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ABSTRACT

We believe that to fully support adaptive distributed applications,
middleware must itself be adaptable, adaptive and policy-free. In
this paper we present a new language-independent adaptable and
adaptive policy framework suitable for integration in a wide vari-
ety of middleware systems. This framework facilitates the con-
struction of adaptive distributed applications. The framework ad-
dresses adaptability through its ability to represent a wide range of
specific middleware policies. Adaptiveness is supported by a rich
contextual model, through which an application programmer may
control precisely how policies should be selected for any particular
interaction with the middleware. A contextual pattern mechanism
facilitates the succinct expression of both coarse- and fine-grain
policy contexts. Policies may be specified and altered dynamically,
and may themselves take account of dynamic conditions. The
framework contains no hard-wired policies; instead, all policies
can be configured.

Categories and Subject Descriptors

D.2.12 [Software Engineering]: Interoperability — distributed
objects; H.3.4 [Information Storage and Retrieval]: Systems and
Software — distributed systems.

General Terms
Management, Performance, Design.

Keywords

dynamic policy, adaptive, distributed application

1. INTRODUCTION

Middleware is becoming increasingly important in today’s infor-
mation society, providing the glue holding together the many dis-
tributed systems and services on which we rely. To quote the call
for this conference, we believe that middleware infrastructure is
becoming “more and more heterogeneous and complex”. There is a
belief by many that we already have enough middleware, and that
middleware is a solved problem. However, current middleware is
limited in its ability to support adaptive applications, for reasons
that will be explained below. As identified in the call, adaptiveness
cannot simply be added to a system like a plug-in module. In our
approach, the ability to support adaptive applications forms a core
part of the middleware architecture. In this paper we focus on the
wide class of middleware systems based on a synchronous remote
invocation model, including RPC, RMI and SOA style middle-
ware.

We observe three trends in such systems: divergence, increasing
complexity, and lack of flexibility. Recently remote invocation
style middleware systems have separated into two broad areas—
systems based on the distributed object model (DOM), and service-
oriented systems. It has been argued [1, 20] that service-oriented

computing is fundamentally different from distributed object com-
puting. Nonetheless, there is no intrinsic requirement for middle-
ware to take a position on which model is adopted for a particular
application, or indeed to restrict the application to one model. In-
stead, the middleware should be capable of adapting its behaviour,
dynamically if necessary, to the application requirements. For ex-
ample, middleware should be adaptable enough to allow a re-
motely accessible component to support interaction with both
DOM-style and service-oriented clients (such as Web Services
clients) as and when appropriate.

The trend towards inflexibility is largely an historical accident.
Most common middleware systems embody fixed policies govern-
ing the interaction between components in a distributed applica-
tion. The application programmer must take account of these poli-
cies at system design time. For example, when distributed applica-
tions are written using object-oriented middleware such as DCOM
[3], .Net [14], CORBA [16] or Java RMI [6] the programmer de-
cides how the application is to be distributed across multiple ma-
chines and (statically) identifies various categories of application
classes. These categories include those classes that have the ability
to be accessed remotely; those that may be transmitted over the
network; and those that are unable to take part in inter-address-
space interactions.

The consequence of the above trends is that applications written
using middleware are brittle and it is difficult to achieve adaptive-
ness. There is no way, for example, for data to be passed by value
when devices are attached via a high bandwidth connection and by
reference when poorly connected. Similarly, a space-limited de-
vice cannot request data by reference while a less constrained
workstation requests data by value. These simple examples demon-
strate the motivation for our work.

We believe that to fully support adaptive distributed applications,
middleware must itself be adaptable, adaptive and policy-free.
Adaptable middleware is capable of being configured to improve
its suitability for a particular situation or environment. This is es-
sential if applications are to be able to adapt their interaction pat-
terns to circumstances, since they rely on the middleware to per-
form all remote interaction. Adaptive middleware can configure
itself automatically. This is needed in order to support fine-grain
adaptation to dynamic circumstances, since by definition this can-
not be addressed by static configuration policies. Policy-free mid-
dleware contains no hard-wired policies; instead, all policies can
be configured. This is essential if applications are to be permitted
to adapt over the full spectrum of the policy space.

In this paper we present a new language-independent adaptable
and adaptive policy framework suitable for integration in a wide
variety of middleware systems, supporting the construction of
adaptive distributed applications. The framework addresses adapt-
ability through its ability to represent a wide range of specific mid-
dleware policies, of which data transmission by value and by refer-
ence are simple examples.



