
On Page-based Optimistic Process Checkpointing

Alan Dearle

Department of Computing Science
University of Stirling,

Stirling, FK9 4LA, Scotland
al@cs.stir.ac.uk

David Hulse

Department of Computer Science
University of Adelaide,
S.A., 5005, Australia

dave@cs.adelaide.edu.au

Abstract
Persistent object systems must provide some form of

checkpointing to ensure that changes to persistent data
are secured on non-volatile storage. When processes
share or exchange modified data, mechanisms must be
provided to ensure that they may be consistently
checkpointed. This may be performed eagerly by
synchronously checkpointing all dependent data.
Alternatively, optimistic techniques may be used where
processes are individually checkpointed and globally
consistent states are found asynchronously. This paper
examines two eager checkpointing techniques and
describes a new optimistic technique. The technique is
applicable in systems such as SASOS, where the notion
of process and address space are decoupled.

1. Introduction
Persistent systems provide programmers with a

uniform view of volatile and non-volatile memory.
The benefits of orthogonal persistence have been
expounded elsewhere and we shall not labour them
here. All persistent systems must be capable of
establishing self-consistent recoverable states on some
non-volatile medium which may be used to restart an
arbitrary computation following an orderly shutdown or
failure. The process of forming such states has been
variously called checkpointing, snapshotting and
stabilisation.

Forming a checkpoint involves securing changes on
a stable medium. Commonly this involves writing a
change log and/or flushing those pages modified since
the last checkpoint onto disk; in this paper we shall
focus on the page based approach. New checkpoints
must be established with care, as they must not
endanger the integrity of the previous checkpoint. In
many persistent systems this is achieved using a
shadow paging technique [13] combined with an
atomic commit operation [1]. When shadow paging is
employed, a dirty page never overwrites a clean
version of a page in the stable store. Instead, dirty
pages are written to another location (the shadow),
with these copies of the pages being known as shadow
copies. When a page is modified for the first time, a
shadow location for it is allocated on non-volatile
storage. In many systems at most a single shadow
copy of each page exists and once a shadow copy of a
page exists, that page is used for future operations.
Such stores are known as bistable stores.

The establishment of a checkpoint changes the
status of shadow pages so that they become the clean
versions and further modification of the pages results
in the allocation of new shadow pages whilst the old
clean pages are freed for reuse. As the original pages
are overwritten only after successful completion of the
atomic checkpoint operation, the shadow copies
permit the system to roll back should a failure occur.

In distributed systems in which the state of one
node can become dependent on data stored on another
node, some mechanism must be provided to ensure
that individual checkpoints form a globally consistent
state. The need to ensure that process checkpoints are
consistent also arises in single-node systems which
provide shared memory or inter-process
communication. The simplest approach to global
consistency is to enforce system wide simultaneous
checkpoint in which the kernel(s) block all executing
processes and copy modified data to some stable
medium. This approach has been implemented in the
Monads system [6]. The disadvantages of this
approach are: the entire system freezes whilst the
stabilise occurs, and the technique does not scale
well. There are three basic alternatives to this
approach:

1. Prevent processes from exchanging and sharing
data modified with respect to the stable store:
this allows processes to be individually
checkpointed.

2. Determine which processes and data are
causally dependent upon each other's state and
only force these to stabilise together, leaving
the rest of the system to run.

3. Permit optimistic process checkpoint, in which
processes are individually checkpointed, and
globally consistent states are found
asynchronously.

The first two approaches automatically result in
globally consistent states. However, the third approach
requires some policy, such as eager checkpointing, to
ensure that globally consistent states may always be
found. The use of copy-on-write techniques to protect
RAM resident pages from modification may be used to
optimise any of these techniques, sometimes with
great effect [4]. Wu and Fuchs [18] describe a
hardware implementation of the first approach in
which processes are prevented from sharing modified
data. This is achieved by forcing processes to perform
checkpoint operations as soon as another client

requests the use of any updated data. A major concern
of their work has been to limit roll-back propagation,
so that the failure of any client affects only that client.
This paper examines two alternative implementations
of the second approach and introduces a new
technique based on optimistic process checkpointing.

