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Abstract. A GLObal Smart Space (GLOSS) provides support for interaction
amongst people, artefacts and places while taking account of both context and
movement on a global scale. Crucial to the definition of a GLOSS is the provi-
sion of a set of services, which we term location-aware services, that detect,
convey, store and exploit location information. We first describe a framework
(ontology), using a small set of concepts, for defining a GLOSS. This allows
different services to be implemented without duplication of the basic mecha-
nisms, and abstracts over specific details of the technologies used, thereby ac-
commodating both heterogeneity and evolution. Secondly, we introduce a set of
location-aware metaphors that are defined in terms of the GLOSS concepts.
Thirdly, we propose a recursive software architecture to support the implemen-
tation of the metaphors within the framework. Finally we outline how the soft-
ware architecture may be applied recursively to provide scalability for location-
aware services in the global context.

1 Introduction

The ubiquitous computing paradigm has the goal of providing information and ser-
vices that are accessible anywhere, at any time and via any device [1]. Within this
paradigm, a GLObal Smart Space (GLOSS) provides support for interaction amongst
people, artefacts and places while taking account of both context and movement on a
global scale.

The “SmartHome” and “SmartOffice” scenarios [2], which consist of intelligent
services that are accessible to users via handheld devices connected over short-range
wireless links, are particular examples of a LOcal Smart Space (LOSS). Some at-
tempts at building a LOSS have concentrated on intelligent configuration of an envi-
ronment based on presence. For example, air conditioners and lights might automati-
cally turn on/off to individual requirements, or blinds may open/close depending on
natural light levels in the room [3]. Other applications have implemented proximate
selection interfaces, where nearby objects are automatically easier to select, such as



automatically defaulting to the nearest printer in a print command [4]. The presenta-
tion of contextual information can be handled in a similar manner, where information
or annotations about a particular location or object is automatically displayed to a
person on entering an area. Finally, systems have been proposed that monitor a user’s
location and actions, and then utilise this information in an application such as an
automatic diary [5].

Hitherto, research into smart spaces has almost exclusively concentrated on provid-
ing interaction paradigms that hide the computer in small and highly constrained envi-
ronments (LOSSes) [6]. Such systems are mostly focused either on a particular appli-
cation or on a specific sensor technology with little or no general platform or infra-
structure. As such the current state-of-the-art for smart spaces is, for the most part,
complex, expensive to install, and optimised for the environment dynamics at installa-
tion time. Since environment dynamics drift over time, these installed systems fre-
quently atrophy and require reconfiguration, often at great expense.

Here we concentrate on the global context (a GLOSS) and in particular location—
aware services. This has been made feasible by the recent advances in sensor and
location technologies, the increased performance of miniature and embedded devices,
and the increased availability of ubiquitous and wireless networking. Our approach is
to define a GLOSS framework (ontology) [7] using a small set of concepts. The
framework allows different services to be implemented without duplication of the
basic mechanisms and also abstracts over specific details of the technologies used
thereby accommodating both heterogeneity and evolution. Using the framework we
introduce a set of location-aware metaphors and show how they interact with these
concepts.

Additionally, we introduce a recursive software architecture that facilitates the im-
plementation of the location-aware metaphors within the framework. Finally we out-
line how the software architecture may be applied recursively to provide scalability
for location-aware services in the global context.

1.1  GLOSS Concepts

The GLOSS framework describes a universe of discourse for understanding global
smart spaces. The key concepts are people, artefacts and places. For the moment we
will not model people and artefacts in great detail, save that: a particular type of arte-
fact is identified, the conduit which is associated with a person, being an artefact that
is part of, or in communication with, the general (connected) GLOSS fabric; and that
people have profiles that define their context.

