
Alan Dearle is a Professor of Computer Science at St Andrews,
Scotland’s first University. His current research interests include
programming languages, component deployment, operating systems,
peer to peer systems (especially related to distributed storage),
middleware and sensor networks. He previously held a Chair of
Computer Science at The University of Stirling where he worked on
Middleware and an exo-kernel operating system named Charm. This
work followed on from the Grasshopper persistent operating system
project which he co-founded with Professor John Rosenberg whilst an
Associate Professor at The University of Adelaide. His PhD thesis
work was conducted at The University of St Andrews under the
supervision of Professor Ron Morrison. He was a co-designer and
implementor of the persistent programming language Napier88 which
supported strong typing, parametric polymorphism, a dynamically
callable compiler and an integrated persistent run-time environment.
He holds a PhD and BSc (Hons) both from the University of St
Andrews.

Software Deployment, Past, Present and Future
Alan Dearle

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Software Deployment, Past, Present and Future

Alan Dearle
School of Computer Science

University of St Andrews
St Andrews

Fife
Scotland

al@cs.st-and.ac.uk

Abstract

This paper examines the dimensions influencing the

past and present and speculates on the future of
software deployment. Software deployment is a post-
production activity that is performed for or by the
customer of a piece of software. Today’s software often
consists of a large number of components each offering
and requiring services of other components. Such
components are often deployed into distributed,
heterogeneous environments adding to the complexity
of software deployment. This paper sets out a standard
terminology for the various deployment activities and
the entities over which they operate. Six case studies of
current deployment technologies are made to illustrate
various approaches to the deployment problems. The
paper then examines specific deployment issues in
more detail before examining some of the future
directions in which the field of deployment might take.

1. What is Software deployment?

Software deployment may be defined to be the
processes between the acquisition and execution of
software. This process is performed by a software
deployer who is the agent that acquires software,
prepares it for execution, and possibly executes the
software [1]. Thus deployment is a post-production
activity that is performed for or by the customer of a
piece of software. It is at this point in time that all
customer centric customization and configuration takes
place. Software deployment may be considered to be a
process consisting of a number of inter-related
activities including the release of software at the end of
the development cycle; the configuration of the
software, the installation of software into the execution
environment, and the activation of the software [2]. It
also includes post installation activities including the
monitoring, deactivation, updating, reconfiguration,
adaptation, redeploying and undeploying of the
software. We briefly expand on each of these activities
in Section 1.2 below.

1.1. Concepts/Terminology

In this section we introduce common terminology
and concepts which apply to many software
deployment systems.

Most deployment systems incorporate the concept
of a component which is defined in the UML2
specification [3] to be a modular part of a system that
encapsulates its contents and whose manifestation is
replaceable within its environment. In [4] a component
is defined to be a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A component defines its behavior
in terms of provided and required interfaces. In this
context, an assembly is a set of interconnected
components. An assembly can itself be viewed as a
component made up of subcomponents and offering
and requiring interfaces. This concept has been
developed to its logical conclusion in the Fractal
Component Model [5]. The required interfaces of the
components in an assembly may be satisfied either by
other components in the assembly or be required from
the environment in which the assembly is deployed.
The term resource is commonly used to refer to any
artefact (both hardware, software and system artefacts)
which a component requires in order to function. An
application is simply a collection of components which
performs some function. In order to deploy a
component it must be instantiated, supplied with
instances of components on which it depends and
configured. A version of a component refers to time
ordered revisions of a component or application and to
platform-specific and/or functional variants [1].

Some systems provide the notion of a component
package containing metadata and assemblies. The
package may contain multiple implementations of
components to satisfy the needs of different hardware
and software environments. Thus when a package is
deployed, the deployment system may need to choose
the components that are most suitable for the
environment. To do this appropriate and adequate

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

metadata must be included in the package to describe
the components in it.

In OMG parlance the target environment is termed a
domain and is comprised of nodes (computers),
interconnects (network connections) and bridges
(routes between interconnects). In many component
models components are required to execute within a
controlled environment known as a container.
Containers serve many purposes including shielding
components from the concrete environment on which
they are hosted; providing lifetime management;
enforcing policies on components; and providing
mechanisms for the discovery and binding of other
components in the environment.

Binding is the process by which a component
obtains a reference to another component which it
requires to operate correctly. Inter-component bindings
may be made at a variety of times including when the
components are built, when they are added to an
assembly, when they are packaged, when they are
deployed and when they are executed. Central to the
binding task is how components are named and again a
variety of mechanisms are in current use. In Unix
environments, components are usually named using
file system path names. In Windows environments
components are often referred to using a globally
unique identifier (GUID) which is used to index a
system wide database – the registry. In Java
environments a variety of mechanisms are used to
resolve names including JNDI [6]. The most general
naming scheme is found in the Web-services domain
where components are referred to using a Uniform
Resource Identifier (URI).

Another aspect to binding is the degree of type
checking that is performed when names are resolved to
values. In some environments, notably Unix, little type
checking is performed when binding occurs, by
contrast environments such as .Net and Web Services
include sophisticated and expressive type systems and
perform extensive checking.

1.2. The deployment lifecycle

Release is the interface between developers and the
actors in the remainder of the software lifecycle. At the
point of release the software is assembled into
packages containing sufficient metadata to describe the
resources on which it depends. Installation requires the
software to be transferred to the customer and
configured in preparation for activation. Activation is
the process of starting the software executing or
putting in place triggers that will execute the software
at an appropriate time. This is sometimes achieved
using graphical interfaces or with scripts or daemon
processes. The opposite of activation is deactivation

and in many systems this is required prior to adaptation
or reconfiguration where a piece of software must be
passivated and rendered non-invocable. Updating is the
process of changing a piece of installed software
usually triggered by the release of a new version by the
developers. Update is a special case of installation but
may require installed software to be deactivated prior
to update and reactivated after reconfiguration. Unlike
updating and reconfiguration, adaptation is the process
of modifying installed software in order to react to
changes in the environment in which the software is
installed. Undeployment is the process of removing the
deployed software from the machine on which it was
deployed. The process is also known as deinstallation
of the software.

This software process requires specifications for:
• Packaging the software and associated

metadata for delivery between the software
producer and the deployer.

• Receiving and configuring the software into
the deployer’s environment before
deployment decisions are made.

• Describing the facilities of the targeted
execution environment.

• Planning how the software will be deployed
onto the targeted distributed execution
infrastructure.

• Performing the actual preparation of the
application for execution, e.g., moving parts
of the software to their location of execution.

• Launching, monitoring, and terminating the
software.

The remainder of the paper is structured as follows,
Section 2 presents six case studies that illustrate typical
current approaches to deployment and highlights the
differences between them. Section 3 examines some of
the issues highlighted in Section 2 in more detail.
Section 4 looks at the trends in deployment and the
issues and challenges presented by those trends.
Section 5 looks to the future and speculates on the
future of deployment, Section 6 concludes.

