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Abstract 
 
We propose a framework for deployment and sub-

sequent autonomic management of component-based 
distributed applications. An initial deployment goal is 
specified using a declarative constraint language, ex-
pressing constraints over aspects such as component-
host mappings and component interconnection topol-
ogy. A constraint solver is used to find a configuration 
that satisfies the goal, and the configuration is de-
ployed automatically. The deployed application is in-
strumented to allow subsequent autonomic manage-
ment. If, during execution, the manager detects that the 
original goal is no longer being met, the satisfy/deploy 
process can be repeated automatically in order to gen-
erate a revised deployment that does meet the goal. 

 
1. Introduction 

 

In [1], Kephart & Chess describe an autonomic sys-
tem as possessing the following aspects of self-
management: 

 

• self-configuration 
• self-optimization 
• self-healing 
• self-protection 
 

This is illustrated in Figure 1, which shows a man-
aged element and its autonomic lifecycle. The element 
is associated with an autonomic manager that attempts 
to maintain some high-level objective for the element. 
The behaviour of the element is continually monitored 
and analysed. When this deviates sufficiently from the 
objective, the manager plans and executes a change to 
the element in order to restore the desired behaviour. 

In this paper we describe a framework for auto-
nomic management of deployment and configuration 
of distributed applications. The managed elements are 
collections of components making up a distributed 

application. We assume that the component granularity 
is relatively large and that components are not nested. 

 

 
Figure 1. A managed element (from [1]) 

 

We identify two separate but closely related prob-
lems: the initial deployment of an application, and its 
subsequent evolution in the face of host failures and 
other perturbations. Both are too complex in large ap-
plications to be handled by a human operator. In our 
framework both are controlled automatically, driven by 
a high-level configuration goal specified by the admin-
istrator at the outset. We thus address specifically the 
first and third of Kephart & Chess’ issues: self-
configuration and self-healing. Although not addressed 
in this paper, we believe that self-optimization and 
self-protection can be also be accommodated within 
this framework. 

It is our thesis that to implement such an autonomic 
deployment and configuration cycle, we require: 

 

1. a mechanism for deploying components 
2. a language to describe how the application is in-

tended to be structured 
3. an autonomic management engine capable of 

• identifying a valid configuration of the ap-
plication 

• deploying the configuration into a distrib-
uted environment 

• modifying the deployed application to main-
tain the specified intended structure in the 
face of changing circumstances 



 

Some mechanism is required for deploying and re-
deploying components in possibly remote locations. 
We advocate the use of bundles, which were devel-
oped by us in the project Computation in Geographi-
cally Appropriate Locations (Cingal) [2, 3]. Bundles 
permit XML-encoded closures of code and data to be 
pushed and executed in remote locations. Cingal-
enabled hosts provide a light-weight runtime and secu-
rity infrastructure, written in pure Java, necessary to 
support the execution of bundles. 

In order to describe how an application is intended 
to be structured, we propose a domain-specific con-
straint-based language. This describes configuration 
goals in terms of resources including software compo-
nents and physical hosts, relationships between hosts 
and components, and constraints over these. From such 
a configuration goal it is possible to: 

 

• deploy components using the available physical 
resources 

• configure monitoring software to assess 
whether the executing application continues to 
obey the constraints specified in the description 

• configure software for automatically evolving 
the application in response to constraint viola-
tions arising from changes in the environment 

 

There are several levels at which a deployed appli-
cation may be evolved. The simplest, on which we 
concentrate here, involves evolution of the configura-
tion in order to maintain a previously specified goal. 
Thus the configuration evolves whilst the high-level 
configuration goal remains the same. We term this 
autonomic evolution, and consider it to be fundamental 
to the autonomic management of distributed applica-
tions. Our aim is for this style of evolution to take 
place automatically whenever required. 

A second level of evolution is needed when the 
high-level goal itself changes, due to a change in ap-
plication requirements. Our framework handles both 
levels of evolution in the same way, treating the first as 
a special case of the second in which the goal remains 
fixed. In both cases an ongoing autonomic cycle, as 
shown in Figure 1, repeatedly attempts to solve the 
current constraint problem, deploys the resulting con-
figuration, and monitors the deployment to determine 
when to repeat the sequence. 

