

Implementing Self-Managing Protection Domains
in Charm

Alan Dearle and David Hulse

School of Computer Science, University of St Andrews, North Haugh,
St Andrews KY16 9SS, Scotland

email: {al,dave}@dcs.st-and.ac.uk

Abstract

We believe that the engineering of mobile or persistent processes is hindered in
many systems by the amount of coupling between user-level and the kernel. This
coupling usually takes the form of user level data structures containing opaque
references to kernel data structures. In this paper we show how self-managing
protection domains may be constructed that support a modern object-oriented
application environment that is not closely coupled with the kernel. This is
achieved through the introduction of a software artefact called the Umbrella that
abstracts over the low-level aspects of self-management and present a clean
object-oriented management interface to the upper layers of software. We show
how the Umbrella is engineered and some of the problems that must be
overcome in order to achieve isolation from the kernel. We conclude by showing
how a thread system may be constructed above the Umbrella.

1 Motivation and Approach Taken
We are currently developing a distributed architecture that permits computation to occur safely in arbitrary
physical locations. We aim to achieve this through the introduction of security domains hosted on inexpensive
network nodes that can be placed within the existing network. We call these machines Thin Servers. Thin
Servers permit the flexible dynamic placement of code, data and processes by authorised users, in a secure and
simple manner. Thin Servers support a model of global computation in which persistent objects have global
identity, and the physical domain in which code is executed may be defined by the programmer.

The construction of a distributed architecture such as the one described above requires many research issues to
be addressed. However, in this paper we focus on the process support provided by the operating system
supporting Thin Servers. The design described here was driven by a number of considerations:

1. The desire to enforce protection between different computations running on a Thin Server.

2. The desire to minimise coupling between user-level and the kernel to make mobile and
persistent processes easier to engineer.

3. The desire to eliminate the replication of meta-data between user-level and the kernel.

4. To eliminate policy from the kernel to permit abstractions suitable to the application domain to
be constructed efficiently.

These considerations are described in more detail below. Of paramount importance to the Thin Server
architecture was the desire to enforce protection domains between different processes running on any particular
Thin Server. Consequently, the kernel must provide some mechanism for constructing and identifying a
protection domain.

Engineering mobile or persistent processes is hindered in many systems by the amount of coupling between user-
level and the kernel. This coupling usually takes the form of user level data structures containing opaque
references to kernel data structures. For example, the (user level) open file descriptor table indexes into kernel
data structures. Similarly, information about the location of the stack(s) and the heap(s) needs to be both
accessible (which is sometimes the case) and definable (which is less common) from user level. We seek to
eliminate this problem by removing all unnecessary coupling and making all kernel data structures (other than
those needed to enforce security) directly accessible from user level. This is discussed further in [3], [1] and [7].

The duplication of information between user level and the kernel is a source of inefficiency in many persistent,
database and middleware systems and has been reported elsewhere [8] [2]. The most notable example of this
involves the virtual address translation tables that are often wholly or partially replicated in user level memory

managers and the kernel. We seek to eliminate the replication of such data structures and wherever possible give
the user-level control of them to reduce the kernel's control of policy. Consequently, we seek to minimise the
amount of meta-data in the kernel. This has an added benefit of further reducing coupling.

The desire to keep all policy and management out of the operating system results in the concept of a self-
managing protection domain. We embrace the ideas set out in the exo-kernel [6] and believe that a self-
managing protection domain is all that is required as a building block. Consequently, in the operating system
supporting Thin Servers, Charm [4, 5] the self-managing protection domain is the only building block supplied
to the application programmer. Common abstractions such as processes and threads may be efficiently
implemented at user level using this building block.

1.1 Protection Domains

In order to support self-managing protection domains, the kernel needs to provide some mechanisms with which
self-management may be implemented. These include communication mechanisms and mechanisms for
providing secure access to the hardware resources supported by the machine. Communication mechanisms are
required so that:

1. self-managing protection domains may communicate with the kernel,

2. the kernel may communicate with self-managing protection domains, and,

3. self-managing protection domains may communicate with each other.

