
Persistent Servers + Ephemeral Clients = User Mobility

Alan Dearle
University of Stirling, Stirling, Scotland

al@cs.stir.ac.uk

Abstract

A large group of computer users are now mobile; they either make use
of more than one computer or carry lap-top computers with them. User
migration is often hindered by inadequate programming models and
architectures. This paper describes an architecture which permits the
user’s environment to migrate with them. A corner-stone of this
architecture is the ability of persistent Java systems to save and restore
the state of active computations. This concept is extended to permit
computations to be restored on different machines thus permitting a
user’s environment to migrate. The architecture also addresses the
difficult issue of channel mobility between two migratory applications.
It is therefore general enough to support arbitrary distributed mobile
computations.

1 Introduction

Many computer users make use of more than one computer, for example, it is common to
have a computer at work and another at home. Sometimes within the workplace a user may
use more than one computer, perhaps in different rooms, buildings or even countries. Users in
these situations have been forced to accept that the data they wish to manipulate may be
unavailable on the local machine or perhaps available but the appropriate software to
manipulate it is not. Software can add to the problem by encapsulating data, making it
difficult or impossible to access from other machines. Examples include: data held in editor
buffers, CAD designs, electronic appointment programs and electronic mail.

Many people have adopted ad-hoc working practices to accommodate mobility, for example,
carrying floppies or a lap-top containing a cached version their current work. Ironically, the
use of a lap-top introduces another form of mobility which must be accommodated - that of
machine mobility. A common solution to the problem of making data globally available is to
store and manipulate data on a central server. The situation is typified by electronic mail.
Some users of electronic mail read their mail using tools such as elm, xmh or mailtool which
both execute and manipulate mail files on a central server. Alternatively, tools such as Eudora
which run on a local workstation may be used. The former solution forces users onto the
central resource whereas the latter utilises the local machine but at a cost. Since mailers such
as Eudora maintain both read and unread mail folders on the client†, a user moving to another
machine and wishing to access mail has considerable difficulty.

A more desirable situation would be for a user to approach an arbitrary machine and be able to
continue performing their work regardless of where they worked last. This paper presents a
first step towards the realisation of this ideal. A number of developments have made such an
approach possible: the ubiquity of the Internet, the widespread adoption of Java, and the
maturity of persistent technologies.

† Pop based mailers such as Eudora do allow mail to be left on the server but the users forfeit the ability to
organise mail into folders.

The paper is organised as follows: first some terminology and a characterisation of different
kinds of mobility is made. This is followed by a statement of the requirements for supporting
mobility and a description of an architecture designed to satisfy these requirements. The
architecture has two main components, platforms and servers which are described in Sections
3 and 4 respectively. A design to cope with the problems of environment binding and
communication channels between mobile entities is addressed in Section 5. Section 6
describes an initial experiment which we have conducted to prototype, test and develop our
ideas. Some related work is discussed in Section 7 and Section 8 concludes.

2 Terminology and Requirements for Mobility

2.1 Terminology

In this paper we will consider the mobility of three classes of entity: people, machines and
processes. We assume that a mechanism for finding data on the network exists; a naming
mechanism such as that provided by Uniform Resource Locators (URLs) will suffice.

We define a user to be a person who uses a computer; users are mobile: they move from home
to their place of work, from city to city and from continent to continent. We define a view to
be that which a user sees when they sit down at a computer screen be it connected to a PDA,
PC, workstation, network computer, or mainframe. Users may own multiple views but only
make use of one at a time. A view is implemented by a platform. A platform is a collection of
hardware and software that combine to implement the view. We will separate a platform into
two components the platform software and the platform hardware. The platform software
consists of:

• active threads and/or processes‡ that implement the view,

• the code being executed by the threads,

• the code that implements the software environment (e.g. the Java-virtual machine,
dynamic libraries etc.) and,

• the data representing entities visible in the view.

The platform hardware consists of a computation environment on which to run the platform
software i.e. a CPU and main memory, a screen with a pointing device and perhaps a
keyboard. The platform hardware may contain persistent storage but need not. In cases where
persistent storage is not available on the platform, it is provided by a server. A server contains
non-volatile storage and may be used as a general purpose repository. There are no
requirements for a server to support any form of view. If a device which is used as a server
also contains the ability to operate as a platform or vice-versa, it will be considered to be two
different entities. Clearly, there is an opportunity for optimisation in this case.