 
2. Related languages and systems 

 
The Cingal system supports the deployment of dis-

tributed applications in geographically appropriate 
locations. It provides mechanisms to execute and in-
stall components, in the form of bundles, on remote 

machines. A bundle is the only entity that may be exe-
cuted in Cingal and consists of an XML-encoded clo-
sure of code and data and a set of bindings naming the 
data. Cingal-enabled hosts contain appropriate security 
mechanisms to ensure malicious parties cannot deploy 
and execute harmful agents, and to ensure that de-
ployed components do not interfere with each other 
either accidentally or maliciously. Cingal components 
may be written using standard programming languages 
and programming models. When a bundle is received 
by a Cingal-enabled host, provided that the bundle has 
passed a number of checks, the bundle is fired, that is, 
it is executed in a security domain (called a machine) 
within a new operating system process. Unlike proc-
esses running on traditional operating systems, bundles 
have a limited interface to their local environment. The 
repertoire of interactions with the host environment is 
limited to: interactions with a local store, the manipula-
tion of bindings, the firing of other bundles, and inter-
actions with other Cingal processes. The approach de-
scribed in this paper exploits much of the technology 
provided by Cingal. 

A number of languages have been developed to de-
scribe software architectures, including [4-6]. Typical 
of these is Acme [7], which is intended to fulfil three 
roles: to provide an architectural interchange format 
for design tools, to provide a foundation for the design 
of new tools and to support architectural modelling. 
The Acme language supports the description of com-
ponents joined via connectors which provide a variety 
of communication styles. Components and connectors 
may be annotated with properties that specify attributes 
such as source files and degrees of concurrency, etc. 
Acme also supports a logical formalism based on rela-
tions and constraints which permits computational or 
run-time behaviour to be associated with the descrip-
tion of architectures. Acme does not however support 
the deployment of systems from the architectural de-
scriptions, nor does it encompass physical computation 
resources. 

The ArchWare ADL [8] is based on higher-order π-
calculus, and is aimed at specifying active architec-
tures, in which the architectural description of an ap-
plication evolves in lock-step with the application it-
self. The language supports a reversible compose op-
erator that allows components to be assembled from 
other components, and later decomposed and recom-
posed to permit evolution. Decomposition operates at a 
fine-grain, and it is possible to decompose a compo-
nent into constituent parts without losing encapsulated 
state. This is achieved using hyper-code, which pro-
vides a reified form for both code and data. In com-
parison, the evolution in our framework operates at a 
coarser grain, and we assume that one component may 



 

be completely replaced by another with no common 
state. Further, the ArchWare ADL focuses on software 
architecture and does not address physical deployment. 

The Active Pipes approach [9] encompasses the no-
tions of machines and processes which transform data 
in an active network. The idea is to map a high level 
pipeline of software components onto physical net-
work resources. As the authors state in their paper, “it 
is necessary to have a general scheme of specifying 
application requirements that is expressive enough to 
describe typical application scenarios while simple 
enough to be used effectively”. In our framework we 
aim to combine this approach with the notion of an 
ADL to encompass hardware and software compo-
nents. 

Constraint programming models problems by de-
claring a set of variables with finite domains and con-
straints between values of these variables. Instead of 
writing an imperative program to provide a result, the 
user invokes a search algorithm to find a solution 
which satisfies the constraints specified by the user. A 
number of constraint programming and solving sys-
tems exist. We believe that the lack of domain-specific 
syntax in such systems makes them unsuitable for 
specifying the high-level configuration goal in an 
autonomic application. However, they are applicable 
as constraint solvers when used in conjunction with a 
domain-specific language. 

For example, ECLiPSe [10] is a constraint logic 
programming system with syntax similar to Prolog, 
supplied with a number of constraint solvers and li-
braries. JSolver [11] is a commercial Java library 
which provides constraint satisfaction functionality, 
while Cream [12] is a simpler open-source library. Any 
such systems could be employed in our framework. 

In Section 4 we describe a new domain-specific 
constraint language, Deladas (DEclarative LAnguage 
for Describing Autonomic Systems), which is suitable 
for specifying autonomic systems and may be used to 
drive the deployment and evolution process. 