Of particular importance to GLOSS, given its emphasis on global and spaces and
our interest in location-aware services, is the treatment of geo-spatial concepts. Three
separate concepts are identified: physical location, region and symbolic location,
unified by the general term where, deliberately selected to avoid the inevitable conno-
tations associated with more precise terms. A physical location is a single fixed point
in space. One particular type is a coordinate, expressed using a coordinate system (as
opposed to some more general description). A region is an extended area or volume,
fixed in space, such as a city. A symbolic location is a potentially mobile logical entity



that occupies a region that may vary over time, such as a car or a train. A number of
other auxiliary concepts are significant in the GLOSS framework but here we only
require a profile, which defines the context for a person.

A simplified UML model for location information is given in Fig 1.
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Fig 1: UML class diagram for location information

1.2 Location-Aware Metaphors

Central to the definition of a GLOSS is the provision of a set of services, which we
term location-aware services, that detect, convey, store and exploit location informa-
tion. To illustrate these services we introduce three metaphors termed Radar, Trail
and Hearsay. These are described as compositions of the GLOSS concepts and form a
basis for the design of practical tools to support mobile users in a global context.

1.2.1 Radar
Radar was originally proposed [8] as follows:

“This is a tool that will give you an overview beyond the immediate environ-
ment. With this tool you will be able to locate low and high densities, crowds
and groups in a larger area. This can help you find the special gap of freedom,
the emptiness, you sometimes lack in a public environment. This instrument
can search the streets and spaces for you on a hunt for either noise or silence.”

Radar can be described in terms of the primitive concepts as:
Radar: Tine X Region -> Set[ GLOSSObj ect]

That is, radar provides a means for the user to discover the significant objects
within a bounded region at a given time. The region describes the radar horizon.



1.2.2 Trails

Trails were originally proposed [8] as follows:

“Trails: an ancient way of finding your way around in an area, known or un-
known. To find and navigate the way now you follow static landmarks and
signs; if you lose sight of the signs or find something “off-trail”” interesting,
you lose your trail. We propose a Trail that is plastic, a trail that changes,
grows and evolves with you. A morphic trail that guides you in your daily life.
This is also a tool to be shared with other people. Trails could be borrowed,
given, bought or swapped.”

Three distinct varieties of trails are modelled: observed trails, archetypal trails and
intentional trails. To give the flavour of our reasoning we will only describe ob-
served trails here.

An observed trail is an ordered sequence of observations of a person or artefact,
each recording a time, a place (coordinate, region or location) and optionally some
additional information. It can be described in terms of the primitive concepts as:

observedTrail: GLOSSOhject X Tinme X Tine X
Sequence[ Wiere X Tinme X Information]

Thus an observed trail contains an observed entity (a specific person or artefact), a
start time and end time, and a sequence of observations, each comprising an individual
observation in space and time, together with some optional additional information.

1.2.3 Hearsay
Hearsay was originally proposed [8] as follows:

“This is an intimate, sensitive tool that will be there to remind and pick up
small notes in the environment left for you. It will make sure that you will only
find the message left for you if the context is right. Some messages you will
never find. We suggest a new form of “snail mail”* that will give you the same
experience the sender had when the message was composed. Posted or left in
the global environment the message waits at the same place to be delivered at
the right time for whom it’s left for. A mail where time is not an option but the
context is.”

Hearsay can be described in terms of the primitive concepts as:
Hearsay: Time X Where -> Set[ I nformation]

That is, hearsay provides a means for the user to send and receive messages that are
delivered only when the receiver enters a specific where.



1.3 Use-Case Hearsay Scenarios

To motivate our design decisions on the software architecture for implementing loca-
tion-aware services we introduce two use-case scenarios based on hearsay. In general,
two services are required for hearsay:

» placement of hearsay
« delivery of hearsay

Hearsay placement allows a GLOSS user to insert a message into the GLOSS fabric at
any point, parameterised by a where and a profile. The where describes the geo-
spatial region in which the message should be delivered, and the profile restricts de-
livery to certain GLOSS users.

