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Abstract

Persistent languages and systems provide the ability to create and manipulate all data in a uniform manner
regardless of how long it persists.  Such systems are usually implemented above a stable persistent store
which supports reliable long-term storage of persistent data.  In this paper we consider the issue of
distribution of the persistent store across nodes.  A number of existing persistent languages with support for
distribution are described in terms of a taxonomy of distributed stores.  It is shown that there are
considerable difficulties with these systems, particularly in terms of scalability.  A new mechanism based
on the exportation and remote execution of procedures is then described.  A key feature of this mechanism
is that an exported procedure may dynamically bind to data in the remote store.  It is shown that the
mechanism alleviates most of the problems of existing systems and provides considerable flexibility.  The
paper concludes with some examples of practical use of the proposed mechanism.

1. Introduction

Persistent languages and systems provide the ability to create and manipulate all data in a uniform manner,
regardless of how long it persists.   Thus data which lives longer than the program which created it may be
constructed.  Such systems do not require any flattening process since data persists in its original form.  This
results in considerable savings in terms of programming, debugging and testing [ABC83].

Orthogonal persistence means that all data may be persistent and that data may be manipulated in a
uniform manner regardless of the length of time it persists.  In other words, the right for data to survive for a
long (or short) time is independent of the type of data.  Similarly, programs manipulating data do so in a
uniform manner, whether the data is short or long lived.

Persistent systems are usually implemented above a stable store which supports the long-term storage of
persistent data.  Such a store is stable in the sense that, following a crash or system failure, it can always
return to a consistent state [lam81].  This may be implemented either by a checkpointing mechanism [lor77]
or by a low-level transaction facility [HR83].  Several stable stores have been designed and constructed and
are being used to support experimental persistent languages [bro89, mos89, ros91].

In this paper we consider the issue of distribution by examining the motivation for distributed stable
stores.  We then give a taxonomy of distributed persistent store mechanisms and two major models of
distributed persistent systems are examined in detail.  This is followed by a description of  some existing
languages and their support for distribution.  Restrictions imposed by these languages are discussed and we



propose a new language mechanism specifically oriented towards supporting multiple distributed stable
stores.  The paper concludes with some examples of the use of the proposed mechanism.

2. Distribution Models

The power of processors has been increasing at a rapid rate while at the same time their cost has been
decreasing.  Coupled with a corresponding decrease in the cost of secondary storage devices this has resulted
in a proliferation of personal computer systems or workstations.  It is now common to find a powerful
workstation, with significant storage (gigabytes), on an individual's desk.  In such an environment it would be
sensible, for performance reasons, for the individual to have their own stable store on a local disk.  This is
analogous to having a local file system in a Unix environment.

Much of the time it may be possible to work only within this local store. However, for some applications
it will be necessary to access shared data.  For such applications it is desirable to support the notion of a
distributed store, where parts of the store may reside on different machines, possibly in geographically
separated locations.  Distribution in this sense on Unix systems is supported by special protocols integrated
with the file system, such as NFS.

It is logical in a persistent system to integrate distribution into the persistent store.  However the best
model for a distributed stable store is not clear. In order to categorise the different approaches we suggest the
following stable store taxonomy.

Distributed persistent systems may be partitioned into one of two categories.  In the first of these,
attempts are made to hide distribution; in such systems, the user views the universe of discourse as one
single large persistent address space.  We term this the one world model.  By contrast, in the federated model
the user is aware that the universe consists of independent stable stores that may be stabilised separately.

When examining each of these approaches there are three issues that must be addressed.  These are:
protection, security and the propagation of pointers; in this paper, due to space limitations, we will
concentrate on this last issue, the first two issues have been discussed elsewhere [RK90].

2.1 One World Model

It is tempting to consider the stores on all machines in a distributed environment to be part of a single large
store; this characterises the one world model.  Using this approach, pointers located in a stable store on one
machine may freely reference remote objects.  Such an approach makes distribution completely transparent
and means that existing applications need no modification to operate in a distributed environment.  This
approach fits in well with the ideals of orthogonal persistence which state that all physical attributes of data
should be abstracted over.  However, there are some difficulties with this approach.