3. Our Approach 
 

Our general approach is shown in Figure 2. The ap-
plication administrator specifies a deployment goal in 
terms of resources available and constraints over their 
deployment. The resources include software compo-
nents and physical hosts on which these components 
may be installed and executed. Constraints operate 
over aspects such as the mapping of components to 
hosts and the interconnection topology between com-
ponents. 

We assume that the distributed application can be 
structured as encapsulated components, each with its 
own thread of control. The granularity of components 
is intended to be large, so that a relatively small num-
ber of components execute on each host. The compo-
nents must be capable of recovering their own state if 
necessary, for example, in the event of a host crash. In 
our current prototype, components communicate with 
one another via asynchronous channels, but the ap-
proach could be extended in a straight-forward manner 
to support other styles such as RPC. We also assume 
that the application contains application-level protocols 
that cope with the disconnection and reconnection of 
channels to different platforms and servers. One such 
technology is the half session abstraction described by 
Strom and Yemeni [13]. 

The cycle shown in Figure 2 is controlled by 
the Autonomic Deployment and Management Engine 
(ADME). In order to produce a concrete deployment 
of the application, the ADME attempts to satisfy the 
goal, specified by the administrator in the Deladas lan-
guage. The engine includes a Deladas parser and con-
straint solver. The result of the attempted goal satisfac-
tion is a set of zero or more solutions. Each solution is 
in the form of a configuration, which describes a par-
ticular mapping of components to hosts and intercon-
nection topology that satisfies the constraints. Configu-
rations are encoded in XML documents known as De-
ployment Description Documents (DDDs). 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. Refined autonomic cycle 



 

 
If a configuration can be found1, it is enacted by 

ADME to produce a running deployment of the appli-
cation. This is facilitated using Cingal, and the Cingal 
infrastructure must already be installed on each of the 
hosts involved. From a configuration expressed as a 
DDD, ADME generates a collection of bundles which 
perform installation, instantiation and wiring of the 
components. Once these bundles have been fired on 
the appropriate hosts, the application is fully deployed 
in its initial configuration. This process is described in 
detail in [14]. 

The autonomic aspect of this approach is that the 
deployed application is instrumented with probes to 
monitor its execution. Events generated by the probes 
are sent to the ADME, which may decide that the de-
ployment no longer satisfies the original goal, for ex-
ample if a component or host fails. In this case the 
ADME evolves the goal to take account of changed 
resource availability—for example, removing failed 
hosts and perhaps adding new hosts that may now be 
available—and initiates the satisfy/enact cycle again. 
This attempts to find a new solution of the constraints 
that combines existing and new components, and to 
enact this in an efficient manner. Assuming that such a 
new configuration can be found and deployed, the sys-
tem has reacted automatically and appropriately to a 
change in the application’s environment. The cycle 
may continue indefinitely. This process is described in 
more detail in Section 5. 

The nature of the probes required to monitor the 
application depends on the constraints specified in the 
goal. At the simplest level the constraints operate over 
just the component/host topology, and for this, simple 
probes are sufficient. Where more complex probes are 
required, this can be deduced by ADME from the 
specified constraints. For example, constraints can 
operate over the latency or bandwidth of a channel, the 
degree of replication of a component, or the mean 
availability of a host. Each of these dynamic aspects 
requires a specialised probe. We view Deladas as a 
core language that may be extended to incorporate new 
constraint types and associated probes. 

This style of autonomic application evolution can 
be achieved without human intervention. The frame-
work described above also accommodates the need for 
more wide-ranging evolution. For example, in addition 
to changes in the application’s environment, changes 
may occur in the enterprise that the application sup-
ports; examples include changes in legal or financial 

                                                           
1 The ADME may be configured to use the first configuration 

found, or to allow the administrator to choose among multiple con-
figurations. 

regulations, or mergers of organisations. These may 
require manual revision of the deployment goal, in-
cluding changes to the constraints. 

 
4. Initial Deployment 

 
In this section we explore, using an example, the 

use of Deladas to describe the resources and con-
straints described in the last section. The language be-
longs to the family of architectural description lan-
guages (ADLs). Unlike some ADLs, Deladas does not 
contain any computational constructs, and programs 
that perform computation cannot be written in it; it is 
purely declarative and descriptive. 

