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Abstract 
 
This paper examines the dimensions influencing the 

past and present and speculates on the future of 
software deployment. Software deployment is a post-
production activity that is performed for or by the 
customer of a piece of software. Today’s software often 
consists of a large number of components each offering 
and requiring services of other components. Such 
components are often deployed into distributed, 
heterogeneous environments adding to the complexity 
of software deployment. This paper sets out a standard 
terminology for the various deployment activities and 
the entities over which they operate. Six case studies of 
current deployment technologies are made to illustrate 
various approaches to the deployment problems. The 
paper then examines specific deployment issues in 
more detail before examining some of the future 
directions in which the field of deployment might take. 
 
1. What is Software deployment? 

Software deployment may be defined to be the 
processes between the acquisition and execution of 
software. This process is performed by a software 
deployer who is the agent that acquires software, 
prepares it for execution, and possibly executes the 
software [1]. Thus deployment is a post-production 
activity that is performed for or by the customer of a 
piece of software. It is at this point in time that all 
customer centric customization and configuration takes 
place. Software deployment may be considered to be a 
process consisting of a number of inter-related 
activities including the release of software at the end of 
the development cycle; the configuration of the 
software, the installation of software into the execution 
environment, and the activation of the software [2]. It 
also includes post installation activities including the 
monitoring, deactivation, updating, reconfiguration, 
adaptation, redeploying and undeploying of the 
software. We briefly expand on each of these activities 
in Section 1.2 below. 

 
1.1. Concepts/Terminology 

In this section we introduce common terminology 
and concepts which apply to many software 
deployment systems. 

Most deployment systems incorporate the concept 
of a component which is defined in the UML2 
specification [3] to be a modular part of a system that 
encapsulates its contents and whose manifestation is 
replaceable within its environment. In [4] a component 
is defined to be a unit of composition with 
contractually specified interfaces and explicit context 
dependencies only. A component defines its behavior 
in terms of provided and required interfaces. In this 
context, an assembly is a set of interconnected 
components. An assembly can itself be viewed as a 
component made up of subcomponents and offering 
and requiring interfaces. This concept has been 
developed to its logical conclusion in the Fractal 
Component Model [5]. The required interfaces of the 
components in an assembly may be satisfied either by 
other components in the assembly or be required from 
the environment in which the assembly is deployed. 
The term resource is commonly used to refer to any 
artefact (both hardware, software and system artefacts) 
which a component requires in order to function. An 
application is simply a collection of components which 
performs some function. In order to deploy a 
component it must be instantiated, supplied with 
instances of components on which it depends and 
configured. A version of a component refers to time 
ordered revisions of a component or application and to 
platform-specific and/or functional variants [1]. 

Some systems provide the notion of a component 
package containing metadata and assemblies. The 
package may contain multiple implementations of 
components to satisfy the needs of different hardware 
and software environments. Thus when a package is 
deployed, the deployment system may need to choose 
the components that are most suitable for the 
environment. To do this appropriate and adequate 
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metadata must be included in the package to describe 
the components in it. 

In OMG parlance the target environment is termed a 
domain and is comprised of nodes (computers), 
interconnects (network connections) and bridges 
(routes between interconnects). In many component 
models components are required to execute within a 
controlled environment known as a container. 
Containers serve many purposes including shielding 
components from the concrete environment on which 
they are hosted; providing lifetime management; 
enforcing policies on components; and providing 
mechanisms for the discovery and binding of other 
components in the environment. 

Binding is the process by which a component 
obtains a reference to another component which it 
requires to operate correctly. Inter-component bindings 
may be made at a variety of times including when the 
components are built, when they are added to an 
assembly, when they are packaged, when they are 
deployed and when they are executed. Central to the 
binding task is how components are named and again a 
variety of mechanisms are in current use. In Unix 
environments, components are usually named using 
file system path names. In Windows environments 
components are often referred to using a globally 
unique identifier (GUID) which is used to index a 
system wide database – the registry. In Java 
environments a variety of mechanisms are used to 
resolve names including JNDI [6]. The most general 
naming scheme is found in the Web-services domain 
where components are referred to using a Uniform 
Resource Identifier (URI). 

Another aspect to binding is the degree of type 
checking that is performed when names are resolved to 
values. In some environments, notably Unix, little type 
checking is performed when binding occurs, by 
contrast environments such as .Net and Web Services 
include sophisticated and expressive type systems and 
perform extensive checking.  
 
1.2. The deployment lifecycle 

Release is the interface between developers and the 
actors in the remainder of the software lifecycle. At the 
point of release the software is assembled into 
packages containing sufficient metadata to describe the 
resources on which it depends. Installation requires the 
software to be transferred to the customer and 
configured in preparation for activation. Activation is 
the process of starting the software executing or 
putting in place triggers that will execute the software 
at an appropriate time. This is sometimes achieved 
using graphical interfaces or with scripts or daemon 
processes. The opposite of activation is deactivation 

and in many systems this is required prior to adaptation 
or reconfiguration where a piece of software must be 
passivated and rendered non-invocable. Updating is the 
process of changing a piece of installed software 
usually triggered by the release of a new version by the 
developers. Update is a special case of installation but 
may require installed software to be deactivated prior 
to update and reactivated after reconfiguration.  Unlike 
updating and reconfiguration, adaptation is the process 
of modifying installed software in order to react to 
changes in the environment in which the software is 
installed. Undeployment is the process of removing the 
deployed software from the machine on which it was 
deployed. The process is also known as deinstallation 
of the software.  

This software process requires specifications for:  
• Packaging the software and associated 

metadata for delivery between the software 
producer and the deployer. 

• Receiving and configuring the software into 
the deployer’s environment before 
deployment decisions are made. 

• Describing the facilities of the targeted 
execution environment. 

• Planning how the software will be deployed 
onto the targeted distributed execution 
infrastructure. 

• Performing the actual preparation of the 
application for execution, e.g., moving parts 
of the software to their location of execution. 

• Launching, monitoring, and terminating the 
software. 

The remainder of the paper is structured as follows, 
Section 2 presents six case studies that illustrate typical 
current approaches to deployment and highlights the 
differences between them. Section 3 examines some of 
the issues highlighted in Section 2 in more detail. 
Section 4 looks at the trends in deployment and the 
issues and challenges presented by those trends. 
Section 5 looks to the future and speculates on the 
future of deployment, Section 6 concludes. 
 
