
1 

A Recursive Software Architecture for 
Location-Aware Services 

Alan Dearle1, Graham Kirby1, Ron Morrison1, Kevin Mullen1, Yanyan Yang1, 
Richard Connor2, Paula Welen2, and Andy Wilson2 

1 School of Computer Science, University of St Andrews, 
North Haugh, St Andrews, Fife KY16 9SS, Scotland 

{al, graham, ron, kevin, yyyang}@dcs.st-and.ac.uk
2 Department of Computer Science, University of Strathclyde, 

Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, Scotland 
{firstname.lastname}@cis.strath.ac.uk

Abstract. A GLObal Smart Space (GLOSS) provides support for interaction 
amongst people, artefacts and places while taking account of both context and 
movement on a global scale. Crucial to the definition of a GLOSS is the provi-
sion of a set of services, which we term location-aware services, that detect, 
convey, store and exploit location information. We first describe a framework 
(ontology), using a small set of concepts, for defining a GLOSS. This allows 
different services to be implemented without duplication of the basic mecha-
nisms, and abstracts over specific details of the technologies used, thereby ac-
commodating both heterogeneity and evolution. Secondly, we introduce a set of 
location-aware metaphors that are defined in terms of the GLOSS concepts. 
Thirdly, we propose a recursive software architecture to support the implemen-
tation of the metaphors within the framework. Finally we outline how the soft-
ware architecture may be applied recursively to provide scalability for location-
aware services in the global context. 

1 Introduction 

The ubiquitous computing paradigm has the goal of providing information and ser-
vices that are accessible anywhere, at any time and via any device [1]. Within this 
paradigm, a GLObal Smart Space (GLOSS) provides support for interaction amongst 
people, artefacts and places while taking account of both context and movement on a 
global scale. 

The “SmartHome” and “SmartOffice” scenarios [2], which consist of intelligent 
services that are accessible to users via handheld devices connected over short-range 
wireless links, are particular examples of a LOcal Smart Space (LOSS). Some at-
tempts at building a LOSS have concentrated on intelligent configuration of an envi-
ronment based on presence. For example, air conditioners and lights might automati-
cally turn on/off to individual requirements, or blinds may open/close depending on 
natural light levels in the room [3]. Other applications have implemented proximate 
selection interfaces, where nearby objects are automatically easier to select, such as 



2 

automatically defaulting to the nearest printer in a print command [4]. The presenta-
tion of contextual information can be handled in a similar manner, where information 
or annotations about a particular location or object is automatically displayed to a 
person on entering an area. Finally, systems have been proposed that monitor a user’s 
location and actions, and then utilise this information in an application such as an 
automatic diary [5]. 

Hitherto, research into smart spaces has almost exclusively concentrated on provid-
ing interaction paradigms that hide the computer in small and highly constrained envi-
ronments (LOSSes) [6]. Such systems are mostly focused either on a particular appli-
cation or on a specific sensor technology with little or no general platform or infra-
structure. As such the current state-of-the-art for smart spaces is, for the most part, 
complex, expensive to install, and optimised for the environment dynamics at installa-
tion time. Since environment dynamics drift over time, these installed systems fre-
quently atrophy and require reconfiguration, often at great expense. 

Here we concentrate on the global context (a GLOSS) and in particular location–
aware services. This has been made feasible by the recent advances in sensor and 
location technologies, the increased performance of miniature and embedded devices, 
and the increased availability of ubiquitous and wireless networking. Our approach is 
to define a GLOSS framework (ontology) [7] using a small set of concepts. The 
framework allows different services to be implemented without duplication of the 
basic mechanisms and also abstracts over specific details of the technologies used 
thereby accommodating both heterogeneity and evolution. Using the framework we 
introduce a set of location-aware metaphors and show how they interact with these 
concepts. 

Additionally, we introduce a recursive software architecture that facilitates the im-
plementation of the location-aware metaphors within the framework. Finally we out-
line how the software architecture may be applied recursively to provide scalability 
for location-aware services in the global context. 

1.1 GLOSS Concepts 

The GLOSS framework describes a universe of discourse for understanding global 
smart spaces. The key concepts are people, artefacts and places. For the moment we 
will not model people and artefacts in great detail, save that: a particular type of arte-
fact is identified, the conduit which is associated with a person, being an artefact that 
is part of, or in communication with, the general (connected) GLOSS fabric; and that 
people have profiles that define their context. 

Of particular importance to GLOSS, given its emphasis on global and spaces and 
our interest in location-aware services, is the treatment of geo-spatial concepts. Three 
separate concepts are identified: physical location, region and symbolic location, 
unified by the general term where, deliberately selected to avoid the inevitable conno-
tations associated with more precise terms. A physical location is a single fixed point 
in space. One particular type is a coordinate, expressed using a coordinate system (as 
opposed to some more general description). A region is an extended area or volume, 
fixed in space, such as a city. A symbolic location is a potentially mobile logical entity 



3 

that occupies a region that may vary over time, such as a car or a train. A number of 
other auxiliary concepts are significant in the GLOSS framework but here we only 
require a profile, which defines the context for a person. 

