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ABSTRACT 
We believe that to fully support adaptive distributed applications, 
middleware must itself be adaptable, adaptive and policy-free. In 
this paper we present a new language-independent adaptable and 
adaptive policy framework suitable for integration in a wide vari-
ety of middleware systems. This framework facilitates the con-
struction of adaptive distributed applications. The framework ad-
dresses adaptability through its ability to represent a wide range of 
specific middleware policies. Adaptiveness is supported by a rich 
contextual model, through which an application programmer may 
control precisely how policies should be selected for any particular 
interaction with the middleware. A contextual pattern mechanism 
facilitates the succinct expression of both coarse- and fine-grain 
policy contexts. Policies may be specified and altered dynamically, 
and may themselves take account of dynamic conditions. The 
framework contains no hard-wired policies; instead, all policies 
can be configured. 

Categories and Subject Descriptors 
D.2.12 [Software Engineering]: Interoperability – distributed 
objects; H.3.4 [Information Storage and Retrieval]: Systems and 
Software – distributed systems. 

General Terms 
Management, Performance, Design. 

Keywords 
dynamic policy, adaptive, distributed application 

1. INTRODUCTION 
Middleware is becoming increasingly important in today’s infor-
mation society, providing the glue holding together the many dis-
tributed systems and services on which we rely. To quote the call 
for this conference, we believe that middleware infrastructure is 
becoming “more and more heterogeneous and complex”. There is a 
belief by many that we already have enough middleware, and that 
middleware is a solved problem. However, current middleware is 
limited in its ability to support adaptive applications, for reasons 
that will be explained below. As identified in the call, adaptiveness 
cannot simply be added to a system like a plug-in module. In our 
approach, the ability to support adaptive applications forms a core 
part of the middleware architecture. In this paper we focus on the 
wide class of middleware systems based on a synchronous remote 
invocation model, including RPC, RMI and SOA style middle-
ware. 
We observe three trends in such systems: divergence, increasing 
complexity, and lack of flexibility. Recently remote invocation 
style middleware systems have separated into two broad areas—
systems based on the distributed object model (DOM), and service-
oriented systems. It has been argued [1, 20] that service-oriented 

computing is fundamentally different from distributed object com-
puting. Nonetheless, there is no intrinsic requirement for middle-
ware to take a position on which model is adopted for a particular 
application, or indeed to restrict the application to one model. In-
stead, the middleware should be capable of adapting its behaviour, 
dynamically if necessary, to the application requirements. For ex-
ample, middleware should be adaptable enough to allow a re-
motely accessible component to support interaction with both 
DOM-style and service-oriented clients (such as Web Services 
clients) as and when appropriate. 

The trend towards inflexibility is largely an historical accident. 
Most common middleware systems embody fixed policies govern-
ing the interaction between components in a distributed applica-
tion. The application programmer must take account of these poli-
cies at system design time. For example, when distributed applica-
tions are written using object-oriented middleware such as DCOM 
[3], .Net [14], CORBA [16] or Java RMI [6] the programmer de-
cides how the application is to be distributed across multiple ma-
chines and (statically) identifies various categories of application 
classes. These categories include those classes that have the ability 
to be accessed remotely; those that may be transmitted over the 
network; and those that are unable to take part in inter-address-
space interactions. 

The consequence of the above trends is that applications written 
using middleware are brittle and it is difficult to achieve adaptive-
ness. There is no way, for example, for data to be passed by value 
when devices are attached via a high bandwidth connection and by 
reference when poorly connected. Similarly, a space-limited de-
vice cannot request data by reference while a less constrained 
workstation requests data by value. These simple examples demon-
strate the motivation for our work. 

We believe that to fully support adaptive distributed applications, 
middleware must itself be adaptable, adaptive and policy-free. 
Adaptable middleware is capable of being configured to improve 
its suitability for a particular situation or environment. This is es-
sential if applications are to be able to adapt their interaction pat-
terns to circumstances, since they rely on the middleware to per-
form all remote interaction. Adaptive middleware can configure 
itself automatically. This is needed in order to support fine-grain 
adaptation to dynamic circumstances, since by definition this can-
not be addressed by static configuration policies. Policy-free mid-
dleware contains no hard-wired policies; instead, all policies can 
be configured. This is essential if applications are to be permitted 
to adapt over the full spectrum of the policy space. 

In this paper we present a new language-independent adaptable 
and adaptive policy framework suitable for integration in a wide 
variety of middleware systems, supporting the construction of 
adaptive distributed applications. The framework addresses adapt-
ability through its ability to represent a wide range of specific mid-
dleware policies, of which data transmission by value and by refer-
ence are simple examples. 