Adaptiveness in middleware may be characterised as the ability of
the middleware to make autonomous decisions based on context.
Such decisions should not be based on fixed rules; instead, the
programmer should be able to precisely control how policies
should be selected in any particular circumstance. In the frame-
work described in this paper, these circumstances are described
using a rich contextual model. A contextual pattern mechanism
facilitates the succinct expression of both coarse- and fine-grain
policy contexts. Policies may be specified and altered dynamically,
and may themselves take account of dynamic conditions.

We have prototyped this framework in the context of the Java-
based RAFDA middleware system [5]. The examples shown in this
paper are in Java, but the concepts supported by the framework are
applicable to any language.

2. MIDDLEWARE DESIGN ISSUES
2.1 Design Principles

In the introduction we advocated the need for flexible and adaptive
middleware. Such middleware should be compliant [15] with the
application requirements rather than the application being coded in
a manner that is compliant with the middleware. The manner in
which inter-address-space interactions occur should be controllable
via the specification of policies that may be separated from the
code. Many of the motivations for this are similar to the arguments
for Aspect-Oriented Programming (AOP) [11]. Firstly, it is good
software engineering practice to separate concerns. Secondly, we
wish to be able to reuse pre-existing code (including library code),
which precludes changing code in order to make calls into the
middleware. This also requires that the middleware should impose
no restrictions on application structure or the type hierarchy of
application classes. Lastly, as argued above, the middleware
should be compliant with the application, permitting application
designers to fine-tune middleware behaviour. Some examples of
adaptability are inherently data-centric. For example, in some ap-
plication, it may be desirable to pass large objects and small ones
using different encoding mechanisms.

Our aim is therefore to create a middleware framework that is
adaptive, simple, efficient, extensible and programmable. We have
already discussed the need for adaptiveness. Simplicity requires
that common policy decisions can be made with little or no pro-
grammer involvement. For example it should be trivial to config-
ure the framework to replicate the policies of conventional distrib-
uted object and service-oriented models. The need for efficiency is
obvious; highly adaptive but slow middleware systems are unlikely
to have any uptake—middleware mechanisms therefore need to be
both tractable and efficient. Extensibility and programmability
require that arbitrarily complex interactions may be specified, in-
cluding the injection of application programmer code into the mid-
dleware system.

These design principles could be applied to various middleware
systems in a number of ways. In our approach we structure the
adaptive middleware design space as follows:

o flexibility dimensions: those aspects of middleware behaviour
where commonly-imposed restrictions are undesirable;

e policy dimensions: those aspects of middleware behaviour for
which adaptation is desirable;

¢ meta-policy dimensions: those aspects of execution context
that may be used to determine policy selection.

The following sections contain a non-exhaustive list of examples
of each of these sets of dimensions.

2.2 Flexibility Dimensions

The dimensions of flexibility represent adaptiveness requirements
over various aspects of middleware behaviour. Restrictions im-
posed by common middleware systems in these areas limit the
ability of applications to exhibit adaptiveness.

One example of such a dimension is that of application distribution
boundaries. To accommodate adaptation, objects of arbitrary
classes should be able to participate in inter-address-space calls,
and be able to be transmitted across the network. This contrasts
with most middleware systems, as outlined in Section 1.

Another dimension is in the rules governing type equivalence.
Most middleware systems use name equivalence when matching
the types of local and remote objects'. Furthermore, those names
are bound to statically defined interfaces and classes. Consider the
example shown in Figure 1:
class Student extends Person
implements Scholar {...}
Figure 1. Class Student.

In many middleware systems a remote instance of Student can be
accessed remotely as a Student, Person or Scholar?. However, if
some application needs to export instances typed as Human, which
is structurally compliant with the Student class, it cannot, since
Student was not defined to extend Human. Clearly, this limits
adaptiveness since the static definition is often outwith the control
of application programmer and cannot be changed once the class
has been defined. One solution to this problem is to use structural
type matching [4]. Using structural matching, an object may be
remotely accessed using any type that is compatible with the struc-
ture of the implementing type.

In general, there are three types with which the programmer is
concerned: the concrete type of the remotely accessible object; the
type with which it is made accessible; and the type by which the
remote object is viewed. Any restriction beyond structural com-
patibility between these types is undesirable. In the previous ex-
ample, if the application programmer has defined a type Human
after the fact, it should be possible for the Student instance to be
made remotely accessible using this interface, even though Student
does not explicitly extend or implement Human.