A simplified UML model for location information is given in Fig 1. 
 

 
Fig 1: UML class diagram for location information 

1.2 Location–Aware Metaphors 

Central to the definition of a GLOSS is the provision of a set of services, which we 
term location-aware services, that detect, convey, store and exploit location informa-
tion. To illustrate these services we introduce three metaphors termed Radar, Trail 
and Hearsay. These are described as compositions of the GLOSS concepts and form a 
basis for the design of practical tools to support mobile users in a global context. 

1.2.1 Radar 

Radar was originally proposed [8] as follows: 
 
“This is a tool that will give you an overview beyond the immediate environ-
ment. With this tool you will be able to locate low and high densities, crowds 
and groups in a larger area. This can help you find the special gap of freedom, 
the emptiness, you sometimes lack in a public environment. This instrument 
can search the streets and spaces for you on a hunt for either noise or silence.” 
 

Radar can be described in terms of the primitive concepts as: 
 

Radar: Time X Region -> Set[GLOSSObject]

That is, radar provides a means for the user to discover the significant objects 
within a bounded region at a given time. The region describes the radar horizon. 



4 

1.2.2 Trails 

Trails were originally proposed [8] as follows: 
“Trails: an ancient way of finding your way around in an area, known or un-
known. To find and navigate the way now you follow static landmarks and 
signs; if you lose sight of the signs or find something “off-trail” interesting, 
you lose your trail. We propose a Trail that is plastic, a trail that changes, 
grows and evolves with you. A morphic trail that guides you in your daily life. 
This is also a tool to be shared with other people. Trails could be borrowed, 
given, bought or swapped.” 
 

Three distinct varieties of trails are modelled: observed trails, archetypal trails and 
intentional trails. To give the flavour of our reasoning we will only describe ob-
served trails here. 

An observed trail is an ordered sequence of observations of a person or artefact, 
each recording a time, a place (coordinate, region or location) and optionally some 
additional information. It can be described in terms of the primitive concepts as: 

 
ObservedTrail: GLOSSObject X Time X Time X

Sequence[Where X Time X Information]

Thus an observed trail contains an observed entity (a specific person or artefact), a 
start time and end time, and a sequence of observations, each comprising an individual 
observation in space and time, together with some optional additional information. 

1.2.3 Hearsay 

Hearsay was originally proposed [8] as follows: 
 
“This is an intimate, sensitive tool that will be there to remind and pick up 
small notes in the environment left for you. It will make sure that you will only 
find the message left for you if the context is right. Some messages you will 
never find. We suggest a new form of “snail mail” that will give you the same 
experience the sender had when the message was composed. Posted or left in 
the global environment the message waits at the same place to be delivered at 
the right time for whom it’s left for. A mail where time is not an option but the 
context is.” 
 
Hearsay can be described in terms of the primitive concepts as: 
 

Hearsay: Time X Where -> Set[Information]

That is, hearsay provides a means for the user to send and receive messages that are 
delivered only when the receiver enters a specific where. 



5 

1.3 Use-Case Hearsay Scenarios 

To motivate our design decisions on the software architecture for implementing loca-
tion-aware services we introduce two use-case scenarios based on hearsay. In general, 
two services are required for hearsay: 

•  placement of hearsay 
•  delivery of hearsay 

Hearsay placement allows a GLOSS user to insert a message into the GLOSS fabric at 
any point, parameterised by a where and a profile. The where describes the geo-
spatial region in which the message should be delivered, and the profile restricts de-
livery to certain GLOSS users. 

In both use-cases we will concentrate on the delivery of hearsay except to note that 
the placement can originate from any GLOSS node. In each use-case the hearsay will 
be placed (stored) on the GLOSS node that corresponds to the where in which the 
hearsay should be delivered—if there is such a node—or, otherwise, on the GLOSS 
node whose where most closely contains the delivery where. 

Hearsay delivery is triggered when a user enters a where that has associated, rele-
vant hearsay attached to it. There are thus two separate implementation aspects: how 
the event describing that user movement reaches the hearsay delivery service, and how 
the hearsay is then delivered to the user. The communication channels used between 
the user and the GLOSS fabric may be the same in each case, or different. 

The first use-case allows hearsay to be delivered at any point within a GLOSS-
aware where, while the second allows hearsay to be delivered at a particular GLOSS-
aware coordinate. The use-cases also illustrate different ways in which user move-
ment events may be routed through the GLOSS fabric. 

