("")

value buildNewWidgetHyperlink = newHLElement (buildNewWidget,"buildNewWidget",Producer)
value hyperlinkList = getAllHyperlinks(ProducerGraph)

value list = location(hyperlinkList) ! variable to store the search result
! search the list until a hyperlink with the name buildWidget is found

while 'list.node.name <> "buildWidget" do list := '('list.next)

value buildWidgetHyperlink = 'list.node ! assign search result
replaceChild(buildWidgetHyperlink,buildNewWidgetHyperlink)

value Producer1Graph = newDeclarationGraphForGraph("Producerl",ProducerGraph)

value Producerl = evaluateGraph(Producer1Graph)

value composeGraph = newComposeReplaceGraph(decomposeResult.decompose_sequence,

decompose_sequence.saved_connections, Producerl, "P")

value Systemla = evaluateGraph(composeGraph)

updateHyperlinkLocation(Systeml,evolvedSystem)

Page 220

Appendix D

Framework Evolution

his appendix gives a coded example of a meta-program that
updates one of the MPF operations in the store.

Page 221

Appendix D Framework Evolution

The example in this appendix shows a meta-program that updates the printGraph

operation. First the ArchWare ADL definition of the printGraph function is shown.

It converts a Hypercode graph to a string. The meta-program will define a function

called capitalize and add a call to it inside the declaration of tagName (near the end of

printGraph).

recursive value printGraph = function(g: graphADL) -> string

{

if not(g = nilview (graphADL))
and not('(g.node) = nilview (tagTypeADL)) then

{
value node = '(g.node)
if node.name = textTag then
{
node.text
} else {
! printChildren
value children = location("")
if '(g.children) = nilview(graphADLList) then
children := ""
else {
value list = location('(g.children))
value result = location("")
while not('list = nilview(graphADLList)) do
{
value temp = printGraph('list.node)
result := 'result ++ temp
list := '('list.next)
}
children := 'result
}
value tagName = node.name
"<" ++ tagName ++ printAttributes('(node.attributes)) ++ ">"
++ 'children ++ "</"++ tagName ++">"
}
} else ""

The following code defines the meta-program that:

Page 222

Appendix D Framework Evolution

—_

. Extracts printGraph from the store.
2. Defines a function capitalize.

3. Alters the Hypercode graph of printGraph to include a call to capitalize.

S

. Evaluates the new graph.

1

. Replaces the old printGraph value in the store with the new one.

! Get the printGraph function value from the persistent store

value printGraphVal = googleADL("printGraph")

! Get the graph representation of the printGraph value
value printGraphRep = getGraphFromValue(printGraphVal)

! Define a function to capitalize the XML tags as a graph is printed out
value fun_def = "
value capitalize = function(str: string) -> string

{

value upper = function(ch: string) -> string

{
if ch= '"a'" then '"A'"
else if ch= '"a'" then '"A'"
else if ch= '"b'" then '"B'"
else if ch= '"c'" then '"C'"
else if ch= '"d'" then '"D'"
else if ch= '"e'" then '"E'"
else if ch= '"f'" then '"F'"
else if ch= '"g'" then '"G'"
else if ch= '"h'" then '"H'"
else if ch= '"i'" then '"I'"
else if ch= '"j'" then '"J'"
else if ch= '"k'" then '"K'"
else if ch= '"1'" then '"L'"
else if ch= '"m'" then '"M'"
else if ch= '"n'" then '"N'"

else if ch= '""o'" then '"0'"

else if ch= "' "p' " then tnprn
else lf ch= 1 Ilql n then (] an "
else if ch= '"r'" then tuRtn

else if ch= '"s'" then '"S'"

else if ch= '""t'" then '"T'"

Page 223

Appendix D Framework Evolution

else if ch= '"u'" then '"U'"
else if ch= '"v'" then '"V'"
else if ch= '"w'" then '"W'"
else if ch= '"x'" then '"X'"
else if ch= '"y'" then '"Y'"
else if ch= '"z'" then '"Z'"

else ch

value return = location('"'")

value counter = location(1)

while ''counter <= length(str) do {
value ch = str(''counter|1)
return := ''return ++ upper(ch)
counter := ''counter + 1

}

''return

}

capitalize

! Compile the capitalize function

value compresult = compile(fun_def, "trace")

! Project the result of compilation onto a function type
value capitalize = project compresult.result as X onto
function[]-> any {

value x = X(O) ! x is the any from the function

X

default: {
any(n n)

! Create a hyperlink referencing the new capitalize function

value capitalizeHL = newHLElement (capitalize,"capitalize",printGraphRep)

! Locate the correct place in the printGraph function to capitalize the tagname
! which is the last value declaration (see code for printGraph)

value valuedeclarationNodes = getAllNodesWithName ("valuedeclaration",printGraphRep)

value temp = location(valuedeclarationNodes)

Page 224

Appendix D Framework Evolution

while not ('('temp.next) = nilview(graphADLList)) do {
temp := '('temp.next)

! Found the last value declaration

value lastValuedeclaration = 'temp.node

! Get the first clause node from the value declaration

value clauseNode = getFirstChildWithName("clause",lastValuedeclaration)

