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Abstract

In this paper, operating system support for persistent
systems that execute on conventional hardware
architectures is examined.  The focus of the paper is to
examine the inadequacies of traditional operating
systems as vehicles for the construction of persistent
systems.  We concentrate on four major areas, namely:
addressing, stability and resilience, process
management and protection.  We examine the
consequences of making the operating system kernel
itself persistent.  We conclude by outlining the
requirements which must be met by future operating
systems designed to support orthogonal persistence.

1. Introduction

Over the past ten years much research effort has been
expended in attempting to build systems which provide
orthogonal persistence [1, 3, 5, 6, 7, 8, 16, 27].  The idea
behind persistence [12] is simple: all data in a system
should be able to persist (survive) for as long as that data
is required.  Orthogonal persistence means that all data
may be persistent and that data may be manipulated in a
uniform manner regardless of the length of time it
persists.  In this sense persistent systems provide a
uniform abstraction over storage.  Orthogonal persistence
is not found in contemporary operating systems, nor in
most programming languages or database systems.  In
these systems, long lived data is treated in a
fundamentally different manner from short lived data.
Traditionally, long term data is maintained in a database
or file system and short term data is managed by a
programming language.

A number of experimental systems supporting
orthogonal persistence have been constructed [4, 10, 20,
31].  These usually provide a large store within which
concurrent processes may manipulate persistent data.  In
some of these systems, the stores contain all data
including procedures, graphics objects, processes and their
associated state.  A common feature of persistent systems
is that the persistent stores supporting them are both
resilient and stable.

Stability is the ability of a system to be consistently
checkpointed on a secure medium so that computation
may resume from that point at some future time.  If a
system is resilient then it can safely resume computation
after an unexpected system crash such as a power failure.
It is possible to have stability without resilience. For
example, with some programming systems, state may be
preserved (in a file) using a “save” command but
consistency may be lost in the event of a system crash.
After the system has stabilised, all data is guaranteed to
be consistent and reside on stable storage.  Resiliency is
usually achieved by making store updates non-destructive;
this is generally implemented using logging [11] or some
shadowing technique [26].

If persistent systems are to be anything other than
research vehicles, they must be both stable and resilient.
The persistent systems which exhibit these properties and
that have been constructed to date, with a few exceptions
[19, 33], have been constructed on top of traditional
operating systems.  Existing operating systems do not
provide an ideal platform for the development of
persistent systems.  This is not surprising since this was
never part of their design goals.  Indeed, most operating
systems have files as their only abstraction over long
term memory.

Tanenbaum [38] has listed the four major components
of an operating system as being memory management,
file system, input-output and process management.  The
nature of these four components is different in persistent
systems.  In a persistent system, the functionality of the
file system and memory management are replaced by the
persistent store.  In many operating systems, input-
output is presented using the same abstractions as the file
system; clearly this is not appropriate in a persistent
environment.  Some persistent systems require that the
state of a process persists; this is not easily supported
using conventional operating systems.  It is therefore to
be expected that an operating system designed to support
persistence will have a different structure from a
conventional operating system and will provide a different
set of facilities.



We can summarise the principal requirements of such
an operating system as follows:
i. The major requirement is support for persistent

objects as the basic abstraction.  Persistent objects
consist of data and relationships with other
persistent objects; the system must therefore
provide a mechanism for supporting the creation
and maintenance of these objects and relationships.
This mechanism should be based upon a uniform
addressing scheme used by all processes to access
objects.  That is, all processes share a single
logical address space.  This is essential for
orthogonal persistence.

ii. A further requirement is that these objects must be
both stable and resilient.  The system must
reliably manage the transition between long and
short term memory transparently to the
programmer.

iii. Processes must be integrated with the object space
in such a way that process state is itself contained
within persistent objects.  The importance of this
is that processes themselves become resilient.

iv. Although the persistent store is uniform, there is
still a requirement to be able to restrict access to
objects for the same reasons that file systems
contain access control mechanisms.  Any
operating system supporting persistence must
therefore provide some protection mechanism.

We term an operating system that provides these
facilities a persistent operating system.  The aim of this
paper is to set the groundwork for the design of such an
operating system.  The major constraint that we wish to
place upon ourselves is that the operating system should
run on conventional architectures such as Sun
workstations.  Such a hardware configuration has many
advantages as a platform:
• The performance of these systems is increasing

dramatically every year due to the massive
investment of the hardware vendors.

• These architectures are highly available.  It is
therefore easy to disseminate research results by
providing copies of the system to interested
parties.