A third example of a dimension of flexibility is in the sub-typing
rules applying to object transmission. In most middleware systems,
the manner in which values are encoded is dictated by the static
types defined in the remote interface. For example, using standard
Web Services, each service method has a statically defined return
type and can return only objects that are of exactly this type. The
reasons for this restriction are complex [21]. However, for maxi-
mum flexibility, arbitrary sub-typing should be accommodated,
allowing sub-types to be returned by interface methods where ap-
propriate.

2.3 Policy Dimensions

The dimensions of policy represent the aspects of middleware be-
haviour that can be configured. Again, most middleware systems
impose significant restrictions on these, limiting application adap-
tiveness. Possible dimensions include:

' Some systems are more restrictive than this, e.g. CORBA re-
quires the same IDL to be used on the client and server.

% In some systems these classes must extend special interfaces or
classes such as RemoteObject or MarshalByRefObject.



object transmission
object encoding
object placement
security

The first and most obvious policy dimension is transmission pol-
icy: how objects are transmitted between address-spaces. Possible
policies include by value, by reference, by move and by visit. In
most middleware systems the transmission policy is fixed. For
example, using Web Services transmission of objects is always by
value whereas in Java RMI the transmission policy is determined
by the type and interfaces of the object being transmitted.

A programmer may also wish to apply a specific transmission pol-
icy to part or all of the closure of an object being transmitted. For
example, some object closure might be passed by value to a given
depth, and by reference thereafter. Such policies have two potential
benefits—preventing large object closures from being transmitted
by value, and obviating the need to copy data from one data struc-
ture to another when it is exported via a service. Hybrid transmis-
sion policies are also desirable, in which objects are passed by
reference but some fields of those objects are passed by value
along with the reference and cached by clients.

Closely related to transmission policy is encoding policy, which
determines the manner in which values are encoded when they are
sent between address spaces. For example, an object transmitted by
value may be encoded using SOAP or as a CORBA IIOP message.
Even where a single base encoding mechanism such as SOAP is
used, it may be advantageous to vary the encoding of values in
certain circumstances. For example, a large array might be base64
encoded within a SOAP message when transmitted to a peer which
could cope with such an encoding, with a standard encoding being
used otherwise.

The next dimension is placement policy, which controls where
objects are placed. There are two related aspects: creation policy
and migration policy. The first of these controls in which address
space objects are created, the second where, and under which cir-
cumstances, they are migrated. Policies governing these aspects are
restrictive in most current middleware systems—typically all ob-
jects are created in the same address space as their creator, and do
not migrate between address spaces. Exceptions discussed in Sec-
tion 5 include [8, 13, 17, 19]; whilst these are flexible with respect
to placement policy, they do not address all of the policy dimen-
sions discussed here.

The dimension of security policy encompasses various mecha-
nisms including policies used to control access to objects from
remote address-spaces and link-level security between hosts. As
with the other dimensions, for truly adaptive applications it may be
necessary to vary security policies on a fine-grain basis.

2.4 Meta-Policy Dimensions

Meta-policies determine the circumstances in which particular
policies should be applied. The dimensions comprise the various
aspects of the execution context that might be relevant in choosing
the appropriate policy in a given situation. The context varies be-
tween policy dimensions: for transmission and encoding policy it
is the context of object transmission; for placement policy it is the
context of object instantiation, and so on.

For brevity we focus here on meta-policy dimensions for transmis-
sion and encoding policies. Possible dimensions include:

o the execution environments of the client and server”: for ex-
ample, the client might be a particular version of a web
browser, or the server might be a web server.

the identities of the client and server: for example, an appli-
cation might interact with one server by value because it is a
conventional Web Services server, and with another using a
hybrid caching policy which that server supports.

the service being accessed: two services provided in the same
address-space might be configured to behave differently. Con-
versely, an application calling services on two different ma-
chines might wish to interact with each differently in accor-
dance with load, latency, size of data etc.

the class of the object being transmitted: this might be used
to transmit by value all instances of a class known to have im-
mutable fields.

the identity of the object being transmitted: this permits pol-
icy to be applied to individual object instances. This might be
used to treat large objects differently from small ones, or to
support application-specific caching policies.

the name of the parameter/return value being transmitted:
this allows fine-grain policy to be applied to individual method
parameters and to the return value.

the method being executed: this allows the same policy to be
applied to all parameters and the return value of a method.

the current thread: this allows policy to be applied only to a
particular thread. This might be used when different server
threads are being used to service two different applications
running within a single address-space.

the package of the class of the object being transmitted: the
same policy can be applied to all classes in a package.

e for objects being transmitted within the closure of another:

o the type of the original object.

o the name of the field in the referring object through which
the current object was reached.