1.3.1 Use-Case One 

In our first scenario, Anna places some hearsay relevant to Bob (about a café) at a 
where (the street containing the café), due for delivery when Bob enters the street. 

Bob has a PDA that is GPS-enabled, and communicates with the GLOSS fabric via 
SMS over GSM. Fig 2 shows Bob’s PDA sending SMS messages, containing his GPS 
coordinates, to his SMS gateway (in Brussels) since Bob is from Belgium. The SMS 
gateway calls an agent to process the GPS data and informs the street, identified from 
the GPS data, that Bob has entered the street. Once Bob’s profile is matched with that 
of the hearsay, the hearsay is delivered to him. 



6 

GPS Satellite

Event

Bob is at
(x,y)

SMS
Gateway

Brussels

Brussels Location
Translator

GLOSS Global
Architecture

Paris

Street

Trails

User Profile

User Profile

Hearsay

Radar

Trails

Hearsay

Radar

France
Trails

Hearsay

Radar

User Profile

Belgium

 

Fig 2: Hearsay delivery anywhere in a GLOSS-aware where, with location detection by user 

Fig 2 gives a hint of the infrastructure that may be required to support a GLOSS. 
We will develop this later, but emphasise here that the location information enters the 
GLOSS fabric at a remote point (Brussels) and that the hearsay is delivered when Bob 
enters any part of the street. 

1.3.2 Use-Case Two 

Our second scenario involves the staff at the Pompidou Centre placing hearsay rele-
vant to all art lovers at a coordinate (the Eli Lotar III sculpture [9]) for delivery at 
precisely that coordinate. 

Fig 3 shows Bob receiving hearsay about the statue in the museum. The hearsay is 
associated with the statue where, and it should only be delivered when Bob is in the 
immediate proximity of the statue. Here Bob’s PDA contains a passive TIRIS tag [10] 
that enables it to be detected within a short range. The TIRIS tag informs the museum 
that Bob is at the coordinate. 

Once Bob’s profile has been matched with the hearsay in the museum, the hearsay 
may be delivered to Bob’s by any means (in this case by radio-ethernet-enabled PDA). 



7 

Tiris  Tag
Detector

Bob
Detected

Event
Triggered

(Bob is here)

Hearsay
Delivered by

802.11

Tirris  Interface
Node

Museum User Profile

Trails
Hearsay

Radar

Paris

Street

Trails

User Profile

User Profile

Hearsay

Radar

Trails

Hearsay

Radar

France

Trails

Hearsay

Radar

User Profile

 

Fig 3: Hearsay for delivery at a GLOSS-aware coordinate, with location detection by fabric 

Fig 3 again hints at the GLOSS infrastructure but this time with the emphasis on 
location information entering the GLOSS fabric locally, and that the hearsay is deliv-
ered when Steve arrives at a specific coordinate. 

2 Implementation Dimensions 

When engineering a global smart space there are many implementation dimensions 
that must be considered, including: 

•  location detection 
•  storage 
•  computation 
•  communication 
•  identity of users and devices 
•  user interface 
•  format and content of information 

Since we concentrate here on location-aware services, we only discuss the first four 
dimensions. 



8 

2.1 Location Detection 

Two broad classes of location detection devices are considered: 

•  those where the artefact being detected has knowledge of its position 
•  those where the external fabric has knowledge of the artefact’s position 

An example of the former is a GPS device being carried by a user. The GPS device is 
aware of the position of its user but that knowledge is not available in the environment 
without it being actively propagated. An example of the second is a RF tag such as 
TIRIS, which is capable of detecting a person or artefact carrying a tag, but the person 
or artefact has no knowledge of their own position. Hybrids of the two location detec-
tion mechanisms exist, for example IEEE 802.11 [11] cards may be used to detect 
other cards in their proximity. 

A GLOSS should be able to exploit whatever location detection technology is 
available. This will mean using different technologies in different contexts. 

2.2 Storage 

The cost, bandwidth and capacity of storage, and the durability of data stored vary 
considerably from device to device. Mobile phones are at one end of the spectrum 
having relatively low volumes of storage with data typically being stored in one 
place—the device itself. Server machines are at the other extreme with high volumes 
of low cost storage featuring high bandwidth access, which is easily and cheaply repli-
cated. Data resident on servers tends to have better availability characteristics than 
data resident on hand-held devices. 

A GLOSS may store information in the locations most appropriate for the use-case 
scenarios being supported. This may necessitate maintaining cached copies of client 
data on servers in order to (a) obviate high communication costs to devices, (b) have 
data available close to where computation will occur, and (c) make data available 
when client-devices are disconnected. 