• Should commercialisation become a possibility in
the future, a totally software platform is easier to
market than a solution including specialised
hardware as has been found with the REKURSIV
[22].

The effects of this constraint are that on most current
architectures addresses are a maximum of 32 bits long,
there is no hardware support for object protection and the
only memory management hardware available is based on
fixed sized pages.

In the following sections, we examine some existing
persistent systems with respect to the four requirements
listed above and discuss some of the approaches taken in
supporting these facilities on top of conventional
operating systems.  This will provide a basis for the

design of a persistent operating system.  Finally we
examine the problems associated with the transience of
kernel structures and examine the consequences of making
the kernel itself persistent.

2. Support for persistent objects and
relationships

Conventional operating systems expect to support
processes which only access short term data in directly
addressable physical or virtual memory.  Long term data
is held on backing store and cannot be directly addressed.
In contrast, systems which provide orthogonal persistence
treat all data identically as persistent objects.  This leads
to a requirement that objects must be addressed uniformly
and moved between long and short term storage in a
manner that is transparent to the application programmer.

Several approaches have been taken to solve this
problem.  In Brown's stable store [15] two address spaces
are managed: a local process address space in which
objects may be directly accessed by machine instructions
and a software supported persistent address space; objects
are transparently moved from one to the other on demand.
This requires software address translation between local
address spaces and the persistent address space;  this
software address translation can never be made as efficient
as hardware address translation.  However, the impact of
the cost of address translation in persistent systems is not
clear due to the lack of sufficient measurement.

Another approach is to utilise paging mechanisms
which are more efficient because they make use of
hardware address translation.  This approach, however, has
two problems.  Firstly, no operating system constructed
to date provides sufficiently flexible mechanisms to
exploit the hardware facilities to their full potential.
Mach [9] and Chorus [36], for example, do provide
considerable flexibility in managing virtual memory but,
as we will show later, do not deliver all the required
functionality.  Secondly, addresses supported by the
conventional hardware to which we have chosen to
constrain ourselves are not large enough for extremely
large stores.  We do not intend to directly address the
latter problem in this paper, instead the reader is referred
to Rosenberg et al [34].

2.1. Software address translation

The first object systems to be called persistent [14, 18]
did not rely on any support from the hardware or
operating system other than the provision of a file
system.  In this section, for illustration purposes, we will
concentrate on one of these persistent object management
systems, the CPOMS [16].  The CPOMS is the
persistent object management system used to support the
Unix PS-algol [2] implementations.

The persistent store implemented by the CPOMS is a
large heap with objects being addressed using persistent
identifiers known as PIDs.  Normal pointers are
traditionally referred to as local object numbers or LONs.
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Figure 1: Looking up a PID in the PIDLAM

Since PIDs are pointers to objects outside of the
program's address space, the objects to which they refer
cannot be directly addressed by a PS-algol program.  PIDs
are identical in size to the normal pointers used by the
PS-algol run time system but are distinguished by having
their most significant bit set.  Attempts to dereference
PIDs are trapped and invoke the software translation
mechanisms, whereby the object is fetched into memory
and the PID is replaced by the appropriate LON; this
activity has become known as pointer swizzling.

In order to prevent more than one copy being made of
an object, a data structure called the PID to Local Address
Map (PIDLAM) is kept.  When a PID is first used and
the object to which it refers is copied, the PID is entered
into the PIDLAM along with the LON of the copy.
Therefore, if the PID is used again, the LON of the copy
can be found from the PIDLAM and used in its place as
shown in Figures 1 and 2.
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Figure 2: Overwriting a PID by a LON

The CPOMS address translation mechanism is
relatively simple: a PID is divided into two parts: a
segment identifier and an object number within that
segment.  Each PS-algol database is implemented using
two Unix files: a data file and an index file.  For each PS-
algol database, the objects are stored in the data file which
is composed of one or more segments.  The index file
maps database object numbers to addresses within the

corresponding data file.  Thus when a PID is encountered,
the appropriate segment identifier is mapped to a
particular database.  Next, the database object number is
calculated using the segment identifier and the object
number within the PID.  This number is used to address
the database index file which yields the address of the
desired object in the database data file.

Although relatively simple, this mechanism tends to
be slow for two reasons: firstly all the address translation
is performed in software, and secondly persistent object
accesses involve several file seek and read operations.
The second of these two problems may be addressed using
memory mapping techniques as discussed in the
following section.