In both use-cases we will concentrate on the delivery of hearsay except to note that
the placement can originate from any GLOSS node. In each use-case the hearsay will
be placed (stored) on the GLOSS node that corresponds to the where in which the
hearsay should be delivered—if there is such a node—or, otherwise, on the GLOSS
node whose where most closely contains the delivery where.

Hearsay delivery is triggered when a user enters a where that has associated, rele-
vant hearsay attached to it. There are thus two separate implementation aspects: how
the event describing that user movement reaches the hearsay delivery service, and how
the hearsay is then delivered to the user. The communication channels used between
the user and the GLOSS fabric may be the same in each case, or different.

The first use-case allows hearsay to be delivered at any point within a GLOSS-
aware where, while the second allows hearsay to be delivered at a particular GLOSS-
aware coordinate. The use-cases also illustrate different ways in which user move-
ment events may be routed through the GLOSS fabric.

1.3.1 Use-Case One

In our first scenario, Anna places some hearsay relevant to Bob (about a café) at a
where (the street containing the café), due for delivery when Bob enters the street.

Bob has a PDA that is GPS-enabled, and communicates with the GLOSS fabric via
SMS over GSM. Fig 2 shows Bob’s PDA sending SMS messages, containing his GPS
coordinates, to his SMS gateway (in Brussels) since Bob is from Belgium. The SMS
gateway calls an agent to process the GPS data and informs the street, identified from
the GPS data, that Bob has entered the street. Once Bob’s profile is matched with that
of the hearsay, the hearsay is delivered to him.
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Fig 2: Hearsay delivery anywhere in a GLOSS-aware where, with location detection by user

Fig 2 gives a hint of the infrastructure that may be required to support a GLOSS.
We will develop this later, but emphasise here that the location information enters the
GLOSS fabric at a remote point (Brussels) and that the hearsay is delivered when Bob
enters any part of the street.

1.3.2 Use-Case Two

Our second scenario involves the staff at the Pompidou Centre placing hearsay rele-
vant to all art lovers at a coordinate (the Eli Lotar Il sculpture [9]) for delivery at
precisely that coordinate.

Fig 3 shows Bob receiving hearsay about the statue in the museum. The hearsay is
associated with the statue where, and it should only be delivered when Bab is in the
immediate proximity of the statue. Here Bob’s PDA contains a passive TIRIS tag [10]
that enables it to be detected within a short range. The TIRIS tag informs the museum
that Bob is at the coordinate.

Once Bob’s profile has been matched with the hearsay in the museum, the hearsay
may be delivered to Bob’s by any means (in this case by radio-ethernet-enabled PDA).
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Fig 3 again hints at the GLOSS infrastructure but this time with the emphasis on
location information entering the GLOSS fabric locally, and that the hearsay is deliv-
ered when Steve arrives at a specific coordinate.

2 Implementation Dimensions

When engineering a global smart space there are many implementation dimensions
that must be considered, including:

« location detection

 storage

e computation

e communication

* identity of users and devices
 user interface

» format and content of information

Since we concentrate here on location-aware services, we only discuss the first four
dimensions.



2.1 Location Detection

Two broad classes of location detection devices are considered:

« those where the artefact being detected has knowledge of its position
« those where the external fabric has knowledge of the artefact’s position

An example of the former is a GPS device being carried by a user. The GPS device is
aware of the position of its user but that knowledge is not available in the environment
without it being actively propagated. An example of the second is a RF tag such as
TIRIS, which is capable of detecting a person or artefact carrying a tag, but the person
or artefact has no knowledge of their own position. Hybrids of the two location detec-
tion mechanisms exist, for example IEEE 802.11 [11] cards may be used to detect
other cards in their proximity.

A GLOSS should be able to exploit whatever location detection technology is
available. This will mean using different technologies in different contexts.

2.2 Storage

The cost, bandwidth and capacity of storage, and the durability of data stored vary
considerably from device to device. Mobile phones are at one end of the spectrum
having relatively low volumes of storage with data typically being stored in one
place—the device itself. Server machines are at the other extreme with high volumes
of low cost storage featuring high bandwidth access, which is easily and cheaply repli-
cated. Data resident on servers tends to have better availability characteristics than
data resident on hand-held devices.

