
An Integrated Approach to the Generation of
Environments from Formal Specifications

Alan Dearle, Michael Oudshoorn, Karen Wyrwas

Department of Computer Science
University of Adelaide
S.A., 5005, Australia

{al,michael,karen}@cs.adelaide.edu.au

Abstract
This paper describes an experiment in the
use of a persistent object store to support
the construction and execution of a software
development environment. This
development environment presents the user
with language specific editors which
provide access to incremental parsers. The
editors and parsers are automatically
generated from a formal language
specification based on attribute grammars.
This is facilitated through the persistent
management of types and values and a
dynamically callable compiler. We
demonstrate that the provision of a
persistent object store gives the system
designer more freedom and that this leads to
the construction of novel software
architectures.

1 Introduction

The majority of software engineering tools
currently available tend to be large and do not
integrate cleanly with one another. This lack of
integration stems from the lack of integrated data
storage abstractions provided by the platforms on
which they are constructed. Usually, persistent data
storage is limited to byte streams (files). Some
application platforms provide direct access to
databases; however, in these systems, there is
often a dichotomy between the data types provided
by the long-term storage manager and the data
types provided by the application language.

In a system which supports o r t h o g o n a l
persistence [2], values of any data type may persist
and thus outlive the execution of a program. Under
such circumstances, it is no longer necessary for
the programmer to treat long-term and short-term
data structures in different ways. Thus, the
introduction of orthogonal persistence removes

many of the discontinuities inherent in most
programming systems.

In 1991, the Persistent Integrated Programming
Environment (PIPE) project began work in two
areas:

1. the construction of an integrated support
environment for persistent programming,
and

2. an investigation into the efficacy of a
persistent object store as a base
technology for an in tegra ted
programming environment.

Other points of interest are the effectiveness of
parametric polymorphism, reflection and the
provision of a compiler that may be invoked at run
time. These features are all available in Napier88
[23], our chosen implementation language.

Initially, a hyper-programming system was
constructed in which arbitrary values from the
object store may be bound to program source [18].
These values may include other program fragments
in systems like Napier88 that support first-class
procedures and functions. Hyper-links [10] to
program documentation are also supported in the
PIPE system. Documentation may contain hyper-
links to other documentation or program fragments.
Thus the programming environment is composed of
two intermixed graphs consisting of values
(including other program fragments) and
documentation. An object browser [9, 19] is
supplied which permits the programmer to navigate
the persistent environment to find reusable software
components.

Editors in the PIPE system are language
specific, providing feedback to the programmer
regarding syntactic and semantic errors in the
program being developed. At least two editors are
required in the PIPE system: one to support
documentation and one to support a programming

language. Rather than developing a collection of
editors with domain specific knowledge coded into
them, a family of editing tools has been developed
which share components. Each editor consists of a
substrate providing basic text editing facilities
upon which a language specific interface is
constructed. The language specific code is partially
generated and partially parameterised. This paper
focuses on the construction of the PIPE editors,
showing how a persistent environment aids their
constructions.

The language specific PIPE editors are directly
generated from a formal definition of the
corresponding programming or document
description language. This is illustrated in Figure 1
below. The language is defined using an attribute
grammar description written in the Attribute
Grammar Description Language (AGDL).

A PIPE editor provides the user with language
specific editing functions and an in-built
interactive parser allowing free text entry with
incremental syntactic and semantic checking.
Internally the parser and editor manipulate a
canonical language representation consisting of
attributed trees via a set of tree manipulation
functions generated from from the AGDL
specification. Since the types of attributes are
potentially different for each language, these trees
are parameterised and must be specialised for each
language.

Attribute Grammar Description

Parser Generator

Parser

Attribute Grammar
Tree Functions Generator

Functions:
constructors,

attribute evaluators,
selectors,

pretty printer

Grammar
Representation

Attribute Grammar
Parser

Parameterised
Canonical

Representation

PIPE Editor

uses

uses

uses

constructs/
manipulates

Figure 1: The PIPE editor architecture.

The outline of this paper is as follows; Section 2
contrasts various technologies for describing
programming languages and justifies the use of
attribute grammars. Section 3 describes how a
language is specified in the PIPE system. The
persistent platform upon which PIPE is constructed
is the subject of Section 4. The implementation of
the PIPE system is described in Section 5. We
conclude with an evaluation of the persistent
platform upon which the system is constructed.

2 Language Definitions

In order to generate the language specific PIPE
editors, it is necessary to have a complete
definition of the programming language. We would
like this language definition to be simple to read
and write, to encourage language designers to use
it. In this section, we explore the various options
open to us.

2.1 Lexical and Syntactic Components

A definition of a programming language has many
facets, including the definition of the lexical
components of the programming language and the
definition of the syntactic structure of a program in
the programming language. These features are
well understood and discussed below.

The lexical components of most modern
programming languages are simply the keywords of
the language and structured elements such as
strings, comments and identifiers.

Tools such as lex [21] typically require the
explicit listing of each of the lexical elements of a
programming language and the corresponding token
which must be returned to the parser. The structure
of tokens such as strings and identifiers can also be
specified with lex.