2.2. Memory mapping techniques

2.2.1 Using SunOS memory mapped files

Support for persistence in the Napier88 system [28]
has, to date, been provided using two different techniques
[15, 16].  The first uses a much simplified CPOMS
approach, the other uses SunOS memory mapped files.
We will discuss this second implementation here.

The Stable Store which implements a resilient
persistent address space as discussed in section 3.2.2 is
maintained in a single, fixed length Unix file as shown in
Figure 3.  Using the SunOS system call mmap , the
whole file is memory-mapped to a single virtual memory
address range at an address map_start.  The useable
address space begins at data_start and extends to the end
of the file.  Reading a persistent address x constitutes
accessing the contents of address map_start + x in the
virtual memory of the executing process.  The fetching of
the appropriate page from disk is transparently handled by
the operating system mapping mechanism.
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Figure 3: The memory mapped Napier88 store

This technique allows the store to be coded at a higher
level by utilising the existing operating system support
for virtual memory to abstract over disk access.  This
approach, however, gives less control over the time at
which pages are actually written to disk.



2.2.2 Mach and Chorus

Mach [9] and Chorus [36] provide greater control over
virtual memory in that both provide support for
programmable page fault handling.  In both systems, the
user is permitted to provide a process which services page
faults.  This process is known as an external pager in
Mach and as a mapper in Chorus.  Since the Mach and
Chorus communities use different terminology for what
is essentially the same abstraction we will arbitrarily use
the Mach terminology henceforth.

Both systems support an abstraction over memory
called a memory object.  Memory objects may be mapped
into the virtual address space at any address.  Both
systems provide default mechanisms for the management
of memory objects, for example a default pager which
implements classical demand paging to a swap region.  A
user, however, may provide a manager for a memory
object using an external pager.  External pagers must
conform to an interface specified by the kernel and are
responsible for handling memory management requests
from the kernel.  For example, in response to an action
by the swapper, the kernel may remove a page from
physical memory and notify the external pager of its
action.  In this case the kernel will call the external pager
interface function memory_object_data_write with
suitable parameters.  The external pager must deal with
this page in some suitable way.  The external pager
interface provides enough functionality to allow page
level access control over memory objects.

This mechanism may be exploited to implement stable
stores.  For example, at the University of Adelaide, the
Mach external pager mechanism has been used to support
a coherent distributed persistent address space [24, 41].  In
this system, a centralised store may be accessed by client
processes distributed around a local area network in a
manner similar to the systems described by Li [25] and
Henskens [23].

2.3. Conclusions

In the previous sections we have attempted to show a
progression of persistent address translation techniques
ranging from purely software approaches through to the
utilisation of hardware made possible using systems such
as Mach and Chorus.  The trend in operating system
support has been to make more of the functionality
provided by the hardware available to user applications.
Indeed, much of the contribution of operating systems
like Mach and Chorus could be considered to be finding
suitable abstractions over the base functionality provided
by the hardware.

The software approaches tend to be slow but permit
the implementation of address spaces which are larger
than the virtual address space size supported by the
underlying hardware.  The need for large address spaces
has lead some designers to adopt hybrid approaches which
use both pointer swizzling and hardware address
translation, for example [29, 42].

The memory mapping abstraction provided by SunOS
permits regions of the file space to be mapped into virtual
memory and accessed transparently.  However, this
mechanism was not designed to support large address
spaces such as those found in persistent systems.  This
leads to problems, for example the SunOS memory
mapped file implementation of Napier88 suffers from the
problem of slow start up times due to the operating
system's eager construction of large virtual address maps.

We have indicated how Mach and Chorus both provide
external pager mechanisms which permit the
implementation of an application specific pager.  Once
again, this mechanism was not designed to support large
persistent address spaces.  Both these systems are deficient
in that they do not permit total control over the virtual
address space.  In particular, in both systems it is the
kernel that selects pages to remove from the process'
address space when physical address space becomes short.
This functionality causes many problems for the
persistent system implementor who may be using
memory in complex ways unknown to the kernel.

The systems described in this section demonstrate that
it is possible to support a persistent system using
standard paged address translation hardware.  Mach and
Chorus have shown that it is possible to provide useful
abstractions over this hardware and this is seen as their
main contribution to this field.

The developers of persistent systems do not want to be
burdened with the task of managing the complexity of
external pagers.  Instead, a persistent operating system
should provide the higher level abstraction of a resilient
persistent address space which can be implemented within
the operating system directly utilising the address
translation hardware.