Adaptiveness in middleware may be characterised as the ability of 
the middleware to make autonomous decisions based on context. 
Such decisions should not be based on fixed rules; instead, the 
programmer should be able to precisely control how policies 
should be selected in any particular circumstance. In the frame-
work described in this paper, these circumstances are described 
using a rich contextual model. A contextual pattern mechanism 
facilitates the succinct expression of both coarse- and fine-grain 
policy contexts. Policies may be specified and altered dynamically, 
and may themselves take account of dynamic conditions. 
We have prototyped this framework in the context of the Java-
based RAFDA middleware system [5]. The examples shown in this 
paper are in Java, but the concepts supported by the framework are 
applicable to any language. 

2. MIDDLEWARE DESIGN ISSUES 
2.1 Design Principles 
In the introduction we advocated the need for flexible and adaptive 
middleware. Such middleware should be compliant [15] with the 
application requirements rather than the application being coded in 
a manner that is compliant with the middleware. The manner in 
which inter-address-space interactions occur should be controllable 
via the specification of policies that may be separated from the 
code. Many of the motivations for this are similar to the arguments 
for Aspect-Oriented Programming (AOP) [11]. Firstly, it is good 
software engineering practice to separate concerns. Secondly, we 
wish to be able to reuse pre-existing code (including library code), 
which precludes changing code in order to make calls into the 
middleware. This also requires that the middleware should impose 
no restrictions on application structure or the type hierarchy of 
application classes. Lastly, as argued above, the middleware 
should be compliant with the application, permitting application 
designers to fine-tune middleware behaviour. Some examples of 
adaptability are inherently data-centric. For example, in some ap-
plication, it may be desirable to pass large objects and small ones 
using different encoding mechanisms. 

Our aim is therefore to create a middleware framework that is 
adaptive, simple, efficient, extensible and programmable. We have 
already discussed the need for adaptiveness. Simplicity requires 
that common policy decisions can be made with little or no pro-
grammer involvement. For example it should be trivial to config-
ure the framework to replicate the policies of conventional distrib-
uted object and service-oriented models. The need for efficiency is 
obvious; highly adaptive but slow middleware systems are unlikely 
to have any uptake—middleware mechanisms therefore need to be 
both tractable and efficient. Extensibility and programmability 
require that arbitrarily complex interactions may be specified, in-
cluding the injection of application programmer code into the mid-
dleware system. 

These design principles could be applied to various middleware 
systems in a number of ways. In our approach we structure the 
adaptive middleware design space as follows: 

• flexibility dimensions: those aspects of middleware behaviour 
where commonly-imposed restrictions are undesirable; 

• policy dimensions: those aspects of middleware behaviour for 
which adaptation is desirable; 

• meta-policy dimensions: those aspects of execution context 
that may be used to determine policy selection. 

The following sections contain a non-exhaustive list of examples 
of each of these sets of dimensions. 

2.2 Flexibility Dimensions 
The dimensions of flexibility represent adaptiveness requirements 
over various aspects of middleware behaviour. Restrictions im-
posed by common middleware systems in these areas limit the 
ability of applications to exhibit adaptiveness. 

One example of such a dimension is that of application distribution 
boundaries. To accommodate adaptation, objects of arbitrary 
classes should be able to participate in inter-address-space calls, 
and be able to be transmitted across the network. This contrasts 
with most middleware systems, as outlined in Section 1. 
Another dimension is in the rules governing type equivalence. 
Most middleware systems use name equivalence when matching 
the types of local and remote objects1. Furthermore, those names 
are bound to statically defined interfaces and classes. Consider the 
example shown in Figure 1: 
class Student extends Person 
 implements Scholar {...} 

Figure 1. Class Student. 
In many middleware systems a remote instance of Student can be 
accessed remotely as a Student, Person or Scholar2. However, if 
some application needs to export instances typed as Human, which 
is structurally compliant with the Student class, it cannot, since 
Student was not defined to extend Human. Clearly, this limits 
adaptiveness since the static definition is often outwith the control 
of application programmer and cannot be changed once the class 
has been defined. One solution to this problem is to use structural 
type matching [4]. Using structural matching, an object may be 
remotely accessed using any type that is compatible with the struc-
ture of the implementing type. 

In general, there are three types with which the programmer is 
concerned: the concrete type of the remotely accessible object; the 
type with which it is made accessible; and the type by which the 
remote object is viewed. Any restriction beyond structural com-
patibility between these types is undesirable. In the previous ex-
ample, if the application programmer has defined a type Human 
after the fact, it should be possible for the Student instance to be 
made remotely accessible using this interface, even though Student 
does not explicitly extend or implement Human. 

