A Framework for Constraint-Based Deployment and Autonomic
Management of Distributed Applications

Alan Dearle, Graham Kirby and Andrew McCarthy
School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SS, Scotland
{al, graham, ajm}@dcs.st-and.ac.uk

Abstract

We propose a framework for deployment and sub-
sequent autonomic management of component-based
distributed applications. An initial deployment goal is
specified using a declarative constraint language, ex-
pressing constraints over aspects such as component-
host mappings and component interconnection topol-
ogy. A constraint solver is used to find a configuration
that satisfies the goal, and the configuration is de-
ployed automatically. The deployed application is in-
strumented to allow subsequent autonomic manage-
ment. If, during execution, the manager detects that the
original goal is no longer being met, the satisfy/deploy
process can be repeated automatically in order to gen-
erate a revised deployment that does meet the goal.

1. Introduction

In [1], Kephart & Chess describe an autonomic sys-
tem as possessing the following aspects of self-
management:

self-configuration
self-optimization
self-healing
self-protection

This is illustrated in Figure 1, which shows a man-
aged element and its autonomic lifecycle. The element
is associated with an autonomic manager that attempts
to maintain some high-level objective for the element.
The behaviour of the element is continually monitored
and analysed. When this deviates sufficiently from the
objective, the manager plans and executes a change to
the element in order to restore the desired behaviour.

In this paper we describe a framework for auto-
nomic management of deployment and configuration
of distributed applications. The managed elements are
collections of components making up a distributed

application. We assume that the component granularity
is relatively large and that components are not nested.

Autonomic manager

Managed element

Figure 1. A managed element (from [1])

We identify two separate but closely related prob-
lems: the initial deployment of an application, and its
subsequent evolution in the face of host failures and
other perturbations. Both are too complex in large ap-
plications to be handled by a human operator. In our
framework both are controlled automatically, driven by
a high-level configuration goal specified by the admin-
istrator at the outset. We thus address specifically the
first and third of Kephart & Chess’ issues: self-
configuration and self-healing. Although not addressed
in this paper, we believe that self-optimization and
self-protection can be also be accommodated within
this framework.

It is our thesis that to implement such an autonomic
deployment and configuration cycle, we require:

1. amechanism for deploying components
2. alanguage to describe how the application is in-
tended to be structured
3. an autonomic management engine capable of
o identifying a valid configuration of the ap-
plication
o deploying the configuration into a distrib-
uted environment
¢ modifying the deployed application to main-
tain the specified intended structure in the
face of changing circumstances



Some mechanism is required for deploying and re-
deploying components in possibly remote locations.
We advocate the use of bundles, which were devel-
oped by us in the project Computation in Geographi-
cally Appropriate Locations (Cingal) [2, 3]. Bundles
permit XML-encoded closures of code and data to be
pushed and executed in remote locations. Cingal-
enabled hosts provide a light-weight runtime and secu-
rity infrastructure, written in pure Java, necessary to
support the execution of bundles.

In order to describe how an application is intended
to be structured, we propose a domain-specific con-
straint-based language. This describes configuration
goals in terms of resources including software compo-
nents and physical hosts, relationships between hosts
and components, and constraints over these. From such
a configuration goal it is possible to:

e deploy components using the available physical
resources

e configure monitoring software to assess
whether the executing application continues to
obey the constraints specified in the description

e configure software for automatically evolving
the application in response to constraint viola-
tions arising from changes in the environment

There are several levels at which a deployed appli-
cation may be evolved. The simplest, on which we
concentrate here, involves evolution of the configura-
tion in order to maintain a previously specified goal.
Thus the configuration evolves whilst the high-level
configuration goal remains the same. We term this
autonomic evolution, and consider it to be fundamental
to the autonomic management of distributed applica-
tions. Our aim is for this style of evolution to take
place automatically whenever required.

A second level of evolution is needed when the
high-level goal itself changes, due to a change in ap-
plication requirements. Our framework handles both
levels of evolution in the same way, treating the first as
a special case of the second in which the goal remains
fixed. In both cases an ongoing autonomic cycle, as
shown in Figure 1, repeatedly attempts to solve the
current constraint problem, deploys the resulting con-
figuration, and monitors the deployment to determine
when to repeat the sequence.