3. Stability and resilience mechanisms

The requirement for resilience is not peculiar to
persistent systems; the same problem occurs with
conventional file systems.  For example, most operating
systems provide limited recovery features such as fsck in
Unix.  However, the problem is perhaps more acute with
persistent systems.  In a conventional file system each
file is essentially an independent object.  Therefore, the
loss of a single file following a crash does not threaten
the integrity of the overall system. In a persistent system
there may be arbitrary cross references between objects
and thus the loss of a single object can result in total
system failure.  In this sense the problem of recovery
within a persistent store is much more closely related to
recovery in database systems [11].

Early persistent stores such as POMS [18] and the
CPOMS [16] were constructed using conventional file
systems with no special features.  Since the underlying
file systems offered no explicit support for persistence,
and for stability in particular, techniques similar to those
developed for database systems were used.  The persistent
store was implemented as a series of databases against



which a program could apply transactions.  As described
above, such databases corresponded to individual files as
provided by the operating system.  A record of
transactions was maintained in a transaction log, which
allowed them to be either commited, thus changing the
state of the database, or rolled back, thus returning the
database to some previous stable state.  To apply
modifications to the database a commit operation had to
be invoked by the program.  The persistent store was thus
partitioned in an unnatural way to provide correspondence
with files, and details of this partitioning remained visible
to the user.

The advent of memory mapped files allowed the use of
virtual memory technology in accessing the filestore.
This facilitated the use of shadow paging [26] as a means
of ensuring store integrity.  Many of the later systems are
based on this technique [15, 35, 39, 40].  It is therefore
instructive to examine this approach in order to establish
the requirements of a persistent operating system.

3.1  Shadow paging

Resiliency requires that the persistent store evolves
from one consistent state to another atomically. That is,
in the event of a system failure, all the changes are either
recorded or the system recovers to the previous stable
state. A number of techniques have been developed for
achieving stability, particularly in the context of database
management systems [13, 16, 22, 26, 35, 39, 40]. The
techniques differ in their efficiency with regard to the
particular application area. However, there are two basic
requirements. They are:
• the ability to perform an atomic update operation,

and
• the ability to identify the old data and new data

prior to the stabilise operation.
In order to explain how atomic update may be

implemented we will assume the following:
i. There is a mapping table from virtual persistent

store addresses to physical disk addresses (such an
address map is required in systems where the
virtual address space is not mapped in 1-to-1
correspondence with the physical address space).
All the data in the system can be found using this
mapping table.

ii. On system start up and after each stabilise
operation a new copy of the mapping table and the
data is made.  Updates are made to these copies.
That is, the old data is never overwritten.  Such a
system is unrealistic since the copy operation is
too expensive but it will serve as a model for
explaining atomic update.  We examine some
actual implementations and it will be seen that an
efficient implementation is possible.

Prior to a stabilise operation there are two sets of
mapping tables and data - the new updated one and the one
representing the state of the system at the previous
checkpoint.  Challis' algorithm [17] uses two fixed

blocks with known disk addresses that usually record the
two previous stabilised states of the system.  These are
known as the root blocks.  The root blocks contain
information that allows the system to find the mapping
table for a stabilised state.  The root blocks record the two
previous stabilised states.

Each root block also contains a version number that
enables the system to determine which contains the most
recent state.  This version number is written twice as the
first and last word of the block.  The atomic update
operation entails overwriting the root with the oldest
version number, and a pointer to the new updated
mapping table.  The space occupied by the old stabilised
state may now be reused.

Challis' algorithm depends upon two critical points for
safety.  Firstly an error in an atomic update can only
occur if the root block is written incorrectly.  It is
expected that if a disk write operation fails during the
atomic update it will inform the system which can then
take appropriate action immediately.  If, however, the
failure is more serious, the technique depends upon the
version numbers at the start and end of the root block
being different in order to detect failure.

On system startup the root blocks are inspected.  If the
version numbers are consistent within the root blocks,
the most up-to-date version of the system can be found.
If not, only one root block may have different version
numbers at any one time unless a catastrophic failure has
occurred, which in any case would have other
implications for the integrity of the data.  Thus, subject
to the above proviso, the correct stable data can be
identified.

Assuming that an atomic update can be performed by
this mechanism we return to the question of making
efficient copies of the data.  There are a number of
different techniques that have been implemented and we
now examine a selection of these.