A GLOSS may store information in the locations most appropriate for the use-case
scenarios being supported. This may necessitate maintaining cached copies of client
data on servers in order to (a) obviate high communication costs to devices, (b) have
data available close to where computation will occur, and (c) make data available
when client-devices are disconnected.

2.3 Computation

There are three possibilities as to where computation may occur in a GLOSS, namely
at the client, at the server, and in the network. Computation at the client is usually
limited in terms of CPU power, storage capacity, 1/0 bandwidth and battery capacity.
We therefore normally discount the client as a site for heavy computation such as
performing complex matching or database queries. However computation at the client
is necessary for a number of tasks including: user event notification, the integration of
data from devices (such as GPS receivers) and the processing of information sent to
the device. None of the power, storage, bandwidth or processing limitations of the
client exist at the server thereby making it more suitable for heavy computation. We
recognise that processing may also take place in the network should computational
resources be available there.



The GLOSS infrastructure needs to be able to find the most appropriate use of
whatever computational power is available. This will often mean performing matching
and searching tasks on servers and conserving battery life on handheld devices by only
using them for the presentation of data. However, the placement of computation will
always be balanced by the communication cost of moving data to an appropriate place
for computation to occur.

2.4  Communication

In a GLOSS, a variety of communication mechanisms is required for inter-server,
inter-client, and client-server communication. Inter-server communication is domi-
nated by Internet protocols and this seems likely to continue. However, a variety of
technologies are available for (mobile) inter-client, and client-server communication
including GPRS, SMS, TCP/IP via a modem connection, 802.11 (using TCP/IP) and
Bluetooth. These technologies have quite different characteristics in terms of end-
point connections, cost and bandwidth.

A GLOSS may accommodate any communication technology; in this paper we
show how 802.11 and SMS may be used to facilitate client-server communication.

3 Implementation of the Location-Aware Metaphors

3.1  Hearsay

Hearsay placement is a storage activity. However this begs the question as to where is
the best place to store the association between a location and some information asso-
ciated with it. There are a number of obvious choices:

 on the depositor’s machine

 on a central server offering a hearsay service

 broadcast the association and store the association somewhere on the network
« on a machine associated with the location referred to in the hearsay message

The first of these choices is unattractive since it makes it hard to find appropriate
hearsay for delivery when a user enters a where. If this choice is made for depositing
hearsay, the discovery of hearsay becomes a distributed network query without any
obvious criterion for the termination of the query in the case of success or failure. The
second choice, that of a central server, is easy to manage but has limited potential for
scalability. In particular it is unlikely that it will scale to a global number of users.
Broadcasting or publishing the association on the network is an attractive option.
However, some mechanisms must be provided so that the hearsay will be stored in a
location where it can be discovered. Associating hearsay with the location referred to
by that hearsay is also an attractive option. This requires a hearsay server to be associ-
ated a particular geo-spatial area and for some algorithm to exist whereby that server
can be found when a location is supplied. Later in this paper we outline how it is pos-
sible to build a peer-to-peer network containing rules that route messages to an appro-



priate server. This has the benefits that it is relatively simple to add additional servers,
making it scalable, and allowing hearsay discovery to be relatively simple.

Key decision: In our GLOSS prototype we have chosen to store hearsay on
servers that are associated with particular geo-spatial areas. Each server will
normally be located within the geo-spatial area with which it is associated.

