RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy

Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J.
McCarthy

School of Computer Science
University of St Andrews
St Andrews

{scott,al,stuart,graham,ajm}@dcs.st-and.ac.uk

Abstract. Middleware technologies, often limit the way in which object classes
may be used in distributed applications due to the fixed distribution policies
imposed by the Middleware system. These policies permeate the applications
developed using them and force an unnatural encoding of application level
semantics. For example, the application programmer has no direct control over
inter-address-space parameter passing semantics since it is fixed by the
application’s distribution topology which is dictated early in the design cycle by
the Middleware. This creates applications that are brittle with respect to
changes in the way in which the applications are distributed. This paper
explores technology permitting arbitrary objects in an application to be
dynamically exposed for remote access. Using this, the application can be
written without concern for its distribution with object placement and
distribution boundaries decided late in the design cycle and even dynamically.
Inter-address-space parameter passing semantics may also be decided
independently of object implementation and at varying times in the design
cycle, again, possibly as late as run-time. Furthermore, transmission policy may
be defined on a per-class, per-method or per-parameter basis maximizing
plasticity. This flexibility is of utility in the development of new distributed
applications and the creation of management and monitoring infrastructures for
existing applications.

Introduction

Existing middleware systems including CORBA [1], Java RMI [2], Microsoft DCOM
[3] and Microsoft .NET Remoting [4] suffer from several limitations that restrict the
kinds of application that can be created using them and hamper their flexibility with
respect to distribution and adaptability. In this paper we focus on four of these
limitations, namely,
1. They force decisions to be made early in the design process about which
classes may participate in inter-address-space communication.
2. They are brittle with respect to changes in the way in which the applications
are distributed.

2 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

3. It is difficult to understand and maintain distributed applications since the
use of middleware systems may force an unnatural encoding of application
level semantics.

4. 1t is difficult to control the policy used to determine how objects are
transmitted among the available address-spaces in a distributed application.

Early Design Decisions - The industry standard middleware systems all require
the programmer to decide at application design time which classes will support
remote access and to follow similar steps in order to create the remotely accessible
classes. The programmer must decide the interfaces between distribution boundaries
statically then determine which classes will implement these interfaces and thus be
remotely accessible. These classes, known as remote classes, are hard-coded at the
source level to support remote accessibility and only instances of these classes can be
accessed from another address-space. Therefore, the programmer must know how the
application objects will be distributed at run-time before creating any classes.

These middleware systems require the manual creation of ancillary code such as
skeletons, proxies and stub implementation classes, which must extend special
classes, implement special interfaces or handle distribution related error conditions,
based on programmer-defined interfaces. All require the creation of server
applications that configure the middleware infrastructure then instantiate and register
objects for remote access.

Brittleness with Respect to Change - The brittleness of distributed applications
created using existing middleware systems is due to the fact that the distribution of
the application must be known early in the design process. The possible partitions of a
distributed application are dependent on which classes within the application are
remotely accessible and so the classes of object that can be separated from their
reference holders is restricted. The problem of brittleness and inflexibility to change is
more than a question of support for remote accessibility within application classes.

Distorted Application Level Semantics - Industry standard middleware systems
decide the parameter-passing semantics applied during remote method call statically
based on the remote accessibility of the application classes. In general, remotely
accessible objects are passed by-reference and other objects are passed-by-value,
though CORBA exhibits the same limitation in a slightly different way; only CORBA
components may be transmitted across the network and each class is explicitly
defined as either pass by-reference or pass by-value.

The parameter-passing semantics is tightly bound to the distribution of the
application so changes to the distribution of an application have the side effect that
application semantics may be altered. All objects of the same class must be
transmitted in the same way, whether this is appropriate or not, and the programmer
does not have the freedom to choose different parameter-passing semantics for classes
on a per-application or per-call basis.

Since industry standard middleware systems force remotely accessible classes to
extend special classes, implement special interfaces or handle network related errors
explicitly, it is not possible to make application classes remotely accessible unless
their super-classes also meet the necessary requirements. At best, this forces an
unnatural or inappropriate encoding of the application semantics because classes are
forced to be remotely accessible for the benefit of their sub-classes and, at worst,
application classes that extend library classes cannot be remotely accessible at all.

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 3

This paper introduces RAFDA [5] a Java Middleware that permits arbitrary
application objects to be dynamically exposed for remote access. Object instances are
exposed as Web Services through which remote method invocations may be made.
RAFDA has four notable features that differentiate it from other Middleware
technologies.

1. The programmer does not need to decide statically which component classes
support remote access. Any object instance from any application, including
compiled classes and library classes, can be deployed as a Web Service
without the need to access or alter the application’s source code.

2. The system integrates the notions of Web Services, Grid Services and
Distributed Object Models by providing a remote reference scheme,
synergistic with standard Web Services infrastructure extending the pass by-
value semantics provided by Web Services with pass by-reference semantics.
Specific object instances rather object classes are deployed as Web Services
further integrating the Web Service and Distributed Object Models. This
contrasts with systems such as Apache Axis [6] in which object classes are
deployed as Web Services.

3. Parameter passing mechanisms are flexible and may be dynamically
controlled through policies. A deployed component can be called using
either pass by-reference or pass by-value semantics on a per-call basis.

4. The system automatically deploys referenced objects on demand. Thus an
object b that is returned by method m of deployed object a is automatically
deployed before method m returns.

