
Safe Browsing in a Strongly Typed Persistent Environment Page 1

This paper should be referenced as:

Dearle, A. & Brown, A.L. “Safe Browsing in a Strongly Typed Persistent
Environment”. Computer Journal 31, 6 (1988) pp 540-544.



Safe Browsing in a Strongly Typed Persistent Environment Page 2

Safe Browsing in a Strongly Typed
Persistent Environment

A.Dearle
A.L.Brown

Department of Computational Science
University of St.Andrews

North Haugh
St.Andrews
KY16 9SS

0334 76161 X8100

3500 words
16 pages

Abstract

The need to examine data structures often occurs in programming language and

database management systems. In this paper we describe how a browser for a

strongly typed programming language ( PS-algol ) may be written in a type secure

manner in a closed persistent environment. This is achieved without resorting to

magic or having to break the type rules of the language by exploiting a compiler that

is a object with full civil rights in the environment. The use of impact of such an

object is discussed.



Safe Browsing in a Strongly Typed Persistent Environment Page 3

Introduction

A mechanism to display data structures is often required in database and

programming language systems. Usually this requirement is satisfied by a tool

known as a browser. Browsers are used extensively to traverse through the data

structures found in database systems often to gain insight into how a complex and

highly dynamic system is behaving. They are also of great use in debugging and, if

powerful enough, can be used to repair erroneous data structures which may contain

valuable information. Browsers which operate on programming language data

structures are equally useful for the same reasons, unfortunately they are seldom

provided as a part of the programming language tool set. In a persistent environment

the data structures of the programming language and the long term data structures are

the same. In such an environment, we have observed browsing tools to be especially

useful. In this paper we will report on a method of construction of such a tool.

In most powerful programming and database systems there are a potentially infinite

number of types which may occur in the system. This presents a problem when

writing a program to browse over them. In general, one cannot write a static program

to anticipate all of the types that may occur without resorting to some magic or a

second level of interpretation. Object-oriented programming languages [1,2] with a

few exceptions [3] avoid this problem by resorting to a combination of conventions

and dynamic typing. For example, one solution to this problem would be for every

instance of a class to have a print method. This is not a safe solution to the problem

since a print method may be overwritten by a method which performs a completely

different function.

We will show that in a persistent programming language PS-algol [4] it is possible to

write a browsing program which displays the language's own data structures without

resorting to programming conventions, having built-in functions or using a lower

level of  interpretation. The program is however allowed to discover the types of



Safe Browsing in a Strongly Typed Persistent Environment Page 4

objects by a mechanism in the language environment. The technique demonstrated

utilises a compiler which is a first class citizen in the language environment. We

anticipate that a first class compiler will be of use in other fields such as artificial

intelligence and database management systems.

PS-algol

The language PS-algol is a strongly typed, general purpose persistent programming

language. PS-algol is, as its name suggests, a member of the algol family of

languages. However, it differs from the other algols in three important ways:

1. Procedures are first class objects in the language.

2. The language supports orthogonal persistence.

3. PS-algol has powerful inbuilt graphics facilities.

Procedures have the same civil rights as any other data object in the language. That is

they are assignable, may be the result of expressions, other procedures or blocks,

and may be elements of structures or vectors. The power of first class procedures

have long been known to applicative programmers and are discussed in the context of

persistence in [5].

The persistence of a data object is defined as the length of time that data object exists

and is usable. In most programming languages data cannot outlive the program

activation without the use of an external agency such as a file system or database

management system. In a persistent programming language data can outlive the

program and is treated in a uniform manner be it long term or short term data. This

concept is fully discussed elsewhere [6].