The syntactic elements are often defined using
tools such as yacc [13]. Such tools employ BNF or
a variant to define the syntactic structure of the
programming language. BNF is a well understood
and well defined formalism for the definition of the
syntax of programming languages. As such, there
is no need to depart from convention and we will
choose to adopt BNF as the vehicle for the
presentation of this aspect of the language
definition.

When tools such as yacc are combined with
other tools like lex, there is a need to establish a
clearly defined interface between the tools. In the
case of lex and yacc, this is achieved by both tools
listing the tokens that can be passed from the

scanner to the parser. In the framework of this
project, such an interface is artificial and
unnecessary. Instead, the lexical components are
implicitly specified by delimiting keywords of the
language with single quotation marks. This only
leaves the specification of the special structured
lexical elements within the programming language.
These elements include such components as
strings, identifiers, real numbers and so on. Their
structure is specified via a regular expression using
special symbols to indicate acceptable characters
such as any lower case letter, any digit and so on.

From such a definition it is possible to generate
the corresponding lex and yacc definitions
automatically [24] and hence employ the existing
technology. However, our desire to produce a
modern sophisticated environment which includes
a language sensitive editor and an incremental
parser requires that the semantic information be
included the language definition.

2.2 Semantic Definition

The definition of the semantic component of the
programming language is the most difficult. It is
the aspect of the language definition with which
the greatest dissonance exists. There are several
candidate techniques; each of these techniques has
a close following but no single technique is
demonstrably better than the others in most
situations. Each of the techniques has a niche
market, and we must consider the usefulness of
each approach in the context of the software
engineering environment. Several candidate
techniques are evaluated below.

2.2.1 Denotational Semantics and VDM

Two common semantic description techniques are
denotational semantics [25, 26] and VDM [3].
These techniques describe the semantics of a
programming language through the manipulation of
an information structure model. In the case of
denotational semantics, the information structure
model is based on a collection of mappings. In
VDM, a model of the underlying architecture
together with collection of mappings and
predicates must be constructed. Such techniques
are valuable and well suited to particular
application domains, however, they are of little
benefit to us here. A formalism is required which
is simple to learn and amenable to automatic
generation. Both denotational semantics and VDM
fail in this regard in that they require high levels of
mathematical sophistication in order to read and

write the specifications. Furthermore, the need to
define the underlying computational model via the
definition of appropriate mappings renders both
techniques inappropriate.

2.2.2 Hoare Axiomatics/Natural Semantics

Hoare axiomatics [11, 12] and natural semantics
[14] are approaches to programming language
definition which involve the establishment of
inference rules which define the semantics of a
programming language. These inference rules may
be used to construct program correctness proofs or
symbolically execute a program in the case of the
Centaur system [4]. These techniques are powerful
and valuable in the appropriate context, but do not
lend themselves to the generation of language
sensitive editors and compilers.

2.3 Attribute Grammars

Attribute grammars [1, 20] provide yet another
approach to the definition of programming
language semantics. They describe the syntax of a
language together with the static semantics. An
attribute grammar is basically a context-free
grammar describing the syntactic clauses of the
language, and this grammar is augmented with the
semantic information in the form of attributes.
Each symbol of the context-free grammar has a set
of associated attributes. Attribute values are
defined by attribute evaluation rules associated
with the productions of the context-free grammar.
These rules typically specify the value of a
particular attribute as a function of other attribute
values within the production. There is also a set of
attribute assertions or predicates associated with a
production which restrict the range of valid
attribute values at the production. These assertions
must all hold true for a program in the specified
language to be semantically correct.

Programs in the language described by an
attribute grammar are parsed to produce an
attributed tree. Each node of the tree will
correspond to a production in the attribute
grammar, and will be labelled with a set of
attributes, one for each attribute associated with
the production. Values are assigned to the
attributes by traversing the tree and executing the
attribute evaluation rules associated with the
defining production at each node. These values are
then checked against the production's attribute
assertions to ensure that the program is
semantically correct.

Attribute values at a node in the tree may be
obtained from an attribute value of one of its child
nodes, thereby allowing information to travel up
the tree towards the root. This type of attribute is
said to be a synthesized attribute. Attribute values
may also be propagated down the tree, from a
parent node to its children. These are known as
inherited attributes. Typically, a symbol in the
grammar will have both synthesized and inherited
attributes associated with it. In summary, a
synthesized attribute attached to a node contains
information concerning the subtree at that node.
Inherited attributes are used to express the
dependence of a language construct on the context
in which it appears.

Attribute grammars are simple to understand
and require minimal training before a novice is
capable of writing their own. Consequently,
attribute grammars satisfy the requirement that the
approach be simple. Attributes also have a well
defined evaluation scheme which frees the user
from the need to define an underlying architecture
and evaluation mechanism. The lexical
components of a programming language may be
extracted directly from an attribute grammar
description of the language (except for the
structured lexical component such as comments
and strings). Hence the language designer is
relieved from the need to specify the syntactic
components and a mapping from the abstract
syntax to the concrete syntax as is the case with
some formalisms such as denotational semantics.

Attribute grammars have one significant
drawback in that they are inadequate for defining
the dynamic semantics of programming languages.
In the particular application domain in which we
are working this deficiency is of little consequence
since we do not require that the editors execute
programs. Therefore attribute grammars were
chosen as our specification vehicle and a language
was developed for this purpose. This language is
discussed in the following section.