2.2 Characterising Mobility

The framework described above is shown in Figure 1 which shows the three classes of entity
that may be mobile: users, views and platforms. When users move from location to location
they require their view to move with them. The view includes the user interfaces to
applications which may be executing on the platform, on the associated server, or elsewhere
on the network. When a view migrates from one platform to another, either the threads and

‡ We will use the term thread to mean thread/process.

data implementing the view must also migrate, or those threads must be notified of the
location of the new view.

Figure 1: Users, Views, Platforms and Servers.

Clearly the former solution makes better use of caching and network bandwidth. In this paper
it is therefore assumed that the threads and data implementing the view migrate with the user.
There is no requirement for the applications with which the user is interacting to migrate
although it may be expedient for them to do so. When the threads implementing a view
migrate, the connections to networked entities must also migrate. For example, if the view
includes a traditional window implementing a Unix interaction with a remote host, the input
and output to and from that host must migrate with the view.

A platform may migrate with a user, for example, when a user carries a lap-top to another site.
When this occurs, the applications running on that platform and the view that it presents also
migrate. However, network connections to the platform may be severed and need to be re-
connected at another site. This situation is analogous to the process which occurs when
platform software migrates. When a platform migrates, it may be expedient for the platform to
employ the services of a local server at the new site.

As described above, a view is implemented by a collection of persistent threads each of which
operate on some cached data. Figure 1 is refined in Figure 2 which shows the composition of
views, platforms and servers.

Figure 2: Points of Mobility

Figure 2 shows the two different points of mobility that may be considered:

1. view mobility over platforms and,

2. platform mobility over servers.

View mobility is supported by platforms and servers, platform mobility is supported by
servers. The persistence of threads and data in the platform may be implemented either by the
platform, if it is equipped with persistent storage (e.g. in the case of a PC), or co-operatively
between the platform and the server if it is not (as is the case in a NC).

2.3 Requirements for User Mobility

A user may move from machine to machine, for example, in Figure 1 user Jim may move
from platform B to platform C connected to a different server. When the user moves, the
user’s view should also move, permitting the user to continue with whatever work was being
performed at the last platform.

The ability to migrate a view requires that the platform software be capable of migrating to a
different platform hardware instance. Since the platform software consists of active threads
and the data representing entities visible in the view, migrating the view requires two forms of
migration:

1. data migration, and,

2. thread migration,

or rephrased,

view mobility = thread mobility + data mobility.

Each of these forms of mobility introduces other problems discussed below.

2.4 Requirements for Platform mobility

Consider platform C, in Figure 1, as a mobile device it may be disconnected from the network
and reconnected elsewhere. Here the view of user Fred is (may be) maintained by the mobile
device, however the mobility of platforms highlights some other problems, namely:

1. environment mobility, and the special case of this,

2. channel mobility.

Environment mobility is concerned with bindings between threads and the external
environment. For example, a thread may make use of a printer or some input device.
Mechanisms must be provided so that threads running on a mobile platform may bind to
services which appear in their environment. This situation also arises when a view is migrated
to another platform. It is clear that different kinds of bindings are required even for one class
of device. For example, in the case of a printer, a user may wish to print confidential or
personal documents on a secure printer at a fixed location and in other cases any printer may
satisfy their needs. This illustrates the need for both static and dynamic binding mechanisms
to support environment mobility.

Channel mobility is a special case of environment mobility. A thread running on a platform
may open a communications channel with a another thread running on another platform or
server. If the platform is taken off line and moved to another location, the channel will be lost.
Like environment mobility, this situation also arises when views are migrated since threads
are migrated to other platforms. To make movement transparent, software that maintains the
channel across movement must be provided. This may be achieved in one of two ways:

1. implementing software at both ends of the channel to manage the transparent
connection/reconnection, and,

2. using a server as a connection proxy.

These ideas are expanded in Sections 5.1 and 5.2 below.

2.5 Overall architecture

Figure 3: Re-establishing a View

Before view is made visible, the owner of the view must be authenticated. This requires the
following:

1. users must identify themselves,

2. users must present authentication, and

3. the location of the view specified by the user must be established.