The process of implementing the application logic is thus separated from the
process of distributing the application. Since any object can be made remotely
accessible, changes to distribution boundaries do not require re-engineering of the
application, making it easier to change the application’s distribution topology. This
separation of concerns simplifies the software engineering process to the
programmer’s advantage both when creating a distributed application and introducing
distribution into an existing application. This simplifies the creation of tools such as
monitoring and management components that need to access and modify object state
from outwith those objects’ local address space. Using traditional middleware
systems, it is difficult to attach such tools to existing objects without access to source
code and extensive engineering effort.

This functionality is provided by the RAFDA Run-Time (RRT), a Middleware
system for Java development that tackles the problems inherent in existing
middleware systems. The RRT simplifies the kinds of tasks that are common to the
creation of distributed application such as dynamically exposing objects for remote
access, obtaining remote references to remotely accessible objects and remote method
invocation. The RRT can ensure the preservation of local application semantics in a
distributed application and can automate object placement based on programmer-
defined policies. Although the RRT is written in Java and is designed to support Java,
it does not however employ any language-specific features unique to Java and so the
techniques described here are applicable in other languages.

4 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

Exposing Arbitrary Objects for Remote Access

The RRT permits arbitrary application objects to be exposed for remote access.
Specific application objects rather than application classes are exposed via Web
Services. In order to make an object remotely accessible it is first deployed; that is
registered with the RRT, which exposes the object to remote access. Deployment
creates a Web Service running within the RRT that uses the deployed object as the
underlying service object on which incoming Web Service requests are performed. In
effect, the RRT maps Web Service requests to method calls on object instances and
performs appropriate encoding of the results. Deployed objects may be referenced by
other local objects and neither the reference holders nor the deployed objects are
aware of the deployment.

public static void deploy (Object objectForDeployment,
Class deploymentInterface,
String serviceName) throws Exception;

Figure 1: The deploy() method.

The signature of the deploy() method is shown in Figure 1. This takes three
parameters which specify the object to be deployed, the interface with which the
object is to be deployed, and a logical name for accessing the object. A number of
issues arise from this simple method. Firstly, the objectForDeployment need not
implement any special interfaces or extend any particular classes, maximizing
flexibility. Secondly, the objectForDeployment need not implement the interface
specified in the deploymentinterface parameter although it must be structurally
compliant with that interface. This again maximizes flexibility and permits classes to
be remotely exposed even if they were not envisioned to be so at design time. The
deploymentinterface parameter can be a class or an interface but in either case the
method signatures are extracted to form the Web Service interface for the deployed
object. The deploymentinterface parameter is optional and if omitted, the object is
deployed with an interface matching its concrete type. The deploymentinterface is a
mechanism to allow control over which methods may be called remotely on an object
and is supplied on a per-object, not a per-class, basis. Any method can be made
remotely accessible, irrespective of its local protection modifier. The
deploymentinterface acts as a remote protection mechanism that is independent of the
local protection mechanism of the implementation language; in Java, the public,
protected, private and default modifiers. Only the methods listed in the deployment
interface are remotely accessible and, by default, the RRT will deploy only the public
methods. The servicename parameter, which is also optional, permits the deployed
object to be addressed using a logical name which must, of course, be unique within
the deploying address space. Deployment can fail, resulting in an exception, if the
deployment interface contains methods that do not exist in the class of the object
being deployment or if the specified service name is already in use.

The deploy method may be called multiple times with the same
objectForDeployment parameter with different deploymentinterface and serviceName
parameters. This allows the programmer to expose the object with different logical
names and potentially different interfaces.

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 5

An object of any class can be deployed including precompiled classes and those
with native members. There is one caveat: the Web Services model provides no
facility to allow field access, only method call. Thus the fields of a deployed object
cannot be directly accessed and if the object does not provide get() and set() accessor
methods then the fields cannot be accessed at all. This is a problem for all Java
Middleware systems since field access cannot be intercepted. To address this
problem, the RRT generates named accessor methods automatically at deployment
time and adds them to the Web Service interface for the deployed object.

To illustrate the use of deploy, we use a small Peer-to-Peer (P2P) application as an
example. A programmer has implemented a class called P2PNode which represents a
node in a P2P routing network. This class is shown in Figure 2. This class has not be
written with distribution in mind and does not implement any special interface or
extend any base classes.

public class P2PNode ({
private final Key key;
public P2PNode (Key key) {..}
public void addPeer (P2PNode peer) {...}
public void route (Key key, Message msg) {..}
public String getLog() {..}
public void stop() {..}
public void start() {..}

Figure 2: The P2P Node Implementation

Figure 3 shows how another programmer could deploy an instance of this class as part
of some P2P application. The programmer wishes to expose the functionality of the
node using three different interfaces — a management interface for controlling the
node remotely, a monitoring interface and an interface exposing the P2P functionality.
These interfaces are named IManage , IMonitor and IP2PNode respectively. Each of
these interfaces is associated with the names Manage, Monitor and P2P respectively.
It is assumed that these are well known names that are used by client programmers to
access the services.

public interface IManage ({
public void stop() ;
public void start () ;

public interface IMonitor (
public String getLog() ;

public interface IP2PNode
public void addPeer (IP2PNode peer) ;
public void route (Key key, Message msg) ;
public Key getKey () ;

