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Abstract

In a type secure persistent programming system, all data is governed for its entire

lifetime by a single type system.  The universality of the persistent type system has

implications in terms of both the modelling and protection provided by the type

system itself, and also presents some new challenges in terms of implementation.

With respect to modelling, the persistent type system must be sufficiently flexible

to allow the modelling of activities normally provided by untyped support systems.

Such activities include, for example, the linking of separately prepared program

units, and file system access protection.  Methods of achieving such flexibility

whilst maximising safety include the controlled use of infinite unions, parametric

and inclusion polymorphism.

With respect to protection, the increased role of a type system means that any

protection mechanisms programmed at a high level may be fully relied upon to

protect the data for its lifetime, as access from outside the constraints of the type

system is not possible.  In particular, high level information hiding techniques may

be used to restrict data access.

The implementation of a type secure persistent system presents the challenges of

combining the following features:

• a fine-grained type system to maximise safety, resulting in large

and complex type descriptions

• infinite unions, parametric and inclusion polymorphism, and

abstract data types, to allow sufficient flexibility

• the efficient implementation of the above features in a persistent

system

The two major challenges are the efficient implementation of dynamic structural

type checking within a persistent store, and the efficient implementation of

polymorphism within a persistent system.

This thesis presents research into some of the facilities required in a persistent type

system to allow flexible modelling whilst preserving maximum protection, and

how such facilities may be implemented.
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1 Introduction
Information systems frequently have to deal with longevity and scale in the data
that they support.  Data is required with lifetimes which match the real-world
processes which they represent, which can range from microseconds to years.
Data is also commonly required to support the work of large organisations, with
time scales of up to hundreds of years.

One of the difficulties of dealing with such data is that it may not be possible to
predict which data will be useful in the future, nor when data will be useful.  For
example, in a computer aided design system all of the design data must be available
to the designers for as long as the design is in progress.  However the whole
design, including its history, calculations, tests and decisions may be required for
a later investigation if the evolved design turns out to be flawed.  The solution to
such problems in non-computerised systems is traditionally to save as much data
as possible - information is never deliberately thrown away.

The longevity of data in a computer system has a number of consequences.  If data
keeps on being collected, the size of the total body may become very large.  As
new uses are found for data, the number of programs within a system may also
become large, and more people may become dependent upon the data.  All these
factors increase the potential complexity of a system.

The size of a body of data is always a relative problem to the storage technology
available.  Thus "large-scale" is interpreted as a volume large enough to challenge
the current technology.  The complexity of large systems, however, is technology
independent.  Problems of scale may be aggravated by other new technology, for
example as a result of automatic data gathering.  Scale may also be increased by the
merging of human organisations, possibly at more than a linear rate.

A further problem in large systems is that of change.  Users of a system should be
given at least the appearance of stability, so a system does not change as they are
using it.  This may be achieved by the specification of constraints, which may
themselves be subject to change.  The critical changes to a system are those with
global effect, which are changes in organisation, changes in representation and
changes in meta-data.  This last class is the most difficult to manage.

Many users may wish to invoke changes to a system, and many users may also
have to modify their use of data as a consequence of other changes.  One of the
difficulties is for users to understand the semantics of changes, so that a change
may be explained to them.  It is important to limit the propagation of change, so
that the system may appear to be stable to most users.

An ideal model for building applications in an integrated data-intensive system has
been described by the FIDE project [FID90], and may be likened to the diagram in
Figure 1.1.1.  In such a model as much as possible is factored out of the
application programs into a central repository.  Using such a model it should be
possible to accelerate software production, improve system reliability and gain
economies from code re-use.

Currently, however, information systems are usually constructed within a set of
loosely connected support systems, such as database systems, programming
languages, programming environments and operating systems.  Each of these
components is often designed independently and built using a separate technology.
The resulting inconsistencies between these technologies make programming of
data-intensive applications difficult, expensive, and error-prone.
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Figure 1.1.1 The FIDE model of applications building

The programming of systems which deal with large amounts of long-lived data is
intrinsically difficult.  However, the major failure of current technology as outlined
above is that the lack of integration leads to avoidable complexity.

Persistent programming systems are one area in which to experiment with the
removal of this avoidable complexity.  By merging the distinction between long-
term and short-term data, it becomes possible to model all of the activities required
for a body of data within a single system.  The consequences of this in terms of the
type system are twofold.  As data may never be manipulated outside its
jurisdiction, the type system may be relied upon as a provider of system, rather
than program, safety.  As a consequence of this, however, the persistent type
system must be sufficiently flexible to allow the modelling of activities normally
provided by untyped support systems.

1.1 Type systems

1.1.1 Modelling and protection
Cardelli and Wegner [CW85] give an account of how type systems arise naturally
in programming languages, and indeed in human nature.  "As soon as we start
working in an untyped universe, we begin to organise it in different ways for
different purposes."  Thus, for example, the same bit pattern in a computer
memory may be viewed in a number of different ways according to some
properties of the entity it is intended to represent.  The same bit patterns may be
used to represent the character "a" and the number 97, but a programmer would
normally wish to abstract over this fact.
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This gives rise to the notion of a type system as an aid to modelling, by the
provision of a set of regular interpretations of bit patterns.  A programmer may
think in terms of values modelled by a type system rather than in terms of a
computer's memory state.

This modelling, however, may potentially be violated by the application of
inappropriate operations.  All values must be modelled by abstraction over bit
patterns, but the operations available on bit patterns will not normally be
appropriate over the models provided by a type system.  Because of this, a type
system usually also provides some mechanism by which the inappropriate
application of operations is prohibited.  Thus a type system is normally regarded as
a provider of both modelling and protection within a programming system.

1.1.2 Safety and flexibility
As always, however, the extra safety provided by the prevention of operations in
certain contexts causes a loss of flexibility.  For example, it is reasonable to
prohibit an operation such as bitwise or on two values which represent integers.
On the other hand, it may be convenient for a program to model an integer as a bit
pattern, or vice versa, in which case the prevention of this operation is not
desirable.

The level at which a type system's protection is specified varies widely between
programming languages.  Languages such as C [KR78] provide only a modelling
role, and if desired any operation may be applied to values of any type.  Such
languages are very flexible, but at the cost of some safety.  Many languages allow
at least some operations which violate the type system, for example it is not
uncommon to be able to index past the bounds of an array.  Again, this allows
extra flexibility, but at the cost of safety.

A language whose type system prevents any operations which violate its modelling
facilities is referred to as a strongly typed language.  Before strong typing is
enforced in a programming language, the designers must be confident that the
modelling provided by the type system is adequate for the language's purpose.  If
type system modelling is inadequate, then programmers are forced to use
inappropriate type models.  In this case strong typing may be over-restrictive.

1.1.3 Time of checking
An operation which violates a model provided by a type system may be detected at
any time before the operation is executed.  In general, it is desirable to detect such
errors as early as possible.  There are two reasons for this:

• program safety

• program efficiency

If an error is detected before a program starts to execute then the semantics of
failure need not be dealt with.  It may not be acceptable to terminate the execution
when a type error occurs.  If the absence of type errors can be guaranteed before
execution begins, then no dynamic resource is required to check for possible type
errors, with a consequent increase in efficiency.

Languages where all type errors may be detected by static analysis of a program
are known as statically typed languages.  They have the desirable property that no
operation which violates type system modelling can ever occur during execution.
Once more, however, such systems must forfeit some flexibility to achieve this.
For example, such a system can only allow manifest values to be used as array
bounds and subscripts, as otherwise a dynamic error could occur.  Most
programming languages do rely upon at least some dynamic type checking.
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Programming systems which deal with large amounts of heterogeneous data
require some dynamic typechecking to allow necessary abstraction over the type of
this data.  A program which binds dynamically to its data should only have to
describe the type of that subset of the data upon which it operates.  To allow such
partial specification in an evolving universe, an infinite union type is required
[ABC83].  Before a value of such a type may be usefully manipulated, a dynamic
type check is necessary.

1.2 Persistence

1.2.1 Motivation
The initial motivation for building persistent languages arose from the difficulties
of storing and restoring data structures arising in CAD/CAM research [Atk78].
Complex mappings had to be constructed between complex program data
structures and database systems.  These mappings were observed to have a
number of costs:

• they were entirely extraneous to the required computation on the
data, thus obscuring code and confusing programmers

• they were not subject to type checking, and consequently were a
common source of error

• it was difficult to translate incrementally in either direction, and a
consequent tendency was to load more data than necessary
during a program's execution

• there were large computational overheads in performing the
translation

The construction and maintenance of these mappings is a serious problem in a
system which must deal with large amounts of long-lived data.

Persistent programming languages were designed initially to solve these problems.
They eliminate discontinuities in the computational model, and economise on
design and implementation effort by using the same concepts and constructs
throughout the entire computational system.

1.2.2 Definition of persistence
Persistence is defined as the length of time for which data exists and is usable
[ABC83].  A spectrum of persistence exists and is characterised by:

• transient results during expression evaluation

• local variables in procedure activations

• own variables, global variables and heap items

• data that exists between program executions

• data that exists between various versions of a program

• data that outlives a program

Traditionally, the first three categories are managed by a programming language
and the others by a file system or database management system.  A persistent
system is one where all categories of longevity are catered for by a single
programming language mechanism.
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1.2.3 Orthogonal persistence
The following principles of persistent programming systems have been identified
in [ABC83]:

• Persistence Independence

The manipulation of data in a program is independent of the
persistence of that data.  That has the consequence that a
programmer can not specify the physical movement of data
between long term and short term storage devices.

• Persistent Data Type Orthogonality

All data values are allowed the full range of persistence
irrespective of their type.

• Persistence Identification

The identification of values which are to be made persistent is not
related to the type system, computational model or control
structures of a language

Programming languages which obey all three of these principles are classified as
persistent programming languages, and are said to display orthogonal persistence.

1.2.3.1 Removing complexity

The understandability of a language is its most important property.  The main
difficulty with data intensive programming is understanding the mapping between
the real world and the computational models.  A non-persistent system may be
represented by the diagram in Figure 1.2.1.

Database (File System)
data model

Programming language
data model

Real world conceptual
model

Figure 1.2.1 Conceptual mappings in a traditional system

This diagram shows three mappings between different models of the data.  A
programmer must understand all of these mappings, as well as the different
models, to be confident about data manipulation.  In a persistent system, as
illustrated in Figure 1.2.2, only one such mapping exists between the two data
models.  Thus the task of modelling data within a system is greatly simplified.

Persistent language
data model

Real world conceptual
model

Figure 1.2.2 Conceptual mappings in a persistent system

The single mapping means not only that a system should be easier to understand,
but also that no code needs to be written to maintain the mappings.  In a data
intensive application, maintaining the extra mappings is estimated to cost around
30% of the total code [AMP86].
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1.2.4 Persistent languages
As the provision of persistence should be orthogonal to all other aspects of
programming language design, it should be possible to have applicative, relational,
logic, object, query and imperative persistent languages.  Some known persistent
languages are:

• DBPL [MS89] relational

• PS-algol [PS88] imperative

• Leibniz [Eve85] object

• E [RC89] almost object (C++)

• Galileo [ACO85] object

• Poly [Mat85] applicative

• Staple [DM90] applicative

• Amber [Car85] applicative

• Persistent Prolog [GMD85] logic

• χ [HS89] capability

• Napier88 [MBC89] imperative

1.2.4.1 PS-algol and Napier88

Two examples of orthogonally persistent languages are PS-algol [PS88] and
Napier88 [MBC89].  In both languages, persistence is identified by reachability
from distinguished roots in a persistent store.  For a value to persist after the
invocation of a program, it must be placed within the transitive closure of one of
these distinguished roots.  This model of persistence is highly suitable for
imperative languages, but other models are required for different language
paradigms.

Persistence in PS-algol is modelled by a set of standard procedures.  A
distinguished persistent root may be created by the standard procedure
createDatabase, which takes a database name and password as parameters and
returns a value which represents the new root.  The same root may be accessed by
another program invocation by use of the openDatabase procedure.

The root returned when creating or opening a database is a pointer to an instance of
an associative lookup table, of type Table.  Further standard procedures are
defined to manipulate these values.  sEnter takes as parameters a string key, a
Table, and a value of an infinite union type.  sLookup also takes a string key and a
Table, and returns the most recent value which has been stored using sEnter with
the same key and Table.  Thus these tables may be used to store a value of
arbitrary complexity in a manner which is orthogonal to any of its attributes.

The Napier88 model of persistence is similar but more flexible.  Here, there is a
single root of persistence, and the persistent store is calculated as the transitive
closure of this root.  The persistent root is of a data type environment, which is a
dynamic model of the static environments normally found in block-structured
programming languages.  Using this data type, bindings may be incrementally
added to the store, including bindings to other environments.  This allows an
arbitrary store structure to be built from this root.  The Napier88 system consists
of a language and a populated persistent store, which contains amongst other
things the standard functions and procedures.
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1.2.5 Relation to database programming languages
A database programming language is one which is designed to deal with large
amounts of long-term data, and a persistent language is one in which the longevity
of data is orthogonal to its use.  Although the motivation for these different kinds
of language may be different, they converge rapidly to the same set of problems.
A database programming language may start from a data model and endeavour to
provide a general-purpose programming algebra over it, while a persistent
language may start with a general-purpose programming algebra within which it
must also provide a data model.  Recent research and collaboration, particularly in
the FIDE (Esprit II Basic Research Action 3070) project has shown that the two
communities are on the point of merging, to tackle the outstanding problems
caused by scale and longevity of data.

1.3 Polymorphism
Polymorphism was probably first identified by Strachey [Str67].  Although his
discussion is mainly restricted to operators which may have several forms
according to the type of their arguments, he also points out another more regular
form of polymorphism, introduced by example of the function map .  He
introduces the terms "ad hoc" and "parametric" to describe these two forms of
polymorphism, and mentions that both forms present a considerable challenge to
the programming language designer.

The classifications made by Strachey are still in use today, although some other
classes of polymorphism have also been identified.  Polymorphism has been
defined in a more recent survey paper [CW85] as an attribute of a programming
language which allows "some values and variables to have more than one type".
This definition allows subtype inheritance, coercion and some models of abstract
data types all to be classified as polymorphism.  The term inclusion polymorphism
has been added to those defined by Strachey to describe a general form of subtype
inheritance.  The following are working definitions of the different kinds of
polymorphism:

• ad hoc: An operation is defined over a number of different
types, and its semantics may depend upon the type
of its operands.  An example is the operator "+",
which may be defined over integers and reals, and
has a different interpretation for each type.

• parametric: Instances of the same type within a type description
may be abstracted over by an implicit or explicit type
parameter.  An example is an identity function,
where although the parameter and result may be of
any type, they are statically known to be the same
type.

• inclusion: The type of a value may be partially abstracted over,
so that unnecessary type information need not be
stated.  An example is a function which is defined
over any record value which has an age field of type
integer.

All of these language concepts have evolved independently from each other.
Languages such as early assemblers contained no polymorphism whatsoever.  Ad
hoc polymorphism was the first to appear, in languages such as Fortran [ANS78],
which defined overloaded operators, such as "+", along with the ability to coerce
values from integer to real according to the use of such operators.  Parametric
polymorphism appeared in ML [Mil83], and inclusion polymorphism in Simula
[BDM73].  Existentially quantified types as described by Mitchell and Plotkin
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[MP88] is a model of abstract data types which introduces abstraction over a type
description, and such types are included in the definition of parametric
polymorphism given above.

The motivation for all of these diverse language models is the same: the need to
abstract over type.  As type systems include more static constraints, then flexibility
is lost as well as safety gained.  Some of this flexibility, however, may be regained
without the loss of safety by the introduction of type abstraction.  Polymorphism is
viewed here not as some theoretical attribute of type systems but as a solution to a
class of practical problems which require type abstraction.

Ad hoc polymorphism allows the meaning of an operation to depend upon the
types of its operands.  In early languages such as Fortran the motivation for this
was to abstract over the different representations used for types such as single and
double length floating point numbers, so that the same arithmetic operators could
be applied to them.  However, the use of an operator could still be statically
determined from program analysis, and so no true type abstraction occurred.
However, Keas [Kea88] and Wadler and Blott [WB89] have more recently shown
how such polymorphism may be extended to allow abstraction over related sets of
types.

Parametric polymorphism emerged in the design of ML as a necessity, rather than
an invention.  Milner states that for the kind of use for which ML was designed "it
soon became intolerable to have to declare, for example, a new maplist function ...
every time a new type of list is to be treated." [Mil83a]  He stresses that the
introduction of polymorphism was on purely practical grounds, to give the
required type abstraction, rather than as an experiment in the introduction of such
type schemes into a programming language.  Indeed, the proper lineage for the
style of type checking by inference was only discovered after its introduction.

Inclusion polymorphism first manifested in Simula and its object-oriented
derivatives such as Smalltalk [GR83].  The major motivation here was the reuse of
software.  This is achieved by models of inheritance, where data types can be
derived by incremental enhancement of others.  Then any operations which are
defined over a type may also be applied to derived types.  This allows, in
retrospect, partial abstraction over data types.  Once again, the need for this style
of programming was apparent some time before its formal treatment, and even its
classification as a form of polymorphism [Car84].

Existential data types were formally introduced by Mitchell and Plotkin as a general
model for abstract data types.  These types allow the hiding of information by
abstracting over types, but maintain complete static type safety.  The model
described is not usually considered as a form of polymorphism, but involves
abstraction over a given type signature in the manner of parametric polymorphism.

1.4 Persistent type systems
Type systems are historically viewed as mechanisms which impose static safety
constraints upon a program.  Within a persistent environment, however, the type
system takes on a wider role.

Data manipulated by a programming language is governed by that language's type
system.  In non-persistent languages, however, data which persists for longer than
the invocation of a program may only be achieved by the use of an operating
system interface which is shared by all applications.  As a consequence of this,
such data passes beyond the jurisdiction of the type system of any one language.
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Input data

Programming language
handles type-safe

transient data

Permanent data
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of programming
language

Common operating system interface

Access by other 
applications through 

operating system 
interface

Figure 1.4.1 Traditional strategy for permanent and shared data

Mechanisms which govern long term data, such as protection and module binding,
must be dealt with at the level of this interface.  Historically this has the
consequence that the type system may not be enforced, and knowledge of the
typed structure of data may not be taken advantage of.  This is shown
diagramatically in Figure 1.4.1.

In a persistent system, the storage of data beyond a single program invocation is
handled by programming language mechanisms, and no common operating system
interface is necessary.  The only route by which data may be accessed is through
the programming language, and so the type system of a single language may be
used to enforce protection upon both transient and permanent data.  High-level
modelling may be relied upon for the entire lifetime of the data, as it never passes
outside the language system.  Figure 1.4.2 gives a diagrammatic view of such a
system.
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Input data

Programming language
handles type-safe

transient data

Permanent data also
within the jurisdiction

of  the type system No direct access is possible
to permanent data

Figure 1.4.2 The persistent strategy

The universality of the persistent type system has consequences in terms of both
the modelling and protection provided by the type system itself, and also presents
some new challenges in terms of implementation.

With respect to modelling, the persistent type system must be sufficiently flexible
to allow the modelling of activities normally provided by untyped support systems.
Such activities include, for example, the linking of separately prepared program
units, and file system access protection.  Methods of achieving such flexibility
whilst maximising safety include the controlled use of infinite unions, parametric
and inclusion polymorphism.

With respect to protection, the increased role of a type system means that any
protection mechanisms programmed at a high level may be fully relied upon to
protect the data for its lifetime, as access from outside the constraints of the type
system is not possible.  In particular, various high level information hiding
techniques may be used to restrict data access, instead of relying upon the normally
coarse grain and typeless control provided by outside technologies.

The implementation of such a system presents the challenges of combining the
following features:

• a fine-grained type system to maximise safety, resulting in large
and complex type descriptions

• infinite unions, parametric and inclusion polymorphism, to allow
sufficient flexibility

• the efficient implementation of the above features in a persistent
system

Efficiency is considered important as programmers are well known to sacrifice
safety and long-term efficiency for short-term performance.  Efficiency
considerations within a persistent system are notably different from those in a non-
persistent system.
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1.5 Thesis structure
This thesis is divided into four main chapters.  Two of these concentrate upon the
issues of modelling and protection when a single type system is used to govern all
data, and the other two on how such a system may be implemented.  An outline of
each of these chapters is given in the sections 1.5.1 to 1.5.4.

1.5.1 Software reuse in persistent systems
Persistent programming systems with first class procedure values [AM85] may be
used to solve some of the problems associated with the incremental construction of
large programming systems.  In particular, software componentry may be shared,
rather than copied, whilst maintaining the benefits of a strongly typed
programming language.  Apart from orthogonal persistence, two other language
facilities are required to allow this.

A flexible, incremental binding mechanism is required to model a number of
different methodologies for the binding of program components [Dea89].  In
particular, carefully controlled dynamic and L-value binding in such a mechanism
may allow the incremental construction of a complex software system.

Type abstraction is also necessary to maximise the sharing of software
componentry, as it allows the specification of program segments that do not
depend upon a full type description of the data over which they operate.  Universal
quantification allows abstraction over the type of a program segment, and
existential quantification allows abstraction over the implementation of the data it
uses [CW85, MBC87].

1.5.2 Models of protection

1.5.2.1 Protection

Large bodies of data are inherently valuable, and must be protected against
accidental or deliberate misuse.  This is true in both persistent and non-persistent
programming systems.  However, protection mechanisms in a persistent system
may be modelled quite differently from a non-persistent system [MBC90,
CDM90].

As all data within a persistent system are subject to type system constraints, no
unlawful access to the data may occur except in the event of system failure.  This
gives the property of type safety to permanent data, which can not be achieved in a
non-persistent system.

A further effect of the type safety of all data is that any protection which is
programmed may not be revoked by a lower level of technology.  This means that
access protection and software constraints may be programmed as suitable for the
individual data.  A number of different language mechanisms may be used to
protect permanent and shared data, including subtype inheritance, procedural
encapsulation, and abstract data types [MBC90].

1.5.2.2 Viewing mechanisms

The protection of data in database systems is normally achieved by integrity
constraints and viewing mechanisms.  In a persistent system, however, such
mechanisms do not need to be specially provided as they may be programmed
within a persistent programming language.  Integrity constraints may be
programmed within procedural encapsulation, and viewing mechanisms may be
programmed with a combination of encapsulation and existentially quantified data
types.  The added advantage of existentially quantified types over traditional
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viewing mechanisms is that they are statically type checkable.  The referential
integrity provided by a persistent store ensures that views occur over the same
instance of data, and the copying of data, with its associated integrity problems, is
not necessary [CDM90].

1.5.3 Typechecking across separately compiled modules
Type equivalence checking is well understood within a program, but presents
some extra problems in a persistent system which allows the independent
compilation of co-operating modules [CBC90].  In a persistent system, data which
is shared between modules does not move outside the language's type system, and
so the type system must address the new issues.  Commonly, languages which are
not persistent can allow such co-operation only by using a store interface which is
not type secure, such as a file system.

The traditional database schema can be regarded as a type.  This leads to a
requirement for the efficient manipulation of types in a persistent system to allow
provision of the facilities traditionally found in DBMS for schema editing, use and
evolution.

Two models of type equivalence are in common use: name equivalence and
structural equivalence.  While name equivalence schemes are easier to implement
and are genarally more efficient they still have to use structural checks to provide
important facilities such as schema merging.  On the other hand structural
equivalence, generally more flexible and less efficient, can often achieve the same
performance as name equivalence [CBC90].

One important topic of research is how to improve the performance of structural
equivalence checking.  How such checking may be performed is fully investigated.
The balance between constructing efficient representations of types in terms of
store and the speed of the equivalence algorithm in comparing two representations
is described.

Two main candidates for type representations are strings and graphs.  The
differences in practice of these representations highlight the difficulties in their
construction and use.  Some preliminary measurements are available and the main
conclusion is that where the type schema is large and involves the sharing of types,
the graph representation is much more efficient in terms of space.  It may however
be slower in terms of speed of checking depending on its use within a persistent
store.

1.5.4 Implementation of polymorphism
Compilers traditionally use type information for two purposes: the first is to ensure
static safety constraints within a program, and the second is to generate appropriate
code where this depends on the type of operands.

Values of different types frequently have different machine-level representations,
for reasons of efficiency.  The difficulty of implementing polymorphic systems
stems from the fact that, as the type may be abstracted over, the representation of a
value is not always known statically.  This causes problems with all kinds of
polymorphism.  With parametric polymorphism, operations which may manipulate
a value of any type are defined over values whose type, and therefore
representation, is not known.  With inclusion polymorphism operations such as
record dereference may be defined over values whose type is partially abstracted
over.  Representation dependent information, such as record offsets, may not
always be calculated statically.  With ad-hoc polymorphism there is a requirement
for operations with different semantic meanings to be executed according to the
type of the operands, which may be abstracted over in some systems.
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A number of solutions to these problems have been proposed and successfully
implemented [Mil83, Lis81, DD79, Mat85, BMS80, Fai82, Tur87, WB89].  All
of these implementations however have been in non-persistent languages, and for
various reasons are not well suited to the implementation of polymorphism in a
persistent programming system.

Two new mechanisms for the implementation of polymorphism are described here.
One of these solves the problems encountered when operations are to be performed
on a value about which no type information is available.  This is suitable for the
implementation of parametric polymorphism and existential data types.  This
mechanism has been successfully used in the implementation of the persistent
language Napier88 [MDC90].

The other proposal is for a mechanism which allows type-specific operations to be
performed on a value whose type is partially abstracted over, and may therefore be
used to implement inclusion polymorphism.  This mechanism may also be useful
in object-oriented languages as a solution to object addressing with multiple
inheritance [CDM89].
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2 Software reuse

2.1 Introduction
Persistent programming systems may be used to solve some of the problems
associated with the construction of large and complex programming systems.  In
particular, software componentry may be shared, rather than copied, whilst
maintaining the benefits of a strongly typed programming language.  Apart from
orthogonal persistence, two other language facilities are required to allow this.

A flexible, incremental binding mechanism should be able to model a number of
different methodologies for the binding of program components.  In particular,
such a mechanism should allow the incremental construction and evolution of a
complex software system.  So that a system constructed incrementally may be
released, it should also be possible to bind the components together tightly at a
later stage.

Type abstraction is also necessary to maximise the sharing of software
componentry, as it allows the specification of program segments that do not
depend upon a full type description of the data over which they operate.  Universal
quantification allows abstraction over the type of a program segment, and
existential quantification allows abstraction over the implementation of the data it
uses [CW85, MBC87].

2.1.1 Program sharing and binding
Type systems provide support for modelling and protection within programming
languages.  Traditionally, this support exists only within the confines of a single
program.  In a system which is orthogonally persistent, the domain of the type
system is extended to data which is used by many invocations of the same or
different programs.  A consequence of this is that a programmer need not be
distracted by the writing of conversion routines to flatten and rebuild permanent
data, nor the possibility that permanent data may be compromised by access from
outside the control of the language's type system [ABC83].

A further ability of persistent languages is the type-safe storage of data of any type.
This is not possible in a non-persistent language.  For example, many languages
include type systems which are able to model first-class procedures and abstract
data types.  Unless the internal form of such values is part of a language's
semantic domain it is not possible for a programmer to specify flattening and
restructuring of arbitrary data.

Within a persistent programming system, the ability to store procedures has been
shown to be extremely powerful [AM85].  In particular, it allows sub-programs as
well as data to be placed in the persistent store and flexibly bound as they are
required during the execution of another program.  This ability potentially allows
all programming activity to be expressed within a single system, and goes some
way to provide a technology suitable for the construction of an integrated project
support environment [MBD85].

Programming languages normally define only a single mechanism for the
exporting of data from beyond the scope of a single program, and this interface is
used both for data which is to outlive a program and also for data which is to be
shared by a number of programs.  This is true of both persistent and non-persistent
languages.  In a persistent system, however, where procedures may be passed
through this interface, a more flexible model of reusing software is made possible.
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In a traditional operating system environment, an applications builder is limited in
the way that a large application may be constructed.  Separate modules may be
written to perform sub-tasks, but these must always be bound together from
outside a language system.  Usually they must be bound before a program starts to
execute, using a mechanism such as a linker.  In this case software reuse is limited
to the provision of program libraries, which are linked into a program before its
execution.

Programs which link to code libraries before execution usually do so either during
compilation or just before execution.  Linking at compilation time ensures that all
the necessary code is available immediately execution is requested, but at the cost
of multiple copies of the code throughout the permanent store.  Recompilation is
necessary if a library routine is replaced with a new version.  If linking is delayed
until just before execution, then the newest versions of routines will always be
incorporated, but it may be possible for a routine to be inaccessible to the linker.
This introduces a new source of program failure.  For a short program which is to
be executed frequently, the cost of linking for each execution may be unacceptable.

It is possible to provide operating system utilities which allow more flexible
linking strategies, such as the Unix make system [Fel79].  However, this
introduces a source of complexity in the construction of a programming system by
separating the specification of library use within a program from the binding
strategy to be used for it.  Furthermore, whether or not a particular library routine
is executed depends upon the dynamic evaluation of a program, and may not be
determined before execution begins.  Systems which require linking before the
start of execution may therefore waste effort in linking code which is not executed.

In a persistent system, program libraries may be placed as procedures within the
persistent store itself.  The time of binding to these procedures is specified within
the programming language.  A procedure in the store may be bound at any time
before or during the execution of a program which uses it.  Therefore only a single
version of the code is required, and programs have no obligation to bind to code
that they never execute.

Some operating systems, such as Multics [Org72], have provided similar solutions
to the problem of code and data sharing.  Although such systems work well, they
do not provide support at a level which allows type-safe sharing within the domain
of a programming language.

There are further requirements for a persistent system to maximise its software
reuse potential.  It must have a flexible binding mechanism which makes it easy for
a component builder to place procedures in the store, and for an application builder
to bind to them.  To allow for different kinds of change in systems, a number of
different kinds of bindings are desirable, from fully static to fully dynamic
[MAB90].

To minimise the number of components which are necessary, a persistent system
should have the ability to abstract over type.  Many general-purpose components
only require partial knowledge of the type of the data they operate over, and if type
abstraction mechanisms are not present then multiple copies of code, with different
type descriptions, will appear even in a persistent system.