First, in a persistent store each object is usually given a unique name or address.  If the entire network is
considered part of a single store then these addresses would have to be large enough to uniquely identify any
object on any machine in the network.  Although some researchers have concentrated their efforts on building
hardware with direct support for very large virtual addresses [RA85, coc89], such machines are not readily
available and most systems are therefore constructed above conventional architectures. Some stores attempt
to work around this problem by utilising contextual naming mechanisms [mos89]; typically with these
designs, programs only manipulate short local addresses.  Non-local addresses are stored in a special import
table with import table addresses being distinguished from local addresses in some way.  Such schemes are
similar to the techniques used to implement the first generation of persistent object systems [CAC84] and
have similar drawbacks.  These include that they are difficult to manage, are not supported by most
conventional architectures and, without hardware support an efficient implementation is difficult to achieve.

Second, the resulting store would be potentially huge.  The management of very large stores is difficult.
Issues which create difficulty in large flat distributed stores include allocation of free space, naming new
objects to ensure uniqueness and the construction of appropriate navigation tools.  Other difficulties are
discussed in [mos89].  As with the problems faced with address sizes, the application of contextual naming
schemes do help matters somewhat; however, the authors believe that in the final event, these schemes will
not scale.



Finally there is the problem of stability;  if the entire network is viewed as a single store then the
stabilisation mechanism must capture the entire state of this store at a checkpoint.  This involves
coordinating all nodes and causing a synchronised stabilise to take place.  The algorithms for achieving this
are non trivial and are likely to be very expensive; once again, scalability is the main problem.  Using two
phase commit protocols over a high band width local area network, a modest number of reliable machines
may be stabilised together.  However, it is unlikely that such protocols would be successful when applied to
large numbers of machines in geographically distributed locations.

2.2 Federated Stable Stores

For all of the above reasons, it may be prudent to partition the store into regions and make these regions
visible at the language level.  We term such a model the federated stable store model.  Indeed, there are
advantages in partitioning the store even on a single node.

Firstly, such partitioning allows for logical grouping of related data which may well improve
performance in terms of disk access time, garbage collection and checkpointing overheads.  This is also the
motivation for contextual naming in the one world scheme and for generational garbage collection schemes
[ung84].

Secondly, partitioning may also provide a level of protection where required between different uses of
the store.  For example, in a multilingual environment it is necessary to partition the store in order to ensure
type security.

The main difference between this approach and some of the hybrid one world schemes (such as
contextual naming) is the ability of the application programmer to perceive distribution.  The motivation for
this seemingly undesirable feature is to give the programmer clean semantics for failure.  Using the one world
approach, individual stores may crash and consequently disappear or, perhaps even worse, appear to travel
backwards in time with respect to other stores.  With the federated approach, the programmer is aware of
store boundaries and therefore local data may be expected to behave differently from non local data.

Although we do not wish to address the problems of heterogeneity in this paper; it would appear that the
federated approach also offers advantages over one world models with respect to heterogeneous store
architectures.

The federated approach does have its disadvantages however; the most undesirable of these is the
potential loss of referential transparency.  This refers to a situation where two roots of a graph are
independently saved in a store and these refer directly or indirectly to a common sub-graph.  In a system
which maintains referential transparency, only one copy of the common sub-graph is retrieved when either or
both of the roots are restored.  Federation by definition does not allow pointers to span stores therefore copies
of data structures must be propagated between stores.  Such copying may (and often does) violate referential
transparency.

3. Language Approaches to Distribution

Before designing a distributed persistent system, one of the models of distribution must be chosen.
Orthogonal to this decision, three other issues dominate the considerations which need to be made.  These
are:

1. how and when other stores are named,

2. how and when bindings are made to values in other stores and

3. how and when type checking is performed.

Using the one world model it may be impossible to identify individual stores which comprise that world.
However, even with this model some notion of locality may be visible at the language level.  With the
federated stable store model the naming of other stores is one of the cornerstones of the programmers



perception of the domain of discourse.  The language mechanisms described in this section adopt different
solutions to the problem of naming other universes.

It has been argued elsewhere [AM88] that the mechanisms used to establish bindings are especially
important in persistent systems.  Bindings may be made to locations or values and may be established
dynamically or statically.   In a distributed environment the binding mechanisms and their interaction with
stability are subtle and complex.  For example, it is hard to see how a static binding to some location in
another store may be made without forcing the stores to stabilise together for as long as that binding exists.

Many database programming language designers consider strong typing to be essential.   The
motivations for this are obvious – long term data stored in a database is usually more valuable than data
which has been created during a program invocation.  The safety of this data cannot be compromised when
accessed remotely, therefore type checking between stores becomes inevitable.  Using the one world model,
type checking may be transparent to the user whereas using the federated model the user must have a clear
understanding of when and how type checking is performed.