These dimensions are clearly not mutually independent—for ex-
ample, the class and package dimensions. Rather than aiming for
absolute minimality, we consider it preferable to support a rich set
of dimensions, in order to give the programmer flexibility. Given
the large size of this set, we need mechanisms to enable both
coarse- and fine-grain meta-policies to be defined succinctly. Key
to this is the ability to easily specify sensible default meta-policies
to be adopted in the absence of more specific ones. As previously
noted, however, these defaults should not be hard-wired into the
middleware, which should itself be policy-free.

2.5 Policy Framework Requirements
Given the approach outlined in this section, the main requirements
of an adaptive policy framework may be summarised as follows:

e to allow programmers to select pre-defined policies and to
specify new ones, within each of the policy dimensions;
e to allow programmers to define new meta-policies, each speci-

fying a context in terms of one or more of the relevant meta-
policy dimensions, and a corresponding policy;

? Our framework may be used in P2P environments. To aid read-
ability we refer to the caller as the client and the callee the
server.



e whenever the middleware system is about to perform an action
governed by policy: to automatically identify the meta-policy
whose context specification most closely matches the current
context, and to enact the corresponding policy.

Our approach is described in Section 4.

3. USE CASES

This section gives motivating examples for an adaptive policy-free
middleware framework, illustrating particular points within various
policy and meta-policy dimensions. Section 4.2 shows how some
of these Use Cases can be realised using our framework.

UC1 A particular node hosts a number of services implemented by
different objects. All data returned to Web Service clients should
be transmitted by value, regardless of any conflicting policies
specified by individual service implementations. Data returned to
other types of clients should be transmitted by reference.

. " ali by value
. N ~<
N
all b/y/reference // \\\ WS Client
‘ 1 \\
|
all by reference \\

! all by value

/ \

14 1

WS Client

Figure 2. UC1 - Varying policy by agent type.

UCI1.1 [variant] Data returned to a client instance known to have
poor connectivity should be transmitted by reference, and by value
to other client instances. Another potential motivation for this is to
spread computational load, since an operation invoked on an object
received by reference will be executed on the server, as opposed to
locally on the client with by value.

UC2 An object representing a node in a P2P system exposes two
different services, ViewNode and ManageNode, with different
types. Data returned by methods in the ViewNode service should
be transmitted by value, so that the resulting copy of the data can
be manipulated freely by the recipient without affecting the P2P
node. Data returned by methods in the ManageNode service, ac-
cess to which is subject to authentication, should be transmitted by
reference, so that the original node can be controlled remotely.

ManageNode ViewNode
/ \
J \
all by reference all by value
3 X

Figure 3. Varying policy by service.

UC3 Instances of class P2PNode, representing nodes in a P2P
system, should be transmitted by reference to ensure that each
instance always resides on the host that it represents. To assist in
error reporting, the value of the key field, containing the node’s
fixed P2P key, should be cached within the transmitted remote
reference. This enables the holder of such a reference to access the
key value even if the node or intervening network fails.

UC4 All instances of class Person should be transmitted by value;
data returned by methods in the Directory service should be trans-
mitted by reference, except where this conflicts with the policy for
class Person.

UC4.1 [variant] The policy for service Directory should take
precedence over the policy for class Person.

Figure 4. Sub-graph to be transmitted by value.

UCS Each instance of exact type DatabaseWrapper should be
transmitted by value, together with the objects in its closure to a
depth of 1. Each instance of type InetAddress, or a sub-type,
should be transmitted by value, together with its entire closure.
Each instance of interface type /Database should be transmitted by
reference. The combination of these policies is shown in Figure 4,
where the dotted line shows the sub-graph that should be transmit-
ted by value with an instance of DatabaseWrapper.

UC6 In order to constrain bandwidth consumption, each instance
of type JPEGImage should be transmitted by value if the size of
the image data is less than S00KB, and by reference otherwise.

UC6.1 [variant] Each instance of type JPEGImage should be re-
encoded with a higher compression factor before transmission.