! Add a call to capitalize inside the clause
value closebracket = newTextElement(")")

value openbracket = newTextElement (" (")

value tempO = appendChild(closebracket,clauseNode)

value templ = appendChildAt (openbracket,clauseNode,0)

value temp2 = appendChildAt(capitalizeHL,clauseNode,O0)
! Create a recursice declaration for the new printGraph function

value recprint = newRecDeclarationGraphForGraph("printGraph",printGraphRep)

! Evaluate the graph

value printGraphHL = evaluateGraph(recprint)

! Get the new printGraph value so it can be put in the store

value newPrintGraphVal = getValueFromHyperlink (printGraphHL)

! Put the new function into the persistent store and delete the old printGraph function
value root = PS (O
project 'root as X onto ! root := view(system <- myEnv, users <- any(0))
view[system: any, users: any] : {
project X.users as myEnv onto
envADL: {
myEnv.delete("printGraph")
value temp3 = myEnv.put("printGraph",newPrintGraphVal)

}
default :{ }

}
default :{ }

abortcheckpoint ()

Page 225

Appendix E

Tower Model

his appendix sets the MPF in context by describing the Tower
Model, an environment for developing evolving processes,

which uses Hypercode as a mechanism for evolution.

Page 226

Appendix E Tower Model

The evolution enabled by the MPF should be under the control of a change manage-
ment policy to ensure that any changes both improve the system and are applied in a
non-disruptive manner. Change management is not part of the MPF, but it has been im-
plemented as part of the ArchWare environment, which provides a hierarchical frame-

work to structure the evolution®.

E.1 Evolution in ArchWare

As part of the ArchWare project a change management system called the Tower Model
(Greenwood et al., 2000) has been developed, which uses P2E technology to structure
evolution. P2E is the Process for Process Evolution (Warboys et al., 1999a), a generic

process for component based evolution.

In ArchWare, programs are developed in the ArchWare Environment. The Tower rep-
resents this Environment as a directed acyclic graph. Each node of the graph is an
ArchWare Component, an evolvable subsystem that uses P2E to manage its own evo-

lution. Components consist of an evolver / producer pair.

The Tower Model is designed to deal with change in large, complex and long-lived
systems. To address the complexity, systems are designed heirachically and the com-
ponents can be partitioned, or decomposed, into their sub-components. ArchWare
Components in the Tower are associated with a set of process for managing change.

These processes are themselves ArchWare Components, which are defined as follows:

Partition Partition an ArchWare Component to give its sub-components using decom-

position.

Refine Refine an ArchWare Component to give its concrete representation, i.e., pro-

vide more detail on how the component will be implemented.

Satisfy Invoke satisfy on an ArchWare Component to determine whether the compo-
nent satisfies a set of constraints. As a Component evolves, it may no longer sat-
isfy its constraints, in which case either the Component must be evolved further

or the constraints changed.

IThanks to Mark Greenwood for his comments on this appendix.

Page 227

Appendix E Tower Model

Figure E.1 shows how nodes in an ArchWare Environment are made up of ArchWare
Components, including the components which perform the partition, satisfy and refine

operations. Inside, each component is defined as an evolver / producer pair.

ARCHWARE NODE
REFINE

ARCHWARE PARTITION
COMPONENT

SATISFY

i

ARCHWARE COMPONENT

|:| ArchWare Component

O ArchWare Behaviour

Figure E.1. ArchWare Envrionment. The ArchWare environment is a graph where each node is a
set of ArchWare Components and each ArchWare Component is an evolver / producer

pair.

To explain the application of the ArchWare environment model to a program, consider
the example of a compiler in Figure E.2. The compiler has to satisfy a set of compilation
rules. It is partitioned into a lexical analyser, type checker, code generator etc. Refining

the compiler gives a handle to the executable compiler.

Structuring ArchWare Components as evolver / producer pairs allows the system to
acommodate incremental evolution. The change process is encapsulated within Com-
ponents, which can manage their own evolution. In an evolver / producer pair, the
producer is the process which contains the application behaviour, and the evolver man-
ages change to the producer. To understand how evolution is achieved, consider Figure
E.3, which depicts an evolver and a producer. Change is initiated by Managing, which
may be responding to an external signal or feedback from the producer. Realise applies
the change. It has a handle to the producer, which allows it to decompose the producer
into its constituent parts. Technology produces new elements by creating new values or
making changes to existing values. It returns a set of abstractions which are composed

by Realise to give a new behaviour, which is installed as the new producer.

Page 228

Appendix E

Tower Model

ADL COMPILER

COMPILATION

RULES COMPILED

COMPILER

PARTITION

CODE
GENERATOR

LEXICAL
ANALYSER

O ArchWare Component |:| ADL value O Constraint Set

Figure E.2. ArchWare Components. Example of satisfy, partition and refine operating on an

ArchWare Component.

EVOLVER TECHNOLOGY
the mechanism for producing
changed elements
Abstractions
REALISE
the mechanism for Decompose
change
Compose
’ Install
MANAGING [~ PRODUCER
the reason for change Feedback

External Signal

Figure E.3. Evolver / Producer. An Evolver component operates on a Producer to evolve it in

response to some stimuli.