2. Related languages and systems

The Cingal system supports the deployment of dis-
tributed applications in geographically appropriate
locations. It provides mechanisms to execute and in-
stall components, in the form of bundles, on remote

machines. A bundle is the only entity that may be exe-
cuted in Cingal and consists of an XML-encoded clo-
sure of code and data and a set of bindings naming the
data. Cingal-enabled hosts contain appropriate security
mechanisms to ensure malicious parties cannot deploy
and execute harmful agents, and to ensure that de-
ployed components do not interfere with each other
either accidentally or maliciously. Cingal components
may be written using standard programming languages
and programming models. When a bundle is received
by a Cingal-enabled host, provided that the bundle has
passed a number of checks, the bundle is fired, that is,
it is executed in a security domain (called a machine)
within a new operating system process. Unlike proc-
esses running on traditional operating systems, bundles
have a limited interface to their local environment. The
repertoire of interactions with the host environment is
limited to: interactions with a local store, the manipula-
tion of bindings, the firing of other bundles, and inter-
actions with other Cingal processes. The approach de-
scribed in this paper exploits much of the technology
provided by Cingal.

A number of languages have been developed to de-
scribe software architectures, including [4-6]. Typical
of these is Acme [7], which is intended to fulfil three
roles: to provide an architectural interchange format
for design tools, to provide a foundation for the design
of new tools and to support architectural modelling.
The Acme language supports the description of com-
ponents joined via connectors which provide a variety
of communication styles. Components and connectors
may be annotated with properties that specify attributes
such as source files and degrees of concurrency, etc.
Acme also supports a logical formalism based on rela-
tions and constraints which permits computational or
run-time behaviour to be associated with the descrip-
tion of architectures. Acme does not however support
the deployment of systems from the architectural de-
scriptions, nor does it encompass physical computation
resources.

The ArchWare ADL [8] is based on higher-order -
calculus, and is aimed at specifying active architec-
tures, in which the architectural description of an ap-
plication evolves in lock-step with the application it-
self. The language supports a reversible compose op-
erator that allows components to be assembled from
other components, and later decomposed and recom-
posed to permit evolution. Decomposition operates at a
fine-grain, and it is possible to decompose a compo-
nent into constituent parts without losing encapsulated
state. This is achieved using Ayper-code, which pro-
vides a reified form for both code and data. In com-
parison, the evolution in our framework operates at a
coarser grain, and we assume that one component may



be completely replaced by another with no common
state. Further, the ArchWare ADL focuses on software
architecture and does not address physical deployment.

The Active Pipes approach [9] encompasses the no-
tions of machines and processes which transform data
in an active network. The idea is to map a high level
pipeline of software components onto physical net-
work resources. As the authors state in their paper, “it
is necessary to have a general scheme of specifying
application requirements that is expressive enough to
describe typical application scenarios while simple
enough to be used effectively”. In our framework we
aim to combine this approach with the notion of an
ADL to encompass hardware and software compo-
nents.

Constraint programming models problems by de-
claring a set of variables with finite domains and con-
straints between values of these variables. Instead of
writing an imperative program to provide a result, the
user invokes a search algorithm to find a solution
which satisfies the constraints specified by the user. A
number of constraint programming and solving sys-
tems exist. We believe that the lack of domain-specific
syntax in such systems makes them unsuitable for
specifying the high-level configuration goal in an
autonomic application. However, they are applicable
as constraint solvers when used in conjunction with a
domain-specific language.

For example, ECLiPSe [10] is a constraint logic
programming system with syntax similar to Prolog,
supplied with a number of constraint solvers and li-
braries. JSolver [11] is a commercial Java library
which provides constraint satisfaction functionality,
while Cream [12] is a simpler open-source library. Any
such systems could be employed in our framework.