A third example of a dimension of flexibility is in the sub-typing 
rules applying to object transmission. In most middleware systems, 
the manner in which values are encoded is dictated by the static 
types defined in the remote interface. For example, using standard 
Web Services, each service method has a statically defined return 
type and can return only objects that are of exactly this type. The 
reasons for this restriction are complex [21]. However, for maxi-
mum flexibility, arbitrary sub-typing should be accommodated, 
allowing sub-types to be returned by interface methods where ap-
propriate. 

2.3 Policy Dimensions 
The dimensions of policy represent the aspects of middleware be-
haviour that can be configured. Again, most middleware systems 
impose significant restrictions on these, limiting application adap-
tiveness. Possible dimensions include: 

                                                                    
1 Some systems are more restrictive than this, e.g. CORBA re-

quires the same IDL to be used on the client and server. 
2 In some systems these classes must extend special interfaces or 

classes such as RemoteObject or MarshalByRefObject. 



• object transmission 
• object encoding 
• object placement 
• security 

The first and most obvious policy dimension is transmission pol-
icy: how objects are transmitted between address-spaces. Possible 
policies include by value, by reference, by move and by visit. In 
most middleware systems the transmission policy is fixed. For 
example, using Web Services transmission of objects is always by 
value whereas in Java RMI the transmission policy is determined 
by the type and interfaces of the object being transmitted. 

A programmer may also wish to apply a specific transmission pol-
icy to part or all of the closure of an object being transmitted. For 
example, some object closure might be passed by value to a given 
depth, and by reference thereafter. Such policies have two potential 
benefits—preventing large object closures from being transmitted 
by value, and obviating the need to copy data from one data struc-
ture to another when it is exported via a service. Hybrid transmis-
sion policies are also desirable, in which objects are passed by 
reference but some fields of those objects are passed by value 
along with the reference and cached by clients. 

Closely related to transmission policy is encoding policy, which 
determines the manner in which values are encoded when they are 
sent between address spaces. For example, an object transmitted by 
value may be encoded using SOAP or as a CORBA IIOP message. 
Even where a single base encoding mechanism such as SOAP is 
used, it may be advantageous to vary the encoding of values in 
certain circumstances. For example, a large array might be base64 
encoded within a SOAP message when transmitted to a peer which 
could cope with such an encoding, with a standard encoding being 
used otherwise. 

The next dimension is placement policy, which controls where 
objects are placed. There are two related aspects: creation policy 
and migration policy. The first of these controls in which address 
space objects are created, the second where, and under which cir-
cumstances, they are migrated. Policies governing these aspects are 
restrictive in most current middleware systems—typically all ob-
jects are created in the same address space as their creator, and do 
not migrate between address spaces. Exceptions discussed in Sec-
tion 5 include [8, 13, 17, 19]; whilst these are flexible with respect 
to placement policy, they do not address all of the policy dimen-
sions discussed here. 

The dimension of security policy encompasses various mecha-
nisms including policies used to control access to objects from 
remote address-spaces and link-level security between hosts. As 
with the other dimensions, for truly adaptive applications it may be 
necessary to vary security policies on a fine-grain basis. 

2.4 Meta-Policy Dimensions 
Meta-policies determine the circumstances in which particular 
policies should be applied. The dimensions comprise the various 
aspects of the execution context that might be relevant in choosing 
the appropriate policy in a given situation. The context varies be-
tween policy dimensions: for transmission and encoding policy it 
is the context of object transmission; for placement policy it is the 
context of object instantiation, and so on. 

For brevity we focus here on meta-policy dimensions for transmis-
sion and encoding policies. Possible dimensions include: 

• the execution environments of the client and server3: for ex-
ample, the client might be a particular version of a web 
browser, or the server might be a web server. 

• the identities of the client and server: for example, an appli-
cation might interact with one server by value because it is a 
conventional Web Services server, and with another using a 
hybrid caching policy which that server supports. 

• the service being accessed: two services provided in the same 
address-space might be configured to behave differently. Con-
versely, an application calling services on two different ma-
chines might wish to interact with each differently in accor-
dance with load, latency, size of data etc. 

• the class of the object being transmitted: this might be used 
to transmit by value all instances of a class known to have im-
mutable fields. 

• the identity of the object being transmitted: this permits pol-
icy to be applied to individual object instances. This might be 
used to treat large objects differently from small ones, or to 
support application-specific caching policies. 

