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in which programs are executed on a single fixed piece of hard-

ware and users interact with them through a single fixed display
device. With this model, information tends to become inaccessible
when the user changes location—even if the user is fully connected
to the original host. For example, consider data held in editor buffers
and word processors, variables set in shells, information locked in per-
sonal information managers, and mail messages retained in electron-
ic mail systems. In each case, the dynamic data associated with the
user’s interaction becomes inaccessible. In some cases, this is because
the data is ephemeral—held in the virtual memory of the processes
with which the user interacts. In other cases, the data is in the file store
but locked by the processes accessing it.

Java has changed this paradigm a little. It is now common to load a
program from a remote site and run it locally, perhaps interacting with
the site from which it was originally loaded. However, the display
device and computer on which the program executes remain fixed.

Increasing hardware power and high-speed network availability,
together with the ubiquitous nature of the Internet, are fueling a rad-
ical paradigm shift to a new computational model. In this model,
processes are free to migrate with users and thereby provide ubiqui-
tous computing environments. This article investigates the technical

I n the past 50 years, we have become used to a computation model
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problems that must be solved to accommo- Vlew User Bob
date this model and surveys some systems User Jim
that are addressing them. View

SOME TERMINOLOGY
Figure 1 illustrates three classes of mobile enti-
ties: users, views and platforms. For our pur-
poses here, a user is a person who uses a com-
puter. Users are mobile; they move from home
to the workplace, from city to city and conti-
nent to continent. A view is what users see
when they sit down at a display screen,
whether they are interacting with a personal
digital assistant (PDA) or a mainframe. Users
may own multiple views but only use one at
atime. A view includes the user’s environment
and interfaces to applications that may be exe-
cuting locally or elsewhere on the network.
A view is implemented by a platform,
defined as a collection of hardware and soft-
ware. The platform software consists of
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Figure 1. A framework for mobility: Users, views, platforms, and servers.

= active threads (including processes) that
implement the view,

= the code being executed by the threads,

= the code that implements the software environment (for
example, the Java virtual machine), and

= the data representing entities visible in the view (for
example, the process heap and stacks).

The platform hardware consists of a computation environ-
ment: a CPU and main memory, a screen with a pointing
device, and perhaps a keyboard; it may contain nonvolatile
storage but need not. In cases where persistent storage is not
available on the platform, it is provided by a server that may
be used as a general-purpose repository. There are no
requirements for a server to support any form of view.

Characterizing Mobility

When users move from location to location, they require
their view to migrate with them. For example, in Figure 1,
user Jim may move from platform B to platform D, which
connects to a different server. When Jim moves, his view
should also move, permitting him to continue whatever
work he was performing at platform B.

A platform may also migrate with a user, for example,
when a user carries a laptop to another site. When this
occurs, the applications running on the platform and the
view it presents also migrate. However, network connections
to the platform are likely to be severed and must be recon-
nected at the new site—a situation analogous to migrating a
process to another platform. When a platform migrates, it
could employ the services of a local server at the new site.

IEEE INTERNET COMPUTING

View Platform leed server
% Threads W
Data |:| Data
Platform h/w
Cleavage Cleavage
plane plane Ej
[j Persistent
storage

Optional persistent
storage

Figure 2. Points of mobility are in the cleavage planes: view
mobility over platform and platform mobility over fixed server.

Figure 1 is refined in Figure 2, which shows the compo-
sition of views, platforms, and servers. The term cleavage
plane refers to those places where one entity is mobile with
respect to another. Figure 2 shows two cleavage planes that
must be considered: (1) view mobility over platforms and
(2) platform mobility over servers.

View mobility is supported by platforms and servers,
whereas platform mobility is supported only by servers.
When a view migrates from one platform to another, either
the threads and data implementing the view must also
migrate, or the threads must be notified of the location of
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the new view and the 1/0 must be redirected to and from
the new platform.

Whether it is better to move the executing threads or to
notify the threads of a new view location is a complex trade-
off among the utilization of network bandwidth, latency of
operations, utilization of local and remote CPUs (compu-
tational load balancing), and implementation complexity.
Both solutions require the use of network bandwidth but at
different times. Moving the executing threads requires
migrating at least part, and potentially all, of the process clo-
sure to the new platform (“closure” is used here to mean that
all states are reachable from the process entity).