PS-algol has powerful raster and vector graphics facilities which are an integral part

of the language [7]. In this paper we will only use one graphics procedure, the menu

function which we discuss here. The menu function, like many of the predefined

functions, is written in PS-algol. The procedure menu generates another procedure



Safe Browsing in a Strongly Typed Persistent Environment Page 5

which interacts with the user by displaying a menu on a bit mapped screen at the

coordinates supplied as a parameter. This menu will have title title and entries taken

from the vector of strings called entries . When the user makes a selection from the

menu the corresponding procedure from the vector of procedures actions will be

called. menu is defined as follows:

let menu = proc( string title ;
*string entries ;
*proc() actions
-> proc( int,int ) )

In PS-algol a structure class is a tuple of named fields with any number of fields of

any type. The structure statement adds to the current environment a binding for the

class name and a binding for each field name. When a structure is created it yields an

object of type pntr. Objects of type pntr may be tested by the predicate is to

determine if the referenced object is of a particular class. The type  pntr comprises

the infinite union of labelled cross products. When we dereference a pointer we are

projecting out of a union therefore a run-time check is necessary to ensure that the

dereference is legal. Apart from vector bounds checking this is the only run-time

checking done in the system with all other type checking being performed at compile

time. In this way the PS-algol structure classes provide a mechanism for maintaining

a high degree of static type checking whist retaining control over when an object is

bound.

PS-algol supports a data structure, implemented in PS-algol, called a table. Tables are

indexes from strings to values of type pntr. Entries are placed in a table using the

procedure s.enter which takes an associative key, the table and a value to be stored.

The procedure s.lookup retrieves a value by supplying it with a key and a table. Note

that in PS-algol the dot is part of the name and does not represent a dereference as in

many other programming languages.

The Persistent Store



Safe Browsing in a Strongly Typed Persistent Environment Page 6

The Persistent Store comprises a conceptually infinite graph of PS-algol data objects.

The graph has distinguished points which are the roots of persistence. Any object

which is in the transitive closure of these roots become persistent. The persistent

store grows as users link new objects into the persistence graph. The number of

different classes of objects in the store also grows as users compile programs which

intoduce new types into the system. The persistent store is therefore unbounded in

variety and magnitude and may be viewed pictorially like this:

root of persistence

Persistent 
Store

compiler

browser

fontstrav.procs

Figure 1



Safe Browsing in a Strongly Typed Persistent Environment Page 7

A Simple Browser

Let us now define what we require our browser to do. When presented with a pointer

to an instance of a structure class such as:

structure x( int a ; string b ; pntr c )

the browser will present the user with a menu like the one in Figure 2 which allows

the user to examine the values of a and b and allow the pointer c to be browsed. The

entry with the stars allows the user to return to the previous selection ( if any ).

x

a:int

b:string

c:pntr

* * * *

Figure 2

A PS-algol program to draw the menu shown in Figure 2 might look something like
this:

let traversex = proc( pntr p )
begin

structure x( int a ; string b ; pntr c ) ! the structure class traversex
displays

let return = proc() ; {} ! a do nothing procedure

let strings = @1 of string [ "a:int", ! declare a vector
of strings

"b:string", ! with lower bound 1
"c:pntr" , ! for the menu entries
"****" ]

! Next declare a vector of procedures - the menu actions

let procs = @1 of proc() [ proc() ; write p( a ),
! display the int a

proc() ; write p( b ), ! display the string b
proc() ; Trav( p( c ) ) , ! browse over the pntr

c
return  ] ! return - do nothing

let this.menu = menu( "x", ! the title
strings, ! the entries - a vector of strings
procs ) ! the actions - a vector of procedures



Safe Browsing in a Strongly Typed Persistent Environment Page 8

if p is x then this.menu( 20,20 ) ! display menu on the screen at 20,20
else Error() ! take some error action

end

Figure 3

The procedure traversex will display any structure of class :

x( int a ; string b ; pntr c )

but will fail with any other structure class. If x is a member of some finite union we

could generalise this procedure to handle any of the members of that union.

However, if x is a member of an infinite union, such as the PS-algol type pntr,we

can never anticipate statically all the structure classes that the procedure may come

across. The procedure Trav which is called from the menu is faced with this problem

since we do not know which member of this infinite union c may be pointing at.

If a mechanism existed to discover what class a pointer is pointing at then a procedure

of the appropriate type could be selected and called in order to display that instance.