• the name of the parameter/return value being transmitted: 
this allows fine-grain policy to be applied to individual method 
parameters and to the return value. 

• the method being executed: this allows the same policy to be 
applied to all parameters and the return value of a method. 

• the current thread: this allows policy to be applied only to a 
particular thread. This might be used when different server 
threads are being used to service two different applications 
running within a single address-space. 

• the package of the class of the object being transmitted: the 
same policy can be applied to all classes in a package. 

• for objects being transmitted within the closure of another: 

o the type of the original object. 
o the name of the field in the referring object through which 

the current object was reached. 

These dimensions are clearly not mutually independent—for ex-
ample, the class and package dimensions. Rather than aiming for 
absolute minimality, we consider it preferable to support a rich set 
of dimensions, in order to give the programmer flexibility. Given 
the large size of this set, we need mechanisms to enable both 
coarse- and fine-grain meta-policies to be defined succinctly. Key 
to this is the ability to easily specify sensible default meta-policies 
to be adopted in the absence of more specific ones. As previously 
noted, however, these defaults should not be hard-wired into the 
middleware, which should itself be policy-free. 

2.5 Policy Framework Requirements 
Given the approach outlined in this section, the main requirements 
of an adaptive policy framework may be summarised as follows: 

• to allow programmers to select pre-defined policies and to 
specify new ones, within each of the policy dimensions; 

• to allow programmers to define new meta-policies, each speci-
fying a context in terms of one or more of the relevant meta-
policy dimensions, and a corresponding policy; 

                                                                    
3 Our framework may be used in P2P environments. To aid read-

ability we refer to the caller as the client and the callee the 
server. 



• whenever the middleware system is about to perform an action 
governed by policy: to automatically identify the meta-policy 
whose context specification most closely matches the current 
context, and to enact the corresponding policy. 

Our approach is described in Section 4. 

3. USE CASES 
This section gives motivating examples for an adaptive policy-free 
middleware framework, illustrating particular points within various 
policy and meta-policy dimensions. Section 4.2 shows how some 
of these Use Cases can be realised using our framework. 

UC1 A particular node hosts a number of services implemented by 
different objects. All data returned to Web Service clients should 
be transmitted by value, regardless of any conflicting policies 
specified by individual service implementations. Data returned to 
other types of clients should be transmitted by reference. 

 
Figure 2. UC1 - Varying policy by agent type. 

UC1.1 [variant] Data returned to a client instance known to have 
poor connectivity should be transmitted by reference, and by value 
to other client instances. Another potential motivation for this is to 
spread computational load, since an operation invoked on an object 
received by reference will be executed on the server, as opposed to 
locally on the client with by value. 
UC2 An object representing a node in a P2P system exposes two 
different services, ViewNode and ManageNode, with different 
types. Data returned by methods in the ViewNode service should 
be transmitted by value, so that the resulting copy of the data can 
be manipulated freely by the recipient without affecting the P2P 
node. Data returned by methods in the ManageNode service, ac-
cess to which is subject to authentication, should be transmitted by 
reference, so that the original node can be controlled remotely. 

 
Figure 3. Varying policy by service. 

UC3 Instances of class P2PNode, representing nodes in a P2P 
system, should be transmitted by reference to ensure that each 
instance always resides on the host that it represents. To assist in 
error reporting, the value of the key field, containing the node’s 
fixed P2P key, should be cached within the transmitted remote 
reference. This enables the holder of such a reference to access the 
key value even if the node or intervening network fails. 

UC4 All instances of class Person should be transmitted by value; 
data returned by methods in the Directory service should be trans-
mitted by reference, except where this conflicts with the policy for 
class Person. 

UC4.1 [variant] The policy for service Directory should take 
precedence over the policy for class Person. 

 
Figure 4. Sub-graph to be transmitted by value. 

UC5 Each instance of exact type DatabaseWrapper should be 
transmitted by value, together with the objects in its closure to a 
depth of 1. Each instance of type InetAddress, or a sub-type, 
should be transmitted by value, together with its entire closure. 
Each instance of interface type IDatabase should be transmitted by 
reference. The combination of these policies is shown in Figure 4, 
where the dotted line shows the sub-graph that should be transmit-
ted by value with an instance of DatabaseWrapper. 

UC6 In order to constrain bandwidth consumption, each instance 
of type JPEGImage should be transmitted by value if the size of 
the image data is less than 500KB, and by reference otherwise. 

UC6.1 [variant] Each instance of type JPEGImage should be re-
encoded with a higher compression factor before transmission. 
UC7 Instances of class Class should always be transmitted by 
value. Rather than transmitting the state of a Class instance, it 
should be encoded simply as its fully qualified name, enabling the 
equivalent instance to be substituted on the receiving host. 



