
A Persistent Architecture Intermediate Language 1

This document should be referenced as:

Dearle, A. “A Persistent Architecture Intermediate Language”. Universities of Glasgow and St
Andrews Technical Report PPRR-35-87 (1987).

A Persistent Architecture Intermediate Language 2

A Persistent Architecture Intermediate Language
Alan Dearle

11th August 1986

A Persistent Architecture Intermediate Language 3

PAIL structures

The intermediate code may be partitioned into thirteen categories. These are:

1) Basic tree structure
2) Symbol table entries
3) Control
4) Assignment
5) Store Allocation
6) Indexing
7) Aliasing
8) Scoping
9) Store to Store operations
10) Literals
11) Application
12) Comments
13) Optimisations

These partitions will now be examined fully in turn.

A Persistent Architecture Intermediate Language 4

1. Basic tree structure.

PAIL code trees are typed. Pointers to parent nodes in the code tree are also provided in order that
traversers can access entire code trees from an arbitrary position. Generated code will contain pointers
into the trees. Note that in this document code will mean some arbitary PAIL code and tree will mean
a an object of the class described below. Type,code and parent node information is bound together in
a structure of the following class:

structure tree(pntr Type,Code,Parent)
where

Type is a pointer to an encoding of the type of the subtree pointed at by Code.
Code is a pointer to the PAIL code.
Parent is a pointer to the parent tree node.

The following class is used to build lists of things:

structure cons(pntr hd,tl)
where

hd is a pointer to some PAIL code.
tl is a pointer to another cons structure or nil.

PS-algol source: A,B

PAIL code:

hd

cons
tl hd

cons
tl

Code for BCode for A

A Persistent Architecture Intermediate Language 5

2. Symbol table Entries

structure link (cstring name ;
pntr type.info, initial.value ;
bool manifest, retained, primitive ;
pntr location.info)

where
name is the name of the identifier.
type.info holds an encoding of the type.
initial.value will contain a syntax tree for the initialising expression.
manifest has the value true if value is known at compile time.(Not set in V2.1)
retained has the value true if the object is retained in a block.(Not set in V2.1)
primitive has the value true if the object is a special function.
location.info is filled in by the code generator.

A Persistent Architecture Intermediate Language 6

3. Control

structure sequence(pntr This,Next)
where

This is a pointer to some code.
Next is a pointer to another sequence or nil

PS-algol source: A ; B

PAIL code:

This

sequence
Next This

sequence
Next

Code for BCode for A

structure and.op(pntr And1,And2)
where

And1 is a pointer to the code for the first operand of and.
And2 is a pointer to the code for the second operand of and.

Note that and and or are in this section because they are non-strict in their arguments.

PS-algol source: E1 and E2

PAIL code:

And1

and.op
And2

Code for E2Code for E1

structure or.op(pntr Or1,Or2)
where

Or1 is a pointer to the code for the first operand of or.
Or2 is a pointer to the code for the second operand of or.

PS-algol source: E1 or E2

PAIL code:

Or1

or.op
Or2

Code for E2Code for E1

A Persistent Architecture Intermediate Language 7

structure if.op(pntr If.cond,If.then,If.else)
where

If.cond is a pointer to the code for the boolean condition.
If.then is a pointer to the tree for the then branch.
If.else is a pointer to the tree for the else branch.

PS-algol source: if E1 then E2 else E3

PAIL code:

Code for E1

Type

tree
Code Parent

Code for E2Type of E2

If.cond

if.op
If.then If.else Type

tree
Code Parent

Code for E3Type of E3

PS-algol source: if E1 do E2

PAIL code:

Code for E1

Type

tree
Code Parent

Code for E2Type of E2

If.cond

if.op
If.then If.else

A Persistent Architecture Intermediate Language 8

structure loop.op(pntr Repeat.branch,Loop.cond,Do.branch)
where

Repeat.branch is a pointer to the code for the unconditionally repeated part.
Loop.cond is a pointer to the code for the boolean condition.
Do.branch is a pointer to the code for the conditionally repeated part.