2. Causality and Causal Histories
The notion of the causal history of a process is

central to process checkpointing. Causality can
intuitively be defined in terms of some entity being in
some way dependent upon the state of another.
Formally, causality may be defined in terms of the
happened-before relation [10]. Briefly, the happened
before relation “→ ” is the smallest relation that
satisfies the following criteria:

• If a and b are events in the history of the same
entity and a comes before b then a → b

• If a is the sending of information from one
entity and b is its receipt in another then a → b

• If a → b and b → c then a → c
• If a →/ b and b →/ a then a and b are said to be

concurrent.
One approach to the analysis of causality is via

time diagrams consisting of a series of horizontal lines
with each line representing an entity with time
increasing to the right. Communication between
processes is represented by a directed arc between
time lines. For example, consider the example of
readers and writers: a process P1 modifies an object
O1 and another process P2 reads the modified object.
This sequence of events is represented by the time
diagram shown in Figure 1.

w

P2

P1

O1

r

checkpoint

time

Figure 1: A time line diagram
Synchronous checkpointing techniques eagerly

calculate the events that happened before a
checkpoint request from a process and secure those
events on stable storage. If we consider the
checkpointing of process P2 , the checkpoint must
include the shaded region to yield a globally
consistent state. Formally, such a state is termed a
consistent cut which is a subset of the events which
comprise the system such that, if e is an element of
the consistent cut and e' → e then e' is also an
element of the cut [14].

Graphically, consistent cuts are easily conveyed as
a line drawn downwards through a time diagram
partitioning the diagram into two parts with the past on

the left and the future on the right. A cut is consistent
if no arc (a communication) starts in the future and
ends in the past. The intersection of the cut line and a
process’ time line represents the time at which a
checkpoint was made. Checkpointing of individual
processes and objects may be performed
independently provided that consistent cuts can later
be found.

It has been shown by Schwarz and Mattern [16] that
vector time [5] may be used to characterise consistent
cuts. In systems that employ vector time, each entity
maintains a time vector, in which the elements
represent knowledge about other entities within the
system. Vector time is maintained as follows:

• Each vector conceptually has as many elements
as there are entities within the system. VTi[j]
denotes the jth element of the time vector for
entity i.

• Each element of every vector is initially zero.
• On each atomic action (including message

receipt and transmission), the entity increments
the element of its vector corresponding to itself,
that is VTi[i] ← VTi[i] + 1.

• Whenever a message is sent to another entity,
the sender's vector is transmitted with the
message.

• Upon receipt of a message, the receiving entity
updates its own vector by constructing the
piecewise maximum of its own and the sender's
vector.

Johnson and Zwaenepoel [9] describe a technique
for finding consistent cuts which involves the
construction of a dependency matrix whose rows
correspond to the vector times of all entities in the
system. They show that a dependency matrix M
represents a consistent cut iff,

∀ i,j Mij ≤ Mjj.
In other words, the elements in column j must be

less than or equal to the jth element. This intuitively
states that no entity depends upon an event that
happened after the consistent cut was established.

Whilst the algorithm of Johnson and Zwaenepoel is
centralised, Johnson has developed a similar algorithm
that may be applied in a distributed environment [8].

3. Synchronous Checkpointing
In this section we describe two synchronous

approaches to checkpoint formation. The systems
examined are the CASPER system [17] and a system
developed by Jalili and Henskens [7] used in the
Monads system [15]. Each of these systems eagerly
finds consistent cuts by determining which processes
and data are causally dependent upon each other's
state, and forces these to checkpoint synchronously,
leaving the other processes and data unaffected.

3.1 CASPER
The CASPER system [17] supports persistent

distributed shared memory over a set of client
processes which run on individual workstations. In
CASPER, only those subsets of clients that share
modified data must stabilise together. Such

interdependent clients are termed associates and a set
of mutually dependent clients an association. Each
client always belongs to exactly one association.
Associations are dynamic in nature and are
constructed between checkpoints by the server.
Associations may merge over time due to the sharing
of data between previously independent associations.

In CASPER, associations are maintained by a
centralised stable store server. Each association has a
corresponding page list, which identifies those pages
modified or accessed by members of the association
since their previous checkpoint; this information is
used to incrementally build the associations.
Conventional virtual memory techniques are used to
detect reads and writes to pages. When a page is first
modified, the identity of the modified page is added to
the page list of the association containing the client
performing the modification. Whenever a modified
page is first accessed by a client, that client is added
to the association containing the modified page. Since
clients always belong to exactly one association, this
may involve two associations and their associated
page lists merging.