Secure access is required to all resources provided by the hardware and is the principal reason for the kernel’s
existence. The hardware resources multiplexed by the kernel must include: processor time, physical page frames,
access to interrupts including device interrupts, clock ticks and protection faults. Depending on the type of
hardware, it may also include control over virtual memory. For example, this is necessary on the Pentium
implementation of Charm due to the hardware’s intimate knowledge of page table layout.

The basic building block provided by the Charm kernel is a self-managing protection domain called an arena.
An arena is an ephemeral protection domain that has an associated fixed set of upcall points. The upcall points
are used to communicate events from the kernel to the arenas. Each upcall point specifies the address of a piece
of code that is activated when an event occurs. If the arena has control of the CPU when the event occurs, the
operating system transfers control to the upcall point in much the same way as hardware interrupts are delivered
to the operating system. Consequently, the upcall handler is responsible for the preservation of registers, except
for one or two scratch registers whose contents are saved in a globally visible kernel data structure. As we will
show in this paper, this permits arbitrary concurrency mechanisms, such as thread models, to be safely and
efficiently constructed at user level.

The arena upcall points are managed using system calls all of which are non-blocking in Charm. The set of
upcall points currently supported by the implementation includes:

1. Activate, which specifies the piece of code to be called when the arena is instantiated.

2. Time Slice Start (TSS), which is called whenever the arena subsequently gets control of the
CPU.

3. Time Slice End (TSE), which is called when the current processor allocation ends.

4. Tick, which is used to accept hardware generated clock events.

5. Exception, which is called synchronously in response to actions performed by the program
running within the arena.

6. Interrupt (IRQ), which is called when asynchronous interrupts occur.

7. Inter-Arena Call (IAC), which is used for inter-arena communication.

2 Self-Management of Protection Domains
The self-management of protection domains (arenas) is achieved through the implementation of appropriate
upcall handlers. Rather than the kernel passing information to an arena as parameters to an upcall, such
information is communicated implicitly via a public data area that is visible to all arenas. This data area is
maintained in read-only memory by the Charm kernel and is used to publish all of the public kernel meta-data.
Part of this data includes an array of structures, one per arena, containing information pertinent to the self-
management of that arena. During initialisation, an arena may locate this meta-data using the get_kernel_data
system call, which returns a pointer to the start of the public data area.

To facilitate the development of self-managing protection domains in Charm, a user-level class library was
constructed to abstract over the low-level aspects of self-management and present a clean object-oriented
management interface to the upper layers of software. This class library is organised around the concept of the
Umbrella. The philosophy of the Umbrella is to present an object-oriented framework for self-management to
the code hosted by the arena. The nature of this framework is described below.

2.1 Upcall Management
At its lowest levels, the Umbrella is responsible for intercepting the seven possible upcall events. To do this, it
provides a set of upcall handlers that manage all of the fine details including preserving registers and coping
with atomicity problems. The upcall handlers convert each upcall into a software event that can be hooked by the
layers of software running above the Umbrella. However, the TSS and TSE upcalls are handled transparently by
the Umbrella to create the illusion of a virtual CPU owned exclusively by the arena. That is, the Umbrella
abstracts over the context switching between arenas. Since the Umbrella consumes TSS/TSE events, the upper
layers are effectively presented with a continuous, if not regular, stream of tick events.

2.2 Event Notification
The Umbrella permits the upper layers to hook the Activate, Tick, IRQ, Exception, and IAC events. From the
point of view of a program running above the Umbrella, these events are like interrupts that suspend the running
program while they are handled. To facilitate the handling of these events, the Umbrella provides an object-
oriented interface that interacts with objects supplied by the upper layers. The architecture of the Umbrella
interface is shown in Figure 1.

Upcalls

Hook objects

Umbrella

Figure 1: The Umbrella interface

The upper layers of software can hook an event by registering an event-handler object with the Umbrella. Such
objects are required to support a particular interface defined by the Umbrella. However, only one such object
can be registered against a given event hook. In practice, this restriction is not limiting since it is possible to
register broker objects that manage all parties interested in hooking a particular event. To illustrate the event
notification mechanism, Figure 2 shows a partial definition of the Umbrella class and some sample hook object
interfaces.