Some of this migration can be performed on demand
when and if it is required. At first this might seem to be a
poor solution since the process closure is potentially large.
However, provided that the closure can be appropriately
marshaled, it may be copied in large blocks to make more
effective use of network bandwidth. Once you have estab-
lished a working set on the new platform, the network usage
drops to almost zero.

The approach of redirecting 1/O to alternative devices
also has a moderate initial bandwidth requirement since
data must be sent to the new platform to initialize the dis-
play. However, since the display and the applications inter-
acting with it are now physically separated, all user 1/0
must be sent to the remote platform and potentially
echoed back. This makes poor use of modern networks
since the amount of data in each packet is typically very
small (often a single character or mouse event). The result-
ing network traffic is therefore likely to be higher than in
the first case.

The second solution also suffers from problems with
latency. Although modern networks provide high band-
width, the laws of nature impose a fundamental delay
between send and receive events. Therefore, if any distance
separates the old and new platforms, latency in keyboard
and mouse feedback becomes intolerable. This is proven by
the simple experiment of physically separating an X Win-
dows display from a Unix host by any significant distance.

The first approach fully utilizes the increasingly signifi-
cant CPU power of the platform. In the second approach,
the local CPU merely (1) manages the screen and (2) vec-
tors the keyboard and mouse interrupts to the remote plat-
form. We can therefore conclude that moving threads and
data to facilitate view migration is the superior approach.
However, this solution is considerably more complex than
merely redirecting 1/O to a different device. It is likely that
hybrid solutions will be developed supporting both solu-
tions and permitting the most appropriate alternative to be
employed. However, in the remainder of this article, we'll
assume that threads and data implementing a view migrate
with the user, and examine strategies that may be used to
overcome the associated technical problems.
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CLOSURE MIGRATION

Some technical problems are intrinsic to all mobile solutions,
for example, the identification and authentication of users.
However, a number of problems are particular to the migra-
tion of process closures. These include environment mobil-
ity, channel mobility, migrating code, migrating state, and
locating views. We will review each of these in turn in this
section.

Environment Mobility

Environment mobility is concerned with bindings between
threads and the external environment. For example, threads
may make use of a printer or some input device. When the
thread migrates to a remote platform, action must be taken
to accommaodate this binding. The possibilities include set-
ting the binding to null, re-establishing a binding to an
equivalent local resource, and maintaining a remote bind-
ing to the remote resource.

Flexible binding mechanisms must be provided so that
migratory applications running on a mobile platform may
bind to services that appear in their local environment. Fur-
thermore, even for one class of service, different binding
regimes are required. For example, a mobile user may wish to
print confidential documents on a secure printer in a fixed
location. Here, the binding between the application and the
external service is static. In other situations, any local post-
script printer may be suitable and the binding is dynamic.

In both cases, the external services are provided by servers;
the only issue is how platforms bind to the servers. Clearly, if
either the hardware or software platform is permitted to
migrate, some indication of the (re)binding regime must be
specified when the binding is initiated. To support (re)binding
activities, servers must provide an associative lookup mecha-
nism similar to that provided by CORBA binding servers.1

Channel Mobility

Channel mobility is a special case of environment mobility. A
thread running on a platform may open a communications
channel with another thread running on a different platform
or server. If the platform is taken off-line and moved to
another location, the channel may be lost. Like environment
mobility, this situation also arises when views are migrated
since the threads implementing the view are migrated.

To make movement transparent requires software that
maintains the channel during relocation. This may be
achieved by either implementing software at both ends of
the channel to manage transparent connection/reconnec-
tion or using a server as a connection proxy.

Half sessions. The connection and reconnection of chan-
nels can be accommodated through an abstraction called a
half session. The name, inspiration, and thinking behind
this abstraction originates in the seminal work on optimistic
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recovery by Strom and Yemini.2 As shown in Figure 3, each
platform or server implementing a relocatable channel uses
a half session to manage the connection. Output and input
half sessions on different machines combine to implement
a reliable stream abstraction that can be disconnected and
reconnected to different platforms and servers.

Sender half sessions maintain a log of outgoing messages,
which is used to recover lost messages. Each outgoing message
is accompanied by a (sequence number, incarnation number)
pair. The sequence number is a counter that is incremented on
every message send. The incarnation number is incremented
immediately after every recovery. In a fault-tolerant system,
this happens after a failure; in a mobile context, after migra-
tion. Following a migration, an application is recovered to the
state of its last checkpoint. This state includes its own last incar-
nation number (which is incremented) and the expected
sequence and incarnation number for each channel.