The first two stages above are identical to a conventional login session on a Unix machine.
The third step is necessary in order to locate the user’s specified view. These three steps may

be easily achieved if a smart card with modest memory is available. Using smart cards it is
possible to record the identity of the user and where they were last active. Many of the
Network Computers that are currently available have smart card interfaces built into them
which could be used for this purpose. However, since smart card devices are not ubiquitous,
we shall consider other ways of identifying the user and their views. Figure 3 shows one
method of doing this using the World Wide Web.

Each user is assumed to have a home which is capable of recording the identity of the last
hardware platform on which each view was last made. This functionality may be implemented
via a simple cgi script located on a Web server which is capable of saving and retrieving
locations. In the worst case, a user might type in the location of their home during the
authentication process in order permit the system to locate it. Other possibilities are to use a
search engine or global identifiers to locate a user’s home.

When a view is established on a hardware platform, the user's home is contacted to register
the server as manager of the view (1). Periodically the view is snapshotted to the server to
provide resilience and to permit future migration (2). Following user migration (3), the new
platform contacts the user’s home to register and request view migration (4). The Web server
requests the platform which last implemented the user’s chosen view to migrate the software
platform to the new hardware platform (5). These requests will typically be sent via the server
supporting the platform as described in Section 5.2 below. In practice many of these requests
will not be forwarded to the platform and will be handled by the server implementing the
platform’s persistent storage. In either case, the closure of threads and data implementing the
view are migrated to the new hardware platform for restoration (6) and the cycle begins again.

3 Platforms

A platform must be capable of:

1. authenticating a user,

2. loading a view from the platform/server identified during the authentication sequence,
and

3. saving the state of the view to persistent storage provided by the platform or the server
that supports it.

The second and third activities are intimately related to each other and require a protocol that
defines:

1. how to identify the persistent state implementing a view,

2. how persistent state is preserved,

3. what format the persistent data is in, and

4. how to transport that state to and from persistent storage and between platforms and
servers.

The persistent state that implements a view may easily be tagged using the user-id combined
with a view identifier. This scheme is used in Grasshopper to identify login sessions and
similar schemes have been used elsewhere [1]. The next question is how state is preserved; in
general, there are 4 approaches to saving state in Java systems:

1. manually writing save and restore code in every application/applet,

2. perform saving and restoration using (Java) serialisation,

3. providing persistence at the (Java) virtual machine level [2], and

4. providing persistence at the address space level.

The first approach is the traditional solution to persistence: write flattening code by hand for
every object class in the system. Whilst this is possible for simple data structures it becomes
unmanageable in complex applications and has been estimated to account for 30% of all
application code. The only merit of this approach is that code may be written that is highly
optimised for the data types.

The second approach has become popular since the introduction of Java object serialisation
[3] which permits an arbitrary graph of objects to be marshalled into a stream. Whilst this
approach would be appear to be a panacea it is not without its problems some of which are
fundamental and others accidents of implementation. The first problem, which may be argued
to fall into either of the above two categories, is that not all fields of objects are written to the
stream. In particular, private fields are not serialised due to a perceived security breach. The
second problem with this approach is that active context (i.e. active threads) is not saved.
Knowing that threads are not preserved across serialisation will inevitably force programmers
to write code in a certain way. Whether this is detrimental to coding remains to be seen. The
third problem is that Java object serialisation is not an efficient method of making data
persistent due to the fact that, like pickling, it is an all or nothing approach. There is no
concept of saving only that data which has been modified since a particular point or time such
as the start of a transaction. One can attempt to avoid this problem by selectively serialising
objects. However, using such an approach it is easy to lose referential integrity which must be
avoided. A final problem with serialisation is that it cannot be effectively used to save
anything other than entire object closure. In many persistent systems the object closure may
include the entire persistent store and perhaps even large portions of the Internet. If this
approach is to be followed, techniques such as Farkas’ OCTOPUS mechanism [4] or the use
of weak pointers are also required.