2. Case Studies

In order to help understand the issues affecting
software deployment, this section examines six
technologies which include support for software
deployment. Before exploring these technologies it is
worth highlighting that looking at any one technology
simplifies the problems of software deployment
considerably since many of today’s systems are
heterogeneous with respect to hardware, the operating
environment and the implementation technologies used
to implement components and applications.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

2.1. Java Beans

Enterprise JavaBeans (EJB) is a standard for
building server-side components [7]. Java Beans were
designed to simplify the development, deployment, and
management of enterprise solutions. Java Beans are
units of business logic contained within components
that execute within containers. Once business logic is
wrapped up in a Bean, it may be reused in a variety of
contexts. The containers abstract the hosting
environment and offer a variety of services including
security, lifetime management and transactional
database services in addition to low-level system
aspects such as caching and memory pooling. Each
Bean instance is implemented by (at least) a pair of
objects and presents at least three different interfaces:
the home interface used for lifecycle management
purposes, the remote interface containing methods
which may be called remotely by the client, and the
local interface which defines the business methods
callable by container-resident clients.

Java Beans must be packaged according to
guidelines specified by Sun Microsystems. The
standard bean packaging permits both management and
deployment tools to be written which manipulate them.
Java Beans are packaged in a standard Java JAR file
along with a XML deployment descriptor file
describing properties pertinent to the bean. This
packaging may contain one or more Java Beans.
However, once multiple Beans are packaged together
they may not be separately managed since the
containers manage them as a single unit. The
deployment descriptor typically contains information
about the bean’s transactional, security and persistence
requirements along with any bean specific properties.
The manifest for the JAR file may contain a Depends-
on attribute which specifies the components upon
which the packaged component(s) depend. However,
this is expressed in terms of the naming service name
for the referenced components which is not unique.

The Bean lifecycle, as described by Sun, consists of
four phases: development, deployment, service
availability and undeployment. In the first phase the
bean is written and packaged in a JAR file as described
above. In the second phase an application assembler
may adjust properties in the bean’s deployment
descriptor such as security attributes, persistence
mechanisms, transactional properties and any bean
specific properties that require tailoring to the
deployment environment. This phase ends with the
bean package being loaded into an appropriate
directory where it may be activated by the container
hosting it.

Support is especially lacking for the maintenance of
inter-bean bindings in the face of updates. As described
above, references to dependent beans are in terms of
their non-unique name service name. Thus if the same
name is used for two different beans those beans must
be manually reloaded to ensure that bindings are up-to-
date. This problem and a solution to it is described in
more detail in [8].

To sum up, Enterprise Java Beans are relatively fine
grained and language dependent. The EJB solution
isolates the Bean from its environment by providing a
standard container interface. This requires Beans to be
written in a manner that it is compliant with the
interfaces specified in the container interface.
Enterprise Java Beans does not have any notion of
remote installation of components. There are also
problems with respect to the way in which Beans are
named.

2.2. Linux

The most common method of deploying software
for Linux is the Red Hat Package Manager (RPM). The
manager supports a number of operations including
installation, querying, verification, update and deletion
of packages. These operations are supported by a
database containing details of the packages that have
been installed on a particular Linux installation. A
RPM package typically contains binary executables,
along with configuration files and documentation.
Since binaries are contained in the packages, implicit
dependencies exist between the packages and the host
operating system and architecture. This is addressed by
using a standard set of C libraries and by annotating
packages with the architecture for which they have
been compiled (i386 etc.). It is however also possible
to create source packages containing source code
which avoid this complexity but creates additional
dependencies on build tools (such as make and gcc
etc.).

Every RPM package is labelled with a package
label which contains the name of the software, its
version, the release (used to indicate the target Linux
distribution) and the target architecture. This label is
not contained within the package, instead being used to
name the files containing the packages. Every RPM
package contains four sections called the lead, the
signature, the header and the archive [9]. The lead is
used by Unix operations such as the command file.
Although once used by RPM, the information in the
lead has been superseded by the header due to
inflexibility. Every RPM package contains one or more
header structures which are represented as an indexed
set of entries, each containing information on some
datum. The signature contains cryptographic

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

information that may be used to verify the integrity,
and in some cases, the authenticity of the header and
archive contained in the package. The archive contains
a Gzipped collection of files that comprise the package.

RPM files may also contain a number of scripts
written using standard Unix scripting languages. The
scripts are organized into sets responsible for building
software, installation and erasure of software and
verification. The building scripts are responsible for
unpacking source files, building the software, installing
and removing the software and performing post-
installation tidying up. The installation and erasure
scripts run at four times: before and after installation
and before and after erasure. The post-installation
script is responsible for verifying that the installation
was correct; unlike the .Net installation managers
(described below) there is no atomicity and roll back
should errors be detected and this complexity is the
responsibility of the script writer.

Higher level toolsets have been built using RPM,
notably the Yellowdog Updater Modified (YUM).
YUM is designed to determine inter-package
dependencies and automate the installation of
packages. It also provides the ability to manage
collections of machines, such as in a server farm or
University laboratory, without having to manually
configure each machine using RPM.

To conclude, the Redhat Package Manager is
widely used in the real world. It is a coarse-grain,
language independent, operating system dependent
approach. Its major failing is that not all dependencies
are explicitly modelled and those that are, are not
modelled in terms of packages but in terms of their
contents.

2.3. .Net

In the .Net framework, the basic unit of deployment
and versioning is the Assembly. The identity of each
Assembly is encoded in its strong name which contains
its simple text name, a four part version number, and
culture information, together with a public key and a
digital signature. Using a strong name for an Assembly
ensures that the name is globally unique. In addition to
uniqueness, the use of strong names ensures the
integrity of version numbers and provides users with
the assurance that Assemblies have not been tampered
with. Assemblies contain a manifest describing the
contents of the Assembly, type metadata, an optional
set of resources and one or more CIL code modules.
The metadata in the manifest describes the classes
provided by the Assembly, versioning information,
dependencies on other Assemblies and modules and
security attributes. Importantly this metadata provides
the necessary information for the .Net framework to

ensure type safety (supported by the Common Type
System) and security. The type metadata describes the
types implemented by the Common Interface
Language (CIL) code contained in the Assembly.
Several different types of Assemblies may be created
in the .Net framework including Static, Dynamic,
Private and Shared Assemblies. Here we will focus on
Shared Assemblies which may be used by multiple
applications and are therefore the most interesting.

Shared Assemblies typically reside in a per-machine
data structure known as the Global Assembly Cache
(GAC) which is a machine-wide store for the
Assemblies used by more than one application. In
Windows Assemblies are typically put in the GAC by
one of the Windows installation programs. Multiple
versions of an Assembly may exist contemporaneously
within a GAC, with each being differentiated via their
strong names. By default, applications bind to
Assemblies in the GAC using the strong names
(including version numbers) specified in the calling
Assembly’s manifest. This prevents the installation of
a new version of a component from harming other
currently installed applications and components.
However, it is desirable for components to be updated
when bugs are fixed and for versions to be discarded if,
for example, security problems are discovered. To
address this need the .Net framework provides version
policies which are expressed in XML and may be
specified in an application-specific, machine-specific
or publisher specific manner. Clearly, the installation
of a new (faulty) component can stop an existing
application from working therefore the framework
permits every application to bypass the policy specified
by the publisher.