Event notification above the Umbrella level operates in a similar manner to a priority-based interrupt system in
that code running within the arena is suspended whilst the registered handler object processes each event. Each
type of event has a priority level that is used to manage concurrent event notifications. When a higher priority
event occurs during the processing of a lower priority event, the low priority event handler is suspended. Thus,
event notifications can nest according to priority so that a higher priority event can suspend the handling of a
lower priority event but not vice versa. The priority order of events from highest to lowest is Activate, Exception,
IRQ, Tick, and IAC.

An important aspect of the upcall/event handling mechanism is how suspended computations are resumed
following an upcall event. According to the Charm philosophy, once an upcall is delivered to an arena, the arena
is responsible for resuming the interrupted computation. Thus, it is not necessary (nor possible) to perform any
system calls to resume from an upcall. Within an arena, the Umbrella assumes the responsibility for restarting
any suspended computation using the resume operation which forms part of the Umbrella's interface to the upper
layers. Resume operates by restoring a saved register context associated with a suspended computation. When a
registered hook object is notified of an event, it is passed the saved register context of the interrupted
computation. The register values may be manipulated by the hook object as necessary. Once the hook object has
finished processing the event, it must call the Umbrella to resume a particular computation using a given register

context. Usually, this will be the register context saved prior to the event notification. However, the
implementation of a thread scheduler may elect to track multiple sets of registers (one per thread) and resume
using a different context.

struct RegFrame; // Definition of CPU Register Set.

struct IActivateHandler
{
 virtual void notify() = 0;
};

struct ITickHandler
{
 // “frame” refers to the saved registers of the suspended code.
 virtual void notify(RegFrame &frame) = 0;
};

class Umbrella
{
public:
 …
 void set_activate_hook(IActivateHandler *pHandler);
 void set_tick_hook(ITickHandler *pHandler);
 …
 void resume(RegFrame &frame);
 …
};

Figure 2: Umbrella interface definitions

When the Umbrella is asked to resume a computation following the handling of an event, it first checks to see if
there are any other events queued for delivery to the upper layers. If so, the resume is aborted and one of the
queued events is delivered instead. Only when there are no queued events does the Umbrella actually resume the
specified computation. It is the responsibility of the upper layers to ensure that event handlers do not compete to
resume different computations. In practice this is not difficult to achieve. This last point raises one of the key
benefits of the self-management concept. The code running within an arena is entirely responsible for its own
fortunes. That is, any bugs within the code will only affect that code and will never affect the performance of
another arena.

3 Implementation Issues
The Umbrella, by its very nature, contains some extremely low-level code to manage the arena. A substantial
portion of this code is written in assembly language for efficiency and to enable precise control over the
sequence of instructions. However, the upper interface of the Umbrella is expressed entirely in object-oriented
C++. The implementation of the Umbrella faces a number of technical challenges that must be dealt with to
ensure the correct operation of the arena. This section describes these challenges and how they were met.

The first difficulty to be overcome by the Umbrella is the low-level handling of each of the upcall points. From
the arena’s point of view, the Charm kernel delivers upcalls like hardware interrupts. This means that the arena’s
code stream is suddenly suspended and control is transferred to a handler defined by the Umbrella. When the
handler receives control, most of the machine registers are live with values from the suspended computation. The
Charm kernel saves the PC of the interrupted computation as well as the stack pointer (SP) register, which can
be used as scratch storage. These registers are held within the public kernel meta-data for the arena and can
easily be directly retrieved by the Umbrella when necessary. The handler must switch to its own stack and save
the remaining registers before converting the upcall into a software event and notifying the registered hook
object.

