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Abstract

Over the last 15 years a number of persistent language systems have
been produced whose implementation relies on the persistence
mechanisms provided by an underlying operating system. We have
produced an operating system called Grasshopper expressly designed
to support orthogonally persistent systems. In this paper we
demonstrate how the mechanisms provided by Grasshopper may be
used to implement a persistent version of the language Java.

1 . Introduction

Over the last ten to fifteen years we have seen a number of persistent language systems. Some
of these were designed to be persistent from the outset [3, 19], others are persistent versions of
ordinary programming languages e.g. [21]. What these language systems have in common is
that they have been implemented as separate language systems above a non-persistent operating
system. It is our belief that, although persistence can be implemented by a programming
language run time system, the persistence of data should be provided by the operating system.

Implementing persistence at the programming language level suffers from two major
drawbacks. First, the host operating system was not designed to support persistence; therefore
the operating system interface does not usually provide abstractions sympathetic to a persistent
language implementation.  The consequence of this is that the language designer is usually
forced to implement a persistent abstract machine above the operating system abstractions,
resulting in a loss of efficiency.  A similar problem is reported by the designers of database
systems  [22].

The second problem with this approach is that every persistent language implements its own
persistent abstract machine duplicating much of the functionality found inside the operating
system and other language implementations.  Often these different implementations are entirely
incompatible with each other, prohibiting interactions between programs written in different
languages.  This would appear to be a retrograde step compared to the mixed language
environments supported by  conventional systems.

The implementation of the orthogonal persistence abstraction by the operating system avoids
these problems.  We believe that such an approach to operating system design could be as
revolutionary as virtual memory in terms of the advantages for user-level applications. We have
constructed the Grasshopper operating system in order to investigate these assertions. In this
paper we show how one non persistent language, Java [14], may be made persistent under



Grasshopper. In addition to this language system, our current Grasshopper prototype also
supports persistent assembler, C, C++ and the language Napier88.

When considering the persistent storage requirements of Java we must consider six different
aspects:

1. the persistent storage of Java source code,

2. the storage of Java executable code in class files,

3. Java object repositories,

4. binding to persistent objects,

5. the state of active Java threads, and

6. the recoverability of state following a failure.

In most persistent implementations, the first two categories would be handled by the (non
persistent) operating system, the latter by some language layer. In Grasshopper, support for all
six categories is provided by the operating system. The remainder of the paper discusses these
six aspects.

2 . Persistent storage of source and class files

The persistent storage of source and class files presents three requirements:

1. some persistent storage must be provided to store the data,

2. some naming mechanisms must be provided for finding the files, and

3. some protection mechanism must be provided to prevent unauthorised access to
files and to prevent unauthorised modification.

In Grasshopper the first of these is satisfied by a single abstraction known as a container [11].
Containers are the only storage abstraction provided by Grasshopper and are persistent entities
which fulfil the roles traditionally served by both address spaces and files. In most operating
systems, the notion of a virtual address space is associated with an ephemeral entity, a process,
which accesses data within that address space.  In contrast, containers and processes (called loci
in Grasshopper) are orthogonal concepts.  A Grasshopper system consists of a number of
containers which may have loci executing within them.  Loci are migratory in nature and may
move from container to container by invoking them. Each container that supports invocation
has a well defined interface specified in IDL [20].

It is convenient, natural and efficient to implement Java source and class files using
Grasshopper containers. The next problem is that of access to the data. For this purpose,
Grasshopper provides attributed namespaces. Namespaces implement a mapping from names
to Grasshopper capabilities [10]. In Grasshopper every object known to the operating system is
represented at user level by one or more capabilities which consist of a reference to a
Grasshopper entity and access rights associated with it. The capability system therefore
implements both low level naming and protection. The capability mechanism is deliberately
simple and low-level for reasons of efficiency and flexibility.

Namespaces are themselves implemented as containers containing both code and data.
Namespaces present an abstract table interface similar to that supported by PS-algol. However,



the mappings may be associated with string, integer, boolean and capability attributes.
Attributes are useful for representing modification dates, type information, ownership etc.
Typically, namespaces are arranged in hierarchies as shown in Figure 1.

Some protection mechanism must be provided to prevent unauthorised access to files and to
prevent unauthorised modification. In Grasshopper the first of these requirements is provided
by the capability system. No Grasshopper entity can be accessed without the presentation of a
capability. Although capabilities are stored in namespaces, not all namespaces are publicly
accessible. Each user has his or her own namespace from which other namespaces are
reachable. Users may choose to make their namespaces known in a secure manner using
functions provided by the login service, however, this is beyond the scope of this paper.