Following a recovery, the receiver informs the sender of
all logged messages to avoid retransmission. When a mes-
sage is received and the state number is less than or equal to
that expected, an error has occurred. If the incarnation num-
ber is higher than expected, the sender has restarted. If it is
lower, the message is a duplicate sent during recovery and
may be discarded. If the sequence number is higher than
expected, the receiver has failed and the receiver must recov-
er the lost message(s).

To avoid infinite buffering, the protocol includes a mech-
anism informing the remote site of messages included in
snapshots. The receipt of such a message permits the sender
to discard logged messages.

Channel Proxies. The half-session abstraction permits two
threads running on different servers or platforms to com-
municate with each other and permits migration of either
end of the channel. However, views may be required to com-
municate with legacy systems that do not implement the
channel abstraction. For example, a user may be interacting
with a legacy application running on a Unix shell.

This case requires an additional mechanism that permits
the platform (hardware, software, or both) to migrate. This
may be achieved using the server as a fixed proxy for com-
munication. In such a scheme, the fixed server communi-
cates with the remote party on behalf of the platform. This
communication may be implemented using a traditional
socket interface. The platform in turn communicates with
the server by using the half-session abstraction. The platform
can thus be relocated without knowledge of the remote party.

The problems of channel mobility are especially acute
when dealing with legacy systems, which—in the mobile con-
text—means almost all current operating systems and envi-
ronments. Consider a mobile telnet session that is communi-
cating with a Unix host. When the application moves, the
migrating application will hold the address of the remote Unix
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Figure 3. Half sessions.

host, but the host will not recognize the migratory applica-
tion as that with which it was communicating. This problem
is being addressed by the mobile-IP standardization initiative.

Migrating Code

Heterogeneity poses problems in all distributed systems, but
the problems are especially acute in mobile systems where
code and data migrate around a network. The major prob-
lem with executable code is that each hardware architecture
requires instructions to be encoded in an architecture-spe-
cific manner. There are several solutions:

= Translate code from one architecture-specific format to
another on migration.

= Provide an architecture-neutral format and a run-time
environment on each architecture.,

= Provide an architecture-neutral format and perform just-
in-time compilation to the native-code format for each
architecture.

The first approach suffers from the N ¥ M problem: Every
platform must provide a translator to convert the code from
every other architecture into the local format. This is clear-
ly infeasible.

Interpretation by a runtime system. The second
approach is that followed by Java: A single architecture-neu-
tral code format is provided and interpreted by a run-time
system for each platform. This effectively isolates the code
from machine specifics. For example, the Java virtual
machine3 is defined as a set of byte-coded instructions with
zero or more operands that execute on a simple stack
machine. The machine provides per-thread execution stacks
and a single heap shared by all threads. Java programs in
byte-coded form are loaded and executed by the interpreter.

Besides the obvious advantages of machine independence,
this approach includes a code verifier that checks all programs
before execution to ensure that the code represents a legal
Java program. The checking performed by the verifier
includes targets of all control-flow jumps, legal modification
of stacked values, and integrity of the instruction stream.
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In the context of mobile
process closures, this kind of
verification is important for
two reasons. First, the mere
existence of a verifier implies
the existence of a semantic
model that defines what
constitutes a legal program.
Second, it ensures that the
run-time environment exe-
cutes semantically meaning-
ful programs. In the case of
Java, this semantic model includes the format of data
objects, which guarantees that a strong type regime is being
followed. Without such guarantees, the interpretation of
data closures and, therefore, many of the techniques
described below are all but impossible.

This approach is not without its drawbacks. First, imple-
menting a high-performance abstract machine is a major
engineering task. Second, the design of the abstract machine
must avert many pitfalls. For example, the current Java vir-
tual machine specification inherently addresses a 32-bit
machine. This causes many problems in porting the machine
to 16- or 64-bit architectures.

JIT compilation. The third approach to code heterogene-
ity—providing an architecture-neutral format and compil-
ing down to an architecture-specific format—avoids the N
¥ M problem by providing a single compilation target archi-
tecture. It can be efficiently executed because it is in native
format, and it has the further advantage of being program-
ming-language independent.