One way of engineering this in PS-algol would be to maintain a table containing

procedures indexed by the appropriate class. This table could be indexed by the

structure class that the procedure could display. Notice that although the procedures

in this table would operate on different classes their interface would be the same; that

is they would all be of type:

proc( pntr )

In PS-algol a predefined function class.identifier is provided which allows the

structure class that a pointer is pointing at to be discovered. It returns a string

representation of the class and is defined as follows:

let class.identifier = proc( pntr p -> string )

For example if we ran the following program,

structure x( int a ; string b ; pntr c )
let p = x( 7,"abc",nil )
write class.identifier( p )



Safe Browsing in a Strongly Typed Persistent Environment Page 9

The following would be written out:

x( int a
string b
pntr c
)

Suppose that a table called trav.table has been created which contains associations

between class identifier strings and pointers to structures of class,

structure trav.pack( proc( pntr ) trav )

which contain a procedure to display an instance of the appropriate class. A generic

Trav procedure capable of traversing any data structure may be written using the

technique described above like so,

let Trav = proc( pntr p )
begin

structure trav.pack( proc( pntr ) trav )

let class = class.identifier( p )
let look = s.lookup( class,trav.table )
if look is trav.pack then look( trav )( p )

else Error()
end

Figure 4

This browsing procedure can now display and browse over any class whose display

procedure is contained in the table. The procedures in the table look like the

procedure shown in figure 3. Notice that we may add new procedures to this table

without altering this program.

It would be preferable if the traverser program could do better than simply report an

error when a new structure class is found - but what options are open to it? The

procedure could prompt the user of the browser to write a procedure which traverses

the new structure class. If the procedure displayed the structure class of the new

structure to the user all the information needed to write such a procedure would be

available. This procedure would need to be edited, compiled, debugged and entered

into the trav.table table ( equivalent of linking ) by the user. This process is tedious



Safe Browsing in a Strongly Typed Persistent Environment Page 10

and repetitive since almost the same procedure must be written each time with small

variations. If the user were traversing a graph in a development environment this

problem would be heightened since the user may be changing the structure classes

frequently as a design was refined.

A First Class Compiler

A better solution to the problem is for the traversal procedure to write the procedure

to traverse over the new class. It has all the information necessary to construct a

procedure to display the new class. However, it must be able to compile and link the

new code into the running program. In order to be able to do this we need another

function in our persistent environment - the compiler.

Currently the compiler is of the following form,

let compile = proc( string s ; pntr p-> pntr )

The compiler is passed a string containing the code to be compiled. It is also passed a

pointer to a structure class which should have a field of the same type as the compiled

code. If the procedure is type compatible with the structure class, and the compilation

successful, the compiler will put the compiled procedure into that structure instance

and return a pointer to it; otherwise it will return a pointer to an error structure.

Binding

The traverser procedure traversex needs to access the generic pointer traversing

program Trav, in order that the pointer fields in the structure may be traversed. This

may be achieved without resorting to the use of globals by wrapping up the

procedure inside a generator procedure. This would take the procedure Trav as a

parameter like so:



Safe Browsing in a Strongly Typed Persistent Environment Page 11

let traverser.gen = proc( proc( pntr ) Trav
-> proc( pntr ) )

begin
proc( pntr p )
! procedure body as traversex in Figure 3 above

end

Figure 5

Therefore we need to compile a procedure of type:

proc( proc( pntr ) -> proc( pntr ) )

like that in figure 5 which returns a procedure capable of displaying a structure of a

particular class.

We will now show that using a first class compiler it is possible to write a procedure,

mk.trav.proc, that generates a traversal procedure for a class when supplied with a

representation of that class. This procedure returns a pointer to a structure class that

contains a procedure like traverser.gen described above,



Safe Browsing in a Strongly Typed Persistent Environment Page 12

let mk.trav.proc = proc( string class -> pntr )
begin

let last := "" ! last character read
let pos := 0 ! index into class string

let next.ch = proc( -> string )
begin

pos := pos + 1 ! takes a sub string length 1
class(pos|1) ! from string class at position pos