The Visual Studio .Net IDE contains tools to create
Windows Installer files to install, update and repair
.Net applications and components. Each installer may
be digitally signed so that it may be authenticated.
Such installer files are dependent upon the Windows
Installer which is an operating system service which
maintains a database of information on every installed
application. This database records dependencies
between installed components to support removal and
repair. Windows supports four types of setup projects:
standard, web-based, merge projects and CAB projects.
The first two of these are compatible with the
installation service, merge projects are used to package
components rather than applications and CAB projects
are used to package downloadable ActiveX controls.
The Visual Studio environment includes support to
detect dependencies on other .Net components.
However, dependencies on legacy components such as
COM components must be added manually to the
project and hence to the installer and Assemblies.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Each standard setup project contains a setup routine
responsible for performing installation and is capable
of rolling the system back to the state in which it was
prior to installation should the installation fail or if the
installation is cancelled by the user. Installers can also
contain custom actions which may be in the form of
scripts, executable code or Assemblies, which are
executed after the installer scripts have completed. The
.Net framework supports conditional installation
permitting installations to be customized according to
local needs. This is supported via properties and launch
conditions which permit installations to be customized
according to which operating system is running, which
files are present, what registry variables have been set,
etc.

To summarise, like RPM, the .Net framework is
widely used in the real world. It is also a coarse-grain,
operating system dependent approach although a (high)
degree of language neutrality is provided via the CIL.
The tool support provided by Visual Studio is an
example of the growing trend of development
environments reaching out to the domain of
deployment and lifecycle-management.

2.4. OMG, CCM and D & C

The OMG Deployment and Configuration
specification attempts to “define the mechanisms by
which component-based distributed applications are
deployed” [1]. This specification is a replacement for
the original Packaging and Deployment specification
and XML DTD defined in the specification of the
Corba Component Model V3 [10] (This specification
has been superseded by version 4). The OMG process
model consists of 5 steps: installation, configuration,
planning, preparation and launch. Much of the
specification focuses on abstraction over the
environment. This is achieved by the definition of a
Platform Independent Model (PIM) which is not only
platform independent but also independent of
middleware, programming languages and data formats
(such as XML DTDs etc.). In the OMG PIM, a
component has an interface containing operations,
attributes, and ports which may be connected to other
components. Component packages contain multiple
alternative implementations of a component, each with
different properties and suitable, for example, for
deployment on different operating systems. Packages
may be installed into Repositories where they may be
configured. Each component may be either monolithic
or be composed of sub-components and termed an
Assembly. Within each Assembly, each sub-component
is described using a SubComponentInstantiation-
Description which either describes how to construct
the component from its sub-components or describes a

suitably typed implementation. Packages may also
contain ComponentPackageReferences which describe
unbound references to required components and their
type.

Monolithic components are described using a
MonolithicImplementationDescription which contains
information about what parameters must be passed to
the target environment in order to instantiate the
component and the requirements the component has of
that environment. It also contains a description of the
implementation artefact which is a complete concrete
implementation of the component. This description
includes an optional UUID, the most specific type of
the component, the ports it offers, its properties and
optionally configuration properties.

The PIM is divided into two independent
dimensions each of which have a number of different
aspects. The first dimension is known as the “Data
versus Management/Runtime dimension” and is
concerned with (a) the data model describing software
artefacts and (b) the runtime management of those
artefacts. The second dimension is based on the
deployment process and is concerned with (a) the
nature of the components; (b) the nature of the target
environment and (c) how the software will execute in
the target environment. Combining the data model
aspect of dimension 1 with the three aspects of
dimension 2 yields the package descriptions for
components, the data model for the domain in which
components are deployed and the deployment plan
with which components are configured and connected
on the target. Each of these models is described in
UML2. Taking the second aspect of dimension 1 along
with the nature of the components yields the
Component Management Model which describes the
interface to a repository manager for storing
components. The second aspect describes a Target
Manager for managing domains. Combining the last
aspect of dimension 2 with the management dimension
yields the Execution Manager which describes how to
prepare components for execution, how to launch them
using an Application Manager and how to manage
their lifecycles using a Node Manager.

The 5 steps of installation, configuration, planning,
preparation and launch map onto the three aspects of
dimension 2 in the following manner. The first two
steps interact with the repository manager. An
installation tool supplies details to the repository
manager which stores packages prior to being
configured by a configuration tool. Planning relates to
the target environment. A planning tool creates plans
by interacting with both the Repository Manager and
the Target Manager. The planning tool is responsible
for the creation of a Deployment Plan which can be
used by the Execution Manager to create a factory

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

object for the application. This plan is essentially
isomorphic to the Assembly for the application with all
the Assemblies recursively replaced by chosen
concrete monolithic implementations. In the
preparation phase, the plan is traversed and an
Application factory is created by the Execution
Manager for each component from which it may be
instantiated. Next, the Node Manager(s) interact with
the Application manager(s) to execute the application
but not run it. This step returns references to ports
provided by the applications. Finally, in order to start
the applications running, node managers inject control
into them along with the ports supplied in the previous
step. In a distributed deployment, node managers are
only responsible for the components on the nodes
which they manage.

The PIM maps onto a concrete platform specific
model using the CORBA Component Model (CCM)
[10] in a number of transformation stages that
ultimately yield Corba IDL or XML schema
definitions. The CCM extends the distributed object
computing model provided by CORBA with the
concept of components. In CCM a component is an
entity exposing a set of attributes and a set of ports,
each of which contains facets defining a synchronous
CORBA interface, receptacles providing connections
to facets provided by other components, and
asynchronous event sources and sinks. CCM
components execute within containers called executers
which provide the traditional container services. Many
of the concepts from the PIM map directly onto the
CCM without change. For example, the Node Manager
uses the event consumer and facet ports provided by
CCM components as interface providers, and the other
ports as required interfaces.

The OMG D & C specification is perhaps the most
complete attempt to define a deployment and
configuration standard to date. Concerns surrounding
the specification include its size and complexity, and
its dependence on the underlying CORBA standards
that it leverages.

2.5. Service-oriented Computing Paradigm

Using the Service-oriented computing paradigm, the
service provider is responsible for the deployment and
registration of the services offered. Those services may
be provided using a variety of technologies including
container based technologies such as Apache Axis [11]
or Web-Services infrastructure such as IIS [12]. Thus
the deployment of individual services offers many of
the same challenges and involves similar processes and
lifecycles as the other technologies discussed in this
section. However, if one considers applications created
from Web-Service components, the service-oriented

model has much to offer. In the Web-Service model,
all services are identified using a collection of
endpoints each of which specify a network address
represented as a URI and a fully specified interface
binding [13]. The interface binding specifies the
protocol and/or data format for messages sent to that
service. The service itself is specified in WSDL [14]
which is language, architecture and machine
independent and is extensible. Thus the Web-Service
model presents an abstraction layer in which software
may be written in different languages, run on different
hardware and operating systems. The Web-Service
model may be interpreted as a pure component model
in which each component may have dependencies on
others but only in terms of its WSDL interface and
service endpoint. Furthermore, the individual services
may be offered by different service providers and run
in different protection regimes.