Generating native code from an intermediate form
inevitably results in different numbers of instructions being
generated on disparate architectures. For example, on a
RISC architecture such as Alpha/AXP, more instructions
would be generated for each high-level instruction than
would be necessary for a CISC architecture such as X86.
Thus, the native code streams generated for two separate
architectures are likely to have little correspondence. This
results in the problem that a computation running on one
architecture cannot be suspended at an arbitrary point and
restarted on another.

There are two basic solutions to this problem: roll the
computation forward or roll it back to a unique point. Both
solutions are based on the unique points within all generat-
ed code streams that correspond to points in the stream from
which they were generated. Such points are sometimes called
bus-stops, and can be supported using techniques similar to
those used by source-level debuggers to map from source-
code line to instruction-stream position and vice-versa.

Architecture-neutral code formats vary considerably—
from high-level code that approaches source code in com-
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plexity, to low-level code that is similar to
real machine code. The checking performed
by the Java runtime system is possible part-
ly because Java byte-code is little more than
a compressed form of Java source code. At
the other extreme, low level RISC-like code
has been proposed as an intermediate
form.4

High-level formats make it easier to
check the semantic integrity of the program
and are generally smaller than RISC code
sequences (which may be important when
shipping code). Correspondingly, low-level code formats are
generally larger than interpretable code but require less work
when the code arrives at a platform since much of the code
generation and optimization can be performed early.

The major problem with low-level code is the extreme
difficulty of checking the program’s integrity or analyzing
what it is doing. Object creation is a good example: In a sys-
tem with high-level intermediate code, such as Java, objects
are created by an op-code (in Java, the new_quick opera-
tion3). Should a system wish to track object creation, this
operation requires augmentation with the appropriate
instructions. However, in the case of low level code, a com-
plex series of instructions involving loading sizes onto stacks
and calling functions needs to be recognized. This is made
more difficult by code optimizers that may obscure the high-
level operations being performed.

Low-level intermediate codes permit multiple languages
to be compiled down to them, which can also cause prob-
lems for the implementation of mobile code and data. For
example, consider a system that tracks pointers in objects to
support the transmission of closures to other platforms. Lan-
guages that permit unsafe unions—like C—make it impos-
sible to determine if fields contain pointers. These problems
are similar to those of garbage collection. However, in
garbage collected systems, fields of objects that might be
pointers are assumed to point to objects. The application of
this technology to mobile systems might unnecessarily ship
extremely large volumes of data from platform to platform.

High-level intermediate languages that permit JIT code
generation, provide type information, and support seman-
tic verification appear to have considerable advantages over
lower level formats.

Migrating State

The next question is how to migrate dynamic state between
platforms. Migrating the state of a computation in migra-
tory systems is equivalent to saving the dynamic state in per-
sistent systems.5,6 In general, there are four approaches:

= manually writing save-and-restore code in every appli-
cation/applet,
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= using (Java) serialization techniques to save and restore,
= providing persistence at the address space level, or
= providing persistence at the virtual machine level.7

The first approach is the traditional solution: Write flatten-
ing code for every object class in the system. While this is
possible for simple data structures, it becomes unmanage-
able in complex applications. Its only merit is that highly
optimized code may be written for the data types. A serious
deficiency is the lack of mechanisms for saving the state of
processes per se. This restriction is only overcome by writ-
ing processes as finite state machines so that the process state
is entirely held in explicit data structures. This approach
severely limits the way in which programs may be written.

The second approach, known as pickling, has become
popular since the introduction of Java object serialization.8
It permits an arbitrary graph of objects to be marshaled into
a stream, but it also has problems. Some are fundamental
and others accidents of implementation. First, not all fields
of Java objects are written to the stream. In particular, stat-
ic fields are not serialized by default due to a perceived secu-
rity breach. Second, the active context (that is, active
threads) is not saved. Knowing that threads are not preserved
across serialization will inevitably force programmers to write
code as finite state machines.

A third problem is that pickling is an inefficient, all-or-
nothing approach to saving state. It includes no concept of
saving only data that has changed since a particular time,
such as the start of a transaction or the last checkpoint. It is
possible to avoid this problem by selectively serializing
objects, but such an approach makes it easy to violate refer-
ential integrity. Nor can serialization be used effectively to
save anything other than an entire object closure. In many
systems, the object closure may be very large. Thus, the seri-
alization approach would also require the use of techniques
such as Farkas' Octopus mechanism® or weak pointers
(which have now been incorporated in Java).