UC7 Instances of class Class should always be transmitted by
value. Rather than transmitting the state of a Class instance, it
should be encoded simply as its fully qualified name, enabling the
equivalent instance to be substituted on the receiving host.



UC7.1 [variant] Where an instance of class Class is transmitted to
a host on which the corresponding class is not available, the encod-
ing of the instance should include the bytes representing the class,
enabling it to be dynamically loaded on the receiving host.

UCS8 By default, arrays that are transmitted by value are encoded in
a SOAP-compatible format, using a separate XML element for
each array element. This is a highly inefficient encoding for arrays
with many small elements. Therefore, a byte array should be en-
coded as a single XML element containing the base64 encoding of
the entire data.

4. AN APPROACH TO PROVIDING
POLICY-FREE ADAPTIVE MIDDLEWARE

Here we describe our particular approach to providing an adaptive
policy framework. Section 2.5 listed some general requirements for
such a framework. To these we add the following more specific
requirements:

e policies must be dynamically changeable, meaning that the set
of policies that are in place may be changed at any point before
or during application execution;

e policies must be capable of dynamic decision making, imply-
ing that such policies must be supplied with appropriate infor-
mation about the context in which computation occurs;

e a client application must be able to control the policies in effect
on a given server that are pertinent to the client.

The last requirement arises since the policies in place in a given
address-space affect only local operations. In the case of transmis-
sion and encoding policy, the local policies affect only outgoing
transmissions, whether arguments to outgoing calls, or results of
incoming calls. In order for a client to control the manner in which
it receives results from calls to a server, it is necessary for it first to
set the server’s corresponding policy remotely.

4.1 Policy Management
Our adaptive policy framework meets the preceding requirements,
and can succinctly specify all of the Use Cases described earlier.
This is achieved using the IMetaPolicyManager interface shown in
Figure 5, which provides methods for setting meta-policies in each
of the policy dimensions identified in Section 2.3. For brevity we
focus on the transmission policy dimension—the others are han-
dled in a similar manner. The method setTransmissionMetaPolicy
associates a particular transmission context with a corresponding
policy.
public interface IMetaPolicyManager {
void setTransmissionMetaPolicy (
String contextPattern, TransmissionPolicy p,
boolean matchSubtypes, TemporalScope s);
void setEncodingMetaPolicy (
String contextPattern, EncodingPolicy p,
boolean matchSubtypes, TemporalScope s);
void setPlacementMetaPolicy (
String contextPattern, PlacementPolicy p,
boolean matchSubtypes, TemporalScope s);
// Other dimensions omitted for brevity.
// Methods to iterate/remove rules omitted.

Figure 5. Meta-policy management API.

A simple pattern language® is used to specify contexts. The aim is
that it should be easy to define simple policies, while being expres-

4 Fully specified at http://... [removed for anonymity].

sive enough to describe complex, static, dynamic, orthogonal and
overlapping policies. The pattern language permits a context to be
described in terms of any number of the meta-policy dimensions
discussed in Section 2.4. A coarse-grain context, corresponding to
a wide range of actual situations, is described by specifying details
for only a small number of dimensions, while specifying many
dimensions yields a highly specific fine-grain context. An example
of'a coarse-grain context pattern is:

object type=a.b.C, method=d.e.F.ml ()

This pattern would match contexts in which an instance of class
a.b.C was being transmitted as a parameter to, or as the result
from, the method d.e.F.m1().

The full list of tags is: thread, agent_type, agent_instance
parameter, method, field, object type,
root_type, package. In addition to describing particular values
for each of the meta-policy dimensions, the pattern language in-
cludes negation and two kinds of wildcard: “** represents always
match; ‘-> represents default. The former matches against the ac-
tual context in all cases, whereas the latter matches only if there is
no other more specific pattern that would match. Examples are
given in Section 4.2.

service,

The API with which particular transmission policies are specified
is outlined in Figure 6. The base class, TransmissionPolicy, per-
mits simple by reference and by value policies to be named. The
class ByValueToDepth represents policies where full or partial
object closures should be passed by value. ByReferenceWithCach-
ing permits the specification of fields and methods to be cached on
the client side when objects are transmitted by reference—this
enables smart proxies such as those found in Orbix [9].