3.2. Implementations using shadow paging

3.2.1 Thatte's recoverable virtual memory

Thatte [39] has proposed a recoverable virtual
memory as the basis of a uniform memory abstraction for
object-oriented databases.  With Thatte's scheme, each
page on the disk is in one of two forms, called singleton
and sibling.  Singleton form is used for pages unlikely to
be modified and is represented by a single copy of the
page on disk. In the sibling form two disk blocks are
allocated to the page.  When a page is written to disk a
timestamp is written with the page, either in the page
header or in the page table.  The timestamps are derived
from a reliable continuously running counter.

The essence of the scheme is that at any time a
checkpoint operation may be initiated.  This saves the
current state of the system in a consistent manner.  The
time of the last checkpoint is recorded in a root page
which is written in a secure manner.  When a write fault



on a singleton page occurs, if the timestamp of the disk
copy is earlier than the last checkpoint then it must be
converted to sibling form and the modified page is written
to a new disk block.  Otherwise the singleton page is not
part of the previous checkpoint and may be freely
modified.  A write fault for a sibling page results in the
most recent of the two disk blocks which is still part of
the checkpoint state being retained and the other page
overwritten.  In addition, at any time a sibling may be
converted to a singleton (in order to conserve disk space)
provided the timestamps of both disk blocks are before
the last checkpoint.  In this case the older of the two
blocks is discarded.  On a checkpoint, a transient root is
created in the store.  This contains the current state of the
processor registers so that, following a failure, they may
be restored as at the last checkpoint.

The above rules guarantee that for any page there will
always be a copy of that page on disk as at the last
checkpoint (if it existed).  These checkpoint pages are not
overwritten until a new checkpoint has been established.
This new checkpoint will become the current checkpoint
only when the root page is updated. This may be
performed in an atomic operation using Challis'
algorithm as described above.  Following a system crash
the system is rolled back to the checkpointed state by
restoring the processor registers from the saved transient
root object.

Thatte does not describe the operation of the page
tables in such a system.  It is not clear where they reside
(in the store or outside of the store) or how free space is
managed.  This is a key issue, since following a crash we
must ensure that no disk pages are lost.  The only
mention of the page tables is the suggestion that the
timestamps may well be held in the page tables
themselves.  This would seem to be quite expensive since
the timestamp is 64 bits and thus the page tables would
be very large. In addition, for sibling pages two such
timestamps (as well as two disk addresses) are required,
further increasing the size of the tables.

The major difficulties with Thatte's scheme seem to be
the size of the page tables and the extra disk space required
to maintain the sibling pages.  For siblings where the
timestamp of both pages is before the last checkpoint, the
older of the two pages is wasted space.  As Thatte points
out it is possible to recover this space by converting the
pages to singletons but there is some cost associated with
such a task.

3.2.2.  Brown's stable store

The current implementation of Brown's store divides
the disk storage into two regions as shown in Figure 3.
The first contains the current version of each page and the
second, called the shadow area, contains a copy of the
original version of each page modified since the last
checkpoint.  On the first modification of any page
following a checkpoint, a copy of the page is made on a
disk.

The system does not take advantage of virtual memory
page protection to detect the first write to a page, instead
a call to the store interface function can-modify precedes
any attempt to modify an object in the persistent virtual
address space.  If this is the first such update to the
corresponding page since the store was last in a stable
state, a copy of the page (called a before look) is made in
the shadow region before permission to modify is granted.
In addition, a data structure called the written bitmap is
altered to record the fact that a shadow copy of this page
currently exists, preventing multiple shadows.  When the
new version of the page is eventually written back to the
store, it is written back to its original location.  In this
way, the new state of the store is built by overwriting the
contents of the old, but the old state can be completely
restored from the shadow copies should a failure occur
between checkpoints.

A checkpoint takes place by copying every modified
page back to disk and then clearing the shadow region.
Following a crash the last checkpoint state can be re-
instated by using the pages held in the shadow region and
the written bitmap to restore all modified pages to their
original states.

It should be noted that a failure to correctly call can-
modify on each write may result in incorrect operation of
the checkpoint mechanism.  In this sense Brown's scheme
can only be used with trusted systems.

The major difference between Brown's scheme and the
scheme implemented by Thatte is that Brown maintains a
before look and uses this to recover the data following a
crash; the other scheme creates an after look leaving the
original data unmodified.  The major advantage of a before
look is that the original order of the data is preserved,
thus maintaining any existing locality within the data and
potentially improving sequential access and access to very
large structures.  The cost is the overhead of copying
pages before they are modified and the maintenance of the
disk-based written bitmap.  Similar clustering can be
achieved using an  after look technique as suggested by
Lorie in his original paper.