When a checkpoint is initiated by a client, only
those clients belonging to the initiating client’s
association need be included. All modified pages held
by checkpointing clients must be returned to the stable
store server where they are written back to the store as
an atomic operation. At the end of the checkpoint, the
stable store will have moved into a new, consistent
state. The association’s page list can be used to
determine which store pages are to be returned to a
free page list, since up-to-date copies of those pages
are stable and old versions are no longer useful. Since
the associates no longer share modified pages after a
checkpoint, the association concerned separates into
sets each containing one client.

The use of associations in CASPER reduces the
amount of synchronous checkpointing required.
However, as identified by Jalili and Henskens, they
force more data to be checkpointed than is strictly
necessary. Consider the case shown in Figure 1 where
process P1 modifies an object that is later read by
process P2 . In CASPER processes P1 and P2 are
placed in the same association meaning that if process
P1 is checkpointed so is process P2 and vice-versa.
As Jalili and Henskens point out, if process P 2
checkpoints so must process P1 since the modification
event is in the causal history of P2 and is volatile.
However, if process P1 checkpoints, process P2 does
not have to since P1 is not dependent on any events in
the causal history of P2 which has only read the data.
This observation has lead to a refinement of the
associations concept based on the maintenance of
directed dependency graphs.

3.2 Directed Dependency Graphs
Like the CASPER system, the system described by

Jalili and Henskens [7] tracks page reads and writes.
The information gathered is used to construct directed
dependency graphs (DDGs) rather than simple
associations. A process may perform one of three
operations on a page:

1. It may read from an unmodified page (with
respect to the last checkpoint), which results in
no dependency.

2. It may read a modified page which results in a
directed dependency from the reading process
to the modified page.

3. It may modify a page which results in a mutual
dependency between the modifying process and
the modified page.

As an example of this system, consider again the
example of readers and writers: a process P1 modifies
a virtual page V1 resulting in a mutual dependency
between P1 and the page. Another process P2 reads
the modified page making a uni-directional
dependency between P2 and V1. The resulting DDG is
shown in Figure 2.

V1

P1 P2

Figure 2: A Directed Dependency Graph
representing the events shown in Figure 1.
To support the construction of directed dependency

graphs the operating system kernel must maintain
information describing:

1. which pages have been modified since the last
checkpoint,

2. which pages have been accessed by the
executing process, and

3. which pages have been modified by the
executing process.

When a process checkpoints, the kernel traverses
the DDG starting from the requesting process and
transitively checkpoints all entities reachable via
outgoing arcs. Thus, in the above example, if process
P1 checkpoints the state of P1 and page V1 will be
checkpointed. If process P2 checkpoints P1, P2 and
V1 will be checkpointed. Like the CASPER system,
this traversal eagerly forms consistent cuts. The use of
DDGs rather than associations has increased the
accuracy of the causal dependency information.
However, the increased accuracy required to build
dependency graphs is not without cost. Consider the
following sequence of events:

1. Some page V1 is read by process P1,
2. A context switch occurs,
3. V1 is modified by another process P2,
4. A context switch occurs,
5. Process P1 reads the modified page V1.
This sequence is represented by the time diagram

shown in Figure 3. When a process reads a virtual
page it can continue to read that page without any
page faults occurring until the virtual page is
invalidated (removed from the MMU and TLB cache).

Consequently, other than the first read or write to a
page, the exact ordering of events cannot be
characterised using conventional virtual memory
alone. Consider the example shown in Figure 3, the
first read of page V 1 by process P 1 accesses an
unmodified page. However, since that page is in the
TLB of P 1 , it can read modifications by other
processes, such as those made by process P2, without
detection. Some additional mechanisms are therefore
required if directed dependency graphs are to reflect
the correct ordering of events.

P2

V1

P1

time

w
r

invalidation

invalidation

Page P1

may be

 read

Page P1

may be

written

Figure 3: Inexact read/write events
Jalili and Henskens achieve this by recording those

pages accessed during a time quantum of a process'
execution and updating the dependency graphs lazily
when the process is descheduled. In order to avoid the
problem illustrated above, all context information is
discarded on every context switch (the MMU is
flushed and TLB cache thrown away).

The aim of the directed dependency graph approach
is to reduce the false causality inherent with
associations. Whilst the Jalili and Henskens approach
largely achieves this aim, a small amount of false
causality may still occur when swapping occurs. To
illustrate this, consider a virtual page V1 which has
been modified by process P1 resulting in a bi-
directional arc between V1 and P1. Later this page is
swapped out and never accessed by P1 again. The
modification of V1 by another process P2 results in
another bi-directional arc between P2. If P1 is
checkpointed the system will cause P2 to be
checkpointed even though P1 is not causally
dependent on P2 since it has not seen the update of
V1 by P2.