PS-algol source: repeat E1 while E2

PAIL code:

loop.op
Repeat.branch Loop.cond Do.branch

Code for E2Code for E1

PS-algol source: repeat E1 while E2 do E3

PAIL code:

loop.op
Repeat.branch Loop.cond Do.branch

Code for E2Code for E1 Code for E3

PS-algol source: while E1 do E2

PAIL code:

loop.op
Repeat.branch Loop.cond Do.branch

Code for E1 Code for E2

A Persistent Architecture Intermediate Language 9

structure for.op(pntr For.symbol.table,
For.iterator For.set,For.do)

where
For.symbol.table is a pointer to the block symbol table containing the iterator.
For.iterator is a pointer to the control variable symbol table entry.
For.do is a pointer to the repeated code.
For.set is a pointer to an instance of the following structure class:

structure for.range(pntr For.start,For.end,For.step)
where

For.start is a pointer to the initialising code.
For.end is a pointer to the code for the loop end value.
For.step is a pointer to the code for the loop increment.

PS-algol source: for E1 = E2 to E3 by E4 do E5

PAIL code:

Code for E5

for.op
for.symbol.tab For.iterator For.set For.do

name

link

manifest

initial.value

type.info

retained

primitive
location.info

For.start

for.range
For.end For.step

Code for E2 Code for E3 Code for E4

E1

INT

A Persistent Architecture Intermediate Language 10

structure case.op(pntr Case.switch,Choice.list,Default)
where

Case.switch is a pointer to the tree for the switch expression.
Default is a pointer to the tree for the default expression.
Choice.list is a cons list of the following structures:

structure case.choice(pntr Choice.exp,Action.exp)
where

Choice.exp is a cons list of pointers to the trees for the selectors.
Action.exp is a pointer to the tree for the case action

PS-algol source: case E0 of
E11,E12,...E1n : E10
.
Ej1,Ej2,...Ejn : Ej0
default : Ek0

PAIL code:

Case.switch

case.op
Choice.list Default

hd

cons
tlhd

cons
tl

Type

tree
Code Parent

Type of E0 Code for E0

Type

tree
Code Parent

Type of Ek Code for Ek

Choice.exp

case.choice
Action.exp Type

tree
Code Parent As for E11,E12 ...

Type of E10 Code for E10

hd

cons
tl

...
hd

cons
tl

Type

tree
Code Parent

Type of E11 Code for E11

Type

tree
Code Parent

Type of E1N Code for E1N

A Persistent Architecture Intermediate Language 11

structure raise.op(pntr Event)
where

Event is a pointer to the code for an event.

Note that initially the only two events that we have are abort and end of program. These will be
represented by two strings,"finish" and "abort".

PS-algol source: ?

PAIL code:

String.val

string.container

"finish"

Event

raise.op

PS-algol source: abort

PAIL code:

String.val

string.container

"abort"

Event

raise.op

structure catch.op(pntr Handler,Protected.code)
where

Handler is a pointer to the code for an event handler.
Protected.code is a pointer to the code which the handler handles.

No PS-algol code currently generates this PAIL structure.

A Persistent Architecture Intermediate Language 12

4. Assignment

structure assign.op(pntr Lhs.exp,Rhs.exp)
where

Lhs.exp is a pointer to the code representing an address.
Note that this may be a link or a tree (in the case of sub.addr.op).
Rhs is the tree for a value.

PS-algol source: E1 := E2

PAIL code:

Lhs.exp

assign.op
Rhs.exp

Type

tree
Code Parentname

link

manifest

initial.value

type.info

retained

primitive
location.info

Type of E2 Code for E2

E1

A Persistent Architecture Intermediate Language 13

5. Store Allocation

structure iliffe.op(pntr Vec.init,Bounds.list)
where

Vec.init is a pointer to the tree for the initialising expression.
Bounds.list is a cons list of the following structures:

structure bounds.op(pntr Bound1,Bound2)
where

Bound1 contains a pointer to the code for the lower bound of the sub vector.
Bound2 contains a pointer to the code for the upper bound of the sub vector.

PS-algol source: vector E1::E1',...En::En' of E

PAIL code:

Vec.init

iliffe.op
Bounds.list

hd

cons
tl hd

cons
tlType

tree
Code Parent

Type of E Code for E

Bound1

bounds.op
Bound2 Bound1

bounds.op
Bound2

Code for E1 Code for E1' Code for En Code for En'

A Persistent Architecture Intermediate Language 14

structure make.vec.op(pntr Vec.start,Vec.list)
where

Vec.start is a pointer to the code for the lower bound of the vector.
Vec.list is a cons list of code for the vector elements.

PS-algol source: @E of T[E1,....En]

PAIL code:

Vec.start

make.vec.op
Vec.list

Type

tree
Code Parent

hd

cons
tl hd

cons
tl

Vector(Type of E1)

Integer.val

int.container

E

...

Code for E1 Code for En

structure make.struct.op(pntr Struct.class,Struct.list)
where

Struct.class is a pointer to the symbol table entry for the structure.
Struct.list is a cons list of the trees for the elements.