3.2.3.  Adelaide's coherent persistent address
space

The system built at the University of Adelaide uses the
Mach external pager.  Objects in the store are addressed
using virtual memory addresses, meaning that address
translation hardware may be exploited.  The system uses
an after look shadow paging scheme to provide store
stability, with the first modification of a page being
detected by the address translation hardware.

In this architecture, a number of clients execute against
a shared stable store using a coherency protocol that
guarantees data integrity.  The frequency of checkpoints in
any one client is reduced by maintaining a record of those
clients which must be considered dependent upon one
another due to the fact that they share modified pages.



Only clients which are considered to be dependent on one
another in this fashion need be stabilised together.

A central stable store server maintains information
regarding the distribution and modification status of pages
held by the clients; among this information is a record of
which clients are dependent on each other.  Interdependent
clients are termed associates and a set of mutually
dependent clients is called an association .  Each
association has a corresponding page list, which identifies
those pages modified by members of the association since
their previous stabilisation; this information is used to
incrementally build the associations.

A mapping is maintained that maps the address of a
virtual page to its location in stable memory (i.e., disk).
This mapping table is called the Logical to Physical map
(L-P map).  As shown in Figure 4, each entry in the L-P
map contains three fields: the physical page location of
the stable version of the page, the location of the shadow
copy of the page (if one exists) and a single bit selecting
which entry holds the address of the stable page.  Since
the L-P map must be robust, it is stored within the
persistent store which it manages.
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Figure 4:  The L-P map.

The stabilisation protocol is as follows: the modified
pages are first written from the persistent address space to
their shadow location on disk.  In the normal course of
events, modified pages may also be delivered to the stable
store by the coherency mechanism if there is insufficient
space for them within a client’s physical memory.  These
pages are also written to their shadow locations and are
regarded as having been written back as part of this
stabilisation.  After all modified pages have been written
to their shadow sites, the remainder of the stabilisation
must be synchronised with any other stabilisations which
have reached the same stage.  The stabilising
association’s page list is then traversed (recall that this

holds the list of all modified pages which are to be
stabilised during the current stabilisation) and the
selection bit is flipped for each of these pages to indicate
that the shadow version is to be used as the current
version once the stabilisation is complete.  Next, the L-P
map entries containing modified selection bits are written
back to the appropriate shadow locations.  Like the other
systems described in this paper, in this system, the store
is described by the contents of one of two header pages
and Challis’ algorithm is used to move from one stable
state to another.

It is possible for several independent stabilisation
operations to be in progress at any time since, by
definition, a client can only ever belong to one
association.  Consequently, pages from more than one
stabilisation may be written to the stable store
concurrently.  However, care must be taken to ensure that
the stable store moves from one stable state to another in
an atomic fashion.  In practice, the final stages of
stabilisation must therefore be serialised.  In particular,
the L-P map can only make one flip at a time.

3.3.  Conclusions

The checkpoint operations used to move persistent
stores from one stable state to the next have been a
problem for their implementors.  Checkpointing the
entire store at once as required by Thatte and Brown's
schemes may have a detrimental effect on system
performance because no store accesses may occur during a
stabilise operation.  However, the duration of stabilise
operations may be minimised by ensuring that they occur
frequently and that few modifications have occurred since
the previous checkpoint.  Such a strategy also has
implications on system performance because a stabilise
operation involves disk accesses.  Ideally it should be
possible to stabilise parts of the store separately, while
still allowing other parts of the store to be used.  This
approach has been described above using lists of
dependent clients called associations.  Desirable operating
system features to support the partitioned checkpointing
of distributed server persistent stores are unclear, and are
the subject of current research.

Like the problems encountered in address translation,
the majority of problems in using conventional operating
systems as platforms to support stability and resilience
revolve around the abstractions provided by the operating
system.  We have shown that memory mapped files
provide convenient mechanisms for accessing objects
within files.  However, if the system is to be made
resilient, objects cannot destructively overwrite their
original versions on disk.  Therefore the operating system
mechanisms for flushing pages of a memory mapped file
back to disk cannot be used.  This results in much
complexity being added to the code which supports
resilience.



As we stated in section 2.3, a persistent operating
system must provide a resilient persistent address space as
a basic abstraction.

4. Process management and protection

Persistent systems provide a large persistent store in
which all data resides.  All processes execute against this
store, meaning that it is necessary to ensure that a process
may only access data for which it holds access
permission.  Failure to provide a protection mechanism
could therefore result at best in the loss of privacy, and at
worst in rogue or erroneous processes corrupting data
owned by other users.  Conventional systems such as
Unix [30] implement two levels of protection of data; file
level protection using three tiered control over
read/write/execute access, and process level protection
using control of access to process address spaces.