2. Case Studies 

In order to help understand the issues affecting 
software deployment, this section examines six 
technologies which include support for software 
deployment. Before exploring these technologies it is 
worth highlighting that looking at any one technology 
simplifies the problems of software deployment 
considerably since many of today’s systems are 
heterogeneous with respect to hardware, the operating 
environment and the implementation technologies used 
to implement components and applications.  
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2.1. Java Beans 

Enterprise JavaBeans (EJB) is a standard for 
building server-side components [7]. Java Beans were 
designed to simplify the development, deployment, and 
management of enterprise solutions. Java Beans are 
units of business logic contained within components 
that execute within containers. Once business logic is 
wrapped up in a Bean, it may be reused in a variety of 
contexts. The containers abstract the hosting 
environment and offer a variety of services including 
security, lifetime management and transactional 
database services in addition to low-level system 
aspects such as caching and memory pooling. Each 
Bean instance is implemented by (at least) a pair of 
objects and presents at least three different interfaces: 
the home interface used for lifecycle management 
purposes, the remote interface containing methods 
which may be called remotely by the client, and the 
local interface which defines the business methods 
callable by container-resident clients.  

Java Beans must be packaged according to 
guidelines specified by Sun Microsystems. The 
standard bean packaging permits both management and 
deployment tools to be written which manipulate them. 
Java Beans are packaged in a standard Java JAR file 
along with a XML deployment descriptor file 
describing properties pertinent to the bean. This 
packaging may contain one or more Java Beans. 
However, once multiple Beans are packaged together 
they may not be separately managed since the 
containers manage them as a single unit. The 
deployment descriptor typically contains information 
about the bean’s transactional, security and persistence 
requirements along with any bean specific properties. 
The manifest for the JAR file may contain a Depends-
on attribute which specifies the components upon 
which the packaged component(s) depend. However, 
this is expressed in terms of the naming service name 
for the referenced components which is not unique.  

The Bean lifecycle, as described by Sun, consists of 
four phases: development, deployment, service 
availability and undeployment. In the first phase the 
bean is written and packaged in a JAR file as described 
above. In the second phase an application assembler 
may adjust properties in the bean’s deployment 
descriptor such as security attributes, persistence 
mechanisms, transactional properties and any bean 
specific properties that require tailoring to the 
deployment environment. This phase ends with the 
bean package being loaded into an appropriate 
directory where it may be activated by the container 
hosting it. 

Support is especially lacking for the maintenance of 
inter-bean bindings in the face of updates. As described 
above, references to dependent beans are in terms of 
their non-unique name service name. Thus if the same 
name is used for two different beans those beans must 
be manually reloaded to ensure that bindings are up-to-
date. This problem and a solution to it is described in 
more detail in [8]. 

To sum up, Enterprise Java Beans are relatively fine 
grained and language dependent. The EJB solution 
isolates the Bean from its environment by providing a 
standard container interface. This requires Beans to be 
written in a manner that it is compliant with the 
interfaces specified in the container interface. 
Enterprise Java Beans does not have any notion of 
remote installation of components.  There are also 
problems with respect to the way in which Beans are 
named. 
 
2.2. Linux 

The most common method of deploying software 
for Linux is the Red Hat Package Manager (RPM). The 
manager supports a number of operations including 
installation, querying, verification, update and deletion 
of packages. These operations are supported by a 
database containing details of the packages that have 
been installed on a particular Linux installation. A 
RPM package typically contains binary executables, 
along with configuration files and documentation. 
Since binaries are contained in the packages, implicit 
dependencies exist between the packages and the host 
operating system and architecture. This is addressed by 
using a standard set of C libraries and by annotating 
packages with the architecture for which they have 
been compiled (i386 etc.). It is however also possible 
to create source packages containing source code 
which avoid this complexity but creates additional 
dependencies on build tools (such as make and gcc 
etc.).  

Every RPM package is labelled with a package 
label which contains the name of the software, its 
version, the release (used to indicate the target Linux 
distribution) and the target architecture. This label is 
not contained within the package, instead being used to 
name the files containing the packages. Every RPM 
package contains four sections called the lead, the 
signature, the header and the archive [9]. The lead is 
used by Unix operations such as the command file. 
Although once used by RPM, the information in the 
lead has been superseded by the header due to 
inflexibility. Every RPM package contains one or more 
header structures which are represented as an indexed 
set of entries, each containing information on some 
datum. The signature contains cryptographic 
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information that may be used to verify the integrity, 
and in some cases, the authenticity of the header and 
archive contained in the package. The archive contains 
a Gzipped collection of files that comprise the package.  

RPM files may also contain a number of scripts 
written using standard Unix scripting languages. The 
scripts are organized into sets responsible for building 
software, installation and erasure of software and 
verification. The building scripts are responsible for 
unpacking source files, building the software, installing 
and removing the software and performing post-
installation tidying up. The installation and erasure 
scripts run at four times: before and after installation 
and before and after erasure. The post-installation 
script is responsible for verifying that the installation 
was correct; unlike the .Net installation managers 
(described below) there is no atomicity and roll back 
should errors be detected and this complexity is the 
responsibility of the script writer.  

Higher level toolsets have been built using RPM, 
notably the Yellowdog Updater Modified (YUM). 
YUM is designed to determine inter-package 
dependencies and automate the installation of 
packages. It also provides the ability to manage 
collections of machines, such as in a server farm or 
University laboratory, without having to manually 
configure each machine using RPM. 

To conclude, the Redhat Package Manager is 
widely used in the real world. It is a coarse-grain, 
language independent, operating system dependent 
approach. Its major failing is that not all dependencies 
are explicitly modelled and those that are, are not 
modelled in terms of packages but in terms of their 
contents. 
 
2.3. .Net 

In the .Net framework, the basic unit of deployment 
and versioning is the Assembly. The identity of each 
Assembly is encoded in its strong name which contains 
its simple text name, a four part version number, and 
culture information, together with a public key and a 
digital signature. Using a strong name for an Assembly 
ensures that the name is globally unique. In addition to 
uniqueness, the use of strong names ensures the 
integrity of version numbers and provides users with 
the assurance that Assemblies have not been tampered 
with. Assemblies contain a manifest describing the 
contents of the Assembly, type metadata, an optional 
set of resources and one or more CIL code modules. 
The metadata in the manifest describes the classes 
provided by the Assembly, versioning information, 
dependencies on other Assemblies and modules and 
security attributes. Importantly this metadata provides 
the necessary information for the .Net framework to 

ensure type safety (supported by the Common Type 
System) and security. The type metadata describes the 
types implemented by the Common Interface 
Language (CIL) code contained in the Assembly. 
Several different types of Assemblies may be created 
in the .Net framework including Static, Dynamic, 
Private and Shared Assemblies. Here we will focus on 
Shared Assemblies which may be used by multiple 
applications and are therefore the most interesting. 