The third approach to saving state—providing function-
ality at the virtual address-space level—is followed in the
design and implementation of the Grasshopper persistent
operating system.'® Among the benefits of this approach is
the ability to make all data in the address space persistent,
including the states of threads and of the stacks supporting
them. Curiously, this does not help in transmitting state to
another machine since data must be in an architecture-neu-
tral format to support heterogeneity.

Many persistent systems7,11,12 follow the third approach
to saving state—providing the necessary functionality at the
virtual machine level. This approach has many merits in the
mobile computing application domain. It also addresses
many of the shortcomings of the serialization approach. In
the case of Java, providing persistence at a level lower than
the programming language permits the (reflective) type sys-
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tem to be broken; consequently, all object fields can be
migrated rather than only the public ones. Secondly, since
the runtime system has access to object implementations, it
is easy to save those objects that have been modified since a
previous checkpoint or transaction start.

All of these techniques can gather some approximation
to the computation’s state. The data formats differ in each
case. The manual approach produces data in an ad-hoc for-
mat that hinders its use in a general-purpose system. Clear-
ly some standard representation is required to save and store
the data. In this respect, object serialization is the best
approach, except that it fails to capture the dynamic state of
computations. The most complete solution—persistence at
the address space level—suffers from problems with hetero-
geneity, and so the virtual machine approach remains the
most promising.

There are, however, two further problems that must be
addressed using this approach—namely, locating data on
stacks and locating data on the heap.

Stack-based data. To save state at the abstract machine
level and migrate a computation to other platforms requires
mechanisms capable of interpreting the data resident on the
computation stack. This is similar to the requirements of
garbage collected languages, but stricter. Garbage-collected
languages must differentiate only between pointer and non-
pointer data. Mobile computation, if it is to support het-
erogeneity, must establish the type of all data on the runtime
stack so that it can be reconstructed on a different platform.

Body Deck.

This requirement is also similar to source code debug-
gers, such as gdb, which must interpret runtime stacks to
provide debugging information.

There are several solutions:

= generate self-saving code,
= Use a tagged stack architecture, or
= generate a static map of the stack layout.

The first approach has been experimented with in a version

of the Napier88 system developed at the University of Ade-
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laide.®2 The mechanism explicitly encodes source-level pro-
cedures as restartable native code functions, which are para-
meterized with a restart point and return a scalar status value.
The restart point indicates where the code should start exe-
cuting. The first call to a procedure is performed by a C
function call with a restart point of zero. The status value
indicates whether the procedure executed to completion or
encountered some hindrance such as a snapshot.

The restartable native code functions use a stack of acti-
vation records. Whenever a native procedure is called, a stack
object is created to represent its activation record. This object
provides a repository in which data may be preserved across
checkpoints. When they start executing, all native code pro-
cedures register the address of the object containing the acti-
vation record in a global data structure. This ensures that
the activation record can be located following a restart.

Before a checkpoint is performed, the generated code
must ensure that the entire dynamic call-chain is stored in
objects. Each procedure saves its entire state in the corre-
sponding stack frame. The saved state includes a resume
address that may be passed to the function when it is restart-
ed. After saving its state, each procedure returns a status
value to its caller, indicating that it too should save its state
and return the same status value to its caller. Since each exe-
cuting native function has saved its state in an object and
returned, there is no data on the native call stack. The mech-
anism is therefore architecture independent.

The second approach—using a tagged stack architec-
ture—is extremely expensive computationally since every
stack load operation must be accompanied with a load of
the tag.

The third approach is followed by most source-code
debuggers and requires a map of stack usage to be associat-
ed with the executable code. Note that such information is
usually only included with code if the appropriate debug-
ging flags have been set during the compilation. If this
scheme is used to support mobile code, the information
must be included with all code.

The complexity of this approach stems from the poten-
tial for changes in the execution stack with every operation.
The map must therefore contain enough information to
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determine the stack contents at every legal program-counter
address. This is generally achieved by saving a compilation
symbol table for each procedure/method. Each symbol table
entry must contain both a start and end address at which
the entry is legal. The contents of a stack at any program-
counter value may therefore be determined by a simple
search over the appropriate symbol table at runtime.

Heap-based data—saving. If an entire process closure is
to be saved on one platform and restored on another, the
dynamic data resident in the heap must also be saved. To do
this requires identifying and marshaling the transitive clo-
sure of objects pointed to from the stacks. This means that
pointers, objects, and data within objects must be identifi-
able.