PS-algol source: E(E1,.....En)

PAIL code:

Struct.class

make.struct.op
Struct.list

hd

cons
tl hd

cons
tl...

Code for E1 Code for En

name

link

manifest

initial.value

type.info

retained

primitive
location.info

Type

tree
Code Parent Type

tree
Code Parent

Type of E1 Type of En

E

A Persistent Architecture Intermediate Language 15

structure image.op(pntr Image.X,Image.Y,Image.init)
where

Image.X is a pointer to the code for the code for the images X dimension
Image.Y is a pointer to the code for the code for the images Y dimension
Image.init is a pointer to the code for the code for the images initial `colour'

PS-algol source: image E1 by E2 of E3

PAIL code:

Image.X

image.op
Image.Y Image.init

Code for E1 Code for E2 Code for E3

structure decl.op(pntr Decl.exp,Decl.Symbol.entry)
where

Decl.exp is a pointer to the code for the initialising expression.
Decl.Symbol.entry is the symbol table entry for the identifier.

PS-algol source: let I = E
let I := E

PAIL code:

Decl.exp

decl.op
Decl.Symbol.entry

Code for E

name

link

manifest

initial.value

type.info

retained

primitive
location.info

"I"

type of I

A Persistent Architecture Intermediate Language 16

6. Indexing

structure subs.op(pntr Subs.subject,Subs.origin,Subs.length)
where

Subs.subject is a pointer to the tree for the object.
Subs.origin is a pointer to the tree for the offset into the object.
Subs.length is a pointer to the tree for the range of the index.

PS-algol source: E1(E2)

PAIL code:

Subs.subj

subs.op
Subs.origin Subs.length

Type

tree
Code Parent

Code for E1Type of E1

Type

tree
Code Parent

Code for E2Type of E2

PS-algol source: E1(E2|E3)

PAIL code:

Subs.subj

subs.op
Subs.origin Subs.length

Type

tree
Code Parent

Code for E1Type of E1

Type

tree
Code Parent

Code for E2Type of E2

Type

tree
Code Parent

Code for E3Type of E3

A Persistent Architecture Intermediate Language 17

structure subs.addr.op(pntr Suba.subject,Suba.origin,Suba.length)
where

Suba.subject is a pointer to the tree for the object.
Suba.origin is a pointer to the tree for the offset into the object.
Suba.length is a pointer to the tree for the range of the index.

whenever
The index yields a location rather than a value.

PS-algol source: E1(E2)

PAIL code:

Suba.subj

subs.addr.op
Suba.origin Suba.length

Type

tree
Code Parent

Code for E1Type of E1

Type

tree
Code Parent

Code for E2Type of E2

A Persistent Architecture Intermediate Language 18

7. Aliasing

structure alias.op(pntr Alias.subject,Alias.origin,
Alias.length,Alias.new.origin)

where
Alias.subject is a pointer to the code for the object.
Alias.origin is a cons list of the code for the offset into the object.
Alias.length is a cons list of the code for the range of the index.
Alias.new.origin is a pointer to code for the origin of the alias.

PS-algol source: limit E1 at E2,E3

PAIL code:

Alias.subj

alias.op
Alias.origin Alias.length Alias.new.

origin

hd

cons
tl hd

cons
tl

Code for E1

Code for E2 Code for E3

PS-algol source: limit E1 to E2 by E3 at E4,E5

PAIL code:

Alias.subj Alias.origin Alias.length Alias.new.
origin

hd

cons
tl hd

cons
tlhd

cons
tl

hd

cons
tl

Code for E3

Code for E1

Code for E2 Code for E4 Code for E5

alias.op

A Persistent Architecture Intermediate Language 19

8. Scoping

structure block.op(pntr Block.symbol.table,Block.body)
where

Block.symbol.table is a pointer to the symbol table for the block.
Block.body is a pointer to the code for the block.