Shared Assemblies typically reside in a per-machine 
data structure known as the Global Assembly Cache 
(GAC) which is a machine-wide store for the 
Assemblies used by more than one application. In 
Windows Assemblies are typically put in the GAC by 
one of the Windows installation programs. Multiple 
versions of an Assembly may exist contemporaneously 
within a GAC, with each being differentiated via their 
strong names. By default, applications bind to 
Assemblies in the GAC using the strong names 
(including version numbers) specified in the calling 
Assembly’s manifest. This prevents the installation of 
a new version of a component from harming other 
currently installed applications and components. 
However, it is desirable for components to be updated 
when bugs are fixed and for versions to be discarded if, 
for example, security problems are discovered. To 
address this need the .Net framework provides version 
policies which are expressed in XML and may be 
specified in an application-specific, machine-specific 
or publisher specific manner. Clearly, the installation 
of a new (faulty) component can stop an existing 
application from working therefore the framework 
permits every application to bypass the policy specified 
by the publisher.  

The Visual Studio .Net IDE contains tools to create 
Windows Installer files to install, update and repair 
.Net applications and components. Each installer may 
be digitally signed so that it may be authenticated. 
Such installer files are dependent upon the Windows 
Installer which is an operating system service which 
maintains a database of information on every installed 
application. This database records dependencies 
between installed components to support removal and 
repair. Windows supports four types of setup projects: 
standard, web-based, merge projects and CAB projects. 
The first two of these are compatible with the 
installation service, merge projects are used to package 
components rather than applications and CAB projects 
are used to package downloadable ActiveX controls. 
The Visual Studio environment includes support to 
detect dependencies on other .Net components. 
However, dependencies on legacy components such as 
COM components must be added manually to the 
project and hence to the installer and Assemblies.  
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Each standard setup project contains a setup routine 
responsible for performing installation and is capable 
of rolling the system back to the state in which it was 
prior to installation should the installation fail or if the 
installation is cancelled by the user. Installers can also 
contain custom actions which may be in the form of 
scripts, executable code or Assemblies, which are 
executed after the installer scripts have completed. The 
.Net framework supports conditional installation 
permitting installations to be customized according to 
local needs. This is supported via properties and launch 
conditions which permit installations to be customized 
according to which operating system is running, which 
files are present, what registry variables have been set, 
etc. 

To summarise, like RPM, the .Net framework is 
widely used in the real world. It is also a coarse-grain, 
operating system dependent approach although a (high) 
degree of language neutrality is provided via the CIL. 
The tool support provided by Visual Studio is an 
example of the growing trend of development 
environments reaching out to the domain of 
deployment and lifecycle-management. 
 
2.4. OMG, CCM and D & C 

The OMG Deployment and Configuration 
specification attempts to “define the mechanisms by 
which component-based distributed applications are 
deployed” [1]. This specification is a replacement for 
the original Packaging and Deployment specification 
and XML DTD defined in the specification of the 
Corba Component Model V3 [10] (This specification 
has been superseded by version 4 ). The OMG process 
model consists of 5 steps: installation, configuration, 
planning, preparation and launch. Much of the 
specification focuses on abstraction over the 
environment. This is achieved by the definition of a 
Platform Independent Model (PIM) which is not only 
platform independent but also independent of 
middleware, programming languages and data formats 
(such as XML DTDs etc.). In the OMG PIM, a 
component has an interface containing operations, 
attributes, and ports which may be connected to other 
components. Component packages contain multiple 
alternative implementations of a component, each with 
different properties and suitable, for example, for 
deployment on different operating systems. Packages 
may be installed into Repositories where they may be 
configured. Each component may be either monolithic 
or be composed of sub-components and termed an 
Assembly. Within each Assembly, each sub-component 
is described using a SubComponentInstantiation-
Description which either describes how to construct 
the component from its sub-components or describes a 

suitably typed implementation. Packages may also 
contain ComponentPackageReferences which describe 
unbound references to required components and their 
type.  

Monolithic components are described using a 
MonolithicImplementationDescription which contains 
information about what parameters must be passed to 
the target environment in order to instantiate the 
component and the requirements the component has of 
that environment. It also contains a description of the 
implementation artefact which is a complete concrete 
implementation of the component. This description 
includes an optional UUID, the most specific type of 
the component, the ports it offers, its properties and 
optionally configuration properties.  

The PIM is divided into two independent 
dimensions each of which have a number of different 
aspects. The first dimension is known as the “Data 
versus Management/Runtime dimension” and is 
concerned with (a) the data model describing software 
artefacts and (b) the runtime management of those 
artefacts. The second dimension is based on the 
deployment process and is concerned with (a) the 
nature of the components; (b) the nature of the target 
environment and (c) how the software will execute in 
the target environment. Combining the data model 
aspect of dimension 1 with the three aspects of 
dimension 2 yields the package descriptions for 
components, the data model for the domain in which 
components are deployed and the deployment plan 
with which components are configured and connected 
on the target. Each of these models is described in 
UML2. Taking the second aspect of dimension 1 along 
with the nature of the components yields the 
Component Management Model which describes the 
interface to a repository manager for storing 
components. The second aspect describes a Target 
Manager for managing domains. Combining the last 
aspect of dimension 2 with the management dimension 
yields the Execution Manager which describes how to 
prepare components for execution, how to launch them 
using an Application Manager and how to manage 
their lifecycles using a Node Manager.  

The 5 steps of installation, configuration, planning, 
preparation and launch map onto the three aspects of 
dimension 2 in the following manner. The first two 
steps interact with the repository manager. An 
installation tool supplies details to the repository 
manager which stores packages prior to being 
configured by a configuration tool. Planning relates to 
the target environment. A planning tool creates plans 
by interacting with both the Repository Manager and 
the Target Manager. The planning tool is responsible 
for the creation of a Deployment Plan which can be 
used by the Execution Manager to create a factory 
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object for the application. This plan is essentially 
isomorphic to the Assembly for the application with all 
the Assemblies recursively replaced by chosen 
concrete monolithic implementations. In the 
preparation phase, the plan is traversed and an 
Application factory is created by the Execution 
Manager for each component from which it may be 
instantiated. Next, the Node Manager(s) interact with 
the Application manager(s) to execute the application 
but not run it. This step returns references to ports 
provided by the applications. Finally, in order to start 
the applications running, node managers inject control 
into them along with the ports supplied in the previous 
step. In a distributed deployment, node managers are 
only responsible for the components on the nodes 
which they manage.  