end

let lex = proc( -> string ) ! gets next lexeme
from

begin ! the class identifier string
let str := ""
repeat

last := next.ch()
while last ~= "(" and last ~= ")" and

last ~= " "
do str := str ++ last ! ++ is concatenation

str ! return str
end

let strings := "let strings = @1 of string [ " ! build string vector
let procs := "let procs = @1 of proc() [ " ! build procs vector
let title := lex() ! build menu title
let name := "structure " ++ title ++ "(" ! build class name

repeat
begin

let type = lex() ! "'n" is the newline
character

let field = lex() ! "'"" is the " character
name := name ++ type ++ " " ++ field ++ " ; "
strings := strings ++ "'"" ++ field++ ":" ++ type ++ "'",'n"
procs := procs ++ if type ="pntr"

then "proc() ; Trav( p( "++ field++") ),'n"
else "proc() ; write p( " ++ field++ "),'n"

end
while last ~= ")"

name := name ++ ")'n" ! list part of structure name
strings := strings ++ "'"****'" ]'n" ! last entry of strings vector
procs := procs ++ "proc() ; {} ]'n" ! last entry of procedures vector
! next create string containing program representation

let prog := "proc( proc( pntr ) Trav -> proc(
pntr ) )'n" ++

"proc( pntr p )'nbegin'n" ++
name ++ strings ++ procs ++

 "let this.menu = menu( ",title,",strings,procs )'n" ++
"if p is " ++ title ++ " then this.menu( 20,20 ) else Error()'n" ++
end'n"

structure gen( proc( proc( pntr ) -> proc( pntr ) ) maker )
let S = gen( proc( proc( pntr ) t -> proc( pntr ) ) ; nullproc )



Safe Browsing in a Strongly Typed Persistent Environment Page 13

compiler( prog,S ) ! return the result of compilation that is
end ! S containing the required procedure

Figure 6

The procedure Trav can now be refined to use this procedure. Whenever a class is

found for which no traversal procedure exists in the trav.procs table mk.trav.proc

will be called to create a traversal procedure. The generator procedure is then

extracted from the structure and called with the generic pointer traverser ( Trav itself )

as a parameter. The resulting procedure can then be stored in the table and finally

called to traverse the structure that caused the procedure to be generated. The Trav

procedure will therefore look something like this,

let Trav = proc( pntr p )
begin

structure gen( proc( proc( pntr ) ->proc( pntr ) ) maker )
structure trav.pack( proc( pntr ) trav )

let key = class.identifier( p ) ! get class of instance
let traverser. := s.lookup( key,trav.procs ) ! look for display procedure
if traverser is trav.pack ! found one so
then traverser( trav )( p ) ! call it with p as a parameter
else
begin

let package = mk.trav.proc( key ) ! create a display package
let T = package( maker ) ! get generator from package
let bound = T( Trav ) ! generate a display proc
traverser := trav.pack( bound ) ! re-package display procedure
s.enter( key,trav.procs,traverser ) ! and put it into the table
bound( p ) ! finally call it

end
end

Figure 7

The browser is now complete. The traversal procedure Trav maintains and uses the

trav.procs table which is used to store the procedures that display particular classes.

Whenever a display procedure cannot be found by Trav the procedure mk.trav.proc

is called to generate the necessary compiled code. This code may need to have access

to the Trav procedure so the mktrav.proc procedure returns a display generating

procedure which is passed Trav as a parameter. This step is equivalent to linking in a

conventional system. The newly generated procedure is then put into the table so that



Safe Browsing in a Strongly Typed Persistent Environment Page 14

it can be called to display subsequent instances of that structure class. This may be

viewed pictorially as:

trav.procs

procedure to traverse
objects of class x( int a ...

complex( real i,j ) procedure to traverse
objects of class
complex( real i,j )

table

etc...

x( int a ;
string b ;
pntr c
)

. . .

Figure 8

Persistence

In a conventional programming system the scheme described would be very

expensive. The traversal program would have to recreate the traversal procedures in

every invocation. In a persistent programming language the table trav.procs may

reside in the persistent store and therefore any changes made to the tables will exist as

long as they are accessible. This has the effect that the traverser program never has

to recompile traversal procedures. The program in effect learns about new data

structures. It does so in a lazy manner as it only learns how to display the classes that

it is actually required to display.