2.6. Virtualisation

Much of the complexity in the deployment process
described above stems from interactions between the
product being installed, the environment and the
execution policy constraints. One approach to avoiding
this complexity is to abstract over these inter-
dependencies; this is the approach followed in .Net,
Java Beans and in the Web-Services approach.
Another approach is to obviate these problems entirely
by creating perfect custom environments into which
applications and components may be installed. Whist
in the past this might have seemed a Utopian dream, it
may now be achieved using virtualisation.

Virtualisation is a new trend in computing which is
likely to have a large impact on software deployment.
In a traditional operating system, a single operating
system runs on a single piece of hardware offering a
shared uniform environment to the programs which
execute on that platform. By contrast, in a virtual
environment a virtualisation layer running on a single
piece of hardware offers multiple virtual hardware
emulations on which multiple instances of potentially
heterogeneous operating systems may be hosted. Thus
multiple incarnations of WindowsXP, Linux and
Windows 2000 could co-exist and run applications on
a single physical piece of hardware. This technique is
known as partitioning.

Using virtualisation software such as VMWare [15],
an operating system along with its applications may be
encapsulated into a single virtual machine. Typically
such virtual machines are encoded in a single image
file containing what was previously considered to be a
server (CPU, disk, network interface, file system and
applications). Such image files may be loaded into a

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

virtual environment and executed by the virtualisation
software.

The ability to manage an operating system and an
application as a single entity has profound implications
for the deployment process. Schumate [16] describes
the deployment process in a virtual environment as
consisting of 5 steps: creation, generalization, testing,
distribution and update. The first step involves
creating a baseline image containing an operating
system, data and application components. The baseline
image is created on physical hardware and a copy of
the software image (a file) is created using a tool such
as Symantec Ghost. This copy is known as the master
image. Next, the master image is customised according
to the particular needs of the user. This mage may be
tested prior to distribution. In the distribution step the
image is sent to the hosts which will execute the VM
images. This is typically achieved using network boot
technologies such as Pre-boot Execution Environment
(PXE) or by distributing either physical CDs or ISO
image files. Whenever an application or operating
system needs to be updated, new images may be
created from the master image or any of its derivatives.
An advantage of this approach is that these images may
be tested prior to (re) distribution without concern for
hardware or software dependencies since the image
represents an entire target environment.

2.6. Grid Services

Using the Service Oriented Approach, services are
provided by providers who typically own or manage a
collection of machines organised in clusters. The Grid
Services deployment problem is significantly more
complex since end-users (typically scientists) require
the ability to deploy across institutional boundaries and
different protection domains [17]. The current Globus
Toolkit [18] differentiates between applications and
services. Applications, typically monolithic Fortran
programs, may be installed using the Grid Services
infrastructure but services may not.

3. Deployment issues

3.1. Binding again

In the discussion in Section 1.1, inter-component
binding was discussed. Components may be bound to
other components at a variety of times:

1. at compile/link time by development
environments,

2. at assembly creation time by a packager,
3. at configuration time pre run-time,
4. at run time.

There are subtle implications in choosing each of
these binding times. In the first case, in a traditional
programming environment, no extant components exist
at compile/link time and the bindings that are created
are between pure code fragments. When a name is used
in the program it may only denote a pure code
fragment such as a class. This creates tight coupling
between classes at compile/link time. When this
paradigm is used, all the code and the data objects that
are created by the code will co-exist in the same
addressing environment be it an address space or
container.

In the Web-Services model, a URI may be used to
generate a proxy for a, possibly stateful, component
that exists at compile-time. This permits static code to
bind to extant components early in the development
lifecycle in a manner reminiscent of early Lisp
environments [19], Smaltalk-80 [20] and
Hyperprogramming [21]. Binding between code and
extant entities is also supported in the Windows COM+
environment in which a GUID may be used to bind to
a variety of entities.

When inter component references are resolved at
assembly time, some language mechanism must be
used to abstract over the names used in the program
and the concrete instances provided in the assembly.
Recently, this has been achieved using the factory
pattern [22] which supports exactly this requirement
(and is used in OMG D & C). Again this involves the
binding of pure code fragments rather than possibly
stateful components.

A rich variety of bindings may be created for
references that are resolved at pre-run time, that is after
components have been installed and instantiated. These
include references to pure code and other locally
installed components in the file system, references to
other components installed in the same container or
address space and remote references to extant code,
data and components. A similar set of binding
possibilities are also available at run time.

At run-time, the context in which these bindings are
resolved is determined by the container or run-time
environment. Some environments permit only local
components to be referenced whereas others permit
arbitrary components to be addressed. The COM+
environment is perhaps the most general in that it
contains mechanisms for both dynamic and static
binding and permits components to be instantiated in
local or remote address spaces.

3.2. Containers and run-time environments

The J2EE and .Net environments have
demonstrated the ability to abstract over local
environments (including hardware and operating

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

systems) through the use of containers and machine
independent run-time environments. Both these
technologies isolate components from complexity at
the cost of technology buy-in. In both cases the
developer has no choice but to develop application
components in a particular language (or language
family in the case of .Net) and also write applications
that obey the syntactic and semantic conventions
imposed by the host environment be it a container or
run-time environment. In this respect the introduction
of containers and support environments do little to
alleviate the hardware and operating system
dependencies. Instead, the complexities of interacting
with the hardware and the operating system have been
traded with those of the container.

By contrast, the virtualisation approach permits
each application to run in an environment that is
perfectly suited to it. This includes: the hardware, the
operating system, the set of data files installed in the
file system; and other components and applications that
are locally required.

3.3. Light Weight Containers and Inversion of
Control

In Section 3.1, the problems of technology buy-in
with container technologies is described. The concept
of lightweight containers has emerged as another
approach to avoiding this buy-in. Lightweight
containers such as Spring [23] and PicoContaner [24]
have been developed to make it easier to deploy and
configure J2EE applications. Both of these systems
utilize a technique known as dependency injection (as
does OMG D&C as described above) [25].

Dependency injection or inversion of control (IOC)
is a design pattern which is sometimes known as the
“don’t call me, I’ll call you” pattern. The principle is
that explicit dependencies on other components and the
container are removed from the code. In many
environments, components are responsible for finding
the components which they require in order to run.
This is sometimes known as the service locator
pattern. Using IOC, instead of a component calling a
run-time infrastructure to bind to other components,
the infrastructure calls the component and supplies it
with whatever resources are required for that
component to execute. In Java Beans, Beans use the
service locator pattern to call into the container to
locate some component X they require. By contrast, in
Spring, the environment would detect that the
component required X and supply it.

Clearly the IOC pattern is much better suited to the
deployment lifecycle than the service locator pattern.
In both Spring and PicoContaner, plain old Java
objects (POJOs) may be written and wired in this

manner by the run time environment. In Spring three
types of IOC exist: constructor injection in which
required components are supplied when a component is
constructed; setter injection in which setter methods
are provided to supply required components; and
interface injection in which, for example, a Java
interface is used to specify a contract between a
component and a container or another component.