File level protection is of little use in a persistent
system where all data is represented as objects directly
addressable by processes.  Therefore, all protection must
be provided at the process level.  Indeed, it is common to
find data encapsulated within processes, modules, abstract
data types and other language constructs in persistent
languages.  However these schemes rely on the security
of trusted system components such as compilers.

Originally, operating systems for hardware platforms
supporting paged virtual memory, provided heavyweight
processes, each running in its own address space and
associated with a particular user.  Such processes
communicate with each other using various IPC
mechanisms ranging from stream based systems (pipes
and sockets) to shared memory and signals.  The
heavyweight process paradigm clearly does not meet our
requirements which state that the persistent address space
should be shared by all processes.

More recent operating systems, have added support for
lightweight processes called threads, which operate within
a single shared address space.  These are more appropriate
to our model but are all associated with the same user and
they share the same protection privileges.  All threads
have access to the entire address space and it is therefore
possible for one thread to accidentally (or deliberately)
corrupt the data of another.  When a thread requests a new
segment to be mapped into its address space it
immediately becomes accessible by all other threads
sharing that address space.

A second problem with the process model supported
by existing operating systems is that, unlike the file
system, there is no notion of persistence.  The process
state is maintained in transient memory and in the event
of system shutdown or failure this state is lost.  In order
to implement any form of persistence the programmer
must provide explicit code to checkpoint the state of the
process.  This problem of the non-persistence of
processes extends itself to login/logout time and results
in many operating systems having a proliferation of
startup files (e.g.  login.com, .login, autoexec.bat, etc.)

which effectively rebuild the process environment each
time the user logs on to the system.  It should also be
noted that they only rebuild a statically defined
environment; they do not recreate the dynamic
environment of the user at the time of the last logout.

The dichotomy between temporary and permanent data
found in conventional operating systems also manifests
itself in the synchronisation primitives provided.  Two
distinct sets of synchronisation mechanisms are usually
provided.  The mechanisms supported for transient data
are low-level, providing little support for transactions,
roll-back, and stability.  Conversely, the synchronisation
mechanisms which operate on permanent data are more
sophisticated but are intimately bound to the file system
model.  Despite this sophistication there is usually little
support for atomic update, making the development of
alternative data models above the file system difficult.

4.1 Conclusions

We have examined the process models available in
operating systems constructed to date.  There appear to be
two different problems associated with processes.  The
first of these is support for a single shared address space;
this is solved by the light weight thread model.  The
second problem is support for protection at the process
level; this is a more difficult problem and there are four
different solutions:
i. The use of type secure languages and trusted

system components such as compilers which
strictly enforce protection rules.  This restricts the
class of systems which may be supported, for
example persistent C++ systems could not be
safely used.

ii. A second approach is to provide store level
protection.  For example, MONADS [32] provides
protection based on capabilities.  However, store-
level protection requires some architectural
support; this requirement is incompatible with our
desire to implement a system on conventional
hardware.

iii. Another approach is to implement multiple
persistent address spaces.  Adopting this approach
gives a coarse grain of protection – processes
either have total access to the address space or
none at all.  This may be acceptable where
multiple independent persistent systems are
desired.  However, this approach is also
incompatible with our requirements.  It should be
noted that with this approach it would be essential
to have some global communication mechanism
to allow processes operating in separate address
spaces to cooperate.  Such mechanisms have been
described elsewhere [21].

iv. A final approach is to associate a page protection
list with each thread;  in such a scheme, the page
protection map is changed on a context switch.  In
this manner, the threads would share a single



address space but may have their access restricted
on a per page basis.  This would result in
performance penalties on machines with virtually
addressed caches and would increase the overhead of
a thread context switch.  Although this
mechanism does not provide access control at the
object level, it does provide finer grain control
over accesses than scheme iii.

It is apparent that none of these approaches fulfils the
requirements stated in Section 1.  In order to construct a
persistent operating system on conventional hardware
some compromises must be made.  Approach iii permits
the persistent operating system to support stores larger
than the hardware supported address spaces.  Approach iv
has the advantage that it supports some level of
protection within a persistent address space.  A persistent
operating system for stock hardware should support a
combination of approaches iii and iv, permitting multiple
address spaces with process based controlled access to
pages.