The language Napier88 [MBC89] includes an environment mechanism which
allows for very flexible binding, and two kinds of type abstraction, namely
universal and existential quantification.  This language will be used to demonstrate
how software reuse may be achieved in a suitable persistent system.  To
demonstrate that the binding methodology shown is made possible by persistent
procedures, rather than the particular features of Napier88, it will also be sketched
in PS-algol [PS88].
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2.2 Binding mechanisms

2.2.1 Environments and binding

2.2.1.1 Static and dynamic environments

Environment in its general sense is defined as the set of identifiers which are in
scope in a block-structured programming language. [Str67]  Scope levels may be
used to provide a contextual naming scheme within a single program.  The rules
for constructing an environment in block-structured languages are that an identifier
is lexically in scope only between its declaration and the end of the block in which
it is declared.  This is shown in Figure 2.2.1.

var a : int
var b : bool
. . .
begin
       var a : string
       ...
end
. . .
begin
       var a : real
       ...
       begin
              var a : bool
              var c : int
              ...
       end
       ...
end

{ a : int ; b : bool }

{ a : string ; b : bool }

{ a : int ; b : bool }

{ a : bool ; b : bool ; c : int }

{ a : real ; b : bool }

{ a : real ; b : bool }

Figure 2.2.1 Static environments

The binding in such schemes is necessarily static; that is, static analysis of a
program may always determine which instances of an identifier refer to which
declaration.  This has the consequence, of particular importance in a persistent
programming system, that a declaration may not be referred to from outside the
context of the program in which it is made.

In contrast, languages such as Lisp [McC62] use a dynamic binding scheme.  An
identifier binds to its most recent declaration during the evaluation of a program.
Thus the declaration of an identifier enhances some dynamic environment with a
new instance, and the use of an identifier causes a dynamic lookup to obtain the
current binding.  In general with this scheme binding may not be determined by
static program analysis, as it depends on evaluation order.  This binding
mechanism is more flexible than that of block structure, and in a persistent system
would potentially allow identifiers in separately prepared programs to refer to the
same declaration.  Its relative drawbacks are that it is less efficient, and fewer
programming errors may be detected by static analysis.

In Napier88, the data type env is a dynamic model of static block-structured
environments, with individual values of type env corresponding to lexical levels.
Using values of this type, collections of bindings may be dynamically introduced
at the start of a new scope level.  The difference between Napier88's model of
dynamic binding and that of a language such as Lisp is that Napier88's binding is
mostly static, and dynamic binding is restricted to specified points of block entry.
At these points, the static environment is enriched with those identifiers which will
be bound from the dynamic environment during program execution.  Thus each
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identifier used from a dynamic environment need only be bound dynamically once
during the execution of a program.  This model gives maximum safety and
efficiency while still allowing the flexibility of sharing declarations between
contexts.

Most of the work in the design and implementation of environments in Napier88
was carried out by Alan Dearle, and is reported in [Dea88, Dea89].

2.2.1.2 L-value and R-value binding

In a programming language with update, identifiers may bind to locations which
contain values [Str67].  The identifier may be required, in different contexts, to be
used to access either the location itself or its contained value.

In some languages, such as ML, the consistent use of an explicit dereference
operator allows any expression regardless of context to denote either a location or a
value.  A new binding of an identifier to a location may be introduced, for
example, by

val a = ref 7

The identifier a always denotes the location, and the contents of this location may
only be accessed by an explicit dereference.  For example, to increment the value
within this location the identifier a on the left hand side denotes the location itself,
and the expression !a on the right hand side denotes the value contained therein:

a := !a + 1

Another identifier may be bound to the same location, for example

val b = a

after which an update to b will also affect the value stored in a.  This is quite
different from

val b = ref !a

which declares a new location initialised to the value contained in a.

Locations normally have a very restricted algebra defined over them: assignment
and dereference are usually the only operations allowed.  To reduce syntactic
noise, many block-structured languages do not have an explicit dereference
operator, and whether an identifier denotes a location or its contained value is
determined by its use.  In Pascal, for example, in the statement

a := a + 1

the different instances of a bind to different entities: on the right hand side of the
assignment operator to the value, and on the left hand side to the location.  This
may be thought of as an automatic insertion of the dereference operator in
appropriate contexts.  Most block-structured programming languages use the
convention that an expression to the left of an assignment evaluates to a location,
and anywhere else to the contained value.  For this reason, bindings to a location
are usually referred to as L-value bindings, and to a contained value as R-value
bindings.

This convention makes it impossible for an identifier to bind to a location which
exists before its declaration.  For example, in the statement

a := b

an implicit dereference occurs when b is accessed.  The effect is therefore to update
the location bound to a with the value in the location bound to b, rather than
updating the binding between a and its location with a binding between a and b's
location.  Every declaration therefore introduces a new location to which the
identifier always remains bound.
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If it is wished to share a location between contexts, this may only be achieved by
using a data type which itself contains locations, for example a record in a
language with store semantics.  If a and b are both record values, the statement

a := b

updates the location bound to a with the same instance of the record referred to in
the location bound to b.  If the record has a field x, then after this assignment the
expressions

a( x )

and

b( x )

both specify the same L-value.

The programming language CPL [BBH63] introduces a new operator to allow
binding of an identifier to a location which already exists.  One of the operators in
the language is a location assignment operator, which causes the right hand side of
the assignment statement to evaluate to a location rather than its contained value.
The statement

a ≅  b

causes b to evaluate to the location bound to b, rather than the value stored in it.
The effect of the statement is therefore to update the binding between a and the
location it refers to.  The purpose of this feature is to allow the manipulation of
commonly accessed locations within data structures, so that, for example

let a ≅  b[ 2 , 2 ]
a := <expression>

would have the same effect as

b[ 2 , 2 ] := <expression>

The general principle of evaluation to L-value according to convention saves
introducing program noise, but assumes that the language designers may correctly
determine all desirable uses of L-values.

In Napier88 evaluation to L-value occurs in two places, according to convention.
The first is on the left hand side of an assignment operator.  The second occurs on
binding to a dynamic environment.  At the point where an identifier is bound to a
dynamic environment, the binding occurs to the L-value.  This introduces the
property of allowing identifiers within independently prepared programs to
dynamically refer to the same L-value.

2.3 Napier88 environments
Dynamic binding may be modelled in Napier88 by the data type env [Dea89].  A
value of this type represents a collection of bindings, each of which consists of an
identifier, a type, and a value.  The Napier88 model of mutability requires also a
constancy indicator in association with each binding.

2.3.1 Creation and use of Napier88 environments
A new dynamic environment may be created in Napier88 with a procedure found
in the standard environment, itself called environment.  This is of type

proc( → env )

and returns an environment with no bindings.  A new environment may be created
and bound to an identifier by
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let e := environment()

A binding may be added to an environment in the same way that a binding is
normally added to the static environment, using a let declaration.  This must now
specify a destination environment, as well as an identifier, for the initialising
expression.  An integer value may be added to the new environment:

in e let a := 7

Notice that this does not enhance the static environment, only the environment
denoted by e.  Declarations enhance the static environment only if no dynamic
environment value is stated.  Thus

let a := 7
print( a )

will cause the the print procedure to be called with the value 7, but

in e let a := 7
print( a )

will fail during the static analysis of the program, as the identifier a is not available
for use in the call of the print procedure.

Due to the dynamic nature of these environment values, one further operation is
required which is not normally available in a static environment.  This is to drop a
binding from an environment, which may be written, for example, as

drop a from e

An important attribute of the drop operation is that it does not affect any program
which has already formed a binding to the identifier which is dropped.  It removes
only the identifier from the environment, and not the location which is denoted by
the identifier.

The final requirement is a method for a binding from a dynamic environment to be
brought into a static one.  In Napier88 this may be achieved by the use clause, for
example:

use e with a : int in
begin

print( a )
end

The use clause specifies the binding between the static and dynamic environments,
performed once upon the block entry, and within the use clause the identifier a is
in the static environment.  Notice that the type must be specified at the point of
binding.  All typechecking may therefore be performed statically, except for a
single check at the time of binding to the dynamic environment.

The use ... in part of the use clause specifies a new lexical level, in which all of
the bindings specified from the dynamic environment are introduced and bound to
locations within the static environment.  For example, using a language with the
location assignment operator of CPL, the Napier88 code

use e with a , b : int ; c : string in
begin

. . .
end

could be expressed as
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begin
let a : int ≅ e( "a" )
let b : int ≅ e( "b" )
let c : string ≅ e( "c" )
begin

. . .
end

end

where the dynamic environment e is represented as a lookup procedure with
varying result type.

One further point about the use clause is that it may specify a subset of the
identifiers actually present within the environment.  This partial specification
means that a programmer need specify only the type of data which is of interest in
each particular context.

2.3.2 L-value binding
The semantics of L-value and R-value bindings in block structure are preserved in
the dynamic environments of Napier88.  Thus the use clause brings the location
into scope, and this location may be used as a normal L-value.  The implication of
this is that, should an update be performed to a location bound from a dynamic
environment, the effects of this update are apparent to any other context where the
same binding is in scope.  Thus side-effects are not restricted to the local scope.
For example, the program in Figure 2.3.1 declares an identifier a within a new
environment.  Two dynamic bindings to this identifier will occur during the
program's execution.  The first of these, in the procedure change, is evaluated as
the L-value associated with a, and the second as the R-value.

let new = environment()
in new let a := 7

let change = proc( e : env ; newValue : int )
use e with a : int in a := newValue

change( new , 3 )
use new with a : int in print( a )

Figure 2.3.1 Binding to an L-value

The L-value binding in the procedure means that the update will show through,
and the procedure print will be called with the value 3, rather than 7.

2.3.3 Constancy
In Napier88, constancy is an attribute of an L-value rather than of type [GM79].
This means that each L-value must have a specification of its constancy.  With the
names which denote locations in static environments, this is always statically
determinable.  In Napier88 constancy is specified by a single equality symbol in a
declaration, for example

let a = 7

specifies a to be constant, whereas

let a := 7

allows a to be updated at some future time.

The same syntax is used to specify a constant L-value within a dynamic
environment.  The only difference is that violation of constancy may no longer
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always be detected statically, and so a dynamic constancy test is required.  For
example, the program in Figure 2.3.2 is the same as in Figure 2.3.1 except that the
declaration of the identifier a is as a constant.  This program will therefore fail
during the execution of the procedure change.

let new = environment()
in new let a = 7

let change = proc( e : env ; newValue : int )
use e with a : int in a := newValue

change( new , 3 )
use new with a : int in print( a )

Figure 2.3.2 Binding to a constant L-value

This failure could occur at different times.  To catch the error as soon as possible,
it would occur at the time of binding the updated identifier to the constant location.
Alternatively, the failure may not be detected until the update is performed.  This
allows the successful completion of a program in which the update is present
statically but is not executed.  Napier88 chooses the latter of these options.

2.3.4 Persistence
The Napier88 system has a single predefined identifier, PS.  This is a procedure
which returns a value of type env.  The environment returned is the root of the
persistent store, and any value which is reachable from this root will persist.  Any
data value may be made to persist by arranging for it to be within this transitive
closure.

As environments themselves are first-class data types, a network of environments
may be used to model a naming convention within the persistent store.  This could
simulate, for example, a Unix directory structure.  Figure 2.3.3 shows how this
could be used to create a new binding within such a scheme.  Notice that this is an
over-restrictive example of how environments may be used: no restrictions of
either topology or type within a naming scheme are imposed by the language
mechanism.

use PS() with user : env in
use user with staff : env in
use staff with richard : env in
begin

let new = environment()
in new let a := 7
in richard let integers = new

end

Figure 2.3.3 Binding to an example naming scheme

The program in Figure 2.3.3 causes a dynamic bind to an environment called
richard which should already be in the persistent store.  This environment becomes
usable within the static environment of the main block.  Another environment is
created, and the binding of a to a location initialised with the value 7 is placed in it.
The new environment is then placed in the environment richard.  The new
environment and its contained value are now within the transitive closure of the
persistent store, and so will be made to persist after the program has finished
executing.
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2.3.5 Programming system construction
In Napier88 procedures are first-class data values, and so procedure values may be
declared within static and dynamic environments in the same way as any other
value.  The basic binding mechanisms shown above may be used to model a
number of different methodologies for the construction of software systems out of
components.  For the sake of clarity only the top level of the persistent store will
be used in the following examples.

Figure 2.3.4 shows how a procedure which is to be used as a component may be
declared and stored.  This program contains the declaration of a procedure value
which calculates the gradient of a line.  When the program is executed, it places the
new procedure within the persistent store.  Above the program in Figure 2.3.4 is a
diagrammatic representation of the persistent store after the execution of the
program.

gradient ( y2 - y1 ) / ( x2 - x1 )
 

in PS() let gradient := proc( x1,y1,x2,y2 : real → real )
( y2 - y1 ) / ( x2 - x1 )

Figure 2.3.4 Adding gradient to the persistent store

Figure 2.3.5 shows the declaration of a procedure which uses the gradient
component, and is itself placed in the persistent store.  This program first looks up
the gradient procedure from the persistent store.  The binding here is to the L-value
declared in the previous program.  Another procedure is then declared which uses
the binding to gradient, and this procedure is then itself placed in the persistent
store.  Notice that the new procedure is statically bound to the procedure gradient:
no dynamic binding or typechecking is required for the execution of horizontal.
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gradient

horizontal gradient( x1,y1,x2,y2 ) = 0.0
 

( y2 - y1 ) / ( x2 - x1 )
 

use PS() with gradient : proc( real,real,real,real → real ) in
begin

let new = proc( x1,y1,x2,y2 : real → bool )
gradient( x1,y1,x2,y2 ) = 0.0

in PS() let horizontal = new
end

Figure 2.3.5 Static binding within the persistent store

A component writer however is unlikely to provide a perfect definition at the first
attempt, and so there may be a need to later update it.  For example, after the
procedure horizontal has been installed in a system, it may be noticed that gradient
will fail if the two x-values happen to be the same.  Figure 2.3.6 shows how a
program which replaces the existing version of gradient with a new one may be
written.

As both this program and horizontal are bound to the L-value denoted by gradient
within the persistent store, the effect of this update is that future calls to horizontal
will use the new version of gradient.  Therefore the error has been corrected in
place without any requirement to re-link or re-compile programs which use the
component.  This style of binding gives very effective support for the construction
and development of new software systems in modules.
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gradient

horizontal

if x1 = x2
     then maxreal
     else ( y2 - y1 ) / ( x2 - x1 )

( y2 - y1 ) / ( x2 - x1 )
 

gradient( x1,y1,x2,y2 ) = 0.0
 

use PS() with gradient : proc( real,real,real,real → real ) in
gradient := proc( x1,y1,x2,y2 : real → real )

if x1 = x2 then maxreal else ( y2 - y1 ) / ( x2 - x1 )

Figure 2.3.6 Updating the L-value binding

The above method of binding is unsuitable for some applications.  For example,
the writer of the horizontal procedure may know that it will work with the version
of gradient in the store at the time, and therefore requires to bind to this version
and remain unaffected if it is replaced.  This may be achieved by binding to the R-
value associated with gradient, as demonstrated in Figure 2.3.7.

Here, a new location gradient_value is declared and initialised with the R-value of
the binding gradient.  This location is declared as constant, and may never be
updated.  Therefore the new procedure is bound statically to the value of the
procedure body of gradient which is in the store at the time this program is
executed.  The diagram in Figure 2.3.7 shows the state of the store after this
program has been executed but before gradient is updated by the program in Figure
2.3.6, and Figure 2.3.8 shows the state of the store after gradient is updated by the
program in Figure 2.3.6.
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gradient

horizontal gradient_value( x1,y1,x2,y2 ) = 0.0
 

( y2 - y1 ) / ( x2 - x1 )
 

use PS() with gradient : proc( real,real,real,real → real ) in
begin

let gradient_value = gradient
let new = proc( x1,y1,x2,y2 : real → bool )

gradient_value( x1,y1,x2,y2 ) = 0.0

in PS() let horizontal := new
end

Figure 2.3.7 Creating a binding to an R-value

gradient

horizontal

if x1 = x2
     then maxreal
     else ( y2 - y1 ) / ( x2 - x1 )

( y2 - y1 ) / ( x2 - x1 )
 

gradient_value( x1,y1,x2,y2 ) = 0.0
 

Figure 2.3.8 After the update with the R-value binding

There is a further possibility that the type of the procedure may be required to
change, and in this case an update would not be possible.  Figure 2.3.9 shows
how replacement with a procedure of a new type may be achieved by dropping the
binding and replacing it with a new one.  The diagram shows the state of the store
if the program was executed immediately after the programs which first defined
gradient and horizontal, in Figure 2.3.4 and Figure 2.3.5.

Notice that the dropping of the identifier from the environment does not affect any
program which has already bound to its associated L-value.  Only the access route
via the environment is removed, and the associated location and value may still
exist.
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gradient

horizontal gradient( x1,y1,x2,y2 ) = 0.0
 

( y2 - y1 ) / ( x2 - x1 )
 

if length = 0
     then maxreal
     else height / length

drop gradient from PS()
in PS() let gradient := proc( length,height : real → real )

if length = 0 then maxreal else height / length

Figure 2.3.9 Making a new location for an identifier

The procedure horizontal would be unaffected by the execution of the above
program, as they were both statically bound to the procedure below the level of
this access route.  If horizontal is required to make use of the new gradient
procedure, it must be re-written for the new type.  This is demonstrated in Figure
2.3.10.

The execution of this program causes horizontal to be overwritten with a new
procedure which is statically bound to the L-value of the most up-to-date version
of gradient. (Figure 2.3.6)  Notice in this example that the effects of the change in
type of the procedure have been limited to those components which access it
directly.  A program which is statically bound to the L-value of horizontal may be
unaware of its internal change and continue to execute correctly.

Notice that at this point no access exists to the earlier versions of both procedures,
and the locations, closures and code objects associated with them may now be
garbage collected.
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gradient

horizontal gradient( x1,y1,x2,y2 ) = 0.0
 

( y2 - y1 ) / ( x2 - x1 )
 

gradient( x2 - x1 , y2 - y1 ) = 0.0
 

if length = 0
     then maxreal
     else height / length

use PS() with gradient : proc( real,real → real ) ,
horizontal : proc( real,real,real,real → bool )

in
horizontal := proc( x1,y1,x2,y2 : real → bool )

gradient( x2 - x1 , y2 - y1 ) = 0.0

Figure 2.3.10 Binding to the new location

One further style of binding is possible.  A procedure may dynamically bind to a
location each time it is executed, for example dynamicHorizontal may be defined as
in Figure 2.3.11.

in PS() let dynamicHorizontal =
proc( x1,y1,x2,y2 : real → bool )

use PS() with
gradient : proc( real,real,real,real → real ) in

gradient( x1,y1,x2,y2 ) = 0.0

Figure 2.3.11 Fully dynamic binding

Here the dynamic binding to the stored value of gradient is not performed until
horizontal is executed, but must be re-performed on each execution.  This means
that if the identifier is dropped and replaced with another of the same type then the
replacement value will be bound to.  If it is dropped without replacement, or
replaced with a different type, then the execution of dynamicHorizontal will fail.
However, this binding ensures that the program will access the latest value with
this identifier within the environment.  This is the style of binding provided by the
Multics operating system.
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2.4 Incremental construction and release
The combination of L-value bindings and procedures in the persistent store gives a
useful model for the construction of complex software systems.  What would
normally be constructed as a complex program, perhaps with many mutually
recursive procedures, may instead be written with each procedure in a separate
module.  A stub for each procedure is first placed in a suitable location.  Each
procedure may now be written as a program which first statically binds the L-
values of any other procedures it requires, then declares the required procedure,
and finally updates its own L-value in the store.  This gives a model where any
procedure within the whole system may be individually edited and recompiled
without any change to the rest of the system.

Napier88 is particularly suited to modelling such a methodology because of its
ability to share L-values between identifiers in different contexts: in fact, this was a
major reason for some of the design decisions made in the Napier88 environments.
The advantages of this binding mechanism will be highlighted by showing the
same example first in Napier88, and then in PS-algol, a persistent language with
first-class procedures and L-value bindings, but without the ability to share a
location between identifiers.  This example is due to Cutts and Dearle [CD90].

A good example of a complex piece of software with many mutually recursive
procedures is a programming language compiler designed by the recursive descent
method [DM81].  To illustrate the construction methodology, the construction of a
parser for the following simple grammar will be illustrated:

<clause> ::= <expr> | <if clause>
<if clause> ::= if <boolean> then <clause> else <clause>
<expr> ::= <arith> | <boolean> | <clause>
<arith> ::= 1 | 2 | 3 | ... | <clause>
<boolean> ::= true | false | <clause>

The interrelationships of the corresponding parsing procedures may be described
diagrammatically as in figure 2.4.1.

clause

if clause

exprarith

boolean

Figure 2.4.1 Mutual recursion

2.4.1 The example in Napier88
To set up such a system in Napier88, first procedure stubs must be set up for each
procedure in an environment or a collection of environments.  For the sake of
clarity, each of the parsing procedures is assumed to be without parameters or
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result, and will be placed in the same environment.  Stubs may be set up as in
Figure 2.4.2.

use PS() with user : env ; environment : proc( → env ) in
begin

let new = environment()

in new let clause := proc() ; {}
in new let if_clause := proc() ; {}
in new let expr := proc() ; {}
in new let arith := proc() ; {}
in new let boolean := proc() ; {}

in user let parser = new
end

Figure 2.4.2 Creating the procedure stubs

A template is then constructed for each of the procedures.  This template must bind
to the L-value of the other procedures which it uses, declare the procedure, and
update its own L-value within the persistent store.  This then allows each
procedure to be independently edited, compiled and loaded into the parser without
any change to the rest of the system.  For example, the template for the procedure
clause would be as in Figure 2.4.3.  In this program, of the three identifiers bound
to in the parser environment only clause is used as an L-value, with if_clause and
expr being used as R-values within the new body of the procedure clause.

use PS() with user : env in
use user with parser : env in
use parser with clause , if_clause , expr : proc()
in

clause := proc() !* this is the part that may be edited later
if nextSymbol = "if"

then if_clause()
else expr()

Figure 2.4.3 Updating the procedure clause

Once all of these templates have been satisfactorily completed, the system is ready
for release.  At this point, it may no longer be desirable for any user to have the
ability to update the value of a procedure.  All unnecessary access may at this point
be dropped, with only a single procedure left to access the entire software system.
In this example, this could be arranged as in Figure 2.4.4.

use PS() with user : env in
use user with parser : env in
use parser with clause : proc() in
begin

let call_parser = proc() ; clause()

drop parser from user

in user let compiler = call_parser
end

Figure 2.4.4 Releasing the completed system

After the execution of this program, all access to the individual procedures has
been lost except for the ability to call the top-level one.  This has effectively sealed
the system, and access to its components is no longer possible.
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2.4.2 The example in PS-algol

2.4.2.1 The data type pntr

The type pntr in PS-algol denotes the infinite union of all structure types.  A
structure type may be declared as, for example,

structure student( name : string ; matricNo : int )

This has the effect of introducing the identifier student as a constructor function.
All values created using it are of type pntr, rather than type student, and are type
compatible with any other pntr.

Type safety is maintained by a dynamic type check.  Although all structure values
are type compatible, the field names in a structure declaration are introduced to the
static environment and are unique within any scope level.  When a dereference is
encountered, it is possible to determine the expected type of the pntr value by
means of the fieldname.  This assertion is checked before the deference is
executed.  Thus in the example

let deref = proc( x : pntr → string ) ; x( name )

the identifier name asserts statically that the value x should be of type student.  If it
is not, a failure will be generated at execution time.

The reserved identifier nil denotes a reserved value of type pntr.  It stands for a
unique structure value which has no fields.

2.4.2.2 Persistence

Persistence in PS-algol is modelled by a set of standard procedures.  The model of
persistence is reachability from specified persistent roots.  A new root may be
created by the standard procedure createDatabase, which takes a database name and
password as parameters and returns a value of type pntr.  The root may be
accessed by another program invocation by use of the openDatabase procedure.

The root returned by the creating or opening a database is a pointer to an instance
of an associative lookup table, of type Table.  Further standard procedures are
defined to manipulate these values.  sEnter takes as parameters a string key, a
Table, and a value of type pntr.  sLookup also takes a string key and a Table, and
returns the most recent value which has been stored using sEnter with the same
key and Table.  Thus these tables may be used to store a value of arbitrary
complexity in a manner which is orthogonal to any of its attributes.

In PS-algol, the persistent store is only checkpointed when an explicit commit
procedure is called by the user.  If a program terminates without executing a
commit, then no change is made to the persistent store.  commit is a procedure of
type

proc( → pntr )

which returns nil if successful and a record of the error otherwise.

As an example, the following program places a new student in the persistent store:

let newDB = createDatabase( "students" , "friend" )
structure student( name : string ; matricNo : int )

sEnter( "new student" , newDB , student( "Harold" , 12345 ) )

write if commit() = nil then "ok" else "failed"

The student may be accessed by another program:
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let newDB = openDatabase( "students" , "friend" , "read" )
structure student( name : string ; matricNo : int )

let harold = sLookup( "new student" , newDB )

These two programs refer to the same instance, and so the L-values contained
within the structure are sharable between separately compiled programs.

2.4.2.3 System construction

As with the Napier88 example, procedure stubs are first created for the different
parsing procedures.  This is achieved by the program in Figure 2.4.5.  This
program first of all creates a new database, which will act as a root of persistence.
This has the name "parser" and the password "friend", and its initial form is an
empty lookup table.  The next line represents the type of a structure which will be
used to hold all the parsing procedures.  A data type such as a structure is
necessary to model the sharing of L-values which is required.  An instance of this
type, initialised with procedure stubs, is created, and entered into the root table of
the database with the string "parser procs".  The commit is then required to make
the effects of this program persist.

let theDb = createDatabase( "parser" , "friend" )
structure procs( proc() clause , ifClause , expr , arith , boolean )

let stub = proc() ; {}
let new = procs( stub ,stub ,stub ,stub ,stub )

sEnter( "parser procs" , theDb , new )

write if commit() = nil then "Parser db created" else "failed"

Figure 2.4.5 Creating the procedure stubs

Figure 2.4.6 shows the program which contains the template of the procedure
clause.  This program first opens the database "parser" to access the data structure
which contains all the parsing procedures, then declares a new procedure body
which may use these procedures, and finally updates the location which contains
the procedure clause.  Again, an explicit commit is necessary to make the effects
permanent.  Notice that, as sharing L-values between identifiers is not possible in
PS-algol, dereferences must be made to access each of the other procedures.

structure procs( proc() clause , ifClause , expr , arith , boolean )

let theDb = openDatabase( "parser" , "friend" , "write" )

let theProcs = sLookup( "parser procs" , theDb )

theProcs( clause ) := proc()
begin

let IfClause = theProcs( ifClause )
let Expr = theProcs( expr )

!* this is the part which may be edited later
if nextSymbol = "if"

then IfClause()
else Expr()

end

write if commit() = nil then "clause installed" else "failed"

Figure 2.4.6 Updating the procedure clause
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Once the system has been satisfactorily completed, it may be released by arranging
for a different access to the top-level procedure and removing the other access
routes from the system.  This could be achieved by the program in Figure 2.4.7.

This program first declares two structures, the first to access the existing
procedures and the second to store only the top-level one.  The top-level procedure
Clause is then looked up from the old database.  A new database is created, and a
structure containing the top-level procedure is placed in it.  The next action is to
remove access to the old procedure structures, which may be achieved by
overwriting the containing structure with a nil pointer.  Once again commit must
be executed to make these changes permanent.

structure procs( proc() clause , ifClause , expr , arith , boolean )
structure Parser( proc() theParser )

let oldDb = openDatabase( "parser" , "friend" , "write" )
let theProcs = sLookup( "parser procs" , oldDb )
let Clause = theProcs( clause )

let release = createDatabase( "Release Parser" , "password" )
sEnter( "Parser" , release , Parser( Clause ) )

sEnter( "parser procs" , oldDb , nil )

write if commit() = nil then "System installed" else "failed"

Figure 2.4.7 Releasing the completed system

2.4.3 Conclusions
A model of system construction and release in persistent systems has been shown.
This relies upon persistence, first-class procedures, and the sharing of L-values
between programs.  The methodology has been sketched in two persistent
languages with these features, namely Napier88 and PS-algol.

This model of system construction may be likened to the use of scaffolding during
the construction of a civil engineering project.  Scaffolding allows the builders to
access those parts of the construction which would not be accessible by normal
users.  Once the construction reaches completion, the scaffolding is then removed
to prevent this style of access for everyday users.

2.5 Type abstraction
Given that a flexible model of software component sharing may be achieved, a
further desire is to maximise the amount of sharing possible within a system.  To
achieve this, a further requirement for persistent languages is the ability to abstract
over type.  Type abstraction allows a single procedure to be used over data of
various types, in cases where the procedure requires only a partial knowledge of
the type of its operands.  The absence of type abstraction may lead to multiple
copies of code which perform the same logical actions.

For example, consider the procedure specifications in Figure 2.5.1.  The square
brackets in these procedure types denote type parameterisation.  This is merely a
shorthand method which allows abstraction over the syntactic definition of types,
and so saves writing down a full description of a type each time it is used.
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cardinality_array_student : proc( array[ student ] → int )
! returns the number of students in the array

cardinality_list_student : proc( list[ student ] → int )
! returns the number of students in the list

cardinality_array_office : proc( array[ office ] → int )
! returns the number of offices in the array

cardinality_list_office : proc( list[ office ] → int )
! returns the number of offices in the list

Figure 2.5.1 Different type specifications for the same task

In this example a potentially geometric explosion of system components can be
seen.  Even for a task as simple as this, the number of procedures required is the
number of different implementations multiplied by the number of different uses.
This problem becomes even worse with procedures which operate over a number
of different parameters.

In a typeless language, or in a dynamically typed language, only a single procedure
would be required:

cardinality :
! procedure which returns the number of items in a collection

Although the logical definition is now precisely what is required, and is no longer
over-specified, all the benefits associated with static typing have been lost.  For
example, no error would necessarily be detected by program analysis if the
procedure were applied to a data object which did not represent any kind of
collection, and the program would fail during execution.  The difference between
untyped and dynamically typed languages is that the latter would fail in a well-
specified manner.