6 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

public class DeployP2PApp {
public static void main(Stringl[] args) {
P2PNode p2pNode = P2PAppFactory.makeNode ()
RAFDARunTime.deploy(p2pNode, IManage.class,
"Manage") ;
RAFDARunTime.deploy (p2pNode,
IMonitor.class, "Monitor");

RAFDARunTime.deploy(p2pNode,
IP2PNode.class, "P2P");

Figure 3: Deploying an instance of P2P Node
Browsing exposed objects

Deployed objects may be accessed either using their service name or a Globally
Unique Identifier (GUID) allocated to the service at deployment time. Both of these
may be discovered dynamically by clients. Typically, an application will deploy a
small collection of objects with well known names thus often avoiding the need for
dynamic GUID discovery. Deployed objects may addressed using a URL of the
following form:
http://<machineName>:<port>/<NAME or GUID>

The RRT contains a web server and provides a web interface that can be accessed
using a conventional web browser to obtain information about deployed objects. Each
deployed service is listed, showing the deployment interface, service name, a string
representation of the service object and a link to the WSDL.

I} R ofdaRunTime - Microsoft Inkermet Explorer =10 xj
Be Edt Yew Fportes ok b &
Ackress | st afdla.org: 001 8=

Welcome to the RAFDA RunTime
on host.rafda.org: 5001

Deployed Services

Deployment |0
Lnterface UEL

[Ty —

Deployed Chpect wrd
PEPNode@l 1691 [wed
TMamage PEPNodei@l 151 jwed
MMostor PEPNodei@l 1651 [wed

Mondtar PiPModei@] 1bhb] wed

P2PHode PIPNode@l 1650 1 [wed

= PaPMode@1 10081 wed
=l

Figure 4. Browsing an RRT
Since a deployed object appears to remote clients as if it were a normal Web
Service, the RRT can be used as a Web Services container. Like conventional Web
Services containers, a list of available services and the WSDL for a particular service
can be obtained from the RRT. Since WSDL is used to describe the methods provided

[P2FHode

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 7

by each service in a standardized manner, deployed objects are accessible using any
Web Services technology, not just RRT-based clients. Figure 4 shows an RRT being
browsed after the deployment code shown in Figure 3 has been executed.

Client-side Distributed Object Programming using the RRT

The RRT may be used by client-side programmers to access remote objects. The RRT
provides a method called getObjectByName() that permits a handle to be obtained to a
deployed object. As will show later, the handle returned may be a reference to a proxy
for a remote object, a local copy of the object or a hybrid of the two (a smart proxy).
The getObjectByName() method takes three arguments as shown in Figure 5. These
identify the host name of the machine on which the remote RRT runs, the port to
which it is connected and the name with which the requisite object was deployed. The
name can be either the programmer-defined service name or the automatically
generated object GUID.
public static Object getObjectByName(String host,
int port, String name) throws Exception;
Figure 5: The getObjectByName() Method

The object returned by getObjectByName() is same type as the deployment interface,
to which it may be cast. Figure 6 shows the client-side code necessary to use the
P2PNode deployed in Figure 3. The object returned by getObjectByName() is cast to
type IP2PNode which was the interface used to specify its deployed type.

public class P2PClient ({
private String node = “host.RAFDA.org”;
private int port = 5001;

public void deliver (Key dest, Message msg)
throws Exception {
IP2PNode node = (IP2PNode)
RAFDARuUnTime.getObjectByName (node, port, "P2P");
node.route(dest, msg);

Figure 6: Client side code accessing a remote P2PNode

Failure

Distributing an application introduces new failure modes. The RRT treats network
failure differently from application failure. The RRT propagates application
exceptions across the network and throws them locally for the client application to
catch and handle. By contrast, network failures may either be hidden from or handled
by the application programmer. The programmer indicates if network failures are to
be handled buy the application by adding a throws java.rmi.RemoteException clause
to the appropriate interface methods. If such a clause is present, the RRT will
propagate network failure exceptions to the client, otherwise they are handled by the

8 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

RRT. By default the RRT will continue to execute if possible, log the exception and
returning null or zero values as results to the remote method calls. However it can be
configured to exhibit fast-fail behaviour in the event of exceptions.

Controlling Object Transmission Policy

As described in the introduction, using traditional middleware, the distribution
topology of an application determines the object transmission semantics that are
employed during remote method calls. For example, in Java RMI [2], only classes
that implement the java.rmi.Remote interface and meet certain other criteria may be
deployed for remote access. Such objects are always passed by-reference if they are
accessed across an address space boundary. All other objects that traverse address-
space boundaries must be instances of classes that implement the java.io.Serializable
interface and these objects are always passed by-value. This problem can also be
observed in Microsoft .NET Remoting [4], CORBA [1] and Web Services [7].

Within a single application, instances of some class may be required to be
transmitted by-value or by-reference depending on the circumstances. In most
existing middleware systems this would require that different classes be created.
Hybridisation is sometimes desirable whereby some object state is cached at a client
whilst other state is remotely accessed. Using the RRT’s transmission policy
framework, the application programmer can employ the most advantageous object
transmission policy for the circumstances. In addition to providing the programmer
with the flexibility to control the application semantics, the dynamic specification of
policy independently of class implementation allows the roles of library class
programmer and application programmer to be separated. The library class
programmer is concerned only with the functional requirements. Thus, library classes
make fewer assumptions about the environment in which they are to be deployed and
the application programmer has the freedom to apply any parameter-passing policy to
instances of any class, increasing the likelihood that any given class will be reusable
in another context.