Page 229

Bibliography

AHO-A. V., SETHI-R. AND ULLMAN-J. D. (1986). Compilers: principles, techniques, and tools,
Addison-Wesley Longman Publishing Co., Inc., ISBN 0-201-10088-6, Boston, MA, USA.

ALBANO-A., CARDELLI-L. AND ORSINI-R. (1985). Galileo: a strongly-typed, interactive conceptual
language, ACM Transactions on Database Systems, 10(2), pp. 230-260.

ALDRICH-]. (2003). Using Types to Enforce Architectural Structure, PhD thesis, University of Washing-

ton.

ALDRICH-]. (2005 (Submitted for publication)). Using types to enforce architectural structure,

http://archjava.fluid.cs.cmu.edu/papers/archjava-overview. pdf.

ALDRICH-]., CHAMBERS-C. AND NOTKIN-D. (2002a). Architectural Reasoning in ArchJava, Proceed-
ings of the 16th European Conference on Object-Oriented Programming, Springer-Verlag, Malaga,
Spain, pp. 334-367.

ALDRICH-]., CHAMBERS-C. AND NOTKIN-D. (2002b). ArchJava: Connecting Software Architecture to
Implementation, Proceedings of the 24th International Conference on Software engineering, ACM
Press, Orlando, Florida, pp. 187-197.

ALDRICH-]., SAZAWAL-V., CHAMBERS-C. AND NOTKIN-D. (2002c). Architecture-Centric Program-
ming for Adaptive Systems, Proceedings of the 1st Workshop on Self-Healing Systems, ACM Press,
Charleston, South Carolina, pp. 93-95.

ALDRICH-]., SAZAWAL-V., CHAMBERS-C. AND NOTKIN-D. (2003). Language Support for Connector
Abstractions, European Conference on Object-Oriented Programming (ECOOP '03), Vol. 2743 of

Lecure Notes on Computer Science, Springer, Darmstadt, Germany.

ALLEN-R. AND GARLAN-D. (1997). A Formal Basis for Architectural Connection, ACM Transactions on
Software Engineering and Methodology, 6(3), pp. 213-249.

ALLEN-R., DOUENCE-R. AND GARLAN-D. (1998). Specifying and Analyzing Dynamic Software Archi-
tectures, Proceedings of the 1st International Conference on Fundamental Approaches to Software

Engineering (FASE’98), Lecture Notes in Computer Science 1382, Springer, Lisbon, Portugal.

ALLEN-R.]J. (1997). A Formal Approach to Software Architecture, PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213.

ANDERSON-]J. R., CORBETT-A. T. AND REISER-B. J. (1986). Essential LISP, Addison-Wesley Longman
Publishing Co., Inc., ISBN 0-201-11148-9.

ATKINSON-M. AND MORRISON-R. (1985). Procedures as Persistent Data Objects, ACM Transactions on
Programming Languages and Systems, 7(4), pp. 539-559.

ATKINSON-M. AND MORRISON-R. (1995). Orthogonally Persistent Object Systems, VLDB Journal, 4(3),
pp. 319-401.

Page 230

Bibliography

ATKINSON,-M. AND WELLAND,-R. (EDS.) (2000). Fully Integrated Data Environments: Persistent Pro-

gramming Languages, Object Stores, and Programming Environments, Esprit Basic Research Se-
ries, Springer Verlag, Germany, ISBN 354065772X.

ATKINSON-M., BAILEY-P., CHISHOLM-K., COCKSHOTT-W. AND MORRISON-R. (1983). An Approach
to Persistent Programming, Computer Journal, 26(4), pp. 360-365.

ATKINSON-M., CHISHOLM-K. AND COCKSHOTT-P. (1982). PS-algol: An Algol with a Persistent Heap,
ACM SIGPLAN Notices, 17(7), pp- 24-31.

ATKINSON-M., DAYNES-L., JORDAN-M., PRINTEZIS-T. AND SPENCE-S. (1996a). An orthogonally per-
sistent Java, ACM SIGMOD Record, 25(4), pp. 68-75.

ATKINSON-M. P., JORDAN-M. J., DAYNES-L. AND SPENCE-S. (1996b). Design issues for persistent Java:
A type-safe, object-oriented, orthogonally persistent system, Proceedings of the 7th Workshop on
Persistent Object Systems (POS’96), Cape May (NJ), USA, pp. 33-47.

BALASUBRAMANIAM-D., MORRISON-R., KIRBY-G., MICKAN-K. AND NORCROSS-S. (2004a). ArchWare
ADL Release 1 User Reference Manual, Technical Report D4.3, ArchWare Project IST-2001-32360.

BALASUBRAMANIAM-D., MORRISON-R., KIRBY-G., MICKAN-K., WARBOYS-B., ROBERTSON-I.,
SNOWDON-B., GREENWOOD-M. AND SEET-W. (2005). A software architecture approach for struc-
turing autonomic systems, ICSE 2005 Workshop on the Design and Evolution of Autonomic Ap-
plication Software (DEAS 2005), St Louis, MO, USA, ACM Digital Library, ISBN 1-59593-963-2,
pp- 59-65.