We believe that Deladas’ constraint style of de-
ployment specification gives it a relative simplicity 
compared with more explicit styles, making it suitable 
for the specification of relatively large application de-
ployments. This is especially important when the de-
ployment is to be recomputed repeatedly in an auto-
nomic cycle. 

Deladas is used to define systems and constraints 
over them. The types supported are: component, host 
and constraintset. The type component is used to de-
scribe software components at a high level. Compo-
nents, like many of the types in Acme, have associated 
attributes. The mandatory attributes for components 
are bundles and ports. Bundles are used to define the 
code and static data of the components. Ports are used 
to define communication channels between compo-
nents. The type host is used to describe a resource on 
which components can be deployed. Attributes of hosts 
include IP-address, ownership, platform type, etc.  

The type constraintset is a high level constraint-
based specification of the invariants that pertain to a 
system. A constraintset constrains the way in which 
the system is realised, for example how processes are 
placed on machines and how the processes are wired 
up. Constraintsets are used to yield an initial configu-
ration that might be deployed, and also to constrain 
deployments in the face of change. In the future we 
envisage extending the constraintsets described here to 
include other aspects such as bandwidth and geopoliti-
cal constraints. 

To illustrate the use of constraintsets, we use an ex-
ample drawn from the peer-to-peer domain, in which 
clients connect to routers. Figure 3 shows one particu-
lar configuration that satisfies the deployment goal, 
expressed as a Deladas constraintset, shown in Figure 
4. In the configuration shown in Figure 3, the six hosts, 
labelled h1 to h6, each contain a single component, 
labelled C for client and R for router. The components 



 

are connected via uni-directional channels, which are 
attached to particular ports on each component. 

 

 
Figure 3. Example configuration 

 
We now describe in more detail the Deladas con-

straintset shown in Figure 4. Given a set of resources 
specified in Deladas and comprising components and 
hosts, the constraintset might describe none, one or 
many possible configurations. It is easily possible to 
write Deladas constraintsets that are internally incon-
sistent and therefore specify no valid configurations, 
irrespective of resources. The writing of appropriate 
constraintset definitions is likely to remain difficult, 
and we envisage that constraintsets for common archi-
tectural patterns might be available off the shelf, pre-
senting the opportunity for high level architectural 
reuse and specialisation. 

In this example, the constraintset contains five con-
straint clauses. These clauses operate over two types of 
component named Router and Client. It is not neces-
sary to specify the concrete types of these components 
but it is possible to infer that, in order to satisfy the 
constraints, the component Router must have ports 
named rin, rout, cin and cout. The constraints are writ-
ten in first-order logic and specify (in sequence) that: 

 
• hosts run an instance of a router and/or a client 
• every client connects to at least one router via the 

out and in ports on the client and the cin and cout 
ports on the router 

• there are at most two clients for every router 
• every router is connected to at least one other 

router via their rin and rout ports 
• routers are strongly connected 
 

Note that if two clients are connected to a router, 
routers require a separate cin and cout port per client. 

 
constraintset randc = constraintset { 
 
 // 1 router or client per host 
 forall host h in deployment ( 
  card(instancesof Router in h) = 1 or 
  card(instancesof Client in h) = 1 
 ) 
 
 // every client connects to at 
 // least 1 router 
 forall Client c in deployment ( 
  exists Router r in deployment ( 
   c.out connectsto r.cin 
   c.in connectsto r.cout 
  ) 
 ) 
 
 // every router connects to at 
 // most 2 clients 
 forall Router r in deployment ( 
  card(Client c connectedto r) <= 2 
 ) 
 
 // every router connects to at 
 // least 1 other router 
 forall Router r1 in deployment ( 
  exists Router r2 in deployment ( 
   r1.rout connectsto r2.rin 
   r1.rin connectsto r2.rout 
   r1 != r2 
  ) 
 ) 
 
 // routers are reachable from each other 
 forall Router r1,r2 in deployment ( 
  reachable(r1, r2) 
 ) 
} 

Figure 4. Example Deladas constraintset 
 
Figure 5 shows an example Deladas specification of 

resources that might be given to the solver in order to 
obtain a deployment. This specification defines the 
components Client and Router. The specification of 
Client includes the bundle containing code and static 
data, and defines two ports named in and out. The port 
definition of Router states that routers may have a mul-
tiplicity of connections, designated by the bracket no-
tation. This variadicity is missing in many ADLs, pre-
venting the specification and generation of architec-
tures like the example architecture used in this paper. 