Fire Walls

In the browsing program described we have not broken the type rules of the

language. We have, however allowed the types of structure classes to be discovered

using the class.identifier procedure. The procedure closure has remained sacrosanct

and has provided a fire-wall through which this program cannot penetrate. However,

the need to see inside a closure or indeed an activation does arise. This happens

whenever we wish to construct a symbolic debugger for example. The need to see



Safe Browsing in a Strongly Typed Persistent Environment Page 15

inside such objects also arises when a system is in need of repair. We see this as

being equivalent to the hardware engineer placing probes on a board to identify faults

within it. The scheme described does not handle such cases which are clearly in need

of more investigation. It is thought that different levels of object interpretation may be

needed in this case.

Performance

When looking at the performance of the system described the alternative to such a

scheme must also be considered. One alternative is to halt the system with an error

message when a structure class for which no traversal procedure exists is found. The

user would then have to write,compile,debug and enter into the table a procedure to

traverse the object. The solution outlined in this paper is several orders of magnitude

faster than this. Another alternative would be to write the browser in a lower level

language - a compromise which we are not prepared to make.

The procedure shown in figure 6 to traverse the class,

structure x( int a ; string b ; pntr c )

takes the browser 4.5 seconds user time to write,compile,enter into the trav.procs

table and put the menu on the screen on a SUN 3/260.When the procedure is already

in the table looking up the table and putting the menu on the screen takes less than a

sixtieth of a second.

Conclusion

We have shown how a browser may be written in a closed strongly typed

environment. We have done this without having to use dynamic typing or make the

requirement that every data structure has to have a printString method as in the

Smalltalk-80 system. In the system described the programmer may still write a

display procedure manually thus specializing the programs default action as in the



Safe Browsing in a Strongly Typed Persistent Environment Page 16

Smalltalk case. It is also possible to have different display formats for objects by

having more than one display table.

We have allowed the program to discover the type of objects even when the type of

an object may have been intended hidden by the programmer. This raises the issue of

who should be able to break these fire walls? The browser needs to be able to see

inside objects if it is to be used as a debugger but the programmer may not want the

contents of say, an abstract type discovered.

Acknowledgments

We would like to thank the members of the PISA project in St.Andrews for their help

in preparing this paper especially Ron Morrison. We would also like to thank Pete

Bailey for his part in the prototyping of the first class compiler.

The work is supported by SERC grant GRC 4324.6 and by a grant from STL

Technology Ltd.



Safe Browsing in a Strongly Typed Persistent Environment Page 17

References

1 . Goldberg A. and Robson D.
Smalltalk-80: The language and its implementation.
Addison Wesley (1983).

2 . Bobrow D. G. and Stefik M.
The Loops manual.
Tech Rep.KB-VLSI-81-13, Knowledge Systems Area. Xerox Palo Alto
Research Centre (1981).

3 . Schaffert C.,Cooper T. and Wilpolt C.
Trellis Object Based Environment.
DEC TR-372, Digital Eastern Research Lab (1985).

4 . PS-algol Reference Manual.
PPRR-12.87, University of Glasgow and University of St.Andrews (1987).

5 . Atkinson M.P.and Morrison R.
Procedures as persistent data objects.
ACM.TOPLAS 7,4 (October 1985),539-559.

6 . Atkinson M.P., Bailey P.J., Chisholm K.J., Cockshott W.P. and Morrison R.
An approach to persistent programming.
Computer Journal 26,4 (November 1983),360-365.

7 . R. Morrison, A. Dearle, A. Brown and M.P Atkinson.
An Integrated graphics programming system.
Computer Graphics Forum 5,2 (June 1986),147-158.


	Citation
	Title
	Abstract
	Introduction
	PS-algol
	The Persistent Store
	A Simple Browser
	A First Class Compiler
	Binding
	Persistence
	Fire Walls
	Performance
	Conclusion
	Acknowledgments
	References