BALASUBRAMANIAM-D., MORRISON-R., MICKAN-K., KIRBY-G., WARBOYS-B., ROBERTSON-I.,
B.SNOWDON, GREENWOOD-R. AND SEET-W. (2004b). Support for feedback and change in self-
adaptive systems, ACM SIGSOFT Workshop on Self-Managed Systems (W0OS504), Newport
Beach, CA, USA, ACM Press, New York, NY, USA, ISBN 1-58113-989-6, pp. 18-22.

BROOKS-F. P. (1987). No silver bullet: Essence and accidents of software engineering, Computer, IEEE
Computer Society Press, 20(4), pp. 10-19.

BROSILOW-C. AND JOSEPH-B. (2002). Techniques of Model-Based Control, Prentice-Hall, chapter Chap-

ter 9: Feedforward Control.

BUCKLEY-]., MENS-T., ZENGER-M., RASHID-A. AND KNIESEL-G. (2005). Towards a taxonomy of soft-
ware change, Journal on Software Maintenance and Software Evolution: Research and Practice

(Wiley) - to appear.

BURSTALL-R., COLLINS-]J. AND POPPLESTONE-R. (1971). Programming in POP-2, Edinburgh University
Press, Edinburgh, Scotland, ISBN 0852241976.

CHENG-S.-W., HUANG-A.-C., GARLAN-D., SCHMERL-B. AND STEENKISTE-P. (2004). An Architec-
ture for Coordinating Multiple Self-Management Systems, in J. Magee, C. Szyperski and J. Bosch
(eds.), 4th Working IEEE/IFIP Conference on Software Architecture (WICSA 4), IEEE, Oslo, Nor-
way, pp- 243 — 252.

Page 231

Bibliography

CHESS-D. M., SEGAL-A., WHALLEY-I. AND WHITE-S. R. (2004). Unity: Experiences with a prototype
autonomic computing system, In the Proceedings of the International Conference on Autonomic
Computing (ICAC’04), IEEE Computer Society, New York, NY, USA, pp. 140-147.

CUTTS-Q., CONNOR-R. AND MORRISON-R. (2000). Fully Integrated Data Environments: Persistent
Programming Languages, Object Stores, and Programming Environments, Springer Verlag, chap-
ter The PamCase Machine, pp. 346 — 364.

CZARNECKI-K. AND EISENECKER-U. (2000). Generative Programming: Methods, Tools, and Applica-
tions, Addison-Wesley, USA, ISBN 0201309777

DEARLE-A. (1987). Constructing compilers in a persistent environment, in M. Atkinson, O. Buneman
and R. Morrison (eds.), 2nd International Workshop on Persistent Object Systems, Appin, Scotland,
pp. 443 — 455.

DEARLE-A. AND BROWN-A. (1988). Safe browsing in a strongly typed persistent environment, Com-
puter Journal, 31(6), pp. 540-544.

DEUX-O. (1990). The Story of O2, IEEE Transactions on Knowledge and Data Engineering, 2(1), pp. 91—
108.

DEWITT-A., GROSS-T., LOWEKAMP-B., MILLER-N., STEENKISTE-P., SUBHLOK-J. AND SUTHERLAND-
D. (1998). ReMoS: A resource monitoring system for network-aware applications, Technical Report
CMU-CS-97-194, Carnegie Mellon School of Computer Science, Pittsburgh, PA.

DI1AO-Y., HELLERSTEIN-]., PAREKH-S. AND BIGUS-J. (2003). Managing web server performance with
AutoTune agents, IBM Systems Journal, 42(1), pp. 136-149.

DMITRIEV-M. (2000). Class and Data Evolution Support in the PJama Persistent Platform, Technical Re-
port TR 2000-57, Department of Computing Science, University of Glasgow, 17 Lilybank Gardens,
Glasgow, G12 8RZ, Scotland.

EBRAERT-P., MENS-T. AND D’HONDT-T. (2004). Enabling dynamic software evolution through auto-
matic refactorings, In the proceedings of the Workshop on Software Evolution Transformations
(SET2004) in conjunction with the 11th IEEE Working Conference on Reverse Engineering (WCRE
2004), Delft, Netherlands.

ENDLER-M. AND WEI-]. (1992). Programming Generic Dynamic Reconfigurations for Distributed Ap-
plications, Proceedings of the 1st International Workshop on Configurable Distributed Systems,

IEE, Imperial College, London, pp. 68-79.

FARKAS-A. AND DEARLE-A. (1994). The Octopus model and its Implementation, Proceedings of the
17th Australiasian Computer Science Conference (ACSC), 16(1), pp. 581-590.

FossA-H. AND SLOMAN-M. (1996). Implementing Interactive Configuration Management for Dis-

tributed Systems, Proceedings of the 3rd International Conference on Configurable Distributed
Systems (ICCDS "96), Annapolis MA, pp. 44-51.

GARLAN-D., ALLEN-R. AND OCKERBLOOM-]J. (1994). Exploiting Style in Architectural Design Envi-
ronments, Proceedings of SIGSOFT"94: The 2nd ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ACM Press, pp. 175-188.