We have already dealt identifying pointers: It is a special
case of identifying the types of all data on the runtime stacks.

With regard to objects and data within objects, the for-
mer must be self-describing so that their size and field types
may be determined at runtime. Like the requirements on
stacks, this is a stricter form of that for garbage collection,
where only pointers and nonpointers must be differentiat-
ed. To cope with heterogeneity, the system must be able to
determine the types of all fields.

As an example of self-describing objects, consider Sun
Microsystem’s current Java virtual machine implementation.
Each pointer to an object is represented by a handle con-
taining a pair of pointers. The first points to a table con-
taining the object’s methods and to a pointer to an object
representing the object’s class. The second is a pointer to the
actual object allocated in the Java heap.® The full type of any
object may be determined by examining the class object.
Thus, the current implementations of the Java virtual
machine contain enough information to permit the transi-
tive closure of heap objects reachable from the stacks to be
determined.

The next consideration with heap objects is deciding how
often to save data and what data to save. Taking periodic
process snapshots has several advantages. First, like incre-
mental garbage collection (provided that incremental algo-
rithms are used), periodic snapshots can bound the amount
of time required when a process snapshot is taken. Second,
process resilience is a free by-product of making periodic
snapshots: Should a process fail, it can be restarted from an
earlier snapshot. Finally, periodic snapshots require no ini-
tiation by the user who can, consequently, walk away from a
platform at any time and upload the process closures onto
another platform.

The most common incremental algorithm used to pre-
serve state in persistent systems associates a mark bit with
every object. When an object is modified, the mark bit is set
and then cleared when the next snapshot of the object is
taken. This allows a linear sweep over the heap to determine
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which objects have been modified since the last checkpoint
and consequently need to be marshaled.

When data structures are copied, care must be taken to
preserve the referential integrity of circular data structures. In
some state-saving regimes, circular data structures are inad-
vertently changed from graphs into trees. This can change
the semantics of programs that operate over the object
graphs. This usually occurs when pickling schemes, such as
Java object serialization, are used which do not preserve
object identity between individual snapshots.

Heap-based data—restoring. When a process is restored
on a platform, either the entire or a partial process closure
can be loaded from the remote platform/server. Loading the
entire process closure is easier to engineer but may require
the user to wait for a relatively long period. World Wide
Web users commonly experience such delays waiting for
data to load. It is therefore expedient to use incremental
loading strategies that permit the process(es) to start run-
ning before the entire closure is loaded. If this strategy is
employed and the working set is smaller than the entire clo-
sure, many objects may never need to be loaded.

This strategy requires solutions to three additional prob-
lems:

= providing a mechanism to differentiate between the
objects that have been loaded and those that have not,

= providing a mechanism to ensure that an object is loaded
at most once to avoid problems with referential integri-
ty,

= defining a protocol that permits unique identification of
both the site(s) on which remote objects are stored and
the objects stored there.

Several techniques have been used in object-oriented data-
bases and persistent systems to differentiate between local
and remote objects. The simplest is to check for residency
prior to every object de-reference. For example, in PS-algol
systems, every pointer to a nonresident object is denoted by
setting the top bit of the pointer; a simple test prior to de-
reference can screen for nonlocal objects and activate the
faulting mechanism if required. Such tests can have a high
impact on performance. Fortunately, they can be optimized.
For example, the PS-algol system ensured that all pointers on
the stack were to local objects, thereby avoiding many tests.

If the language system is purely object-oriented, a modi-
fication of this scheme developed by Moss can be
employed. It relies on knowing that all method calls must
go through a method table. By implementing ghost objects
whose methods contain faulting code, nonresident objects
can be faulted without requiring any additional tests. The
ghost objects implement a barrier, effectively separating
loaded from non-loaded objects.
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Figure 4. A simple object graph.

Wilson'® has proposed the implementation of barriers
using virtual memory protection mechanisms. His method
is similar to that of Moss. The difference is that protected
regions of the virtual address space, rather than ghost objects,
implement the barrier. When a process attempts to access a
nonresident page, the faulting code is activated by the oper-
ating system.