The ideal situation would be to assert as much static detail as possible, but without
losing the required generality.  The required procedure type would ideally have the
following information contained in it

cardinality : proc(  collection of something → int )
! returns the number of items in the collection

With this type specification the resulting system may still be fully statically type
checked, with the attendant benefits of safety and efficiency.

Such types may be achieved using the mechanisms of universal and existential
quantification, which are particular models of parametric polymorphism and
abstract data types.  Using parametric polymorphism, the type of the collected
values may be abstracted over, and using abstract types the type of the
implementation of the collection may be abstracted over.  In this way the full safety
of static checking is maintained, but no over-specification is necessary.

2.5.1 Universal quantification - specialised reuse
Universal quantification is the mechanism by which one or more of the parameter
types of a procedure may be abstracted over.  For example, the identity function is
one which may be applied to a parameter of any type.  Using the notation
introduced by Cardelli and Wegner [CW85], the type of this function may be
denoted by

∀ t . ( t → t )

which should be read as

"the type of a function which, for all t in the set of types, takes an
argument of type t and returns a result of the same type t"
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In the Cardelli and Wegner set model of types, this type represents the set which is
the infinite intersection of all procedure types which take a single parameter and
return a result of the same type.  In Napier88, the syntax of this type is denoted by

proc[ t ]( t → t )

which should be read in the same way.  To construct an instance of such a
procedure identifiers for the formal parameters and a procedure body are
necessary:

proc[ t ]( x : t → t ) ; x

which may be bound to an identifier by a declaration:

let identity = proc[ t ]( x : t → t ) ; x

To call the procedure, it must be applied to an appropriate type parameter before
being applied to a value:

let seven = identity[ int ]( 7 )

or

let hello = identity[ string ]( "hello" )

or even

let identity2 = identity[ proc[ t ]( t → t ) ]( identity )

Using this type abstraction mechanism it is possible to write a smaller set of
cardinality functions.  A procedure which returns the number of items in a list is
independent of the type of these items, and may be abstracted over in this manner.
The above set of four procedures may be replaced by two, shown in Figure 2.5.2.

cardinality_array : proc[ t ]( array[ t ] → int )
! returns the number of items in the array

cardinality_list : proc[ t ]( list[ t ] → int )
! returns the number of items in the list

Figure 2.5.2 Reducing the type specifications

To use a procedure which calculates the number of students in a list, the
programmer may now write

let number = cardinality_list[ student ]( myList )

instead of

let number = cardinality_list_student( myList )

It can be seen that the programming task is identical in both cases: the programmer
must somehow obtain an appropriate procedure and apply it to the list of students.
The difference is in the way that this procedure is obtained: in the first case, the
type of the particular list may be simply used as a parameter to specialise a more
general procedure, whereas in the second case the type must be used in some way
to aid the finding of the correct procedure.

The first case, however, greatly reduces the number of names which are necessary
within the system, and therefore facilitates the task of finding the correct one.  As
only a single procedure exists, the correctness criteria of the system need only be
applied in a single case, and the chances of error in the system are reduced.  In the
second case, there is a much smaller possibility that the required procedure even
exists.  In terms of software reuse, it is much more likely that the more general
procedure may be suitable for use as a component in a later system.  This also
applies to the construction of a single system, where the types used are prone to
evolution between the software engineering cycles.  Therefore the difficulty of
changing a system between cycles may be lessened.
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2.5.2 Existential quantification
Existential quantification [MP88] is another mechanism which allows types to be
abstracted over, but in the signatures of record types rather than procedure types.
Again using the terminology introduced by Cardelli and Wegner, a simple example
of an existential type may be denoted

∃ i . [ value : i ]

The square brackets here are the notation used by Cardelli and Wegner to denote a
record type.  The above type description may be read as

"the type of a record with a single field value whose type has only the
restriction that it is a member of the set of all types"

The Napier88 syntax which denotes this type is

abstype[ i ]( value : i )

which again may be read the same way.

There are, however, no useful operations over this type.  A more interesting
example is

abstype[ i ]( value : i ;
change : proc( i → i ) ;
print : proc( i → string ) )

As the existential quantifier i quantifies the whole record type, it is possible to
include as part of the definition the types of procedures which manipulate values of
the abstracted type.  However, the concrete type with which the value in the value
field is initialised is not accessible.  Such types therefore have the power to abstract
over the implementation of complex values by keeping their representation types
hidden.  This is the other facility that was required to achieve the goal of only a
single cardinality function.

To create a value of an existential type, a language must contain a type widening
operator which in some way accredits a structure type with its more general
existential form.  In Napier88, the identifiers given to existential types in the type
algebra are overloaded with this type widening capability.  Thus to create a value
of the above type a name must first be assigned for it:

type example is abstype[ i ]( value : i ;
change : proc( i → i ) ;
print : proc( i → string ) )

The name example may now be used as a constructor function whose result is a
value of the abstract type example, effectively losing some of the type information
of its arguments.  For example, if the following procedures are already in scope

successor : proc( int → int )
iformat : proc( int → string )

then

example[ int ]( 7 , successor , iformat )

creates a value of type example.  The explicit type parameterisation could always
be inferred from the existential signature, but in Napier88 is included for syntactic
completeness.  After this value has been created, its abstracted types may never
again be discovered.

Before an existentially quantified type can be used a special binding operation must
be provided to preserve static typechecking properties.  Different instances of an
existentially quantified type may be constructed by abstracting over different
concrete types.  As the values and procedures may abstract over different
implementations, it is essential that they may not be mixed.  Once a type has been
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abstracted over within the context of a single record value, components of that type
should only be compatible with each other.

Napier88 provides a use clause to introduce a temporary static binding, an
example of which is shown in Figure 2.5.3.

use <abstract value> as X in
begin

X( change )( X( value ) )
. . .

end

Figure 2.5.3 The existential use clause

This static binding gives a framework in which it is possible to restrict mixing of
components to those cases where it may be statically proved that they are from the
same existential value.  Without the use clause this may not be possible, as in
general the identity of the abstract value may not be determined statically.  If a
temporary static binding is not insisted upon, then dynamic typechecking must be
introduced [CM88, OTC90].

The specific problem of abstracting over the implementation of a collection type is
now addressed.  For the sake of clarity the operations over a collection type will be
restricted to the addition of a new element and scanning the collection.  When a
new collection is created it is empty.  Scanning will be modelled by a procedure
whose parameter is a collection and whose result is another procedure.  On
successive calls, the result procedure will return a new value from the collection.
When the collection is exhausted, a special fail value will from then on be returned.

An existential type which models a collection of values of type t may be denoted as
in Figure 2.5.4.  As well as the two procedures which operate over collections, the
package contains an identifier theCollection which denotes the collection itself, and
failValue, which is the result of the result of the scan procedure after it has returned
every element in the collection.

type collection[ t ] is abstype[ i ]
(

theCollection : i ;
failValue : t ;
add : proc( i, t → i ) ;
scan : proc( i → proc( → t ) )

)

Figure 2.5.4 An abstract collection type

For each different implementation type, a procedure is required to create a value of
the abstract type using the appropriate implementation.  As this procedure must be
able to create a collection of any type, it is itself universally quantified, where its
type parameter abstracts over the type of values within the collection.  The
procedure has a single parameter, which must be supplied a value of the collected
type to be used by convention as a fail value.  For example, Figure 2.5.5 shows
how a collection using a list implementation may be defined.
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let listCollection = proc[ t ]( failValue : t → collection[ t ] )
begin

!* specify representation type (list )
rec type list is variant( cons : node ; tip : null )
& node is structure( hd : t ; tl : list )

!* procedure to create empty list
let createList = proc( → list ) ; list( tip : nil )

!* procedure to add an element to a list
let addToList = proc( l : list ; x : t → list )

list( cons : node( x, l ) )

!* procedure which generates another procedure, each call
!* returns the next node from the original list parameter
let scanList = proc( listPointer : list → proc( → t ) )
begin

proc( → t )
project listPointer as temp onto

cons : begin
listPointer := temp( tl )
temp( hd )

end
default : failValue

end

!* specialise the collection type to collection[ t ], and then
!* specialise this existential type to abstract over list,
!* Then use this to construct a new abstract package
collection[ t ][ list ]( createList(), failValue, addToList, scanList )

end

Figure 2.5.5 Creating a collection for a particular implementation

Some points of Napier88 need to be explained for this example.  The
representation type, defined recursively as list, is a variant labelled by cons, a list
node, or tip, a trivial value representing the end of the list.  The type null has only
a single value, pre-defined as nil.  A value of a variant type may be created by
using a named variant type as a constructor function, and the branch must be
specified as overlapping types are allowed.  The project clause may be used to
test a variant value for its branch.  This also introduces an identifier, in this case
temp, of the branch type after a successful projection.  One further point to notice
is that the procedure returned by scanList uses the block retention semantics of
Napier88;  the update performed to listPointer will affect successive calls of the
procedure.

As a consequence of orthogonal persistence, values of universally and existentially
quantified types may be placed in the persistent store in the same way as any other
value.  For the rest of the examples, it is assumed that a store with the structure
shown in Figure 2.5.6 already exists.  Each of the rectangles represent
environments.  The collection environment contains two others, one of which
contains the operations defined over collections, and the other of which contains
instances of collections.



42

PS

students

instancesoperations

collectionsIO

Figure 2.5.6 The structure of a persistent store

Figure 2.5.7 shows how the generic procedure shown in Figure 2.5.5 may be
placed in the persistent store in a suitable location, probably in an environment
which contains a number of other procedures which generate different collection
types.

let listcollection = ...

use PS() with collections : env in
use collections with operations : env in
in operations let listRep = listCollection

Figure 2.5.7 Placing the generator in the store

Another program may now be used to create a new collection of, for example,
students and to place this also in the persistent store.  This is shown in Figure
2.5.8.

use PS() with collections : env in
use collections with operations, instances : env in
use instances with students : env in
use operations with listRep : proc[ t ]( t → collection[ t ] ) in
begin

type student is
structure( age , matricNo : int ; name : string )

let dummyStudent = student( 0,0,"" )

in students let classOf90 = listRep[ student ]( dummyStudent )
end

Figure 2.5.8 Generating and storing a collection of students

Figure 2.5.9 shows how the fully general cardinality procedure may be written and
placed in the persistent store at a suitable location.
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use PS() with collections : env in
use collections with operations : env in
in operations let cardinality = proc[ t ]( C : collection[ t ] → int )
begin

let res := 0
use C as thisOne in
begin

let getNext = thisOne( scan )( thisOne( theCollection ) )
while getNext() ~= thisOne( failValue ) do res := res + 1

end
res

end

Figure 2.5.9 Storing a generic cardinality procedure

Finally, Figure 2.5.10 shows how a query to discover the number of student in the
Class of '90 may be written by binding to the appropriate components within the
store and applying them.

type student is structure( age , matricNo : int ; name : string )

use PS() with IO , collections : env in
use IO with writeString : proc( string ) ; writeInt : proc( int ) in
use collections with operations , instances : env in
use operations with cardinality : proc[ t ]( collection[ t ] → int ) in
use instances with students : env in
use students with classOf90 : collection[ student ] in
begin

let noOfStudents = cardinality[ student ]( classOf90 )
writeString( "The number of students in the Class of '90 is " )
writeInt( noOfStudents )

end

Figure 2.5.10 A query using the generic cardinality procedure

Two kinds of type abstraction have been used here to avoid the necessity of
overspecifying the type of general components.  A single procedure has been
specified which calculates the cardinality of any collection.  Without using type
abstraction a potentially large number of procedures would have been necessary
instead.  This single procedure loses none of the safety of the static typechecking,
and does not introduce any extra necessity for dynamic type checking.

2.6 Conclusions
It has been shown how a persistent programming system may be used to solve
some of the problems associated with the incremental construction of large
programming systems.  In particular, it has been shown how code may be shared,
rather than copied, whilst preserving the benefits of a strongly typed programming
language.  Apart from orthogonal persistence, two other language facilities are
required to allow this.  These are a flexible binding mechanism and type
abstraction.

A flexible binding mechanism has been shown which is able to model a number of
different methodologies for the binding of program components.  In particular, the
mechanism allows the incremental construction of a complex software system,
which may later be tightly bound together as a single unit when the system is to be
released.

Type abstraction is also necessary to maximise the sharing of software
componentry, as it allows the specification of procedures whose specification does
not depend upon a full type description of their parameters.  Universal
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quantification allows abstraction over the type of a procedure itself, and existential
quantification over the type of a parameter's implementation.  Using these features
a single cardinality procedure was constructed and placed in the persistent store,
from where it may be shared by many different applications.

Writing component software using these paradigms is only slightly more difficult
than writing software specific for a particular task.  Using such software,
however, is no more difficult than using conventional library routines.
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3 Protection and viewing

3.1 Introduction
Large bodies of data are inherently valuable, and must be protected against
accidental or deliberate misuse.  This is true in both persistent and non-persistent
programming systems.  However, protection mechanisms in a persistent system
may be modelled quite differently from a non-persistent system [MBC90,
CDM90].

Input data

Programming language
handles type-safe

transient data

Permanent data
beyond jurisdiction

of programming
language

Common operating system interface

Protection from
other applications

by operating system

Figure 3.1.1 Traditional protection strategy

Traditionally, protection is provided by a type system when data is manipulated by
a programming language, and by the operating system between program
invocations.  The operating system protection mechanisms are necessary because
of the common operating system interface, available to any other user of the same
operating system.  This is shown graphically in Figure 3.1.1.  Protection of
permanent data may not be programmed within a high-level language as the type
system may be broken using the operating system interface to the data.  It must
therefore be programmed below the level of this interface, which increases the
difficulty of providing flexible protection mechanisms suitable to the individual
needs of data.

In a persistent system, the storage of data beyond a single program invocation is
handled by the programming language mechanism, and no common operating
system interface is necessary.  This is depicted in Figure 3.1.2.  The only route by
which data may be accessed is through the programming language, and so a single
type system may be used to enforce protection upon both transient and permanent
data.  High-level constructs, such as procedural encapsulation, may be relied upon
for the entire lifetime of the data, as it never passes outside the language system.
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Input data

Programming language
handles type-safe

transient data

Permanent data also
within the jurisdiction

of  the type system No direct access is possible
to permanent data

Figure 3.1.2 Persistent protection strategy

There are some systems which lie between these two extremes, such as
programming languages which provide a strongly-typed file system interface
[Ich83, Mil83].  These retain programmed protection from within a single
language system, but if a common interface is used for permanent data then the
type system may be compromised by an application written in a different language.

This chapter is an examination of the style of protection which is possible in a
persistent system.  After a general discussion of data integrity and mechanisms for
its protection, various methodologies suitable for persistent systems are discussed.
It is then shown how a database viewing mechanism may be constructed in a high-
level language using procedural encapsulation and existentially quantified data
types.

3.2 Protection of integrity

3.2.1 Integrity of data
Persistent object systems support large collections of data that have often been
constructed incrementally by a community of users [ABC83]. Such data is
inherently valuable and requires protection from deliberate or accidental misuse.  If
data is misused in such a way that the accuracy or consistency of the data model is
compromised, it is said to have lost its integrity.  If a body of data loses its
integrity, its value is greatly diminished.

Any computer system must have means of limiting the possible ways in which the
integrity of data may be lost.  The common factor of all systems which preserve
integrity is that they limit the operations which may be performed on data by a
user.  These limitations are seen throughout most computer systems, ranging for
example from hardware addressing protection schemes to complex software
integrity constraints.
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There are two categories of failure by which loss of integrity may occur.  The first
is by the failure of a system so that it does not maintain its specified protection
protocols.  An extreme example of this is a disk head crash, which may violate a
file protection scheme defined by the operating system.  Another example would
be an error in the operating system software which allowed users to access data for
which they did not have sufficient privilege.  In general, the extent of the damage
which may occur as the result of such failure may not be determined in advance,
and the best that can be done is the incremental saving of the system state so that it
may be restored at a later date.  This class of failure will not be further addressed
here.

The second class of failure is caused by protection mechanisms which are
insufficient to accurately specify the integrity of the data.  The data may then lose
its integrity by the application of legal operations to it.  A number of mechanisms,
such as capability systems, encryption methods, type systems and database
integrity constraints have been used to provide protection against data misuse in
computer systems.  All of these mechanisms add security, but at varying degrees
of cost.

Once a program gains access to data it may often alter it in a legal but undesirable
manner.  This can happen because the constraints placed on the user by the
capability system, type system or integrity constraint system provide rather coarse
grain control over the data.  The principle of minimum necessary privilege may
cause the protection mechanism to be too fine grained to be either enforced
efficiently or expressed succinctly.

Thus the second problem with integrity is that the checking system may cause the
specified integrity of the data to be preserved, but it may still contain information
that is no longer of real use or is even erroneous. That is, even when enforced, the
protection mechanism will not guarantee that programs produce desirable
transformations on the data. For example, the age recorded for a particular person
may be incorrect. The challenge is to find an acceptable level of security that can be
obtained for a reasonable price in terms of efficient checking and succinct
expression.

3.2.2 Protection in persistent systems
Traditionally, computer systems rely upon the type systems of individual
programming languages as the only protection mechanism for transient data, and
provide a number of different mechanisms, such as file system protection or
database constraints, for permanent data.  This is because transient and persistent
data exist in two separate universes, with different operations available upon them.
In persistent programming systems, however, there is no clear difference between
transient and permanent data, and this two-level protection scheme is not an
appropriate model.  A different protection strategy is required.

Another reason for the traditional two-level protection strategy is that data
manipulated within a program is not normally accessible by another program, until
it has been written to the permanent store though the operating system interface.
The access protection schemes provided for permanent data are therefore not
relevant to data manipulated within a program.  Again, this is not true in a
persistent programming system, where there is not necessarily a distinction
between shared and non-shared data.

A major difference between persistent and traditional programming systems is that
the persistent language's type system governs all data within the system.
Traditionally, data is not type-safe after it has been exported from the context of an
executing program.  The provision of type-safe permanent data provides one kind
of control that is not available in a non-persistent model.  If a programming
language system does not have direct and unshared physical control over data
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storage, then it may not guarantee the type safety of stored data.  This is because
there would be no way of preventing an application programmed in a different
language from accessing the data.

Type systems by themselves, however, lack two important categories of integrity
protection.  These are access protection, to prevent data from being accessed by
programs which do not require it, and integrity constraints, which are normally
finer-grained that those which may be modelled by type systems.

Both of these categories of protection may be explicitly programmed in many
programming languages.  However, in a non-persistent system, this protection
may not be extended to data exported from a program.  This is because the
protection specified can not be guaranteed as exported data is not type-safe.

In a persistent system, however, data storage is performed entirely within a
programming language, and there is no problem with the storage and sharing of
any kind of data.  Access protection and integrity constraints may therefore be
flexibly programmed according to the needs of the individual data.

Access protection may be programmed in a persistent system by the use of
constructs which allow information hiding.  These include inclusion
polymorphism, abstract data types, and higher-order procedures.  What these have
in common is that they may hide part of the state of a program by introducing state
which is not directly denotable.  This makes it impossible to specify another
program which will access the hidden state.

3.3 Information hiding
Information hiding is defined here as any programming method enforced by the
type system of a language which limits the computation allowed upon data.  This
may be achieved by restricting either the access or type interface to the data.  Some
languages allow abstractions over the basic operations defined by the type system,
including complex and dynamically evaluated constructs.  Where such abstractions
have type system support they are usually referred to as abstract data types.
Information hiding may be relied upon as a protection mechanism within the
context of a strong type system, and in particular within a persistent programming
system.

Programming language type systems themselves operate by the use of information
hiding over the operating system and hardware operations available to them. This
abstraction is at a lower level, and is not necessarily available to the programmer.
For example the integer type is defined in most type systems not as a mathematical
integer but instead as a restricted interface over its hardware implementation. In
strongly-typed languages the user is prevented from using operations such as
bitwise rotate and xor on these values, and extra functionality such as conversion
to and from equivalent character strings is also provided. Similarly, in most
persistent systems, it is the use of information hiding which prevents the use of
arbitrary arithmetic on address values.

There are three well-known mechanisms which allow the programming of
information hiding within a strong type system.  These are subtype inheritance,
procedural encapsulation ( 1st-order information hiding ) and existential data
types ( 2nd-order information hiding ).  Subtype inheritance achieves protection
by removing type information, causing the static failure of programs which may
try to perform undesirable accesses.  1st-order information hiding prevents the
protected data from being named by an untrusted program, allowing access only
through a procedural interface.  2nd-order hiding is somewhere between these
two, allowing access mainly through procedures, but also allowing the protected
data to be named.  This data is, however, viewed through a mechanism which
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causes type information loss, and therefore allows only a limited set of operations
to be performed on it.  These three mechanisms may also be used in combination.

3.3.1 Subtype Inheritance
In general, systems which allow subtype inheritance allow any data value to be
used in place of one with less functionality. One type is a subtype of another if all
operations allowed on the second type are also allowed on the first. In the most
general form of subtyping, often referred to as inclusion polymorphism, it is type
correct for the use of any value to be replaced by the use of any of its subtypes.

A number of different semantics are possible for the definition of a subtype rule.
Here the semantics of Cardelli [Car84] are adopted, using structural type
equivalence and an implicit subtyping rule.  It should also be made clear that the
examples in this section do not use Napier88, which has no subtyping.

Subtype inheritance is usually regarded as a general modelling technique. In
particular it allows the declaration of procedures which operate over any type with
at least a set of required properties. However, using an object as one of its
supertypes is also equivalent to hiding some of the functionality which the object
possesses. For example, the following introduces the names employee and person
as record types:

type employee is structure( name , address : string ; salary : int )
type person is structure( name , address : string )

In the above, two structure types are declared. The first, called employee, has three
fields called name, address and salary with types string, string and integer
respectively. The second, called person, has two fields called name and address
both of type string. Type employee is a subtype of type person, and an object of
type employee may be substituted in any context where an object of type person is
expected. This would have the effect of hiding the salary field by the loss of type
information. If another user is only to be allowed this restricted access to employee
objects, this view of the object may be exported, for example by use of an explicit
type coercion:

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )
let exportJoe : person = joe

In this joe is declared to be an object of type employee with the given field values.
exportJoe is of type person, denoted by the type after the ":" symbol, but has the
value joe. This means that a user of the value exportJoe will now have the value of
the original record.  However, it is not possible to express an operation to access
the salary field of this value due to the restrictions of the static type system.  That
is, the salary field cannot be used with the object exportJoe since such a program
would fail during static analysis.

This mechanism allows only simple information hiding compared with the other
methods of 1st and 2nd order information hiding.  Its advantages are that it is
simple and elegant to use, and is easy to understand.

There are a number of problems which arise with inclusion polymorphism,
particularly in conjunction with languages with update.  Various solutions have
been proposed to these, which are beyond the scope of this thesis [Car89, WZ89].
The problems are not believed to be insurmountable, and persistent languages with
update and inclusion polymorphism, such as Galileo [ACO85], have been
successfully implemented.
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3.3.2 1st-order information hiding
Access to data can also be restricted by only allowing access to procedures which
are defined over the data, and not allowing the data itself to be visible.  This is a
common model for abstract data types, and is known as 1st-order information
hiding [CW85].  It may be achieved in a number of ways but it will be described
here in terms of a language which has first-class procedure values and block-style
scoping.  Access to the original data may then be removed simply by its identifier
becoming unavailable.  For example, the following type defines a Person as a
record containing procedures which define three operations:

type Person is structure
(

getName,
getAddress : proc( → string ) ;
putAddress : proc( string )

)

This allows a finer grain of restriction than that achieved by subtype inheritance, in
that the name and address may be read, but only the address may be changed.
Access to the data may be removed by placing its declaration in a block so that its
identifier is lost from scope after the Person object has been constructed.  This is
shown in Figure 3.3.1.  The exported procedures, which have the data
encapsulated within their closures, are then the only way in which the original
value may be accessed. Again, this relies upon the static properties of the system to
prevent the access since a program which attempts direct access to joe will fail
statically by the scoping rules of the language.

let exportJoe =
begin

let joe = employee( "Joe Doe", "1 Assignment Boulevard", 100000 )
Person( proc( → string ) ; joe( name ),

proc( → string ) ; joe( address ),
proc( new : string ) ; joe( address ) := new )

end

Figure 3.3.1 Hiding the Data Representation

In Figure 3.3.1, exportJoe is declared to have the value obtained by executing the
block. This is a structure of type Person with three procedure fields. Each
procedure uses the object joe which is inaccessible by any other means after exit
from the block.

Further flexibility is possible using encapsulation in that dynamic properties may
be specified, and access may be denied dynamically if required. For example,
perhaps there exists an integrity constraint that an address may not be more than
100 characters long. This can be programmed in the procedural encapsulation, as
shown in Figure 3.3.2. The only difference here is that the putAddress procedure
checks the dynamic constraint, and raises an exception if it is not met.
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let exportJoe =
begin

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )
Person( proc( → string) ; joe( name ),

proc( → string) ; joe( address ),
proc( new : string ) ;

if length( new ) ≤ 100
then joe( address ) := new
else raise longAddress( new ) )

end

Figure 3.3.2 Refining the Interface

A particular example of a dynamic constraint allows access to the original data to
be protected by password. A procedure can be provided in the interface which will
return direct access to a user with sufficient privilege.  Figure 3.3.3 shows the
extended definition required, with an extra procedure in type extraPerson which
returns the representation of the data only if it is supplied with a string equal to the
password used to create it. In this situation, the programmer responsible for
constructing the view of the data will have enough information to extract the
representation. Alternatively, it would be possible to arrange system-wide
passwords which would decide whether access is allowed or not.

type extraPerson is structure
(

getEmployee : proc( string → employee ) ;
getName,
getAddress : proc( → string ) ;
putAddress : proc( string )

)

let exportJoe = proc( password : string → extraPerson )
begin

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )
extraPerson( proc( attempt : string → employee )

if attempt = password
then joe
else failValue,

proc( → string ) ; joe( name ),
proc( → string ) ; joe( address ),
proc( new : string ) ; joe( address ) := new)

end

Figure 3.3.3 Protection by Password

This technique gives a result not dissimilar from the kind of module provided by
Pebble [BL84] and a high level language analogy of capabilities [DvH66, NW74].

Instead of a string password, an unforgeable "software capability" may be used.
An example of this, otherwise identical to that of Figure 3.3.3, is shown in Figure
3.3.4.  In place of the string password is one of type capability, a void structure
type.  The equality operation in "attempt = password" means a test of identity on
the void structure type.  A void structure value is passed to the exportJoe
procedure which creates the package.  After this, the getEmployee procedure may
never be called successfully without access to the same instance of this void
structure.  If the capability is adequately protected, then access protection for the
procedure is of no consequence.  In this way a single capability may be used to
protect a number of procedure closures.
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type capability is structure()

type extraPerson is structure
(

getEmployee : proc( capability → employee ) ;
getName,
getAddress : proc( → string ) ;
putAddress : proc( string )

)

let exportJoe = proc( password : capability → extraPerson )
begin

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )
extraPerson( proc( attempt : capability → employee )

if attempt = password
then joe
else failValue,

proc( → string ) ; joe( name ),
proc( → string ) ; joe( address ),
proc( new : string ) ; joe( address ) := new )

end

Figure 3.3.4 Protection by Software Capability

This technique relies upon the referential integrity of the persistent store.  It is a
consequence of this that for any type over which identity is defined, the identity of
any value is unique for the lifetime of the system.  Therefore the identity of such a
value is unforgeable.  If such a value is bound to the closure of a procedure as its
password, then to use the procedure a programmer must somehow have access to
the same value.

In Chapter 2 it was shown how the data type environment in Napier88 could be
used to impose a flexible naming scheme on the persistent store.  As environments
are first-class values, procedural encapsulation may be used to protect such a
naming scheme.  Figure 3.3.5, for example, shows how a procedure which
models a password-protected environment may be placed in the persistent store.

use PS() with user, IO, failValue : env ; environment : proc( → env ) in
use IO with writeString : proc( string ) ; readString : proc( → string ) in
begin

let encapsulated = environment()

writeString( "Please enter password for environment richard: " )
let password = readString()

in user let richard = proc( attempt : string → env )
if attempt = password then encapsulated else failValue

end

Figure 3.3.5 A password-protected environment

The first use clause here asserts the presence within the persistent store of
environments with the identifiers user, IO, and failValue, as well as the procedure
environment which may be used to create an empty environment.  IO is then
asserted to contain procedures readString and writeString, for communicating with
the user.  Inside a new block, a new environment encapsulated is first created.  A
password is then read from the user.  This password and the new environment are
both encapsulated within the closure of a new procedure, which returns the new
environment on presentation of the same password.  This procedure is placed in
the user environment.
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A further consequence of referential integrity within the persistent store is that a
number of different interfaces may be programmed and exported from the original
data.  This allows the construction of multiple views on the same data.  Figure
3.3.6 shows a program which places two interfaces to the same item of data in the
persistent store; one interface may read but not update the salary field, the other
may update but not read it.  These interfaces are placed in password-protected
environments, respectively called readers and writers.

use PS() with IO , user : env in
use IO with writeString : proc( string ) ; readString : proc( → string ) in
use user with readers , writers : proc( string → env ) in
begin

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )

writeString( "Please enter password for environment readers: " )
in readers( readString() ) let readJoeSalary =

proc( → int ) ; joe( salary )

writeString( "Please enter password for environment writers: " )
in writers( readString() ) let writeJoeSalary =

proc( new : int ) ; joe( salary ) := new
end

Figure 3.3.6 Different interfaces on the same data instance

This program again makes some static assertions about the data value it expects to
find in the store when it is executed.  These include two procedures, readers and
writers, which model password-protected environments.  In the main block, a new
encapsulated value is first declared.  Two new procedures are declared which
contain this value in their closures, and respectively placed in the protected
environments, assuming that the correct password is presented for each by the user
of this program.

This combination of type system protection and referential integrity may be used to
provide a flexible viewing mechanism over the persistent store.

3.3.3 2nd-order information hiding
2nd-order information hiding does not restrict access to the protected values, but
instead abstracts over the type of the protected value to restrict operations allowed
on it. Thus the protected values may be manipulated for some basic operations,
such as assignment and perhaps equality, but their normal operations are not
allowed due to the type view. This allows the representation objects themselves to
be safely placed in the interface along with the procedures which manipulate them.