2.3 Computation 

There are three possibilities as to where computation may occur in a GLOSS, namely 
at the client, at the server, and in the network. Computation at the client is usually 
limited in terms of CPU power, storage capacity, I/O bandwidth and battery capacity. 
We therefore normally discount the client as a site for heavy computation such as 
performing complex matching or database queries. However computation at the client 
is necessary for a number of tasks including: user event notification, the integration of 
data from devices (such as GPS receivers) and the processing of information sent to 
the device. None of the power, storage, bandwidth or processing limitations of the 
client exist at the server thereby making it more suitable for heavy computation. We 
recognise that processing may also take place in the network should computational 
resources be available there. 



9 

The GLOSS infrastructure needs to be able to find the most appropriate use of 
whatever computational power is available. This will often mean performing matching 
and searching tasks on servers and conserving battery life on handheld devices by only 
using them for the presentation of data. However, the placement of computation will 
always be balanced by the communication cost of moving data to an appropriate place 
for computation to occur. 

2.4 Communication 

In a GLOSS, a variety of communication mechanisms is required for inter-server, 
inter-client, and client-server communication. Inter-server communication is domi-
nated by Internet protocols and this seems likely to continue. However, a variety of 
technologies are available for (mobile) inter-client, and client-server communication 
including GPRS, SMS, TCP/IP via a modem connection, 802.11 (using TCP/IP) and 
Bluetooth. These technologies have quite different characteristics in terms of end-
point connections, cost and bandwidth. 

A GLOSS may accommodate any communication technology; in this paper we 
show how 802.11 and SMS may be used to facilitate client-server communication. 

3 Implementation of the Location-Aware Metaphors 

3.1 Hearsay 

Hearsay placement is a storage activity. However this begs the question as to where is 
the best place to store the association between a location and some information asso-
ciated with it. There are a number of obvious choices:  

•  on the depositor’s machine 
•  on a central server offering a hearsay service 
•  broadcast the association and store the association somewhere on the network 
•  on a machine associated with the location referred to in the hearsay message 

The first of these choices is unattractive since it makes it hard to find appropriate 
hearsay for delivery when a user enters a where. If this choice is made for depositing 
hearsay, the discovery of hearsay becomes a distributed network query without any 
obvious criterion for the termination of the query in the case of success or failure. The 
second choice, that of a central server, is easy to manage but has limited potential for 
scalability. In particular it is unlikely that it will scale to a global number of users. 
Broadcasting or publishing the association on the network is an attractive option. 
However, some mechanisms must be provided so that the hearsay will be stored in a 
location where it can be discovered. Associating hearsay with the location referred to 
by that hearsay is also an attractive option. This requires a hearsay server to be associ-
ated a particular geo-spatial area and for some algorithm to exist whereby that server 
can be found when a location is supplied. Later in this paper we outline how it is pos-
sible to build a peer-to-peer network containing rules that route messages to an appro-



10 

priate server. This has the benefits that it is relatively simple to add additional servers, 
making it scalable, and allowing hearsay discovery to be relatively simple. 

Key decision: In our GLOSS prototype we have chosen to store hearsay on 
servers that are associated with particular geo-spatial areas. Each server will 
normally be located within the geo-spatial area with which it is associated. 

Hearsay delivery is triggered when a user enters a where that has associated, relevant 
hearsay attached to it. The implementation of hearsay delivery has four technological 
dimensions: 

•  where the detection of the user’s location takes place 
•  the communication between where the detection has occurred and where the profile 

matching takes place 
•  where the computation matching the user’s location to the hearsay takes place 
•  how the user is notified of the hearsay 

The detection of the user’s location may occur in a number of places depending on the 
technological mix. In first use-case scenario, the event describing the user’s movement 
is triggered by the GPS device and is propagated to the GLOSS infrastructure via an 
SMS message. The SMS message is sent to a SMS gateway that is likely to be located 
on a machine that is not in proximity to the sender of the message or to the location of 
the hearsay information. In the second use-case scenario, the detection occurs in the 
fixed infrastructure when a tag reader detects a tag being carried by the user. In this 
case it is highly likely that the tag reader is associated with a computer that is in the 
proximity of the user, and may be in close proximity to a server on which the hearsay 
is stored. 

In both cases the machines receiving the detection event must do something with 
it—again there are a number of choices. Each machine could: 

•  send the event to the hearsay service 
•  send the event to the user’s home machine 
•  broadcast the event 

Before examining these choices, it is important to appreciate that the location detec-
tion may be driving services other than hearsay—for example, it may also be feeding a 
trails service and a radar service. Consequently, the first choice, which appears to be 
the obvious candidate, may not be ideal, since the radar and trails services may not be 
co-located with the hearsay service. 

The second choice assumes that each user has a designated home machine some-
where on the network. This could be the user’s web server for example. This is an 
attractive option—it scales well—servers can be added on demand as users are added. 
It means that every user has a well known home to which all messages about that user 
can be sent. However, it does not solve the problem of hearsay matching—it only 
delays it. When the message is sent to the user’s home machine, another message must 
be sent elsewhere for the matching to occur. 