In Section 4 we describe a new domain-specific
constraint language, Deladas (DEclarative LAnguage
for Describing Autonomic Systems), which is suitable
for specifying autonomic systems and may be used to
drive the deployment and evolution process.

resources

host /\

host

component

[}
[}
component :
[}

|
|
]
]
)
1
|
]
]
host »,
]
]
|
]
|
]
]
]
]

S ———

deployed_on

3. Our Approach

Our general approach is shown in Figure 2. The ap-
plication administrator specifies a deployment goal in
terms of resources available and constraints over their
deployment. The resources include software compo-
nents and physical hosts on which these components
may be installed and executed. Constraints operate
over aspects such as the mapping of components to
hosts and the interconnection topology between com-
ponents.

We assume that the distributed application can be
structured as encapsulated components, each with its
own thread of control. The granularity of components
is intended to be large, so that a relatively small num-
ber of components execute on each host. The compo-
nents must be capable of recovering their own state if
necessary, for example, in the event of a host crash. In
our current prototype, components communicate with
one another via asynchronous channels, but the ap-
proach could be extended in a straight-forward manner
to support other styles such as RPC. We also assume
that the application contains application-level protocols
that cope with the disconnection and reconnection of
channels to different platforms and servers. One such
technology is the half session abstraction described by
Strom and Yemeni [13].

The cycle shown in Figure 2 is controlled by
the Autonomic Deployment and Management Engine
(ADME). In order to produce a concrete deployment
of the application, the ADME attempts to satisfy the
goal, specified by the administrator in the Deladas lan-
guage. The engine includes a Deladas parser and con-
straint solver. The result of the attempted goal satisfac-
tion is a set of zero or more solutions. Each solution is
in the form of a configuration, which describes a par-
ticular mapping of components to hosts and intercon-
nection topology that satisfies the constraints. Configu-
rations are encoded in XML documents known as De-
ployment Description Documents (DDDs).

,deployment __ __ _ _ 5

enact

deployed_on

connected_to

\
\

channel
\

describes
(1.1)

———— e

evolve goal

Figure 2. Refined autonomic cycle



If a configuration can be found', it is enacted by
ADME to produce a running deployment of the appli-
cation. This is facilitated using Cingal, and the Cingal
infrastructure must already be installed on each of the
hosts involved. From a configuration expressed as a
DDD, ADME generates a collection of bundles which
perform installation, instantiation and wiring of the
components. Once these bundles have been fired on
the appropriate hosts, the application is fully deployed
in its initial configuration. This process is described in
detail in [14].

The autonomic aspect of this approach is that the
deployed application is instrumented with probes to
monitor its execution. Events generated by the probes
are sent to the ADME, which may decide that the de-
ployment no longer satisfies the original goal, for ex-
ample if a component or host fails. In this case the
ADME evolves the goal to take account of changed
resource availability—for example, removing failed
hosts and perhaps adding new hosts that may now be
available—and initiates the satisfy/enact cycle again.
This attempts to find a new solution of the constraints
that combines existing and new components, and to
enact this in an efficient manner. Assuming that such a
new configuration can be found and deployed, the sys-
tem has reacted automatically and appropriately to a
change in the application’s environment. The cycle
may continue indefinitely. This process is described in
more detail in Section 5.

The nature of the probes required to monitor the
application depends on the constraints specified in the
goal. At the simplest level the constraints operate over
just the component/host topology, and for this, simple
probes are sufficient. Where more complex probes are
required, this can be deduced by ADME from the
specified constraints. For example, constraints can
operate over the latency or bandwidth of a channel, the
degree of replication of a component, or the mean
availability of a host. Each of these dynamic aspects
requires a specialised probe. We view Deladas as a
core language that may be extended to incorporate new
constraint types and associated probes.

This style of autonomic application evolution can
be achieved without human intervention. The frame-
work described above also accommodates the need for
more wide-ranging evolution. For example, in addition
to changes in the application’s environment, changes
may occur in the enterprise that the application sup-
ports; examples include changes in legal or financial

' The ADME may be configured to use the first configuration
found, or to allow the administrator to choose among multiple con-
figurations.

regulations, or mergers of organisations. These may
require manual revision of the deployment goal, in-
cluding changes to the constraints.