Hearsay delivery is triggered when a user enters a where that has associated, relevant
hearsay attached to it. The implementation of hearsay delivery has four technological
dimensions:

» where the detection of the user’s location takes place

» the communication between where the detection has occurred and where the profile
matching takes place

« where the computation matching the user’s location to the hearsay takes place

» how the user is notified of the hearsay

The detection of the user’s location may occur in a number of places depending on the
technological mix. In first use-case scenario, the event describing the user’s movement
is triggered by the GPS device and is propagated to the GLOSS infrastructure via an
SMS message. The SMS message is sent to a SMS gateway that is likely to be located
on a machine that is not in proximity to the sender of the message or to the location of
the hearsay information. In the second use-case scenario, the detection occurs in the
fixed infrastructure when a tag reader detects a tag being carried by the user. In this
case it is highly likely that the tag reader is associated with a computer that is in the
proximity of the user, and may be in close proximity to a server on which the hearsay
is stored.

In both cases the machines receiving the detection event must do something with
it—again there are a number of choices. Each machine could:

« send the event to the hearsay service
» send the event to the user’s home machine
» broadcast the event

Before examining these choices, it is important to appreciate that the location detec-
tion may be driving services other than hearsay—for example, it may also be feeding a
trails service and a radar service. Consequently, the first choice, which appears to be
the obvious candidate, may not be ideal, since the radar and trails services may not be
co-located with the hearsay service.

The second choice assumes that each user has a designated home machine some-
where on the network. This could be the user’s web server for example. This is an
attractive option—it scales well—servers can be added on demand as users are added.
It means that every user has a well known home to which all messages about that user
can be sent. However, it does not solve the problem of hearsay matching—it only
delays it. When the message is sent to the user’s home machine, another message must
be sent elsewhere for the matching to occur.

In the third choice, the event may be broadcast and used by whichever services are
interested in it. However, if every server on a network were broadcasting every event,
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the network would quickly saturate with messages of no interest to most servers. An-
other problem with uncontrolled broadcast is that the messages would propagate until
they had reached every node in the network—this is wasteful of resources and it is
unlikely to deliver timely data. Some mechanisms therefore need to be provided to
route messages to those servers that are interested in the events. We return to this
later.

Next, we turn to the question of where the computation matching the user’s location
to the hearsay takes place. There are three main contenders:

» on the user’s conduit
» on the user’s home machine on the network
 on the machine storing the hearsay

For matching to occur on the user’s conduit, the user’s location, profile and all the
hearsay from the hearsay server would have to be sent to the conduit machine. This
wastes two precious resources on the conduit: network bandwidth and battery life. In
addition to being wasteful, the memory and CPU resources on the conduit are likely to
be limited, making it a poor choice. If matching is to occur on the user’s home ma-
chine (if there is one), a message must be sent to the location on which the hearsay is
stored. This message could request all the hearsay on the server (which may result in a
large amount of network traffic) or it could send the user’s profile to the hearsay
server, in which case the matching would occur on the machine storing the hearsay.

Key decision: In our GLOSS prototype we have chosen to perform the com-
putation matching hearsay to the user’s location on the machines storing the
hearsay.

If the user profile is large (we have empirical evidence to suggest it would not be) the
option we have chosen appears a poor one. However, we believe that it is not, due to
the region transition hypothesis described in the next section.

The last issue is the delivery of hearsay to the user. Once the hearsay service has
matched the user and the hearsay, it must send the hearsay to the user. There are two
choices for this delivery:

* it may be sent to the user’s home machine
it may be sent directly to the user’s conduit

The first choice has the advantage that a fixed server is much more likely to be reach-
able than the user’s conduit. It is therefore a good candidate for somewhere to send
information in the event of not being able to contact the conduit. This approach suffers
from lack of geo-spatial proximity. The user’s home machine may not be in proximity
to the user or the machine storing the hearsay. Sending a hearsay message to the user’s
home machine is unlikely to make efficient use of network bandwidth. Sending the
message directly to the user’s conduit makes the best use of available network band-
width. However, the user may be connected to the GLOSS infrastructure using a vari-
ety of different technologies. Some abstraction over the technologies is required to
insulate the hearsay services (and other services) from network.
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Key decision: Each user’s profile contains information about how to contact
that user. This may include alternatives to deal with failure.