It should be clear that this technique reduces the
amount of synchronous checkpointing that is required.
Another important observation is that the use of either
associations or directed dependency graphs guarantees
that a consistent cut is always established following a
checkpoint operation. An alternative approach to
synchronous checkpointing is to checkpoint processes
and their data independently and construct globally
consistent cuts lazily.

4. Optimistic Checkpointing
This section describes a new technique to support

optimistic process checkpointing. The technique

extends the work of Jalili and Henskens and draws on
the work of Johnson and Zwaenepoel. Rather than
eagerly checkpointing all causally dependent
processes, the technique uses optimistic checkpointing
where each process may be checkpointed separately
requiring consistent cuts to be found lazily. Each
individual checkpoint has an associated vector time
which permits consistent cuts to be found
optimistically. The manner in which this is performed
is beyond the scope of this paper, however the
techniques described by Johnson and Zwaenepoel [9]
would satisfy this requirement.

Jalili and Henskens use virtual page invalidation to
impose an ordering on events to ensure a high degree
of accuracy in causal tracking. In contrast, our
technique tolerates an inexact ordering of events to
improve performance. This is achieved by
invalidating the MMU and TLB caches only at the
time of checkpoint and page eviction. This approach
introduces the potential for false causality which may
be reduced by eagerly invalidating and checkpointing
pages.

The system maintains two data structures to track
accesses to physical memory called the Physical
Readers List (PRL) and the Physical Writers List
(PWL). Each of these is conceptually implemented
as an array of lists of process identifiers where each
array element corresponds to a page frame of physical
memory. Whenever a process first reads from a frame
of physical memory the identity of the process is
added to the PRL and on the first write its identity is
added to the PWL. Tracking accesses to physical
rather than virtual memory, the PRL and PWL data
structures are smaller and hence more manageable.

The PRL and PWL collectively comprise the DDGs
constructed by Jalili and Henskens. On checkpoint,
rather than traversing the closure of directed arcs in
the DDG, our technique only traverses the arcs leading
to modified pages accessed by the checkpointing
process. Thus the checkpoint may be dependent on
the state of other un-checkpointed processes. This
dependency information is captured in the PRL and
PWL and, since the PRL and PWL are dynamic
entities, must be independently stored with the
checkpoint so that a globally consistent state may
later be formed. Vector times are therefore associated
with each checkpoint to capture this dependency
information. In the algorithms shown below, the
vector time is lazily constructed at checkpoint and
captures all the inter-process communications that
have happened since the last checkpoint. The use of
vector times has the additional benefit that they may
be utilised in a distributed environment.

Each process maintains a logical clock called
localTime which is incremented on read and write
faults and when a checkpoint occurs. In addition to
this scalar time, each process p maintains a vector
time VTp. This vector is updated lazily on checkpoint
and page invalidation and represents the dependencies
that the process has on other processes. This vector is
only guaranteed to have the correct time on
checkpoint.

! If page has been swapped, update vt on process p
! from vt on swap

if va ∈ NRMPL do

VTp ← PIECEWISE_MAX(VTp,VT_NRMPL(va))

PRL(pa) ← PRL(pa) + p

localTime(p) ← localTime(p) + 1

Figure 4: Handling read faults

Tracking accesses to physical rather than virtual
memory introduces an additional problem, that of
swapping. The PRL and PWL associated with each
physical page effectively record part of the directed
dependency graph. When a page is removed from
physical memory (and hence the graph), the
dependencies represented by the DDG must be
maintained. This is achieved by eagerly updating the
vector times of the processes which depend on it and
associating this dependency information with the
swapped page. A data structure called the Non-
Resident Modified Page List (NRMPL) is therefore
maintained which stores the identity of modified non-
resident pages and a vector time to record accesses to
those pages.

The NRMPL may have a single vector time
associated with it; this produces false causality since
passive pages located on disk cannot communicate
but only requires the maintenance of a single vector
time. Alternatively, a vector time may be maintained
for each page in the NRMPL. This is expensive in
terms of space but maintains causal accuracy and
requires less computation to maintain causality
information.

When a process is checkpointed, the modified
pages that the process has accessed but are swapped
out must become part of the checkpoint. For this
reason a per process data structure called the Process
Access List (PAL) is maintained to record the
modified pages that have been swapped out and
accessed by the process.