3 Attribute Grammar Specification

A specification of a language consists of three
files: the formal specification written in the
Attribute Grammar Description Language (AGDL)
described below, a file specifying the concrete
types to be used in the implementation, and a file
containing an implementation of any auxiliary and
predicate functions used in the specification.
These files are checked for consistency and
correctness by the AGDL system which generates a

collection of types, functions and data structures
that are used by the editing tools.

The format of an AGDL specification is as
follows:

1. Type definitions
2. Constant and attribute declarations
3. Auxiliary function definitions
4. Predicate function definitions
5. Attributed productions.

A complete AGDL description for a simple
expression language is given in the Appendix. The
names and types of all attributes used in the
specification must be declared at the start of the
specification. For example, the description of a
simple attribute grammar might start with the lines,

types envir, TYPE, string
attribute E1, E2 : envir

which specify that the types envir , TYPE and
string may be used in the specification and that the
attributes E1 and E2 are of type envir. Within an
AGDL specification no meaning is placed upon
any of these names other than that imposed by the
auxiliary functions and predicates. These functions
are used to construct attribute values and to check
these values for correctness. Auxiliary and
predicate functions are described below. The
equivalence rule for types within an AGDL
specification is strict name equivalence. This
provides a type system within AGDL that is
powerful yet simple. AGDL does not contain any
base types; this is in sharp contrast to other
language specification languages such as those
used by GAG [17] and the Synthesiser Generator
[22]. These provide base types and a limited set of
constructor functions within the specification
language. The interpretation of types in AGDL
specifications is provided by a user defined type
definition file which must be supplied to the AGDL
system before the specification may be processed.
This types definition file may contain any number
of Napier88 type specifications. Napier88 type
definitions in this file must form a one to one
correspondence with the AGDL specification. For
example, a type definition might exist in this file,
such as the one below, which specifies that the
concrete representation of the AGDL type envir is
a list of nametype pairs.

type binding is structure(name : string ; type :
int)
type envir is list[binding]

This approach was adopted for several reasons.
Firstly, the AGDL specifications are kept simple –
a complex type system adds a large amount of
baggage to any language. The provision of a
minimal type system in AGDL (name equivalence
with no base types) made it possible to rapidly
implement it. Secondly, we felt that the adoption
of a simple type system such as the one provided
by the Synthesiser Generator would lack sufficient
expressive power for describing modern languages.
Although it is possible to specify almost any
programming language, this usually requires the
type system to be simulated in the specification.
The extra complexity introduced by having to
interpret data structures in the specification often
obscures the specification. Lastly, a language with
a state of the art type system, including type
polymorphism, abstraction and parameterisation
was readily available in Napier88. This made it
unnecessary to duplicate the effort in constructing
another similar type system.

The auxiliary function definitions define the
signatures of auxiliary functions used in the
specification. Similarly, the predicate function
definitions contain the signatures of predicates that
may be used in the specification. The bodies of the
predicates and auxiliary function are omitted from
an AGDL specification. Like the type definitions,
they are specified in Napier88 in a separate file.
For example, there might be a definition of an
append function which allows a name-type pair to
be added to an environment in the AGDL
specification as follows:

aux append(string, TYPE, envir → envir)

The following Napier88 function, might be used to
specify the body of a p p e n d in the auxiliary
functions implementation file. It appends a new
cell to the front of the environment list denoted by
envir.

let append = proc(s : string ; typ : int ;
envir : envir → envir)

AddToFront(binding(s, typ), envir)

This function must be checked for consistency with
the auxiliary function definition in the specification
and with the Napier88 type definitions. This keeps

the AGDL specification simple and increases the
expressiveness of functions.

define <defs> ⇓ E1 ⇑ E3

→ 'let' <name> ⇑ N '=' <lit> ⇑ T

<defs> ⇓ E2 ⇑ E3
where
E2 := append(N, T, E1)
pred
~nameDefined(N, E1)

Figure 2: An attribute grammar production.

A typical production from an attribute grammar
specification written in AGDL is shown in Figure 2.
The keyword define introduces each rule in a
language specification. The rules, in common with
those written in BNF, have a production name
which appears on the left hand side of an arrow
symbol. All production names may have associated
with them an arbitrary number of attributes.
Whether an attribute is inherited or synthesized is
specified using the symbols ⇓ and ⇑ respectively.
As in BNF productions, the right hand side of an
attributed production consists of a number of
alternatives separated using a vertical bar (|)
symbol, with each alternative consisting of number
of terminals and non-terminals. Symbols on the
right hand side may have an arbitrary number of
attributes associated with them. The values of
synthesized attributes are specified using where
clauses. These make use of the auxiliary functions
defined at the start of specification. For instance,
the example shown in Figure 2 makes use of the
auxiliary function append.

A list of predicates may be associated with
every alternative in a production. For example, in
Figure 2, the predicate nameDefined is used. These
predicates must be satisfied in any legal sentence
of the language being described.

4 Implementation Platform

The environment described above is implemented
using the Napier88 language system. Before
describing the implementation of the AGDL
system, three novel features of the Napier88
system must be described; namely: environment
support for the management of types and values
and a dynamically callable compiler. These
features are described below.