Defining Transmission Policy

By default the RRT passes objects by-reference when interacting with other RRTs
and by-value when interacting with standard Web Service Clients. However, the
transmission policy framework described here provides a mechanism to allow the
programmer to dynamically specify how objects should be transmitted during inter-
RRT remote method calls. This is achieved using the local RRT’s
TransmissionPolicyManager which supports five types of policy rule as shown in
Figure 7 and contains query methods (not shown) which permit the policies that are
currently in place to be inspected. Each of type of policy rule has an associated set
and get (again not shown) method.

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 9

public class TransmissionPolicyManager {

public static void setMethodPolicy (String className,

String methodName, int policy, int depth,
boolean isOverrideable) .

public static void setReturnValuePolicy (

String className, String methodName, int policy,
boolean isOverrideable)

public static void setParamPolicy (String className,

String methodName, int paramNumber, int policy,
int depth, boolean isOverrideable) {

public static void setClassPolicy(String className,

int policy, boolean isOverrideable) {

public static void setFieldToBeCached (

String className, String fieldName) { ... }

Figure 7: The TransmissionPolicyManager

The five types of rule are as follows:

Method policy rules are associated with methods as a whole and are set using
the setMethodPolicy() method. This method specifies how method
arguments should be transmitted. For example, a method policy rule might
specify that during a call to a particular method, the arguments should all be
passed by-reference. The parameters to setMethodPolicy include the method
name to which the policy applies, the policy to be applied (using static
values from PolicyType shown below), the depth to which the closure of the
parameters should be traversed in the case of pass by-value, and whether the
policy may be overridden (discussed below).

Return policy rules, set using the setReturnPolicy() method, are also
associated with methods but control how the return values from methods
should be transmitted. For example, a return policy rule might specify that
the return value from a particular method should be passed by-value. The
method policy rule and return policy rule associated with a single method are
independent of each other and need not specify the same behaviour. The
setReturnPolicy() method takes the same arguments as the
setMethodPolicy() method which apply to the return value rather than the
parameters.

Argument policy rules, set using the setArgumentPolicy() method, are
associated with individual method arguments and indicate how particular
arguments within a method signature should be transmitted. They allow the
programmer fine-grain control over the policy that is applied to each of the
arguments of a method. The parameters to this method are similar to the
previous two but an extra parameter is required to specify the parameter to
which the policy applies.

10 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

e Class policy rules, set using the setClassPolicy() method, are associated with
classes rather than methods and indicate how instances of particular classes
should be transmitted. For example, a class policy rule might specify that all
instances of a particular class should be passed by-value. Class policy rules
are applied based on the actual classes of the transmitted objects, rather than
the classes specified in the method signature, which may be super-classes of
the arguments. Class policy rules do not take a depth parameter since the
object classes they reference may have a class policy associated with them.
The programmer can however, specify whether the class policy rule should
be applied to sub-classes of the indicated class.

e Smart Proxy Rules, set using the setFieldToBeCached() method, permit
individual fields of objects that are transmitted by-reference to be cached
within proxies to those objects. If a field of a remotely accessible object is
cached in a proxy for that object then the host holding the proxy can access
the field value with the need for a network call.

An application programmer may specify or change policy rules at run-time, thus
allowing for dynamic adaptation of the application. To specify policy rules statically,
a library class programmer can specify the policy rules in the class’ initialization
code. The policy manager can also be configured to read and write policy rules stored
in XML files, allowing the programmer to specify policies completely independently
of the application source, as well as library class source.

Clearly, there is scope for contention between policy rules. For example, if an
instance of class X is passed as a parameter to method m. A class policy rule may
indicate that instances of X are passed-by-value while a method policy rule
simultaneously indicates that parameters to method m are always passed-by-reference.
As shown in Figure 7, each rule is specified as being overrideable or not. The RRT
uses this information to break contention between rules by defining the following
hierarchy in which the higher priority rules appear first:

Parameter policy rule (non-overridable)
Method policy rule (non-overridable)
Class policy rule (non-overridable)
Parameter policy rule (overridable)
Method policy rule (overridable)

Class policy rule (overridable)

Default policy

NouokrwhE

Revisiting the Example

In our Peer-to-peer example introduced earlier, a Message might be transmitted by-
value to an end-point using the route method on a P2PNode. However, if some of
these objects are very large, the client programmer may with to transmit them by-
reference. Figure 8 shows how the deliver method form Figure 6 may be modified to
use the TransmissionPolicyManager to send those Message objects which exceed
some maximum size by-reference, and smaller Message objects by-value.

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 11

public synchronized void deliver (Key destination
IMessage message) throws Exception ({
IP2PNode node = (IP2PNode)
RAFDARuUnTime.getObjectByName (node, port, "P2P");
if (message.getSize() > MAX) {
TransmissionPolicyManager.setClassPolicy (
Message.class.getName (), BY REF, true);
node.route(destination, message);
} else {
TransmissionPolicyManager.setClassPolicy (
Message.class.getName (), BY VALUE, true);
node.route(destination, message);

Figure 8: The modified deliver method

Figure 9 illustrates the code necessary to instruct the TransmissionPolicyManager to
make proxies for P2PNodes cache the immutable field key and that Key instances
should always be passed by-value. On the client-side, the call to getObjectByName
will yield a proxy of the remote P2PNode object which can be cast to the deployment
interface type IP2PNode. A client holding such a proxy can access the key value of
the remote P2PNode without having to make a remote call.