Access to a container does not give unrestricted access to the data as is the case in Unix. The
capability system may prevent invocation or mapping (see below) and the kernel supports the
usual page level protection mechanisms preventing reading or writing of data stored in
containers. The ability to change page protections is itself protected using the capability system
thereby preventing unauthorised users from performing illegal operations.

Figure 1: Grasshopper container organisation

3 . Java object repositories

The persistent store against which Java programs operate (the object repository) may also be
provided by a Grasshopper container. Containers may be organised in any manner required by
the persistent application system using them. In the case of Java, the object repository is
required to contain:

1. Java class files,

2. the Java run-time system (the interpreter),

3. stacks for threads,

4. at least one heap containing Java objects.



Grasshopper enables this via the provision of container mappings. The purpose of container
mapping is to allow data to be shared between containers.  This is achieved by allowing data in
a region of one container to be viewed within a region of another container.  Mappings may be
either global, or visible only to a particular locus while executing in a particular container.
Unlike other memory object mechanisms, containers may be arbitrarily (possibly recursively)
composed using mapping which provides considerably enhanced flexibility and performance
[16]. Another difference between mappings in Grasshopper and other systems is that mappings
in Grasshopper are persistent and remain in force until the data is unmapped.

Using the container mapping mechanism, the Java run time system and the Java class files may
be mapped into one or more object repositories; this is shown in Figure 2. This allows code to
be shared in both virtual memory and on disk [16]. At this point is worth noting the C++
computations implementing the Java run time system (including global variables) are
automatically persistent due to the fact that Grasshopper containers are truly orthogonally
persistent address spaces. Note that the mapping mechanism is used because it is natural at the
logical level, not as a mechanism with which to implement the recoverability of the persistent
store [6].

Figure 2: Mappings in the Java object repository

As described above, mappings may be established globally or at a per locus level. The latter
provides a mechanism by which each thread (locus) may have its own stack and heap space
which is invisible to all other loci in the system. Indeed, the stacks and heaps may be located at
the same address within the container in which they are executing. This considerably simplifies
memory management and adds a degree of inter-thread protection unavailable in most systems.

The technique of giving each concurrent persistent process its own local heap was used in the
CASPER system [23]. In this system it was found that the use of copy-out techniques
borrowed from generational garbage collection considerably reduced the work of garbage
collecting the global heap. It is expected that similar results will be found in the case of Java
whose architecture is very similar to that of Napier88 [8].

4 . Binding

In all persistent systems, some mechanism must be provided to permit objects to bind to other
objects in the persistent store. In systems such as Napier88 this is provided by the environment
mechanism [9]. In Grasshopper, any locus can generate an arbitrary address in the container in
which it is executing and access the data stored there. Such a mechanism is not particularly
useful on its own, particularly in a language such as Java which does not support pointers.
However, this simple mechanism can be used to implement an intra-container naming scheme
similar to that provided by PS-algol [1] and Napier88 [9]. One of the Grasshopper libraries



contains an associative access (table) package which maps from strings to the C type void* (in
fact this package is used in the implementation of namespaces described above). The placement
of a table data structure at a known address in a container gives all the symbolic naming
capability that is required for inter-compilation unit and compilation unit–persistent store
binding. This mechanism is easily wrapped in some Java functionality to provide the
pJavaStore functionality suggested by Atkinson et al. [4].

5 . Persistent thread support

Java is inherently thread based. In the reference systems [18] released by Sun, two mechanisms
are provided to support threads, namely green threads and threads implemented via Sun's
Light-weight Process Library [17]. Green threads is a stand alone thread implementation for
systems such as HP-UX-9.0 that do not provide thread support. This package uses timers and
interrupts in a similar manner to LWP to implement threads at user level. The LWP library that
has become a defacto standard amongst Unix vendors. Note that both approaches require a
considerable amount of coding to be performed to make Java threads persistent.

The green threads package could be implemented on Grasshopper with appropriate changes to
the system calls. Instead, Grasshopper loci may be used to implement Java threads. Multiple
loci may execute within a single Grasshopper container and thus share state. The inability to do
this in Unix processes was one of the original motivations for threads [5]. Like containers, loci
are maintained by the Grasshopper kernel and are inherently persistent. Making loci inherently
persistent greatly simplifies the management of orthogonal persistence and the implementation
of a thread based language such as Java.