4.1 Type Environments

Napier88 programs typically consist of a large
number of type definitions followed by some
procedure definitions. These type definitions are
often common to a number of separate compilation
units that make up an application. Rather than
repeatedly compile the type definitions, the
Napier88 compiler supports a facility known as
type environments. Type environments permit type
definitions to be compiled using an interface to the
Napier88 compiler and stored in the persistent store
for later use. This ability has three distinct
advantages. Firstly, the programmer is assured of
having a consistent set of type definitions.
Secondly, compilation is considerably more
efficient since the compiler does not have to re-
parse type definitions and reconstruct potentially
complex type representations. Lastly, dynamic type
checking is more efficient since all instances of a
type refer to a single representation. This permits
the efficiency of name equivalence to be obtained
in a system which supports structural equivalence
[6].

Type environments are implemented using two
modules from the Napier88 compilation system: a
symbol table module and a types module. The
symbol table module maintains the data structures
required for identifier handling in the compiler. In
practice, type environments are little more than
symbol tables with appropriate information stored
in them. The types module provides a complete set
of selector, constructor, equivalence and iterator
functions that operate on type representations [5].
Type representations are implemented as a highly
structured graph containing all the information in
the original type declaration.

The types module is implemented as an
abstract data type which provides a complete
collection of functions that manipulate type
representations. The Napier88 compiler makes use
of this module to construct, manipulate and
compare representations during compilation. The
constructor functions are primarily used at compile
time to construct type representations. The selector
functions are primarily used by the compiler in
order to perform tasks such as the discovery of the
types of fields of records and arrays. One strict
equivalence predicate EqualType is provided, and
is used both by the compiler and at run-time.
Another predicate IsType is provided that allows
the class of a type to be discovered, for example

whether the type represents a record, a procedure
or an array.

4.2 The Environment Data type

The persistent store permits locations containing
program fragments to be accessed during the
program construction process. In Napier88, this
mechanism is provided by a data type called
environment [8]. All environments belong to the
same infinite union type, denoted by the type name
env . Environments are collections of bindings
which may be extended or contracted under
program control. For each binding contained in an
environment, the Napier88 system maintains an
identifier, a value, a type and a constancy
indicator. By manipulating the bindings in
environments, the user can control the name space.
An operation called scan is provided which iterates
over an environment allowing a user to discover
the names, types and constancy of values stored in
it. Used in conjunction with the persistent object
store, environments provide a repository for
arbitrary values including program fragments.
Programs which wish to use these values may bind
to them dynamically or at compile time.

4.3 The Callable Compiler

Napier88 provides a compiler that is dynamically
callable; this may be used to introduce new
executable program fragments into a running
program. The type of the compiler is shown in
Figure 3 below.

callable : proc(InputEnv : env;
compEnvir : list[env];
typeEnvir : list[typeEnv];
output : proc(string)

→ any)

Figure 3: The compiler interface.

The parameters to the compiler are as follows: the
first parameter is an environment which must
contain procedures to deliver a lexeme stream to
the compiler. The procedures in this environment
deliver symbols from either a data structure in the
persistent store or from the file system. The second
parameter compEnvir , is a list of environments
which may contain arbitrary bindings. If the source
program uses names of bindings in these
environments, the resulting compiled code will
contain bindings to the corresponding values
contained in them. This facility allows compile

time bindings to be made to values. As discussed
above, the third parameter allows a set of type
declarations to be passed to the compiler. Finally,
the output parameter is used by the compiler to
display compiler error messages. The compiler
returns an object of type any – an infinite union
type which may contain an arbitrary value.

5 Editor System Implementation

5.1 AGDL Parsing

The first phase of generating tools using the AGDL
system is to parse the AGDL specification. The
parser performs syntactic and semantic checking of
the specification passed to it; these checks include
the following:

1. The consistency of attributes associated
with non-terminal and terminal symbols
is checked. Wherever a symbol is used
within a production, the type, number
and direction (whether synthesized or
inherited) of the associated attributes
must be checked for consistency with the
definition of that symbol.

2. Each alternative within a production rule
must be composed of the following:
• exactly one definition of every

left hand side synthesized
attribute,

• exactly one definition of every
right hand side inherited attribute,
and

• no definition of left hand side
inherited attributes.

A definition may be explicit, in a where
clause, or implicit when the attribute
appears as a synthesized attribute of a
terminal or non-terminal symbol in the
right hand side of the rule.

3. Auxiliary functions and predicates must
be type checked. Wherever the functions
are used, the attributes passed as actual
parameters must correspond to the formal
parameter types. When auxiliary
functions are used, the attribute to which
the value is assigned must be of the
same type as the return type of the
declared function.

4. All types, attribute names, auxiliary
functions, predicates, terminal and non-
terminal symbols used must be defined.

The AGDL parser produces three major data
structures; these contain all the information in the

AGDL specification in addition to some tree
related information synthesized by the parser. The
first of these is a table which maps a production
name in the attribute grammar onto the concrete
syntax of the corresponding production; this table is
called concreteSyntax. The second data structure is
a table of all the auxiliary and predicate functions.
Lastly the main table produced by the parser is
called bnfNames and contains information about
nodes, visit sequences [15, 16], attributes,
dependencies and many other details extracted
from the AGDL specification. Using this
information, a parser and attributed tree generator
may be constructed for the specified language.