TransmissionPolicyManager.setClassPolicy(
Key.class.getName () ,BY VALUE, true);
TransmissionPolicyManager.setFieldToBeCached (

P2PNode.class.getName (), "key");

Figure 9: Defining a smart proxy for P2PNode objects

Implementation issues

The deployment of an object requires several steps. Firstly a skeleton of the
appropriate class is generated if necessary. Skeletons are the boundary between the
application object (servant in Corba parlance) and the Web Services infrastructure.
RRT skeletons all implement the interface shown in Figure 10. There is one skeleton
class associated with each application class and one instance of a skeleton class is
created and associated with each deployed object. Thus there is a one-to-one
correspondence between skeletons and services. A service map maps from names and
GUID:s to the skeleton associated with the particular service. The RRT automatically
generates skeleton classes, instances of which reference the deployed objects and
allow the RRT to perform method calls on them without using reflection. Skeleton
generation incurs a one time cost and obviates the need for reflection during normal
execution. Generated code is cached in the RRT for the duration of the JVM lifetime
but can be configured to cache across multiple runs of the distributed application.

The invokeMethod() method allows the RRT to invoke a particular method with the
supplied arguments on the underlying deployed object, while getReturnType() is used

12 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

during automatic deployment to determine the signature types of exposed methods.
The getServiceObject() and init() are used by the RRT to access the deployed object
directly and to initialize the skeleton at instantiation time, respectively.

public interface SkeletonInterface {
Object invokeMethod (String methodIdentifier,
Object[] arguments) throws Exception;
Class getReturnType (String methodIdentifier)
throws Exception;
Object getServiceObject () ;
void init (Object serviceObject) throws Exception;

Figure 10: The Skeleton Interface

Serialisation

During the object marshalling phase of a remote method call, the RRT will determine
which object transmission semantics to employ and if pass by-value semantics have
been chosen then it will serialize the closure of the return value. The serializer can
handle the primitive SOAP types, such as ints and strings, by default and employs
custom serializers to handle complex types. Custom serializers are singletons that are
automatically generated on a per-class basis and each custom serializer is only
capable of serializing instances of its associated application class.

All custom serializer classes provide two methods — one to serialize objects and
another to perform deserialization. The serialize() method takes three arguments; the
object to be serialized, the depth of this object within the closure of the return value
being serialized, and an instance of the SerializedObjects’ class.

Implementing Remote References

The RRT implements remote references using remote identifiers, called RRT
Interoperable Object References (RIORs), and proxy objects. RIORs uniquely
identify deployed services in the distributed system and consist of:
e The machine name and port for the referenced object’s RRT,

Type information about the deployment interface used to create the service,

The 128-bit randomly generated GUID,

The programmer-defined service name,

Smart proxy information.
To pass objects by-reference, the RRT serializes the associated RIORs by-value
and, on deserialization, the client-side RRT uses it to initialize a proxy. Proxies, like
skeletons and serializers, are automatically generated as required by the RRT and are
created from the deployment interface type specified in the RIOR. If the deployment
interface is a Java class then the proxy class extends it, while if it is a Java interface
the proxy class implements it. As a result, the proxy is the same type as the
deployment interface from the client’s perspective. For every method in the
deployment interface, the proxy implements an associated method with the same
signature, which calls into the RRT to make a remote call to the deployed object on
behalf of the client.

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 13

Application objects cannot make use of RIORs directly; they can only use
references to other application objects or correctly typed proxy objects that have been
initialized with the RIORs. Therefore, when RIORs are received by RRTs during
remote method calls, the RRTs will convert them into references that the application
can use. Initially, the RRT determines whether the referenced object exists in the local
address space and if it does then a direct reference to the object is passed to the
application. If not, the RRT determines whether a proxy to the referenced object has
already been instantiated in the local address-space and, if the proxy exists then a
reference to it is passed into the application. If a proxy does not already exist, then an
instance of the associated proxy class is instantiated, automatically generating the
class if necessary. This approach avoids the unnecessary use of remote references that
loop-back into the same address spaces or the instantiation of more proxies than
necessary.

Smart proxies

All proxies have the capability to be smart proxies, which are proxies capable of
caching some of the deployed objects’ fields or code. RIORs contain smart proxy
information indicating which fields and methods should be cached in the proxy and
from this, an appropriate proxy class can be generated. The proxy class inherits the
cached fields and methods from the deployment interface and the cached fields’ get()
and set() methods are modified to access the fields locally rather than invoke the
equivalent method on the remote deployed object. Non-cached methods are
overridden with proxy versions while cached methods are not overridden, leaving the
original functionality in place. A new proxy class is generated for each combination
of cached fields and methods in use within the distributed application.

Immediately before the RIOR is serialized, the RRT records the current values of
the cached fields in it and they are serialized as part of the RIOR. On deserialization,
the cached fields in the proxy object are initialized using a method similar to the
custom serializer init() method described previously.

The RRT does not provide any form of automatic coherency control and so the
programmer has responsibility for ensuring that application semantics remain as
expected. Caching is particularly useful when object fields are known to be
immutable.