 



 

component Client( 
 code = "file:///D:ClientBundle.xml", 
 ports = {in, out} 
) 
component Router( 
 code = "http://deladas.org/RBundle.xml", 
 ports = {cin[], cout[], rin[], rout[]} 
) 
host h1 = host(ipaddress = "192.168.0.1") 
... 
host h6 = host(ipaddress = "192.168.0.6") 
 

Figure 5. Example Deladas resources 
 

5. Autonomic Cycle 
 
Here we describe in more detail the autonomic cy-

cle first described in Section 3. We assume that the 
clients and routers described in Figures 4 and 5 have 
been deployed in the topology shown in Figure 3, 
which is compliant with the Deladas constraints. Fig-
ure 6 shows part of this deployment in more detail. 
Each component executes within a Cingal-supported 
machine as a separate operating system level process. 
For each host running a component, the system de-
ploys another component called the Autonomic Man-
agement Process (AMP). This task is responsible for 
monitoring the health of each of the deployed compo-
nents running on that host. The overall orchestration of 
the deployed system is the responsibility of an instance 
of the ADME. It is unimportant whether this is the 
same instance that caused the original deployment of 
the architecture, or not. To avoid ambiguity we will 
call the instance of the ADME performing the orches-
tration the Monitoring ADME (MADME). The 
MADME holds the knowledge required for the auto-
nomic cycle in the form of the resources (components 
and hosts) and the constraints over those resources. 

 

 
Figure 6. Components for 
autonomic management 

 
It is now possible to see how the autonomic cycle 

shown in Figure 2 is implemented. An instance of the 
ADME solves the constraints and the resulting archi-

tecture is enacted by ADME to produce a running de-
ployment. This deployment may include a new 
MADME process, or the ADME instance may become 
the MADME for the deployment. When events are 
received by the MADME that indicate invalidation of 
the constraints, the MADME attempts to find a new 
solution to the constraints. We have glossed over two 
details—how the changes are detected and how stabil-
ity of the system is maintained. 

When a system is deployed, in addition to the re-
sources and constraints specified in Deladas, the 
MADME has knowledge of the identity of the Cingal 
machines executing the components, and of the AMP 
processes. Each Cingal machine running a component 
knows of its local AMP process, which is configured 
with knowledge of the MADME. To illustrate how the 
autonomic cycle is initiated we will consider two pos-
sible failures: the failure of the router process running 
on host h3, and the failure of the entire node h3. 

In the event of the router process running on h3 
failing (say due to a heap overflow), various different 
entities can potentially observe the failure: the con-
nected clients running on hosts h1 and h5, the con-
nected router running on host h4, the MADME, or the 
collocated AMP. The failures can be detected either by 
the loss of a connection to other processes or by using 
heartbeats between the components. The entities ob-
serving the failure are commonly known as failure 
suspectors and the approach to recovery advocated 
here is perhaps first due to Birman [15]. 

In practice, being able to determine which compo-
nent has failed in the face of unreliability is notori-
ously difficult, and there exists a large body of work 
on unreliable failure suspectors, e.g. [16, 17]. For the 
purposes of this paper we assume that we can reliably 
determine which hosts and/or components have failed, 
and that the failures will be reported to the MADME. 

If a failure has been reported by the collocated 
AMP, the MADME can trivially determine that it is the 
process hosting the router and not the host that has 
failed. In this case the MADME can instantiate a new 
router instance on node h3 using a subset of the func-
tionality used to initially create it. If the entire h3 node 
fails, the MADME is required to find a new solution to 
the constraints. However, before examining how this is 
performed, the issue of stability of constraint solutions 
must be addressed. 