5.2 Verification

The second phase of the generation process is
verification. In this stage the AGDL specification is
checked for consistency with the Napier88 type
definitions contained in the attribute type
declarations file. The Napier88 type declarations
are compiled and stored in a type environment. The
resulting type environment, together with the set of
type names extracted from the attribute grammar
specification by the AGDL parser, are then
checked to ensure that the type environment
contains a type declaration for each of the given
type names. In addition, this program synthesises a
single attribute type which is a variant type
comprising the union of individual attribute types.
This type is used to decorate the attribute trees
used in the PIPE editors. This process is shown in
Figure 4.

Attribute Grammar
Specification

type
names

<type names>
<attribute decls>
<constant decls>

<aux function decls>
<pred function decls>

<rules>

AGDL Parser

AGDL

Attribute Type
Declarations

type envir is List ...

Napier88

Napier88 Compiler

AGDL
Data Structures

Attribute
Type Environment

Attribute type
environment

FINAL

PASS or FAIL

Consistency check
and synthesize
attribute variant

Figure 4: Generating an attribute type

environment.

5.3 Processing the Auxiliary and Predicate
Functions

The third user-supplied file for a given attribute
grammar is a Napier88 program which defines the
bodies of the auxiliary and predicate functions used
in the attribute grammar specification. This file is
executed to produce a Napier88 environment
containing the functions. The AGDL parser extracts
from the attribute grammar specification the
signatures of all the aux and pred functions. These
are checked against the functions in the
environment to verify that a corresponding
Napier88 version has been declared, and that the
types are consistent. This is achieved using the
Napier88 types module and the iterator provided
over environments. Firstly, the expected Napier88
type is constructed for each AGDL auxiliary and
predicate function and stored in a table called the
expected types table. This is achieved by applying
constructor functions from the types module. For
example, if the following auxiliary function is
defined:

aux append(string, TYPE, envir → envir)

the system will first lookup the concrete type of
AGDL type s tr ing in the type environment
produced as shown in Figure 4. Similarly the
concrete types of the AGDL types TYPE and envir
are looked up. Finally, the procedure type

constructor from the types module is applied with
the concrete types as parameters to produce a type
representation for the following Napier88 type:

proc(string, int, list[binding] → list[binding]
)

A Napier88 function of this type called append
must be contained in the auxiliary and predicate
environment for the specification to be consistently
implemented. The types of the functions in the
environment are checked against those in the
expected types table using the environment scan
function. On each iteration, the expected type and
the actual type are compared using the EqualType
predicate from the types module.

5.4 Specialising the Tree Type

Since the type of an attribute tree is dependent on
the type of the attributes in the language
specification, some type parameterisation of the
trees used by the PIPE editors is required. This is
achieved in the AGDL system by parameterising
the type of the attribute trees. This
parameterisation is implemented by constructing a
single type environment containing a
parameterised type. Section 5.2 described how a
variant attribute type is generated for a particular
grammar. This type is now used to specialise the
parameterised attribute tree type, as illustrated in
Figure 5. The resulting specialised attribute
grammar tree type is then inserted into a type
environment which will be available for use in
constructing higher level attribute grammar tree-
based tools.

Generic Tree
Type Declarations

type Node[att] is ...

Napier88

Napier88 Compiler

Specialised Tree
Type Environment

Attribute type
environment

FINAL

Tree Specialisation
Code

type thisNode is
 Node[Attribute]

Napier88

Napier88 Compiler

Tree Type
Environment

Figure 5: Generating the specialised type.

5.5 Generating a Specialised Interface

The AGDL system contains an environment of
generic procedures and functions which operate
over attributed trees. For example, this
environment contains a function createNode which
creates a new attributed tree node. The type of this
function is as follows:

proc[att](→ Node[att])

which states that this is a polymorphic function
with type parameter att and that it returns a Node,
also parameterised by the type att. These functions
are used by the higher level tools such as editors
and compilers. However, before they may be used
they must be specialised to operate over trees with
attribute types which are specific to a given
attribute grammar.

A file which is hidden from the user contains
the source code to specialise these polymorphic
functions to a particular concrete representation of
the type att. This file is compiled whenever a new
AGDL language specification is processed. The
compiler is supplied with the concrete
representation of the attribute types by passing it
the type environment produced in Figure 4. The
resulting procedure is evaluated to produce an
environment containing the specialised tree
manipulation functions. This process is shown in
Figure 6.

Napier88 Compiler

Environment containing
specialised tree functions

Attribute type
environment

FINAL

Tree Functions
Specialisation Code

proc(→ env)
 in e let createNode =

 createNode[Attribute]

Napier88

evaluate

Environment containing
polymorphic tree functions

Figure 6: Generating the specialised interface.

5.6 Formulating aux and pred Calls

In addition to the generic tree manipulation
functions described above, some language specific
functions must be provided. For example, the

generic tree evaluator visits every node in an
attribute grammar tree and evaluates the attributes
in a pre-defined order using the auxiliary functions.
During this visit sequence, the predicate functions
are evaluated to determine if the tree complies
with the specification. This presents a problem
since the types of the auxiliary and predicate
functions are potentially different for each
language processed. For example, the functions
may have an arbitrary number of parameters, each
having arbitrary type.