Managing the saving of registers in response to an upcall is theoretically a straightforward task. However, the
arena has no control over atomicity of operations, which creates problems during the critical period of an upcall
handler when it is trying to preserve the state of the interrupted computation. This problem arises because the
Charm kernel delivers upcalls to the arena whenever events occur, regardless of what the arena is currently
doing. Therefore, an upcall can conceivably occur between any two instructions. To overcome this difficulty, it
is necessary to employ some low-level coding tricks to properly guarantee atomicity. Therefore, the following
design features were introduced:

1. The public meta-data for each arena contains one register save area for each possible upcall. Thus,
there are seven separate save areas per arena. Each save area holds the PC and SP for the interrupted
computation. This was necessary to circumvent atomicity problems arising when the kernel delivers

multiple events to the arena in quick succession. For example, an IRQ followed immediately by a TSE
would cause the saved registers from the IRQ to be overwritten before the arena handler could preserve
them. Therefore, this feature allows one instance of each type of upcall to be active concurrently.

2. Once an upcall has been dispatched to an arena, other upcalls can interrupt at any time, even before a
single instruction of the handler has been executed. We were therefore forced to define physical regions
of code that are deemed critical in terms of behaving atomically. The Umbrella code is organised so
that all of the critical regions are physically adjacent in memory. This allows the value of the PC to be
tested to see whether the interrupted code is critical or not. We believe that a similar technique is used
in the exo-kernel [6]. Using this tactic, an upcall handler can check to see exactly what kind of code it
interrupted. If the code is in the critical region, it is possible to determine exactly which piece of
critical code was interrupted, which is important for managing the priority ordering of events. Thus, a
typical upcall handler will begin by saving a minimum number of registers. It will then check to see
what it interrupted and act appropriately. For example, if an IRQ event interrupts the handling of a TSE
event, the IRQ handler will simply flag a pending IRQ event and resume the TSE handler as soon as
possible. This occurs in a manner so as not to disturb the state of the TSE handler, thereby preserving
its notion of atomicity.

Using the above tactics, it is possible to build upcall handlers that execute atomically and correctly deliver
events to the C++ hook objects. The next issue to resolve is how to deal with Time Slice End events in a timely
fashion. This is an important issue due to the fact that the Charm kernel will forcibly terminate any arena that
fails to yield promptly following a TSE upcall. Unfortunately, handling a TSE upcall is relatively difficult since
it may interrupt any of a number of pieces of critical code and must be allowed to proceed without delay. The
TSE handler operates by preserving the state of the interrupted code stream and then examining what it was.
Based on this, a status code is set for the corresponding TSS handler to pick up. The status code directs the TSS
handler to where the state was preserved and what action to take to resume the interrupted computation. For
example, if the TSE event interrupted the critical portion of the Exception handler, the state of the handler is
preserved in a special save area and the TSS handler is directed to resume from this save area. In some cases, it
is not necessary for the TSE handler to preserve any state due to the idempotent nature of the interrupted
computation. For example, if the TSE event interrupted the Umbrella’s resume sequence, the TSE handler will
not bother to preserve any state and will indicate that the TSS handler should simply restart the resume
sequence. Thus, all upcall handers are required to co-operate to ensure the correct operation of the arena.

4 Case Study: A Simple Thread Scheduler
In this section we show how the Umbrella abstractions may be built upon to construct a simple thread
management system. The significance of this example is that the entire thread management system may be
constructed entirely at user level using only the abstractions provided by the Umbrella, which is also completely
implemented at user level. Thus, a component of the operating system that is traditionally intimately related to
kernel data structures has been completely de-coupled from the kernel thereby easing the implementation of
mobile and persistent threads.

The class SimpleThreadManager shown in Figure 3 implements two interfaces – one high level and one low
level. The IThreadManager interface (not shown) provides the application with traditional thread facilities. The
low-level interface implements the ITickHandler interface described earlier permitting it to plug into the
Umbrella using its set_tick_hook method. Notice that the constructor for SimpleThreadManager takes a pointer
to the Umbrella as a parameter. This permits it to make use of the Umbrella's resume method when threads need
resuming.