Distribution also influences the algorithm used for checking the equivalence of two types.  In a federated
system the type equivalence algorithm must use structural equivalence.  The one world model permits more
freedom since it is logically equivalent to a single persistent store.

In the following sections we examine several different linguistic approaches to distribution and classify
each according to our taxonomy.  We then evaluate each system focusing on the three issues discussed
above.

3.1 Conventional RPC

One of the most popular models for supporting distribution is the Remote Procedure Call [nel81].  In this
model, a server machine exports a fixed set of services and a client may invoke these services via an
interface that appears to the application programmer like a conventional procedure call.  This has been a
successful model and has been used in a number of distributed systems.

The rationale behind RPC is to provide a convenient and transparent mechanism for the programmer to
execute requests on a remote machine, and hence provide an easy method of building distributed
applications.  The approach chosen by Birrell and Nelson [BN84] is to force the programmer to design a fixed
interface of services that are invoked by a simple protocol.  The interface is specified with a separate
definition language, which when compiled produces stub code in the target systems language (e.g. Mesa in
the Cedar system [xe81], C in RPCGen [sun88] and MIG [DJT88]).

The stub code provides both the client and server interfaces.  The client interface contains code that
builds the request message, copies all the parameters into the message block and sends the message to the
server.  The server code receives the message, unpacks the parameters and invokes the selected routine with
the parameters from the message. The stub code is bound to the programmers code by the system linker.

The RPC approach is limited in a number of important respects; by necessity, parameters to the RPC
are call by value, and this is enforced by the stub generator.  In most RPC systems, the stub generator will
not generate code that knowingly passes pointers between systems.  However, this protection is achieved at
the cost of another, separate, definition language.  Furthermore the stub generator approach is not type
secure.  It is trivial to subvert the type checking in the stub generator, or indeed to generate RPC requests
without the use of the generator at all.  Such requests may contain arbitrary data structures including pointers.
Only disciplined programming maintains store security.

Using RPC, the problem of binding context is trivially solved by binding the procedure instance to the
server statically.  However, such an approach causes problems in a persistent context. Although the kind of
static binding does not imply a one world approach, no system evolution can take place.  In particular, the
RPC mechanism is unable to take advantage of changes within the server store that occur after it is built.

Once a service has been implemented it is impossible to extend its functionality without rebuilding the
entire server.  Furthermore it is difficult to comprehend how an optimal RPC interface could be constructed.
In an effort to build one that is of maximum use, either a large number of atomic services could be provided



causing a large communications overhead, or a service with an extremely complex interface could be
designed with its own attendant problems. The inherent inflexibility of RPC is a serious weakness.

3.2 Distributed Shared Memory

A more recent and increasingly popular model for supporting distribution is Distributed Shared Memory
(DSM) [li86, LH89, WF90, HR91].  The idea is essentially an extension of virtual memory to encompass a
network.  Each object is located on a particular node via a unique (network-wide) virtual address and all
objects may potentially be addressed from any node. The system transparently copies remote objects on the
first access and maintains a coherent view of the data at all machines.

This approach, which has been used in a number of persistent systems [HR91, KSD90] clearly falls into
the one world model and has a number of advantages from a language point of view.

Since the network is fully transparent, the issue of naming stores need not arise, although it is desirable
to provide a facility for specifying the machine on which a new object should be created.  Binding and type
checking are non issues since there is logically only one store.  However, as we discussed earlier, the one
world model does have major disadvantages associated with both the address size required and stabilisation
which make the resulting system unscalable. An additional cost is the maintenance of coherency between the
nodes; many systems use a single copy protocol with the more recent ones using a multiple-reader-single-
writer protocol, this may result in considerable network traffic.

3.3 Argus

The Argus system [lis85] was an experiment in distributed systems which support long-lived data.  The Argus
approach is the epitomy of the federated stores model.  In Argus, each store is protected by a software entity
known as a guardian.  Each guardian is an abstraction of a stable store and provides access procedures known
as handlers:  for every handler call, a process is spawned to serve it.  Guardians may call handlers contained
within other guardians as part of distributed transactions.  To the user, a guardian appears as a programming
data structure similar to an Abstract Data Type.  For example, a mailer guardian may be defined as follows:

mailer = guardian is create
handles send_mail, read_mail, add_user ...

send_mail = ...

read_mail = handler( user : user_id, msg : message ) ....

add_user = ...