In the third choice, the event may be broadcast and used by whichever services are 
interested in it. However, if every server on a network were broadcasting every event, 



11 

the network would quickly saturate with messages of no interest to most servers. An-
other problem with uncontrolled broadcast is that the messages would propagate until 
they had reached every node in the network—this is wasteful of resources and it is 
unlikely to deliver timely data. Some mechanisms therefore need to be provided to 
route messages to those servers that are interested in the events. We return to this 
later. 

Next, we turn to the question of where the computation matching the user’s location 
to the hearsay takes place. There are three main contenders: 

•  on the user’s conduit 
•  on the user’s home machine on the network 
•  on the machine storing the hearsay 

For matching to occur on the user’s conduit, the user’s location, profile and all the 
hearsay from the hearsay server would have to be sent to the conduit machine. This 
wastes two precious resources on the conduit: network bandwidth and battery life. In 
addition to being wasteful, the memory and CPU resources on the conduit are likely to 
be limited, making it a poor choice. If matching is to occur on the user’s home ma-
chine (if there is one), a message must be sent to the location on which the hearsay is 
stored. This message could request all the hearsay on the server (which may result in a 
large amount of network traffic) or it could send the user’s profile to the hearsay 
server, in which case the matching would occur on the machine storing the hearsay. 

Key decision: In our GLOSS prototype we have chosen to perform the com-
putation matching hearsay to the user’s location on the machines storing the 
hearsay. 

If the user profile is large (we have empirical evidence to suggest it would not be) the 
option we have chosen appears a poor one. However, we believe that it is not, due to 
the region transition hypothesis described in the next section. 

The last issue is the delivery of hearsay to the user. Once the hearsay service has 
matched the user and the hearsay, it must send the hearsay to the user. There are two 
choices for this delivery: 

•  it may be sent to the user’s home machine 
•  it may be sent directly to the user’s conduit 

The first choice has the advantage that a fixed server is much more likely to be reach-
able than the user’s conduit. It is therefore a good candidate for somewhere to send 
information in the event of not being able to contact the conduit. This approach suffers 
from lack of geo-spatial proximity. The user’s home machine may not be in proximity 
to the user or the machine storing the hearsay. Sending a hearsay message to the user’s 
home machine is unlikely to make efficient use of network bandwidth. Sending the 
message directly to the user’s conduit makes the best use of available network band-
width. However, the user may be connected to the GLOSS infrastructure using a vari-
ety of different technologies. Some abstraction over the technologies is required to 
insulate the hearsay services (and other services) from network. 



12 

Key decision: Each user’s profile contains information about how to contact 
that user. This may include alternatives to deal with failure. 

If the hearsay service has access to the user’s profile it may send the hearsay message 
directly to the user using whatever services are at its disposal. This may involves send-
ing a message to a proxy server (in the case of an SMS attached user) or sending the 
message directly (in the case of a TCP/IP 802.11 connected user). 

3.1.1 Region Transition Hypothesis 

The region transition hypothesis states that as the granularity of the geo-spatial region 
increases, the total frequency of transitions between regions falls. Globally, there are 
billions of transitions occurring every second at a fine granularity: a user in France 
enters a café at the same instant that a user in the UK leaves a shop and a user in Ire-
land goes into a bar. There may be 50 shops, cafés and other GLOSS locations in a 
street comprising a region, with frequent transitions between these locations, but the 
street itself has only a few access points (its junctions with other streets) and users 
move between streets less frequently. Similarly, the overall frequencies of transitions 
between cities and countries are still lower. 

The region transition hypothesis has implications for the GLOSS architecture and 
for caching. If servers are organised into a tree, with each server being associated with 
a smaller geo-spatial area than its parent, data may be effectively cached at the nodes 
of the tree and obviate the need for high volumes of data, for example profile data, to 
be shipped. However, tree architectures are not scalable—as the root node is ap-
proached, the volumes of traffic increase—some mechanism is required to prevent 
network saturation close to the root. We will return to this problem later. 

3.2 Approach to GLOSS Service Implementation 

The use-case studies highlight two points: 

•  A local architecture is required to permit GLOSS clients and servers to be con-
structed. Both clients and servers are essentially data-flow architectures. Data ar-
rives at a user’s device from several sources—communications devices, position 
servers etc.—and passed to elements for processing which might include displaying 
information to a user, sending it to another device, or storing it for future presenta-
tion or processing. Similarly on a server, data arrives from several devices is proc-
essed and delivered to other devices for further processing or presentation to the 
user. 

•  A global architecture is required to mediate the global flow of information between 
clients and servers. 