The solution to the placement of clients and routers 
shown in Figure 3 is one of many possible solutions to 
the constraints given in the Deladas specification. 
Other solutions may be trivially found by hosting the 
routers on hosts h1 and h2 for example. When the 
MADME is required to find a new solution to the 
specified constraints, it is desirable to minimise the 



 

redeployment of processes between hosts. Before at-
tempting to find a new solution to the general problem, 
as it did when the initial deployment was determined, 
the MADME therefore attempts to solve a more con-
strained problem. In this case, the problem is formed 
from the original constraints and resources, and the 
bindings surviving from the original deployment, com-
prising R to h4, C to h1, C to h2, C to h5 and C to h6. 
If no solution can be found to this problem, the extant 
bindings are progressively removed from the descrip-
tion until a solution can be found. 

Like the original attempt to find a solution, there is 
always the possibility that no solution may be found. If 
no solution can be found, a constraint error is issued by 
the MADME. This can be delivered via a variety of 
mechanisms. 

In the situation where the host h3 fails completely, 
the MADME might find the solution shown in Figure 
7. 

 
Figure 7. Evolved configuration 

 
Thus far, the autonomic processes described have 

not included any human intervention. However, as 
discussed earlier, changes may occur in the enterprise 
that the application supports, requiring manual revision 
of the deployment goal, including changes to the con-
straints. In order to accommodate such changes, 
mechanisms are required whereby the resources and 
constraints may be changed by human agents. This 
may be achieved via direct interaction with the 
MADME. 

The situations where resources are changed are 
similar to that where evolution is forced due to some 
failure. Changes initiated by a human are richer than 
those that are machine-initiated since resources can be 
added as well as removed. However, the changing of 
constraints cannot occur without human intervention. 
To accommodate these changes, the MADME presents 

five methods (as Web services) to the outside world, 
shown in Figure 8. 

 
String getResources(); 
String getConstraints(); 
String getConfig(); 
String[] satisfy( String config, 
 String resources, 
 String constraints); 
void enact(String config); 
 

Figure 8. MADME external interface 
 
The first three methods are selectors enabling the 

Deladas resources and constraints and the DDD de-
scribing the deployment to be obtained. The satisfy 
method allows new constraints, resources and existing 
deployed components to be specified in order to ac-
commodate some enterprise-level change. The config 
parameter may be null, corresponding to the initial 
deployment problem. The satisfy method returns a col-
lection of DDDs compliant with the specified con-
straints. The enact method performs enactment as de-
scribed earlier. This may require extant processes to be 
terminated and redeployed elsewhere. 

 
6. Status and further work 

 
The main constituents of the framework described 

in this paper are: 
 
• the Deladas language; 
• the constraint solver; 
• the component deployment mechanism; 
• the monitoring infrastructure; and 
• the ADME autonomic manager 
 
Of these, the component deployment mechanism is 

fully implemented, based on the Cingal system [3]. It 
takes an XML description of a configuration and de-
ploys it on a set of Cingal-enabled hosts. We have im-
plemented the Deladas language, and are investigating 
several constraint programming tools including 
ECLiPSe [10], JSolver [11] and Cream [12]. The 
monitoring infrastructure and autonomic manager will 
be developed once the initial satisfy/enact functionality 
is operational. We would hope to have a full pro-
totoype implementation completed by the time of the 
conference. 

We plan to evaluate the basic utility of the frame-
work initially by deploying several distributed applica-
tions such as a load-balanced web server and a pub-
lish/subscribe network onto a Beowulf cluster, and 
forcing various types of host and component failure. 
Longer term we will investigate the scalability of the 



 

framework, in particular the tractability of the con-
straint solving part, and experiment with extensibility 
in terms of the constraints and monitoring infrastruc-
ture that can be incorporated. 

 
7. Conclusions 

 
We believe that autonomic management of distrib-

uted application deployment will become essential as 
the scale and complexity of applications grow. This 
paper has outlined a framework to support the initial 
deployment and subsequent autonomic evolution of 
distributed applications in the face of perturbations 
such as host and link failure, temporary bandwidth 
problems, etc. The knowledge required for autonomic 
management is specified in the form of a set of avail-
able hardware and software resources and a set of con-
straints over their deployment. We postulate that it is 
feasible to implement an autonomic manager that will 
automatically evolve the deployed application to main-
tain the constraints while it is in operation. We are 
currently working on an implementation to enable us 
to test this assertion. 
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