Consider the object graph shown in Figure 4. If a breadth-
first search from A is performed, the object labeled D will be
reached by two independent routes. Consequently, D could
easily be loaded twice. To avoid this problem, the runtime
system must maintain a map that records loaded objects.
Prior to loading any object, this map must be consulted and
the local copy of the object used if one is available.

The last problem associated with incremental loading is
to define a protocol that permits unique identification of
the site(s) and the remote objects. This is easily achieved
using a pair containing the IP-address of the site combined
with a local identifier for the object. The only complication
is that the size of this pair is likely to be bigger than any
native pointer size.

Locating Views

The state of processes that implement views may easily be
tagged with the user-1D combined with a view identifier.
This scheme has been used in the Monads16 and Grasshop-
per® persistent operating systems to identify login sessions.

In Grasshopper, when a user logs out, their environment
continues to exist. Rather than create a new environment
on each login, users may bind to an extant environment.
This task is performed by a login server that maintains a
mapping between (username, password) pairs and capabili-
ties for the environments. A similar scheme is described in
more detail in Keedy and Vosseberg.’

Before a view is made visible, its owner must be authen-
ticated. This requires users to identify themselves and pre-
sent authentication—just as they do in a conventional login
session on a Unix machine. In addition, the location of the
view specified by the user must be established. This can be
accomplished using smart cards or the Internet.
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Figure 5. Reestablishing a view.

Smart cards with a small amount of memory can record
the identity of the user and where they were last active.
Many of the currently available network computers have
smart card interfaces built into them that could be used for
this purpose. When a user wishes to start using a platform,
the smart card would identify the user and determine the
platform that they last used. A smart card with more mem-
ory could store the roots of the user’s active processes, thus
allowing computation to start as soon as the user was
authenticated. Clearly, if enough memory were available,
the user’s entire working set could be recorded on the card.

An alternative approach that makes use of the Web
assumes each user to have a home capable of recording the
identity of the last hardware platform on which each view
was last active. This functionality may be implemented via a
simple CGI (common gateway interface) script capable of
saving and retrieving locations located on a Web server. In
the worst case, a user might type in the location of their
home during the authentication process so that the system
could locate it. Other possibilities include using a search
engine or global identifiers to locate a user’s home.

As described above, a server may provide the persistent
storage of views. When a view is established on a new hard-
ware platform, the user’s home is contacted to register the plat-
form’s server as the manager of the view as shown in Figure 5,
step 1. Periodically, the view is snapshotted to the server to
provide resilience and to permit future migration (step 2).

Following user migration (step 3), the new platform con-
tacts the user’s home to register and request view migration
(step 4). The Web server requests the platform that last acti-
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vated the user’s chosen view to migrate the
software platform to the new hardware plat-
form (step 5). These requests are typically sent
via the server supporting the platform. In
practice, many requests will not be forwarded
to the platform and will be handled by the

Several systems currently support aspects of
mobility described in this article.

Teleporting
The Teleporting System developed by Olivet-
ti Research Laboratory at Cambridge?® is the
best example of supporting mobility with-
out moving the applications. The system lets
users interact with their running X Win-
dows applications from any X Windows dis-
play device. Teleporting is the act of moving windows from
one display and recreating them on another. It is achieved
by introducing a level of indirection between applications
and their interfaces. A proxy server acts as a proxy for a real
X Windows server. Instead of providing a display, keyboard,
and mouse, the proxy server diverts 1/O to real X-servers. By
interacting with the proxy server, the I/0O may be diverted
to an arbitrary device.

Teleporting is a simple implementation of mobile com-
puting environments and utilizes existing network and work-
station infrastructures. The major problem with this approach
is that it is unsuitable for anything other than an office envi-
ronment since it suffers from an intrinsic latency problem.

Migratory Applications

Bharat and Cardelli*® describe an architecture designed to sup-
port migratory application in the language Visual Oblig.?°
Single-user migratory applications are supported at the lan-
guage-environment level and can migrate from node to node
while maintaining the state of their user interface. Almost no
requirements are made of the application programmer.

The system’s basic building block is an agent, a compu-
tation that may hop from site to site carrying with it a suit-
case containing the agent’s persistent memory. When the
agent executes a hop instruction, the suitcase and the com-
putation’s closure are migrated to the new site. When an
agent arrives at a site, it receives a briefing that may include
advice as well as site-specific information.