Custom Class Loaders

In order to implement proxies, custom serializers and skeletons, all applications class
must be non-final and all their fields must be accessible to the RRT. Clearly not all
classes written by application programmers comply with this requirement. A class
loader is therefore provided that modifies application classes at load-time so that all
fields are public and all classes are non-final. These transformations may not be made
on classes in the standard Java libraries, resulting in the limitations with respect to the
serialization of system classes described earlier.

14 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

Automatic Deployment

The RRT can export references to un-deployed objects, for example, as return values
or in the closure of returned objects. Automatic deployment ensures that appropriate
deployment interfaces are chosen when exposing objects to remote access; the
deployment interfaces must expose enough methods to preserve application semantics
while not exposing any more methods than necessary to preserve the usefulness of the
protection mechanism that the deployment interfaces provide. These two
requirements are mutually antagonistic as the use of a deployment interface as a
protection mechanism is by its very nature a restriction on the operations that can be
performed on an object.

The process of automatic deployment proceeds as follows. If the object is deployed
as a Web Service using its own class as a deployment interface, then no further
deployment is required and the remote reference is typed as this service. If the object
is deployed using other deployment interfaces, then if any of these are identical to or
sub-types of the signature type, no further deployment is performed and the remote
reference is typed as the narrowest of these types. Finally, if the object is not deployed
using an interface that is related to the signature type or if it is not deployed at all,
then the object is automatically deployed using its own concrete type as the
deployment interface type.

The deployment of an object using the signature type preserves the protection
mechanism role of the deployment interface but does not permit the client to cast the
received object into a narrower type, even if such a cast is compatible with the actual
type of the deployed object. The RRT can be configured to perform automatic
deployment such that the object is always deployed using its own class as deployment
interface. This approach means that all methods will be remotely accessible negating
the protection mechanism but the proxy can be cast safely to any type compatible
with the deployed object itself. The latter approach requires that private and protected
methods as well as public methods be exposed in order to preserve local application
semantics.

Implementation of the Transmission Policy Framework

The policy framework is implemented using five associative stores, one for each rule
type. Each associative store records argument policy rules and maps from keys to
prioritized lists of policy rules. The keys are deterministically generated from the
identity of the class and method being called and the argument numbers (where
appropriate). To determine if an argument policy exists, the policy manager looks up
the associative stores in order and if a mapping from the specified key exists, then the
dominant argument policy rule is used. This approach is both simple and efficient.

The cost associated with evaluating the policy rules in order to determine which
object transmission policy should be applied to a particular object is heavily
dependent on the particular policy rules that are associated with the object to be
transmitted. Figure 11 shows the cost imposed by the evaluation of policy on the
overall remote method call time.

The test application performed a call on a remote method that took one argument
and returned a return value. Both the argument and the return value were passed by-

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 15

reference. The first row shows the time to perform one method call, averaged over
1600 method calls, without any policy evaluation phase, while the second shows the
same set of calls with the policy evaluation phase included. In the latter case, the
specified policy consists of a method policy rule and a return policy rule, both of
which dictate that pass by-reference semantics should be employed. The test
application represents the worst-case for the policy manager because no objects are
serialized or transmitted and serialization of application objects increases the overall
cost of the remote call and so proportionately decreases the cost of the policy
evaluation phase. The introduction of additional arguments will have no effect on the
proportionate cost of the policy evaluation phase.

Time to perform 1 remote method call Milliseconds
Without policy evaluation 6.22
With policy evaluation 6.39

Figure 11: Cost of policy evaluation on remote method invocation

It can be seen that the policy evaluation phase has minimal impact on the overall cost
of the remote method call—around 2% in this pathological case. In practice, the cost
of dynamically evaluating policy is subsumed by the cost of marshalling and
serialising the objects for remote method call. It is believed that the benefits gained
outweigh the expense.

Related Work

Web Services provide an RPC mechanism. A Web Service is a remote interface to a
component class that has been deployed in a Web Service container. The Web Service
container acts as a web server accepting incoming method calls in the form of HTTP
requests. The URL specified in the request indicates which Web Service is being
invoked. The body of the request contains the name of the method to invoke and the
arguments to be passed, encoded using SOAP [8]. The Web Service Description
Language (WSDL) [9] is used to describe the methods available in a Web Service.

Web Service technologies such as Apache Axis [6] and Microsoft .NET Web
Services [4] deploy a class of component, not a specific instance of a component. The
class is automatically instantiated to handle incoming requests on a per-call basis or
on first access. Web Services systems do not permit the deployment of a specific
component. Consequently, using standard Web Services, the only way in which
specific components can be accessed is to manually provide a multiplexing Web
Service which maps from keys to specific components. This makes it difficult to
expose application components using standard Web Service technology.

Web Service technologies do not provide any form of remote object reference
scheme. Web Services use only pass by-value semantics. In contrast, Distributed
Object Models (DOMs) provide both RPC mechanisms and remote object reference
schemes but do not allow arbitrary exposure of application components. A reference
to a remotely accessible component can be passed across address space boundaries.

16 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

Method calls performed on the remotely referenced component are transparently
propagated across the network to the referenced component.