Our technique may be described by considering the
five events that control its operation namely: read
fault, write fault, page invalidation by reader, page
invalidation by writer, and checkpoint.

4.1 Read Fault on page va at physical pa by
process p:

When a read fault occurs, the process identity is
added to the PRL associated with the physical page
frame at which the virtual page is located. If the page
is resident on swap space the page must have been
modified since the last checkpoint. Consequently the
reading of a page from swap may represent a
communication of information from another process.
The processes that have modified the page are
encoded in the vector time stored in the NRMPL. For
this reason the faulting process' vector time is updated
when the page is read. We assume that a function
called VT_NRMPL will recover this vector time. This
is one of the few times that eager update of vector
times takes place. Note that the page is left in the
NRMPL until a writer of the corresponding physical
page exists. This is necessary since only writers can
propagate dependency information. As the process has
performed an operation its logical clock is
incremented – this advances time for the process. The
read fault pseudo-code is shown in figure 4.

4.2 Write Fault on page va at physical address
pa by process p:

The code for a write fault is similar to that for a
read fault and is shown in Figure 5. There are two

main differences: first the identity of the faulting
process is added to the PWL rather than the PRL for
obvious reasons. Secondly, if the page has been
brought into memory from swap space, it is removed
from the NRMPL. This is possible since, after vector
time update, the faulting process holds all causality
information associated with the page. Furthermore
since it is a writer, it will pass that information on
should the page be invalidated or checkpointed.

! If page has been swapped, update vt on process p
! from vt on swap

if va ∈ NRMPL do
{

VTp ← PIECEWISE_MAX(VTp, VT_NRMPL(va))
! remove va once a writer has a copy.

NRMPL ← NRMPL – va
}

PWL(pa) ← PWL(pa) + p

localTime(p) ← localTime(p) + 1

Figure 5: Handling write faults

4.3 Invalidate virtual page va at physical
address pa by reader p:

The code shown in Figure 6 is executed when
access to a physical page is taken away from a
process that is reading that page. Commonly this will
occur when a (virtual) page is swapped out by the
kernel. However the page may or may not remain
resident after invalidation. The code performs three
functions: most importantly, it ensures that any
communications from writers of the page being
invalidated are recorded in the vector time of the
invalidating process. The vector time of the
invalidating process is updated using the
COMMUNICATE procedure shown in Figure 6. This
procedure updates the vector time of the invalidating
reader in a non-transitive fashion. The second function
of the code is to add the page to the PAL if it is
modified; this records the fact that the process has
accessed that modified page. Lastly, it removes the
invalidating process from the PRL.

COMMUNICATE(sender, receiver : process)
{

localTime(receiver) ← localTime(receiver) + 1

VTreceiver(receiver) ← localTime(receiver)

VTreceiver (sender) ← localTime(sender)
}

if modified(pa) do
{

! Lazily update VT of process p

∀ P in PWL(pa), P ≠ p, COMMUNICATE(P,p)
! Remember that process has accessed this page

PAL(p) ← PAL(p) + va
}
! Update physical readers list

PRL(pa) ← PRL(pa) – p

Figure 6: Invalidating pages by reader

! Record all communications associated with
! this process and page

∀ P in PRL(pa) ∪ PWL(pa), P ≠ p,
COMMUNICATE(p,P)

! Remember that the process has accessed this page

PAL(p) ← PAL(p) + va
! Update physical readers/writers list

PRL(pa) ← PRL(pa) – p

if p ∈ PWL(pa) do
{

PWL(pa) ← PWL(pa) – p
! Update NRMPL if last extant writer

if PWL(pa) = φ do
{

NRMPL ← NRMPL + va
! Record causally dependent processes

VT_NRMPL(va) ← VTp
}

}

Figure 7: Invalidating pages by writer

4.4 Invalidate virtual page va at physical
address pa by writer p:

The code shown in Figure 7 is executed when
access to a physical page is removed from a process
that has written to that page. The code is based on the
invalidating readers code but is slightly more complex.
Firstly, the fact that process p potentially sent
information to all processes that have read or written
to the page at physical address pa must be recorded.
This is performed in the first line of the algorithm.

Next the page must be added to the PAL to record the
fact that it should be included in any checkpoint of
that process. Next the PRL and PWL are updated; the
readers list needs to be included here since the
process may have originally read the page. The last
part of the code is activated if the writer is the last
extant writer of the page. If it is, the causal history
embodied in that page must be recorded in the
NRMPL. Thus, if any future reader or writer faults on
the page, the correct history of writers will be
transferred to the new process.