This power can almost be achieved using a combination of subtyping and 1st-order
hiding. For example, Figure 3.3.7 shows how a reference to the representation
may be safely placed in the interface by effectively removing all type information
from it. The representation may be accessed as a value, but only a highly restrictive
access is possible as there is very little type information available. It may be
assigned and tested for equality, but none of its fields may be accessed due to the
static typing restrictions.

Within the block expression joe is used to initialise one of the fields of type
structure( ). joe is of type employee, which is a subtype of structure( ) and the
initialisation is legal. However, the fields of joe may not be accessed via this route.
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type Person is structure
(

absPerson : structure( );
getName,
getAddress : proc( → string );
putAddress : proc( string )

)

let exportJoe =
begin

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )
Person( joe,

proc( → string ) ; joe( name ),
proc( → string ) ; joe( address ),
proc( new : string ) ; joe( address ) := new )

end

Figure 3.3.7 Removing the Type Information

Using this technique however it is not possible to know that two such abstracted
values are the same type.  This may be desirable for some applications, for
example, a Person may also have a father and mother in the interface, along with a
field for a favourite parent which changes between them. Subtyping alone does not
provide enough information to allow this. For example, if the definition is:

type Person is structure
(

absPerson, mum , dad , favourite : structure( ) ;
getName , getAddress : proc( → string ) ;
putAddress : proc( string )

)

then it is not in general allowable to write

exportJoe( favourite ) := exportJoe( mum )

as there is no way of ensuring statically that mum and favourite are the same type.

One mechanism which allows 2nd-order information hiding is the existential data
type as described in Chapter 2.  This allows the definition of interface types which
are abstracted over.  As names for these types are declared before the existential
type definition, different parts of the definition may be bound to the same type.  As
before, only the basic operations defined on all types are allowed over the
abstracted types, but values which are abstracted by the same name are statically
known to be compatible.  Person as above may be redefined as:

type Person is absType[ absPersonType ]
(

absPerson,mum,dad,favourite : absPersonType ;
getName,getAddress : proc( → string ) ;
putAddress : proc( string )

)

The identifier in square brackets before the body of the type declaration declares a
name for a type which is abstracted over.  This allows a tighter definition of such
types, as it can now be seen where the same type appears in the interface.
Components of the same instance of an interface may be bound together by a use
clause.  For example,

use exportJoe as joe in
joe( favourite ) := joe( mum )
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may be statically determined to be type correct, as the favourite and mum fields
must be type compatible to allow the object to be created.

This static binding of equivalent types may also be used to allow the interface
procedures to be defined over the type of the hidden representation. A more
flexible definition which allows the name and address operations to be performed
on any of the people in the interface would be:

type Person is abstype[ absPersonType ]
(

absPerson,mum,
dad,favourite : absPersonType ;
getName,getAddress : proc( absPersonType → string ) ;
putAddress : proc( absPersonType,string )

)

This allows the definition of n-ary operations over the hidden representation type.
For example, a procedure may be placed in the interface which tests if two people
have the same address:

type Person is absType[ absPersonType ]
(

absPerson,mum,
dad,favourite : absPersonType ;
getName,
getAddress : proc( absPersonType → string ) ;
putAddress : proc( absPersonType,string ) ;
sameAddress : proc( absPersonType,absPersonType → bool )

)

This example illustrates a major difference in power between 1st-order and 2nd-
order information hiding. With 2nd-order, a type is abstracted over, and
procedures may be defined over this type. With 1st-order hiding, it is the object
itself which is hidden within its procedural interface. Procedures which operate
over more than one such object may not be defined sensibly within this interface.
Therefore any operations defined over two instances must be written at a higher
level, using the interface. At best this creates syntactic noise and is inefficient at
execution time. It also means that such operations are defined in the module which
uses the abstract objects, rather than the module which creates them. Some
examples are not possible to write without changing the original interface.

3.3.4 Conclusions
The mechanisms of subtype inheritance, procedural encapsulation, and existential
data types have been discussed with relation to the programming of protection
within a persistent system.  These mechanisms may be used to program protection
only in a persistent system; in a non-persistent system the protected data is always
susceptible to abuse by the common operating system interface through which its
storage must be arranged.

Protection in database systems is normally provided by viewing mechanisms.
These allow database programmers to set up different interfaces over the same
data, so that users with different privileges may perform different operations.  It is
now shown how the information hiding techniques presented above may be used
to program very flexible viewing mechanisms within a persistent programming
system.
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3.4 Viewing mechanisms
Viewing mechanisms have been traditionally used in database systems both to
provide security and as a conceptual support mechanism for the user.  Views are
an abstraction mechanism that allow the user to concentrate on a subset of types
and values within the database schema whilst ignoring the details of the rest of the
database. By concentrating the user on the view of current interest both security
and conceptual support are achieved.

Persistent programming languages integrate both the technology and methodology
of programming languages and database management systems.  One particular area
of difficulty in this integration has been the friction caused by the type mechanisms
of programming languages and databases being incompatible.  Programming
languages tend to provide strong, often static type systems with little to aid the
expression or modelling of large uniform structure.  Databases, on the other hand,
are much more concerned with capturing this notion of bulk expression than with
static or even strong typing.  Both, however, are concerned with the integrity of
the data.

Another area of difficulty in the integration of programming languages with
database systems has been to demonstrate that the facilities found necessary in both
systems are not lost or compromised by the integration.  Viewing mechanisms
which have been used so successfully in the database community have not found
widespread acceptance in the programming language world.  They therefore
constitute a source of irritation in the above integration.

3.4.1 Database viewing mechanisms
Viewing mechanisms are traditionally used to provide security and information
hiding.  Indeed, in some relational database systems, such as INGRES [SWK76],
a relational viewing mechanism is the only security mechanism available.  A view
relation is one which is defined over others to provide a subset of the database,
usually at the same level of abstraction. A slightly higher level may be achieved by
allowing relations to include derived data, for example, an age field in a view
might abstract over a date of birth field in the schema.

Security provided by view relations is often restricted to simple information hiding
by means of projection and selection. For example, if a clerk is not permitted to
access a date of birth field, then the projected data may contain all the attributes
with the exception of this one.  If the clerk may not access any data about people
under the age of twenty-one, then the view relation will be that formed by the
appropriate selection.

Read-only security may be obtained in some database systems by restricting
updates on view relations.  Although this restriction is normally due to conceptual
and implementation problems, rather than being a deliberate feature of a database
system design, it may be used to some effect for this purpose. Some systems, for
example IMS [IBM78], go further than this, and the database programmer can
allow or disallow insertions, deletions, or modifications of data in view relations.
This allows a fine grain of control for data protection purposes.

There are a number of problems associated with view relations.  Often a new
relation is created, with copied data.  This means that updates (where permitted) to
the view relation will not be reflected in the underlying relations, with the obvious
loss of integrity.  This problem may be partly solved by the use of delayed
evaluation, where names are not evaluated until used in a query. This allows the
database programmer to define views over the database schema before all of the
data is in place.

Those systems where data copying does not occur seem to incur major integrity
problems.  For this reason, System R [ABC76] disallows updates on views which
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are constructed using a join operation.  There is a more serious example in IMS,
where deletion of a segment, if permitted, also deletes all descendant segments,
including cases where they are not even a part of the view in question!

A much higher-level concept of a viewing mechanism is provided by the UMIST
Abstract Data Store [Pow85].  This is a software tool which supports abstract data
objects together with mechanisms for providing different views over them.  The
system provides a consistent graphical user interface which allows the user to
directly manipulate objects via multiple views.  Changes in objects are
automatically reflected in other views since they contain no information about the
state of objects, only the manner in which they are displayed.  This provides a
powerful tool for a user to build a store of objects which may be maintained and
incremented interactively, and it seems possible that it may be sufficient for a
surprisingly large class of problem.  However, the inability to write general-
purpose programs over the store must be seen as a major drawback for many
applications.

3.4.2 View construction in Napier88
For a programming example, we will use a banking system in which customers
have access to their accounts through autoteller machines.  This poses the classic
database problems of having a very large bulk of updateable data with different
users requiring different operations on it.  Here we will concentrate on views in the
system.  We shall restrict ourselves at first to the autoteller machines, which have
different styles of access to accounts according to which bank the machine
belongs.  A customer's own bank may have full access to an account whereas
another bank may not access the customer's account balance, but must know if a
withdrawal may be made.

The Napier88 features of existential data types and environments are described in
detail in Chapter 2.

3.4.2.1 Creating a concrete representation

We will begin by defining a concrete representation of a user account and the
procedures that operate on that type. Here we are not interested in how the account
data is stored ( i.e. in a relation, a β-tree, etc. ), and we will assume that we have
previously declared a lookup function indexed by account number which returns
the account associated with that account number.

We will implement an account using a record-like data structure which in Napier88
is called a structure. The structure type, called account, has three fields: balance
which holds the account balance; oLimit which contains the overdraft limit and pin
which contains the password necessary to access the account. There is one
instance of this type in the database for each user account.

One special instance of this type called failAc is created to use as a fail value. This
is used in the getAc procedure if an illegal password is supplied when attempting
to access an account.

Five procedures operate on the account directly, they are:

withdraw This procedure checks to see that sufficient funds are in the
specified account to make a withdrawal. If there are, the
amount specified is debited from the account.

balance This returns the balance of an account.

oLimit This returns the overdraft limit of an account, this is a
negative number.
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sufficient This indicates whether sufficient funds are in an account to
make a withdrawal of a specified amount.

getAc This procedure interfaces with the persistent store, it looks
up an account in an associative storage structure and checks
the supplied password. If the password matches the pin
field in the account, the account is returned, otherwise the
fail value failAc is returned.

The Napier88 code necessary to implement the concrete type representations and
the code to operate on the concrete type representation of an account is shown in
Figure 3.4.1.

As mentioned earlier, we have made use of a predefined lookup procedure, as its
implementation is of no interest in this context.

type account is structure( balance,oLimit : int ; pin : string )
let failAc = account( 0,0,"" ) ! This is a fail value

let withdraw = proc( debit : int ; ac : account )
begin

let result = ac( balance ) - debit
if result > ac( oLimit ) and debit > 0 do ac( balance ) := result

end

let balance = proc( ac : account → int ) ; ac( balance )

let oLimit = proc( ac : account → int ) ; ac( oLimit )

let sufficient = proc( debit : int ; ac : account → bool )
ac( balance ) - debit > ac( oLimit )

let getAc = proc( accountNumber : int ; passwd : string → account )
begin

let new = lookup( accountNumber )
if new( pin ) = passwd then new else failAc

end

Figure 3.4.1 The concrete representation and procedures

3.4.2.2 Placing concrete representations in the store

Of course, in a real bank there would be a requirement for the procedures and data
defined above to persist over a long period of time. In order to achieve this in
practice it is necessary to place them in the persistent store. We will assume that an
environment called bank already exists in the root environment.  The above
example may be rewritten as shown in Figure 3.4.2.

use PS() with bank : env in
begin

let failAc = account( 0,0,"" ) ! Must be declared both in local
in bank let failAc = failAc ! scope and in bank environment

in bank let withdraw = proc( debit : int ; ac : account ) ; ...
in bank let balance = proc( ac : account → int ) ; ...
in bank let oLimit = proc( ac : account → int ) ; ...
in bank let sufficient = proc( debit : int ; ac : account → bool ) ; ...
in bank let getAc = proc( accountNumber : int ;

passwd : string → account ) ; ...
end
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Figure 3.4.2 Using the persistent store

Since the environment called bank is reachable from the persistent root the
procedures will persist when the program terminates.  However, notice that if we
allow programmers access to the concrete representations, the database will be
vulnerable to misuse. For example, the unscrupulous programmer could write,

let myAc = getAc( 34589001,"3478" )
myAc( balance ) := myAc( balance ) + 1000000

yielding a net profit of one million pounds (a very high programmer productivity
ratio). For this reason, it is necessary to protect the concrete representation.

3.4.2.3 Creating abstract view types

For the purpose of this example we will define two abstract data types which
provide interfaces for the procedures shown in the last section. The first is to be
used by an account holder's own bank. The abstract type shown below, called
localTeller has the following five fields:

failAc: is returned by getAc if a password check fails,

getAc: which will take as input an account number, and a secret
password typed into the machine by the customer, and
provided that the secret number is correct, return the
representation of that account, otherwise it will return the
fail value failAc,

withdraw: which will remove the amount specified from the account,
unless there are insufficient funds, in which case it will do
nothing,

balance : which returns the balance in the account, and,

oLimit : which returns the account overdraft limit.

The type of localTeller is defined in Figure 3.4.3.

type amount is int ! an amount of money
type number is int ! an account number
type passwd is int ! a secret number

type localTeller is abstype[ ac ](
failAc : ac
getAc : proc( number,passwd → ac )
withdraw : proc( amount,ac )
balance : proc( ac → amount )
oLimit : proc( ac → amount ) )

Figure 3.4.3 The type of a local autoteller machine

The concrete type named as ac, may never be discovered, therefore the
programmer is forced to access accounts only using the procedures provided in the
interface of the abstract data type. Notice that the fail value failAc appears in the
interface of the abstract type. This permits the user of an instance of this abstract
type to check for failure in the application of the getAc procedure. This is only
possible because in Napier88 equality is defined over all values of all types,
including values whose types are abstracted over. Note that it is not possible to
write such an abstract type in standard ML [Mil83] since equality is defined only
over the so called 'eq' types – a subset of the type domain.  In Napier88, equality
is defined as identity on all non-scalar values.

Similarly, we can define another abstract type for use by another bank. Other
banks are not allowed to discover a customer's balance or limit so a slightly
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different interface is required. In this type a procedure called sufficient is provided
so that the bank may ensure that sufficient funds are available in the account. We
may define the type remoteTeller as in Figure 3.4.4.

type remoteTeller is abstype[ ac ]
(

failAc : ac
getAc : proc( number,passwd → ac )
withdraw : proc( amount,ac )
sufficient : proc( amount,ac → bool )

)

Figure 3.4.4 The type of a remote autoteller machine

3.4.2.4 Creating instances of views

Here, an instance of the type localTeller and an instance of the type remoteTeller
are required to act as views over the single implementation shown above. This may
be achieved by creating instances of the two types as shown in Figure 3.4.5.

use PS() with tellerEnv, bank : env in ! Assuming these environments
use bank with ! have been properly constructed

failAc : account ; ! and initialised
withdraw : proc( int,account ) ;
balance,
oLimit  : proc( account → int ) ;
sufficient : proc( int,account → bool ) ;
getAc : proc( int,string → account ) in

begin
in tellerEnv let local = localTeller[ account ]

( failAc,
getAc,
withdraw,
balance,
oLimit )

in tellerEnv let remote = remoteTeller[ account ]
( failAc,

getAc,
withdraw,
sufficient )

end

Figure 3.4.5 Placing the interfaces in the store

The program extracts the procedures placed in the environment denoted by bank
and creates an instance of the types localTeller and remoteTeller. These are
initialised using the procedures from the bank environment.  Using this technique,
the level of procedural indirection normally found in viewing mechanisms is not
required. Consequently there are both space and time advantages of this technique.

When this program terminates the two abstract objects denoted by local and remote
in the environment denoted by tellerEnv will be committed to the persistent store,
since they are within the transitive closure of the persistent root.

Although we have chosen to create the two abstract types used in this example in
the same code segment this was not strictly necessary. Any programmer with
access to the bank environment is free to create new abstract types which interface
with the concrete types at any time in the future in a similar manner.
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3.4.2.5 Using views

Two views of the database now exist in the environment called tellerEnv reachable
from the root of persistence. In order to use the instance of localTeller in the
tellerEnv the auto-teller programmer has only to write a main loop which uses the
procedural interface correctly.  This would look something like Figure 3.4.6.

use PS() with tellerEnv : env in
use tellerEnv with local : localTeller in

use local as package in
begin

let getAccount = package( getAc )
let withdraw = package( withdraw )
let findBalance = package( balance )
let findLimit = package( oLimit )

! code to use above procedures ...
end

Figure 3.4.6 Programming a local teller machine

Similarly, the instance of remoteTeller could be accessed as in Figure 3.4.7.

use PS() with tellerEnv : env in
use tellerEnv with remote : remoteTeller in

use remote as package in
begin

let getAccount = package( getAc )
let sufficient = package( sufficient )
let withdraw = package( withdraw )

. . .
end

Figure 3.4.7 Programming a remote teller machine

The interesting point here is that these procedures manipulate the same objects as
those in the previous interface, and so provide a different view of them.  If the
account information is kept in a relational data structure, this is equivalent to a
relational viewing mechanism: getAc is a relational select on a primary key.  Notice
that although the views update the same data, no integrity problems arise.

3.4.2.6 Operations over more than one account

Suppose another function had been required from the auto-teller, so that a
customer with two accounts may use the machine to transfer money from one to
another.  We can allow this by redefining the interface of localTeller as in Figure
3.4.8.

type localTeller is abstype[ ac ]
(

failAc : ac
getAc : proc( number,passwd → ac )
withdraw : proc( amount,ac )
transfer : proc( amount,ac,ac )
balance : proc( ac → amount )
oLimit : proc( ac → amount )

)

Figure 3.4.8 The interface with transfer
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The important difference between this new procedure, transfer, and those already
discussed is that it is defined over more than one value of the witness type.  This
illustrates a major difference in descriptive power between first-order and second-
order information hiding.  With second-order, a type is abstracted over, and
procedures may be defined over this type.  With first-order hiding, it is the object
itself which is hidden within its procedural interface.  Procedures which operate
over more than one such object may not be sensibly defined within this interface.
Therefore any operations defined over two instances must be written at a higher
level, using the interface.  At best this creates syntactic noise and is inefficient at
execution time.  It also means that such operations are defined in the module which
uses the abstract objects, rather than the module which creates them.  Some
examples, such as this one, may not be written without changing the original
interface.

This example highlights another difference between this style of abstract data type
and that used in the language ML.  Although the use of the type is similar to an
ML-style type, the definition of structural type equivalence allows objects of the
type to be passed between different compilation units.  This is not the case with
ML abstract types, which are only compatible if they refer to the same instance of
the type definition: construction and use by independently-prepared modules is not
possible by this mechanism and must be achieved otherwise [Har85].

3.4.3 Privileged data access
It has been shown how a number of different abstract interfaces may be created to
operate over a single collection of data.  For the above example, this may be
represented diagrammatically as in Figure 3.4.9.  The shaded boxes represent
views, i.e. existential data types, and the clear boxes represent nodes in a protected
naming scheme.  As this all occurs within the type system of a persistent
programming language, no other access is possible to the raw data of the account
representations.
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Bank Account Data

Bank ManagerLocal TellerRemote Teller

Remote Bank Access Autoteller Access Manager's Access

Bank System Database

PASSWORD PROTECTION

Figure 3.4.9 The abstract interfaces to the accounts

A problem exists with abstract data types in long-lived persistent systems if, when
the abstract type is formed, access to the original representation of the data is lost.
This is a requirement of these types for the purposes of safety and abstraction, but
there is an underlying assumption that no access to the data will ever be required
apart from that specified in the abstract interfaces.  For a large body of persistent
data this is unrealistic.

A serious problem occurs if an error leaves the database in an inconsistent state.  In
the banking example, this could happen if one of the auto-tellers develops a
mechanical failure which prevents it from dispensing the requested money after the
withdraw operation has been executed.  The easiest way for such an error to be
rectified is for a privileged user, such as the database administrator, to be allowed
access to the concrete representation of the account and adjust the balance.  If such
access is not allowed, then an error may occur which leaves the database in an
inconsistent state from which it is not possible to recover.

This kind of access may be treated as another view over the same data, with no
abstraction in the interface.  To prevent unauthorised users from gaining access to
the information contained in this environment, a password protection scheme may
be used.  As previously shown, an environment can be hidden inside a procedure
which requires a password.  The restricted definitions and data can be placed
safely in this environment without fear of access by unprivileged users.  The
extended database for the bank account example is shown in Figure 3.4.10.

This level of data access is also desirable for database programmers in other
circumstances.  It is not uncommon for a new operation to be required on data
which is abstracted over: an example of this is if the procedure transfer described
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above became a requirement after the system had been installed.  Although it may
be possible to write such operations in a new user module, such use is often
contrived and will always be inefficient.  Using this technique, the database
administrator may construct a new interface over the representation level of the
data, with no associated loss of efficiency.

Bank Account Data

Bank ManagerLocal TellerRemote Teller

Remote Bank Access Autoteller Access Manager's Access

Bank System Database

PASSWORD PROTECTION

DB Admin

Figure 3.4.10 Privileged data access

The above holds whether the new interface required is confined to adding an extra
operation to one of the existing views, or whether an entire new view is necessary.
The autoteller example given above could thus be added to an existing system,
rather than being part of the design of the original system.  Furthermore, none of
the code would be any different from that shown, and programs which used the
original interface would continue to work.  This demonstrates the flexibility of this
paradigm, and shows a way forward for the incremental construction of complex
software systems.

3.5 Conclusions
Persistent programming systems provide support for the incremental gathering of
large amounts of data.  The value of such data is greatly reduced if its integrity is
lost, and this must therefore be protected as far as possible.  Traditionally
protection uses a two-level model, with different schemes in operation for data
within programs and permanent data.  In a persistent system this difference does
not exist, and so a single protection mechanism must be used for all data within the
system.
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A prerequisite for a persistent programming system is that all data are subject to the
constraints of the persistent language's type system.  This means that no unlawful
access to the data may ever occur except in the event of system failure.  This gives
the aspect of type safety to permanent data, which may not be achieved in a non-
persistent system.

A further effect of the type safety of all data is that protection which is programmed
may not be revoked by a lower level of technology.  This means that access
protection and software constraints may be programmed as suitable for the
individual data.  A number of different language mechanisms may be used to
protect permanent and shared data, including subtype inheritance, procedural
encapsulation, and abstract data types.

The protection of data in database systems is normally achieved by integrity
constraints and viewing mechanisms.  In a persistent system, however, such
mechanisms do not need to be specially provided as they may be programmed
within a persistent programming language.  Integrity constraints may be
programmed within procedural encapsulation, and viewing mechanisms may be
programmed with a combination of encapsulation and existential data types.  The
added advantage of existential types over traditional viewing mechanisms is that
they are statically type checkable.  This use of the persistent store also ensures that
views occur over the same instance of data, and the copying of data, with its
associated further integrity problems, is not necessary.
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4 Type equivalence in persistent systems

4.1 Introduction
Type equivalence checking is a mechanism used to ensure that operations are
applied only to values of appropriate types.  In statically typed languages, type
equivalence need only be checked by the compiler.  In languages with some
dynamic type checking, equivalence checks must also be carried out by the run-
time system.

Equivalence checking is well understood within a program, but presents some new
problems in a persistent system.  These problems stem from the independent
compilation of co-operating modules.  In a persistent system, data which is shared
between modules stays within the boundaries of the language's type system.
Languages which are not persistent can allow such co-operation only by using an
external store interface, which is often not type secure, such as a file system.

There are three main points of discussion within this topic.  First is a review of the
common models of type equivalence, structural and name equivalence.  The
models are compared in their strengths and weaknesses for modelling and
protection within a program.  It is then shown that in a programming system
capable of separate compilation, both models are inadequate without the additional
ability to export and import type definitions between compilation units.  Structural
type checking turns out to be a requirement in both models, but may be limited to
certain well-defined places within a name equivalence system.

After this there is a discussion of implementation techniques to achieve maximum
efficiency for the activity of structural typechecking.  Two possible representations
are shown, graphs and strings, and their tradeoffs are exposed.  Some tentative
measurements, taken from the implementation of the Napier88 system, are given.

The final section retrospectively shows how the type system of a programming
language may be mapped onto the representations previously discussed.  Napier88
is used as a detailed example of such a mapping, and the algorithms used for the
construction of type representations are explained in full.

4.2 Type equivalence models

4.2.1 Structural and Name Equivalence

4.2.1.1 Definitions

Type equivalence may be defined by one of two common models: structural or
name equivalence.  In both of these models, the types consist of a set structure
which partitions the value space of a language.  Membership of these sets is
decided by a different mechanism in the two models.

In name equivalence, membership of a type is an attribute designated at the time a
value is created.  New types may be declared which, at the time of definition, have
no values belonging to them.  Every type declaration must include a description,
either implicit or explicit, of the set of legal operations on values of this type.  The
creation of a value is associated in some way with a type declaration, and the value
is attributed with this type.  Two values are type equivalent if and only if they have
been created in association with the same type declaration.
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In structural equivalence, membership of a type is defined by some properties of
the values themselves.  Values may be of the same type only if they have the same
set of operations defined over them.  Type equivalence is therefore an implicit
property of values, and values do not need to be constructed with reference to a
type definition.  To ensure that type equivalence is well-defined, a language
definition must include a set of type rules.  These define the universe of discourse
of the language and allow the type of any value to be deduced.

4.2.1.2 Example

The programming language Ada [Ich83] is a good example of a system that
primarily uses name equivalence checking.  An example is the definitions of the
types ANIMAL and VEHICLE given below:

type ANIMAL is record
Age : INTEGER ;
Weight : REAL ;

end record ;

type VEHICLE is record
Age : INTEGER ;
Weight : REAL ;

end record ;

ANIMAL and VEHICLE define sets of values over which the same operations are
legal: they both represent a labelled cross product Age : INTEGER x Weight :
REAL.  However, values of type ANIMAL are not type equivalent to values of
type VEHICLE.

It should be stressed that name equivalence is not defined according to the textual
form of the name used to define the type.  Thus if the above definition of ANIMAL
were repeated in a different scope, data created from the different definitions would
not be compatible.  This also raises the question of equivalence when type
definitions come from different dynamic invocations of the same code.

The language Napier88 will be used to describe examples of structural
equivalence.  The type definitions of ANIMAL and VEHICLE given in Ada earlier
would be in Napier88:

type animal is structure( Age : int ; Weight : real )
type vehicle is structure( Age : int ; Weight : real )

These types are equivalent in Napier88 since the type declaration is only regarded
as providing a syntactic shorthand for the set described in the type expression.
The set of values in this case is the labelled cross product

Age  : int x Weight  : real.

4.2.2 Equivalence models within a program
The main advantage of name equivalence is that it eliminates a class of error which
structural equivalence does not.  That is "accidental" type equivalence, when two
types that are being used to model different entities happen by chance to have the
same structure.  In name equivalence systems, an attempt to mix these types will
be detected as an error, whereas in structural equivalence it will not.  Thus name
equivalence gives a finer grain of static program safety but, as always, at the cost
of a loss of flexibility.  The loss of flexibility here is manifested as an inability to
describe anonymous types.

The programming language Ada introduces an ad hoc mechanism to achieve the
effect of anonymous types.  For example, it is not possible with strict name
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equivalence to write a procedure that will accept a parameter of a particular shape,
such as a one dimensional array of a fixed size.  The declaration

procedure Add-elements( A : array ( 1 .. 6 ) of INTEGER ) ;

is achieved in Ada by having an anonymous type mechanism for structure
matching on arrays, rather than name equivalence.  Such a disadvantage is only a
minor drawback within a module since it only takes a type definition to resolve the
problem.  For example

type INT_ARRAY_ONE_SIX is array( 1 .. 6 ) of INTEGER ;
procedure Add-elements( A : INT_ARRAY_ONE_SIX ) ;

At worst strict name equivalence is verbose.  However, variable size arrays cause
more problems since a different type name and procedure declaration are required
for each size.  Ada uses another ad hoc mechanism, that of unconstrained arrays,
to overcome this.

The extra flexibility of structural equivalence is that it allows type names to be used
anywhere a type expression is valid and vice versa.  This means that anonymous
types, i.e. type expressions, may be used.  In Napier88 a procedure may be
defined that returns the Age field of any record of type Age : int x Weight : real :

let age = proc( x : structure( Age : int ; Weight : real ) → int ) ; x( Age )

In the above the identifier age is declared to be a procedure which takes a parameter
x of type structure( Age : int ; Weight : real ) and returns an integer result. The
body of the procedure is the expression x( Age ) which is the Napier88 syntax for
selecting the Age field of the structure x. The result is the value of the Age field.
This procedure may be used for values of type vehicle or animal.

Another example of the use of structural equivalence is given in the passing of
procedures as parameters. The procedure integral is given below.

let integral =
proc( f : proc( real → real ) ; a , b : real ; no_of_steps : int → real )
begin

let h = ( b - a ) / float( no_of_steps )
let sum := 0.5 * ( f( a ) + f( b ) )
for i = 1 to no_of_steps do
begin

a := a + h
sum := sum + f( a )

end
h * sum

end

In this code fragment the identifier integral is declared to be a procedure that takes
four parameters and returns a real result. It calculates the integral of a function
between two limits, a and b, using the trapezoidal rule with no_of_steps intervals.
These variables are given as parameters. The first parameter is the function to be
integrated. Its name is f and its type is specified by the type expression

proc( real → real ).

The type of f is thus a procedure that takes a real parameter and returns a real
result, and any procedure of this structural form may be used.  If a name
equivalence system were to achieve this, every procedure of this form would have
to be created with reference to the same type declaration, which may lead to
excessive program noise.

There is a further problem here with standard procedures.  As these have been
declared before the compilation of any other programs, they must have been
created using types which are incompatible with those declared in a new module.
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Therefore they may not be used as parameters to this kind of procedure without
another new mechanism.

4.2.3 Equivalence models within a programming system
The above problem with standard procedures is a special case of a general problem
for programming systems which are constructed from a number of program units.
For data to be safely shared between programs a type system must provide
modelling and protection facilities over more than a single compilation unit.  For
example, one program may be responsible for the creation of data which represent
animals, and for the placing of these data into a persistent store.  Another program
may operate over the data which have been placed in the store by the first program.
Both of these programs must therefore have the ability to specify the same type for
the data to be safely manipulated.

A naïve solution would be to immediately eliminate name equivalence, as structural
equivalence does not present a problem due to its ability to specify anonymous
types.  However, the needs of separate compilation also imply the following
requirements of a type system:

• to share the type of data between modules

• to share the type of data between independently prepared sub-systems

• to abstract over complex type definitions within a sub-system

• to execute typechecking efficiently during program execution

Neither name nor structural equivalence is sufficient to answer all of these.  Name
equivalence does not allow equivalent types to be declared in different compilation
units, and so does not address the first two requirements.  Structural equivalence
however is adequate for both of these.  Neither system is sufficient for the third
requirement, as with a structural equivalence system types must be re-declared
wherever they are used in different modules.  For the final point, name equivalence
presents no problems, but a test for structural equivalence of two complex types
may be very expensive.