The final sub-class of TransmissionPolicy is DynamicPolicy, meet-
ing the requirement for dynamic decision making. Unlike the oth-
ers, this class is abstract, permitting application writers to define
policies providing fine-grain adaptiveness. The getPolicy method
takes as parameter an instance of TransmissionContext describing
an actual transmission context. This supplies the implementation
with sufficient information to be able to dynamically determine the
appropriate policy based on, for example, caller, size of data or
other application-specific requirements. It may be considered to be
a reification [7] of the execution context for a particular object
transmission.

The setTransmissionMetaPolicy method in Figure 5 takes another
two parameters not yet discussed. The first is a flag specifying
whether sub-type matching should be used when comparing the
pattern against actual transmission contexts. For example, if true
for a pattern specifying Person as the object type, then the pattern
will match when sub-types of Person are transmitted. The final
parameter specifies the temporal scope of the meta-policy rule.
Various temporal scopes may be defined, the longest of which is
INDEFINITE, which establishes the rule until explicitly removed,
and the shortest of which is CURRENT CALL, which establishes
the rule until the inter-address-space call currently being serviced
has returned. The latter permits adaptive behaviour to accommo-
date transient circumstances.

public class TransmissionPolicy {
public static TransmissionPolicy BY REF;
public static TransmissionPolicy BY VAL;
protected TransmissionPolicy () {...}
}
public class ByValueToDepth
extends TransmissionPolicy {
public static ByValueToDepth FULL CLOSURE;



public int getDepth() {...}
public ByValueToDepth (int depth) {...}
}
public class ByReferenceWithCaching
extends TransmissionPolicy {
public boolean isCached(Method method) {...}
public boolean isCached(Field field) {...}
public ByReferenceWithCaching(
Field[] fields, Method[] methods) {...}
}
public abstract class DynamicPolicy
extends TransmissionPolicy {
public abstract TransmissionPolicy getPolicy (
TransmissionContext c);

Figure 6. Transmission policy API.

The final requirement of the framework, that a client should be
able to control the relevant policies on a server, can be met by
making the meta-policy management interface for each address-
space remotely accessible. Such management interfaces must
themselves be subject to programmer-specifiable security policy.

4.2 Examples

In this section we show how selected Use Cases can be pro-
grammed using the adaptive policy framework®. All examples
assume the prior declaration of manager, referring to the local
instance of the meta-policy manager.

UC1 The by value policy for Web Service clients is specified as®:

manager.setTransmissionMetaPolicy (
"agent type=WS, others=*",
TransmissionPolicy.BY VAL,
false, TemporalScope.INDEFINITE) ;

The agent type identifier WS is matched against that specified by
the remote client when it makes the call. The others tag is a short-
hand for specifying all of the other context tags. Here the always
match wildcard is used to ensure that this pattern will always be
selected for Web Service clients, regardless of other contextual
aspects such as the thread, the object type, etc. The value of the
flag is unimportant since no type matching is involved here. The
default by reference policy is specified as follows:
manager.setTransmissionMetaPolicy (

"all=-", TransmissionPolicy.BY REF,
false, TemporalScope.INDEFINITE) ;

Here the default wildcard is specified for all of the contextual as-
pects, using the short-hand a//, ensuring that the rule is selected
only when no more specific rules are applicable.

UC4 The following call sets a by value policy for all instances of
class Person or any sub-class. As in UCI, the always match
wildcards override all other contextual aspects.
manager.setTransmissionMetaPolicy (
"object type=Person, others=*",
TransmissionPolicy.BY VAL,
true, TemporalScope.IﬁDEFINITE);

5 The full set of Use Cases is explained at http://... [removed for
anonymity].

® Such policies are commonly required by almost all applications;
they are specified in configuration files and set by default. How-
ever, we believe that such policies should not be hard-wired into
the framework and that application designers should have the
freedom to specify and override them if required.

A non-conflicting policy for the Directory service is specified as:
manager.setTransmissionMetaPolicy (
"service=Directory, object type=-, others=*",
TransmissionPolicy.BY REF,
true, TemporalScope.INDEFINITE) ;

The default wildcard in the object type element gives the rule
lower precedence than other more specific rules. Thus the rule will
be selected only in contexts where the service is Directory and the
type of the object being transmitted is not Person.