The PIM maps onto a concrete platform specific 
model using the CORBA Component Model (CCM) 
[10] in a number of transformation stages that 
ultimately yield Corba IDL or XML schema 
definitions. The CCM extends the distributed object 
computing model provided by CORBA with the 
concept of components. In CCM a component is an 
entity exposing a set of attributes and a set of ports, 
each of which contains facets defining a synchronous 
CORBA interface, receptacles providing connections 
to facets provided by other components, and 
asynchronous event sources and sinks. CCM 
components execute within containers called executers 
which provide the traditional container services. Many 
of the concepts from the PIM map directly onto the 
CCM without change. For example, the Node Manager 
uses the event consumer and facet ports provided by 
CCM components as interface providers, and the other 
ports as required interfaces. 

The OMG D & C specification is perhaps the most 
complete attempt to define a deployment and 
configuration standard to date. Concerns surrounding 
the specification include its size and complexity, and 
its dependence on the underlying CORBA standards 
that it leverages. 
 
2.5. Service-oriented Computing Paradigm 

Using the Service-oriented computing paradigm, the 
service provider is responsible for the deployment and 
registration of the services offered. Those services may 
be provided using a variety of technologies including 
container based technologies such as Apache Axis [11] 
or Web-Services infrastructure such as IIS [12].  Thus 
the deployment of individual services offers many of 
the same challenges and involves similar processes and 
lifecycles as the other technologies discussed in this 
section. However, if one considers applications created 
from Web-Service components, the service-oriented 

model has much to offer. In the Web-Service model, 
all services are identified using a collection of 
endpoints each of which specify a network address 
represented as a URI and a fully specified interface 
binding [13]. The interface binding specifies the 
protocol and/or data format for messages sent to that 
service. The service itself is specified in WSDL [14] 
which is language, architecture and machine 
independent and is extensible. Thus the Web-Service 
model presents an abstraction layer in which software 
may be written in different languages, run on different 
hardware and operating systems. The Web-Service 
model may be interpreted as a pure component model 
in which each component may have dependencies on 
others but only in terms of its WSDL interface and 
service endpoint. Furthermore, the individual services 
may be offered by different service providers and run 
in different protection regimes.  
 
2.6. Virtualisation 

Much of the complexity in the deployment process 
described above stems from interactions between the 
product being installed, the environment and the 
execution policy constraints. One approach to avoiding 
this complexity is to abstract over these inter-
dependencies; this is the approach followed in .Net, 
Java Beans and in the Web-Services approach.  
Another approach is to obviate these problems entirely 
by creating perfect custom environments into which 
applications and components may be installed. Whist 
in the past this might have seemed a Utopian dream, it 
may now be achieved using virtualisation.  

Virtualisation is a new trend in computing which is 
likely to have a large impact on software deployment. 
In a traditional operating system, a single operating 
system runs on a single piece of hardware offering a 
shared uniform environment to the programs which 
execute on that platform. By contrast, in a virtual 
environment a virtualisation layer running on a single 
piece of hardware offers multiple virtual hardware 
emulations on which multiple instances of potentially 
heterogeneous operating systems may be hosted. Thus 
multiple incarnations of WindowsXP, Linux and 
Windows 2000 could co-exist and run applications on 
a single physical piece of hardware. This technique is 
known as partitioning.  

Using virtualisation software such as VMWare [15], 
an operating system along with its applications may be 
encapsulated into a single virtual machine. Typically 
such virtual machines are encoded in a single image 
file containing what was previously considered to be a 
server (CPU, disk, network interface, file system and 
applications). Such image files may be loaded into a 
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virtual environment and executed by the virtualisation 
software.  

The ability to manage an operating system and an 
application as a single entity has profound implications 
for the deployment process. Schumate [16] describes 
the deployment process in a virtual environment as 
consisting of 5 steps: creation, generalization, testing, 
distribution and update.  The first step involves 
creating a baseline image containing an operating 
system, data and application components. The baseline 
image is created on physical hardware and a copy of 
the software image (a file) is created using a tool such 
as Symantec Ghost. This copy is known as the master 
image. Next, the master image is customised according 
to the particular needs of the user. This mage may be 
tested prior to distribution. In the distribution step the 
image is sent to the hosts which will execute the VM 
images. This is typically achieved using network boot 
technologies such as Pre-boot Execution Environment 
(PXE) or by distributing either physical CDs or ISO 
image files. Whenever an application or operating 
system needs to be updated, new images may be 
created from the master image or any of its derivatives. 
An advantage of this approach is that these images may 
be tested prior to (re) distribution without concern for 
hardware or software dependencies since the image 
represents an entire target environment.  
 
2.6. Grid Services 

Using the Service Oriented Approach, services are 
provided by providers who typically own or manage a 
collection of machines organised in clusters. The Grid 
Services deployment problem is significantly more 
complex since end-users (typically scientists) require 
the ability to deploy across institutional boundaries and 
different protection domains [17]. The current Globus 
Toolkit [18] differentiates between applications and 
services. Applications, typically monolithic Fortran 
programs, may be installed using the Grid Services 
infrastructure but services may not.  
 
3. Deployment issues 

3.1. Binding again 

In the discussion in Section 1.1, inter-component 
binding was discussed. Components may be bound to 
other components at a variety of times:  

1. at compile/link time by development 
environments, 

2. at assembly creation time by a packager, 
3. at configuration time pre run-time, 
4. at run time. 

There are subtle implications in choosing each of 
these binding times. In the first case, in a traditional 
programming environment, no extant components exist 
at compile/link time and the bindings that are created 
are between pure code fragments. When a name is used 
in the program it may only denote a pure code 
fragment such as a class. This creates tight coupling 
between classes at compile/link time. When this 
paradigm is used, all the code and the data objects that 
are created by the code will co-exist in the same 
addressing environment be it an address space or 
container.  

In the Web-Services model, a URI may be used to 
generate a proxy for a, possibly stateful, component 
that exists at compile-time. This permits static code to 
bind to extant components early in the development 
lifecycle in a manner reminiscent of early Lisp 
environments [19], Smaltalk-80 [20] and 
Hyperprogramming [21]. Binding between code and 
extant entities is also supported in the Windows COM+ 
environment in which a GUID may be used to bind to 
a variety of entities.  

When inter component references are resolved at 
assembly time, some language mechanism must be 
used to abstract over the names used in the program 
and the concrete instances provided in the assembly. 
Recently, this has been achieved using the factory 
pattern [22] which supports exactly this requirement 
(and is used in OMG D & C). Again this involves the 
binding of pure code fragments rather than possibly 
stateful components.  