13 

4 Local Architecture 

Our prototype GLOSS architecture is designed with the following motivations: 

•  to abstract over any particular technology 
•  to make GLOSS components independent of each other 
•  to allow components to be assembled into GLOSS applications 

To permit GLOSS applications to be constructed, we arrange components into pipe-
lines and register components with event buses. The local architecture is based on 
XML pipelines and an XML event bus. To abstract over location, GLOSS clients 
transparently pass messages to a server and vice-versa by plugging appropriate com-
ponents into the pipelines and event buses of the client and server. A high level over-
view of this architecture is shown in Fig 4. 

 
Fig 4: Local architecture 

Data enters the system from various devices in various formats. Most components in 
the system are compliant with the GOPipe(GLOSS Object Pipe) interface. This is a 
component that takes XML encoded GLOSS objects and processes them. GOPipe 
objects can be assembled into pipelines of processing components. An interface Ex-
tensibleGOPipe is provided which provides GOPipe functionality and permits down-
stream GOPipe objects to be registered with it. In many GLOSS scenarios there is a 
requirement to distribute information about GLOSS actors and artefacts to several 
components. To accommodate this, an EventBus interface is provided. It presents the 
GOPipe interface so that it may be inserted into a pipeline, and permits multiple ob-
jects presenting the GOPipe interface to be registered with it. The components and 



14 

interfaces described above achieve the first two objectives. In order to manage collec-
tions of component instances we introduce another abstraction—an assembly. This is a 
collection of components that are linked together via pipes and buses. 

4.1 Applying the Local Architecture to the Use-Cases 

To accommodate use-case one, a pipeline is assembled on Bob’s conduit containing 
the GPS device, an adapter (not shown in the diagram) and an event bus. Two GOPipe 
objects are attached to the event bus: a hearsay user interface tool and an SMS device. 
The SMS device is also attached to the event bus, permitting it to supply the bus with 
non-local events. In the use case, the GPS device passes events via the adapter to the 
event bus, which passes them to the GPS device. This device sends the events to 
Bob’s SMS server located in Brussels. 

On the SMS server, another pipeline has been assembled, capable of processing in-
coming SMS events. In this instance of the architecture, a location service (another 
GOPipe compliant object) is plugged into the event bus. It passes location information 
to an IP device which results in the message being passed to a street server located in 
the same street as Bob. 

A third pipeline has been assembled on the street server. It contains a GOPipe 
complaint IP module to supply GLOSS Object Events to the pipeline that contains an 
event bus with the hearsay service plugged into it. The hearsay service determines that 
Bob is in the street (determined by the event sent to it), and that a café recommended 
by Anna is close by (the hearsay). A message needs to be sent to Bob to inform him of 
this fact. The message could be sent to Bob using a variety of mechanisms. To ab-
stract over these mechanisms, a GOPipe compliant proxy for Bob is provided. This 
component will send a message to Bob using the most appropriate technology—in this 
case, an SMS message. 

The GSM/SMS card on Bob’s conduit receives the SMS message, where it is 
passed to the event bus and from there to the hearsay user interface tool, which will 
present the hearsay to Bob. 

In use-case two, Bob is at the Pompidou Centre and looking at the Eli Lotar III 
sculpture by Alberto Giacometti. In this scenario Bob is wearing a tag, which uniquely 
identifies him, and his PDA is equipped with an 802.11 card. Each exhibit in the exhi-
bition has a tag reader that detects tags in its proximity. For simplicity we assume that 
there is a server associated with each exhibit, and a GLOSS server in the museum. 

Bob’s tag is detected in the proximity of the exhibit by the tag reader, which sends 
a message to a serial port which is connected to a GO pipeline. After a GOAdapter has 
processed it, the event (containing Bob’s unique ID) is passed to an event bus where it 
is passed to the only component connected to the bus—an IP device that sends the 
event to the museum server. 

The IP device on the museum server is connected to another pipeline and the event 
is passed to the hearsay service. This service locates Bob’s profile (using mechanisms 
not described here) and determines what information he may like to know about the 
statue which he is looking at. This is sent via another object implementing the GOPipe 
interface, via 802.11, to Bob’s PDA. In the manner described above, Bob is alerted to 
the new information about the statue. 



15 

5 Global Architecture 

We have described a local architecture for GLOSS conduits and servers. Next we 
briefly outline how these components may be organized into a global architecture for 
smart spaces.  As described above, tree architectures, such as the one shown in Fig 5 
(a), are not scalable—as the root node is approached, the volumes of traffic increase 
[12]. An alternative to a hierarchical architecture, shown in Fig 5 (b) is a peer-to-peer 
(P2P) architecture composed entirely of peers, with no node in the network assuming 
any more responsibility than any other. Instances of this style of architecture, for ex-
ample Gnutella [13] and Kazaa [14], have recently become popular for file sharing 
applications. Many of these architectures depend on searching a limited network cen-
tric horizon of machines governed by a number of network hops from the point of 
query. Such an architecture is not perfectly suited to an environment in which mes-
sages require routing to a specific destination. For example, in the SMS hearsay ex-
ample, a SMS location message must be routed to an appropriate hearsay server to 
enable matching to occur. However, it may be injected into a GLOSS network a con-
siderable distance (in terms of both hops and geo-spatial proximity) from a server 
storing hearsay. 