Whenever a tick event occurs, the currently running thread is suspended by the Umbrella as described above and
the notify method in the registered SimpleThreadManager is called. The thread manager is free to implement
whatever policy is appropriate to the application and either saves the suspended thread's register set in a data
structure and calls resume with a previously saved register set, or calls resume directly with the same register set.

class SimpleThreadManager :
 public ITickHandler, // lower interface
 public IThreadManager // upper interface
{
public:
 SimpleThreadManager(Umbrella *pu);
 virtual ~SimpleThreadManager();

public: // IThreadManager interface
 virtual void add_thread(Thread *t);
 virtual void remove_thread(Thread *t);
 virtual Thread * get_current_thread();

 virtual void kill_thread(Thread *t);

public: // ITickhandler interface
 virtual void notify(RegFrame &f);

private:
 // data structures elided
private:
 // instance data elided
};

Figure 3: Thread Manager definition

5 Conclusions
The de-coupling of user level software from the kernel is motivated by the desire to implement mobile and
persistent processes. We believe that the approach described in this paper has many potential benefits including:
the ability to efficiently construct application systems in whatever manner is appropriate, low kernel/user-level
coupling, ease of constructing synchronisation mechanisms and the ability to implement in an environment that
is free from operating system imposed policy. The approach is in line with the ideas first espoused by Engler [6]
that operating systems should not provide any abstractions. Instead, operating systems should do little more than
multiplex the hardware and provide some basic functionality from which higher level abstractions may be
constructed.

Despite the deliberate lack of abstractions provided by the kernel, we have shown how the self-managing
protection domains provided by the kernel enable an object-oriented threading system to be constructed that is
isolated from the kernel. We believe that this approach makes concurrency control mechanisms both easier to
engineer and potentially more efficient, thus easing the creation of mobile and persistent processes.

The Charm kernel has been implemented and runs on the Pentium architecture. It consists of 5000 lines of C++
and 800 lines of assembler and compiles into an executable image 90KB in size. We believe that the kernel in its
current form contains enough functionality to efficiently implement a wide variety of application systems.

6 Acknowledgements

This work is partially supported by ESRC Integrated Operating System Support for Large Heterogeneous
Archives Project HS 519 25 5043 which is part of the Analysis of Large and Complex Datasets initiative and by
EPSRC grant number GR/M78403 under the Distributed Information Management initiative.

7 References
[[1] L. Cardelli and A.D. Gordon, "Mobile Ambients", Lecture Notes in Computer Science, 1378, pp. 140-

155, http://www.luca.demon.co.uk/Bibliography.html#Abstractions for Mobile Computation, 1998.

[[2] D. Chamberlin, M.M. Astrahan, et al., "A History and Evaluation of System R", Communications of the
ACM, 24(10), pp. 632-646, 1981.

[[3] A. Dearle, "Towards Ubiquitous Environments for Mobile Users", Internet Computing, 2(1), pp. 22-32,
ftp://jeroboam.cs.stir.ac.uk/pub/papers/mobileic.pdf, 1998.

[[4] A. Dearle and D. Hulse, "The Charm Operating System Web Pages",
http://persistence.cs.stir.ac.uk/Charm/, 1999.

[[5] A. Dearle and D. Hulse, "Operating System Support for Persistence: Past, Present and Future",
Software Practice and Experience, Special Issue on Persistent Object Systems 30(4), pp. 295-324,
2000.

[[6] D.R. Engler, M.F. Kaashoek, and J.W.O.T. Jr. "Exokernel: An Operating System Architecture for
Application-Level Resource Management", in Proceedings of Fifteenth ACM Symposium on Operating
System Principles, Copper Mountain, Colorado, pp. 251-266, 1995.

[[7] J. Rosenberg, A. Dearle, D. Hulse, A. Lindström, and S. Norris, "Operating System Support for
Persistent and Recoverable Computations", CACM, 39(9), pp. 62-69, 1996.

[[8] M. Stonebraker, "Operating System Support for Database Management", Communications of the ACM,
24(7), pp. 412-418, 1981.