If the hearsay service has access to the user’s profile it may send the hearsay message
directly to the user using whatever services are at its disposal. This may involves send-
ing a message to a proxy server (in the case of an SMS attached user) or sending the
message directly (in the case of a TCP/IP 802.11 connected user).

3.1.1 Region Transition Hypothesis

The region transition hypothesis states that as the granularity of the geo-spatial region
increases, the total frequency of transitions between regions falls. Globally, there are
billions of transitions occurring every second at a fine granularity: a user in France
enters a café at the same instant that a user in the UK leaves a shop and a user in Ire-
land goes into a bar. There may be 50 shops, cafés and other GLOSS locations in a
street comprising a region, with frequent transitions between these locations, but the
street itself has only a few access points (its junctions with other streets) and users
move between streets less frequently. Similarly, the overall frequencies of transitions
between cities and countries are still lower.

The region transition hypothesis has implications for the GLOSS architecture and
for caching. If servers are organised into a tree, with each server being associated with
a smaller geo-spatial area than its parent, data may be effectively cached at the nodes
of the tree and obviate the need for high volumes of data, for example profile data, to
be shipped. However, tree architectures are not scalable—as the root node is ap-
proached, the volumes of traffic increase—some mechanism is required to prevent
network saturation close to the root. We will return to this problem later.

3.2 Approach to GLOSS Service Implementation

The use-case studies highlight two points:

» A local architecture is required to permit GLOSS clients and servers to be con-
structed. Both clients and servers are essentially data-flow architectures. Data ar-
rives at a user’s device from several sources—communications devices, position
servers etc.—and passed to elements for processing which might include displaying
information to a user, sending it to another device, or storing it for future presenta-
tion or processing. Similarly on a server, data arrives from several devices is proc-
essed and delivered to other devices for further processing or presentation to the
user.

» A global architecture is required to mediate the global flow of information between
clients and servers.
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4 Local Architecture

Our prototype GLOSS architecture is designed with the following motivations:

* to abstract over any particular technology
 to make GLOSS components independent of each other
* to allow components to be assembled into GLOSS applications

To permit GLOSS applications to be constructed, we arrange components into pipe-
lines and register components with event buses. The local architecture is based on
XML pipelines and an XML event bus. To abstract over location, GLOSS clients
transparently pass messages to a server and vice-versa by plugging appropriate com-
ponents into the pipelines and event buses of the client and server. A high level over-
view of this architecture is shown in Fig 4.
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Fig 4: Local architecture

Data enters the system from various devices in various formats. Most components in
the system are compliant with the GOPipe(GLOSS Object Pipe) interface. This is a
component that takes XML encoded GLOSS objects and processes them. GOPipe
objects can be assembled into pipelines of processing components. An interface Ex-
tensibleGOPipe is provided which provides GOPipe functionality and permits down-
stream GOPipe objects to be registered with it. In many GLOSS scenarios there is a
requirement to distribute information about GLOSS actors and artefacts to several
components. To accommodate this, an EventBus interface is provided. It presents the
GOPipe interface so that it may be inserted into a pipeline, and permits multiple ob-
jects presenting the GOPipe interface to be registered with it. The components and
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interfaces described above achieve the first two objectives. In order to manage collec-
tions of component instances we introduce another abstraction—an assembly. This is a
collection of components that are linked together via pipes and buses.

4.1  Applying the Local Architecture to the Use-Cases

To accommodate use-case one, a pipeline is assembled on Bob’s conduit containing
the GPS device, an adapter (not shown in the diagram) and an event bus. Two GOPipe
objects are attached to the event bus: a hearsay user interface tool and an SMS device.
The SMS device is also attached to the event bus, permitting it to supply the bus with
non-local events. In the use case, the GPS device passes events via the adapter to the
event bus, which passes them to the GPS device. This device sends the events to
Bob’s SMS server located in Brussels.