The same solution, however, may be applied to both models of equivalence to
provide adequate solutions to all of these requirements.  If the extra ability to
export type definitions from the context of their declaration is allowed, both
structural and name equivalence models may adequately support all of the above
requirements.

A minimal model for the sharing of type definitions among compilation units is a
dictionary of type definitions, with operations to store and retrieve them.
typeExport takes a string and a type and enters the type in the dictionary using
the string as a key.  typeImport takes only a string key, and results in the
retrieval of the associated type.

In a programming language system based on the above type import and export
model there would be a number of further requirements and problems which are
not addressed here.  These include problems with the time of evaluation, multiple
and structured dictionaries, removing types, name clashes, and the semantics of
failure.  These problems are all orthogonal to the discussion of name and structural
type equivalence.

4.2.3.1 Sharing a type between modules

Two programs, one of which places a datum of type animal into the persistent
store, and the other of which retrieves it and prints its weight, will be used as an
example.  The environment mechanism of Napier88 will be used as a store
interface.  This mechanism is independent of the type equivalence semantics.
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In a structural equivalence system, the ability to describe anonymous types
implicitly allows the sharing of data types between modules without the exporting
and importing of type definitions.  For example, in Napier88 the example may be
written as follows:

!** Program 1 - create and store an animal **
type animal is structure( Age : int ; Weight : real )
let newElephant = animal( 3 , 7.62 ) ! the type name is also a constructor
in PS() let Dumbo = newElephant ! put the new value into the store

!** Program 2 - print Dumbo's weight **
type animal is structure( Age : int ; Weight : real )
use PS() with Dumbo : animal in ! find the animal in the store
print( Dumbo( Weight ) ) ! dereference the Weight and print it

This example will successfully retrieve the value from the store, as the two
different instances of the type definition are equivalent.  If Napier88 had name
equivalence semantics, this example would fail, as the two types have different
declarations.  To share data across programs in a name equivalence system the type
definition must be exported.

The above programs may alternatively be written using type export and import as
follows:

!** Program 1 - create and store an animal **
type animal is structure( Age : int ; Weight : real )
typeExport( "animal" , animal ) ! store type animal in the dictionary
let newElephant = animal( 3 , 7.62 )
in PS() let Dumbo = newElephant

!** Program 2 - print Dumbo's weight **
type animal is typeImport( "animal" ) ! look up type animal
use PS() with Dumbo : animal in
print( Dumbo( Weight ) )

Now both programs share the same definition of the type animal.  They will
execute successfully in either a name or structural equivalence system.

Ada does not provide mechanisms which allow these programs to be constructed
in a type secure manner.  Similar programs could be written, one of which would
store a value in a file and the other of which would retrieve it.  However, this may
be achieved only by having separate type declarations in the two programs, and
coercing the type of the file contents when the value was retrieved.  There is no test
for any kind of type equivalence, and the coercion is not a type-safe operation.

4.2.3.2 Sharing a type between independent sub-systems

In the above example program, a type definition is shared to force type equivalence
between modules of a programming system.  However, a further requirement
often stated for such systems is the ability to merge program and data which have
been independently prepared, and which as such may not have access to a common
type dictionary.

If such a merge is to succeed, then both systems must have a foreknowledge of the
structure of the types which are to be compatible, otherwise the system could not
work at all after the merge.  The essence is that this knowledge may be passed by a
medium other than the computing system which is being constructed.

With a structural equivalence system, there is no further difficulty, except perhaps
one of performance.  With name equivalence, if there is no way for the sub-
systems to share at least some of the system's address space, then there is no
possible way two types may be compatible without some further addition to the
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model.  This may take the form of an assertion by one or both of the sub-systems'
programmers that two types, one from each sub-system, are intended to be
compatible.  If, for example, each sub-system had its own type dictionary, then the
dictionaries could be merged, with assertions being made about which pairs of
types represented within the dictionaries were to be compatible.

At the time of the merge, a structural check is required to make sure that each pair
of asserted equivalent types do indeed have the same structure, otherwise strong
typing could be compromised.  If such merging is to be performed during the
execution of programs, then the structural equivalence testing poses some
important questions of performance.

4.2.3.3 Abstracting over complex type definitions

One effect of using a type system with fine grain control over data and maximum
static checking is that type definitions may become very large.  Even for relatively
straightforward applications, mutually recursive types consisting of hundreds of
individual definitions are common.  In a persistent language with flexible binding
control, it becomes desirable to write systems in many small units, each of which
can be understood by a single programmer.  Typically these units are at most a few
tens of lines of code.

These small units may however manipulate values of complex types.  It is not
acceptable to force these small units each to include their own copy of a huge type
definition, as this takes them once more out of the intellectual grasp of a human
being.  In a database system, for example, every use may be forced to specify the
entire database schema.  The export and import of type definitions may therefore
be seen as a solution to another requirement, that of abstracting over complex type
definitions which are used in a number of different modules.

Notice that this abstraction is never an extra problem for a name equivalence
system, as it is already a requirement for a single definition of a type to be
accessible for type equivalence to succeed.  However, it is possible to design a
structural equivalence system which does not include an ability to abstract over
shared type definitions.  Such a system would allow arbitrary type equivalence
across compilation boundaries, but would also force the problems of large repeated
type definitions onto its programmers.

4.2.3.4 Efficient execution

Name equivalence checking may always be implemented efficiently by the use of a
single type name server within a sub-system.  As only a finite number of type
definitions may be made within a sub-system, the type equivalence check may
always be coerced into a check of integer equality.

Structural equivalence, on the other hand, has a danger of being highly inefficient.
As already stated, type definitions may become very large.  The cost of a full
structural check over large representations is intrinsically high, although ways of
optimising it are shown in the next section.

In practice, the cost in efficiency of the two extended systems described should be
approximately the same.  In a structural equivalence system, it is still possible for
equivalent types to share the same declaration.  When this is the case, a full
structural check is not necessary.

Within a program unit, structural checks are very uncommon as anonymous type
definitions are rarely used.  As shown in the discussion of name equivalence,
anonymous type definitions need never be used.  In the cases where they are used
to eliminate program noise, the definitions would be simple and therefore
inexpensive to check.  Complex types used in different units of a sub-system could
be shared, and the same efficiency as that of name equivalence testing may be
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achieved.  The full cost of structural typechecking need only be paid for the
merging of independently prepared sub-systems, and in this case the full structural
check is necessary for both name and structural equivalence systems.

4.2.4 A Universal Equivalence Model
It can therefore be seen that both structural and name equivalence semantics are
suitable for use in a persistent programming language.  The tradeoffs within a
program unit are clear, being a slightly finer grain of control versus the ability to
specify anonymous types.

Perhaps surprisingly, when the typechecking models are suitably extended and
examined in further detail for typechecking within a programming system, no
further difference may easily be distinguished between the two systems.  This is
because any complex type which is shared between units of a sub-system is
expected to have only a single definition in both systems, which therefore forces
type equivalence whether the semantics are name or structural.  In the case of
merging sub-systems, the same structural testing must be performed for both
systems, the only difference being that it is implicit for structural equivalence
systems and must be made explicit for name equivalence systems.

Given that this structural test is necessary for all systems, and may be made during
program execution, it is desirable to make it as efficient as possible.

4.3 Implementation of structural type checking

4.3.1 Type Equivalence Checking
Structural type equivalence was first introduced in the programming language
Algol-68 [vWMP69].  In a structural equivalence type system, the types consist of
sets defined over the value space of a language.  Membership of these is defined
by some properties of the values themselves.  Values may be of the same type only
if they have the same set of operations defined over them.  Type equivalence is
therefore an implicit property of a value, and values do not need to be constructed
with reference to a type definition.  To decide type equivalence, a language
definition must include a set of type rules.  These define the universe of discourse
of the language and allow the type of any value to be deduced.

The universe of discourse of a type system may be represented by the set of base
types and the set of type constructors.  Type constructors allow the derivation of
new types from other types and perhaps some other information.  Where the
language is data type complete, the universe of discourse is infinite, consisting of
the closure of the recursive application of the type constructors over the base types.

The structural type equivalence relation may be described with a similar set of
rules.  For two types to be equivalent, they must be created with the same type
constructor and in an equivalent manner, using types which are themselves
equivalent.  An equivalence rule must be defined for each different type
constructor.

To perform structural type equivalence checking, it is necessary to build
representations of types which contain sufficient information to establish the
defined equivalence for each constructed type.  An equivalence function which
compares two instances of such representations must also be defined.  The
essential feature of any representation type is that there exists a well-defined
mapping from the value space of the representations to the type space of the
language.  It may be desirable in some systems for different values to represent the
same type, as long as the equivalence algorithm used implements an equivalence
relation which respects the semantics of structural type equivalence.
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4.3.2 Representing Types
Any type is either a base type or a constructed type.  Constructed types are a
composition of other types, along with some information specific to the particular
construction.  This information could consist of, for example, field names in a
record type or the ordering of parameters for a procedure type.  In general,
therefore, a type representation consists of three parts:

• a label, to determine which base type or constructor it represents

• the information specific to the construction of this type, if any

• a set of references to other type representations

The equivalence algorithm for a representation must check that, for any two
representations, that the labels are the same, the specific information is compatible,
and that the other types referred to are recursively equivalent.

For some type systems there is a requirement that the chain of references may be
circular.  This is the case in a type system with recursion, where circular references
are used to achieve a finite representation.  For example, the type of an integer list
may be

rec type IntList is structure( head : int ; tail : IntList )

Also, to represent a type system which includes values of either universally or
existentially quantified types, it is essential for any quantifier type to contain a
reference to the type to which it is bound, to allow either inference or explicit
specialisation to deduce the correct type equivalence rules of values with these
types.

These circular references, although not increasing the conceptual complexity of
type representations, are the source of serious problems with the efficient
implementation of a structural equivalence algorithm.

4.3.3 Efficient Structural Checking
There are two factors which can cause serious problems with the efficient
implementation of structural checking.  A trend in modern programming
languages, and particularly database programming languages, is to provide more
and more sophisticated type systems which allow more program errors to be
detected statically.  This is currently pushing knowledge of static type checking to
its limits, and there are even systems which need to employ theorem provers
within the type checking system [SSS88].  Programmers are encouraged to
provide the most detailed type specification possible, as this increases the chance
of a programming error being detected before execution.  As a consequence of
this, type specifications may become extremely large and complex.  It  may be
imagined that the size of a database schema specified statically as a type is
considerable.  In a system which performs structural equivalence checking
dynamically, it must be possible to check types of this complexity without
incurring an unacceptable overhead.

The problem of large representations is compounded by the fact that they may
contain cycles.  In general, an algorithm which traverses a potentially cyclic
structure must check at each stage that its area of current interest has not been
previously traversed.  If this check is not made, then the algorithm cannot be
guaranteed to terminate.

The check for cycles must be made on an attribute which is unique to each
component of the representation, rather than to the type constructor it represents.
This may be, for example, the identity of a node in a graph representation or the
starting position within a string representation.  The difficulty here is that there is
only a small amount of information specific to a particular constructor, most of the
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important information of the type representation being resident in its topology.  It
may not be possible to define a useful ordering over the node instances for the
purpose of a fast lookup.  This depends on the chosen representation and the
implementation language.  If there is no good ordering, the major cost of the
equivalence algorithm becomes a check for equivalent cycles, and its complexity is
O (n2) where n is the number of nodes.  This is because during the traversal of the
graph, itself of O (n), the cost of checking whether a node has been previously
visited is itself O (n) [CBC90].

The performance of algorithms to check type equivalence is crucial in a persistent
system, as checking may frequently be required during the execution of a program.
After some more general discussion of efficiency considerations, two different
implementations of structural equivalence checking are described.

4.3.4 Normalisation
It may be seen that there is a major tradeoff between the cost of constructing type
representations and the cost of executing the equivalence algorithm.  For example,
strings which consist of definitions within a language's type algebra contain
sufficient information to perform equivalence checking, but the checking algorithm
is complex.  As the construction of representations is a task performed during the
static checking of the program, and equivalence checking may be performed during
execution, it is clearly desirable to put as much of the burden as possible into the
building of the representations.

For example, consider a type system which includes a structure type which is a
labelled cross product.  Two such type constructions are considered equivalent if
they are constructed over equivalent types using the same labels, but the order of
the labels is not significant.  Therefore,

structure( a : int ; b : bool )

and

structure( b : bool ; a : int )

are equivalent.  In general, as the ordering of the fields is unimportant,
representations may be constructed with the fields in any order.  In this case, the
equivalence algorithm must allow for this during its execution.  The fields may
however be rearranged by placing them in alphabetical order according to the
labels.  If this is the case, the equivalence algorithm may then assume that the
ordering of the fields is significant.  Thus the task of equivalence checking may be
simplified at the cost of complicating the task of building representations.

In general, it is possible for many differently "shaped" representations to be
constructed for equivalent types.  For example, consider the equivalent types:

structure( a,b : structure( c : int ) )

and

structure( a : structure( c : int ) ; b : structure( c : int ) )

If the algorithm which constructs type representations is written naïvely, then the
first of these definitions may result in what is, in some sense, a minimal
representation of this type, whereas the second may contain duplicate components.

A normal form is one in which no two component representations are equivalent to
each other.  The construction of a normalised representation may be highly
expensive computationally, as it involves checking every component representation
for equivalence with every other one.  Balanced against this, for some classes of
representation the equivalence algorithm for normalised representations may be
substantially faster.  This will be discussed in more detail in Section 4.3.6.
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4.3.5 Representing types by graphs
In an implementation language which has a constructor type such as a record or
structure, a graph representation of types is straightforward and elegant.  It is
highly suitable because of the recursive nature of type definitions and the
requirement to have circular references between constructor nodes.  This makes
such representations simple to build and to decompose, and as such they are
ideally suited for static type checking purposes.  In one implementation of the
Napier88 system the following representation type is used, where for simplicity
the type list  and its usual operators are assumed to be pre-defined.

rec type TYPE is structure
(

label : int ;
specificInfo : string ;
references : list[ TYPE ]

)

This is sufficient to uniquely represent any type which may be described by the
Napier88 type system using some straightforward mapping rules.  The label field
distinguishes the base type or constructor each node represents.  The specificInfo
field contains information such as structure field names, concatenated with markers
to form a single string.  The references field represents all references to other types
from this type constructor.  This has an implicit ordering which may be used as
part of the type information where required.

Type equivalence is a recursively defined algorithm over this structure, and must
check only for equality of the label and specificInfo fields, before recursively
checking any representation in the references field.  The following algorithm
would work for type systems where cycles do not occur:

rec let eqType = proc( a,b : TYPE → bool )
a = b or !** this means pointer equality (identity)
(

a( label ) = b( label ) and
a( specificInfo ) = b( specificInfo ) and
eqList( a( references ) , b( references ) )

)

& eqList = proc( a,b : list[ TYPE ] → bool )
( a is tip and b is tip ) or
(

a isnt tip and b isnt tip and
eqType( head( a ),head( b ) ) and eqList( tail( a ),tail( b ) )

)

As described previously, it may often be the case that the types being checked have
the same identity.  In this case the equivalence is detected immediately, otherwise
the full structural check is necessary.  Notice that the test for identity is also
performed recursively, which may optimise cases where two different
representations share components with the same identity.

When the possibility of cyclic structures is introduced, it is necessary to take
further steps to ensure the termination of the algorithm for equivalent types.  This
may be achieved by keeping a note of all pairs of nodes that are traversed in a
"loop table", as depicted in Figure 4.3.1.  Before any pair of nodes is traversed, a
check is made to see whether the same pair has already been encountered.  If they
have, then either the full recursive check over these nodes has already been
performed, or else is in the process of being performed.  If the check has already
been performed, then the nodes must be equivalent, otherwise the algorithm would
have already been terminated with failure.  In the case where the test is still in
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progress, these nodes may safely be assumed to be equivalent.  If they turn out to
be equivalent then the assumption is correct and re-traversal of the loop has been
avoided.  If they turn out to be non-equivalent then the algorithm will in any case
end with failure from another branch of the recursion.

Rep 1 Rep 2
loop table

.

.

.
current limit of traversal

Figure 4.3.1  Placing traversed nodes in a loop table

The new algorithm looks like this:

rec let eqType = proc( a,b : TYPE → bool )
a = b or
in_loop_table( a,b ) or
begin

add_to_loop_table( a,b )
a( label ) = b( label ) and
. . .

The use of the loop table not only ensures termination in the case of a cycle in the
graph, but also prevents multiple traversals of a shared component within the
graph.  This enhances the potential efficiency of the algorithm.

With this representation, recording and looking up pairs of nodes in the loop table
may cause a performance problem, as no suitable key is readily available to use for
indexing.  This can be simply solved by introducing an extra key field into the type
representations.  When each type representation is created, this field is initialised
with a value which may be used as a key for the node.  Each pair of nodes, when
encountered on the first traversal, may be tabulated using one of these keys.  This
technique minimises the cost of checking for cycles.

Another possibility is to use a pseudo-random number instead of a key, and to use
a hashing algorithm based on this.  The reason for using pseudo-random keys is
that the hash table may be efficiently preserved between executions of the
equivalence function, and will then act as a memo table for all pointer pairs which
are compared more than once.  The pseudo-random keys reduce the possibility of
hash clusters forming.

This persistent hash table has the interesting feature that it is not required to
preserve the correctness of the algorithm, and so may be re-initialised at any time.
It is important also to note that should the equivalence algorithm fail, all nodes
added during the comparison must be removed.  For this reason, a "shadow-
copied" table is used, which may be either preserved or restored depending on the
outcome of the equivalence test.

The use of these techniques allows the check for cycles to be performed in constant
time, and so the checking algorithm may achieve complexity of O (n) where n is
the number of nodes.
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4.3.6 Representing Types by Strings
There are many possible ways of representing types by strings.  One possibility is
to use strings which consist of type definitions within the type algebra of the
programming language, which would normally be sufficiently powerful to provide
a representation for any type in the language's universe of discourse.  However,
for a sophisticated type system, any equivalence algorithm over such
representations would be highly inefficient.

A unique string representation is more useful.  Such a transformation from types to
strings allows the type equivalence relation to be modelled by string equality.  This
may be implemented in a computer by a block comparison, an extremely fast
operation on most machines.

A constructive proof that a unique string form exists for a particular type system is
beyond the aims of this thesis.  A method of construction will instead be outlined.
It should be pointed out that the outlined method is by no means the most efficient,
but is described for reasons of clarity.

The method relies upon the assumption that the graph representation and
equivalence algorithm outlined above are sufficient to model type equivalence in
the system in question.  Firstly an algorithm will be described which produces a
normal form of any such graph.  Another algorithm will then be described, which
maps graphs to strings.  This mapping has the desired effect of producing a unique
string representation for any type.

4.3.6.1 Normalising Graphs

The condition for a graph to be normal is that no two nodes within a type
representation represent equivalent types.  Therefore the type equivalence
algorithm may be applied to any two nodes within such a graph, and will always
fail unless the nodes have the same identity.  The algorithm we will describe to
map a graph to its normal form operates by copying the graph, but mapping any
equivalent nodes in the original graph to a single new node.

This algorithm relies upon a data structure similar to the loop table of the previous
algorithm.  In this context we will describe it as a "memo table".  The table still
contains pairs of nodes, but now each node traversed is paired with its new copy,
as shown in Figure 4.3.2.  Each node traversed is placed in the table as before,
and the table is used to memoise the result which has already been, or is currently
being, calculated for the normal form which represents the node.  The algorithm to
produce the normal form of a node checks in this table to see whether it has
previously produced, or is in the process of producing, a normal representation for
an equivalent node.  The check is thus based upon the equivalence algorithm
previously described, rather than simple identity.
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Original graph Copy being constructed
memo table

.

.

.
current limit of traversal

Figure 4.3.2  Using a memo table to normalise graphs

The algorithm is as follows:

1. Construct a new memo table.

2. To copy a node, first check in the memo table to see if a node
with an equivalent type has already been copied.  If it has, return
the corresponding node stored with it.  Otherwise,

a. Create a new node, without filling in the fields.

b. Add to the memo table a pair consisting of the node being
copied and the new "dummy" node.

c. Fill in the fields appropriately, including recursive use of
this algorithm to fill in the component types.

Notice the way that each new node must be created as a "dummy" so that each pair
of identities may be added to the memo table before any recursive calls are made.
Notice also that because the test applied to the memo table is equivalence, rather
than identity, any nodes in the original graph which are equivalent will be mapped
to the copy of the first of these nodes which is traversed during the copy
algorithm.  The resultant graph is therefore normal.  For any type system which
may be correctly represented using this graph representation, there exists only a
single normal form which represents each type.  Therefore there exists a reversible
mapping between normal representations and types, and so this representation is
unique.  This is achieved at the cost of executing the equivalence algorithm over
every pair of nodes within the original graph.

4.3.6.2 Mapping to Strings

The following algorithm maps graphs to strings.  It again uses a memo table, this
time to provide unique names for any types which occur more than once in the
representation.  Again, this deals both with cycles and with shared components in
the graph representation.

startSymbol, endSymbol, and separatorSymbol are mutually distinct characters
which do not occur within the strings found in graph nodes.

Before traversal starts:

1. Construct a new memo table

2. Initialise nextMarker, a procedure which produces a deterministic
series of unique strings, a different string being produced on
each call.  These strings consist of characters which do not occur
within the strings found in graph nodes, and do not contain the
characters startSymbol, endSymbol, and separatorSymbol
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Traversal:

First check in the memo table to see if the node with this identity has
already been traversed.  If it has, return the corresponding string stored
with it.  Otherwise:

a. Store the node in the memo table, associated with the result
of calling nextMarker.

b. The result string is the concatenation of:

• startSymbol

• The node's label field in string format

• separatorSymbol

• The node's names field

• separatorSymbol

• The result of the recursive application of this 
algorithm to any component types

• separatorSymbol

• endSymbol

The use of the memo table is illustrated in Figure 4.3.3.

Original graph String being constructed
memo table

.

.

.
current limit of traversal

!a!

!b!

!c!

!d!

!e!

"  ...  !d!  ...   "

Figure 4.3.3  Use of a memo table in string production

The above algorithm both terminates and produces a unique form for any type.
The unique markers used within the string for loops in the graph depend upon the
traversal order of the graph; as the component types within any node are ordered as
part of the normalisation process this order is always significant type information.
The n th marker produced by the nextMarker symbol corresponds to the n th

startSymbol which occurs within the string, and so these markers act as explicit
references within the string.  The string produced may thus be regarded as a
normalised set of mutually recursive type definitions.

As these string forms are unique, the type equivalence relation is implemented by
string equality.  The important result is that an unstructured form exists for type
representations, over which type equivalence may be implemented by a block
comparison.  This operation is already optimised in much conventional hardware,
and so such a representation may be highly suitable for a prototype persistent
system.
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4.3.7 Comparison of Graphs and Strings

4.3.7.1 Speed

It has been shown in Section 4.3.5 that linear complexity can be achieved for
equivalence algorithms over graphs as well as strings.  This would imply that
either representation is reasonable to build into a persistent system, as no dramatic
slowdown would be associated with a programmer using more complex types in a
program.

However, although the complexity may be the same, the hidden constant may be
significantly different.  The block comparison associated with strings would be
faster than the graph traversal, even if both systems were constructed in hardware.
In particular, conventional hardware is already optimised to perform block
comparisons, and so the string representation should be substantially faster on an
existing machine.

4.3.7.2 Space

The space occupied by an equivalent representation of a large type is significantly
greater for graphs than strings.  This is because each node in a graph carries the
overhead associated with a persistent object, whereas a string may be implemented
as a single object.  Also, references to other nodes are persistent identifiers, which
may be large depending upon the implementation of the persistent store.  As the
amount of information contained within any single node is relatively small, these
overheads will be the major space cost of a graph representation.

The strings however require contiguous space, whilst the graphs do not.  There are
advantages on both sides of this.  For large types, comparing strings may cause a
large amount of volatile memory to be used up at one time, whereas the graph
nodes may be fetched from non-volatile store in pairs if necessary to use only a
small amount of space.  On the other hand, fetching the graph requires a large
number of object faults, whereas only one is required for a string.  The importance
of these considerations depends upon the implementation of the persistent store.

As already stated however dynamic checking may be worthy of customised
implementation, and it would be expected that both string and graph type
representations would be adjusted to have similar characteristics using clustering,
compression and fragmentation techniques as appropriate.

4.3.7.3 Sharing

So that the block comparison may be made over strings, all of the references to
other types are converted so that they may be interpreted only within the context of
the string.  This means, unlike the graph representation, that sharing of common
component type representations is not possible.  This has serious implications for
both time and space complexity.

For example, a program may require two values of related types from the store.
This is common in persistent programming, where one procedure may generate an
object of a complex type and others may use it in different ways:

type aType is ....

let generator = proc( → aType ) ; ...
let user1 = proc( aType → int ) ; ...
let user2 = proc( aType → bool ) ; ...

Using graph representations, the type representations of these three procedures
may use the representation already constructed for aType, and so only a few extra
graph nodes are required to represent the more complex types.  Using strings,
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however, complete new strings must be constructed for each procedure type,
which duplicate all of the information already in the string constructed for aType,
as the context-sensitive references may be different.  This is because strings are a
truly anonymous representation, whereas graphs contain implicit naming
information in their store addresses.  The difference in space may be significant for
programs which use a complex type in many different ways.

Another aspect of sharing components is that any memoisation performed over
these components then carries over all types which use them.  In the above
example, it would be common practice for one program to define the three
procedures and place them within the store and for another to subsequently access
them.  In this case, the memoisation performed by the graph equivalence algorithm
will mean that the structural equivalence check is only performed once on the type
aType, whereas the full structural check is required for each different procedure if
a string representation were used.  Again, this is a substantial saving for a large
class of programs.

4.3.8 Measurements
To give an idea of the expected performance of these algorithms, some
measurements taken from the Napier88 system are included.  These measurements
give some indication of the space overhead, performance, and complexity of the
different schemes.

All measurements were made with the type of a Napier88 abstract syntax tree.
This is an extended and revised version of PAIL [Dea87], and is a large, mutually
recursive type, consisting of around one hundred and forty definitions.

The measurements of performance are hard to quantify, as they are highly
dependent upon the implementation of the Napier88 system within which they
were made.  Suffice it to say that the best figures we have achieved for checking
independently prepared versions of this type are at the rate of several per second
for a graph representation, with a substantial speedup to several hundred per
second for a string representation.

The complexity measurements confirm the deduction that complexity at least as
good as linear may be achieved for checking graph representations, with a suitable
size of hash table.  It is a reasonable assumption that a large enough table may be
employed, as this is a fixed overhead per system.  As explained, the table may be
re-initialised if it becomes too large.  In the case where the table may be large
enough to contain all types used within the system, then the resulting memoisation
achieves the same efficiency as name equivalence checking.

4.3.8.1 Space

The graph representation of the Napier88 PAIL type consists of 413 objects, with
an average of just under nine words per object.  The total size of this graph is
14,466 bytes.  The string form of the graph is 2,206 bytes long.

These figures are all taken from relatively naïve representations; we have made no
serious effort to compress the representations.

The benefits of space saving by sharing are hard to quantify, as they depend very
much upon the manner in which the types are used.  However, in our use of the
abstract syntax tree type in building a Napier88 compiler, we found that the type is
used in 276 different contexts.  Each context requires a different string for its
representation, as previously explained, but a graph may be shared by different
contexts.  Even if the system is fully optimised and only a single representation is
used for each type, the total amount of store used to represent this type by strings
is therefore more than 600,000 bytes, as oppose to a constant 14,466 bytes for the
graph representation.  Furthermore, each of these 276 representations requires at
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least one full structural check, whereas the first check using the graph
representation acts as a memo for any other check performed while the system is
running.

4.4 Constructing type representations
In Section 4.3 it was stated that, for some type systems, values of the type shown
in Figure 4.4.1 may be used to represent types for the implementation of type
equivalence checking.  In this section the discussion is about the construction of
such type representations.

rec type TYPE is structure
(

label : int ;
specificInfo : string ;
references : list[ TYPE ]

)

Figure 4.4.1 The stated representation type

Napier88 is used as an example to show how a type system may be mapped onto
this representation type [Con88].  The type system of Napier88 is sufficiently rich
to encompass all of the type constructors in common use, and as such the
description should show how type representations may be built to allow structural
type checking over most other programming languages.

4.4.1 The Napier88 type system and algebra
The Napier88 type system is described by a set of base types and a set of
constructors.  The base types are integer, real, boolean, string, pixel, picture, file,
and null.  The Napier88 type constructors are:

• vector - One-dimensional array

• image - Rectangular array of pixels

• structure - Record type (labelled cross product)

• variant - Discriminated union (labelled disjoint sum)

• procedure - First class data type

• polymorphic procedure - Universally quantified  procedures

• abstract data type - Structure type with existential quantification

• environment - Sets of bindings

• any - Infinite union of all types

The universe of discourse of Napier88 is defined by the closure of the recursive
application of these constructors over the base types.

To increase the modelling power of the type constructors, Napier88 uses a simple
type algebra.  This algebra is fully evaluated before program execution.

• Types may be named, to allow abstraction within a program unit

• The definition of recursive types is allowed

• Parameterised types are provided to reduce program complexity

A full description of the types which may be described by the Napier88 type
algebra is included as an appendix.
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The introduction of both recursive and parameterised definitions may cause some
problems with the decidability of structural equivalence [Sol78].  Some languages
[Fai82, Car89] restrict the use of parameterisation to avoid these problems.  The
Napier88 type system is more general, allowing any combination of recursion and
parameterisation for which a decidable algorithm is known.  The class of recursive
parameterised types for which no decidable equivalence algorithm is known
corresponds to types which may not be represented by a finite graph of the
representation type shown.  The definition of such types is not allowed in
Napier88, and will be detected before execution.

Figure 4.4.2 shows an overall view of the representation strategy for this type
system and algebra.  The columns in the table show in outline how the values for
each type representation structure model the appropriate information for each
constructed type.  Only the types with label values from one to nine inclusive
represent types which are used to describe denotable values within a language.
The other labels are needed during the construction of types as may be specified by
the type algebra, and their purpose will be explained in detail later.