Clear parallels exist between the IOC pattern and
the deployment activities described above and the IOC
pattern might seem to be the perfect solution to the
problems of deployment and configuration. In both
IOC and in deployment models such as the OMG D &
C model, components have unresolved references to
other components that are resolved by the
infrastructure. In both models source code is freed
from the complexities of having to bind to dependent
components (with that responsibility devolved to other
software). However, in lightweight frameworks such as
Spring, the binding complexities that have been
removed from the source code reappear in the form of
a myriad of XML configuration files that specify inter-
component bindings. Another failing of lightweight
container models is that they have not to date
addressed inter address space or inter machine
component bindings.

3.4. IOC, Change Management, Reflection and
Introspection

The IOC paradigm is applicable throughout the
software lifecycle. It may be used in a programming
context to prevent coupling between components under
development. It may be used in packaging where some
components are bound together to form Assemblies. It
is also applicable in the deployment phase and its
utility can be seen in the OMG D & C specification
where the node manager injects control along with
appropriate ports of other components into the
components for which it is responsible. The IOC
paradigm may also be used at run-time to dynamically
unbind and rebind components. This functionality is
demonstrated in the Fractal Component Model [5].

The Fractal Model is an extensible, programming
language neutral component model which aims to
“reduce design, deployment and maintenance costs of
software”. The first main contribution of this model is
a recursive data model in which components are
composed of other components (hence the name
Fractal). This data model is supported by a strongly-
typed XML based Architectural Description Language
(ADL) called Fractal ADL. This is not unlike other
component models such as the OMG model described
above. The second contribution of the model is that it
is reflective; that is, it supports the ability to introspect

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

components and intercept calls. The Fractal Model
draws heavily on the Aspect Oriented Programming
(AOP) principle of separation of concerns [26]. Fractal
components are each made up of a number of sub-
components. The Fractal development methodology
entails identifying services each of which is
implemented by a component. The second step
requires the dependencies between components and
component hierarchies to be identified.

Each Fractal component contains a finite collection
of subcomponents comprising its content together with
a controller responsible for the composition of the
components within it and the components’ behaviour.
In the Fractal Model, and arguably in all component
models, components contain two kinds of references:
internal references to sub-components and external
references to other components. In the Fractal Model
these are termed internal and external references. In
order to reconfigure components it must be possible to
access and update both of these references types. One
way in which this may be achieved is using
introspection and reflection. Using, for example, the
Java reflection API, components may be decomposed
and introspected and their (recursive) structure
discovered. Alternatively, as in the Fractal Model,
distinguished interfaces may be provided by
components for the purpose of component
introspection. The advantage of providing
distinguished interfaces is that semantic consistency
may be enforced in the face of change. Semantic
checks include ensuring that components are
consistently wired; that components are stopped and
restarted before changes are made precluding internal
inconsistencies; and that internal references are not
wired to external components. Of particular importance
is to ensure that bindings are consistently updated.
Consider a sub-component sc1 of component C which
is referenced by sub-components sc2 and sc3. If sc1 is
replaced with a new component sc4, to maintain
semantic consistency both sc2 and sc3 must both refer
to the new component sc4. In order to maintain such
consistency components may offer a
BindingController interface which permits changes to
be made to bindings; a ContentController interface
which permit sub-components to be added and
removed from a component; and a LifecycleController
which permits components to be started and stopped.

3.5. Maintaining metadata throughout the
lifecycle

In the software engineering community many
believe that it is critically important to retain design
decisions throughout the software lifecycle. Such
metadata may include descriptions of the components

(their interfaces etc.), the data, the source code
(including languages used, revisions made, version
history etc.), the workflows and the relationships
between all of these. A new field of Application
Lifecycle Management (ALM) has developed to
address the management of software from acquisition
through deployment and evolution to retirement. This
clearly overlaps with the scope of deployment as
described above. The overarching idea behind ALM is
that a software architecture should exist which
documents all the inputs to the software including its
functional and non-functional requirements. The OMG
have advocated the UML based Model Driven
Architecture (MDA) approach [27] to address these
needs. Using the MDA, software architectures are
modelled as platform independent UML designs; these
models may be progressively transformed and refined
into an architectural framework. The underlying
principle behind MDA is to have specialised modelling
techniques for particular domains rather than having a
single monolithic modelling framework. Different
aspects may be modelled at different levels of
abstraction using domain specific languages in a fractal
approach to modelling. To unify these different
languages a meta-model architecture is defined known
as Meta Object Facility (MOF) which supports the
interchange of modelling artefacts. MDA and the more
generic Model Driven Development approach are both
examples of a wider field of Model Driven
Engineering (MDE). In MDE models (such as those
defined in UML) are the primary software artefacts
that are used in design, through implementation to
deployment.

To store such metadata requires metadata
repositories which in turn require schemata for
describing metadata and tools for extracting metadata
and keeping it in correspondence with the deployed
system. Tools are beginning to appear that support this
approach such as Borland Together 2006 and Eclipse
MDDi. These tools permit models and code to be
developed in which the code and the models are kept in
step with each other. Although these tools are still
mostly focussed on component development rather
than the entire lifecycle; there is a clear trend of such
tools reaching out from the development arena into the
deployment and run-time environments.

4. Trends, Issues and Challenges

So far, we have examined the general issues
surrounding software deployment and looked at the
state of the art in deployment systems. We have also
looked at some of the current issues relating to
deployment and how they impact on the deployment
process. In this section we examine some of barriers to

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

development in the field of deployment and how they
might be tackled. The issues examined in this section
are:

• Grain, of components containers and
environments,

• Distributed deployment,
• Middleware,
• Adaptation and autonomics, and
• Architectural Specification.

4.1. Grain, of components containers and
environments

There is currently little agreement over an
appropriate granularity of either software components
or the environment in which they are deployed. The
grain of components varies enormously. In some
systems (Java Beans for example) components are
relatively fine grained programming language objects
(or small collections of them). In other systems,
notably Linux, the components are large grain binary
executable file system objects. These two examples
also highlight other differences – in one case the
objects are programming language dependent typed
objects, in the other they are language independent, un-
typed binary objects. Grain is also an issue in terms of
the dependencies between components. For example,
.Net components check for dependencies in the
Windows registry; such dependencies can potentially
be at a very fine granularity - even down to a single
byte. By contrast, in the SOA paradigm the grain of
components tends to be relatively large (if it were not it
would degenerate into a distributed object model).
Similarly there is little agreement about the appropriate
grain of packaged assemblies of components. Windows
installers for example tend to be relatively monolithic
and give the user little or no scope for deciding which
of the packaged components to install, repair or
uninstall.
The grain of the environment into which components
are installed is also extremely variable. Installation into
a narrow domain is supported in the Java Beans
environment where only those services supported by a
particular server instance are affected. Some
components are installed into a machine wide domain.
A good example of this is installation in Linux using
RPM. An interesting hybrid described above is where
some virtualisation technology is used. For example,
using VMWare, the installation of components into a
VM image is equivalent to the machine wide
installation that might be performed using RPM or
Windows installers. However, since the components
are being installed into a VM image, they may have a
perfect environment constructed for them. The VM

image creation process becomes akin to the creation of
an assembly as described above. The difference
between these assemblies and others is that the VM
image is a totally self- contained and (virtually)
machine independent executable image.
Once a VM image has been created, it is like an
assembly; it may be replicated and concurrently
executed in multiple sites. The images may also be
updated in situ or a new master image may be updated
and disseminated. A major advantage of this approach
is that an assembly may be both black box and white
box tested at the time it is packaged and the customer
will have a high degree of confidence that it will
operate correctly once it is deployed, subject to
external dependencies. This brings us back to the
subject of how the contract between the assembly and
the external world is expressed.