4. Initial Deployment

In this section we explore, using an example, the
use of Deladas to describe the resources and con-
straints described in the last section. The language be-
longs to the family of architectural description lan-
guages (ADLs). Unlike some ADLs, Deladas does not
contain any computational constructs, and programs
that perform computation cannot be written in it; it is
purely declarative and descriptive.

We believe that Deladas’ constraint style of de-
ployment specification gives it a relative simplicity
compared with more explicit styles, making it suitable
for the specification of relatively large application de-
ployments. This is especially important when the de-
ployment is to be recomputed repeatedly in an auto-
nomic cycle.

Deladas is used to define systems and constraints
over them. The types supported are: component, host
and constraintset. The type component is used to de-
scribe software components at a high level. Compo-
nents, like many of the types in Acme, have associated
attributes. The mandatory attributes for components
are bundles and ports. Bundles are used to define the
code and static data of the components. Ports are used
to define communication channels between compo-
nents. The type host is used to describe a resource on
which components can be deployed. Attributes of hosts
include IP-address, ownership, platform type, etc.

The type constraintset is a high level constraint-
based specification of the invariants that pertain to a
system. A constraintset constrains the way in which
the system is realised, for example how processes are
placed on machines and how the processes are wired
up. Constraintsets are used to yield an initial configu-
ration that might be deployed, and also to constrain
deployments in the face of change. In the future we
envisage extending the constraintsets described here to
include other aspects such as bandwidth and geopoliti-
cal constraints.

To illustrate the use of constraintsets, we use an ex-
ample drawn from the peer-to-peer domain, in which
clients connect to routers. Figure 3 shows one particu-
lar configuration that satisfies the deployment goal,
expressed as a Deladas constraintset, shown in Figure
4. In the configuration shown in Figure 3, the six hosts,
labelled /1 to h6, each contain a single component,
labelled C for client and R for router. The components



are connected via uni-directional channels, which are
attached to particular ports on each component.

h1
@ "
f CO
,I i L
;! L
i \
,’ I \“ \
, ! \
h3 ¥ h4 1
Ry TCRD
T4 T4

hs [N—— hé /

Figure 3. Example configuration

We now describe in more detail the Deladas con-
straintset shown in Figure 4. Given a set of resources
specified in Deladas and comprising components and
hosts, the constraintset might describe none, one or
many possible configurations. It is easily possible to
write Deladas constraintsets that are internally incon-
sistent and therefore specify no valid configurations,
irrespective of resources. The writing of appropriate
constraintset definitions is likely to remain difficult,
and we envisage that constraintsets for common archi-
tectural patterns might be available off the shelf, pre-
senting the opportunity for high level architectural
reuse and specialisation.

In this example, the constraintset contains five con-
straint clauses. These clauses operate over two types of
component named Router and Client. It is not neces-
sary to specify the concrete types of these components
but it is possible to infer that, in order to satisfy the
constraints, the component Router must have ports
named rin, rout, cin and cout. The constraints are writ-
ten in first-order logic and specify (in sequence) that:

¢ hosts run an instance of a router and/or a client

e cvery client connects to at least one router via the
out and in ports on the client and the cin and cout
ports on the router

e there are at most two clients for every router

e cvery router is connected to at least one other
router via their rin and rout ports

e routers are strongly connected

Note that if two clients are connected to a router,
routers require a separate cin and cout port per client.

constraintset randc = constraintset {

// 1 router or client per host

forall host h in deployment (
card (instancesof Router in h) = 1 or
card (instancesof Client in h)

|
—

)

// every client connects to at
// least 1 router
forall Client c¢ in deployment (
exists Router r in deployment (
c.out connectsto r.cin
c.in connectsto r.cout

)

// every router connects to at

// most 2 clients

forall Router r in deployment (
card(Client c connectedto r) <= 2

)

// every router connects to at
// least 1 other router
forall Router rl in deployment (
exists Router r2 in deployment (
rl.rout connectsto r2.rin
rl.rin connectsto r2.rout
rl != r2

)

// routers are reachable from each other

forall Router rl,r2 in deployment (
reachable (rl, r2)

)