Although no formal justification will be given, it may be seen that deep equality
over values created with these formats simulates type equivalence, as described in
the previous section.

Constructor Label Specific Info References

Base type 1 String description of
base type

Empty

Vector 2 None Single list element for
element type

Structure 3 Representation of field
names

One list element for each
field type

Variant 4 Representation of branch
names

One list element for each
branch type

Procedures 5 Number of arguments One list element for each
argument, and one for the
result

Polymorphic
procedure

6 Number of universal
quantifiers and number
of arguments

One list element for each
argument, and one for the
result

Universal
quantifier

7 Which one of the
procedure's quantifiers

Polymorphic procedure
bound to

Abstract data
type

8 Number of existential
quantifiers and
representation of field
names

One list element for each
field type

Witness type 9 Which one of the abstract
type's quantifiers

Abstract data type bound to

Parameterised
type

10 Number of parameters
and label, specificInfo of
specialised type

references of specialised
type
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Type
parameter

11 Which one of the
parameterised type's
parameters

Parameterised type bound to

Recursive type 12 Recursive name Parameterisation
information

Unbound
universal
quantifier

13 Which quantifier Empty

Unbound
witness type

14 Which witness Empty

Type with free
quantifier

15 None Single list element of type
with free quantifier

Figure 4.4.2 Outline of mapping from types to representations

4.4.2 Constructing type representations
The Napier88 compiler is built in a number of modules.  One of these is the types
module, which provides an interface which abstracts over the representation type.
The module provides functions in its interface which cause the construction of
appropriate representations, as well as the equivalence function shown in Section
4.3.  The syntax analyser therefore has a relatively high-level view of the type
system.  One of the design aims of the type checking module was that it should be
usable by the compilers of a number of different programming languages, rather
than be specific to the Napier88 compiler.

The Napier88 types module is an abstract data type, with an interface which
abstracts over the representation of types.  For each type constructor, there will be
an explanation of the relevant module interface procedures and how they should be
used, followed by a detailed explanation of the implementation of these
procedures.

For the examples, graphs will be drawn which correspond to the representation
type as demonstrated in Figure 4.4.3.
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label specificInfo references

first element

second element

Figure 4.4.3 The graphical representation of type representations

4.4.2.1 Base types

To allow language independence, the types module allows base types to be
defined, rather than exporting a fixed set of base types.  For a particular language,
a compiler would be expected to define the base types only once, and place these
values in a persistent environment.  These base type representations are created
from outside the types module by an application of the function baseType, which
takes a string parameter and returns a type representation.

Type description:
int

Possible module use:
let INT = baseType( "int" )

1 "int"

Figure 4.4.4 Base type representation

A syntax analyser may also use these representations for other purposes, for
instance the manipulation of type descriptions corresponding to void and undefined
expressions.  Figure 4.4.4 shows an example of a base type construction.

4.4.2.2 Vectors

The mkVector function takes a type representation and returns the type of a vector
with elements of this type.  No specificInfo is required, and the references field
consists of a list which always has a single element which points to the type of the
vector elements.  The associated selector function elms, which is used to check the
type of indexing, takes the vector type and returns the element type.  Figure 4.4.5
shows an example of a vector type construction.  The syntax used to denote a
vector type in Napier88 is an asterisk before the element type.  This allows the
concise definition of multi-dimensional vector types.
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Type description:
*int

Possible module use:
mkVector( INT )

2 ""

1 "int"

Figure 4.4.5 Vector representation

4.4.2.3 Structures

The types module supports two functions which build representations of structure
types.  The first, newStructure, is a function of no arguments which returns the
type representation for a structure with no fields.  The second, addfield, takes a
structure type representation, a name, and a type, and augments the structure with
the new name-type pair.  The result reports whether the operation has been
successful or not ; it will fail in the case of a name clash.

Two functions are provided to decompose one of these type representations.  The
first, fieldType, takes a structure type representation and a string, and returns the
type associated with the name represented by the string.  The second,
scanStructure, is a scanning function, which takes a structure type representation
as its argument and returns a procedure which returns a string.  This returned
procedure itself returns, on consecutive calls, each of the fieldnames of the
structure in alphabetical order.  When they are exhausted, it returns the empty
string whenever it is called.

Type description:
structure( x : int ; y : bool )

Possible module use:
let new = newStructure()
let ok1 = addField( new, "x", INT )
let ok2 = addField( new, "y", BOOL )
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3 "*x*y"

1 "int"

1 "bool"

Figure 4.4.6 Structure representation

The specificInfo field contains a list of the structure's field names, each preceded
by a reserved separator symbol.  The references field contains a list of types, each
element corresponding to one of the fieldnames, in the same order.  Thus the
specificInfo contains enough information for the correct interpretation of the list.

4.4.2.4 Variants

The type rules for variants are isomorphic to the type rules for structures, and the
implementation is correspondingly isomorphic.  Two functions are provided to
build up a variant type, newVariant and addBranch.  newVariant takes no
parameters and returns a variant type with no branches.  addBranch takes a variant
type, a string, and a type and adds a branch to the variant type with a name
corresponding to the string and the appropriate type.

Type description:
variant( x : int ; y : bool )

Possible module use:
let new = newVariant()
let ok1 = addBranch( new, "x", INT )
let ok2 = addBranch( new, "y", BOOL )
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4 "*x*y"

1 "int"

1 "bool"

Figure 4.4.7 Variant representation

The selector function branchType takes a variant type and a string, and returns the
type of the branch with a name corresponding to the string.  branchNumber takes a
variant type and a branch name as arguments, and returns an integer.  The integers
returned are calculated uniquely for each branch of the variant.  This function is to
allow the construction of tags for the branches of a variant.

The specificInfo field contains a list of the variant's branch names, each preceded
by a reserved separator symbol.  The references field contains a list of types, each
element corresponding to one of the branch names, in the same order.  Thus the
specificInfo contains enough information for the correct interpretation of the list.

4.4.2.5 Procedures

The function to create a procedure type representation, mkProc, takes a list of type
representations for the procedure's arguments and a type representation for its
result, and returns a representation of the procedure type.

Of the selector functions, args takes a procedure type representation and returns its
list of arguments, and result takes a procedure type representation and returns its
result.

The specificInfo in this type contains the number of parameters for the procedure
type.  The references field points to a list of parameter representations, with the
result type representation appended to the list.

Type description:
proc( int, bool → real )

Possible module use:
let arguments = append( BOOL, append( INT, nilList ) )
mkProc( arguments, REAL )
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5 "2"

1 "int"

1 "bool"

1 "real"

Figure 4.4.8 Procedure representation

4.4.3 Quantified types
In Napier88, the universe of discourse includes two different quantified types:
polymorphic procedures and abstract data types.  Figure 4.4.9 shows an example
of a universally quantified procedure written in the Napier88 type algebra.  This is
the type of a procedure which has a parameter which may be of any type, and
returns a result of the same type as the parameter.

type a is proc[ t ]( t → t )

Figure 4.4.9 A universally quantified procedure type

The construction of a representation of a universally quantified procedure type by
the Napier88 module occurs in three parts.  First, appropriate quantifiers are
constructed by use of the mkQuantifier function.  This takes an integer argument,
to denote which quantifier of the particular type is being constructed.  Secondly, an
appropriate procedure representation is created using the mkProc function as
previously described.  Finally, to bind the quantifiers to the procedure, the
procedure mkQuantified is called, which takes as arguments a procedure type
representation and a list of quantifier representations.

In the quantified procedure type representation, the specificInfo field must contain
two pieces of information: the number of quantifiers and the number of parameters
that the procedure has.  These are represented in the same string, with a separator
character between them.  The references field represents the types of the
procedure's arguments and result, as for a monomorphic procedure.

Each quantifier also has a type representation.  The specificInfo field of these
distinguishes between quantifiers in the case where a procedure has more than one
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quantifier.  The references field of each quantifier contains a single list node which
points back to the representation of the quantified procedure type.

Type description:
proc[ t ]( t → t )

Possible module use:
let t = mkQuantifier( 1 )
let p = mkProc( append( t , nilList ) , t )
mkQuantified( p, append( t , nilList ) )

"1"7

"1*1"6

Figure 4.4.10 Universally quantified procedure representation

For the testing of equality, it is necessary for the quantifiers of these type
representations to be associated with the representations of their quantified types.
In types where different quantifiers are in scope at the same time, as in the example
in Figure 4.4.11, it is essential to be able to distinguish them by the structure of the
representations.  This may be achieved by using cyclic graphs to represent
quantified types, with the representations of the quantifiers pointing back to the
representation of the type of which it is a quantifier.  Figure 4.4.12 shows how
this creates graphs with a different topology for the types shown in Figure 4.4.11.

type a is proc[ s ]( proc[ t ]( s → t ) → s )
type b is proc[ s ]( proc[ t ]( t → s ) → s )

Figure 4.4.11 Distinguishing quantifier bindings
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type a is proc[ s ]( proc[ t ]( s -> t ) -> s )

6 "1*1"

7 "1"

6 "1*1"

7 "1" 6 "1*1"

7 "1"

6 "1*1"

7 "1"

type b is proc[ s ]( proc[ t ]( t -> s ) -> s )

Figure 4.4.12 Different topologies for non-equivalent quantified
procedures

Existentially quantified structure types are constructed in a similar manner.  The
interface procedures for existential types are called mkWitness and mkAbstract.
The specificInfo field of an existentially quantified representation contains both the
number of quantifiers and the concatenated field names, separated by asterisks.
Figure 4.4.13 shows such a type in the Napier88 type algebra, and Figure 4.4.14
shows how its representation is constructed.

type b is abstype[ t ]( x , y : t )

Figure 4.4.13 An existentially quantified structure type

Type description:
abstype[ t ]( x , y : t )

Possible module use:
let t = mkWitness( 1 )
let new = newStructure()
let ok1 = addField( new, "x", t )
let ok2 = addField( new, "y", t )
mkAbstract( new, append( t , nilList ) )
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8 "1*x*y"

9 "1"

Figure 4.4.14 Existentially quantified structure representation

4.4.4 Parameterised types
The Napier88 type algebra allows abstraction over types in the form of
parameterised type definitions.  An example of a parameterised type definition and
its use is given in Figure 4.4.15.  Notice that pair is not itself a type, but a template
from which types such as intPair may be constructed by specialisation.  An
equivalence check should never be performed over two parameterised definitions,
but representation templates are built to allow the construction of representations
for types constructed by specialisation, as described in Section 4.4.5.

type pair[ t ] is structure( fst, snd : t )
type intPair is pair[ int ]

Figure 4.4.15 A parameterised definition and use

The construction of parameterised representations is similar to the construction of
quantified type representations.  The interface procedures are called mkParameter
and mkParameterised.  Figure 4.4.16 shows how these may are used.

Type description:
type pair[ t ] is structure( fst , snd : t )

Possible module use:
let t = mkParameter( 1 )
let new = newStructure()
let ok1 = addField( new, "fst", t )
let ok2 = addField( new, "snd", t )
let pair = mkParameterised( new, append( t , nilList ) )
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10 "1*3**fst*snd"

11 "1"

Figure 4.4.16 Parameterised type representation

The specificInfo field of a parameterised type contains the number of parameters,
and the label   and specificInfo  required for instances of the type after
specialisation.

4.4.5 Specialisation
Specialisation of parameterised type constructors is performed by the substitute
procedure in the type module interface.  This procedure takes as parameters the
type representation to be specialised, and a list of type representations with which
to specialise it.  This list should be the same length as the number of type
parameters which the parameterised representation has associated with it.

The basic substitute algorithm is a graph copy of the parameterised type
representation, as described in Section 4.3.  However, instances of parameter
representations are replaced by appropriate representations given in the
specialisation list.

The copying starts by creating the TYPE  node for the specialised type
representation.  The label and specificInfo field values can be derived from the
specificInfo value of the parameterised type representation.  The copying continues
by traversing the references list, taking care to maintain the topology of the
parameterised type representation.

Whenever a parameter type representation is encountered during the copy, its
references field is tested for equality with the parameterised representation being
specialised.  If it is the same then, instead of the parameter being copied, its
specificInfo is used as an index into the specialisation list, and this type
representation is inserted into the new graph.  Figure 4.4.17 shows the result of
the specialisation shown in Figure 4.4.15.
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Type description:
type intPair is pair[ int ]

Possible module use:
let intPair = substitute( pair, append( INT , nilList ) )

3 "*fst*snd"

1 "int"

Figure 4.4.17 Specialisation of parameterised type

Specialisation is also necessary for both universally and existentially quantified
types.  This occurs when a universally quantified procedure is applied, or when an
existentially quantified value is constructed.  Figure 4.4.18 shows examples of
these.  In Napier88, the specialisation required in both instances is explicit, and
uses the same syntax as the specialisation of a parameterised type.  In languages
where the type of the specialisation is inferred, the same type check must still be
performed.

type universal is proc[ t ]( t, real → t )
type existential is abstype[ i ]( x : i ; y : real )

let useProc = proc( a : universal → int ) ; a[ int ]( 3, 2.2 )
let newAbs = existential[ int ]( 3, 2.2 )

Figure 4.4.18 Specialisation of quantified types

The substitute procedure described for the specialisation of parameterised
representation also works, after minor adjustment, for the specialisation of
quantified types.  The adjustment required is for the quantified node to be
initialised as the appropriate procedure or structure type, and then for the algorithm
to check for appropriate quantifier type representations instead of parameter type
representations during the copy.

4.4.6 Recursive types
Many type algebras allow the recursive definition of types.  For example, the type
of a list of integers may be specified as in Figure 4.4.19.

rec type intList is structure( head : int ; tail : intList )

Figure 4.4.19 An integer list type

Mutually recursive definitions are also useful, as shown in Figure 4.4.20.
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rec type intList is variant( cons : intNode ; tip : null )
& intNode is structure( hd : int ; tl : intList )

Figure 4.4.20 An integer list type

Such types may be represented by graphs containing cycles.  The equivalence
algorithm described will function correctly over cyclic graphs.  Here we are
concerned with how such cyclic graphs may be constructed.

In general, it is not possible to resolve the meaning of any identifier within a set of
mutually recursive type definitions until the end of the set has been reached.
Representations of recursive types are constructed by the types module by the use
of temporary representations for unresolved recursive types.  These temporary
representations may be used in the construction of other type representations.
When enough information becomes available for the meaning of these type
representations to be resolved, the fields within each representation are updated so
that the representations becomes correct.

The procedures provided by the module are called mkRecursive  and
replaceRecursions.  mkRecursive is a procedure which takes a string parameter
and returns an unresolved type representation.  replaceRecursions takes a lookup
function from string to type.  This procedure causes each of the recursive nodes
already returned by mkRecursive to be internally modified so that they represent
the correct types.

Whenever an identifier is encountered on the right hand side of a recursive
declaration, mkRecursive is called with the identifier in string format as a
parameter.  The types module also keeps a list of every such type returned.  When
the end of the recursive definitions are reached the replaceRecursions procedure is
called with an appropriate lookup function.  This will normally be the syntax
analyser's own lookup function which provides an index from identifiers to type
representations.  An example of the use of these procedures is shown in Figure
4.4.21, where add_symbol and get_symbol  stand for abstractions over a
compiler's symbol table.

Type description:
rec type a is structure( x : b )
& b is int

Possible module use:
let a = newStructure()
let ok1 = addField( a, "x", mkRecursive( "b" ) )

add_symbol( "a", a )
add_symbol( "b", INT )

replaceRecursions( get_symbol )

Figure 4.4.21 Use of a type name before its declaration

mkRecursive creates a type representation labelled as an unresolved recursive
representation, whose specificInfo field is initialised to a string representation of
the identifier used.  Figure 4.4.22 shows the representations constructed by Figure
4.4.21 before the application of replaceRecursions.  The rec_list is kept by the
types module as a record of all unresolved representations.
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12 "b"

1 "int"

a

b

rec_list

3 "*x"

Figure 4.4.22 A recursive representation before resolution

During the execution of replaceRecursions, the specificInfo field of each node in
the  rec_list list is used in a call of the imported lookup function.  The fields of the
type representation returned are used to update all the fields, including the label, of
the unresolved recursive representation.  Thus all uses of an identifier in recursive
definitions are updated in place so that they represent their meaning at the end of
the set.  Thus in the example of Figure 4.4.22, the fields of the unresolved
representation inside the representation of a will be updated to the same values as
those in the fields pointed to by b, as this is the representation that will be returned
from the call of the lookup function.

One refinement of this basic algorithm is necessary where the type representation
returned by the lookup function is itself a recursive type which has not yet been
resolved.  Such a situation could be caused by the example shown in Figure
4.4.23., in which the first attempt to resolve the recursive node b will result in the
get_symbol function returning the recursive node c.

Type description:
rec type a is b
& b is c
& c is int

Possible module use:
add_symbol( "a", mkRecursive( "b" ) )
add_symbol( "b", mkRecursive( "c" ) )
add_symbol( "c", INT )

replaceRecursions( get_symbol )

Figure 4.4.23 An unresolved representation may be returned by the
lookup function
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All that is required is for the algorithm, on encountering an unresolved
representation, to move it to the end of the list and continue.  The resolution is thus
delayed until it is possible to perform.

Some check of finite progress should be made, to guard against definitions such as
that of Figure 4.4.24.  If no finite progress should occur, then a circular type
definition has been made.  This may or may not be an error, depending upon the
language definition.  The types module passes the information back to the syntax
analyser, which deals with it as required.

rec type a is b
& b is a

Figure 4.4.24 A check for finite progress should be made

4.4.7 Parameterised recursive types
Some languages with both recursion and parameterisation in their type algebra do
not allow the parameterisation of recursive types.  In Quest [Car89] type operators
are used to abstract over type definitions.  Figure 4.4.25 shows how a recursive
operator List could be used to describe a generic list type.  However, recursive
operators are not allowed in Quest.

Let Rec List ( A :: TYPE ) :: TYPE =
Option

nil
cons with head : A tail : List( A ) end

end ;

Figure 4.4.25 A (disallowed) recursive operator in Quest

The example shows a recursive operator which takes a type parameter A and
returns the type of a list of A.  The type of the result of List is a variant with labels
nil and cons, where cons is a list node of the appropriate type.  The definition of
cons includes an application of the operator List itself, applied to the same
parameter.

Although recursive operators are disallowed, an operator with the same apparent
semantics as this may be declared in Quest using a non-recursive operator which
returns a recursive type.  This is because the recursive operator used as the tail of
cons  in fact specifies a fixed point, and this may be achieved without
parameterisation as shown in Figure 4.4.26.

Let List ( A :: TYPE ) :: TYPE =
Rec( B :: TYPE )

Option
nil
cons with head : A tail : B end

end ;

Figure 4.4.26 A non-recursive operator which returns a recursive
type in Quest

Although Ponder [Fai88] does not have explicit type operators, the same restriction
is imposed by a syntactic rule.  Recursive type generators may be defined as
shown in Figure 4.4.27, but all applications of G with Body must be to exactly the
parameters [T1,...,Tn].

Rectype G[T1,...,Tn] = Body

Figure 4.4.27 A recursive type generator in Ponder

This restriction means that all recursive parameterised definitions may be regarded
as parameterised definitions over a µ-operator which binds to a type variable.  This
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is shown in Figure 4.4.28, where F is a non-recursive type generator and G is a
recursive type generator.  Thus the syntactic restriction of Ponder gives precisely
the same expressive power as disallowing recursive operators in Quest.

Rectype G[X] = ( ... G[X] ... F[X] ... )

=>

Type G[X] = µT. ( ... T ... F[X] ... )

Figure 4.4.28 A recursive type generator in Ponder shown as a
fixpoint

The restriction is made in both cases to ensure that typechecking always
terminates.  However, it disallows a class of useful types for which a fully
decidable algorithm is known [Sol78].  For example, it is not possible in these
languages to express a generic type for a list of two alternating types.  Napier88
allows all the class of types for which a decidable algorithm is known.

Figure 4.4.29. shows an example of a recursive parameterised type in Napier88.
To deal with such types, the typechecker interface already described and its use
may remain unchanged.  However, the algorithms used by both substitute and
replaceRecursions must be enhanced to allow for this form of interaction.  This is
because, with the algorithms described so far, substitute does not allow for
recursive representations, and replaceRecursions does not allow for parameterised
representations.

rec type list[ t ] is variant( cons : node[ t ] ; tip : null )
& node[ s ] is structure( hd : s ; tl : list[ s ] )

Figure 4.4.29 Recursive parameterisation

When a specialisation is specified on the right hand side of a set of recursive
definitions, a call to substitute will occur with an unresolved recursive type
representation.  As the meaning of the recursive identifier is not known at this
point, the algorithm is unable to perform any processing.  However, it is known
that the same node will eventually be processed by the replaceRecursions
procedure, and so the substitution required may be postponed until this time.  To
mark the fact that the node is to be specialised after its resolution, its references
field, which is otherwise unused, is set to point to the list of type representations
with which the node is to be specialised.

Type description:
rec type a is b[ int ]
& b[ t ] is ...

Possible module use:
let b_use = mkRecursive( "b" )
let a = parameterise( b_use, append( INT, nilList ) )
... calls to construct b ...
replaceRecursions( get_symbol )
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12 "b"

1 "int"

a

b

rec_list

10 representation of b

Figure 4.4.30 An unresolved representation

Figure 4.4.30 shows the unresolved parameterised representation, before the call
of replaceRecursions.

During the execution of replaceRecursions, each unresolved recursive node is
inspected to see whether its references field has a specialisation attached to it.  If it
has, then the lookup function should return a parameterised representation.  To
resolve the recursive use of a parameterised type, the replaceRecursions procedure
makes a call to the substitute procedure, using the parameterised type returned by
its lookup function and the parameters which are available from the references field
of the recursive representation.

This however is not yet sufficient for the resolution of truly recursive
parameterised types, as in Figure 4.4.31.  In such cases, the substitute algorithm
must also be adjusted to deal with unresolved recursive nodes, as they occur in the
graph which is to be copied.  The type definition in Figure 4.4.31 will cause
replaceRecursions to call substitute with the parameterised structure type
representation built to represent a, which contains an unresolved recursive
representation also of a.

rec type a[ t ] is structure( x : t ; y : a[ t ] )

Figure 4.4.31 More recursive parameterisation

This type is one of those allowed by languages such as Ponder, where
parameterisation on the right hand side of a recursive definition may only act as a
recursive fixpoint.  When such a recursive node is encountered by the substitute
algorithm, it terminates the local recursion and leaves a pointer to the unresolved
node itself in the copy of the graph.  This has the effect that, after the rest of the
substitution has been effected and the fields of the recursive node are overwritten
with the result, then a cycle which represents the fixpoint is left in the resolved
recursive type representation.

After the type has been parsed, but before the call of replaceRecursions, the type
representation in Figure 4.4.32 has been built for a.
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"1*3**x*y"

11 "1"

10

12 "a"

rec_list

Figure 4.4.32 A representation containing an unresolved recursive
node

replaceRecursions is now called to resolve the unresolved representation of a in the
above graph.  The lookup procedure called by replaceRecursions will yield a
pointer to the whole parameterised representation, and this will cause a call of
substitute.  The recursive node representing a will itself be reached during the
copying of the graph.  This node is not copied, but a pointer to it is placed in the
new representation.  This leads to the situation, immediately after the internal call
of substitute, shown in Figure 4.4.33.
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"1*3**x*y"

11 "1"

10

12 "a"

"*x*y"3

result of call
to substitute

   Fields to be updated   
  

Figure 4.4.33 During recursive resolution

The next stage in the algorithm is to overwrite the fields of the recursive node with
those obtained by the call of substitute.  The result of this is shown, after garbage
collection and rearrangement, in Figure 4.4.34.
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"1*3**x*y"

11 "1"

10

3 "*x*y"

Figure 4.4.34 After overwriting the recursive node

Notice that the representation finally constructed in Figure 4.4.34 is not minimal.
This is because of the way the algorithm updates the fixed point in place.  In
operational terms, the fixed point detected by the algorithm is not that the right-
hand side parameterisation is the same value as the declared constructor, but that it
is always the same value as itself under specialisation.  The class of types for
which this algorithm will work is therefore greater than that which may be defined
for a µ-operator which binds to a type variable, and includes all cases where each
type in the specialisation list is either the corresponding formal type parameter, or
else is a type which contains no formal type parameters.  Examples of such types
are shown in Figure 4.4.35.

type a[ x, y, z ] is . . . a[ x, y, int ] . . .
type a[ x, y, z ] is . . . a[ structure( c : int ), y, z ] . . .
type a[ x, y, z ] is . . . a[ x, y, z ]

Figure 4.4.35 "Right hand side" fixpoints

During the execution of substitute it is also possible for an unresolved recursive
node which does not represent a fixpoint to be encountered.  This will occur, for
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example, whenever mutually recursive parameterised types are declared, as in
Figure 4.4.36.  When such a node is encountered it is copied as usual, along with
the specialisation list in its references field.  Parameter substitution also occurs as
normal during the copying of the specialisation.  The new recursive node is then
added to the recursion list, as no further processing may yet be performed.

rec type list[ t ] is variant( cons : node[ t ] ; tip : null )
& node[ s ] is structure( hd : s ; tl : list[ s ] )

Figure 4.4.36 Mutually recursive parameterised types

In examples such as Figure 4.4.36, the substitution within specialisation lists leads
to the creation of fixed points as the representation unfolds.  In this example, the
initial representation constructed for list contains an unresolved recursive
representation of node , specialised with the representation of t.  When
replaceRecursions attempts to resolve this, during the call of substitute an
unresolved recursive representation of list, specialised by s, is encountered.  This
is copied, but with the representation of t in place of the representation of s, and
the new node is added to the rec_list.  When this new node comes to be resolved,
however, it is discovered to be a fixpoint and the recursive knot may be tied.

The algorithm as described so far does not terminate with all parameterised
recursive definitions.  In general, allowing any form of recursive parameterised
types may lead to types whose equivalence is not known to be decidable.
However, the class of types allowed so far may be extended.

The class of types for which no known decidable equivalence algorithm exists are
those where the specialisation involves constructed types containing parameters.
During the test for suitability described above, the types module detects such type
descriptions.  These are simply handled in the Napier88 system by disallowing
programs which contain such descriptions.  This restriction is implemented by a
fully decidable algorithm, which ensures that static type analysis will always
terminate.  Figure 4.4.37 shows some examples of allowed and disallowed type
definitions.

Disallowed:
rec type array[ t ] is variant( simple : t ; complex : array[ *t ] )
rec type oddList[ t ] is structure( hd : t ; tail : oddList[ structure( hd : t ) ] )

Allowed:
rec type altList[ s, t ] is structure( hd : s ; tl : altList[ t, s ] )
rec type alt3List[ r, s, t ] is structure( hd : r ; tl : alt3List[ t, s, r ] )

Figure 4.4.37 Examples of allowed and disallowed type definitions

4.4.8 Recursive existentially quantified types
There is one further subtlety which must be dealt with in the substitution
algorithm, which is a consequence of the combination of recursive type definitions
and existential type.  It is possible to define an existential type recursively in such a
way that it refers to values of its own type.  An example of such a type, along with
its representation, is given in Figure 4.4.38.

Each element of the heterogeneousList may be a value of a different structure type
which matches the signature.  When a value of such a type is created, the proposed
concrete structure type is checked for equivalence with the appropriate
specialisation of the existential type.  Recursive instances, however, should not be
specialised: for example, the tail field in Figure 4.4.38 should continue to be a
representation of a heterogeneousList, and not its specialised form.
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rec type heterogeneousList is abstype[ i ]
(

head : structure( value : i ; print : proc( i ) ; change : proc( i → i ) ) ;
tail : heterogeneousList

)

8 "1*head*tail

9 "1"

Figure 4.4.38 A heterogeneous list type and its representation

To achieve this, a further test is required in the substitution algorithm to ensure that
the representation of the existentially quantified type being specialised is not re-
traversed during the algorithm.

4.4.9 Free quantifiers

4.4.9.1 Static checking

In a language with quantified type values, structural type equivalence is not always
a sufficient test for type safety.  Consider the procedures declared in Figure
4.4.39.

let a = proc[ t ]( x : t )
begin

let b = proc[ t ]( y : t )
begin

let new := y
new := x !* This must fail statically *!

end
end

Figure 4.4.39 Type equivalent procedures with non-equivalent
quantifiers

In this example, the procedures declared as a and b are of equivalent types.  The
types of their quantifiers are not equivalent.  However, for a recursive equivalence
algorithm to succeed over procedure types such as these, their quantifiers must
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appear to be equivalent.  The rule is that quantifiers should be regarded as
equivalent in a context in which they are bound to their quantified type, but free
quantifiers may only be equivalent if they derive from the same declaration.

To perform this test at each stage of the equivalence algorithm would add
complexity and significant cost, and so a trick is used with the binding of the type
representations for the quantifiers.  When quantifiers are used in a free context,
their representations are given a different label value.  If two representations derive
from the same declaration, then they will have the same identity.  Identity of
representations is checked for at the start of the equivalence algorithm, and so an
equivalence test succeeds immediately.  The only change that is then required to the
equivalence test is to fail if a representation with this label is encountered.

The way the interface is defined to deal with universally quantified procedures
makes this scheme easy to effect.  The new quantifier representations are created at
the start of the procedure with the free quantifier label, and when they are bound
after the procedure body has been parsed their labels are updated to the bound
quantifier value.  Any type check on quantifiers inside the body of the procedure is
performed on the free quantifier representation.  This causes a type error to be
reported in examples such as the one above.  As soon as the end of the procedure
body is reached, the quantifiers of the procedure become bound to the type of the
procedure.  This means that the recursive structural equivalence algorithm will
perform correctly on the type of the procedure after it has been constructed.

With abstract data types, however, the syntax of the language does not help and it
is necessary to provide extra interface procedures to achieve the different
equivalence semantics.  This is because name equivalence rules must be used
during the use of an existentially quantified value, rather than during its creation.
An example of this is shown in Figure 4.4.40.