The creation of a remotely accessible component using DOMs such as CORBA[1],
Java RMI [2] and Microsoft .NET Remoting [4] requires the programmer to follow
similar steps:

e The programmer is forced to decide statically the interfaces between
distribution boundaries.

e The programmer is forced to decide statically which classes of component
will implement these interfaces and thus be remotely accessible.

e These remotely accessible classes must extend a special base class that
provides the functionality necessary for remote accessibility. This has two
effects: to force the static identification of accessible classes, as above, and,
in languages without multiple inheritance, to prevent the creation of
accessible subclasses of existing non-accessible classes.

e Once a remotely accessible class is instantiated, the instance is associated
with a naming service that allows remote callers to obtain a remote reference
to it.

Some research DOMs, such as JavaParty [10] Fargo [11], and ProActive [12], have
similar motivation to the work described in this paper and are briefly described below.

JavaParty

JavaParty [10] semantically extends Java with the addition of new keyword remote
in order to simplify the process of creating remote classes. This keyword is
permissible only in class signatures and indicates that instances of the class are
remotely accessible. The JavaParty compiler generates pure Java code that uses RMI
to implement remote accessibility. The generated Java and RMI source code is
compiled in the usual manner to produce standard byte-code.

The remote keyword acts as a marker to the JavaParty compiler indicating which
classes must be transformed into remote accessible versions. When creating a remote
version of a class, the JavaParty compiler generates five Java classes, which replace
the original class marked as remote. Initially, it separates the non-static and static
members of the original class into two separate RMI enabled implementation classes,
one of which contains only the non-static members and another which contains only
the static members transformed into a non-static form. Accessor methods are
generated for all fields and all members are made public so that interfaces can be
extracted from each of these two classes. Extracted interfaces extend the RMI
java.rmi.Remote interface. Finally, a wrapper class with the same name as the original
class is generated.

This wrapper class holds interface-typed references to each of the generated
implementation objects that capture the non-static and static functionality of the
original class. However, as these implementation classes are RMI enabled the
wrapper may actually be referencing RMI proxies to remote instances. Each method
now acts as a wrapper method that calls its counterpart on the implementation object

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 17

and handles any distribution related exceptions as best it can. JavaParty adopts the
principle that this approach supersedes traditional RMI because an exception due to
network failure is unlikely to occur on a local network, but if one does occur, it is
unlikely that the programmer could handle it any better than the generated code. In
addition, all RMI related code has been automatically generated negating the
possibility of programmer-introduced errors at this level.

The motivation for JavaParty is similar to RAFDA. The major differences are in
JavaParty’s use of a pre-compiler and the integration of Web Services and Distributed
Object Models along with the flexible policy framework provided by RAFDA.

FarGo

FarGo [11] implements an RMI-based DOM that supports migration and allows
the programmer to impose policy rules on the references between objects. Like
ProActive [12], the granularity of distribution is at the component level and the
components are known as complets. A complet consists of a root object, known as an
anchor object, and its closure, excluding any other anchor objects, which are
considered the roots of distinct complets. Only the anchor object of a complet can be
remotely referenced, though any object within a complet can hold a remote reference
to a complet in another address-space. The infrastructure in which complets execute is
known as a core, one of which exists in each address-space.

FarGo supports five types of remote reference:

e link references that are resilient in the face of complet migration, ensuring
that referential integrity is preserved even if the referenced complet migrates
to a new core.

o pull references express a migration policy between the reference holder and
referenced complet indicating that if the reference holder migrates to a
different core then the referenced complet should also migrate to that core.

e duplicate references indicate that if the reference holder migrates to a new
core then it should take a duplicate copy of the referenced complet with it.

e stamp references indicate that after the reference holder migrates to a
different it should rebind to any complet of the same class as the previously
referenced complet.

e bi-directional pull references indicate if either the reference holder or
referenced complet migrates to a different core then the other should also
migrate to the same core,

The programmer expresses migration policy by reifying references in the
application code and converting them into one of the above types or by specifying
policy independently of source code using a scripting language.

ProActive

ProActive [12] is a Java library that provides tools for the creation of distributed
applications using RMI or JMS for inter-address-space communication. Remotely
accessible objects are known in ProActive as active objects, while all other objects are
known as passive objects. Objects are made active by the programmer and one

18 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

activated are remotely accessed and can be migrated from one address-space to
another. Multiple active objects may not directly or indirectly reference a shared
passive object. Each active object has a single thread executing within it that performs
all computation on the Java objects. Method calls are queued up in each active object
and serviced by this worker thread, which schedules and synchronises them.

Any non-final object can be made active by either instantiating it using a ProActive
factory or by calling an activation method that takes an existing Java object and
makes it active. The active version of an object comprises four Java objects; a
conventional proxy and an object known as the body proxy are located in the client
address-space and an object called the body proxy and the original object are located
in the server address-space.

ProActive work is closest to the work described in this paper. It differs in that only
certain active objects may be remotely accessed and sharing of passive objects is
forbidden. In ProActive, each active object carries out the work performed by the
RRT in our system. By contrast, in our work there is only one RRT instance per
address space, which provides a view onto arbitrary application components.
Furthermore, ProActive is based on RMI and JMS whereas the RRT is based on Web
Services. Finally, ProActive does not provide the flexible transmission policy
management supported by RAFDA.