No global naming facility was implemented in the Argus system.  However, Guardians may pass the names of
other guardians as parameters to handlers and it would therefore be possible to construct such a facility using
Argus.  In addition to this mechanism, Argus also supports a catalog (sic) which registers guardians and
handlers according to their type.  Type checking in Argus is strong and static; at compile time, the compiler
checks abstractions used by the compilation unit to ensure that they are consistent with their specification.

The passing of objects in handler calls result in copies of data being installed at the receiving ends.
These copies of data are considered to be separate copies and referential integrity is not preserved.  Semantic
consistency amongst objects is therefore the responsibility of the applications programmer.

3.4 REV

Stamos and Gifford [SG90] present a model which permits the execution of code at another machine.  Their
work was motivated by the desire to enrich a conventional programming environment and to allow
programmers to take advantage of specialised hardware (such as array processors) seamlessly within the
programming environment.  They present a generic model that they term REV (Remote EValuation) and a



proposal for the integration of the model with the language CLU [LSA77]. Many of the ideas presented within
the context of the REV work can be seen to have originated in Argus.

The REV model allows the programmer to select a server by specifying a set of attributes that the store
must have.  This is achieved using a language mechanism called service that specifies the names of abstract
data types that are matched against those provided by servers.  A run time call returns a server that contains
the required set of ADTs. Specific naming of servers is not addressed although it could be achieved by
providing each server with a unique service.

For example a service supporting matrix operations is statically specified as follows:

ArrayProcessorService = service is matrix end

REV requires that the compiler be able to statically resolve all the bindings required for a routine that will be
remotely executed.  It uses the list of ADTs specified in the server list to identify those references that will be
resolved in the server.  The processs of encapsulating a REV routine is termed encoding.  An encapsulation
includes all of the locally defined routines needed to satisfy the binding requirements of the REV; it is a
compile time error if all these bindings cannot be resolved.

To make encoding tractable, REV explicitly prohibits the use of first class procedures or other constructs
that would make it impossible to statically determine the REV routine’s call graph. To prevent problems in
concurrent execution and to ensure that the code portion of a REV is self contained, REV routines may not
contain any free or own variables.

Since an REV request only ever sends the minimum code needed, and never sends code for services that
exist within the server, requests which are a single procedure call to a server reduce to a conventional RPC.

At run-time, the predefined routine Service is called to provide a binding to a server with appropriate
functionality and therefore the correct types.  If no suitable server exists then a run time exception is raised.
For example, a binding may be made to a server providing the matrix operations specified earlier as follows:

ap: ArrayProcessorService := Service[ArrayProcessorService]$Any()

The locally defined procedure called exp may be executed on the server bound to ap as follows:

answer: matrix := at ap eval exp( m, power )

In the form presented, the run time binding to the server and the actual REV request occur as two separate
operations.  It is assumed that the functionality of a store cannot change between the call of Service and the
execution of a remote procedure.

In a persistent system this would result in the two stores becoming interdependent.  The REV model as
presented by Stamos and Gifford therefore falls into the one world category.  However, the approach may be
modified by  combining the server binding and the REV request into a single operation.  Such an approach
would permit a federated approach, perhaps at some efficiency cost.

3.5 DPS-algol

Wai has designed and implemented a version of the persistent language PS-algol [ps87] called DPS-algol
[wai89, wai90] which implements a superset of PS-algol supporting distribution. Wai argues that the ideal of
orthogonal persistence demands that the programmer should have no knowledge of where objects are resident
in the network; Wai is therefore an advocate of the one world approach.

DPS-algol provides three important extensions to vanilla PS-algol. The first of these is a process
mechanism.  The second is the provision of an RPC mechanism. Both these facilities are orthogonal to
distribution and may be used in a non distributed context.  The last extension is that machines (stores) are
given symbolic names of type locality. New localities may be added to the system using a mechanism
external to the language.

An RPC is initiated by specifying a process handle and an entry point within the process. For example,
suppose that a server process called server exists with an entry point called register which takes an integer
as a parameter, an RPC is effected using the following syntax:



server@register( 3 )

In Wai’s system, the semantics of parameter passing using RPC is the same as vanilla PS-algol, namely
call by value.