A rich variety of bindings may be created for 
references that are resolved at pre-run time, that is after 
components have been installed and instantiated. These 
include references to pure code and other locally 
installed components in the file system, references to 
other components installed in the same container or 
address space and remote references to extant code, 
data and components. A similar set of binding 
possibilities are also available at run time. 

At run-time, the context in which these bindings are 
resolved is determined by the container or run-time 
environment. Some environments permit only local 
components to be referenced whereas others permit 
arbitrary components to be addressed. The COM+ 
environment is perhaps the most general in that it 
contains mechanisms for both dynamic and static 
binding and permits components to be instantiated in 
local or remote address spaces.  
 
3.2. Containers and run-time environments 

The J2EE and .Net environments have 
demonstrated the ability to abstract over local 
environments (including hardware and operating 
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systems) through the use of containers and machine 
independent run-time environments. Both these 
technologies isolate components from complexity at 
the cost of technology buy-in. In both cases the 
developer has no choice but to develop application 
components in a particular language (or language 
family in the case of .Net ) and also write applications 
that obey the syntactic and semantic conventions 
imposed by the host environment be it a container or 
run-time environment. In this respect the introduction 
of containers and support environments do little to 
alleviate the hardware and operating system 
dependencies. Instead, the complexities of interacting 
with the hardware and the operating system have been 
traded with those of the container.  

By contrast, the virtualisation approach permits 
each application to run in an environment that is 
perfectly suited to it. This includes: the hardware, the 
operating system, the set of data files installed in the 
file system; and other components and applications that 
are locally required.  
 
3.3. Light Weight Containers and Inversion of 
Control 

In Section 3.1, the problems of technology buy-in 
with container technologies is described. The concept 
of lightweight containers has emerged as another 
approach to avoiding this buy-in. Lightweight 
containers such as Spring [23] and PicoContaner [24] 
have been developed to make it easier to deploy and 
configure J2EE applications. Both of these systems 
utilize a technique known as dependency injection (as 
does OMG D&C as described above) [25].  

Dependency injection or inversion of control (IOC) 
is a design pattern which is sometimes known as the 
“don’t call me, I’ll call you” pattern. The principle is 
that explicit dependencies on other components and the 
container are removed from the code. In many 
environments, components are responsible for finding 
the components which they require in order to run. 
This is sometimes known as the service locator 
pattern. Using IOC, instead of a component calling a 
run-time infrastructure to bind to other components, 
the infrastructure calls the component and supplies it 
with whatever resources are required for that 
component to execute. In Java Beans, Beans use the 
service locator pattern to call into the container to 
locate some component X they require. By contrast, in 
Spring, the environment would detect that the 
component required X and supply it. 

Clearly the IOC pattern is much better suited to the 
deployment lifecycle than the service locator pattern. 
In both Spring and PicoContaner, plain old Java 
objects (POJOs) may be written and wired in this 

manner by the run time environment. In Spring three 
types of IOC exist: constructor injection in which 
required components are supplied when a component is 
constructed; setter injection in which setter methods 
are provided to supply required components; and 
interface injection in which, for example, a Java 
interface is used to specify a contract between a 
component and a container or another component.  

Clear parallels exist between the IOC pattern and 
the deployment activities described above and the IOC 
pattern might seem to be the perfect solution to the 
problems of deployment and configuration. In both 
IOC and in deployment models such as the OMG D & 
C model, components have unresolved references to 
other components that are resolved by the 
infrastructure. In both models source code is freed 
from the complexities of having to bind to dependent 
components (with that responsibility devolved to other 
software). However, in lightweight frameworks such as 
Spring, the binding complexities that have been 
removed from the source code reappear in the form of 
a myriad of XML configuration files that specify inter-
component bindings. Another failing of lightweight 
container models is that they have not to date 
addressed inter address space or inter machine 
component bindings.  

 
3.4. IOC, Change Management, Reflection and 
Introspection 

The IOC paradigm is applicable throughout the 
software lifecycle. It may be used in a programming 
context to prevent coupling between components under 
development. It may be used in packaging where some 
components are bound together to form Assemblies. It 
is also applicable in the deployment phase and its 
utility can be seen in the OMG D & C specification 
where the node manager injects control along with 
appropriate ports of other components into the 
components for which it is responsible. The IOC 
paradigm may also be used at run-time to dynamically 
unbind and rebind components. This functionality is 
demonstrated in the Fractal Component Model [5].  

The Fractal Model is an extensible, programming 
language neutral component model which aims to 
“reduce design, deployment and maintenance costs of 
software”. The first main contribution of this model is 
a recursive data model in which components are 
composed of other components (hence the name 
Fractal). This data model is supported by a strongly-
typed XML based Architectural Description Language 
(ADL) called Fractal ADL. This is not unlike other 
component models such as the OMG model described 
above. The second contribution of the model is that it 
is reflective; that is, it supports the ability to introspect 
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components and intercept calls. The Fractal Model 
draws heavily on the Aspect Oriented Programming 
(AOP) principle of separation of concerns [26]. Fractal 
components are each made up of a number of sub-
components. The Fractal development methodology 
entails identifying services each of which is 
implemented by a component. The second step 
requires the dependencies between components and 
component hierarchies to be identified.  

Each Fractal component contains a finite collection 
of subcomponents comprising its content together with 
a controller responsible for the composition of the 
components within it and the components’ behaviour. 
In the Fractal Model, and arguably in all component 
models, components contain two kinds of references: 
internal references to sub-components and external 
references to other components. In the Fractal Model 
these are termed internal and external references. In 
order to reconfigure components it must be possible to 
access and update both of these references types. One 
way in which this may be achieved is using 
introspection and reflection. Using, for example, the 
Java reflection API, components may be decomposed 
and introspected and their (recursive) structure 
discovered. Alternatively, as in the Fractal Model, 
distinguished interfaces may be provided by 
components for the purpose of component 
introspection. The advantage of providing 
distinguished interfaces is that semantic consistency 
may be enforced in the face of change. Semantic 
checks include ensuring that components are 
consistently wired; that components are stopped and 
restarted before changes are made precluding internal 
inconsistencies; and that internal references are not 
wired to external components. Of particular importance 
is to ensure that bindings are consistently updated. 
Consider a sub-component sc1 of component C which 
is referenced by sub-components sc2 and sc3. If sc1 is 
replaced with a new component sc4, to maintain 
semantic consistency both sc2 and sc3 must both refer 
to the new component sc4. In order to maintain such 
consistency components may offer a 
BindingController interface which permits changes to 
be made to bindings; a ContentController interface 
which permit sub-components to be added and 
removed from a component; and a LifecycleController 
which permits components to be started and stopped.  
 