5. Making the kernel persistent

Traditionally the operating system kernel is composed
almost entirely of ephemeral data structures.  These data
structures have been regarded as structures for which it
makes no sense to reason about their persistence.  Kernel
instances have been regarded as conceptually immortal and
the bootstrap sequence has evolved to recover from those
cases when this assumption is invalid.  Most kernels
maintain little or no state in stable storage; kernel and
operating system subsystems are generally configured
using static configuration files.  Except by intervention
of the system manager, these files do not change from
one instance of the kernel to another and certainly do not
change whilst the kernel is executing.

However, recent operating system developments such
as network file systems have forced the operating systems
to maintain persistent data structures.  For example, the
lock manager daemon, lockd, which is used to manage
file locks under NFS [37], must keep a list of peers with
which it must re-establish contact whenever it is
activated.  This is necessary so that the otherwise
stateless NFS file system can recover state embodied in
file locks.  The benefits of persistence for applications
programming are equally applicable to kernels.  If the
kernel is itself made persistent, then utilities like those
mentioned above would require no special code in order to
preserve their states between system invocations.

Traditionally, the kernel is the custodian of process
state; this state resides in the saved register contents for a
process and in other kernel structures such as scheduler
queues, open file descriptors and network connection
structures.  The information is held within the kernel
primarily for security reasons.  If processes are to be
persistent objects, it is essential that the execution state
of a process reside within the persistent store.  If the
kernel is itself persistent, that is all the data structures

maintained by the kernel are persistent, then the process
state information may be held within the kernel and be
persistent.  Thus the provision of a persistent kernel has
the advantage that its satisfies one of our requirements
without compromising security.

Trap handling is one of the most basic functions
provided by kernels and is pivotal to their operation.  In
conventional systems, traps are fielded by the kernel and
subsequently delivered to user processes.  Unix has
provided such functionality with signal, VMS with
AST 's, and Mach provides the ability to receive traps
through a message from the kernel.  However, none of
the existing mechanisms provides any method by which
reliable delivery may be achieved.  Since stabilisation of a
persistent space may take place asynchronously with
respect to the execution of some user process, it is
possible for a trap to be generated before stabilisation and
yet be delivered after stabilisation.  This creates a timing
window in which the state information describing the trap
only resides within the kernel.  Therefore, this
information would be lost in the event of a system failure
unless stabilised with the total persistent system.  With
the provision of a persistent kernel this is not a problem.

6. Conclusions

Based on our experience in implementing persistent
systems, we have demonstrated that current operating
systems do not provide an appropriate platform for
building persistent systems.  This is not surprising since
they are based on an abstraction which is completely
foreign to the ideals of orthogonal persistence.  This
naturally leads to the conclusion that an operating system
expressly designed to support orthogonal persistence is
required.

Using current operating systems, the implementor of a
persistent system must manage the address translation
tasks.  Systems constructed to date demonstrate that it is
feasible to construct a persistent system on conventional
architectures.  A persistent operating system will provide
an abstraction consistent with our requirements as a
fundamental building block.

Intrinsically a persistent operating system  would be
capable of providing all the functionality of traditional
operating systems.  The research issues are those same
issues which compromise the implementation of
persistent systems when conventional operating systems
are used as a platform, namely: addressing, resilience,
process management and protection.

One of the requirements is that a persistent store
should be both stable and resilient.  Again such stores
have been successfully constructed on conventional
operating systems but only with considerable difficulty
and some loss of efficiency due to lack of control over
memory management.  A persistent operating system
must support intrinsically resilient persistent address
spaces.



Our requirements for processes are largely met by the
lightweight process model.  In order to support some
persistent languages, it is necessary to provide persistent
processes; this can be achieved by maintaining all process
states within the store itself.

We have identified four mechanisms which may be
used to enforce protection in persistent systems.  Two of
these appear to be unacceptable because they are either
overly-restrictive or require specialised hardware.  None of
these schemes fully satisfies our requirements. However,
a combination of the other two schemes suggests a model
combining multiple persistent address spaces with page
level protection.

We have suggested that the benefits afforded by
persistence are as equally beneficial to the kernel as to
application software. In fact it may be observed that
making the kernel itself persistent has benefits to the
implementation of the overall operating system.  The
construction of such a reflective kernel raises interesting
research issues in itself.

It is only by the careful examination and understanding
of the requirements of persistent systems that it is
possible to define the interface to a persistent operating
system.  We view this paper as a preliminary and
essential step towards the construction of a persistent
operating system.
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