Figure 4. Example Deladas constraintset

Figure 5 shows an example Deladas specification of
resources that might be given to the solver in order to
obtain a deployment. This specification defines the
components Client and Router. The specification of
Client includes the bundle containing code and static
data, and defines two ports named in and out. The port
definition of Router states that routers may have a mul-
tiplicity of connections, designated by the bracket no-
tation. This variadicity is missing in many ADLs, pre-
venting the specification and generation of architec-
tures like the example architecture used in this paper.



component Client (
code = "file:///D:ClientBundle.xml",
ports = {in, out}

)

component Router (

code = "http://deladas.org/RBundle.xml",
ports = {cin[], cout[], rin[], rout[]}
)
host hl = host(ipaddress = "192.168.0.1")
host h6 = host(ipaddress = "192.168.0.6")

Figure 5. Example Deladas resources

5. Autonomic Cycle

Here we describe in more detail the autonomic cy-
cle first described in Section 3. We assume that the
clients and routers described in Figures 4 and 5 have
been deployed in the topology shown in Figure 3,
which is compliant with the Deladas constraints. Fig-
ure 6 shows part of this deployment in more detail.
Each component executes within a Cingal-supported
machine as a separate operating system level process.
For each host running a component, the system de-
ploys another component called the Autonomic Man-
agement Process (AMP). This task is responsible for
monitoring the health of each of the deployed compo-
nents running on that host. The overall orchestration of
the deployed system is the responsibility of an instance
of the ADME. It is unimportant whether this is the
same instance that caused the original deployment of
the architecture, or not. To avoid ambiguity we will
call the instance of the ADME performing the orches-
tration the Monitoring ADME (MADME). The
MADME holds the knowledge required for the auto-
nomic cycle in the form of the resources (components
and hosts) and the constraints over those resources.

h1 h3 h5

Figure 6. Components for
autonomic management

It is now possible to see how the autonomic cycle
shown in Figure 2 is implemented. An instance of the
ADME solves the constraints and the resulting archi-

tecture is enacted by ADME to produce a running de-
ployment. This deployment may include a new
MADME process, or the ADME instance may become
the MADME for the deployment. When events are
received by the MADME that indicate invalidation of
the constraints, the MADME attempts to find a new
solution to the constraints. We have glossed over two
details—how the changes are detected and how stabil-
ity of the system is maintained.

When a system is deployed, in addition to the re-
sources and constraints specified in Deladas, the
MADME has knowledge of the identity of the Cingal
machines executing the components, and of the AMP
processes. Each Cingal machine running a component
knows of its local AMP process, which is configured
with knowledge of the MADME. To illustrate how the
autonomic cycle is initiated we will consider two pos-
sible failures: the failure of the router process running
on host /3, and the failure of the entire node /3.

In the event of the router process running on 43
failing (say due to a heap overflow), various different
entities can potentially observe the failure: the con-
nected clients running on hosts 4/ and k5, the con-
nected router running on host 44, the MADME, or the
collocated AMP. The failures can be detected either by
the loss of a connection to other processes or by using
heartbeats between the components. The entities ob-
serving the failure are commonly known as failure
suspectors and the approach to recovery advocated
here is perhaps first due to Birman [15].

In practice, being able to determine which compo-
nent has failed in the face of unreliability is notori-
ously difficult, and there exists a large body of work
on unreliable failure suspectors, e.g. [16, 17]. For the
purposes of this paper we assume that we can reliably
determine which hosts and/or components have failed,
and that the failures will be reported to the MADME.

If a failure has been reported by the collocated
AMP, the MADME can trivially determine that it is the
process hosting the router and not the host that has
failed. In this case the MADME can instantiate a new
router instance on node 43 using a subset of the func-
tionality used to initially create it. If the entire 43 node
fails, the MADME is required to find a new solution to
the constraints. However, before examining how this is
performed, the issue of stability of constraint solutions
must be addressed.