Page 232

Bibliography

GARLAN-D. AND PERRY-D. E. (1995). Introduction to the Special Issue on Software Architecture, IEEE
Transactions on Software Engineering, 21(4), pp. 269-274.

GARLAN-D. AND SCHMERL-B. (2002). Model-based adaptation for self-healing systems, Proceedings of
the 1st Workshop on Self-Healing Systems (WOS5°02), ACM Press, New York, NY, USA, pp. 27-32.

GARLAN-D. AND SHAW-M. (1996). Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall Publishing, ISBN 0131829572.

GARLAN-D., CHENG-S.-W. AND SCHMERL-B. (2003). Increasing System Dependability through
Architecture-based Self-repair, in R. de Lemos, C. Gacek and A. Romanovsky (eds.), Architecting
Dependable Systems, Springer-Verlag, New York, ISBN 3540407278, pp. 61-90.

GARLAN-D., CHENG-S.-W., HUANG-A.-C., SCHMERL-B. AND STEENKISTE-P. (2004). Rainbow:

Architecture-based self-adaptation with reusable infrastructure, IEEE Computer, 37(10), pp. 46—
54.

GARLAN-D., MONROE-R. T. AND WILE-D. (1997). ACME: An Architecture Description Interchange
Language, Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON"97), IBM Press, Toronto, Ontario, pp. 169-183.

GARLAN-D., SCHMERL-B., J]. AND CHANG (2001). Using gauges for architecture-based monitoring and
adaptation, Proceedings of the Working Conference on Complex and Dynamic System Architec-

ture, Brisbane, Australia.

GEORGIADIS-I. (2002). Self-Organising Distributed Component Software Architecture, PhD thesis, De-
partment of Computing, Imperial College, University of London, UK.

GEORGIADIS-1., MAGEE-]. AND KRAMER-]J. (2002). Self-organising software architectures for dis-
tributed systems, Proceedings of the 1st Workshop on Self-Healing Systems (WOS502), ACM
Press, New York, NY, USA, pp. 33-38.

GOLDBERG-A. AND ROBSON-D. (1983). Smalltalk-80 - The language and its implementation, Addison-
Wesley, ISBN 0-201-11371-6.

GORLICK-M. M. AND RAZOUK-R. R. (1991). Using Weaves for Software Construction and Analysis,
Proceedings of the 13th International Conference on Software Engineering, IEEE Computer Society
Press, Austin, Texas, United States, pp. 23-34.

GREENWOOD-M., ROBERTSON-I. AND WARBOYS-B. (2000). A support framework for dynamic organi-
zations, in R. Conradi (ed.), Proceedings of the 7th European Workshop in Software Process Tech-
nology (EWSPT 2000), Vol. 1780 of Lecture Notes in Computer Science, Springer, Kaprun, Austria,
pp. 6-20.

GREENWOOD-R., BALASUBRAMANIAM-D., CIMPAN-S., KIRBY-G., MICKAN-K., MORRISON-R.,
OQUENDO-F., ROBERTSON-I., SEET-W., SNOWDON-B., WARBOYS-B. AND ZIRINTSIS-E. (2003).
Process support for evolving active architectures, in F. Oquendo (ed.), Proceedings of the 9th Eu-
ropean Workshop on Software Process Technology (EWSPT 2003), Lecture Notes in Computer Sci-
ence 2786, Springer-Verlag, ISBN 3-540-40764-2, Helsinki, Finland, pp. 112-127.

Page 233

Bibliography

HEINEMAN-G. T. (1997). A model for designing adaptable software components, Technical Report
WPI-CS-TR-97-6, Worcester Polytechnic Institute, Computer Science Department, Worcester, Mas-

sachusetts.

HOARE-C. (1985). Communicating Sequential Processes, Prentice-Hall International Series in Comput-
ing Science, Prentice-Hall International, Englewood Cliffs, N.J., ISBN 0131532715.

HOFMEISTER-C. R. (1993). Dynamic Reconfiguration of Distributed Applications, PhD thesis, Computer

Science Department, University of Maryland.

HOOK-]J. AND SHEARD-T. (1993). A semantics of compile time reflection, Technical Report 93-019, Dept
of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology, Port-

land, Oregon.

HOSKING-A. AND NOVIANTO-A. (1997). Reachability-based Orthogonal Persistence for C, C++ and
Other Intransigents, in P. Dickman and P. R. Wilson (eds.), Proceedings of the OOPSLA Workshop

on Memory Management and Garbage Collection, Atlanta, Georgia.

IEE (2000). IEEE Std 1471-2000 Recommended Practice for Architectural Description of Software-

Intensive Systems.

JACKSON-D. (1999). Alloy: A Lightweight Object Modelling Notation, Software Engineering and
Methodology, 11(2), pp- 256-290.

KEPHART-]. O. (2005). Research challenges of autonomic computing, ICSE “05: Proceedings of the 27th
international conference on Software engineering, ACM Press, New York, NY, USA, pp. 15-22.