On the SMS server, another pipeline has been assembled, capable of processing in-
coming SMS events. In this instance of the architecture, a location service (another
GOPipe compliant object) is plugged into the event bus. It passes location information
to an IP device which results in the message being passed to a street server located in
the same street as Bob.

A third pipeline has been assembled on the street server. It contains a GOPipe
complaint IP module to supply GLOSS Object Events to the pipeline that contains an
event bus with the hearsay service plugged into it. The hearsay service determines that
Bob is in the street (determined by the event sent to it), and that a café recommended
by Anna is close by (the hearsay). A message needs to be sent to Bob to inform him of
this fact. The message could be sent to Bob using a variety of mechanisms. To ab-
stract over these mechanisms, a GOPipe compliant proxy for Bob is provided. This
component will send a message to Bob using the most appropriate technology—in this
case, an SMS message.

The GSM/SMS card on Bob’s conduit receives the SMS message, where it is
passed to the event bus and from there to the hearsay user interface tool, which will
present the hearsay to Bob.

In use-case two, Bob is at the Pompidou Centre and looking at the Eli Lotar Il
sculpture by Alberto Giacometti. In this scenario Bob is wearing a tag, which uniquely
identifies him, and his PDA is equipped with an 802.11 card. Each exhibit in the exhi-
bition has a tag reader that detects tags in its proximity. For simplicity we assume that
there is a server associated with each exhibit, and a GLOSS server in the museum.

Bob’s tag is detected in the proximity of the exhibit by the tag reader, which sends
a message to a serial port which is connected to a GO pipeline. After a GOAdapter has
processed it, the event (containing Bob’s unique ID) is passed to an event bus where it
is passed to the only component connected to the bus—an IP device that sends the
event to the museum server.

The IP device on the museum server is connected to another pipeline and the event
is passed to the hearsay service. This service locates Bob’s profile (using mechanisms
not described here) and determines what information he may like to know about the
statue which he is looking at. This is sent via another object implementing the GOPipe
interface, via 802.11, to Bob’s PDA. In the manner described above, Bob is alerted to
the new information about the statue.
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5 Global Architecture

We have described a local architecture for GLOSS conduits and servers. Next we
briefly outline how these components may be organized into a global architecture for
smart spaces. As described above, tree architectures, such as the one shown in Fig 5
(a), are not scalable—as the root node is approached, the volumes of traffic increase
[12]. An alternative to a hierarchical architecture, shown in Fig 5 (b) is a peer-to-peer
(P2P) architecture composed entirely of peers, with no node in the network assuming
any more responsibility than any other. Instances of this style of architecture, for ex-
ample Gnutella [13] and Kazaa [14], have recently become popular for file sharing
applications. Many of these architectures depend on searching a limited network cen-
tric horizon of machines governed by a number of network hops from the point of
query. Such an architecture is not perfectly suited to an environment in which mes-
sages require routing to a specific destination. For example, in the SMS hearsay ex-
ample, a SMS location message must be routed to an appropriate hearsay server to
enable matching to occur. However, it may be injected into a GLOSS network a con-
siderable distance (in terms of both hops and geo-spatial proximity) from a server
storing hearsay.

Fig 5: Possible global architectures: (a) hierarchical and (b) peer-to-peer

The network supporting the GLOSS infrastructure must therefore provide some
mechanism to route messages to an appropriate location. Hybrid architectures offer
the opportunity to tailor topologies and protocols in such a way that locality knowl-
edge may be exploited. In [12], Carzaniga et al state that an acyclic peer-to-peer archi-
tecture with subscription forwarding appears to scale well and predictably under all
circumstances and is likely to represent a good choice to cover a wide variety of sce-
narios. Consequently, we are currently exploring a global peer-to-peer architecture
consisting of a hierarchy of peers such as that shown in Fig 6.