The next approach to saving state is to provide persistence at the (Java) virtual machine level.
This is the approach followed by Atkinson’s PJava group [2]. Whilst we have argued
elsewhere that the last approach is better, this approach has many merits in the application
domain described in this paper. It also addresses many of the shortcomings of the serialisation
approach described above. Providing persistence at a level lower than the Java language level
permits the (reflective) type system to be broken and consequently all fields of objects may be
saved to persistent storage rather than only the public ones. Secondly, the runtime state
associated with threads may also be saved to persistent storage and later restored†. Since the
runtime system has access to object implementations, it is easy to save only those objects that
have been modified since a previous checkpoint or transaction start. This approach helps solve
the closure problem described above although does not address the problem with respect to
network transmission.

The final approach to providing persistence is to provide it at the virtual address space level;
this approach is followed in the design and implementation of Grasshopper and has many
desirable properties which we have described elsewhere [5]. One benefit of this approach is
the ability to make all data in the address space persistent, including the state of threads and
the stacks supporting them. Curiously, this does not assist in the transmission of state to
another machine since data must be in an architecturally neutral format to support
heterogeneity.

The above techniques are all capable of gathering some approximation to the persistent state
of a computation. The format of the data in each case is different. Using the manual approach

† Current implementations do not support this functionality.

to saving persistent data produces persistent data in an ad-hoc format. This is a hindrance to
its use in a general purpose system. Clearly some standard representation is required to enable
the data to be saved and restored. In this respect, object serialisation is clearly the best
approach. However, as described above, it is deficient in that it does not capture the dynamic
state of computations. This is also true of the Aglet approach described below [6]. The most
complete solution, that of persistence at the address space level, suffers from problems with
heterogeneity, leaving the Pjava approach being the most promising.

The last problem is how to transport state between platforms and between platforms and
servers. Once a format for the persistent data has been agreed, this may be easily achieved
using one of the stream abstractions provided by Java that use TCP/IP.

4 Servers

Servers are responsible for four tasks in the architecture:

1. implementing the home of users,

2. providing persistent storage for non-persistent client platforms,

3. providing channel proxies, and

4. provide caches for client platforms.

The task of providing a home for users is the simplest of the four tasks. This requires the
ability to record and recover the identity of the last hardware platform which implemented a
view. As described above, this may be done simply and efficiently using existing Web tools
and protocols. A server providing a user’s home may also be required to provide persistent
storage for (passive) data owned by a user. This is the traditional file/object server task often
associated with the role of a server.

In addition to the file/object storage role, servers are required to provide persistent storage for
the views implemented by the hardware platforms they support. This role is similar to that
played by servers in support of early Sun diskless workstations (e.g. Sun 3/50). In this
architecture the servers are likely to be required to support a cluster of diskless network
computers. The state of the platforms is periodically checkpointed to the server which is
responsible for saving the view on non volatile storage. This state may be requested by the
platform following a crash or by another platform during the re-establishment of a view.

Servers also implement channel proxies discussed in Section 5.2. These provide a fixed
location for communications with migratory hardware and software platforms. The fourth role
of servers is that of cache manager. It is likely that clusters of network computers would often
be running similar if not identical collections of code. Since servers support persistent storage
and act as proxies for communications channels, it is natural for the servers to implement code
and data caches.

5 Channel and Environment Mobility

5.1 Managing connection/reconnection

As described above, channel mobility may be implemented in two ways:

1. implementing software at both ends of the channel to manage the
connection/reconnection, and,

2. using the server as a connection proxy.

In order to accommodate the connection and reconnection of channels we introduce a new
abstraction called a half session. The primary purpose of a half session is to implement a
communication channel which provides a reliable stream abstraction that can be disconnected
and reconnected to different platforms and servers. As shown in Figure 4, on each platform or
server implementing a relocatable channel, a half session is used to manage the connection.
Thus there is a half session managing each end of a relocatable channel. The name,
inspiration, and thinking behind half sessions is motivated by the seminal work of Strom and
Yemini [7].

Half sessions present stream abstractions which are an extension of the interfaces presented by
java.io.InputStream and java.io.OutputStream [8]. In addition to the methods provided by
these interfaces, the half session abstraction provides methods for the re-establishment of the
stream with an alternative client or server should a half session object be migrated. Clearly the
re-establishment method must communicate with its peer half session in order to re-establish
the channel.