Java Management Extensions

Java Management Extensions [13] (JMX) provide a framework for the
management and monitoring of Java applications. Resources are instrumented with
Management Beans (MBeans) which must be implemented following specified design
patterns. MBeans must specify or be associated with a Management Interface and it is
only via this interface which external applications/clients may access the MBean.
MBeans are registered with an MBean Server, responsible for mediating access to
Mbeans to the MBean. The JMX framework supports access to the MBean Server via
a variety of transport mechansims (RMI is standard), and allows for the
implementation of custom transports. Related to the RRT, the framework includes
mechansims to expose user defined classes (which may be precompiled) for
management by an external application. In JMX, the management interface must be
defined either statically (specifying and implementing a programmer defined
interface) or dynamically by describing the Management Interface using standard
Meta information classes. We have demonstrated that the facilities provided by the
RRT may be used to provide the same functionality as JMX arguably but with more
generality and less complexity.

Conclusions

The RAFDA Run-Time (RRT) is a Java Middleware designed to improve the
software engineering process for implementers of new distributed systems and for
implementers of monitoring and management infrastructures aimed at existing

RAFDA: Middleware Supporting the Separation of
Application Logic from Distribution Policy 19

applications. The work described in this paper has identified a number of key
limitations exhibited by standard Middleware systems and had shown how the
mechanisms provided by the RRT addresses each of these limitations.

Middleware systems typically require the programmer to decide at application
design time which classes will support remote access and to follow a number of steps
in order to create the remotely accessible classes. The programmer must decide the
interfaces between distribution boundaries statically then determine which classes will
implement these interfaces and thus be remotely accessible. This hard-coding of the
distribution boundaries requires that the application programmer know if instances of
a class will be remotely accessed before implementing that class.

The RRT permits instances of arbitrary classes within an application to be exposed
for remote access. This is achieved through the dynamic deployment of a standard
Web Service for the deployed object and the implementation of a mapping from
remote calls on the Web Service to method calls on the deployed object. The RRT
adds pass by-reference semantics to standard Web Services allowing methods on
deployed objects to be called remotely.

In contrast to conventional Middleware systems, in order to deploy an instance of a
class using the RRT, it is not necessary that class implement any special interfaces or
extend any special classes. Thus the application programmer can implement the
classes providing core application functionality without regard for the remote
accessibility of the instances of those classes. Decisions about the remote accessibility
of a particular object can be delayed until much later in the design cycle, even until
run-time. Monitoring and management infrastructure that views and controls
application state from another address space can be created without modification, or
even access, to the application’s original source code.

Another limitation of industry standard middleware systems is that the parameter-
passing semantics is tightly bound to the distribution of the application and thus
changes to the distribution of an application may potentially alter the application
semantics.

The RRT addresses this limitation by providing a framework for the static and
dynamic specification of object transmission policy. Using this framework the
application programmer can employ the most advantageous object transmission
policy for the particular circumstances. This increases flexibility and allows the
programmer to control the application semantics. By specifying object transmission
policy independently of class implementation, the roles of library class programmer
and application programmer are separated. Library implementers must make less
assumptions about the ways in which their classes will be used while application
programmers can use class instances in the most appropriate way, as dictated by the
particular situation. Before making a method call the application programmer can
configure the transmission policy for the individual method parameters and any return
value.

The transmission policy framework also supports the specification of smart proxies
which increase the flexibility of deployed object without imposing implementation
constraints on the programmer. This mechanism allows arbitrary field values of an
object to be cached in the same address space as a remote reference (proxy) to that

20 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

object. Thus a call to an accessor method on the proxy yields the field value without
the execution of a network call.

The RRT employs dynamic code generation and compilation techniques to create
the ancillary code necessary to allow dynamic object deployment. It is capable of
marshalling instances of any class either by-reference or by-value and complete
control over this is given to the programmer in order to separate parameter-passing
semantics completely from application distribution.

The RRT provides significant advantages to programmers of distributed
applications, when compared to industry standard Middleware systems, simplifying
the software engineering process, decreasing the opportunity for errors in distribution
code and increasing code reuse through better flexibility.

The RRT has been used in the construction of a global scale P2P routing network
in which the application code can be run in both a fully distributed environment and
in a centralised simulation environment without modification.

References

1. OMG, Common Object Request Broker Architecture: Core Specification.
Vol. 3.0.3. 2004.

2. Sun Microsystems, Java™ Remote Method Invocation Specification. 1996-
1999.

3. Microsoft Corporation, The Component Object Model Specification. 1995.

4. Microsoft Corporation, .Net Framework.

http://msdn.microsoft.com/netframework/, 2004.

The Rafda project. http://www-0s.dcs.st-and.ac.uk/rafda/, 2005.

Apache, Apache Axis. http://ws.apache.org/axis/, 2004.

W3C, Web Services. http://w3c.org/2002/ws/, 2004.

Box, D., et al., Simple Object Access Protocol (SOAP) 1.1. 2000, W3C.

Christensen, E., et al., Web Services Description Language (WSDL) 1.1.

2001, W3C.

10. Philippsen, M. and M. Zenger, JavaParty - Transparent Remote Objects in
Java. Concurrency: Practice and Experience, 1997. 9(11): p. 1225-1242.

11. Holder, O., I. Ben-Shaul, and H. Gazit. Dynamic Layout of Distributed
Applications in FarGo. in 21st International Conference on Software
Engineering (ICSE'99). 1999. Los Angeles, California.

12. Caromel, D., W. Klauser, and J. Vayssiere, Towards Seamless Computing
and Metacomputing in Java. Concurrency Practice and Experience, 1998.
10(11-13): p. 1043-1061.

13. Sun Microsystems, Java Management Extensions Specification. 2002. v1.1.

wCoNoO