The VM approach offers hope of simplifying the
deployment cycle following assembly (VM image
creation). There are however costs and complexities
with this approach. The first is the issue of grain and
co-location. The virtualisation approach is appealing
since it permits applications to be totally isolated from
each other. Each application can run in its own
hardware protected sandboxed environment which is
perfectly suited to it. However, there may be
performance implications to running a collection of
VMs as apposed to a collection of traditional processes
under an operating system.

Using the VM approach, each application is
installed within a potentially perfect self-contained
environment. However, such applications will still
require configuration, for example to supply them with
the addresses of external database servers, Web-
Services that they might utilise, local registries etc.
Another way of looking at this activity is that it is
forming bindings between the application(s) running
within the VM and applications and services running
externally. This requires some form of injection of
control. It also requires meta-information to be
supplied to the configuration management system to
enable it to perform the configuration – for example, is
the information passed in using VM invocation
parameters (akin to constructor injection) or via Web-
Services, RMI etc. This takes us back to the issues of
modelling and meta-modelling.

4.2. Distributed Deployment

The issue of distributed deployment has been
discussed briefly in the Grid section above. Distributed
deployment brings with it a host of technical issues
that must be overcome. The primary barrier to
distributed deployment is the lack of uniform security
and trust models. As discussed by Brebner [17],

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

attempts to deploy Grid Services in a UK wide
experiment were fraught with difficulties with respect
to certificate management. The security mechanisms
must be sufficiently powerful to prevent malicious
parties from deploying and executing harmful agents,
and prevent deployed components from interfering
with each other, either accidentally or maliciously.
This last point, that of logical isolation, is a particular
pragmatic difficulty since there is a tension between
sharing resources and isolation to ensure correct
behaviour of both the deployed components and the
underlying infrastructure.

In [28] we describe an architecture, called Cingal,
which permitted code to be safely deployed on third-
party machines. The system could deploy self-
contained assemblies which contained closures of code
and data and were called bundles. The bundles were
signed, permitting their authenticity to be established
by a small run-time kernel on each node, prior to being
deployed and executed on each node to which they
were sent. Post deployment, a wiring bundle was sent
to each node to perform node-specific configuration
and to establish inter-component inter-machine
bindings. In Cingal the sandboxes were implemented
as Java Virtual machines with the attendant undesirable
container buy-in requirements described above. Using
a virtual machine approach and using technologies
such as Xen [29] and VMWare makes it possible to
deploy code on a public infrastructure and still
maintain application isolation. This approach
motivated the Xenoserver project [30] and led to the
construction of Xen. This approach is also now being
followed commercially, for example, in the Tivoli
Software Installation Service [31] and in the Amazon
Web Services project [32].
Being able to deploy components and applications on
distributed third party servers necessitates the ability to
create and maintain inter-component bindings and
monitor the running components. As described above,
this task may be performed using light-weight
frameworks and the inversion of control pattern.
Currently, no distributed inversion of control
frameworks exist; systems such as Pico-container and
Spring focus on IOC in a single address space
environment. The next logical step in this development
is the development of distributed IOC frameworks.

What would a distributed IOC framework look like?
Much of the functionality would be like the IOC
environments that already exist. Components would
remain the same – methods would be provided to
manage inter-component bindings. However the fractal
pattern would need extending to permit such bindings
to be made between local components, between local
address spaces (containers), and between machines.
Such a model can be seen as an extension of the Fractal

Model where address spaces and the nodes hosting
them become first class entities in the model. This
requires the ability to expose bindings or interfaces to
update at each of the three levels – intra-container,
inter-container and inter-node. One way of achieving
this is to expose binding manipulation interfaces in
components and applications. The lack of ability to
expose applications and components was one of the
major criticisms by Brebner [17] of the Grid Services
Model.

The ability to expose binding manipulation
interfaces requires support at a number of levels.
Middleware support is needed to permit bindings to be
exposed and manipulated. Distributed IOC frameworks
are required to permit distributed component based
applications to be assembled and maintained. Lastly,
architectural support (including Architectural
Description Languages and meta-models) is required to
describe the distributed architectural components.

4.3. Middleware

By definition, using the Inversion of Control
pattern, control needs to be injected into components
from the outside. If the Fractal/IOC model is extended
to include address spaces and machines, mechanisms
are required to support such injection and
consequently, middleware support is required. Earlier
it was argued that forcing applications and components
to comply with the conventions of particular container
architectures was a bad thing since it created an
accidental problem of technology buy-in. The same
technology traps should be avoided with respect to
inversion of control. There is no point in having a
distributed IOC model which locks users into
particular programming languages or Middleware
technologies.

In the RAFDA project [33] we have built
middleware which permits arbitrary application
components to be exposed as Web-Services. Using this
technology, an arbitrary application component can be
dynamically exposed irrespective of its type. This is in
contrast to most other middleware technologies which
require decisions early in the design cycle about which
application components may participate in inter-
address space activities. Using flexible middleware
such as RAFDA, interfaces that permit bindings to be
manipulated may be trivially added to applications and
components without changing any existing source or
executable code.

In addition to binding support, other middleware
support is needed to make a distributed IOC
framework viable. Such support includes event
architectures to provide distributed asynchronous event
busses, distributed registries and name services for

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

locating components, and the ability to instantiate
components on remote nodes.

Event distribution architectures are required for two
independent but equally important purposes. They are
needed at application level to permit application
components to communicate with each other.
However, they are also needed by the deployment
infrastructure to monitor the health and efficacy of
application components. This leads naturally to the
subject of adaptation and autonomics.

4.4. Adaptation and Autonomics

Installed software must evolve to address changes
in both the environment in which it operates and the
requirements placed upon it. Kephart [34] has
proposed an autonomic lifecycle comprising a monitor,
analyse, plan, and execute loop in which entities are
monitored by collecting events which are analysed and
corrective action is taken if required. To make such a
process viable, a knowledge base is consulted by the
components implementing the autonomic monitoring
architecture. In the context of a distributed application,
the corrective action and its causes are potentially
extremely complex. The problems that might occur
include applications and components not being able to
satisfy their quality of service objectives, loss of
network connectivity, over-demand for network
bandwidth, failure of components or applications,
failure of computational resources and unbalanced
resource utilisation. The corrective actions for such
problems may include the introduction of new servers,
the deployment of new applications or components,
changing the network topology and moving
components between servers.

To enable such autonomic management requires a
number of technical obstacles to be overcome
including: the architectural specification of
applications (described below), instrumenting
applications or execution environments to record
semantically meaningful events, the distribution of
application events to where they are analysed, deciding
what actions to take in response to those events and
infrastructure to manage the individual architectural
elements.