 
World

World Level

U.K. France U.S.A

Aving
on

Borde
aux

Paris
Mars
eilles

Countries

Cities

Streets

GLOSS-aware
LocationsCafe, Shop, Museum  

Fig 5: Possible global architectures: (a) hierarchical and (b) peer-to-peer 

The network supporting the GLOSS infrastructure must therefore provide some 
mechanism to route messages to an appropriate location. Hybrid architectures offer 
the opportunity to tailor topologies and protocols in such a way that locality knowl-
edge may be exploited. In [12], Carzaniga et al state that an acyclic peer-to-peer archi-
tecture with subscription forwarding appears to scale well and predictably under all 
circumstances and is likely to represent a good choice to cover a wide variety of sce-
narios. Consequently, we are currently exploring a global peer-to-peer architecture 
consisting of a hierarchy of peers such as that shown in Fig 6. 

In addition to avoiding network bottlenecks, a hierarchy of peers is well suited to 
the geo-spatial nature of GLOSS queries. As shown in Fig 6, it is relatively easy to 
partition the world recursively into non-overlapping regions. These may be mapped on 
social, economic or organisational boundaries. The servers need not be co-located 
with the geo-spatial region that they represent—the only necessity is that peers under-
stand the peering relationships. A final benefit of this architecture is that it is capable 
of evolving to cope with stress placed upon it. 



16 

Partitioning the network into a hierarchy of peers makes the routing of messages to 
appropriate locations with the GLOSS infrastructure relatively straightforward. As 
proof of concept we outline how the three technological aspects of communication, 
computation and storage in the two use-case scenarios relate to this architecture. 

 
United
Kingdom

United
States

France

Germany
Belgium

Japan

Ireland

Italy
Denmark

Sweden

Washington
D.C

Tokyo
Copenhagen

Stockholm

Rome

Berlin

Paris

Brussels

London

Dublin

Calais

Marseilles

Edinburgh

Glasgow

Manchester

St Andrews

Leeds

Cardiff

York

New York
City

Boston

Chicago

San
Fransisco

Los
Angeles

Gothenburg

Linkoping

Kalmar

Venice

Milan

CologneDusseldorf

Bonn

Hamburg

Kyoto

Kagoshima

Ishikawa

Cork

Galway

Killarney

Limerick

Aarhus

Odense

Aalborg

Antwerp
Hasselt

Leuven

Namur

Mechelen

Cannes

Bordeaux

GLOSS Network

Australia

Sydney

Brisbane
Adelaide

Melbourne

 
Fig 6: Hybrid global architecture 

In the first use-case, Bob’s conduit relays his position to an SMS server located in 
Belgium. As described above, the GLOSS object pipeline on that server examines 
location and determines that it must be sent elsewhere. Since the SMS server is part of 
a P2P network, it does not require a final destination address for the message. How-
ever, it must determine if the message should be sent to its children, its parent, broad-
cast to its peers or dealt with locally. This calculation may be performed by comparing 
the geo-spatial location of the user with that being managed by the server. In the case 
of the message about Bob’s location, the location in the message is about a location in 
Paris so it is passed to the Brussels server which either sends it directly to the Paris 
server (if it has knowledge of this server and the geo-spatial region it manages) or 
broadcasts it to its peers. When the Paris server receives this message, it is passed 
down the hierarchy until it reaches the street server where the computation matching 
the hearsay to Bob can occur. 

The hierarchy of peers dovetails well with the region-transition hypothesis. The hi-
erarchy gives a nested set of locations in which Bob’s profile may be cached (stored). 
Assuming Bob’s profile is stored at his home server, when Bob is first detected in 
France, a request for Bob’s profile will be propagated up the network and down to 
Bob’s home in a manner similar to that described above for hearsay messages. The 



17 

reply may be cached in servers at multiple levels in the network to obviate the need to 
repeatedly fetch this information. A similar technique under-pins the replicated docu-
ment cache used in Freenet [15]. The use of different cache policies at different levels 
in the hierarchy is likely to be beneficial. For example, leaf servers (where change is 
fast) might only cache data for a short period but servers close to the root (where 
change is slow) might cache data for longer periods. 

In use-case two, the location information is injected into the GLOSS architecture 
close to the location at which the hearsay is stored. In this case, the location event 
needs to propagate up the tree of peers. As propagation occurs, computation matching 
hearsay and the location of user’s occurs, triggering hearsay delivery to users as de-
scribed above. If knowledge of Bob’s location is cached in the hierarchy as described 
above, at some point the message will reach a node that already knows that Bob is in 
this locale. At this point the message need not propagate up the tree any further. If a 
match is not made as the message is sent up the tree, subject to policy, the message 
might propagate back to Bob’s home where his current location could be stored. 