UC7.1 [variant] Where an instance of class Class is transmitted to 
a host on which the corresponding class is not available, the encod-
ing of the instance should include the bytes representing the class, 
enabling it to be dynamically loaded on the receiving host. 

UC8 By default, arrays that are transmitted by value are encoded in 
a SOAP-compatible format, using a separate XML element for 
each array element. This is a highly inefficient encoding for arrays 
with many small elements. Therefore, a byte array should be en-
coded as a single XML element containing the base64 encoding of 
the entire data. 

4. AN APPROACH TO PROVIDING 
POLICY-FREE ADAPTIVE MIDDLEWARE 
Here we describe our particular approach to providing an adaptive 
policy framework. Section 2.5 listed some general requirements for 
such a framework. To these we add the following more specific 
requirements: 

• policies must be dynamically changeable, meaning that the set 
of policies that are in place may be changed at any point before 
or during application execution; 

• policies must be capable of dynamic decision making, imply-
ing that such policies must be supplied with appropriate infor-
mation about the context in which computation occurs; 

• a client application must be able to control the policies in effect 
on a given server that are pertinent to the client. 

The last requirement arises since the policies in place in a given 
address-space affect only local operations. In the case of transmis-
sion and encoding policy, the local policies affect only outgoing 
transmissions, whether arguments to outgoing calls, or results of 
incoming calls. In order for a client to control the manner in which 
it receives results from calls to a server, it is necessary for it first to 
set the server’s corresponding policy remotely. 

4.1 Policy Management 
Our adaptive policy framework meets the preceding requirements, 
and can succinctly specify all of the Use Cases described earlier. 
This is achieved using the IMetaPolicyManager interface shown in 
Figure 5, which provides methods for setting meta-policies in each 
of the policy dimensions identified in Section 2.3. For brevity we 
focus on the transmission policy dimension—the others are han-
dled in a similar manner. The method setTransmissionMetaPolicy 
associates a particular transmission context with a corresponding 
policy. 
public interface IMetaPolicyManager { 
 void setTransmissionMetaPolicy( 
  String contextPattern, TransmissionPolicy p, 
  boolean matchSubtypes, TemporalScope s); 
 void setEncodingMetaPolicy( 
  String contextPattern, EncodingPolicy p, 
  boolean matchSubtypes, TemporalScope s); 
 void setPlacementMetaPolicy( 
  String contextPattern, PlacementPolicy p, 
  boolean matchSubtypes, TemporalScope s); 
 ... // Other dimensions omitted for brevity. 
 ... // Methods to iterate/remove rules omitted. 
} 

Figure 5. Meta-policy management API. 
A simple pattern language4 is used to specify contexts. The aim is 
that it should be easy to define simple policies, while being expres-

                                                                    
4 Fully specified at http://… [removed for anonymity]. 

sive enough to describe complex, static, dynamic, orthogonal and 
overlapping policies. The pattern language permits a context to be 
described in terms of any number of the meta-policy dimensions 
discussed in Section 2.4. A coarse-grain context, corresponding to 
a wide range of actual situations, is described by specifying details 
for only a small number of dimensions, while specifying many 
dimensions yields a highly specific fine-grain context. An example 
of a coarse-grain context pattern is: 
 object_type=a.b.C, method=d.e.F.m1() 

This pattern would match contexts in which an instance of class 
a.b.C was being transmitted as a parameter to, or as the result 
from, the method d.e.F.m1(). 
The full list of tags is: thread, agent_type, agent_instance, 
parameter, method, service, field, object_type, 
root_type, package. In addition to describing particular values 
for each of the meta-policy dimensions, the pattern language in-
cludes negation and two kinds of wildcard: ‘*’ represents always 
match; ‘-’ represents default. The former matches against the ac-
tual context in all cases, whereas the latter matches only if there is 
no other more specific pattern that would match. Examples are 
given in Section 4.2. 

The API with which particular transmission policies are specified 
is outlined in Figure 6. The base class, TransmissionPolicy, per-
mits simple by reference and by value policies to be named. The 
class ByValueToDepth represents policies where full or partial 
object closures should be passed by value. ByReferenceWithCach-
ing permits the specification of fields and methods to be cached on 
the client side when objects are transmitted by reference—this 
enables smart proxies such as those found in Orbix [9]. 