The final extension to PS-algol made by Wai is the distribution mechanism.  In DPS-algol both type
checking and binding are resolved dynamically.  DPS-algol permits a symbolic name (a string) to be
associated with a process running in a locality.  This name may be used to identify a process running in a
remote locality.  Type checking is performed by specifying the expected name and type of an entry point
within a remote process.  This is best illustrated by an example.  Suppose that the server process shown
above has the symbolic name “dataDictionary” and is running on a remote locality called “remoteStore”.  A
distributed call of the RPC shown above could be instantiated as follows:

for server = "dataDictionary" at remoteStore
with register : entry( int ) do server@register( 3 )

If a process called dataDictionary is running on the machine called remoteStore and it has an entry point
called register with the appropriate type, a one time binding will be made and no further binding or type
checking is required for the duration of the associated clause (in this case the RPC call ).

Since the semantics for local and remote RPCs in DPS-algol are the same, it is possible for pointers to
leak across store boundaries.  Thus there may be dependencies between machines and the corresponding
stores must be stabilised together in order to guarantee consistency.  As we have argued earlier, it is not clear
how such a distributed checkpointing mechanism can be made scalable.

3.6 Emerald

The Emerald programming language [DHJ86] is a non-persistent object-oriented language for programming
distributed applications.  Emerald objects are mobile, that is they may be moved from one processing node to
another with programmers choosing to ignore or exploit the concept of location.  In [BHJ87] it is claimed that
objects must be able to invoke other objects in a location independent manner.  Such reasoning would suggest
that in the context of persistent systems a one world approach should be advocated.

In the Emerald system, objects communicate via the invocation of other objects.  Like CLU [LSA77]
and Smalltalk-80 [GR83] the parameter passing mechanism used is call-by-object reference.  However, since
objects are mobile, referenced objects may be moved to the location of the callee.

Which objects are moved is determined by one of two mechanisms.  The first of these is type dependent
information; small objects such as integers and immutable objects are obvious candidates for automatic
relocation by the run-time system.  The other mechanism is a novel, programmer specified parameter passing
mode termed call-by-move.  Using call-by-move, objects are eagerly moved to the remote site prior to
procedure invocation and may be moved back upon completion.

It is argued that such an approach increases performance of the system (which no doubt it can do).
However, this approach also implies a one world model where (at least) the communicating stores must be
intimately bound with respect to store stabilisation.  If the stores did not stabilise synchronously, the
semantics of failure in a persistent system would be unpredictable.

4. Napier88

In order to illustrate our communication mechanism we will use the language Napier88 [MBC89] as a
framework.  However, the mechanisms described in this paper may be incorporated into any programming
language which supports at least first class procedures, parametric polymorphism and some global contextual
naming facility.  In the context of the Napier88 programming language, these facilities are provided by the
Napier88 types proc (which may be quantified) and env.  We discuss these types in this section.



4.1 The type proc

Napier88 supports procedures which are first class data objects.  Consequently they may be stored, passed as
parameters and be returned as the result of procedures.  Like other Napier88 data types, procedures are
declared using the reserved word “let”.  The identity function over integers may be declared as follows:

let intId = proc( x : int → int ) ; x

the type of this procedure is written:

proc( int → int )

Napier88 supports parametric polymorphism, for example it is possible to write a polymorphic version of the
identity function shown above as follows:

let id = proc[t]( x : t → t ) ; x

which is the identity procedure for all types; it has the type ∀ t.t →  t. To call the procedure, the programmer
may write,

id[ int ]( 3 )

which will return the value 3.  It is important to note that this form of type polymorphism is completely
statically checkable.

4.2 The type env

Objects of type environment [dea89] are collections of bindings, that is name-value pairs – they belong to the
infinite union called env of all labelled cross products of typed name-value pairs.  An empty environment
may be created by calling the predefined procedure environment, which is of type,

proc( →  env )

For example the programmer may write,

let e = environment()

which will create a new environment bound to the name e.  The programmer may then write,

in e let a = 7

which will create a constant L-value binding and place the binding in e.  To use the binding the programmer
may write,

use e as a : int in
writeInt( a + a )

which dynamically binds the name, type, constancy and L-value to the environment expression.  If the
environment contains at least that name, type and constancy tuple then the binding succeeds and the name is
available in the following clause.  The binding, which occurs at run time, and is therefore dynamic, is similar
to projecting out of a union.  The difference here is that only a partial match is required;  other bindings not
mentioned in the use clause are invisible in the qualified clause and cannot be used.