The procedures provided are called bindAbs and absFieldType.  bindAbs is used
on the entry of a use clause by the syntax analyser.  Its parameters are an abstract
type representation and a list of new witness types.  On entry to an abstract use
clause, the syntax analyser must create a new set of unbound witness type
representations, one for each witness type of the abstract type.  These are put in a
list which is used as the second parameter to a call of bindAbs.  The result of
bindAbs is a new abstract type representation, which contains both the original
representation of the abstract type and a new copy made by substituting the new
witnesses for the original ones.
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Napier88 code:
type trivial is abstype[ i ]( x : i )

use trivial[ int ]( 3 ) as a in
use trivial[ string ]( "hello" ) as b in
begin

let ok := a
ok := b !* This assignment should be allowed

let notOk := a( x )
notOk := b( x ) !* This must fail statically

end

Possible module use:
let i = mkWitness( 1 )
let temp = newStructure()
addfield( temp, "x", i )
let trivial = mkAbstract( temp, append( i, nilList ) )

let a = bindAbs( trivial, append( mkWitness( 1 ), nilList ) )
let b = bindAbs( trivial, append( mkWitness( 1 ), nilList ) )

let succeed = equalType( a, b )
let fail = equalType( absFieldType( a, "x" ), absFieldType( b, "x" ) )

Figure 4.4.40 Free existential quantifiers

absFieldType is parameterised by an abstract type representation and a string, and
returns the type representation of the field associated with the string.  The
representation it returns is selected from the copied body of the abstract type,
which contains the newly created unbound witness type representations.
Therefore any witness type representations in the result will obey name
equivalence semantics.

When the equivalence function is called on abstract data type representations, it
checks for equivalence only down the pointer to the originally constructed type,
and not the copy made during bindAbs, thus making sure that appropriate values
are still type compatible.

Figure 4.4.40 shows the use of these procedures when free existential quantifiers
are in scope.  In this example the assignment to the variable ok is correct, as the
type of this location contains no free quantifiers.  However, the type of the location
denoted by notOk is of a free quantifier type, and so the assignment of a different
free quantifier type to this location should fail statically.  The two appropriate calls
to equalType are shown, of which the first returns true and the second returns
false.

4.4.9.2 Dynamic checking

No distinction has been made up to this point between static and dynamic type
checking.  For all the types shown, the time of checking is immaterial, as the same
equivalence algorithm may be applied either during compilation or execution.

In general, dynamic type checking is required only when values are projected from
unions.  One reason for performing such a projection is when binding dynamically
to values in the persistent store [ABC83], as shown in Chapter 2.  As long as the
types of both injection and projection are known statically, there need be no
distinction between static and dynamic checking.



107

However, a complication occurs when a value is injected into a union type in a
context where its type is abstracted over.  For example, consider the program in
Figure 4.4.41.

let injectAsA = proc[ t ]( e : env ; x : t )
in e let A = x

Figure 4.4.41 Injection of a value with an abstracted type

A number of different semantic models are possible for this injection.  One
possibility is that the value should be injected with its concrete type.  This would
involve passing type representations around at execution time, but would be quite
straightforward to implement.  This is the semantics implied by universal
quantification in the model proposed by Girard and Reynolds [Gir72, Rey74], as a
textual substitution of the type parameter takes place when a procedure is
specialised.

The program in Figure 4.4.42 would then execute successfully, and print the
successfully projected value.

let e = environment()

injectAsA[ int ]( e , 3 )

use e with A : int in print( A )

Figure 4.4.42 Injection with the concrete type

This is because the application of the procedure injectAsA takes place in two
phases, the first being an application to the type parameter.  This means that the
procedure applied in Figure 4.4.42 is semantically identical to that shown in Figure
4.4.43.

let injectAsA = proc( e : env ; x : int )
in e let A = x

Figure 4.4.43 Specialisation by Girard-Reynolds

However, this model also has the consequence that the concrete type of a
quantified parameter may be discovered from inside the procedure body.  An
example of this is shown in Figure 4.4.44.

let discover = proc[ t ]( x : t )
begin

let e = environment()
in e let A = x
use e with A : int in print( "It's an integer" )
use e with A : string in print( "It's a string" )
. . .

end

Figure 4.4.44 Discovering a quantified type

This has a number of implications.  The caller of a universally quantified procedure
may not be sure that the parameters provided will not be manipulated within the
procedure, thus losing some aspects of the protection discussed in Chapter 3.  A
different model must be employed for values of an existential quantifier type,
complicating the behaviour of the programming language.  Perhaps the most
serious implication is that the procedure shown in Figure 4.4.41 is not a
polymorphic procedure, as it does not abstract over the type of its operand.
Therefore the Girard-Reynolds model of universal quantification does not model
polymorphism in these circumstances, as it allows procedures to behave differently
according to the type of their quantified parameters.
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Another possibility, as defined in Quest [Car89], is to disallow the injection of
values whose type is abstracted over.  Thus the procedure in Figure 4.4.41 is
disallowed during static program analysis.  This is over-restrictive, however, as it
means that a sequence of code which performs both an injection and a projection
may not be abstracted over.  An example of this is shown in Figure 4.4.45.

let store = proc[ t ]( x : t → proc( → t ) )
begin

let e = environment()
in e let A = x

proc( → t )
use e with A : t in A

end

Figure 4.4.45 Abstracting over injection and projection

The semantics of Napier88 lie between these two extremes, in that the procedure in
Figure 4.4.44 will not discover the type of the operand, but the procedure in
Figure 4.4.45 will execute correctly.  When a polymorphic procedure contains an
injection of a value whose type is abstracted over, a new type representation is
created on each invocation of the procedure.  This is treated by the type
equivalence algorithm in the same way as the unbound quantifier representations
described earlier.  Thus for a projection to succeed, the injection must have
occurred during the same dynamic invocation of the polymorphic procedure.  This
scheme retains type safety without allowing the type information to escape.

This scheme is used for any type which contains a free quantifier.  A new label is
used for this representation.  Although a free quantifier representation would give
the correct equivalence semantics, more information is kept to allow a more
meaningful error to be presented to the user on failure.

4.4.10 Conclusions
It has been shown how type representations may be constructed so that the
equivalence algorithm defined in Section 4.3 reflects type equivalence in a
programming language.  The type constructors modelled are vectors, structures,
variants, procedures, universally quantified procedures, and existentially
quantified structures.

The complications of manipulating these representations according to a type
algebra which contains both parameterisation and recursion have also been
exposed.  Of particular interest are the problems caused by the combination of
parameterisation and recursion.  This combination effectively gives a programmer
the ability to write general functions over types.  In most type systems these must
be resolved statically, and the range of types whose equivalence may be decided is
still an active research area.  The algorithms shown are fully decidable, but allow
only a restricted class of type definition to succeed.

Also described are the problems of typechecking with values whose types are
abstracted over, and in particular the combination of these with union injection and
projection.  This is another active research area, and only a brief discussion has
been given here.

4.5 Conclusions
Type systems in persistent programming languages are assuming an increasingly
important role, and the traditional database schema is now commonly regarded as a
type.  This leads to a requirement for the efficient manipulation of types in a
persistent system to allow provision of the facilities traditionally found in DBMS
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for schema editing, use and evolution.  One aspect of schema manipulation, that of
type equivalence checking, has been investigated here.  The use of the common
methods of name equivalence and structural equivalence have been studied in
detail.

We have shown that while name equivalence schemes are easier to implement and
are more efficient they still have to use structural checks to provide important
facilities such as schema merging.  On the other hand structural equivalence,
generally more flexible and less efficient, can often achieve the same performance
as name equivalence.

Given that the efficiency of name equivalence is adequate for our needs, the
improvement of the performance of structural equivalence checking becomes
important.  A method of performing such checking has been described, and it has
been shown that there is a balance between constructing efficient representations of
types in terms of store and the speed of the equivalence algorithm.

We have shown how types may be represented by strings and by graphs,
highlighting the difficulties in their construction and use.  Some preliminary
measurements are presented and our main conclusion is that where the type schema
is large and involves the sharing of types, the graph representation will be much
more efficient in terms of space.  It may however be slower in terms of speed of
checking depending on its use within the persistent store.

Finally, a method of constructing graphs for type representations has been shown
in detail.  While this is straightforward for most types, there are some difficulties
with type algebras which include both parameterisation and recursion.  Some
outstanding difficulties with the dynamic typechecking of values whose type is
abstracted over have also been outlined.
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5 On the implementation of polymorphism

5.1 Introduction
Given that a polymorphic programming language may be correctly type-checked,
there remains the problem of implementing a suitable run-time system.  Compilers
traditionally use type information for two purposes: the first is to ensure static
safety constraints within a program, and the second is to generate appropriate code
where this depends on the type of operands.

Values of different types frequently have different machine-level representations,
for reasons of efficiency.  The difficulty of implementing polymorphic systems
stems from the fact that, as the type may be abstracted over, the representation of a
value is not always known statically.  This causes problems with all kinds of
polymorphism.  With parametric polymorphism, operations which may manipulate
a value of any type are defined over values whose type, and therefore
representation, is not known.  With inclusion polymorphism operations such as
record dereference may be defined over values whose type is partially abstracted
over.  Representation-dependent information, such as record offsets, may not
always be calculated statically.  With ad-hoc polymorphism there is a requirement
for operations with different semantic meanings to be executed according to the
type of the operands, which may be abstracted over in some systems.

A number of solutions to these problems have been proposed and successfully
implemented [Mil83, Lis81, DD79, Mat85, BMS80, Fai82, Tur87, ACO85,
SZ86, GR83, Hud90].  Many of the solutions however have been in non-
persistent languages, and for various reasons are not well suited to the
implementation of polymorphism in a persistent programming system.  This
chapter proposes two new mechanisms, for the implementation of parametric and
inclusion polymorphism.  Both of these are suited for use in a persistent
programming system.

5.1.1 Compilation, architectures, and polymorphism
For the purpose of discussion, a simplified model of programming language
implementation is assumed.  The terms compilation and architecture will be used
throughout.  The assumed model is of a program, which consists of text, being
used as input to another program, a compiler.  The compiler transforms the text
into a sequence of instructions which may be executed upon a machine
architecture.  This architecture is assumed to use an evaluation stack and a heap
storage mechanism.

Implementation techniques for polymorphism may be broadly divided into two
main categories, according to whether or not the architecture supports instructions
which perform differently according to the type of their operands.  Architectures
which do support such instructions will be referred to as tagged architectures, and
those which do not as untagged architectures.

These two categories may be further subdivided.  Untagged architectures may be
used to support polymorphism in two ways, defined as uniform and textual
implementations [MDC90].  Uniform implementations are those where a compiler
can produce an instruction sequence without using any knowledge of the types
being manipulated.  This is only possible if all language operations which are legal
on values of all types perform the same series of instructions at the architectural
level.  Textual implementation refers to any implementation of polymorphism
which is neither tagged nor uniform, and must therefore rely upon executing
different instruction sequences in different calls of a polymorphic procedure.
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Tagged implementations may also be divided into two categories, according to
whether all values are tagged or tagging is restricted to values whose type is
unknown statically.

The given classification of implementation techniques is illustrated in Figure 5.1.1,
along with examples of programming languages or architectures which use each
method.  The classification is somewhat oversimplified, as a combination of these
techniques may be used within a single system.  This Figure will be discussed in
detail in the conclusions of this chapter.

Polymorphic architectures

Tagged Untagged

Always Sometimes Uniform Textual

Napier88 ML, Poly
etc.

Ada

Napier
proposal

Burroughs
B6500

ML
eqtypes

Most languages

Parametric

Inclusion

Ad Hoc

Smalltalk,
Eiffel etc

Galileo

?

?

Existential ?Napier88

?

? ?

Figure 5.1.1 A Classification of polymorphic implementation

Notice that this classification is entirely of implementation, and bears no relation to
the semantics of a language.  However, the same semantic model may indicate
different implementation techniques depending partly upon the way it is used
within a language and partly upon the other classes of computation expressible
within a language.  The suitability of different implementation techniques for some
different styles of programming language will also be discussed in the
conclusions.

The essence of this chapter is the description of two new tagged architecture
mechanisms, one of which supports parametric polymorphism [MDC90], and the
other of which supports inclusion polymorphism [CDM89].  The first of these is
fully implemented, and is used to support the language Napier88.  The second is
currently under construction.  Both mechanisms restrict the use of tagging to those
cases where it is strictly necessary, thus allowing the compiler to produce efficient
code for programs which do not use these features.

Different architectural mechanisms are described for the different language models
of parametric and inclusion polymorphism.  There is no reason, however, why
both mechanisms may not be supported by a single architecture.  Parametric and
inclusion polymorphism are discussed in separate sections, each section consisting
of a review of other implementation methods followed by the new method.
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5.2 Parametric polymorphism

5.2.1 Machine-level type systems
Most machines, both hardware and software, have their own type systems.  These
are normally low-level and not checked for safety.  For example, many machines
represent integers as a single word value and floating point numbers as a double
word value.  For simplicity, most machine designers choose a small number of
object formats, perhaps in the order of ten.

The use of different formats necessitates the use of different instructions for
operations applicable to values of all types, such as binding and parameter passing.
Thus program segments such as

a := 7

and

a := 7.0

must be represented by different instruction sequences.  The different space
demands of integers and floating point numbers mean that different load literal and
assignment instructions must be generated.  The stack address calculation for the
rest of the program will also be affected differently.

The difficulty with different machine formats for different classes of types is that a
system with type abstraction does not always have enough information to generate
different instructions for the different formats.  The problem is that any operation
defined over all data types should also be defined over values of a type which is
not known statically.  For example, Figure 5.2.1 shows a Napier88 procedure
which updates the value of a location whose type is abstracted over.

let problem = proc[ t ]( x , y : t )
begin

x := y
end

Figure 5.2.1 Assignment to a location whose type is unknown
statically

This procedure is universally quantified over a type denoted by t.  The procedure
takes two parameters of this type, which at the time of procedure call are used to
initialise the locations bound to the identifiers x and y.  The procedure then updates
the location bound to x with the value contained by y.  As these are statically
known to be the same type, the assignment is valid.

Although x and y are known to be the same type, it is not known what size their
representations are, or whether they are pointers or scalars.  This means that the
correct assignment instruction is not known: even the stack addresses of x and y
may not be statically determined.  The same problem occurs with existential data
types, where a type signature may also be abstracted over.

Different machine formats may also cause difficulty with some data structures, as
knowledge of the types contained by them may not be statically available within
polymorphic code.  For example, the procedure shown in Figure 5.2.2 is again
universally quantified over t, but this time the single parameter is an array of values
of this type, and the result is a single value of this type.  The procedure returns the
value of the second element of the array.  However, the offset and size of the
required element cannot be statically determined, as they depend upon the type of
the array elements.

let second = proc[ t ]( x : array[ t ] → t ) ; x( 2 )

Figure 5.2.2 A polymorphic addressing problem
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The problems of implementing parametric polymorphism have been successfully
addressed by the implementors of the Ada programming environment [Ich83], the
Functional Abstract Machine [Car83], designed primarily to implement ML, and
the Persistent Abstract Machine [BCC88, CBC89], designed primarily to
implement Napier88.  The different requirements of these languages have led to
three quite different solutions.  The Ada solution is textual, the ML/FAM solution
is uniform, and the Napier88/PAM solution is partly tagged.  Each solution is
examined in turn, along with reasons for its adoption.

5.2.2 Textual implementation
Textual polymorphism is defined as an implementation of polymorphism where
different instruction sequences are produced by the compiler for different calls of
the same polymorphic procedure.  This method is commonly used for the
implementation of ad hoc polymorphism.

If data types do have different representations, then polymorphic procedures must
execute different code according to the types with which they are specialised.  One
method of implementing such a scheme is for the compiler to translate polymorphic
procedures into an intermediate form.  When a specialisation of the polymorphic
procedure is compiled, the intermediate form is used to generate code specific to
the specialisation type.  This generated code may be in the same language, in
which case the compiler will then compile the generated code.  This technique is
known as type reflection [SFS90].  Alternatively, the intermediate form can be
used to generate specific machine code directly.

The major advantage of textual polymorphism is that the compiler can always
produce optimum code, and an architecture which supports different data formats
for any reason does not cause a problem.  The major disadvantage is that the
amount of code produced by the compiler may be large.  A number of cases in
which this can become severe are now discussed.

5.2.2.1 Multiple parameters

It is not necessary to compile a different version of the procedure body for every
call of a polymorphic procedure.  If the type of two calls share the same
representation, then the code may be shared between these calls.  In general, an
upper bound of the number of different versions required is the number of
different machine formats.

If a polymorphic procedure abstracts over more than a single type, however, this
upper bound becomes exponentially greater with the number of type parameters.
For example, supposing that an architecture supports ten different machine
formats.  Then a procedure of type

proc[ t ]( t → t )

will have an upper bound of ten different bodies compiled for it.  However, for a
procedure of type

proc[ s,t ]( s,t → t )

the upper bound is one hundred, and for a procedure of type

proc[ r,s,t ]( r,s,t → t )

the upper bound is one thousand.  In general, the upper bound is nm, where n is
the number of different machine formats and m is the number of types abstracted
over.  It should be remembered, however, that these examples of upper bounds are
not necessarily representative of the amount of compiled code required.  If the
parameter types of all calls to such a procedure are known statically, then the
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number of calls of a polymorphic procedure within a program is a more realistic
upper bound to the number of code versions required.

5.2.2.2 Calls within calls

In general, the types of all the parameters at a procedure call are not always known
statically.  If the body of a polymorphic procedure itself contains a call to another
polymorphic procedure then the amount of code necessary is more than one
version for each static instance of a procedure call.  For each instance of a
procedure call where the types are known, specialised procedure bodies for all
polymorphic procedures which are reachable through a calling chain must be
produced.  This has a multiplicative effect of the production of specialised code.

5.2.2.3 First class procedures

In a language with first class procedure values the problems may become much
greater.  This is because it may not be possible to tell statically from a procedure
call which instance of a procedure is being called.  Under these circumstances it is
not possible for the correct specialisation to be performed statically by the
compiler.  For example in the program in Figure 5.2.3, the compiler can not
statically provide a procedure body for the call of either, since it does not know
which version will be called when the program is executed.

let either = if <condition>
then proc[ t ]( a , b : t → t ) ; a
else proc[ t ]( a , b : t → t ) ; b

either[ int ]( 2,3 )

Figure 5.2.3 Calling a non-manifest polymorphic procedure

There are two possible solutions: either the compiler is called dynamically, or all
versions of such procedures which could possibly be required are compiled
statically, with the compiler inserting a dynamic lookup to access the correct
version.  This lookup could be keyed using some kind of tag for the appropriate
machine representation.  The first of these, although slow, limits the production of
code to only that which is used.  The second demands sophisticated static analysis
and, in a complex system, will produce volumes of code which approach the upper
bounds shown above.

5.2.2.4 Persistence

Even this last scheme is not suitable for use in a persistent system with first class
procedures.  The use of a first class polymorphic procedure in such systems may
extend beyond a single compilation unit, and a compiler is then unable to perform
any static analysis of its use.  Such a system therefore degenerates into a worst
case of the above, and either all calls to persistent polymorphic procedures must
dynamically invoke the compiler, or every possible procedure body must be
available in the persistent store.

5.2.2.5 Conclusions

Textual implementations of polymorphism produce optimum instruction sequences
and do not impose restrictions on the design of an architecture.  However, the
technique may introduce serious problems with the amount of code produced, or
the number of dynamic calls to the compiler.

Despite its apparently serious drawbacks, the technique has been used successfully
to support generic types in the programming language Ada.  Ada, however, does
not support either persistence or first class polymorphic values.  For programming
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languages with such features this implementation technique is unsuitable as a
general implementation mechanism, although it may still be useful as an
optimisation technique.

5.2.3 Uniform implementation
A uniform implementation of polymorphism is one in which the polymorphism is
exhibited both by the compiler and by the architecture: any operation which is legal
on values of all types always generates the same code and performs the same series
of instructions independently of its particular use.  This can only be achieved by
using a single representation for all data types, both on the run-time stack and
within the language's data structures.

This has two consequences: all manipulated values must be represented in a fixed
size, and pointers and non-pointers must be manipulated identically both on a run-
time stack and within any heap object which represents a data structure.

5.2.3.1 Fixed size value representations

Having all data values of a fixed size loses efficiency for applications which do not
use polymorphism.  Different data types have different space requirements for their
representations: for example, real numbers usually use twice, or sometimes four
times, the space of integers.  If the representations of all data types are restricted to
the same size, then either they must all be the size of the largest, with the
consequent wastage in space, or else some values must be wrapped in heap
objects, and operations specific to their type must go through an otherwise
unnecessary level of indirection.

5.2.3.2 Finding pointers

Many architectures require to distinguish between object identifiers and scalar
values at the store level.  This allows activities such as garbage collection,
clustering, and pointer swizzling [BC85] to be performed without a high-level
knowledge of a language's run-time system.  In general, pointers may be detected
either by tagging or by restricting them to certain locations which may be
discovered from store conventions.  One problem with pointer tagging is that it is
hard to implement efficiently in software, and few machines provide hardware
support.  Even if hardware support is available, keeping pointers in known
locations removes the need for searching and may therefore increase the efficiency
of garbage collection and pointer swizzling.

In some systems, pointers within heap objects are always distinguished by being
restricted to a contiguous area with boundaries somehow delimited within the
object.  Pointer and non-pointer values may be distinguished during program
evaluation either by keeping a bitmap of the stack or by using two separate stacks,
one for pointers and one for non-pointers [BMM80, PS85]  Both of these cases,
however, require the generation of different machine instructions for operations
such as loading and assignment, which are defined over all values.

There are two possibilities which may be used to allow the architecture to find
pointers in a uniform system.  The first of these is by marking all data values as
either pointer or non-pointer, which may be achieved by restricting the ranges of
possible values.  This is not efficient to implement on a conventional architecture.
Not only are the number of possible values in each category reduced, but to
guarantee strong typing all instructions which manipulate either category of value
must be checked in software for overflow from the restricted range.

The second possibility is for non-pointer values to be encapsulated in heap objects.
The machine can then find pointer values, as all values are represented both on the
stack and within data structures as pointers.  Heap objects must also contain
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headers which allows the machine to dynamically determine which contained
values are pointers, so that arbitrary pointer following may be achieved below the
language level.  This scheme means that in general all operations on non-pointer
values must use an extra level of indirection, although certain optimisations may be
made.

Notice that the ability to determine some aspect of a data value's meaning is only
necessary for utilities which operate below the level of a programming language.
Instructions generated by a compiler never need to test a value, as type-dependent
operations may only be generated where sufficient type information is available
statically.

5.2.3.3 Conclusions

The main advantage of the uniform polymorphism scheme is that the model of
polymorphism is simple and elegant.  This not only makes compilers easy to write,
but may also increase a user's understanding of a language by use of an abstract
architecture as a reference model.

The main disadvantage of this scheme is the requirement for unnecessary levels of
indirection for at least some data within the system.  If the architecture is to be
simulated on a conventional machine, then either this requirement becomes greater
or software tagging must be used.  The cost of the extra indirection is twofold:
operations over data are more expensive, and creation of new data involves extra
heap object creation.  All data values in the system must pay this price, whether or
not polymorphism is used.

The technique of uniform polymorphism has been successfully used to implement
ML and many other functional programming languages.  It is perhaps less suitable
for the implementation of a persistent language due to the extra levels of indirection
which are required.  As these are required for all data within the system, and not
just those whose type is abstracted, all access to the persistent store would
potentially involve extra indirections.  In a persistent system, object faulting is a
major execution cost [Bai89].  This is in contrast to functional programming
systems, where most data is transient and implementation is normally geared to the
production and reclamation of large numbers of temporary heap objects [Car83].

5.2.4 Semi-uniform, partly tagged implementation
The uniform implementation of polymorphism as described above relies upon an
architecture being able to perform the same instructions for the same logical
operation on a value of any type.  This prevents the use of different formats within
an architecture.  We now show a semi-uniform implementation, which allows a
machine to use different formats to represent different data types.  The essence of
the solution is to provide a further format which is used for values whose type is
not known statically.  The compiler may therefore generate uniform code using this
format when values of abstracted types are manipulated.  On entry to a
polymorphic context, values are converted to this format, and reconverted on exit.

5.2.4.1 Semi-uniform implementation

The semi-uniform implementation requires a machine to support a format suitable
for the representation of values whose type is abstracted over.  Values of such a
type must be converted into this format on procedure entry, and reconverted to
their original format on procedure exit.

The requirement for a polymorphic format is that any other format may be mapped
to and from it.  That is, the information space is large enough to hold all the
information in any other format.  It may be assumed that the operations which map
values to and from the polymorphic form will be applied consistently, and so the
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polymorphic form itself does not need to hold information related to the type of its
contained value.

Any data format which may be used for a uniform implementation of
polymorphism may also be used for this technique.  The difference is that values
are represented in this format only when their type is abstracted over.  The extra
cost of this technique over uniform implementation is in the conversion for the
execution of polymorphic code.  The advantage is the extra flexibility in the rest of
the architecture, where any number of different formats may be used.

As an example of this technique, imagine a language which supports only two data
types, integer and real.  Integers are represented by a single word, and reals by
two words.  One possible polymorphic representation would be as heap objects.
Integers could be represented as a single-word object, and reals as a double-word
object.  The conversion and reconversion routines are different for the two types,
consisting of the appropriate wrapping and unwrapping of the values.  Within a
polymorphic procedure both types are represented by a single-word pointer, and
this is known statically by the compiler.

In this example a more efficient solution may be to represent a polymorphic value
always as two words, which do not need to be wrapped in a heap object.  Values
of both possible types may be contained in this space.  The operation to convert a
parameter of type integer to the polymorphic format may be simulated by an
increment of the stack pointer, and the reconversion by a decrement.  No operation
is required to convert and reconvert real values, as they are represented by the
same format as polymorphic values.

As an example of this technique, consider the program in Figure 5.2.4.  Two
procedures are declared and called; both return their first argument.  Both are
applied to pairs of integers.  The only difference between the procedures is their
type; intFirst may be applied only to integers, and polyFirst may be applied to any
two operands of the same type.

let intFirst = proc( x , y : int → int ) ; x

let polyFirst = proc[ t ]( x , y : t → t ) ; x

let a = intFirst( 2 , 3 )
let b = polyFirst[ int ]( 2 , 3 )

Figure 5.2.4 Identical procedures with different types

The procedure polyFirst is compiled using the polymorphic format.  As x and y are
of type t, which is statically known to be an abstracted type, both parameters are
known to be represented in the polymorphic format.  All relative stack addresses
may be calculated statically given this information.

The conversion to and from this format depends on the format of the type being
applied, which in this case is known statically.  When a non-polymorphic
procedure with two integer parameters is called the integers are evaluated one at a
time and left upon the stack.  The frame of the invoked procedure uses these two
stack locations as its parameters.  As this call is to a polymorphic procedure,
however, after each parameter is evaluated it must also be converted to the
polymorphic form.  This is achieved, depending upon the chosen polymorphic
format, either by wrapping it as a heap object or by incrementing the stack pointer.

When the procedure finishes executing, the result will be left on the stack in the
polymorphic format.  Again, the actual type of the result is known from its
context, and the integer format may be regained by application of the appropriate
reconversion operation.
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Load 2 Load 3 Load x Return

Figure 5.2.5 Stack manipulation during the call of intFirst

Figure 5.2.5 shows the manipulation of the stack during the application of the
procedure intFirst.  Figure 5.2.6 and 5.2.7 show the different manipulation during
the application of the procedure polyFirst.  Figure 5.2.6 shows the polymorphic
format as a heap object, and Figure 5.2.7 as a double word value.  Both
procedures successfully result in the same word being left on the stack.

Load 2 Load 3 Load x ReturnConvert Re-convertConvert

Figure 5.2.6 Stack manipulation with pointer polymorphs

Load 2 Load 3 Load x ReturnConvert Re-convertConvert

Figure 5.2.7 Stack manipulation with two word polymorphs

5.2.4.2 Conversion by procedural encapsulation

The above description of polymorphic conversion and re-conversion carefully
avoids mention of whether the code which performs these operations is located
with the polymorphic procedure or with its call.  It is always more efficient to
perform the expansion and contraction at the procedure call, as the type of
operands are known statically.  If the conversion code were inside the procedure,
then knowledge of the formats of its operands would have to be passed with them,
making both the conversion routine and the procedure call less efficient.

For conversion to be possible outside the procedure it must always be possible to
tell statically the format of the operands that the procedure is expecting.  This will
always be the case if procedures are manifest values, but is not so in general with
first class procedures.  For example, Figure 5.2.8 shows a procedure where an
identifier first is initialised with a procedure value, of type proc( int → int ).
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However, the value of this procedure depends upon a dynamically evaluated
condition, and whether it is a polymorphic procedure value or not cannot be
determined statically.  At its call, therefore, it is not known statically whether or
not polymorphic conversion should be performed on its operands.

let polyFirst = proc[ t ]( x , y : t → t ) ; x
let intFirst = proc( x , y : int → int ) ; x

let first = if <condition>
then intFirst
else polyFirst[ int ]

let a = first( 2 , 3 )

Figure 5.2.8 Calling a procedure of unknown derivation

The problem is in fact more general than this.  If the polymorphic conversion were
performed inside the polymorphic procedure, then parameters would always be
passed in their non-polymorphic formats.  However, it would then be necessary to
pass the information of the representation types every time a procedure was called,
whether it was polymorphic or not.  Although this would be straightforward to
arrange, code which did not use polymorphism would have to pay a significant
extra cost for procedure calls.

In some languages, polymorphic procedures are not type compatible with any of
their monomorphic forms without the explicit application of a type parameter.  One
way of allowing a polymorphic procedure to execute correctly in contexts with
different type views is to implement this partial application as a procedure
application.  Polymorphic procedures are compiled as higher-order procedures
which take the necessary representation information as a parameter and return the
appropriate specialised procedure.

let polyProc = proc[ α ]( Sig1[ α ] → Sig2[ α ] )

=>

let polyProc = proc( tag( α ) : tag → proc( Sig1[ α ] → Sig2[ α ] ) )
proc( Sig1[ α ] → Sig2[ α ] )
begin

<convert all instances of α to polymorphic form>
<evaluate body using polymorphic form>
<convert results from polymorphic form>

end

Figure 5.2.9 Representing a polymorphic procedure by
encapsulation

Figure 5.2.9 shows how this could work in principle.  The type of the
specialisation is denoted in Figure 5.2.9 by α, and the parameters and result of the
polymorphic procedure are type signatures which use the type α.  It is only the
format used for this type, rather than the type itself, which is required for the
correct execution of the enclosed procedure.  As the polymorphic procedure must
already have been correctly type checked, no dynamic manipulation of the full type
information is required.