The final sub-class of TransmissionPolicy is DynamicPolicy, meet-
ing the requirement for dynamic decision making. Unlike the oth-
ers, this class is abstract, permitting application writers to define 
policies providing fine-grain adaptiveness. The getPolicy method 
takes as parameter an instance of TransmissionContext describing 
an actual transmission context. This supplies the implementation 
with sufficient information to be able to dynamically determine the 
appropriate policy based on, for example, caller, size of data or 
other application-specific requirements. It may be considered to be 
a reification [7] of the execution context for a particular object 
transmission. 

The setTransmissionMetaPolicy method in Figure 5 takes another 
two parameters not yet discussed. The first is a flag specifying 
whether sub-type matching should be used when comparing the 
pattern against actual transmission contexts. For example, if true 
for a pattern specifying Person as the object type, then the pattern 
will match when sub-types of Person are transmitted. The final 
parameter specifies the temporal scope of the meta-policy rule. 
Various temporal scopes may be defined, the longest of which is 
INDEFINITE, which establishes the rule until explicitly removed, 
and the shortest of which is CURRENT_CALL, which establishes 
the rule until the inter-address-space call currently being serviced 
has returned. The latter permits adaptive behaviour to accommo-
date transient circumstances. 
public class TransmissionPolicy { 
 public static TransmissionPolicy BY_REF; 
 public static TransmissionPolicy BY_VAL; 
 protected TransmissionPolicy() {...} 
} 
public class ByValueToDepth 
   extends TransmissionPolicy { 
 public static ByValueToDepth FULL_CLOSURE; 



 public int getDepth() {...} 
 public ByValueToDepth(int depth) {...} 
} 
public class ByReferenceWithCaching 
   extends TransmissionPolicy { 
 public boolean isCached(Method method) {...} 
 public boolean isCached(Field field) {...} 
 public ByReferenceWithCaching( 
  Field[] fields, Method[] methods) {...} 
} 
public abstract class DynamicPolicy 
   extends TransmissionPolicy { 
 public abstract TransmissionPolicy getPolicy( 
  TransmissionContext c); 
} 

Figure 6. Transmission policy API. 
The final requirement of the framework, that a client should be 
able to control the relevant policies on a server, can be met by 
making the meta-policy management interface for each address-
space remotely accessible. Such management interfaces must 
themselves be subject to programmer-specifiable security policy. 

4.2 Examples 
In this section we show how selected Use Cases can be pro-
grammed using the adaptive policy framework5. All examples 
assume the prior declaration of manager, referring to the local 
instance of the meta-policy manager. 
UC1 The by value policy for Web Service clients is specified as6: 
manager.setTransmissionMetaPolicy(
 "agent_type=WS, others=*", 
 TransmissionPolicy.BY_VAL, 
 false, TemporalScope.INDEFINITE); 

The agent type identifier WS is matched against that specified by 
the remote client when it makes the call. The others tag is a short-
hand for specifying all of the other context tags. Here the always 
match wildcard is used to ensure that this pattern will always be 
selected for Web Service clients, regardless of other contextual 
aspects such as the thread, the object type, etc. The value of the 
flag is unimportant since no type matching is involved here. The 
default by reference policy is specified as follows: 
manager.setTransmissionMetaPolicy( 
 "all=-", TransmissionPolicy.BY_REF, 
 false, TemporalScope.INDEFINITE); 

Here the default wildcard is specified for all of the contextual as-
pects, using the short-hand all, ensuring that the rule is selected 
only when no more specific rules are applicable. 

UC4 The following call sets a by value policy for all instances of 
class Person or any sub-class. As in UC1, the always match 
wildcards override all other contextual aspects. 
manager.setTransmissionMetaPolicy( 
 "object_type=Person, others=*", 
 TransmissionPolicy.BY_VAL, 
 true, TemporalScope.INDEFINITE); 

                                                                    
5 The full set of Use Cases is explained at http://... [removed for 

anonymity]. 
6 Such policies are commonly required by almost all applications; 

they are specified in configuration files and set by default. How-
ever, we believe that such policies should not be hard-wired into 
the framework and that application designers should have the 
freedom to specify and override them if required. 

A non-conflicting policy for the Directory service is specified as: 
manager.setTransmissionMetaPolicy( 
 "service=Directory, object_type=-, others=*", 
 TransmissionPolicy.BY_REF, 
 true, TemporalScope.INDEFINITE); 

The default wildcard in the object_type element gives the rule 
lower precedence than other more specific rules. Thus the rule will 
be selected only in contexts where the service is Directory and the 
type of the object being transmitted is not Person. 