! 1: Make the vt reflect (non-transitive) dependencies.
localTime(p) := localTime(p) + 1

for each pa in RAM: p ∈ (PRL(pa) ∪ PWL(pa))

for each P ∈ PWL(pa), P ≠ p,
COMMUNICATE(P,p)

! 2: Checkpoint pages
checkpoint all pages in:

{ pa: PWL(pa) ≠ φ and

p ∈ (PRL(pa) ∪ PWL(pa)) } ∪ PAL(p)
! 3: Set VT of checkpoint

VTcheckpoint ← VTp
! 4: Reset PAL

PAL(p) ← φ
! 5: Invalidate the pages that have been checkpointed.

for each page pa: p ∈ (PRL(pa) ∪ PWL(pa))
{

! Record all communications associated with
! this process and page

if p ∈ PWL(pa)

∀ P in PRL(pa) ∪ PWL(pa), P ≠ p,
COMMUNICATE(p,P)

Invalidate TLB entry of page pa

PRL(pa) ← PRL(pa) – p

if p ∈ PWL(pa) do
{

PWL(pa) ← PWL(pa) – p
! Update NRMPL if last extant writer

if PWL(pa) = φ do
{

NRMPL ← NRMPL + va
! Record causally dependent processes

VT_NRMPL(va) ← VTp
}

}
}

Figure 8: Checkpoint code

4.5 Process checkpoint of process p:
The algorithms shown above track causality by

tracking page accesses. The PRL and PWL capture
this information for resident pages with the NRMPL
and PALs tracking causality for non-resident pages.
As memory sizes continue to grow, the NRMPL and
PALs should not be heavily utilised. When a process
makes a checkpoint request, five actions need to be
performed. Firstly, the vector time of the process must
be brought up to date. This is performed using the
COMMUNICATE procedure shown in Figure 6. Next
those pages that are part of the checkpoint which are
not swapped out need to be made stable. Once this
has been achieved the checkpoint is labelled with the
vector time of the process. The fourth step is to reset
the PAL since the swapped out pages are now part of
a checkpoint. The fifth and final step is to invalidate
the checkpointing process' copy of the pages that have
been checkpointed. This ensures that the process will
fault on these pages when (if) they are next accessed
and that proper causal tracking is performed. This
does not require the pages to be removed from main
memory. This algorithm has been expressed in the
manner shown for clarity and many of the actions may
be performed in parallel.

4.6 Distributing processes and pages
The operations described above support optimistic

process checkpointing on a single node. Although not
described here, the mechanism scales to a distributed
context. Two additional operations are required:
support for reading pages from remote nodes and the
migration of processes to other nodes. These
operations fit easily into the framework described
above. Fetching data from and sending data to remote
nodes is very like placing and retrieving pages from
swap space. Remote data needs to be tagged with a
vector time when it moves between machines.
Indeed, most causality tracking schemes model
message receipt and transmission rather than take a
process based approach. When a process migrates it
needs to carry an up-to-date vector time to the remote
node. Therefore before migration, its vector time
needs to be updated in the manner described in
Section 4.5 above. The final required extension is that
the pages modified by a process on all nodes need to
be checkpointed when a process checkpoint occurs.

5. An example
To illustrate the techniques described above

consider a very simple example: that of readers and
writers. In this example we assume that two
concurrent processes P1 and P2 are accessing a single
virtual page V1. The writer P1 increments a value on
page V1 which requires an initial read. Process P2
merely reads the value. To simplify the example it is
assumed that each process checkpoints after each
increment or read operation. In practice checkpoints
would not occur as frequently. One possible execution
trace of this system is shown in Figure 9.

P2

P1

V1

checkpoint checkpoint

checkpoint checkpoint

r w

r

r w

r

Figure 9: Readers and writers
We assume that the processes start in a consistent

state shown by the open circles on the time line in
Figure 9.

The trace shown in Figure 9 will result in P1
faulting twice (one read and one write), and P2 once
against page V1. The application of the fault handing
algorithms described above results in the PRL for the
physical page corresponding to V1 containing P1 and
P2 while the PWL contains P1. At this point P2
initiates a checkpoint operation which results in the
lazy update of the vector time of P2. The state of P2
including the page V1 is checkpointed and labelled
with the vector time of P2 <3,3> as shown in
Figure 10. At this point in time the latest checkpoint
for P1 is <1,⊥ > and a new globally consistent state
cannot be formed. The last step in checkpointing is to
prevent further access to the checkpointed page(s);
thus page V1 is invalidated with respect to P2.