KEPHART-J. O. AND CHESS-D. M. (2003). The Vision of Autonomic Computing, Computer, IEEE Com-
puter Society Press, 36(1), pp. 41-50.

KiczALES-G., HILSDALE-E., HUGUNIN-]., KERSTEN-M., PALM-]J. AND GRISWOLD-W. (2001). Getting
started with Aspect], Communications of the ACM, 44(10), pp. 59-65.

KI1czALES-G., LAMPING-J., MAEDA-C., KEPPEL-D. AND MCNAMEE-D. (1993). The need for customiz-
able operating systems, Proceedings of the Fourth Workshop on Workstation Operating Systems,
IEEE Computer Society Technical Committee on Operating Systems and Applications Environ-

ment, IEEE Computer Society Press, pp. 165-169.

KIRBY-G. (1992). Persistent Programming with Strongly Typed Linguistic Reflection, in R. Morrison
and M. Atkinson (eds.), 25th International Conference on Systems Sciences (HICSS), Vol. 2, Hawaii,
pp- 820-831.

KIRBY-G. AND DEARLE-A. (1990). An adaptive graphical browser for napier88, Technical Report
CS/90/16, University of St Andrews.

KIRBY-G. AND MORRISON-R. (1997). Ocb: An object/class browser for Java, in M. Jordan and M. Atkin-
son (eds.), 2nd International Workshop on Persistence and Java (PJW2), Half Moon Bay, California,
pp- 89-105.

KIRBY-G., CONNOR-R., CUTTS-Q., DEARLE-A., FARKAS-A. AND MORRISON-R. (1992). Persistent
Hyper-Programs, 5th International Workshop on Persistent Object Systems, Springer-Verlag, San
Miniato, Italy, pp. 86-106.

Page 234

Bibliography

KIRBY-G., CUTTS-Q., CONNOR-R. AND MORRISON-R. (1993). The Implementation of a Hyper-
Programming System, Technical Report CS/93/5, University of St Andrews.

KIRBY-G., MORRISON-R. AND STEMPLE-D. (1998). Linguistic Reflection in Java, Software - Practice and
Experience, 28(10), pp. 1045-1077.

KRAMER-]. AND MAGEE-]. (1990). The Evolving Philosophers Problem: Dynamic Change Management,
IEEE Transactions on Software Engineering, 16(11), pp. 1293-1306.

LEHMAN-M. M. (1996). Laws of software evolution revisited, in C. Montangero (ed.), 5th European
Workshop on Software Process Technology, EWSPT, Lecture Notes in Computer Science 1149,
Springer, Nancy, France, pp. 108-124.

MAGEE-]. AND KRAMER-]. (1996a). Dynamic Structure in Software Architectures, Proceedings of the 4th
ACM SIGSOFT Symposium on Foundations of Software Engineering, ACM Press, San Francisco,
California, United States, pp. 3-14.

MAGEE-]. AND KRAMER-]. (1996b). Self Organising Software Architectures, Joint Proceedings of the 2nd
International Software Architecture Workshop (ISAW-2) and International Workshop on Multiple
Perspectives in Software Development (Viewpoints "96) on SIGSOFT "96 Workshops, ACM Press,
San Francisco, California, United States, pp. 35-38.

MAGEE-]., DULAY-N. AND KRAMER-]. (1994). Regis: a constructive development environment for dis-
tributed programs, Distributed Systems Engineering Journal: Special Issue on Configurable Sys-
tems, 1(5), pp. 304-312.

MAGEE-]., DULAY-N., EISENBACH-S. AND KRAMER-]. (1995). Specifying Distributed Software Archi-
tectures, Proceedings of the 5th European Software Engineering Conference, Springer-Verlag, Sit-

ges, Spain, pp. 137-153.

MCCABE-T. J. AND WATSON-A. H. (1994). Software complexity, Crosstalk, Journal of Defense Software

Engineering.

MEDVIDOVIC-N. (1996). ADLs and Dynamic Architecture Changes, Joint Proceedings of the 2nd In-
ternational Software Architecture Workshop (ISAW-2) and International Workshop on Multiple
Perspectives in Software Development (Viewpoints '96) on SIGSOFT 96 Workshops, ACM Press,
San Francisco, California, United States, pp. 24-27.

MENS-T., BUCKLEY-]., ZENGER-M. AND RASHID-A. (2003). Towards a taxonomy of software evolution,
Workshop on Unanticipated Software Evolution, Warshau, Poland.

MICKAN-K., MORRISON-R., KIRBY-G., BALASUBRAMANIAM-D. AND ZIRINTSIS-E. (2004). Using gen-
erative programming to visualise Hypercode in complex and dynamic systems, Proceedings of the
27th Australasian Computer Science Conference (ACSC2004), Australian Computer Society, Inc.,
ISBN 1-920682-05-8, Dunedin, New Zealand, pp. 377-386.

MILNER-R. (1999). Communicating and Mobile Systems: The I1-Calculus, Cambridge University Press,
ISBN 0521658691.

MONROE-R. T. (1998). Capturing Software Architecture Design Expertise with Armani, Technical Report
TR CMU-CS-98-163, Carnegie Mellon University School of Computer Science.