Figure 4: Half Sessions

5.2 Channel Proxies

The half session abstraction permits two threads running on different servers or platforms to
communicate with each other and permits migration of either end of the channel. However,
views may be required to communicate with legacy systems which do not implement the
channel abstraction. This is the case where a user is interacting with a legacy application
running on a Unix system, for example a shell. Since legacy code does not support the half
session abstraction, some additional mechanism must be provided to permit the platform
(hardware or software or both) to migrate. This may be achieved by the use of the server as a
fixed proxy for communication. Using this scheme, the fixed server communicates with the
remote party on behalf of the platform. This communication is achieved using a traditional
socket interface. The platform in turn communicates with the server using the half session
abstraction permitting the platform to be relocated without the knowledge of the remote party
which is only aware of the server.

The above scheme may be implemented in Java using an implementation of the
java.net.Socket class which uses the half session objects described above rather than standard
input and output streams. In the implementation of this class, all data is routed via the server
using the half session abstractions rather than using direct communication with the remote
party. This may all be achieved transparently to the client.

5.3 Agents and Channels

In addition to managing socket like streams, we also wish to support agent-style computation.
This model is now well known [6, 9, 10] and requires autonomous computations capable of

moving between different nodes in the network carrying code and data with them. Agents may
be used to perform a number of tasks including scheduling meetings between different users
and gathering information from a number of sites for example to arrange a trip. Consider this
last example, a user may wish to travel between Stirling and California. Such a trip may
involve agents visiting different sites containing information about train and flight times.
After initiating agents to arrange a trip, the user may move to a different site. However, the
agents should report back to the user not back to the site from which they originated.

The management of agents leaving from and returning to a view may be handled using a
mechanism similar to channel proxies. All agents are routed via the server using the half
session abstractions. This ensures that agents have a fixed location to which they may return.
The server is responsible for holding agents attempting to return to views that are currently
inactive.

5.4 Binding to Services

A final aspect of mobility that must be addressed is binding to the external environment.
Binding to external services may either be dynamic or static, for example, an application
running on a platform may wish to make use of a printer. In this case any postscript printer
available locally may be suitable and the binding is dynamic. In other circumstances, for
example when a user wishes to make use of a file/object server, only the file server containing
the user’s files would be appropriate. Here the binding between the application and the
external service is static.

In both cases the external services are provided by servers, the only issue is how platforms
bind to the servers. Clearly, if either the hardware or software platform is permitted to
migrate, some indication of the (re)binding regime must be specified when the binding to the
service is initially established. In order to support (re)binding activities, servers are required to
provide an associative lookup mechanism like that provided by CORBA [11] and
Grasshopper nameservers.

6 An Initial Experiment

As an initial experiment we have implemented an instance of this architecture to support a
single application – a ubiquitous mailer. This system was constructed as a demonstrator and
mimics the functionality of a ubiquitous mailer being implemented by DEC. The mailer is a
Java applet which is uploaded from a server running the Grasshopper operating system. All
persistent state is held on the Grasshopper system and loaded on demand to the mailer applet.
The applet (800 lines) is essentially a mail viewer and contains code to authenticate the user,
view mailboxes, compose mail messages and snapshot its state. Most mailer operations
involve communication with the server. All interactions between the mailer and Grasshopper
are made using HTTP. Since HTTP behaves in a connectionless manner, the mailer may move
from platform to platform transparently to the server.

In the system described in this paper the snapshotting and recovery of platforms is automatic.
In the mailer system, the state of the mailer is persistified (sic) by a thread with application
specific knowledge. The thread sleeps on a timer and on awakening sends any volatile state of
the mailer including messages currently being composed, lists of new mail etc. to the server
using HTTP.

7 Related Work

7.1 Migratory Applications

In [9] an architecture designed to support migratory application in the language Visual Obliq
is described [12]. Single user migratory applications are supported at the language
environment level and may migrate from node to node whilst maintaining the state of their
user interface. Almost no requirements are made of the application programmer which is the
ethos behind orthogonal persistence and the thinking behind this paper. The basic building
block of the system is the concept of an agent, a computation that may hop from site to site
carrying with it a suitcase containing the agent’s persistent memory. When the agent executes
a hop instruction, the suitcase and the computation’s closure is migrated to the new site. When
an agent arrives at a site, it is given a briefing which may include advice for the agent and site
specific information. The above mechanisms have been used to construct migratory
applications containing a MigrateTo(Host) command which causes the remote host to be
contacted and if it will accept the application, it checkpoints the state of its user interface and
performs a hop instruction. This work is complementary to our own and has coloured our own
thinking.