3.5. Maintaining metadata throughout the 
lifecycle 

In the software engineering community many 
believe that it is critically important to retain design 
decisions throughout the software lifecycle. Such 
metadata may include descriptions of the components 

(their interfaces etc.), the data, the source code 
(including languages used, revisions made, version 
history etc.), the workflows and the relationships 
between all of these. A new field of Application 
Lifecycle Management (ALM) has developed to 
address the management of software from acquisition 
through deployment and evolution to retirement. This 
clearly overlaps with the scope of deployment as 
described above. The overarching idea behind ALM is 
that a software architecture should exist which 
documents all the inputs to the software including its 
functional and non-functional requirements. The OMG 
have advocated the UML based Model Driven 
Architecture (MDA) approach [27] to address these 
needs. Using the MDA, software architectures are 
modelled as platform independent UML designs; these 
models may be progressively transformed and refined 
into an architectural framework. The underlying 
principle behind MDA is to have specialised modelling 
techniques for particular domains rather than having a 
single monolithic modelling framework. Different 
aspects may be modelled at different levels of 
abstraction using domain specific languages in a fractal 
approach to modelling. To unify these different 
languages a meta-model architecture is defined known 
as Meta Object Facility (MOF) which supports the 
interchange of modelling artefacts. MDA and the more 
generic Model Driven Development approach are both 
examples of a wider field of Model Driven 
Engineering (MDE). In MDE models (such as those 
defined in UML) are the primary software artefacts 
that are used in design, through implementation to 
deployment.  

To store such metadata requires metadata 
repositories which in turn require schemata for 
describing metadata and tools for extracting metadata 
and keeping it in correspondence with the deployed 
system. Tools are beginning to appear that support this 
approach such as Borland Together 2006 and Eclipse 
MDDi. These tools permit models and code to be 
developed in which the code and the models are kept in 
step with each other. Although these tools are still 
mostly focussed on component development rather 
than the entire lifecycle; there is a clear trend of such 
tools reaching out from the development arena into the 
deployment and run-time environments.  
 
4. Trends, Issues and Challenges 

So far, we have examined the general issues 
surrounding software deployment and looked at the 
state of the art in deployment systems. We have also 
looked at some of the current issues relating to 
deployment and how they impact on the deployment 
process. In this section we examine some of barriers to 
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development in the field of deployment and how they 
might be tackled. The issues examined in this section 
are:  

• Grain, of components containers and 
environments, 

• Distributed deployment, 
• Middleware, 
• Adaptation and autonomics, and 
• Architectural Specification. 

 
4.1. Grain, of components containers and 
environments 

There is currently little agreement over an 
appropriate granularity of either software components 
or the environment in which they are deployed. The 
grain of components varies enormously. In some 
systems (Java Beans for example) components are 
relatively fine grained programming language objects 
(or small collections of them). In other systems, 
notably Linux, the components are large grain binary 
executable file system objects. These two examples 
also highlight other differences – in one case the 
objects are programming language dependent typed 
objects, in the other they are language independent, un-
typed binary objects. Grain is also an issue in terms of 
the dependencies between components. For example, 
.Net components check for dependencies in the 
Windows registry; such dependencies can potentially 
be at a very fine granularity - even down to a single 
byte. By contrast, in the SOA paradigm the grain of 
components tends to be relatively large (if it were not it 
would degenerate into a distributed object model). 
Similarly there is little agreement about the appropriate 
grain of packaged assemblies of components. Windows 
installers for example tend to be relatively monolithic 
and give the user little or no scope for deciding which 
of the packaged components to install, repair or 
uninstall.  
The grain of the environment into which components 
are installed is also extremely variable. Installation into 
a narrow domain is supported in the Java Beans 
environment where only those services supported by a 
particular server instance are affected. Some 
components are installed into a machine wide domain. 
A good example of this is installation in Linux using 
RPM. An interesting hybrid described above is where 
some virtualisation technology is used. For example, 
using VMWare, the installation of components into a 
VM image is equivalent to the machine wide 
installation that might be performed using RPM or 
Windows installers. However, since the components 
are being installed into a VM image, they may have a 
perfect environment constructed for them. The VM 

image creation process becomes akin to the creation of 
an assembly as described above. The difference 
between these assemblies and others is that the VM 
image is a totally self- contained and (virtually) 
machine independent executable image.  
Once a VM image has been created, it is like an 
assembly; it may be replicated and concurrently 
executed in multiple sites. The images may also be 
updated in situ or a new master image may be updated 
and disseminated. A major advantage of this approach 
is that an assembly may be both black box and white 
box tested at the time it is packaged and the customer 
will have a high degree of confidence that it will 
operate correctly once it is deployed, subject to 
external dependencies. This brings us back to the 
subject of how the contract between the assembly and 
the external world is expressed. 

The VM approach offers hope of simplifying the 
deployment cycle following assembly (VM image 
creation). There are however costs and complexities 
with this approach. The first is the issue of grain and 
co-location. The virtualisation approach is appealing 
since it permits applications to be totally isolated from 
each other. Each application can run in its own 
hardware protected sandboxed environment which is 
perfectly suited to it. However, there may be 
performance implications to running a collection of 
VMs as apposed to a collection of traditional processes 
under an operating system.  

Using the VM approach, each application is 
installed within a potentially perfect self-contained 
environment. However, such applications will still 
require configuration, for example to supply them with 
the addresses of external database servers, Web-
Services that they might utilise, local registries etc. 
Another way of looking at this activity is that it is 
forming bindings between the application(s) running 
within the VM and applications and services running 
externally. This requires some form of injection of 
control. It also requires meta-information to be 
supplied to the configuration management system to 
enable it to perform the configuration – for example, is 
the information passed in using VM invocation 
parameters (akin to constructor injection) or via Web-
Services, RMI etc. This takes us back to the issues of 
modelling and meta-modelling.  
 
4.2. Distributed Deployment 

The issue of distributed deployment has been 
discussed briefly in the Grid section above. Distributed 
deployment brings with it a host of technical issues 
that must be overcome. The primary barrier to 
distributed deployment is the lack of uniform security 
and trust models. As discussed by Brebner [17], 

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00  © 2007



attempts to deploy Grid Services in a UK wide 
experiment were fraught with difficulties with respect 
to certificate management. The security mechanisms 
must be sufficiently powerful to prevent malicious 
parties from deploying and executing harmful agents, 
and prevent deployed components from interfering 
with each other, either accidentally or maliciously. 
This last point, that of logical isolation, is a particular 
pragmatic difficulty since there is a tension between 
sharing resources and isolation to ensure correct 
behaviour of both the deployed components and the 
underlying infrastructure.  