The distinguished root of the persistent store graph is of type env and may be obtained by calling the
predefined procedure called PS which is also of type,

proc( →  env )

Environments provide structure in the persistent store.  All data objects resident in a persistent store may be
found by traversing the object graph from the root environment.  This ability is extremely important in a
distributed context since it provides crucial knowledge of other stores.  When writing Napier88 programs, it is



always safe to assume that at least the root environment will be in a store.  This knowledge allows programs
to be written which can access any data that is directly reachable from the root on a remote machine.  In the
system described by Stamos and Gifford (REV) no such environment is available, which considerably
restricts the power of their system.

5. A new communication paradigm

Here we present a new communication paradigm which has elements of the other mechanisms described
above.  It borrows from the Argus, REV and DPS-algol systems.  We will show that this mechanism is:

1. simple,

2. powerful, and,

3. flexible.

The mechanism we are advocating provides a single polymorphic procedure which communicates with
remote stores; we call this procedure rx, (Remote eXecute).

The syntax of rx is simple:

rx: proc[ t ]( data : t ; code : proc( t ) )

The procedure takes two parameters: some data of a polymorphic type and a procedure which takes a
parameter of the same polymorphic type.  Note that since the data is polymorphic, any data may be
transmitted using this type.

The semantics of remote execute are also simple.  The procedure (code) is executed on a remote
machine with the parameter data as a parameter.  This is represented by the pseudo code shown below.

let rx = proc[ t ]( data : t ; code : proc( t ) )
begin

copy the code and data to a remote machine and
on the remote machine apply code with parameter data.

end

Since we have argued that pointers should not be allowed to leak from one store to another, like Argus the
parameter transmission mode for rx is copy semantics.  Therefore the transitive closure of both the code and
the data must be copied to the remote machine before execution begins.

The rx procedure shown above does not specify the store against which the program should be executed.
Instead, there is a mapping from the name of remote stores to procedures which permit the programmer to
communicate with them.  In order to obtain an rx procedure, the programmer is required to call a generator
function which specifies the desired machine.  Therefore, the rx generator function is as follows:

rxGen: proc( storeName : string → proc[ t ]( t, proc( t ) ) )

This mechanism has three advantages over passing the store name each time a remote execution is required.
The first is that a table of remote stores needs to be accessed by just one function: the rxGen function.
Secondly, since the rx functions produced by rxGen all have stores bound into their closure, there are some
potential implementation efficiency advantages which could be exploited.  Lastly, using such a mechanism
there is no need for the code returned by the generator to be the same in each case; the procedures returned
by rxGen may vary according to the nature of the remote store and the communications mechanism.

Since the mechanism described here permits data to be transmitted using copy semantics, bindings may
not be made from one store to another.  Instead, all bindings are made by the transmitted code with respect to
the store to which they have been transmitted.  Information can be transmitted back to the originating store
using the same mechanism.



Using this approach, the code and the data transmitted to the remote site do not require type checking –
all type checking is performed statically.  Also, this scheme does not require any inter-store type checking
since no information about the remote store is released at a language level.  Here, the only thing that  a
programmer may assume about a remote store is that it contains a root environment of type env which is
reachable by calling PS.  We will see later that this is not as restrictive as it might first appear since tailored
environments may be installed at a remote site.

In order to illustrate the utility of this mechanism we will give three examples of the use of rx; these are
a remote execution facility with returned data, a simple object browser and an illustration of using this
mechanism as a Trojan horse.

5.1 Remote execution with returned data

The simple remote execution mechanism described above may be used to construct a remote executor which
returns values from the remote store.  This procedure is also polymorphic, but by necessity is quantified over
two types – the type of the parameter (called p in the examples) and the type of the result(called r in the
examples).  Such a procedure has the following form:

rx2: proc[ p,r ]( data : p ; code : proc( p → r ) → r )

The semantics of this function are the same as those of the rx procedure shown above with the addition that
the procedure to be remotely executed returns a result to the store which initiated the remote command.  A
rough algorithm for rx2 is as follows:

1. Construct a procedure (called wrapper in this example) to be remotely executed which takes
a procedure, some data and the name of the initiating store as parameters.

2. Encapsulate within this procedure, the definition and remote execution on the initiating
machine of another procedure (called wakeup in this example) which has knowledge of the
initiating procedure.