Next, process P1 initiates a checkpoint operation
resulting in the state of P1 including the page V1
being checkpointed. This state is labelled with the
vector time <4,⊥ >, creating a new globally consistent
cut involving the latest checkpointed states of both
process P1 and P2.

Processes P1 and P2 continue to execute repeating
the same sequence of events. Notice that the stable
state of process P2 cannot become part of a globally
consistent state until P1 performs a checkpoint.

P2

P1

V1

r w

r

r w

r

<1,⊥> <4,⊥> <7,⊥>

<⊥,1> <5,6>4<3,3>2

2 3 5 6

Figure 10: Readers and Writers
with Vector Times

6. Implementation Considerations
We are currently implementing the mechanisms

described in this paper in the context of the
Grasshopper operating system [3]. Indeed, the

motivation for this work was to improve checkpointing
in Grasshopper. In Grasshopper, all processes (loci in
Grasshopper parlance) execute in the context of
persistent data repositories called containers, and may
access any data from any container for which they
hold a capability. Consequently, there is no 1-1
correspondence between processes and address spaces
as there is in Unix. This computational model is
similar to that found in SASOS [2], and Grasshopper
may be considered to be a superset of the SASOS
approach [12]. In both SASOS systems and systems
like Grasshopper, mechanisms such as those described
in this paper must be used in order to track page
accesses if checkpoints are to take place on any
granularity finer than all of RAM. The vanilla
Grasshopper memory management system provides no
such support [11], and therefore gives a good base-line
for the costs involved in this form of causality
tracking.

In Grasshopper, each process (locus) is represented
by a kernel level data structure, the address of which
is used internally by the kernel to uniquely identify the
process. The vector time for the process is referenced
by this data structure. Although vector times
conceptually have as many entries as there are
processes in the system, in practice they may be
efficiently represented as lists of pairs consisting of
the identity of a process and a scalar time.

Each frame of physical memory is represented in
the kernel using a C structure called a Page. In our
implementation, there is no single PRL or PWL data
structure. Instead, each Page contains two fields,
PRL and PWL , each of which are arrays of process
identifiers. Some of the operations described above
require all the physical pages accessed by a process to
be found. For this reason, an additional per process
list is maintained, which contains pointers to the
Pages accessed by the process. A final complication
in Grasshopper is that a process may access pages
from multiple containers. As this is not the subject of
this paper, we shall not dwell on it here.

In the vanilla (unoptimised) Grasshopper system
running on a DEC Alpha 3000/400 (125MHz), it takes
31µ s to service a page fault. The mechanisms
described in this paper add an additional 8µs to this
time. Of this time, 3µs is spent updating the PR/WL,
3µs is spent adding the Page to the process list and a
final 2µ s is spent checking if the page is in the
NRMPL. In most operating systems, some of this
extra work would need to be performed in any case to
track accesses to memory. For example, in order to
support synchronous checkpointing, the update to the
PR/WL (3µs) would be required.

We hope to have some concrete measurements on
the time taken to perform vector time updates on
checkpoint and invalidation in the near future. We do
not expect these to be onerous.

7. Conclusions
This paper presents a new approach to process

checkpointing designed to support persistent object
systems. It may be seen as an extension to the

synchronous checkpointing technique described by
Jalili and Henskens and draws on the work of Johnson
and Zwaenepoel. The technique is designed for use in
an operating system environment such as SASOS or
Grasshopper, where processes and address spaces are
not synonymous. In such environments some
mechanisms must be provided to track access to data
by processes.

One important consideration is the granularity at
which tracking is performed: it could be at a segment
level in a SASOS system or at an object level in
object oriented systems. However, in systems like
Grasshopper that are intended to support large objects
containing a number of small fine grain objects,
causal tracking at a page level is an attractive option.

The technique maintains vector times associated
with processes. For efficiency, vector times are
updated lazily – normally at the time of checkpoint.
Preliminary measurements show that the data
structures necessary to allow vector times to be
updated lazily may be maintained at low cost. The
system is applicable to distributed systems in which
processes and data may move between machines.

Finally, the system may be augmented with
policies to tune performance. For example, the
techniques described by Wu and Fuchs� may be used
in conjunction with our technique to limit roll back.
Similarly, policies may be introduced to perform
synchronous checkpointing if a consistent cut has not
been established in some acceptable time frame; this
again limits roll back.