The problem of instrumenting applications to record
semantically meaningful events is akin to the problem
described above with respect to the establishment and
maintenance of inter-component, inter-machine
bindings. Pieces of reporting functionality must either
be installed in components a priori or be dynamically
added to them. Forcing applications and components to
adopt particular frameworks is unlikely to be
successful in a heterogeneous business environment.
Mechanisms that allow monitoring probes to be added

to software after it has been written and potentially
dynamically on demand will be needed.

The encoding of the information necessary for the
autonomic management of applications places yet
more burden on architectural specification languages.
This additional information includes that necessary to
rebind application components, to express which
components may be shared and those that may not, the
domains in which components and applications may be
executed and quality of service information. It is likely
that such concerns will need to be divided into separate
architectural meta-aspects as proposed by the OMG in
order to keep complexity under control.
If we assume that a suitable architectural description of
an application exists, in order for autonomics to be
applied to the distributed deployment problem, two
separate but closely related problems must be
addressed: how to initially deploy an application, and
how to manage its its subsequent evolution in the face
of host failures and other perturbations. Both these
problems may be addressed by specifying a high-level
configuration goal which is used to drive the
autonomic process. In order to describe how an
application is intended to be structured, we have
proposed the use of domain-specific constraint-based
languages [35]. Using a constraint-language, it is
possible to describe configuration goals in terms of
resources including software components and physical
hosts, relationships between hosts and components,
and constraints over these. From such configuration
goals, plans may be developed for the deployment of
components using the available physical resources.
These goals could also be used to configure monitoring
software to assess whether the executing application
continues to obey the constraints specified in the
description as described above.

Such constraint specifications could also be used to
evolve the application in response to constraint
violations arising from changes in the environment.
There are several levels at which a deployed
application may be evolved. The simplest involves the
evolution of the configuration in order to maintain a
previously specified goal. Thus the configuration
evolves whilst the high-level configuration goal
remains the same. We term this autonomic evolution,
and consider it to be fundamental to the autonomic
management of distributed applications. A second
level of evolution is needed when the high-level goal
itself changes, due to a change in application
requirements. Both kinds of evolution may be handled
in the same way, treating the first as a special case of
the second in which the goal remains fixed. In both
cases an ongoing autonomic cycle could be employed
to solve the current constraint problem, deploy the

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

resulting configuration, and monitor the deployment to
determine when to repeat the sequence.

The development of domain specific constraint-
based languages to express the constraints over
architectural specifications remains a difficult and
complex task. The implementation of constraint-
solvers to solve deployment problems also remains a
daunting task requiring research from both software
engineers and the constraint satisfaction/optimization
communities.

4.5. Architectural Specification

Many of the current architectural specification
languages do not currently cope with or describe
dynamic change. A specification expressed in an ADL
describes a future intended state of a system. Clearly to
be of more general applicability, it must be possible for
architects to express changes to software systems using
ADLs. This is being addressed by the dynamic
software architecture community. The ability to
change a software specification written in an ADL
introduces many problems which are closely related to
the area of deployment. Some of these include which
operations are permissible: for example, may
components be created and destroyed, can the
architectural topology be changed, and may nested
components be unnested?; and can a component's
internal state be preserved and transferred to a new
instance and if so how?

Medvidovic [36] suggests it should be possible to
accommodate new components, upgrade components,
reconfigure the architecture and modify the mappings
of components to machines. He argues that ADLs do
not currently have the right set of features to
accommodate such dynamic changes and that (ADL)
language mechanisms are required to carry out such
changes. Medvidovic calls such a language an
Architecture Construction Notation (ACN).

The operational semantics of such ACNs are akin to
the set of operations that are required to perform
injection of control (bind, unbind, instantiate etc.).
Clearly, an ACN may be viewed as a meta-program
which operates on the ADL architectural
representations. This is obviously related to the meta-
programming ideas in the OMG MOF and a rich area
for future architectural research.

If we assume that all other problems related to
autonomic management have been solved (and some
would argue that they have), the problem of
coordination remains. Deployment, redeployment,
wiring and configuration of distributed components
and applications often requires components to be
passivated, for their state to be stored, and then
restored following reconfiguration. Furthermore such

actions need to be coordinated across multiple sites and
with transactional support to prevent inconsistencies
from arising. Update actions may sometimes only be
performed at certain times, for example at night when
demand is low; this introduces further temporal
complexities to the update task. Such activities will not
only require languages to express these operations (as
discussed above), those languages will need to be
capable of expressing the complex temporal and
transactional state space that occurs during
reconfiguration.

Management processes that manage the deployment
and evolution of systems are subject to the same
failures as the systems they manage. Consequently,
some fault tolerance must be built into the control
system, for example, the provision of a failure resistant
collection of managers. This introduces a plethora of
problems including the engineering of the fault
tolerance of the management infrastructure, reliable
distribution mechanisms for events from applications
to the control system and determining when changes
that have been instructed have been completed
(distributed termination). Each of these areas is a major
research challenge in its own right.

5. Future Directions

Much of the current focus in both industry and
academia is on the Internet domain. However, two
areas have not been discussed, but are of increasing
interest in both communities are the mobile domain
and the sensor-net domains.

Whilst the mobile domain is likely to be dominated
by IP based protocols, the deployment problems are
complex due to the heterogeneity and number of the
devices, intermittent network connections, the lack of
centralised control and that the mobile devices tend to
be owned by individuals. The mobile arena is a rich
ground for future research in this domain.

The field of wireless sensor-nets is rapidly growing
Deployment in the field of sensor-nets is currently
extremely simple – sensor-net nodes are directly
connected desktop machines and monolithic programs
(generally including the operating system) are loaded
into them. As sensor-nets are more widely deployed
and used, there will be an increasing need to update the
software on nodes in situ. This will require individual
components to be deployed over the wireless network.
The deployment problems raised by this prospect are
similar to those in the mobile domain but exacerbated
by low bandwidth communications and the need to
conserve energy.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

6. Conclusions

This paper attempts to define what is meant by
software deployment and clarify some of the
terminology used in this field. State-of-the-art
deployment systems from various fields have been
examined and shown to operate on a variety of
different grained objects and make different
assumptions about the environment. The different
systems have different approaches to the typing and
type checking of objects and to the way in which
components are named and the scope of names.

The lack of uniform agreement on what constitutes
a component, an assembly or a package and what
meta-data they might have associated with them is a
hindrance to development in this field, as is the
technology buy-in associated with different languages,
operating systems, containers and methodologies.

Deployment is an inherently complex area; there is
a danger of introducing accidental complexity through
the introduction of overly elaborate and complex
architectures and meta-architectures and the languages,
tools and mappings that they introduce.

The use of virtualisation offers hope of a silver
bullet to avoid much of this complexity permitting the
entire environment to encapsulated within a virtual
image and deployed easily. The use of the various
Web-Services technologies presents for the first time a
machine and language independent standard for
describing typed service interfaces. It also presents a
standard uniform naming scheme which removes
complexity and ambiguity from the deployment
lifecycle. Finally, distributed inversion of control
might permit virtualised services to be interconnected
using Web-Services standards.

7. Acknowledgements

I would like to thank Graham Kirby for his helpful
comments throughout the preparation of this paper.