3. Remotely execute the first procedure.

The procedure wrapper requires two different kinds of knowledge of the initiating store.  Firstly, wrapper must
be supplied with the name of the store to which it must return data; this is supplied as a parameter in a
structure.  Secondly, it requires knowledge of what it must do when it has completed its task; this information
is contained in the procedure wakeup which is remotely executed at the initiating store using rx.

The rx2 procedure uses a temporary location into which the returned data may be placed.  Since this
data must be accessible from the wakeup procedure which will be remotely executed on the instantiating
store this location must be reachable from PS.  For simplicity, the location has been created in the root
environment; in practice the data would be stored in a more sensible environment.

The name of the initiating machine and the data passed to rx2 are placed in a record.  This object is
used as the data to an rx call which is also supplied with the procedure wrapper.  The wrapper  procedure is
executed in the remote store and first unpacks the packed data.  It then defines wakeup; this procedure is
remotely executed in the initiating store with the result of the call to code as a parameter. Thus, the result of
the remote execution is returned to the initiating client.  In order to assist the reader, in the example below,
comments associated with remotely executed code are proceeded by a “**”.  It should be noted that, in
practice like rx, rx2 would be encapsulated within a generator which permits binding to a remote store.  For
simplicity, this has been ommitted from the following example.

let rx2 = proc[ p,r ]( data : p ; code : proc( p → r ) → r )
begin

type machineData is ! This type is used to send the
structure( name : string ; data : p ) ! data and the machine name



let wrapper = proc( mcdata : machineData ) !** This is the procedure which
begin !** will be remotely executed

let sendername = mcdata( name ) !** First unpack the senders name
let data = mcdata( data ) !** and the real data.

let wakeup = proc( returnvalue : r ) ! This procedure will be called
begin ! in the callers environment.

in PS() let result := returnvalue ! It places a remote result back
! into the callers environment.

end

let remoteResult = code( data ) !** Apply original procedure.
let returnRX = rxGen( sendername ) !** lookup return rx command
returnRX[ r ]( remoteResult, wakeup ) !** Send result back using rx.

end

let self = lookup the name of this store
let packed = machineData( self,data ) ! Pack the data & store name.
rx[ machineData ]( packed,wrapper ) ! Call the wrapped function with

! the original data and store name.
use PS() with result : r in result ! Lookup the result and return it

end ! to the calling procedure.

5.2 Example: a simple remote store browser

An example of this mechanism is a program which informs a user if a binding exists in an environment on a
remote machine.  For simplicity it is assumed that a simple name check is all that is required and that we
will search only the root environment.  In reality much more functionality would be required; however, the
example is given as proof of concept.

In Napier, a function called scan is provided to iterate over Napier88 environments.  It takes an
environment and a procedure as parameters and applies the procedure to every binding in the environment.  A
procedure which checks to see if a binding associated with a name exists in an environment may therefore be
written as follows:



let nameInEnv = proc( searchfor : string ; e : env → bool )
begin

let found = false

! next define a function which will look for the name

let lookOnce = proc( name : string ; type : typerep ; const : bool )
if name = searchfor do found := true

scan( e,lookOnce ) ! Call scan which will repeatedly call lookOnce.
found ! Return found as the result of the function.

end

The procedure getremotenames, shown below, is effectively a type adaptor, required since rx2 is only capable
of remotely executing procedures with one parameter.  Getremotenames takes a string as a parameter and
merely applies the nameInEnv procedure with the supplied string and the root environment as parameters.

let getremotenames = proc( searchfor : string → bool ) ; nameInEnv( target,PS() )

This procedure may be remotely executed to search for the name "abc" as follows:

let rx2 = rx2Gen( "some store" )

let found = rx2[string,bool]( "abc",getremotenames )

5.3 The friendly Trojan horse

The mechanism shown in Section 5.2 could be extended to provide a browsing mechanism such as the one
described in [DB89].  However, as the amount of code that is to be remotely executed increases so too does
the amount of time required to transmit code.  Furthermore, it is wasteful to repeatedly send the same code to
a remote site.  The rx mechanism deals with this problem by permitting customised interfaces to be remotely
installed in other stores.

A customised protocol server may be installed in a remote store by sending an installation procedure to
a remote machine.  Once the code is installed it may be looked up at the remote site rather than being
transmitted on every use.  It is expected that this approach will be the usual way in which rx is used.