The solution to the placement of clients and routers
shown in Figure 3 is one of many possible solutions to
the constraints given in the Deladas specification.
Other solutions may be trivially found by hosting the
routers on hosts 4/ and 42 for example. When the
MADME is required to find a new solution to the
specified constraints, it is desirable to minimise the



redeployment of processes between hosts. Before at-
tempting to find a new solution to the general problem,
as it did when the initial deployment was determined,
the MADME therefore attempts to solve a more con-
strained problem. In this case, the problem is formed
from the original constraints and resources, and the
bindings surviving from the original deployment, com-
prising R to h4, Cto hil, Cto h2, C to h5 and C to h6.
If no solution can be found to this problem, the extant
bindings are progressively removed from the descrip-
tion until a solution can be found.

Like the original attempt to find a solution, there is
always the possibility that no solution may be found. If
no solution can be found, a constraint error is issued by
the MADME. This can be delivered via a variety of
mechanisms.

In the situation where the host 43 fails completely,
the MADME might find the solution shown in Figure
7.

h2

. )
\

/

/

/

I
]

y
=

hs h6 T/

Figure 7. Evolved configuration

Thus far, the autonomic processes described have
not included any human intervention. However, as
discussed earlier, changes may occur in the enterprise
that the application supports, requiring manual revision
of the deployment goal, including changes to the con-
straints. In order to accommodate such changes,
mechanisms are required whereby the resources and
constraints may be changed by human agents. This
may be achieved via direct interaction with the
MADME.

The situations where resources are changed are
similar to that where evolution is forced due to some
failure. Changes initiated by a human are richer than
those that are machine-initiated since resources can be
added as well as removed. However, the changing of
constraints cannot occur without human intervention.
To accommodate these changes, the MADME presents

five methods (as Web services) to the outside world,
shown in Figure 8.

String getResources();

String getConstraints();

String getConfig();

String[] satisfy(String config,
String resources,
String constraints);

void enact (String config);

Figure 8. MADME external interface

The first three methods are selectors enabling the
Deladas resources and constraints and the DDD de-
scribing the deployment to be obtained. The satisfy
method allows new constraints, resources and existing
deployed components to be specified in order to ac-
commodate some enterprise-level change. The config
parameter may be null, corresponding to the initial
deployment problem. The satisfy method returns a col-
lection of DDDs compliant with the specified con-
straints. The enact method performs enactment as de-
scribed earlier. This may require extant processes to be
terminated and redeployed elsewhere.

6. Status and further work

The main constituents of the framework described
in this paper are:

e the Deladas language;

the constraint solver;

the component deployment mechanism;
the monitoring infrastructure; and

the ADME autonomic manager

Of these, the component deployment mechanism is
fully implemented, based on the Cingal system [3]. It
takes an XML description of a configuration and de-
ploys it on a set of Cingal-enabled hosts. We have im-
plemented the Deladas language, and are investigating
several constraint programming tools including
ECLiPSe [10], JSolver [11] and Cream [12]. The
monitoring infrastructure and autonomic manager will
be developed once the initial satisfj/enact functionality
is operational. We would hope to have a full pro-
totoype implementation completed by the time of the
conference.

We plan to evaluate the basic utility of the frame-
work initially by deploying several distributed applica-
tions such as a load-balanced web server and a pub-
lish/subscribe network onto a Beowulf cluster, and
forcing various types of host and component failure.
Longer term we will investigate the scalability of the



framework, in particular the tractability of the con-
straint solving part, and experiment with extensibility
in terms of the constraints and monitoring infrastruc-
ture that can be incorporated.

7. Conclusions

We believe that autonomic management of distrib-
uted application deployment will become essential as
the scale and complexity of applications grow. This
paper has outlined a framework to support the initial
deployment and subsequent autonomic evolution of
distributed applications in the face of perturbations
such as host and link failure, temporary bandwidth
problems, etc. The knowledge required for autonomic
management is specified in the form of a set of avail-
able hardware and software resources and a set of con-
straints over their deployment. We postulate that it is
feasible to implement an autonomic manager that will
automatically evolve the deployed application to main-
tain the constraints while it is in operation. We are
currently working on an implementation to enable us
to test this assertion.

Acknowledgements

This work 1is supported by EPSRC Grants
GR/M78403 “Supporting Internet Computation in Ar-
bitrary Geographical Locations”, GR/R51872 “Reflec-
tive Application Framework for Distributed Architec-
tures” and GR/S44501 “Secure Location-Independent
Autonomic Storage Architectures”, and by EC Frame-
work V IST-2001-32360 “ArchWare: Architecting
Evolvable Software”.