We are currently implementing the techniques
described above in the context of the Grasshopper
operating system and hope to be in a position to fully
demonstrate the efficacy of the technique in the near
future.

Acknowledgements
This paper benefits from discussions with John

Rosenberg and Anders Lindström of Sydney
University. Francis Vaughan made several helpful
comments from a great distance during the
development of the algorithms. The implementation
benefits from the many hours of work Anders
Lindström has put into the Grasshopper kernel. Finally
we would like to thank Alex Farkas for his many
comments on the paper.

References
1. Challis, M. F. “Database Consistency and Integrity in

a Multi-User Environment”, Databases: Improving
Usability and Responsiveness , Academic Press, pp.
245-270, 1978.

2. Chase, J. and Levy, H. “Sharing and Protection in a
Single Address Space Operating System”,
Transactions on Computer Systems, vol 12, 2, pp. to
appear, 1994.

3. Dearle, A., Bona, R. d., Farrow, J., Henskens, F.,
Lindström, A., Rosenberg, J. and Vaughan, F.
“Grasshopper: An Orthogonally Persistent Operating
System”, Computer Systsms, vol Summer, 1994.

4. Elnozahy, E., Johnson, D. and Zwaenepoel, W. “The
Performance of Consistent Checkpointing”, 11th
Symposium on Reliable Distributed Systems , Houston,
Texas, IEEE, pp. 39-47, 1992.

5. Fidge, C. “Timestamps in Message-Passing Systems
That Preserve Partial Ordering”, 11th Australian
Computer Science Conference, University of
Queensland, pp. 56-66, 1988.

6. Henskens, F. A., Rosenberg, J. and Keedy, J. L. “A
Capability-based Distributed Shared Memory”,
Proceedings of the 14th Australian Computer Science
Conference, Sydney, Australia, pp. 29.1-29.12, 1991.

7. Jalili, R. and Henskens, F. A. “Using Directed Graphs
to Describe Entity Dependency in Stable Distributed
Persistent Stores”, Hawaii International Conference
on System Sciences , 1994.

8. Johnson, D. “Efficient Transparent Optimistic
Recovery for Distributed Application Systems”,
Computer Science, Carnegie Mellon University,
Technical Report CMU-CS-93-127, 1993.

9. Johnson, D. and Zwaenepoel, W. “Recovery in
Distributed Systems Using Optimistic Message
Logging and Checkpointing”, Journal of Algorithms,
vol 11, 3, pp. 462-491, 1990.

10. Lamport, L. “Time, Clocks, and the Ordering of
Events in a Distributed System”, CACM, vol 21, 7,
pp. 558-565, 1978.

11. Lindstrom, A., Dearle, A., Bona, R. d., Farrow, J.,
Henskens, F., Rosenberg, J. and Vaughan, F. “A
Model For User-Level Memory Management in a

Distributed, Persistent Environment”, 17th Australian
Computer Science Conference in, Australian
Computer Science Communications, vol 16, pp. 343-
354, 1994.

12. Lindstrom, A., Rosenberg, J. and Dearle, A. “The
Grand Unified Theory of Address Spaces”, Hot Topics
in Operating Systems (HotOS-V) , Seattle, 1995.

13. Lorie, R. A. “Physical Integrity in a Large Segmented
Database”, Association for Computing Machinery
Transactions on Database Systems , vol 2, 1, pp. 91-
104, 1977.

14. Mattern, F. “Efficient Distributed Snapshots and
Global Virtual Time Algorithms for Non-FIFO
Systems”, 1990.

15. Rosenberg, J. and Abramson, D. A. “MONADS-PC: A
Capability Based Workstation to Support Software
Engineering”, 18th Hawaii International Conference
on System Sciences , pp. 515-522, 1985.

16. Schwarz, R. and Mattern, F. “Detecting Causal
Relationships in Distributed Computations: In Search
of The Holy Grail”, Department of Computer
Science, University of Kaiserslautern and University
of Saarland, Technical Report SFB 124-15/92, 1992.

17. Vaughan, F., Schunke, T., Koch, B., Dearle, A.,
Marlin, C. and Barter, C. “Casper: A Cached
Architecture Supporting Persistence”, Computing
Systems , vol 5, 3, California, 1992.

18. Wu, K.-L. and Fuchs, W. K. “Recoverable Distributed
Shared Virtual Memory”, IEEE Transactions on
Computers, vol 39, 4, pp. 460-469, 1990.