The use of a remote browser would take place in several steps.  Firstly, a browser would be sent to the
remote store with a script to install the code.  An outline of this code is shown below.  Notice that the
procedure browser is being sent as data in this example.

let browser = proc( name : string )
begin

! perhaps a large amount of code....
end

let installer = proc( browser: proc( string ) ) !** This installs the browser in
begin !** the remote store.

in PS() let mybrowser = browser !** This makes the code
end !** reachable from the root env.

rx[ proc(string) ]( browser, installer )

Once this code has executed, the programmer has the knowledge that a browser had been installed in the
remote store.  Future interactions with the remote code may be implemented via small pieces of code which



look up the installed code in the remote store.  The next example illustrates how this may be achieved by
executing the procedure usebrowser in a remote store.  At the remote site, the procedure first looks up the
program installed earlier, next that procedure is applied using the given parameter.



let usebrowser = proc( name : string )
begin

use PS() with mybrowser : proc( string ) in !** Lookup the browser in the remote 
mybrowser( name ) !** store and apply it with the string

end !** as a parameter.

rx[ string ]( "abc", usebrowser )

Usually, a browser will return data to its caller, this may be easily achieved using the rx2 procedure described
above.

6. Implementation

The implementation of remote evaluation must ensure that it is never possible to have two stores in
disagreement about the state of a remote execution instance.  As an example of the problems encountered,
consider the situation when one store sends a remote execution request to a second store and then stabilises.
The second store may receive the request just after stabilising.  Should a failure occur, resulting in both stores
rolling back to their stabilised condition, an inconsistent state would result.  Clearly, even if the federated
approach is taken, when two stores interact it is necessary to link the stabilisations of the stores and to
provide a mechanism to ensure synchronisation of the state of the stores, should roll back occur.  The
motivation for this work however is to avoid the one world model of distributed stable stores.  We wish to
keep the inter-store dependency to an absolute minimum.  As proof of concept, the following algorithm is
given for the case of two communicating stores.

When a client store wishes to initiate a remote evaluation the following actions occur.  First, the client
store is stabilised and secondly a request message is constructed containing both the code and parameters of
the request.  The message is tagged with a unique sequence number.  This number may be a simple counter,
however it must be derived in such a way that the same number will be generated should the store roll back
and the message rebuilt.  Such a counter is easily constructed in a persistent environment.  Finally, the client
store sends the request message to the server store and the client remains blocked awaiting an
acknowledgment message.

Upon reception of the request the server store builds a process instantiation containing the code and data
from the request.  This process is entered upon the dispatcher queue of the server system, but is tagged so
that it is not eligible for execution.  Some post processing code is added to the stabilise and roll back
mechanisms to explicitly traverse the dispatcher queue and enable execution of these processes once they
have finished.  Once placed on the queue, the server store is stabilised and an acknowledgment message
tagged with the same number as the request is sent back to the client store.  Once the store has stabilised the
remote evaluation is eligible to run.

If in the future the client store rolls back it will do so to the point just before the message is sent.
Therefore the server store will receive a duplicate message.  The server will recognise the duplicate by its
tag.  The server can then simply discard the duplicate message secure in the knowledge that it is already
processing the request.  If the converse occurs, and the server rolls back, a duplicate acknowledgment will be
received by the client which can also be safely discarded.

7. Conclusions

An inter-store communication mechanism has been described which although simple is extremely powerful.
We have shown how such a mechanism may provide inter-store communication which is useful yet obviates
the necessity to permanently link communicating stores.  We believe that any requirement to make
stabilisation of communicating stores permanently dependent on one another is unrealistic, especially in a
geographically distributed environment.  We therefore adopt the federated stores approach and propose a
mechanism which uses copy semantics for transmission of both code and data.



We have proposed a syntactically simple interface for interstore communication.  It is type safe and
efficient due to the power of first class procedures, parametric polymorphism and the Napier88 type system.
It permits arbitrary amounts of code and data to be transmitted between stores.  This in turn allows highly
specialised, customised interfaces to be constructed using a basic communication mechanism.  The
mechanism is enhanced by the Napier88 environment facility which allows an exported procedure to
dynamically bind to data in a remote store.  It is this facility which makes the proposed mechanism
considerably more powerful than existing mechanisms which, in most cases, force static binding.  Another
interesting feature of the mechanism is that no special type checking of the transmitted code and data need
take place.

At the time of writing this paper, this system is still so called slide-ware.  That is, it has not been
implemented.  However, an architecture which supports multiple client processes connected to a central
server is currently being constructed at The University of Adelaide.  We intend to implement the mechanism
described in this paper as an adjunct to this architecture.
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