We thank Ian Gent and Tom Kelsey of the St An-
drews constraint satisfaction group for helpful discus-
sions on constraint solving, Warwick Harvey for his
tutorials on ECLiPSe, and Ron Morrison and Dharini
Balasubramaniam for their insight into Architecture
Description Languages.

References

[17J. O. Kephart and D. M. Chess, “The Vision of Auto-
nomic Computing”, IEEE Computer, vol. 36 no. 1, pp. 41-
50, 2003.

[2]J. C. Diaz y Carballo, A. Dearle, and R. C. H. Connor,
“Thin Servers - An Architecture to Support Arbitrary Place-
ment of Computation in the Internet”, Proc. 4th International
Conference on Enterprise Information Systems (ICEIS
2002), Ciudad Real, Spain, 2002.

[3] http://www-systems.dcs.st-and.ac.uk/cingal/

[4] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting
Style in Architectural Design Environments”, Proc. 2nd

ACM SIGSOFT Symposium on Foundations of Software
Engineering, New Orleans, Louisiana, USA, 1994.

[5]1 M. Moriconi, X. Qian, and R. A. Riemenschneider, “Cor-
rect Architecture Refinement”, IEEE Transactions on Soft-
ware Engineering, vol. 21 no. 4, pp. 356-372, 1995.

[6] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik, “Abstractions for Software Archi-
tecture and Tools to Support Them”, IEEE Transactions on
Software Engineering, vol. 21 no. 4, pp. 314-335, 1995.

[7] D. Garlan, R. Monroe, and D. Wile, “ACME: An Archi-
tecture Description Interchange Language”, Proc. Confer-
ence of the Centre for Advanced Studies on Collaborative
Research (CASCON’97), Toronto, Canada, 1997.

[8] R. Morrison, G. N. C. Kirby, D. Balasubramaniam, K.
Mickan, F. Oquendo, S. Cimpan, B. C. Warboys, B. Snow-
don, and R. M. Greenwood, “Constructing Active Architec-
tures in the ArchWare ADL”, University of St Andrews
2003. http://www.dcs.st-and.ac.uk/research/
publications/MKB+03.shtml

[9] R. Keller, J. Ramamirtham, T. Wolf, and B. Plattner,
“Active Pipes: Service Composition for Programmable Net-
works”, Proc. IEEE MILCOM 2001, McLean, VA, USA,
2001.

[10] “The ECLiPSe Constraint Logic Programming System”,
2003 http://www-icparc.doc.ic.ac.uk/eclipse/

[11]ILOG, “ILOG JSolver”, 2004
http://www.ilog.com/products/jsolver/

[12] N. Tamura, “Cream: Class Library for Constraint Pro-
gramming in Java”, 2003 http://bach.istc.kobe-u.ac.jp/cream/
[13] R. Strom and S. Yemini, “Optimistic Recovery in Dis-
tributed Systems”, ACM Transactions on Computer Systems,
vol. 3 no. 3, pp. 204-226, 1985.

[14] A. Dearle, G. N. C. Kirby, A. McCarthy, and J. C. Diaz
y Carballo, “A Flexible and Secure Deployment Framework
for Distributed Applications”, Submitted To 2nd Interna-
tional Working Conference on Component Deployment (CD
2004), 2004.

[15] K. P. Birman and R. Cooper, “The ISIS Project: Real
Experience with a Fault Tolerant Programming System”,
Operating Systems Review, vol. 25 no. 2, pp. 103-107, 1991.
[16] T. Chandra and S. Toueg, “Unreliable Failure Detectors
for Reliable Distributed Systems”, Journal of the ACM, vol.
43 no. 1, pp. 225-267, 1996.

[17] M. K. Aguilera, W. Chen, and S. Toueg, “Heartbeat: a
Timeout-Free Failure Detector for Quiescent Reliable Com-
munication”, in Lecture Notes in Computer Science 1320, M.
Mavronicolas and P. Tsigas, Eds.: Springer-Verlag, 1997, pp.
126-140.