In addition to avoiding network bottlenecks, a hierarchy of peers is well suited to
the geo-spatial nature of GLOSS queries. As shown in Fig 6, it is relatively easy to
partition the world recursively into non-overlapping regions. These may be mapped on
social, economic or organisational boundaries. The servers need not be co-located
with the geo-spatial region that they represent—the only necessity is that peers under-
stand the peering relationships. A final benefit of this architecture is that it is capable
of evolving to cope with stress placed upon it.
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Partitioning the network into a hierarchy of peers makes the routing of messages to
appropriate locations with the GLOSS infrastructure relatively straightforward. As
proof of concept we outline how the three technological aspects of communication,
computation and storage in the two use-case scenarios relate to this architecture.
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Fig 6: Hybrid global architecture

In the first use-case, Bob’s conduit relays his position to an SMS server located in
Belgium. As described above, the GLOSS object pipeline on that server examines
location and determines that it must be sent elsewhere. Since the SMS server is part of
a P2P network, it does not require a final destination address for the message. How-
ever, it must determine if the message should be sent to its children, its parent, broad-
cast to its peers or dealt with locally. This calculation may be performed by comparing
the geo-spatial location of the user with that being managed by the server. In the case
of the message about Bob’s location, the location in the message is about a location in
Paris so it is passed to the Brussels server which either sends it directly to the Paris
server (if it has knowledge of this server and the geo-spatial region it manages) or
broadcasts it to its peers. When the Paris server receives this message, it is passed
down the hierarchy until it reaches the street server where the computation matching
the hearsay to Bob can occur.

The hierarchy of peers dovetails well with the region-transition hypothesis. The hi-
erarchy gives a nested set of locations in which Bob’s profile may be cached (stored).
Assuming Bob’s profile is stored at his home server, when Bob is first detected in
France, a request for Bob’s profile will be propagated up the network and down to
Bob’s home in a manner similar to that described above for hearsay messages. The
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reply may be cached in servers at multiple levels in the network to obviate the need to
repeatedly fetch this information. A similar technique under-pins the replicated docu-
ment cache used in Freenet [15]. The use of different cache policies at different levels
in the hierarchy is likely to be beneficial. For example, leaf servers (where change is
fast) might only cache data for a short period but servers close to the root (where
change is slow) might cache data for longer periods.

In use-case two, the location information is injected into the GLOSS architecture
close to the location at which the hearsay is stored. In this case, the location event
needs to propagate up the tree of peers. As propagation occurs, computation matching
hearsay and the location of user’s occurs, triggering hearsay delivery to users as de-
scribed above. If knowledge of Bob’s location is cached in the hierarchy as described
above, at some point the message will reach a node that already knows that Bob is in
this locale. At this point the message need not propagate up the tree any further. If a
match is not made as the message is sent up the tree, subject to policy, the message
might propagate back to Bob’s home where his current location could be stored.

6 Status of Implementation

At the time of writing, instances of the GLOSS Object Pipeline architecture are run-
ning on a mobile device (currently a laptop for ease of prototyping) and a server. A
pipeline running on the laptop integrates a GPS device from Garmin, a Nokia GSM
phone card and a prototype hearsay user-interface. We have developed Java based
GOPipe interfaces to the GPS device which supplies the pipeline with location infor-
mation, and another to the GSM device capable of sending and receiving SMS mes-
sages. The sever pipeline contains a pipeline containing an SMS server and supplies
messages to an event bus. Currently, this bus supplies a Trails capture tool with loca-
tion data.

We are currently implementing the necessary algorithms for global message routing
and plan to integrate these with the local pipeline architectures shortly.

7 Conclusions

We have outlined a framework for the description of Global Smart Spaces that sup-
ports interaction amongst people, artefacts and places while taking account of both
context and movement on a global scale. We have also identified a set of location-
aware services, which detect, convey, store and exploit location information. These
services are introduced using the radar, hearsay and trails metaphors and we have
explained their relationship with the framework concepts. The essence of the paper is
the introduction of a recursive software architecture that facilitates the implementation
of the metaphors within the framework. For scalability we show how the software
architecture may be applied recursively to provide location-aware services in the
global context.
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