There are two solutions to this problem: either
the evaluator must comply with the types of the
auxiliary and predicate functions or the types of the
auxiliary and predicate functions must be
predictable. The first solution requires that a tree
evaluator be generated for each language; this is
relatively complex and was therefore avoided. The
second solution may be adopted by encapsulating
predicates and auxiliary functions in adapter
functions which make them all the same type. If
this can be achieved, a general purpose evaluator
may be written. This approach has been adopted in
the AGDL system.

As stated above, each of the auxiliary and
predicate functions have a potentially different
type. However, the concrete implementation of
these types is stored in the expected types table as
described earlier. Furthermore, from the AGDL
specification, it is possible to deduce the context
in which the auxiliary and predicate functions are
used and from where their parameters are
delivered. Therefore the auxiliary and predicate
functions are encapsulated in procedures with a
single parameter (the current tree node) and no
return value, that is they are side effect driven.
These procedures have knowledge of the locations
in the attributed tree from which to extract
parameters required by the encapsulated functions.

Napier88 Compiler

Environment containing
aux and pred functions

evaluate

Napier88
Executable Procedure

AGDL
Data Structures

From
Attribute Grammar

Specification

Array of aux/pred
function calls

(used by the tree evaluation function)

Specialised Tree
Type Environment

Aux and pred function calling code

proc(n : thisNode)
n(where)(j) :=

basetype(n(children)(3)(attributes)(2) ...

Napier88

Generate
Encapsulated
Procedures

aux and
pred calls

Figure 7: Generating aux and pred function calls.

In order to compile these procedures, the compiler
must be supplied with the type of the attribute tree
and the auxiliary and predicate functions
themselves. The former is provided via the
specialised tree type environment produced in
Figure 5. The latter is provided by supplying the
compiler with the Napier88 environment containing
the executable auxiliary and predicate functions.
Once compiled, the encapsulated function calls are
placed in a table in the persistent object store.
This process is shown in Figure 7.

5.7 Binding the Interface Functions

The final stage in generating the set tree interface
functions for a particular attribute grammar
involves binding the attribute grammar-specific
data to the wrapped auxiliary, predicate and
specialised tree functions. The AGDL parser
generates a number of Napier88 data structures that
are accessed by the specialised attribute grammar
tree functions. For example, a table of node
information is output by the parser comprising
node-specific details for the given attribute

grammar. Indexed by an integer denoting the node
type, the node information table is used by the tree
functions to determine such details as the number
and types of attributes stored at the node, how
many child nodes are allowed, and the visit
sequence information which determines the most
efficient order of attribute evaluation at the node.
In this way, the code in the attribute tree functions
does not need to incorporate attribute grammar-
specific information. This process, illustrated in
Figure 8, is achieved by passing all of the separate
components to a procedure which makes the
appropriate bindings.

Environment containing
specialised tree functions

AGDL
Data Structures

Bound Specialised
Tree Functions

bind

Array of aux/pred
function calls

From
Attribute Grammar

Specification

Figure 8: Binding the interface functions.

The tree functions produced in Figure 8 above
comprise a complete set of selector, constructor,
parsing and evaluator functions. As such, they
provide all the necessary functionality required by
the PIPE editors.

5.8 Interface with Editors

The PIPE text editor is constructed in two layers.
The lower layer provides generic text editor
functionality and has been developed from the text
editor provided by the Windows In Napier (WIN)
toolkit [7]. The editor is implemented as an
abstract data type providing functions such as
searching, cutting, pasting and insertion. This
layer also handles screen management and is
capable of displaying an editor buffer to the user.

The language specific layer is constructed
above the basic text editor. This layer makes use of
the functions constructed as shown in Figure 8.
Since the type of these functions is dependent upon
the type of the attributes stored in the attribute
trees, the editors must also be polymorphic. In
practice, the generic PIPE editor is implemented
as a generator which has a single type parameter,
namely the type of the attribute union type. In
addition to the type parameter, the generator must

be supplied with the complete set of tree
manipulation functions.

7 Conclusions

Integrated programming environments and systems
embodying orthogonal persistence both aim to
remove discontinuities in the software development
process. In the case of integrated programming
environments, the discontinuity removed is that
between the separate tools which have to be
invoked. Orthogonal persistence also removes
discontinuities by treating long and short-term data
structures in a uniform manner.

The benefits of integration apply to all stages of
the software lifecycle; that is they apply equally
well to the construction of programming
environments as their execution. This paper has
focused on how the benefits of orthogonal
persistence may be applied to support the
construction of integrated environments. The
provision of orthogonal persistence is unobtrusive;
consequently the paper has very little discussion
about orthogonal persistence per se. However,
without the existence of a persistent object store
the approach taken would not be feasible. For
example, it is used to store the tables produced by
the AGDL parser, type representations produced by
the Napier88 compiler, procedures and functions
generated by the AGDL system, and tables used by
the tree evaluators. Without a persistent object
repository, the code that uses these values would
be considerably more complex to write. This
complexity is manifested in the generation of many
software systems which are required to produce and
re-parse data structures stored in a file system.

In addition to the utilisation of a persistent
store, the PIPE system utilises a number of novel
features provided by the Napier88 system. These
are a powerful type system with environment
support, and a dynamically callable compiler. The
provision of these features perhaps influences the
nature of the generation system more than
persistence itself.