This precedence order may be reversed, so that results from the
Directory service are always transmitted by reference while Person
instances are transmitted by value from all other services, by ad-
justing the wildcards as follows:
manager.setTransmissionMetaPolicy (

"object type=Person, service=-, others=*",

TransmissionPolicy.BY VAL,

true, TemporalScope.INDEFINITE) ;

manager.setTransmissionPolicy (
"service=Directory, others=*",
TransmissionPolicy.BY REF,
true, TemporalScope.INDEFINITE) ;

It is also possible to set potentially conflicting policies:
manager.setTransmissionMetaPolicy (
"object type=Person, others=*",
TransmissionPolicy.BY VAL,
true, TemporalScope.INDEFINITE) ;

manager.setTransmissionPolicy (
"service=Directory, others=*",
TransmissionPolicy.BY REF,
true, TemporalScope.INDEFINITE) ;

Here both patterns are intended to ensure precedence over other
rules specifying different contextual aspects. A potential conflict
arises when an instance of Person is returned by the Directory
service. It is resolved using the following fixed ordering defined
over contextual aspects, in order of decreasing precedence:

thread, agent type, agent instance, parameter, method,
service, field, object type, root object type, package

Thus in this example, the rule specifying the service is selected
over that specifying the object type.

UC6 The dynamically evaluated policy necessary in this Use Case
is specified as shown, assuming a method gezSize to calculate the
size of a given object. To create an instance of DynamicPolicy it is
necessary to define the method getPolicy, which takes as parameter
a description of the actual transmission context. In this example,
the policy accesses the object that is about to be transmitted, via
context.currentObject, calculates its size, and returns a by value or
by reference policy as appropriate.

TransmissionPolicy bySize = new DynamicPolicy () {

public TransmissionPolicy getPolicy(
TransmissionContext context) ({
if (getSize(context.currentObject) < 500)

return TransmissionPolicy.BY VAL;
else return TransmissionPolicy.BY REF;

B

manager.setTransmissionMetaPolicy (
"object type=JPEGImage, others=*",
bySize, false, TemporalScope.INDEFINITE) ;

5. RELATED WORK

Arguably, the first middleware system to support adaptiveness was
CORBA [16]. Orbix [9] provided the concept of interceptors,



which permitted the establishment of a chain of software compo-
nents to handle outgoing requests. By default, the chain would
typically hold a single interceptor that sent the request using the
standard IIOP protocol, but several interceptors could be chained
to add transaction information, encrypt the message, and send it
using an arbitrary protocol. This pattern has been adopted by many
systems since its invention. Whilst powerful, this scheme does not
provide the degree of adaptability described here.

Our approach has much in common with AOP, in that it provides a
mechanism for policy to be applied uniformly across an existing
code base without the need to change that code. The main differ-
ence in emphasis is that we do not claim generality, instead focus-
ing on dimensions of adaptiveness specific to middleware. Our
framework is also more flexible than the common AOP platforms
in that it allows policies to be changed dynamically.

Sadjadi & McKinley present a taxonomy of adaptive middleware
[18] which categorises middleware as ranging from static (adapt-
ability applied at development time) through to fully dynamic (ap-
plied at run-time). Within these, adaptation ranges from custom-
izable to configurable, and tunable to mutable, respectively. The
work presented in this paper permits adaptation to be specified at
either development time or at run-time, and permits policies to be
dynamically defined and applied. As described in [18], many mid-
dleware adaptation mechanisms provide tunability via a two step
process of static AOP at compile time and reflection at run-time.
Such mechanisms are typified by DynamicTAO [12] which is
capable of adapting its behaviour according to local policies. Ope-
nORB [2] is an example of mutable middleware in which the mid-
dleware core can evolve. The aim of these systems is similar to
ours, however, these systems do not provide the combination of
being able to provide both blanket policies and fine grain control
within a simple, efficient framework.

A number of middleware systems with varying degrees of adap-
tiveness regarding object transmission and placement policy have
emerged. However, none support application adaptiveness to the
degree proposed here. JavaParty [17] supports object placement
policies that are associated with classes, limiting the flexibility of
these policies. Pangaea [19] makes use of migration support in
JavaParty, providing a policy mechanism that can determine when
and to where object migration should take place. Migration poli-
cies cannot evolve at run-time or respond to application events.
Using J-Orchestra [13], programmers can statically associate a
pass by move policy with classes that support migration. FarGo [8]
provides a Java RMI-based distributed object model that allows
programmers to create classes with explicit support for migration.
Classes that support remote access or migration must extend spe-
cial interfaces and a special compiler is used to generate versions
of these classes that are accessible remotely using Java RMI.
FarGo allows types that represent different migration policies to be
imposed onto references. By altering the types of references dy-
namically, programmers can define migration policies. Finally,
JBoss [10] AOP Remoting uses aspect-oriented programming
techniques to instrument instances of existing classes for remote
access. Pass-by-value semantics are always employed and there is
no control over object placement, remote instantiation or migra-
tion.