6 Status of Implementation 

At the time of writing, instances of the GLOSS Object Pipeline architecture are run-
ning on a mobile device (currently a laptop for ease of prototyping) and a server. A 
pipeline running on the laptop integrates a GPS device from Garmin, a Nokia GSM 
phone card and a prototype hearsay user-interface. We have developed Java based 
GOPipe interfaces to the GPS device which supplies the pipeline with location infor-
mation, and another to the GSM device capable of sending and receiving SMS mes-
sages. The sever pipeline contains a pipeline containing an SMS server and supplies 
messages to an event bus. Currently, this bus supplies a Trails capture tool with loca-
tion data. 

We are currently implementing the necessary algorithms for global message routing 
and plan to integrate these with the local pipeline architectures shortly. 

7 Conclusions 

We have outlined a framework for the description of Global Smart Spaces that sup-
ports interaction amongst people, artefacts and places while taking account of both 
context and movement on a global scale. We have also identified a set of location-
aware services, which detect, convey, store and exploit location information. These 
services are introduced using the radar, hearsay and trails metaphors and we have 
explained their relationship with the framework concepts. The essence of the paper is 
the introduction of a recursive software architecture that facilitates the implementation 
of the metaphors within the framework. For scalability we show how the software 
architecture may be applied recursively to provide location-aware services in the 
global context. 



18 

8 Acknowledgements 

The early part of this paper is based on, as yet unpublished, research conducted jointly 
in the EU-funded GLOSS project (5th Framework IST-2000-26070) [16], with part-
ners at Strathclyde University, Trinity College Dublin, and Université Joseph Fourier. 
This will be published in full separately. 

Joëlle Coutaz and Gaëtan Rey, in particular, contributed to the GLOSS ontology. 
Mark Dunlop and Paddy Nixon developed a prototype SMS/Hearsay implementation. 
Peter Barron and Álvaro Rebón-Portillo wrote parts of the current recursive software 
architecture prototype. 

The work was also supported by EPSRC grants GR/M78403 and GR/M76225, 
“Supporting Internet Computation in Arbitrary Geographical Locations”. 

9 References 

1. Weiser M. The Computer for the 21st Century. Scientific American (1991),September 94-
104 

2. Pentland A. Smart Rooms. Scientific American (1996) 274,4 68-76 
3. Elrod S., Hall G., Costanza R., Dixon M., Des Rivieres J. Responsive Office Environments. 

Communications of the ACM (1993) 36,7 
4. Schilit B., Adams N., Want R. Context-Aware Computing Applications. In: Proc. Work-

shop on Mobile Computing Systems and Applications, Santa Cruz, CA, USA (1994) 85-90 
5. Lamming M., Brown P., Carter K., Eldridge M., Flynn M., Louie G. The Design of a Hu-

man Memory Prosthesis. The Computer Journal (1994) 37,3 153-163 
6. Nixon P., Lacey G., Dobson S. Managing Interactions in Smart Environments. In: Proc. 

Workshop on Software Engineering for Wearable and Pervasive Computing, 22nd Interna-
tional Conference on Software Engineering (ICSE2000), Limerick, Ireland (2000) 251 

7. Working Document on Gloss Ontology. GLOSS Consortium (2002) 
8. Munro A., Welen P., Wilson A. Interaction Archetypes. GLOSS Consortium (2001) 
9. Giacometti A. Eli Lotar III, 

http://www.rmn.fr/gb/01rmn/01missions/giacometti.html
10. Texas Instruments. Radio Frequency Identification Systems, 

http://www.ti.com/tiris/ (2002) 
11. IEEE. IEEE 802.11 Wireless Local Area Networks, 

http://grouper.ieee.org/groups/802/11/ (2002) 
12. Carzaniga A., Rosenblum D.S., Wolf A.L. Design and Evaluation of a Wide Area Notifica-

tion Service. ACM Transactions on Computer Systems (2001) 19,3 332-383 
13. Kan G. Chapter 8: Gnutella. In: A. Oram (ed) Peer-to-Peer: Harnessing the Power of Dis-

ruptive Technologies. O'Reilly (2001) 
14. Kazaa, http://www.kazaa.com/en/technology.htm (2002) 
15. Clarke I., Miller S.G., Hong T.W., Sandberg O., Wiley B. Protecting Free Expression 

Online with Freenet. IEEE Internet Computing (2002) 6,1 40-49 
16. GLOSS Consortium. Global Smart Spaces, 

http://www.gloss.cs.strath.ac.uk/ (2002) 