This precedence order may be reversed, so that results from the 
Directory service are always transmitted by reference while Person 
instances are transmitted by value from all other services, by ad-
justing the wildcards as follows: 
manager.setTransmissionMetaPolicy( 
 "object_type=Person, service=-, others=*", 
 TransmissionPolicy.BY_VAL, 
 true, TemporalScope.INDEFINITE); 

manager.setTransmissionPolicy( 
 "service=Directory, others=*", 
 TransmissionPolicy.BY_REF, 
 true, TemporalScope.INDEFINITE); 

It is also possible to set potentially conflicting policies: 
manager.setTransmissionMetaPolicy( 
 "object_type=Person, others=*", 
 TransmissionPolicy.BY_VAL, 
 true, TemporalScope.INDEFINITE); 

manager.setTransmissionPolicy( 
 "service=Directory, others=*", 
 TransmissionPolicy.BY_REF, 
 true, TemporalScope.INDEFINITE); 

Here both patterns are intended to ensure precedence over other 
rules specifying different contextual aspects. A potential conflict 
arises when an instance of Person is returned by the Directory 
service. It is resolved using the following fixed ordering defined 
over contextual aspects, in order of decreasing precedence: 

thread, agent type, agent instance, parameter, method, 
service, field, object type, root object type, package 

Thus in this example, the rule specifying the service is selected 
over that specifying the object type. 

UC6 The dynamically evaluated policy necessary in this Use Case 
is specified as shown, assuming a method getSize to calculate the 
size of a given object. To create an instance of DynamicPolicy it is 
necessary to define the method getPolicy, which takes as parameter 
a description of the actual transmission context. In this example, 
the policy accesses the object that is about to be transmitted, via 
context.currentObject, calculates its size, and returns a by value or 
by reference policy as appropriate. 
TransmissionPolicy bySize = new DynamicPolicy() { 
 public TransmissionPolicy getPolicy( 
   TransmissionContext context) { 
  if (getSize(context.currentObject) < 500) 
   return TransmissionPolicy.BY_VAL; 
   else return TransmissionPolicy.BY_REF; 
 }}; 
manager.setTransmissionMetaPolicy( 
 "object_type=JPEGImage, others=*", 
 bySize, false, TemporalScope.INDEFINITE); 

5. RELATED WORK 
Arguably, the first middleware system to support adaptiveness was 
CORBA [16]. Orbix [9] provided the concept of interceptors, 



which permitted the establishment of a chain of software compo-
nents to handle outgoing requests. By default, the chain would 
typically hold a single interceptor that sent the request using the 
standard IIOP protocol, but several interceptors could be chained 
to add transaction information, encrypt the message, and send it 
using an arbitrary protocol. This pattern has been adopted by many 
systems since its invention. Whilst powerful, this scheme does not 
provide the degree of adaptability described here. 

Our approach has much in common with AOP, in that it provides a 
mechanism for policy to be applied uniformly across an existing 
code base without the need to change that code. The main differ-
ence in emphasis is that we do not claim generality, instead focus-
ing on dimensions of adaptiveness specific to middleware. Our 
framework is also more flexible than the common AOP platforms 
in that it allows policies to be changed dynamically. 

Sadjadi & McKinley present a taxonomy of adaptive middleware 
[18] which categorises middleware as ranging from static (adapt-
ability applied at development time) through to fully dynamic (ap-
plied at run-time). Within these, adaptation ranges from custom-
izable to configurable, and tunable to mutable, respectively. The 
work presented in this paper permits adaptation to be specified at 
either development time or at run-time, and permits policies to be 
dynamically defined and applied. As described in [18], many mid-
dleware adaptation mechanisms provide tunability via a two step 
process of static AOP at compile time and reflection at run-time. 
Such mechanisms are typified by DynamicTAO [12] which is 
capable of adapting its behaviour according to local policies. Ope-
nORB [2] is an example of mutable middleware in which the mid-
dleware core can evolve. The aim of these systems is similar to 
ours, however, these systems do not provide the combination of 
being able to provide both blanket policies and fine grain control 
within a simple, efficient framework. 
A number of middleware systems with varying degrees of adap-
tiveness regarding object transmission and placement policy have 
emerged. However, none support application adaptiveness to the 
degree proposed here. JavaParty [17] supports object placement 
policies that are associated with classes, limiting the flexibility of 
these policies. Pangaea [19] makes use of migration support in 
JavaParty, providing a policy mechanism that can determine when 
and to where object migration should take place. Migration poli-
cies cannot evolve at run-time or respond to application events. 
Using J-Orchestra [13], programmers can statically associate a 
pass by move policy with classes that support migration. FarGo [8] 
provides a Java RMI-based distributed object model that allows 
programmers to create classes with explicit support for migration. 
Classes that support remote access or migration must extend spe-
cial interfaces and a special compiler is used to generate versions 
of these classes that are accessible remotely using Java RMI. 
FarGo allows types that represent different migration policies to be 
imposed onto references. By altering the types of references dy-
namically, programmers can define migration policies. Finally, 
JBoss [10] AOP Remoting uses aspect-oriented programming 
techniques to instrument instances of existing classes for remote 
access. Pass-by-value semantics are always employed and there is 
no control over object placement, remote instantiation or migra-
tion. 