These mechanisms have been used to construct migrato-
ry applications containing a MigrateTo(Host) command
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that contacts the remote host and, if the host will accept the
application, checkpoints the state of its user interface and
performs a hop instruction. This system incorporates many
of the concepts described in this article, but there are a few
differences. First, when a closure is copied to another site,
the mutable values are never copied across the network;
instead, network pointers refer to the remote objects. Sec-
ond, Bharat and Cardelli make no mention of the problems
relating to heterogeneity.

Aglets

As described in Lange,?* an aglet is a mobile Java object
capable of visiting different hosts on a network. Aglets are
autonomous in that each one contains an active thread of
execution and is capable of reacting to messages sent to it.
Like an applet, the class files for an aglet can migrate across
a network. Unlike applets, when an aglet migrates, it also
carries its state. An applet is code that can move across a net-
work from a server to a client whereas an aglet is a running
Java program (code and state) that can move from one host
to another on a network.

Each aglet executes in a context that provides a uniform
execution environment independent of the capabilities of the
host and serves to isolate the aglet from the platform. Aglets
have an onCreation method that executes when the aglet is
created or migrated to a new context. Aglets also contain a
dispatch method that takes a URL as a parameter and can be
used to migrate the aglet to a new context. When dispatch is
called, standard Java object serialization is used to preserve
the aglet’s bytecode and state and transmit them across the
network using the Agent Transport Protocol.?? Aglets can be
reactivated at the new site using the onCreation method.

Since aglets use Java object serialization to export their
state, the execution state of the threads owned by the aglet
are not serialized. Therefore, an aglet that is migrated or
deactivated loses any state resident on stacks and the pro-
gram counters of running threads. This is because the Java
Virtual Machine does not permit direct access to runtime
state.

Before an aglet is serialized, the host informs it that seri-
alization is imminent (via the onDispatch method) so that it
can preserve any information needed to continue its execu-
tion in object variables. This inevitably forces applications
to be written in a state-machine-like fashion with conse-
quent loss of expressiveness.

Telescript/Odyssey

Telescript?® is an object-oriented language developed by Gen-
eral Magic for distributed applications. Its major contribu-
tion is a protection mechanism based on capability-like enti-
ties called permits. A thread may hold permits, which allow
a particular set of operations, for example, to use a resource
such as a CPU. The Telescript runtime system is purely inter-
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preted and executes a relatively high-level bytecode. The Tele-
script architecture has recently been re-implemented in 100
percent pure Java and the system renamed Odyssey.

Facile
Facile was developed at European Collaborative Research
Centre.?* It is Standard ML extended with primitives for
concurrency, distribution, and communication. In line with
its ML heritage, it models resources as strongly typed sets of
functions. Any resource that matches the expected signature
may be bound when code migrates to a new platform.
This simple mechanism provides support for environ-
ment mobility. Communication between nodes is provided
by a channel mechanism capable of transmitting arbitrary
Facile values, including function closures. The system sup-
ports both interpreted architecture-neutral code and native
code using JIT compilation when appropriate.

Omniware

The Omniware system exemplifies a low-level intermediate
code approach.* It uses low-level RISC-like instruction for-
mats to represent code. The system provides a virtual
machine called OmniVM. When virtual machine code is
loaded onto a platform, it is compiled down to native code
for the host architecture.

Although the system is language independent, it is
allegedly safe through a sandboxing technique developed by
one of the authors.?®> However, the authors do not mention
how integrity is enforced when modules interact. The
authors claim that the Omniware approach is general
enough to support languages such as C and C++. This is
important because, even interpreted systems such as Java and
Visual Basic, as much as 90 percent of the code executed is
in library routines is written in C and C++.

CONCLUSIONS

As the technologies of high-performance networks and fast
CPUs become inexpensive, reliable, and commonplace, the
computer is increasingly a common tool for many forms of
work and leisure rather than a computing engine. Many
workers are now highly mobile and wish to be able to work
seamlessly over a number of platforms. These changes moti-
vate a break from the traditional model of computation to
an ubiquitous model that makes the user’s entire environ-
ment available wherever it is required.

This article has examined many implementation issues
that must be addressed to engineer such an environment.
The review of current systems addressing these issues reveals
that it is now possible to engineer a system in which the
user’s entire environment is available wherever and whenev-
er it is required. However, the provision of such an environ-
ment represents a considerable engineering effort and many
significant choices. At the University of Stirling, we are cur-
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rently investigating these choices in the construction of a
ubiquitous environment based on Java. .
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