PS-algol source: { E }

PS-algol source: begin E end

PAIL code:

name

link

manifest

initial.value

type.info

retained

primitive
location.info

Block.sy.tab

block.op
Block.body

E

A Persistent Architecture Intermediate Language 20

structure proc.op(pntr Res.type,Proc.params,
Proc.body,Param.symb.table)

where
Res.type is the result type.
Proc.params is a cons list of symbol table entries for the procedure parameters.
Proc.body is a pointer to the tree for the procedure body.
Param.symb.table is the symbol table for the parameters

PS-algol source: proc(E1,E2 -> E3) ; E4

PAIL code:

name

link

manifest

initial.value

type.info

retained

primitive
location.info

name

link

manifest

initial.value

type.info

retained

primitive
location.info

Res.type

proc.op
Proc.params Proc.body Param.sy.

table

E3

Type

tree
Code Parent

Code for E4Type of E4

hd

cons
tl hd

cons
tl

E1 E2

A Persistent Architecture Intermediate Language 21

9. Store to Store operations

structure overwrite.op(string Overwrite.op ;
pntr Overwrite.src,Overwrite.target)

where
Overwrite.op indicates which raster op it is
Overwrite.src is a pointer to the tree for the source image
Overwrite.target is a pointer to the tree for the target image

PS-algol source: <raster-rule> E1 onto E2

PAIL code:

Overwrite.op

overwrite.op
Overwrite.src Over.target

Type

tree
Code Parent

<raster.rule>

Type

tree
Code Parent

Type of E2

Type of E1 Code for E1

Code for E2

A Persistent Architecture Intermediate Language 22

10. Literals

structure real.container(real Real.val)

PS-algol source: 3.4

PAIL code:

Real.val

real.container

3.4

structure file.container(int File.val)

PS-algol source: nullfile

PAIL code:

File.val

file.container

-1

structure string.container(string String.val)

PS-algol source: "abc"

PAIL code:

String.val

string.container

"abc"

A Persistent Architecture Intermediate Language 23

structure type.container(pntr Type.val)

PS-algol source: structure E(int E1 ; pntr E2)

Note that in the type description for STRUCTURE decl.fields holds information on the
structure fields in declaration order whereas fields holds the same information in normalised
order with the pointer values first. Please see the abstract machine manual for more details.

PAIL code:

name

link

manifest

initial.value

type.info

retained

primitive
location.info

name

link

manifest

initial.value

type.info

retained

primitive
location.info

name

link

manifest

initial.value

type.info

retained

primitive
location.info

hd

cons
tl

Type.val

type.container

E

TM

STRUCTURE

total

fields

decl.fields

pntrs

4
2

hd

cons
tl

E1 E2
INT PNTR

hd

cons
tl

hd

cons
tl

structure int.container(int Integer.val)

PS-algol source: 7

PAIL code:

Integer.val

int.container

7

A Persistent Architecture Intermediate Language 24

structure boolean.container(int Boolean.val)

PS-algol source: true

PAIL code:

Boolean.val

boolean.container

0

PS-algol source: false

PAIL code:

Boolean.val

boolean.container

-1

structure pntr.container(int Pntr.val)

PS-algol source: nil

PAIL code:

Pntr.val

pntr.container

-1

structure pixel.container(int Pixel.val)

PS-algol source: on

PAIL code:

Pixel.val

pixel.container

1 or'd with 1

Note that the pixel representation is the same as that used in the abstract machine - see abstract
machine manual for details.

A Persistent Architecture Intermediate Language 25

11. Application

structure apply.op(pntr Apply.symbol,Arg.list)
where

Apply.symbol is a pointer to the symbol table entry for the function.
Arg.list is a cons list of the arguments.

Note that some of the language constructs which cause an apply.op to be generated are not
represented as application in the syntax of PS-algol. These functions all have the special field filled in
in the symbol table entry.

PS-algol source: E(E1,..,En)

PAIL code:

hd

cons
tl

Applied.fn

apply.op
Arg.list

Code for E ...
hd

cons
tl

Type

tree
Code Parent

Type of E1 Code for E1

Type

tree
Code Parent

Type of En Code for En

A Persistent Architecture Intermediate Language 26

12. Comments

structure comment.op(pntr Comment.code,Comment)
where

Comment.code is a pointer to the code to which the comment pertains.
Comment is a pointer to the comment. Initially this will be a string but could be something
more structured in the future (pictures etc.).

PS-algol source: ! comment
E

PAIL code:

Comment.
code

comment.op
Comment String.val

string.container

"Comment"E

A Persistent Architecture Intermediate Language 27

13. Optimisations

structure optimised(pntr Optimised,Non.optimised,Optimisation.info)
where

Optimised contains the optimised code.
Non.optimised contains the source code.
Optimisation.info contains clues for the code generators.Optimisation

	Citation
	Title
	PAIL structures
	1. Basic tree structure.
	2. Symbol table Entries
	3. Control
	4. Assignment
	5. Store Allocation
	6. Indexing
	7. Aliasing
	8. Scoping
	9. Store to Store operations
	10. Literals
	11. Application
	12. Comments
	13. Optimisations