In [28] we describe an architecture, called Cingal, 
which permitted code to be safely deployed on third-
party machines. The system could deploy self-
contained assemblies which contained closures of code 
and data and were called bundles. The bundles were 
signed, permitting their authenticity to be established 
by a small run-time kernel on each node, prior to being 
deployed and executed on each node to which they 
were sent. Post deployment, a wiring bundle was sent 
to each node to perform node-specific configuration 
and to establish inter-component inter-machine 
bindings. In Cingal the sandboxes were implemented 
as Java Virtual machines with the attendant undesirable 
container buy-in requirements described above. Using 
a virtual machine approach and using technologies 
such as Xen [29] and VMWare makes it possible to 
deploy code on a public infrastructure and still 
maintain application isolation. This approach 
motivated the Xenoserver project [30] and led to the 
construction of Xen. This approach is also now being 
followed commercially, for example, in the Tivoli 
Software Installation Service [31] and in the Amazon 
Web Services project [32].  
Being able to deploy components and applications on 
distributed third party servers necessitates the ability to 
create and maintain inter-component bindings and 
monitor the running components. As described above, 
this task may be performed using light-weight 
frameworks and the inversion of control pattern. 
Currently, no distributed inversion of control 
frameworks exist; systems such as Pico-container and 
Spring focus on IOC in a single address space 
environment. The next logical step in this development 
is the development of distributed IOC frameworks. 

What would a distributed IOC framework look like? 
Much of the functionality would be like the IOC 
environments that already exist. Components would 
remain the same – methods would be provided to 
manage inter-component bindings. However the fractal 
pattern would need extending to permit such bindings 
to be made between local components, between local 
address spaces (containers), and between machines. 
Such a model can be seen as an extension of the Fractal 

Model where address spaces and the nodes hosting 
them become first class entities in the model. This 
requires the ability to expose bindings or interfaces to 
update at each of the three levels – intra-container, 
inter-container and inter-node. One way of achieving 
this is to expose binding manipulation interfaces in 
components and applications. The lack of ability to 
expose applications and components was one of the 
major criticisms by Brebner [17] of the Grid Services 
Model. 

The ability to expose binding manipulation 
interfaces requires support at a number of levels. 
Middleware support is needed to permit bindings to be 
exposed and manipulated. Distributed IOC frameworks 
are required to permit distributed component based 
applications to be assembled and maintained. Lastly, 
architectural support (including Architectural 
Description Languages and meta-models) is required to 
describe the distributed architectural components.  
 
4.3. Middleware 

By definition, using the Inversion of Control 
pattern, control needs to be injected into components 
from the outside. If the Fractal/IOC model is extended 
to include address spaces and machines, mechanisms 
are required to support such injection and 
consequently, middleware support is required. Earlier 
it was argued that forcing applications and components 
to comply with the conventions of particular container 
architectures was a bad thing since it created an 
accidental problem of technology buy-in. The same 
technology traps should be avoided with respect to 
inversion of control. There is no point in having a 
distributed IOC model which locks users into 
particular programming languages or Middleware 
technologies.  

In the RAFDA project [33] we have built 
middleware which permits arbitrary application 
components to be exposed as Web-Services. Using this 
technology, an arbitrary application component can be 
dynamically exposed irrespective of its type. This is in 
contrast to most other middleware technologies which 
require decisions early in the design cycle about which 
application components may participate in inter-
address space activities. Using flexible middleware 
such as RAFDA, interfaces that permit bindings to be 
manipulated may be trivially added to applications and 
components without changing any existing source or 
executable code.  

In addition to binding support, other middleware 
support is needed to make a distributed IOC 
framework viable. Such support includes event 
architectures to provide distributed asynchronous event 
busses, distributed registries and name services for 
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locating components, and the ability to instantiate 
components on remote nodes.  

Event distribution architectures are required for two 
independent but equally important purposes. They are 
needed at application level to permit application 
components to communicate with each other. 
However, they are also needed by the deployment 
infrastructure to monitor the health and efficacy of 
application components.  This leads naturally to the 
subject of adaptation and autonomics.  
 
4.4. Adaptation and Autonomics 

Installed software must evolve to address changes 
in both the environment in which it operates and the 
requirements placed upon it. Kephart [34] has 
proposed an autonomic lifecycle comprising a monitor, 
analyse, plan, and execute loop in which entities are 
monitored by collecting events which are analysed and 
corrective action is taken if required. To make such a 
process viable, a knowledge base is consulted by the 
components implementing the autonomic monitoring 
architecture. In the context of a distributed application, 
the corrective action and its causes are potentially 
extremely complex. The problems that might occur 
include applications and components not being able to 
satisfy their quality of service objectives, loss of 
network connectivity, over-demand for network 
bandwidth, failure of components or applications, 
failure of computational resources and unbalanced 
resource utilisation. The corrective actions for such 
problems may include the introduction of new servers, 
the deployment of new applications or components, 
changing the network topology and moving 
components between servers.  

To enable such autonomic management requires a 
number of technical obstacles to be overcome 
including: the architectural specification of 
applications (described below), instrumenting 
applications or execution environments to record 
semantically meaningful events, the distribution of 
application events to where they are analysed, deciding 
what actions to take in response to those events and 
infrastructure to manage the individual architectural 
elements. 

The problem of instrumenting applications to record 
semantically meaningful events is akin to the problem 
described above with respect to the establishment and 
maintenance of inter-component, inter-machine 
bindings. Pieces of reporting functionality must either 
be installed in components a priori or be dynamically 
added to them. Forcing applications and components to 
adopt particular frameworks is unlikely to be 
successful in a heterogeneous business environment. 
Mechanisms that allow monitoring probes to be added 

to software after it has been written and potentially 
dynamically on demand will be needed.  