Using DCOM [3], programmers can instruct factories to instantiate 
components on remote machines by either identifying the machine 
explicitly or deferring to the Service Control Manager (SCM). In 
this manner, object placement policies may be defined in terms of 
one-to-one mappings between component identifiers and ma-

chines. Like CORBA, DCOM determines parameter-passing se-
mantics based on the statically defined IDL. 
In the .Net framework, there are two conceptually different ap-
proaches to making instances of classes available: web services 
and remoting. Any suitably (statically) attributed class can be made 
available as a web service. The remoting infrastructure places se-
mantic restrictions on the inheritance hierarchies of classes sup-
porting remote access and tightly binds parameter-passing seman-
tics to the distribution of the application. Programmers need not 
define separate interfaces for classes supporting remote access, 
though all remotely accessible classes must extend the special base 
class MarshalByRefObject. 

6. IMPLEMENTATION 
Here we briefly sketch our implementation approach. Whenever a 
new meta-policy rule is added using one of the methods in Figure 
5, an entry is inserted into a data structure that represents the com-
bination of all the extant rules. This data structure is consulted 
whenever a policy decision is required: it is traversed by the algo-
rithm that matches actual context to the most appropriate meta-
policy rule. Figure 7 shows the data structure after the following 
rules from UC1 and UC4 have been added: 
agent_type=WS, others=*                 -> BY_VAL 
all=-                                   -> BY_REF 
object_type=Person, service=-, others=* -> BY_VAL 

For simplicity, only five of the meta-policy dimensions are illus-
trated here. The context matching algorithm performs a depth-first 
traversal of the tree, searching for a path from the root to a leaf that 
matches all elements of the actual context. Each node in the tree 
contains up to four child entries, corresponding to the four types of 
pattern element: ‘*’ (wildcard), specific value, ‘!’ (negated specific 
value) and ‘-’ (wildcard). Child entries are always traversed in this 
order, yielding the appropriate precedence. When the traversal 
reaches a node with no child entry matching the actual context, 
backtracking occurs. The traversal terminates when the first leaf is 
encountered, signifying that the appropriate policy has been lo-
cated. 

 
Figure 7. Meta-policy data structure. 



For example, assume the following concrete transmission context: 
thread identity = 318264 
agent type = RAFDA 
service = ManageNode 
object type = HashMap 
package = java.util 

The traversal starts at the root node, matches * and moves to the 
root’s first child where * is matched. In the service node the de-
fault is matched since it has no other children. On reaching the 
object type node there is no match since the types are incompatible 
and there are no wildcard entries. Backtracking leads first to the 
previously encountered agent type node, with no further matches, 
and then back to the root node. Here the default wildcard matches, 
and traversal proceeds all the way down the right-most branch of 
the tree to reach the appropriate policy, BY_REF. 

An earlier and more restrictive version of this policy framework 
has been implemented in the context of RAFDA, a freely-available 
Java-based middleware system [5]. The framework described in 
this paper represents the latest iteration in our attempts to provide 
flexibility and adaptability. The RAFDA system has a number of 
uniquely combined properties crucial for supporting adaptive sys-
tems: it unifies the distributed object model and the service-
oriented model; it supports adaptiveness with respect to the topol-
ogy of distributed components and the manner in which compo-
nents interact; finally it supports inter-operation with components 
written using industry-standard technologies. RAFDA is based on 
an HTTP/SOAP server architecture supporting adaptive encoding 
schemes; the system uses SOAP to interact with Web Service cli-
ents; arbitrary encoding schemes may be used with RAFDA-aware 
clients. RAFDA has been extensively used in distributed applica-
tions within various research projects. 

7. CONCLUSIONS 
This paper has motivated the need for adaptive policy-free mid-
dleware, and outlined an attempt to support this via a flexible pol-
icy framework. Our description has focused on object transmission 
and encoding policies, and the appropriate meta-policy dimensions 
for specifying how policies should be automatically selected ac-
cording to dynamic context. We believe that this approach is also 
suitable for wider application in other policy dimensions; we are 
currently investigating possibilities within the RAFDA middleware 
system. 
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