Page 235

Bibliography

MORRISON-R., BALASUBRAMANIAM-D., GREENWOOD-M., KIRBY-G., MAYES-K., MUNRO-D. AND
WARBOYS-B. (1999a). ProcessBase Reference Manual (Version 1.0.6), Technical report, Universities
of St Andrews and Manchester.

MORRISON-R., BALASUBRAMANIAM-D., GREENWOOD-R., KIRBY-G., MAYES-K., MUNRO-D. AND
WARBOYS-B. (2000a). An Approach to Compliance in Software Architectures, IEE Computing
and Control Engineering Journal, Special Issue on Informatics, 11(4), pp. 195-200.

MORRISON-R., BROWN-A., CARRICK-R., CONNOR-R., DEARLE-A. AND M.P. ATKINSON-M. (1990).
The Napier Type System, in J. Rosenberg and D. Koch (eds.), Persistent Object Systems, Springer-
Verlag, pp. 3-18.

MORRISON-R., CONNOR-R., CUTTS-Q., DEARLE-A., FARKAS-A., KIRBY-G., MCGETTRICK-R. AND
ZIRINTSIS-E. (1999b). Current directions in hyper-programming, Lecture Notes in Computer Sci-
ence 1755, Springer-Verlag, pp. 316-340.

MORRISON-R., CONNOR-R., KIRBY-G. AND MUNRO-D. (1996). Can Java persist?, Proceedings of the
1st International Workshop on Persistence for Java (PJW1), Drymen, Scotland.

MORRISON-R., CONNOR-R., KIRBY-G., MUNRO-D., ATKINSON-M., CUTTS-Q., BROWN-A. AND
DEARLE-A. (2000b). The Napier88 Persistent Programming Language and Environment, in M. At-
kinson and R. Welland (eds.), Fully Integrated Data Environments: Persistent Programming Lan-

guages, Object Stores, and Programming Environments, Springer-Verlag, Europe, pp. 98-154.

MORRISON-R., KIRBY-G., BALASUBRAMANIAM-D., MICKAN-K., OQUENDO-F.,, CiMPAN-S.,
WARBOYS-B., SNOWDON-B. AND GREENWOOD-R. (2003). Constructing Active Architectures in
the ArchWare ADL, Technical Report CS/03/3, University of St Andrews.

MORRISON-R., KIRBY-G., BALASUBRAMANIAM-D., MICKAN-K., OQUENDO-F., CIiMPAN-S.,
WARBOYS-B., SNOWDON-B. AND GREENWOOD-R. (2004). Support for evolving software
architectures in the ArchWare ADL, in J. Magee, C. Szyperski and J. Bosch (eds.), 4th Working
IEEE/IFIP Conference on Software Architecture (WICSA 4), IEEE, ISBN 0-7695-2172-X, Oslo,
Norway, pp. 69 —78.

OQUENDO-F., WARBOYS-B., MORRISON-R., DINDELEUX-R., GALLO-F., GARAVEL-H. AND
OCCHIPINTI-C. (2004). ArchWare: Architecting Evolvable Software, in F. Oquendo, B. Warboys
and R. Morrison (eds.), Proceedings of the First European Workshop on Software Architecture,
EWSA 2004, Vol. 3047 of Lecture Notes in Computer Science, Springer-Verlag, pp. 257-271.

OREIZY-P. AND TAYLOR-R. (1998). On the Role of Software Architectures in Runtime System Reconfig-
uration, Proceedings of the International Conference on Configurable Distributed Systems (ICCDS
4), IEEE Computer Society, Annapolis MD.

OREIZY-P.,, GORLICK-M. M., TAYLOR-R. N., JOHNSON-G., MEDVIDOVIC-N., QUILICI-A.,
ROSENBLUM-D. S., AND WOLF-A. L. (1999). An architecture-based approach to self-adaptive
software, IEEE Intelligent Systems, 14(3), pp. 54-62.

OREIZY-P., MEDVIDOVIC-N. AND TAYLOR-R. N. (1998). Architecture-Based Runtime Software Evolu-
tion, Proceedings of the 20th International Conference on Software Engineering, IEEE Computer

Society, Kyoto, Japan, pp. 177-186.

Page 236

Bibliography

RICHARDSON-]. E. AND CAREY-M.]. (1989). Persistence in the E language: Issues and implementation,
Software Practice and Experience, 19(12), pp. 1115-1150.

SCHMERL-B., ALDRICH-J., GARLAN-D., KAZMAN-R. AND YAN-H. (2005). Discovering architectures

from running systems using colored petri nets, submitted for publication.

SCHMERL-B. AND GARLAN-D. (2002). Exploiting Architectural Design Knowledge to Support Self-
repairing Systems, Proceedings of the 14th International Conference on Software Engineering and

Knowledge Engineering, ACM Press, Ischia, Italy, pp. 241-248.

SCHMIDT-]J. W. AND MATTHES-F. (1994). The DBPL project: advances in modular database program-
ming, Information Systems, 19(2), pp. 121-140.

SHEARD-T. (1998). Using MetaML: A staged programming language, Lecture Notes of the Summer
School on Advanced Functional Programming, LNCS 1129, pp. 207-239.