7.2 Aglets

As described in [6] an aglet is a mobile Java object capable of visiting different hosts on a
network. Aglets are autonomous, they each contain an active thread of execution and are
capable of reacting to messages sent to them. Like an applet, the class files for an aglet can
migrate across a network. Unlike applets, when an aglet migrates it also carries its state. An
applet is code that can move across a network from a server to a client. An aglet is a running
Java program (code and state) that can move from one host to another on a network. Each
aglet executes in a context which provides a uniform execution environment independent of
the capabilities of the host. The aglet context serves to isolate the aglet from the platform.

Aglets have an onCreation method which is executed when the aglet is created or migrated to
a new context. Aglets also contain a dispatch method which takes an URL as a parameter and
may be used to migrate the aglet to a new context. When dispatch is called, the byte code and
state of the aglet is preserved using standard Java object serialisation and transmitted across
the network using the Aglet Transport Protocol (ATP) [6]. Aglets can be reactivated at the
new site using the onCreation method.

Since aglets use Java object serialisation to export their state, the execution state of the threads
owned by the aglet are not serialised. Therefore when an aglet is migrated or deactivated, any
state resident on stacks and the program counters of running threads are lost. This is a
consequence of the JVM, which does not permit direct access to run time state. Before an
aglet is serialised, the host informs it that serialisation is immanent (via the onDispatch
method) so that it may store any information it will need to continue its execution in object
variables.

Aglets are complementary to the ideas in this paper in that they offer potential technology for
implementing the architecture described in this paper. Whether or not the loss of dynamic
state is too much of a programming restriction will remain to be seen.

8 Conclusions

This paper presents some initial thoughts on how persistent technology in general and Java in
particular may be used to provide mobile users with a ubiquitous environment. A generally

applicable architecture to support mobile users has been described. We have implemented a
restricted prototype in order to validate these ideas. The architecture is realisable using
technology which is currently available. Techniques with which user views may be located
and restored on a different hardware platform have been described as have techniques for
dealing with the difficult problems of inter-platform communication. These techniques both
address the need to interact with other mobile computations and with legacy systems. They
are also general and may be applied to mobile distributed applications unlike [9]. A number of
engineering problems remain, in particular, the best way to save and restore closures of Java
objects. We have suggested several approaches which may be used. The best approach will
require further investigation.

9 References

1. Rosenberg, J. and L. Keedy, Security and Persistence. Workshops in Computing.
1990, Berlin: Springer-Verlag.

2. Atkinson, M.P., et al. Design Issues for Persistent Java: a type safe, object oriented,
orthogonally persistent system. in 7th International Conference on Persistent Object
Systems. 1996: Springer-Verlag.

3. Javasoft, Object Serialization Specification.

4. Farkas, A. and A. Dearle. Octopus: A Reflective Language Mechanism for Object
Manipulation. in Proceedings of the Fourth International Workshop on Database
Programming Languages. 1994: Spinger_Verlag.

5. Dearle, A., et al., Grasshopper: An Orthogonally Persistent Operating System.
Computer Systems, 1994. Summer: p. 289-312.

6. Lange, D. and D. Chang, Programming Mobile Agents in Java: A White Paper, . 1996,
IBM Corporation.

7. Strom, R. and S. Yemini, Optimistic Recovery in Distributed Systems. ACM
Transactions on Computer Systems, 1985. 3(3): p. 204-226.

8. Chan, P. and R. Lee, The Java Class Libraries An Annotated Reference. 1996,
Reading, Massachusetts: Addison-Wesley.

9. Bharat, K. and L. Cardelli, Migratory Applications, 1996, DEC, Systems Research
Center.

10. White, J.E., Telescript Technoloogy: The Foundations of an Electronic Marketplace, .
1994, General Magic Inc.

11. OMG, The Common Object Request Broker: Architecture and Specification, 1991,
OMG.

12. Cardelli, L., A Language with Distributed Scope. Computing Systems, 1994. 8(1): p.
27-59.