6 . Persistence and recoverability

Thus far we have demonstrated that Grasshopper provides ideal abstractions for the
implementation of persistent Java. However, we have not described how containers are
populated with data nor how persistence is achieved. In the remainder of this paper we shall
briefly describe the persistence mechanisms of Grasshopper. The management of containers is
the responsibility of managers which are user-level entities.  The use of managers is motivated
by the desire, as far as practicable, to leave all policy decisions out of the kernel.  The kernel
provides mechanisms which can be used by higher level software to implement required
policies.  This provides maximum flexibility and avoids the kernel making decisions which
impact upon performance.  For example, the memory management policy can have major
effects on the performance of garbage collection.

Each container has an associated manager, which is an ordinary user-level program, held within
a container.  The manager is responsible for:

• the provision of the pages of data stored in the container,
• responding to access faults,
• operation within a limited amount of physical memory (page discard), and
• the implementation of a stability algorithm for the container [12], i.e.

maintenance of the integrity and resilience of data.

The kernel provides a standard framework in which managers may operate.  This includes
automatic invocation of the appropriate manager on an access fault, and a set of interfaces
which allow managers to arrange the hardware translation tables in such a way that the required



data is visible at an appropriate address in the container.  Thus managers provide user-level
virtual memory management in common with other operating systems [2, 7]

The Grasshopper kernel treats loci and the data accessed by them during computation as the
unit of recovery. Loci are able to snapshot the state of their computation at any time, a task
which is co-ordinated by the kernel and draws on services provided by the managers to
snapshot user level data. A snapshot consists of all the data related to the computation of a locus
and includes:

1. any modified container data seen by the locus,

2. any data maintained within the kernel to represent the state of the locus (including
the registers) and the containers in which it has executed.

Since a locus can move between containers during the course of its computation, a snapshot
typically involves recording the state of pages within a number of different containers. In
contrast to other persistent systems in which a snapshot involves making the entire persistent
store stable, the snapshot mechanism in Grasshopper only affects the stability of the portions of
containers seen during the computation of a particular locus. Since loci are free to use shared
memory as a means of inter-process communication, the actions of one locus can be influenced
by the actions of another. This interaction creates causal dependencies between loci.  During the
normal operation of the system it is possible to ignore these causal dependencies because they
are automatically preserved. However, if the system needs to be restarted after a shutdown or
crash, locus snapshots must be used to rebuild a consistent system state.

It is therefore necessary to detect causal dependencies and ensure that they are preserved across
failure of the system, thus guaranteeing global consistency. Detection of causal dependencies is
performed by the kernel and managers which monitor read and write faults to compile
modified page lists containing an entry for every modified page seen by a locus since its last
snapshot. In addition, the kernel also maintains a list of containers in which a locus has seen
modified data. The kernel uses this list to determine which managers it must request to
snapshot data modified by the snapshotting locus.

The kernel co-ordinates the processing of locus snapshots and maintains dependency
information such that it is possible to recover the state of the system from a causally consistent
set of locus snapshots following a failure. Causal dependencies between loci are represented
using vector time [13]. Each locus has an associated vector time which is lazily updated
whenever a snapshot is performed . The vector time contains a list of pairs representing the
state of each computation on which the snapshotting locus is dependent. Each pair contains the
identity of a locus and a timestamp derived from a Lamport clock [15] associated with the locus
which is used to identify points in time during its execution. This information is sufficient to
characterise the causal dependencies of loci and their snapshots [12].

The above mechanism guarantees that a Grasshopper system will always recover data and
processes to a self consistent state.  It does not guarantee that the snapshotted state of the
system was semantically consistent when a snapshot was made. Such guarantees require either
co-operation or exclusion at the application level. Grasshopper supports these activities in two
ways. Firstly, mechanisms that allow concurrent loci to co-operate are provided. These
mechanisms include semaphores and conditional locks. Secondly, the Grasshopper kernel and
managers co-operate to provide  transactional semantics to those loci that require it.



7 . Conclusion

We have shown how a persistent version of the Java language may be implemented on
Grasshopper. Java is the fifth persistent language we have implemented on Grasshopper; the
other being (in order of appearance): assembly language, C, Napier88 and C++. Each of these
implementation efforts has proceeded in a relatively pain free manner demonstrating the power
and suitability of the underlying Grasshopper abstractions. We hope to be able to demonstrate
Java running on Grasshopper at the workshop.
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