The provision of a polymorphic type system
allows generic code to be written that can be later
specialised to operate over values of a generated
concrete type. This feature is especially powerful
when combined with a persistent object repository
in which the polymorphic functions may be stored
and later used by other programs. This allows a
large amount of the editing system to be written in
a generic manner requiring very little code to be
generated. The only executable code generated in

the system are the wrapper procedures used to
encapsulate auxiliary and predicate functions. This
is in sharp contrast to systems such as GAG and
the Synthesiser Generator where the entire systems
are generated.

The callable compiler is used to provide a
further degree of parameterisation which is beyond
the scope of the type system. This is achieved by
compiling a static code template along with a type
environment which has been generated as shown in
Figure 6.

In conclusion, we have found the combination
of orthogonal persistence, type parameterisation
and specialisation, and the ability to examine and
construct type representations dynamically to be
extremely powerful tools for the construction of
integrated software systems.

Acknowledgements

We would like to thank Alex Farkas for his
comments on earlier drafts of this paper and for
drawing the diagrams in the final version. We
would also like to thank our colleagues in the PIPE
project at Flinders University of South Australia
and the Defence Science & Technology
Organisation of Australia (DSTO), especially
Stephen Crawley for his part in the design and
implementation of the PIPE tools. Finally, we
would also like to thank DSTO for their financial
support of the PIPE project.

References

1. Alblas, H. “Introduction to Attribute
Grammars” , At t r ibu te Grammars ,
Applications and Systems, Lecture Notes in
Computer Science , vol 545, Prague,
Czechoslovakia, pp.1-15, 1991.

2. Atkinson, M. P., Bailey, P. J., Chisholm, K.
J., Cockshott, W. P. and Morrison, R. “An
Approach to Persistent Programming”, The
Computer Journal, vol 26, 4, pp.360-365,
1983.

3. Bjoner, D. and Jones, C. B. “The Vienna
Definition Method: The Meta Language”,
Lecture Notes in Computer Science, vol 61,
Berlin, 1978.

4. Borras, P., Clement, D., Despeyrouz, T.,
Incerpi, J., Kahn, G., Lang, B. and
Pascual, V. “Centaur: the system”, 1988.

5. Connor, R. C. H. “The Napier Type-
Checking Module”, University of St

Andrews Technical Report PPRR-58-88,
1988.

6. Connor, R. C. H., Brown, A. B., Cutts, Q. I.,
Dearle, A., Morrison, R. and Rosenberg, J.
“Type Equivalence Checking in Persistent
Object Systems”, Implementing Persistent
Object Bases, pp.151-164, 1990.

7. Cutts, Q. I., Dearle, A. and Kirby, G. N. C.
“WIN Programmers’ Manual”, University of
St Andrews Technical Report CS/90/17,
1990.

8. Dearle, A. “Environments: A Flexible
Binding Mechanism to Support System
Evolution”, Proc. 22nd Hawaii International
Conference on System Sciences, vol II,
Hawaii, pp.46-55, 1989.

9. Dearle, A. and Brown, A. L. “Safe Browsing
in a Strongly Typed Persistent
Environment”, The Computer Journal, vol
31, 6, pp.540-545, 1988.

10. Engelbart, D. C. and English, W. K. “A
research center for augmenting human
intellect”, Joint Fall Conference, pp.395-
409, 1968.

11. Hoare, C. A. R. “An Axiomatic Basis for
Computer Programming”, Communications
of The ACM, vol 12, 10, pp.576–583, 1969.

12. Hoare, C. A. R. “An Axiomatic Definition of
The Programming Language Pascal”, Acta
Informatica, vol 2, 4, pp.335–355, 1973.

13. Johnson, S. C. “Yacc – Yet Another
Compiler Compiler”, Technical Report No.
23, 1975.

14. Kahn, G. “Natural Semantics”, Proceedings
if the Symposium on Theoretical Aspects of
Computer Science , vol 247, Passau,
Germany, Lecture Notes in Computer
Science, 1987.

15. Kastens, U. “Ordered Attributed Grammars”,
Acta Informatica, vol 13, pp.229-256, 1980.

16. Kastens, U. “Implementation of Visit-
Oriented Attribute Evaluators”, Attribute
Grammars, Applications and Systems, vol
545, Prague, Czechoslovakia, pp.114-139,
1991.

17. Kastens, U., Hutte, B. and Zimmermann, E.
“GAG: A Practical Compiler Generator”,

Lecture Notes in Computer Science, vol 141,
Berlin, 1982.

18. Kirby, G. N. C., Connor, R. C. H., Cutts, Q.
I., Dearle, A., Farkas, A. M. and Morrison,
R. “Persistent Hyper-Programs”, 5 t h
International Workshop on Persistent Object
Systems, San Miniato, pp.86-106 1992.

19. Kirby, G. N. C. and Dearle, A. “An Adaptive
Graphical Browser for Napier88”, CS/90/16,
1990.

20. Knuth, D. E. “Semantics of Context Free
Languages”, Mathematical Systems Theory,
vol 2, pp.127-145, 1968.

21. Lesk, M. E. “Lex – A Lexical Analyser
Generator”, Technical Report No. 59, 1975.

22. Minor, S. “A Generic Synthesiser and its
Implementation”, 15th Simula Conference,
Jersey, 1987.

23. Morrison, R., Brown, A. L., Connor, R. C. H.
and Dearle, A. “The Napier88 Reference
Manual”, University of St Andrews
Technical Report PPRR-77-89, 1989.