The encoding of the information necessary for the 
autonomic management of applications places yet 
more burden on architectural specification languages. 
This additional information includes that necessary to 
rebind application components, to express which 
components may be shared and those that may not, the 
domains in which components and applications may be 
executed and quality of service information. It is likely 
that such concerns will need to be divided into separate 
architectural meta-aspects as proposed by the OMG in 
order to keep complexity under control.  
If we assume that a suitable architectural description of 
an application exists, in order for autonomics to be 
applied to the distributed deployment problem, two 
separate but closely related problems must be 
addressed: how to initially deploy an application, and 
how to manage its its subsequent evolution in the face 
of host failures and other perturbations. Both these 
problems may be addressed by specifying a high-level 
configuration goal which is used to drive the 
autonomic process. In order to describe how an 
application is intended to be structured, we have 
proposed the use of domain-specific constraint-based 
languages [35]. Using a constraint-language, it is 
possible to describe configuration goals in terms of 
resources including software components and physical 
hosts, relationships between hosts and components, 
and constraints over these. From such configuration 
goals, plans may be developed for the deployment of 
components using the available physical resources. 
These goals could also be used to configure monitoring 
software to assess whether the executing application 
continues to obey the constraints specified in the 
description as described above. 

Such constraint specifications could also be used to 
evolve the application in response to constraint 
violations arising from changes in the environment. 
There are several levels at which a deployed 
application may be evolved. The simplest involves the 
evolution of the configuration in order to maintain a 
previously specified goal. Thus the configuration 
evolves whilst the high-level configuration goal 
remains the same. We term this autonomic evolution, 
and consider it to be fundamental to the autonomic 
management of distributed applications.  A second 
level of evolution is needed when the high-level goal 
itself changes, due to a change in application 
requirements. Both kinds of evolution may be handled 
in the same way, treating the first as a special case of 
the second in which the goal remains fixed. In both 
cases an ongoing autonomic cycle could be employed 
to solve the current constraint problem, deploy the 
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resulting configuration, and monitor the deployment to 
determine when to repeat the sequence.  

The development of domain specific constraint-
based languages to express the constraints over 
architectural specifications remains a difficult and 
complex task. The implementation of constraint-
solvers to solve deployment problems also remains a 
daunting task requiring research from both software 
engineers and the constraint satisfaction/optimization 
communities.  
 
4.5. Architectural Specification 

Many of the current architectural specification 
languages do not currently cope with or describe 
dynamic change. A specification expressed in an ADL 
describes a future intended state of a system. Clearly to 
be of more general applicability, it must be possible for 
architects to express changes to software systems using 
ADLs. This is being addressed by the dynamic 
software architecture community. The ability to 
change a software specification written in an ADL 
introduces many problems which are closely related to 
the area of deployment. Some of these include which 
operations are permissible: for example, may 
components be created and destroyed, can the 
architectural topology be changed, and may nested  
components be unnested?; and can a component's 
internal state be preserved and transferred to a new 
instance and if so how?  

Medvidovic [36] suggests it should be possible to 
accommodate new components, upgrade components, 
reconfigure the architecture and modify the mappings 
of components to machines. He argues that ADLs do 
not currently have the right set of features to 
accommodate such dynamic changes and that (ADL) 
language mechanisms are required to carry out such 
changes. Medvidovic calls such a language an 
Architecture Construction Notation (ACN).  

The operational semantics of such ACNs are akin to 
the set of operations that are required to perform 
injection of control (bind, unbind, instantiate etc.). 
Clearly, an ACN may be viewed as a meta-program 
which operates on the ADL architectural 
representations. This is obviously related to the meta-
programming ideas in the OMG MOF and a rich area 
for future architectural research.  

If we assume that all other problems related to 
autonomic management have been solved (and some 
would argue that they have), the problem of 
coordination remains. Deployment, redeployment, 
wiring and configuration of distributed components 
and applications often requires components to be 
passivated, for their state to be stored, and then 
restored following reconfiguration. Furthermore such 

actions need to be coordinated across multiple sites and 
with transactional support to prevent inconsistencies 
from arising. Update actions may sometimes only be 
performed at certain times, for example at night when 
demand is low; this introduces further temporal 
complexities to the update task. Such activities will not 
only require languages to express these operations (as 
discussed above), those languages will need to be 
capable of expressing the complex temporal and 
transactional state space that occurs during 
reconfiguration.  

Management processes that manage the deployment 
and evolution of systems are subject to the same 
failures as the systems they manage. Consequently, 
some fault tolerance must be built into the control 
system, for example, the provision of a failure resistant 
collection of managers. This introduces a plethora of 
problems including the engineering of the fault 
tolerance of the management infrastructure, reliable 
distribution mechanisms for events from applications 
to the control system and determining when changes 
that have been instructed have been completed 
(distributed termination). Each of these areas is a major 
research challenge in its own right.  
 
5. Future Directions 

Much of the current focus in both industry and 
academia is on the Internet domain. However, two 
areas have not been discussed, but are of increasing 
interest in both communities are the mobile domain 
and the sensor-net domains. 

Whilst the mobile domain is likely to be dominated 
by IP based protocols, the deployment problems are 
complex due to the heterogeneity and number of the 
devices, intermittent network connections,  the lack of 
centralised control and that the mobile devices tend to 
be owned by individuals. The mobile arena is a rich 
ground for future research in this domain. 

The field of wireless sensor-nets is rapidly growing 
Deployment in the field of sensor-nets is currently 
extremely simple – sensor-net nodes are directly 
connected desktop machines and monolithic programs 
(generally including the operating system) are loaded 
into them. As sensor-nets are more widely deployed 
and used, there will be an increasing need to update the 
software on nodes in situ. This will require individual 
components to be deployed over the wireless network. 
The deployment problems raised by this prospect are 
similar to those in the mobile domain but exacerbated 
by low bandwidth communications and the need to 
conserve energy. 
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6. Conclusions 

This paper attempts to define what is meant by 
software deployment and clarify some of the 
terminology used in this field. State-of-the-art 
deployment systems from various fields have been 
examined and shown to operate on a variety of 
different grained objects and make different 
assumptions about the environment. The different 
systems have different approaches to the typing and 
type checking of objects and to the way in which 
components are named and the scope of names. 

The lack of uniform agreement on what constitutes 
a component, an assembly or a package and what 
meta-data they might have associated with them is a 
hindrance to development in this field, as is the 
technology buy-in associated with different languages, 
operating systems, containers and methodologies.  

Deployment is an inherently complex area; there is 
a danger of introducing accidental complexity through 
the introduction of overly elaborate and complex 
architectures and meta-architectures and the languages, 
tools and mappings that they introduce. 

The use of virtualisation offers hope of a silver 
bullet to avoid much of this complexity permitting the 
entire environment to encapsulated within a virtual 
image and deployed easily. The use of the various 
Web-Services technologies presents for the first time a 
machine and language independent standard for 
describing typed service interfaces. It also presents a 
standard uniform naming scheme which removes 
complexity and ambiguity from the deployment 
lifecycle. Finally, distributed inversion of control 
might permit virtualised services to be interconnected 
using Web-Services standards. 
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