Using DCOM [3], programmers can instruct factories to instantiate
components on remote machines by either identifying the machine
explicitly or deferring to the Service Control Manager (SCM). In
this manner, object placement policies may be defined in terms of
one-to-one mappings between component identifiers and ma-

chines. Like CORBA, DCOM determines parameter-passing se-
mantics based on the statically defined IDL.

In the .Net framework, there are two conceptually different ap-
proaches to making instances of classes available: web services
and remoting. Any suitably (statically) attributed class can be made
available as a web service. The remoting infrastructure places se-
mantic restrictions on the inheritance hierarchies of classes sup-
porting remote access and tightly binds parameter-passing seman-
tics to the distribution of the application. Programmers need not
define separate interfaces for classes supporting remote access,
though all remotely accessible classes must extend the special base
class MarshalByRefObject.

6. IMPLEMENTATION

Here we briefly sketch our implementation approach. Whenever a
new meta-policy rule is added using one of the methods in Figure
5, an entry is inserted into a data structure that represents the com-
bination of all the extant rules. This data structure is consulted
whenever a policy decision is required: it is traversed by the algo-
rithm that matches actual context to the most appropriate meta-
policy rule. Figure 7 shows the data structure after the following
rules from UC1 and UC4 have been added:

agent type=WS, others=* -> BY VAL
all=- -> BY REF
object type=Person, service=-, others=* -> BY VAL

For simplicity, only five of the meta-policy dimensions are illus-
trated here. The context matching algorithm performs a depth-first
traversal of the tree, searching for a path from the root to a leaf that
matches all elements of the actual context. Each node in the tree
contains up to four child entries, corresponding to the four types of
pattern element: ‘*’ (wildcard), specific value, ‘!’ (negated specific
value) and ‘-’ (wildcard). Child entries are always traversed in this
order, yielding the appropriate precedence. When the traversal
reaches a node with no child entry matching the actual context,
backtracking occurs. The traversal terminates when the first leaf is
encountered, signifying that the appropriate policy has been lo-

cated.
-

service

service service

object_type object_type object_type

Person * -
. + J . J
. .
package package package
* * -
BY_VAL BY_VAL BY_REF

Figure 7. Meta-policy data structure.



For example, assume the following concrete transmission context:

thread identity = 318264
agent type = RAFDA
service = ManageNode
object type = HashMap
package = java.util

The traversal starts at the root node, matches * and moves to the
root’s first child where * is matched. In the service node the de-
fault is matched since it has no other children. On reaching the
object type node there is no match since the types are incompatible
and there are no wildcard entries. Backtracking leads first to the
previously encountered agent type node, with no further matches,
and then back to the root node. Here the default wildcard matches,
and traversal proceeds all the way down the right-most branch of
the tree to reach the appropriate policy, BY REF.

An earlier and more restrictive version of this policy framework
has been implemented in the context of RAFDA, a freely-available
Java-based middleware system [5]. The framework described in
this paper represents the latest iteration in our attempts to provide
flexibility and adaptability. The RAFDA system has a number of
uniquely combined properties crucial for supporting adaptive sys-
tems: it unifies the distributed object model and the service-
oriented model; it supports adaptiveness with respect to the topol-
ogy of distributed components and the manner in which compo-
nents interact; finally it supports inter-operation with components
written using industry-standard technologies. RAFDA is based on
an HTTP/SOAP server architecture supporting adaptive encoding
schemes; the system uses SOAP to interact with Web Service cli-
ents; arbitrary encoding schemes may be used with RAFDA-aware
clients. RAFDA has been extensively used in distributed applica-
tions within various research projects.

7. CONCLUSIONS

This paper has motivated the need for adaptive policy-free mid-
dleware, and outlined an attempt to support this via a flexible pol-
icy framework. Our description has focused on object transmission
and encoding policies, and the appropriate meta-policy dimensions
for specifying how policies should be automatically selected ac-
cording to dynamic context. We believe that this approach is also
suitable for wider application in other policy dimensions; we are
currently investigating possibilities within the RAFDA middleware
system.
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