24. Oudshoorn, M. J. “ATLANTIS: A Tool For
Language Definition and Interpreter
Synthesis”, Ph.D. Thesis, 1992.

25. Schmidt, D. A. “Denotational Semantics: A
Methodology for Language Development”,
Newton, Massachusetts, 1986.

26. Stoy, J. E. “Denotational Semantics: The
Scott-Strachey Approach to Programming
L a n g u a g e T h e o r y ” , C a m b r i d g e ,
Massachusetts, 1977.

Appendix
A simple expression language in AGDL

This appendix describes a simple expression based language using AGDL. Comments are shown in italics.

Introduce some identifiers to represent types used throughout the definition.

types environment, TYPE, string

Introduce some meta-variables to stand for values of attributes of various types introduced
above.

attribute E, E1, E2, E3 : environment

attribute T, T1, T2 : TYPE

attribute N : string

Introduce some constants which are used to represent the types employed by the simple
expression language.

constant real, int : string

Provide the signatures of auxiliary functions and predicates used in the language definition.
Their complete definition is provided in a separate file where they are defined as Napier88
functions and procedures.

aux basetype(string → TYPE)

aux emptyenv(→ environment)

aux lookuptype(environment, string → TYPE)

aux append(string, TYPE, environment → environment)

pred nameDefined(string, environment)

The following rules defined an attribute grammar for the simple expression language.

define <prog> ⇑ T → <defs> ⇓ E1 ⇑ E2
<exp> ⇓ E2 ⇑ T

where
E1 := emptyenv()

<prog> synthesizes a TYPE attribute by passing an environment, E1, to <defs> which returns
a new environment object, E2. This new environment is then provided to <exp> as an inherited
attribute and an object of type TYPE, T, is synthesised. The environment E1 is defined in the
where clause.

define <defs> ⇓ E1 ⇑ E3 → 'let' <name> ⇑ N '=' <lit> ⇑ T
<defs> ⇓ E2 ⇑ E3

where
E2 := append(N, T, E1)
pred
~nameDefined(N, E1)

| empty
where
E3 := E1

<defs> is an optional component of a program in the simple expression language – it is
defined as either a 'let' clause or empty. In the case where it is a 'let' clause, then a string, N,
representing the name of a declared variable is synthesized by <name>. <lit> synthesizes a
value of type TYPE which represents the type of the declared variable. Notice that we are not

interested in the actual value assigned to the name, as our concern is with the static semantics
only. A 'let' clause may be followed by further definitions, hence the recursive use of <defs>
which utilises a new inherited environment E2 and synthesizes a final environment E3. E2 is
defined in the initial where clause as an updated version of the environment E1 which now
records that the name N has been declared as an object of type T. The predicate , introduced
by pred, indicates that the name N has not previously been defined in E1.

The second case (where <defs> is empty), simply indicates that the environment E3 is identical
to the environment E1. In this way the synthesized attribute gains its value.

define <exp> ⇓ E ⇑ T1 → <term> ⇓ E ⇑ T1 <efollow> ⇓ E ⇓ T1

In order to evaluate an expression <exp> an environment is provided and its type is
synthesized. The environment, E, is provided to the <term> and the remainder of the
expression , <efollow>. <term> synthesizes a type, T1, which is provided to <efollow> as an
inherited attribute. <efollow> must ensure that it is type compatible with this TYPE value.

define <efollow> ⇓ E ⇓ T1 → '+' <exp> ⇓ E ⇑ T2
pred
T1 = T2

| '–' <exp> ⇓ E ⇑ T2
pred
T1 = T2

| empty

An <efollow> may take one of three forms – an addition, a subtraction, or an empty clause. In
the case of the addition and subtraction the environment, E, is passed down to <exp> so that
names can be evaluated in their appropriate context, and a TYPE value is synthesized. The
predicates for each of these two cases checks that the TYPEs T1 and T2 are equivalent. In
the case that <efollow> is empty, no work needs to be performed.

define <term> ⇓ E ⇑ T → <lit> ⇑ T
| <name> ⇑ N

where
T := lookupType(E, N)

| '(' <exp> ⇓ E ⇑ T ')'

A <term> inherits an environment, E, in which to interpret names and synthesizes a TYPE
value which represents the type of the term. A term may be either a literal, a simple name, or
a bracketed expression. In the case that it is a literal, <lit>, the TYPE, T, is synthesized. In the
case where <term> is a simple name, <name>, the string representing the identifier is
synthesized. The value of the TYPE object, T, is then defined in the where clause as the value
obtained by looking up the name, N, in the environment, E.

define <lit> ⇑ T → <int>
where
T := basetype(int)

| <real>
where
T := basetype(real)

A literal ,<lit>, may be either an integer or a real value. We are not concerned with the actual
value of the literal, just its type. In each case, we use the auxiliary function “basetype” to define
a TYPE value and synthesize a value, T.

lexical <int>

<int> is a lexical element of the simple expression language being defined.

lexical <real>

<real> is a lexical element of the simple expression language being defined.