SIMONYI-C. (1995). The Death of Computer Languages, the Birth of Intentional Programming, Technical
Report MSR-TR-95-52, Microsoft Research Microsoft Corporation.

SIMONYI-C. (1996). Intentional Programming: Innovation in the Legacy Age.

STEMPLE-D., FEGARAS-L., STANTON-R., SHEARD-T., PHILBROW-P., COOPER-R., ATKINSON-M.,
MORRISON-R., KIRBY-G., CONNOR-R. AND ALAGIC-S. (2000). Fully Integrated Data Envi-
ronments: Persistent Programming Languages, Object Stores, and Programming Environments,
Springer Verlag, Germany, chapter Type-Safe Linguistic Reflection: A Generator Technology,
pp- 158-188.

STRACHEY-C. (1967). Fundamental concepts in programming languages, Oxford University Press. Re-
published in Higher Order Symbolic Computation (2000), 13(1-2), pp. 11-49.

STRAW-A., MELLENDER-F. AND RIEGEL-S. (1989). Object Management in a Persistent Smalltalk System,
Software Practice Experience, 19(8), pp. 719-737.

TENNENT-R. D. (1977). Language Design Methods Based on Semantic Principles, Acta Informatica, 8(2),
pp. 97-112.

VAN WYK-E., DE MOOR-O., SITTAMPALAM-G., PIRETTI-I. S., BACKHOUSE-K. AND KWIATKOWSKI-P.
(2001). Intentional Programming: a Host of Language Features, Technical Report PRG-RR-01-21,
Oxford University Computing Laboratory: Programming Research Group, Oxford.

W3 CONSORTIUM (1999). XPath 1.0: XML path language. http://www.w3.org/TR/xpath/.

W3 CONSORTIUM (2004). XML Information Set. http://www.w3.org/TR/xml-infoset.

W3 CONSORTIUM (2005a). Document object model. http://www.w3.org/DOM/.

W3 CONSORTIUM (2005b). XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/.

WARBOYS-B., AVRILLIONIS-D., CONRADI-R., CUNIN-P.-Y., NGUYEN-M. N. AND ROBERTSON-I.
(1999a). Meta-process, Software Process: Principles, Methodology, Technology, Vol. 1500 of Lecture
Notes in Computer Science, Springer-Verlag, London, UK, pp. 53-94.

Page 237

Appendix E Bibliography

WARBOYS-B., BALASUBRAMANIAM-D., GREENWOOD-R., KIRBY-G., MAYES-K., MORRISON-R. AND
MUNRO-D. (1999b). Collaboration and Composition: Issues for a Second Generation Process
Language, Proceedings of the 7th European Software Engineering Conference (ESEC’99), Lecture
Notes in Computer Science 1687, Springer-Verlag, pp. 75-91.

YAN-H., GARLAN-D., SCHMERL-B., ALDRICH-J. AND KAZMAN-R. (2004). Discotect: A system for
discovering architectures from running systems, Proceedings of the 26th International Conference
on Software Engineering (ICSE’04) Edinburgh, Scotland, IEEE Computer Society, Washington, DC,
USA, pp. 470-479.

ZIRINTSIS-E. (2000). Towards Simplification of the Software Development Process: The Hyper-Code
Abstraction, PhD, University of St Andrews.

ZIRINTSIS-E., KIRBY-G. AND MORRISON-R. (2001). Hyper-Code Revisited: Unifying Program Source,
Executable and Data, Lecture Notes in Computer Science 2135, Springer, pp. 232-246.

Page 238

Glossary

This is a list of commonly used terms and acronyms used in this thesis. The page

numbers for each entry refer to the first use in the text.

ADL
API

CFS

Architecture Description Language., 9

Application Programming Interface. An interface that a program (or
part of a program) provides in order to allow requests for service to be
made of it by other programs (or parts of programs), and/or to allow
data to be exchanged between them., 26

Context Free Syntax. A formal syntax in which every production rule
is of the form: V' — w, where V is a non-terminal symbol and w is a
string consisting of terminals and/or non-terminals. It is context-free
because the non-terminal V can always be replaced by w, regardless of

the context in which it occurs., 200

Closed system A software system that uses information extracted from its own execu-

Compose

Constraints

Decompose

Framework

Injection

Open system

tion for self-adjustment., 5
Connect a sequence of components and start their execution., 94

See Properties., 5

Stop part of an executing system, allowing the remaining parts to con-

tinue executing., 14
A system, or set of components, that operates over another system., 13

An injection operation takes values of type T and returns values of type

C(T), where C is some type constructor., 80

A software system that can incorporate environmental input during evo-

lution., 4

Program closure The set of a program and all its values., 17

Projection

Properties

Projection is the inverse of injection., 80
Constraints on a software architecture, e.g. each client may be connected

to only one server., 9

Page 239

Appendix E Glossary

Referential Integrity Once a reference to an object has been established that object will

remain accessible for the lifetime of the reference., 27

Software Architecture A system model at a high level of abstraction, commonly in

terms of components and connectors., 9

Page 240