8. References

[1] OMG, “Specification for Deployment and
Configuration of Component-based Distributed
Applications”, 2003 http://www.omg.org/docs/mars/
03-05-08.pdf

[2] A. Carzaniga, A. Fuggetta, R. S. Hall, D.
Heimbigner, A. v. d. Hoek, and A. L. Wolf, “A
Characterization Framework for Software Deployment
Technologies”, Technical Report Department of
Computer Science, University of Colorado, Boulder,
Colorado, April 1998.

[3] OMG, “Unified Modelling Language:
Superstructure version 2.0”, August 2005 2005
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-
04.pdf

[4] C. Szyperski, “Component technology: what,
where, and how?” Proc. 25th International Conference
on Software Engineering, Portland, Oregon, pp. 684 -
693, 2003.

[5] E. Bruneton, T. Coupaye, and J. B. Stefani, “The
Fractal Component Model”, ObjectWeb February 5,
2004 2004 http://fractal.objectweb.org/specification/
index.html

[6] Sun Microsystems, “JNDI 1.2 Documentation”,
http://java.sun.com/products/jndi/docs.html

[7] Sun Microsystems, “JSR-000220 Enterprise
JavaBeans 3.0”, http://jcp.org/aboutJava/
communityprocess/final/jsr220/index.html

[8] M. Rutherford, K. Anderson, A. Carzaniga, D.
Heimbigner, and A. Wolf, “Reconfiguration in the
Enterprise JavaBean Component Model”, Proc.
IFIP/ACM Working Conference on Component
Deployment, pp. 67-81, 2002.

[9] E. C. Bailey, Maximum RPM: Sams, 1997.

[10] OMG, “CORBA Components formal/02-06-65”,
OMG http://www.omg.org/docs/formal/02-06-65.pdf

[11] Apache Software Foundation, “Webservices -
Axis”, 2005 http://ws.apache.org/axis/skin/
images/pdfdoc.gif

[12] Microsoft, “IIS 6.0 Technical Reference (IIS
6.0)”, 2006 http://www.microsoft.com/technet/
prodtechnol/WindowsServer2003/Library/IIS/848968f
3-baa0-46f9-b1e6-ef81dd09b015.mspx?mfr=true

[13] J. C. Schlimmer, “Web Services Description
Requirements ”, 2002 http://www.w3.org/TR/ws-
desc-reqs/

[14] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, “Web Services Description Language
(WSDL) 1.1”, 2001 http://www.w3.org/TR/
2001/NOTE-wsdl-20010315

[15] VMWare, “Building the Virtualized Enterprise
with VMware Infrastructure”, Technical Report 2006.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

http://www.vmware.com/pdf/vmware_infrastructure_w
p.pdf

[16] S. Schumate, “Implications of Virtualization”,
Technical Report 2004. www.dell.com/downloads/
global/power/ps4q04-20040152-Shumate.pdf

[17] P. Brebner and W. Emmerich, “Deployment of
Infrastructure and Services in the Open Grid Services
Architecture (OGSA)”, Proc. Component Deployment
2005, pp. 181-195, 2005.

[18] Globus, “Globus Toolkit 4.0 Release Manuals”,
2006 http://www.globus.org/toolkit/docs/4.0/

[19] B. Smith, “Reflection and Semantics in LISP”,
Proc. 11th ACM Symposium on Principles of
Programming Languages, New York, pp. 23-35, 1984.

[20] A. Goldberg and D. Robson, Smalltalk-80: The
Language and its Implementation. Reading,
Massachusetts: Addison Wesley, 1983.

[21] G. N. C. Kirby, R. C. H. Connor, Q. I. Cutts, A.
Dearle, A. M. Farkas, and R. Morrison, “Persistent
Hyper-Programs”, in Persistent Object Systems,
Workshops in Computing, A. Albano and R. Morrison,
Eds.: Springer-Verlag, pp. 86-106, 1992.

[22] E. Gamma, R. Helm, R. Johnson, and J. M.
Vlissides., Design Patterns: Elements of Reusable
Object-Oriented Software: Addison Wesley, 1994.

[23] R. Johnson, J. Hoeller, A. Arendsen, C.
Sampaleanu, R. Harrop, T. Risberg, D. Davison, D.
Kopylenko, M. Pollack, T. Templier, E. Vervaet, P.
Tung, B. Hale, A. Colyer, J. Lewis, C. Leau, and R.
Evans, “The Spring Framework - Reference
Documentation”, 2006
http://static.springframework.org/spring/docs/2.0.x/refe
rence/index.html

[24] “Picocontainer”, 2006
http://www.picocontainer.org/

[25] M. Fowler, “Inversion of Control Containers and
the Dependency Injection pattern”, 2004
http://www.martinfowler.com/articles/injection.html

[26] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Videira Lopes, J.-M. Loingtier, and J. Irwin,
“Aspect-Oriented Programming.”, Proc. European
Conference on Object-Oriented Programming, pp. 220-
242, 1997.

[27] OMG, “OMG Model Driven Architecture”, 2006
http://www.omg.org/mda/

[28] A. Dearle, G. Kirby, A. McCarthy, and J. Diaz y
Carballo, “A Flexible and Secure Deployment
Framework for Distributed Applications”, in Lecture
Notes in Computer Science 3083, (eds), Proc. 2nd
International Working Conference on Component
Deployment (CD 2004), Edinburgh, Scotland,, W.
Emmerich, Wolf, AL Ed.: Springer,, pp. 219-233,
2004.

[29] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
I. Pratt, A. Warfield, P. Barham, and R. Neugebauer,
“Xen and the Art of Virtualization”, Proceedings of the
ACM Symposium on Operating Systems Principles,
2003.

[30] D. Reed, I. Pratt, S. Early, P. Menage, and N.
Stratford, “Xenoservers: Accountable execution of
untrusted programs”, Proc. Proceedings of the 7th
Workshop on Hot Topics in Operating Systems
(HotOS-VII), 1999.

[31] M. Foster, J. Ilgen, and N. Kirkwood, Tivoli
Software Installation Service: IBM, 2000.

[32] Amazon, “Amazon Web Services”, 2006
http://developer.amazonwebservices.com/connect/entr
y.jspa?externalID=123&categoryID=48

[33] G. Kirby, S. Walker, S. Norcross, and A. Dearle,
“A Methodology for Developing and Deploying
Distributed Applications”, in Lecture Notes in
Computer Science 3798, A. Dearle and S. Eisenbach,
Eds., pp. 37-51.

[34] J. Kephart and D. Chess, “The Vision of
Autonomic Computing”, IEEE Computer, vol. 36 no.
1, pp. 41–50, 2003.

[35] A. Dearle, G. N. C. Kirby, and A. J. McCarthy, “
A Framework for Constraint-Based Deployment and
Autonomic Management of Distributed Applications”,
Proc. First International Conference of Autonomic
Computing (ICAC), pp. 300-301, 2004.

[36] N. Medvidovic, “ADLs and dynamic architecture
changes”, Proc. Joint Proceedings of the Second
International software Architecture Workshop (ISAW-
2) and International Workshop on Multiple
Perspectives in Software Development (Viewpoints
'96), San Francisco, California, pp. 24 - 27, 1996.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