The encoding of representation formats is unimportant, and is represented here by
the type tag.  The most likely encoding would be as an integer, for reasons of
efficiency.  When a polymorphic specialisation is executed, the outer-level
procedure is called with the encoding appropriate to the specialising type.  This is
denoted by tag( α ) in Figure 5.2.9.  The format information is all that is required
for the procedure which is returned by the specialisation to be able to execute
correctly.
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Figure 5.2.10 shows the details of the conversion for the polyFirst example used
above.  The presence of only two machine formats, one word and two words, is
still assumed.  The formats are encoded in this example as strings, "one" for a
single word and "two" for a double word.  Although it is not possible to write this
procedure in a high-level language, there is no problem in producing the code
within a trusted compiler.  Explicit architectural support is not necessary, but may
be required to increase efficiency.  Although the conversion code looks very bulky
in this example, on close examination it may be seen to be of relatively minor cost.

let polyFirst = proc[ t ]( x , y : t → t ) ; x

=>

let polyFirst = proc( tag : string → proc( α , α  → α ) )
proc( x , y : α, α → α )
begin

! convert all instances of α to polymorphic form, i.e.
! parameters should be at words one and three,
! with stack pointer at four
case tag of
"one" : begin

!parameters are at words one and two,
!with stack pointer at two
move stack 2 to stack 3
set stack pointer to 4

end
"two" : begin

!parameters are at words one and three,
!with stack pointer at four
!no conversion is required

end
default : error( "no such polymorphic tag" )

<evaluate body using polymorphic form>

case tag of
"one" : begin

!result should be a single word
!is currently polymorphic form
set stack pointer to 1

end
"two" : begin

!result should be two words
!no conversion is required

end
default : error( "no such polymorphic tag" )

end

Figure 5.2.10 Compiler expansion of polyFirst

Notice that the effect of specialising the same polymorphic procedure with a
number of different types is not to create new instances of the returned procedure,
but only new instances of its closure.  Thus only a single copy of the polymorphic
code is ever necessary.

With this scheme, a polymorphic procedure must always be specialised with a
concrete format before being called.  This means that, if a polymorphic procedure
is called within the context of another polymorphic procedure, then the parameters
must be converted to their concrete format before the call.  The necessary tag
information is available for this purpose, and the compiler must plant code to
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convert the polymorphic parameter back to its concrete format for this purpose, as
well as for returning the result of the procedure.

There are in fact four different type views possible at the time of the call of a
polymorphic procedure.  For completeness, these will be listed, and the above
scheme will be demonstrated to work in each case.  There are four possibilities as
the type of the parameter values may be known statically or not, and the procedure
may have been specialised or not.  Thus the four cases are as follows:

1. concrete parameters passed to unspecialised procedure

2. abstracted parameters passed to unspecialised procedure

3. concrete parameters passed to specialised procedure

4. abstracted parameters passed to specialised procedure

Figure 5.2.11 shows an example of each of these cases.  The polymorphic identity
procedure declared as id is called in four different contexts, with or without prior
specialisation and with concrete and abstracted parameters.

let id = proc[ t ]( x : t → t ) ; x

let case1 = ! concrete parameter and unspecialised procedure
id[ int ]( 3 )

let callId = proc[ t ]( x : t )
begin

let case2 = ! abstracted parameter and unspecialised procedure
id[ t ]( x )

end

let intId = id[ int ]
let case3 = ! concrete parameter and specialised procedure

intId( 3 )

let callId2 = proc[ t ]( x : t )
begin

let idT = id[ t ]
let case4 = ! abstracted parameter and specialised procedure

idT( x )
end

Figure 5.2.11 The four cases of polymorphic procedure call

All four cases are in fact dealt with by the same methodology, by making the call
of a polymorphic procedure appear identical to the call of a non-polymorphic
procedure.  The encapsulating procedure is always called before the polymorphic
procedure, and abstracted parameters are always reconverted to their concrete
formats before a call.

Although the above mechanism has been described in terms of a language model of
explicit specialisation, it may also be used in languages where explicit
specialisation is not forced.  In languages with type inference, for example,
polymorphic procedures are type compatible with any of their monomorphic
forms.  However, in any statically typed language it may always be detected when
a procedure is used in a more specialised context, and the necessary partial
application may always be performed safely at this point.

This scheme is general, but has two efficiency considerations which must also be
addressed.  These are:
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• the cost of procedural encapsulation, and polymorphic
conversion occuring within the procedure

• the cost of converting parameters of complex types

These problems will be addressed individually, the first in Sections 5.2.4.3 - 5,
and the second in Section 5.2.4.6.

5.2.4.3 Cost of procedural encapsulation

Conversion to polymorphic format is more efficient at the procedure call, rather
than inside the procedure.  This is because the format of the values being converted
is known statically, whereas a lookup is required from inside a procedure.  The
representation of polymorphic procedures as encapsulations does not necessarily
mean that conversion may never be performed outside the procedure, as a boolean
flag may also be passed as a guide to whether conversion is necessary or not.
However, an extra cost has been introduced in that the calling of a polymorphic
procedure causes the architecture to perform two procedure calls, rather than one.

There are cases where the above scheme may be seen to be unnecessarily
inefficient.  For example, whenever a polymorphic procedure calls another
polymorphic procedure, then all abstracted parameters are converted to their
concrete format when they are passed, and then reconverted to the polymorphic
format in the procedure which has been called.  Furthermore, two procedure calls
will occur each time, as partial specialisation may not be performed outside the
context of the first procedure body.

An extreme example of this is a recursive polymorphic function, such as contains
in Figure 5.2.12.  This function uses recursion to determine whether an item is in a
list of an appropriate type.  In a uniform implementation of polymorphism the cost
of applying contains to a list of three elements which does not contain the item is
ten function calls.  With the method of encapsulation, the number of function calls
is doubled, and each all may involve conversion to and from the polymorphic
form.  Although most of these conversions may be avoided by optimisation, at
least some computation is required to check whether they are necessary or not.

rec let contains = proc[ t ]( x : t ; l : list[ t ] → bool )
if empty[ t ]( l ) then false else

head[ t ]( l ) = x or
contains[ t ]( x , tail[ t ]( l ) )

Figure 5.2.12 A recursive polymorphic function

However, the general efficiency considerations of this model depend to a great
extent upon the expected usage of a system.  In the model of software reuse in
persistent systems given in Chapter 2, for example, polymorphic code is brought
from the persistent store, specialised once, and called many times.  With this style
of use, significant numbers of extra procedure calls are not generated.

5.2.4.4 Reverse encapsulation

Encapsulation is an appealing model to solve the problem of different type views
of the same procedure, with the encapsulating procedure being called to specialise
the type view.  However, encapsulation may also be also used to implement
different type views by applying it in the reverse sense.  That is, instead of a
polymorphic procedure being represented as an encapsulation, the specialised type
view of it may instead be implemented as the encapsulation.  This allows
conversion to and from polymorphic formats to be arranged from the outside of
polymorphic procedures, where the type formats are always known statically.

Still using polyfirst as an example, it may now be compiled as a procedure which
operates over polymorphic formats, instead of also being responsible for the
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conversion and reconversion of its parameters.  Then, in the simple example of a
call of the procedure as shown in Figure 5.2.13, the code to convert to
polymorphic form is placed at the procedure call.  The advantages of this are that
only a single procedure call is performed, and the representation type is known
statically, so no testing is required for the conversion.

let polyFirst = proc[ t ]( x , y : t → t ) ; x

let b = polyFirst[ int ]( 2 , 3 )

Figure 5.2.13  A simple polymorphic call

As shown, however, the procedure polyFirst may be used in a context where it is
not known to be polymorphic.  The way this can be implemented is for the
compiler to cause it to become encapsulated by a procedure of the specialised type
when its specialisation occurs.  For example, the specialisation of polyFirst to
integer would be compiled as in Figure 5.2.14.  As previously explained, this
technique may be used whether or not a language uses explicit specialisation.

polyFirst[ int ]

=>

proc( x , y : int → int )
begin

convert x to polymorphic format
convert y to polymorphic format
polyFirst( x , y )
convert result from polymorphic format

end

Figure 5.2.14 The compilation of specialisation using reverse
encapsulation

The efficiency of this technique again depends upon the use of the system.  When
a procedure known to be polymorphic is called then only a single procedure call is
executed, and the conversion to polymorphic form is more efficient.  If a
polymorphic procedure calls a procedure also known to be polymorphic, only a
single call and no conversion is required.  In the case where a polymorphic
procedure is specialised once and called many times, then twice as many procedure
calls occur as in the previous scheme.  However, the operations which perform the
conversion are generated in a context where the concrete format is known
statically, and so these may be very much more efficient.

The reverse encapsulation scheme does not require any tagging at all, as no
operations now depend dynamically upon the format of an operand.  However,
this is not claimed as a result of the scheme as tagging will be reintroduced for
other reasons of efficiency.  The tag may be passed as an extra hidden parameter to
polymorphic procedures, rather than as a parameter in the encapsulating procedure.

To return to the example of the contains function in Figure 5.2.12, the reverse
encapsulation scheme has the same cost in procedure calls as for uniform
polymorphism, and requires only a single conversion to polymorphic form.  The
representation type for this conversion is known statically.  This is approximately
the same cost as the uniform implementation, but the mechanism retains the
flexibility of allowing the architecture to use different value formats.

5.2.4.5 Cost comparison of encapsulation and reverse encapsulation

The schemes of encapsulation and reverse encapsulation are not fundamentally
different, but have different costs according to the use of polymorphic procedures.
There are four different situations where a polymorphic procedure call gives rise to
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different costs with the two models.  These depend upon whether the type of the
parameter values is known statically or not, and upon whether the procedure has
been specialised or not.  The four cases, as shown earlier, are as follows:

1. concrete parameters passed to unspecialised procedure

2. abstracted parameters passed to unspecialised procedure

3. concrete parameters passed to specialised procedure

4. abstracted parameters passed to specialised procedure

With the first model of encapsulation, all four cases are dealt with in the same way,
by making the call of a polymorphic procedure appear identical to the call of a non-
polymorphic procedure.  The encapsulating procedure is always called before the
polymorphic procedure, and abstracted parameters are always reconverted to their
concrete formats before a call.

With reverse encapsulation, the situation is optimised for the call of a procedure
which has not been specialised.  This executes only a single procedure call.  The
polymorphic conversion is also more efficient in Case 1, as the type being
converted from is known statically.  In Case 2, it may be determined statically that
no conversion is required.  However, to ensure that the system will still work
where a polymorphic procedure is specialised, the specialisation must be
represented as a procedure encapsulation.  This is in contrast to the procedure call
for the first model.  This means that calling such a procedure after specialisation
involves two calls instead of one.  The conversion, however, is again more
efficient.  Case 4 is the same as Case 2 in the reverse encapsulation scheme; the
partial specialisation in this context requires no computation, as the parameters are
guaranteed to be in the polymorphic format.

It may then be seen that reverse encapsulation is more efficient where a procedure
is known to be polymorphic, but probably less efficient in the case where a
procedure is specialised once and called many times.  Which scheme is more
appropriate thus depends entirely upon the way in which a polymorphic system is
used.

5.2.4.6 Lazy conversion using tagging

So far the discussion of both methods of encapsulation has been limited to simple
parameters which may be easily converted to the polymorphic form.  However,
converting all instances of an abstracted type inside a data structure may not be
sensible if, for example, some such values are never manipulated by the
procedure.  Figure 5.2.15 shows an example of this.  This procedure is quantified
over a type denoted by t, and returns the first element of an array of this type.  In
such cases it would be sensible to perform the polymorphic conversion lazily, as a
value of the abstracted type is accessed.

let first = proc[ t ]( x : array[ t ] → t ) ; x( 1 )

Figure 5.2.15  Eager conversion not sensible

If conversion to polymorphic form is to be performed lazily, then it must be
performed by code within the body of the polymorphic procedure.  This means
that an encoding of the concrete format must be accessible by the procedure.  In the
case of normal encapsulation, this information is already available in the procedure
closure.  With reverse encapsulation it may be provided by compiling a
polymorphic procedure with an extra hidden parameter, in which the tag
information is passed.  When the compiler encounters a call of a polymorphic
procedure it can determine statically either the value or the address of the value to
be passed as this parameter.
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Code may be planted which accesses this information to perform appropriate
conversions, as has previously been shown in the example of procedural
encapsulation in Figure 5.2.10.  This may be required, for example, to convert a
value to polymorphic format after it has been dereferenced from an array, or to
reconvert it from polymorphic format before it is used to update a location in an
array.

There are also addressing issues concerned with the format of values within data
structures.  For example, in Figure 5.2.16 the dereference operation itself must
access the format information to calculate the offset of the second element of the
array.  Although this is relatively straightforward for arrays, it becomes more
complex for structure or record types, as the format of some values may affect the
offsets of others.  However, knowledge of the tags always conveys enough
information for the compiler to plant code to calculate the correct offsets.

let second = proc[ t ]( x : array[ t ] → t ) ; x( 2 )

Figure 5.2.16  Lazy conversion may include address calculation

One special case of polymorphic conversion is when parameter and result types
contain procedures.  The conversion of a non-polymorphic procedure to one which
operates over polymorphic formats and vice-versa would be very costly, and a
different scheme is adopted for this.

Conversion of values with procedure types is not straightforward.  The difficulty
is that the same procedure may be required to execute with parameters of concrete
or polymorphic representations, depending upon its context.  A further
complication, which rules out some potential solutions, is that procedures may be
declared within the polymorphic context.  It is not always statically detectable in
which context a procedure has been declared.  Figure 5.2.17 shows an example of
this.  The procedure y which is passed as a parameter has been declared outside the
context of the polymorphic procedure, and the procedure new is declared inside.
These procedures however are type compatible, both in the context of the
procedure and after being returned as its result.  Depending upon the dynamically
evaluated condition, either procedure may be called both during the execution of
the procedure and after it has returned its result.

It would be possible to transform the low-level code of the procedure
appropriately, but this is potentially a very complex and expensive operation.

let useProcs = proc[ t ]( x : t ; y : proc( t → t ) → proc( t → t ) )
begin

let new = proc( z : t → t ) ; z

let either = if <condition> then y else new

let unknown = either( x )

either
end

Figure 5.2.17  Procedures of abstracted type

A more sensible solution is to convert the format of the procedure parameters
before a call, rather than the procedures themselves.  No conversion is then
necessary for procedures which are either passed as parameters or returned as
results.  On the application of a procedure whose parameter types are abstracted
over, the parameters are converted back to their concrete formats using the tag
information.  If all dereferences of abstracted types from constructors are
performed lazily, then any such operations within the procedure declared outside
the polymorphic context will continue to execute correctly inside its context.
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The only problem remaining is that of procedures declared within a polymorphic
context.  They must somehow be able to execute correctly when they are passed
parameters which are not of polymorphic format.  This may be achieved by using
the scheme initially introduced for procedural encapsulation of polymorphic
procedures.  The procedure declared contains the necessary code to perform the
polymorphic conversion and re-conversion of its parameters and results.  As it is
declared within the context of the polymorphic procedure, the compiler can
statically calculate the address where the tag may be found.  If such a procedure is
exported from the polymorphic context, the tag value will be retained in its closure,
and it will be indistinguishable from a procedure declared over the concrete type.

5.2.4.7 Conclusions

The semi-uniform, partly tagged scheme has been introduced as a method of
allowing polymorphism with both first class procedure values and with an
architecture that uses different value formats.  The model has been logically
introduced at a high level by a description of the implementation using procedure
closures.  This introduces a cost to the system of extra procedure calls, but it has
been shown how the extra calls may be avoided by reversing the encapsulation
strategy.  The conversion to and from polymorphic format has also been shown to
be inexpensive, perhaps only a single instruction on many architectures.  The
model seems, for the most part, to capture the efficiency of polymorphic procedure
call displayed by uniform polymorphism but without disallowing different value
formats and their associated efficiency.  The model is less efficient than that of
textual polymorphism, but continues to work in the presence of first class
procedures.

This scheme, without reverse encapsulation, has been successfully implemented in
the Napier88 system, with architectural support provided by the Persistent Abstract
Machine [BCC88, CBC89].

5.2.5 Conclusions
Three different models of implementing parametric polymorphism have been
discussed in depth.  Of particular interest is the suitability of the models for use in
a persistent system.

Textual polymorphism depends upon the compiler producing different versions of
code for different uses of a polymorphic procedure.  This is appealing in that it
factors out all of the cost of polymorphism at compilation time, although it can
cause the production of a very large volume of code.  However this method alone
seems unable to support first class or persistent procedures.

Uniform polymorphism provides an elegant model for polymorphism, and an
efficient implementation of polymorphic procedures.  However, this is at the cost
of disallowing multiple value formats in an architecture, which leads to the
generation of otherwise unnecessary heap objects.  This implementation of
polymorphism is therefore very suitable for purely functional languages, where
function call is the major activity and the system must already be geared to the
production and garbage collection of very large numbers of transient heap objects.
Such an implementation is less suitable for persistent systems in general, where the
number of object faults is a major factor in the execution cost of a program.

The new implementation method described here has been called semi-uniform,
partly tagged.  The main point of the method is that it allows different value
formats by introducing a new format for polymorphic values, with values being
converted dynamically between formats.  Tagging is required only when the
conversion is more efficient dynamically, and it is polymorphic procedures
themselves which are tagged, rather than values.  The method may be implemented
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using a conventional architecture, and does not therefore place constraints on the
implementation of other language features.

5.3 Inclusion polymorphism
In general, programming systems which exhibit subtype inheritance allow some
contexts where a data value may be used in place of one with less functionality.
One type may be a subtype of another if all operations allowed on the second type
are also allowed on the first.  Inclusion polymorphism is the most general use of
subtyping, where in any context the specified use of a type may be applied to any
of its subtypes.

There are a number of models of subtype inheritance which are less general than
pure inclusion polymorphism, as they have extra restrictions in the type
compatibility rules.  These include, for example, systems with explicit or single
type inheritance [ACO85, GR83].  However, any implementation technique which
works for inclusion polymorphism will also work for any other form of
subtyping.

5.3.1 Subtype inheritance
Inclusion polymorphism gives the ability to abstract partially over the type of
values.  This gives a different set of implementation problems from parametric
polymorphism, in which type abstraction is all-or-nothing.

Most languages with subtyping describe their type system as a lattice, based upon
the partial ordering of the subtype relation.  This subtype relation may be
predefined by a language, according to the primitive operations defined over type
constructors, or explicitly defined by a programmer.  Implicit subtype relations are
normally the most general possible according to the primitive operations defined
over each type constructor.  To preserve correctness, any explicitly defined
subtype relation must always be a sub-lattice of this most general subtype relation.

For example, Figure 5.3.1 shows the declaration of some record types in a system
with predefined subtyping rules.  One record type is a subtype of another if it has
all, and perhaps more, of its labels, and the types associated with each label are
recursively in the subtype relation.  student and employee are both subtypes of
person, demonstrator is a subtype of both student and employee, and student and
employee are not comparable with each other.



128

type person is record( name , address : string )
type student is record( name , address : string ; matricNo : int )
type employee is record( name , address : string ; payrollNo : int )
type demonstrator is

record( name , address : string ; matricNo , payrollNo : int )

person

student employee

demonstrator

Figure 5.3.1  A lattice of types with implicit subtyping

In terms of the lattice, the type compatibility rules for a system with inclusion
polymorphism are that an operation defined over a type at any point in the lattice
may be applied to a type anywhere below this point.  In Figure 5.3.1, any
operation defined over values of type person may also be applied to values of any
of the other three types, and operations defined over values of type student or
employee may also be applied to values of type demonstrator.

The essential difference between parametric and inclusion polymorphism is that
parametric polymorphism allows a programmer to abstract fully over a type,
whereas inclusion polymorphism gives the ability to partially abstract over a type
so that only those properties relevant to a particular context need to be specified.
The implementation problems of the two models reflect this difference: systems
with parametric polymorphism must implement a fixed set of operations with no
static type information, whereas systems with inclusion polymorphism must
implement some type-specific operations with partial static type information.

5.3.2 Value representations and partial type abstraction
To achieve a better understanding of the general problems associated with the
implementation of inclusion polymorphism, the way in which values may be
represented within an architecture will first be examined.

In the description of implementation techniques for parametric polymorphism no
details of value representations were required for the discussion.  The only
assumption made in the description of the semi-uniform method was that a
mapping exists from any type to its representation, and that this mapping may be
determined statically for any value.

To simplify the discussion of inclusion polymorphism, a two-tier protocol for
value representation will be assumed.  The first tier of this protocol is a mapping
from type constructors to a fixed size value format within an architecture.  The
second tier is the set of conventions which describe how this fixed size format is
used to represent a particular instance of a constructed type.  For example, record
types may be represented at the first tier by a fixed size heap pointer, and at the
second tier each record type may be represented differently within the heap object
pointed to.  In the discussion of this section, the terms general format and specific
format will be used to refer to these two tiers.

This model is used to emphasise the different implementation problems of
parametric and inclusion polymorphism.  With parametric polymorphism, the
implementation problems are to do with the general format of a value not being
known statically.  However, the restricted nature of the operations possible on
values whose type is fully abstracted means that specific format information is
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never required.  With inclusion polymorphism, the general format is normally
known statically, and so operations which are allowed on values of all types
present no problem.  However, some information about the statically unknown
specific format is also required, as a number of type-specific operations are
allowed on such values.

5.3.2.1 General formats

With the exception of types which represent the top and bottom of a type lattice,
the subtype relation may not be defined over any two types which have different
type constructors.  As every constructor has a different implicit set of operations
defined over it, the behaviour of values with different type constructors is not
comparable.  This is not true for some trivial examples, for instance the type of a
record with no fields may have the same operations defined over it as that of a
variant with no branches.  Such examples are of little practical use within a subtype
relation, however, and are not normally included.

As the general format of a value within an architecture is defined according to only
the type constructor, the general format of a value is usually known statically.
Although the full type information may not be available, the type constructor is
always known because of the subtyping rules.  In fact most languages with any
form of subtype inheritance have a type model which is a number of unconnected
lattices, rather than a single lattice.  Therefore a value's general format may always
be deduced statically.

There is an exception to this general rule in languages which define types to
represent the top and bottom of the type lattice.  This closes the lattice, so that only
a single lattice is required to describe the whole type system.  The implication of
this is that any value may be used in place of a value of type top, and a value of
type bottom may be used in place of any other value.

Values of these types must always be dealt with as special cases.  As no operations
are available on a value of type top, no information need be passed if a value is to
be viewed as this type.  If a value of type bottom exists, then every operation in the
language must in any case perform a dynamic check on each operand, to check
whether it is this value.  In a statically typed language, the value of type bottom
may be simulated by a number of reserved values, one for each different general
format in the architecture.

In an architecture which relies upon a uniform implementation of parametric
polymorphism, only a single general format is in any case defined for all type
constructors.

5.3.2.2 Specific formats

The specific format of a data value is usually decided according to rules associated
with each different type constructor.  These will depend upon the different
operations associated implicitly with values of the particular constructor type.  For
example, a type constructor for records may be defined as

"For mutually unique identifiers i1..in, and types t1..tn, record( i1 :
t1;...;in : tn ) is the type of a record with field ii associated with type ti
for i = 1..n."

The particular operations available upon a type constructed with this rule depend in
this case upon the identifiers which specify the field names, and their related types.
For example, the type

record( a : int ; b : real )

will implicitly infer operations which select and perhaps update the fields
associated with the labels a and b.  If records are always implemented as heap
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objects, then the specific format convention for record types will need to allow the
appropriate offsets to be determined from each field name.  In a system with no
inclusion polymorphism, the above type could, for example, be represented as a
three word structure, with the first word representing the value of a, and the
second and third representing the value of b.

In a type system with inclusion polymorphism, there is a further requirement that
the specific format must allow all of the implicit operations upon a type to succeed
even where the full type has been partially abstracted over.  For example, a value
which is viewed as a particular record type may be a partial abstraction over a type
with more fields.  If record types are implemented as single heap objects, and their
specific format is determined according to their type at creation, then a compiler is
not always able to statically determine an offset for either field.

5.3.2.3 Bounded universal quantification

The separate implementation problems are clear in consideration of the model of
bounded universal quantification [CW85].  This model partly unifies the two
models of polymorphism by allowing a maximum type to be specified in a
universal quantification.  For example, Figure 5.3.2 shows a procedure which is
specified over any value of type person.  This procedure takes a value of type t,
with the condition that t is a subtype of person, and returns the value of its name
field.

let  name = proc[ t ≤ person ]( x : t → string ) ; x( name )

Figure 5.3.2 An example of bounded universal quantification

Parametric polymorphism is a subset of this model, as it may be expressed by
universal quantification bounded by type top; Figure 5.3.3 shows the example first
from the previous section written in this style.

let  first = proc[ t ≤ top ]( x , y : t → t ) ; x

Figure 5.3.3 An example of bounded universal quantification

For any type bounded only by top, the general format is not known statically, but
no more specific operations are available.  The implementation techniques
described for parametric polymorphism will therefore suffice for such a procedure.
For quantification bounded by any other type lower in the lattice, the general
format will be known and more specific operations are possible.  Bounded
universal quantification may itself be implemented by the combination of any two
techniques which respectively implement parametric and inclusion polymorphism.

5.3.2.4 Implementations

Three categories of implementations which solve the problems of specific formats
will be discussed.  These fit into the categories introduced earlier in this chapter.
The first is uniform, where the compiler and the architecture both behave in the
same way independently of the specific type of the operand.  The second is tagged,
where the compiler always produces the same instruction for the same logical
operation, but the interpretation of this instruction by the architecture depends upon
information associated with the instance of the operand.  The third category is
partly tagged, where, as in the partly tagged solution for parametric
polymorphism, not all data values are tagged and maximum use is made of static
type information to increase the efficiency of the polymorphic operations.

There is no discussion of a textual implementation for inclusion polymorphism, as
no such implementations are known to exist.  This is perhaps for historical
reasons.  There are two main classes of language with subtyping schemes.  The
first of these are the object-oriented languages, such as Smalltalk [GR83].  In
many such languages subtyping is inextricably mixed with a model of dynamic
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binding and separate compilation.  All other languages which display subtype
inheritance also have first-class procedure values.  The lack of textual
implementations of inclusion polymorphism may therefore be related to the
historical order in which these concepts became understood by the research
community.

The general discussion of implementation will first be concentrated upon the
problem of field addressing in record types.  This is the only manifestation of
inclusion polymorphism where a number of different implementations are known
and may be contrasted.  Subtyping may also be sensibly defined over a number of
other type constructors, including variants, procedures, and integer subranges.  A
more general discussion of the techniques will also be presented.

5.3.3 Uniform field addressing
With a uniform implementation of polymorphism, the compiler and the architecture
which support a language must behave in the same manner when operations are
specified over values whose full type is not known statically.  In the context of
record addressing, this means that the architecture must support the logical
operation of finding the value or location which is referred to by a record label.
This implies that the specific format of record values does not depend upon the
particular type of a record.

Such a scheme is implemented in the programming language Galileo [ACO85].
Records whose type may be partially abstracted are implemented by a linked list of
pairs, each pair containing a string and a value.  The strings represent the labels of
the record fields, and their associated values are held as the other element of each
pair.  Thus the low-level operation to find the value associated with a label takes a
string and a record as parameters, and chains down the list until the string matches
the label.  This operation is independent of the particular record type.  As the static
type system will ensure that a record has no two identical labels, the list may be
held in any order.

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )

Figure 5.3.4 A value of type employee

For example, consider the value of type employee created in Figure 5.3.4.  Using
this uniform representation scheme, the structure represented in Figure 5.3.5 will
be built.

"name" "Joe Doe"

"1 Assignment Boulevard"

100000

"address"

"payrollNo"

Figure 5.3.5 A linked list record representation

This scheme is clearly inefficient for both creation and addressing, but may be
useful either as a reference model or if other operations must be supported.  In
Galileo, for example, this scheme is adopted mainly to allow the extensibility of
such values.
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A variation of this scheme would be to use an indirection through an address map
in each record value. The address map, which may be located at the start of every
object, contains offsets for the fields belonging to that particular subtype. For
example, the value created in Figure 5.3.4 would be represented as shown in
Figure 5.3.6.  Creating such a value entails creating the address map as well as the
fields of the record.

"address"

100000

"1 Assignment Boulevard"

"Joe Doe"

"name"

"payrollNo"

Figure 5.3.6 A record with its own address map

Record selection may be resolved, at execution time, by looking up the appropriate
string in the address map to yield the correct field offset.

As stated in the introduction, the categorisation of implementation techniques is
simplified for descriptive purposes.  This representation could arguably be
classified as uniform or tagged, depending upon the level of abstraction at which
architecture instructions are described.

5.3.4 Tagged field addressing
An immediate optimisation of the address map technique is to have only one copy
of the address map for every type of record, as in Figure 5.3.7. The record itself is
now formatted according to its specific type, but contains a pointer to the map.
This pointer acts as a tag representing the record's specific type information.  This
arrangement may also have some advantages in identifying pointers for garbage
collection.
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"address"

100000

"1 Assignment Boulevard"

"Joe Doe""name"

"payrollNo"

2

1

0

123456

"23 Subtype Corner"

"Jim Dim"

Figure 5.3.7 Sharing the address map

An advantage of these techniques is that strings match across compilation units
which means that there is no need for a centralised dictionary of field identifiers
and addresses. Each compilation unit can contain its own address map and still
work consistently with independently prepared data. In object-oriented database
systems [CL88, BBB88], and distributed systems, this aspect is a major
consideration.

5.3.4.1 Variants of string address maps

The string address maps shown above may be optimised by the use of a hashing
function.  However, a further improvement in the efficiency of the address maps
would be gained if they could be keyed by an integer instead of by a string.  To
allow this the compiler could keep a central dictionary of field names, in which it
can statically allocate a unique integer key for each field name. Thus

X( name )

can be translated, at compile time, to key (name) field of X.  This key, which is an
integer, can be used at run time to search the address map.

The drawback of the method is that it requires a centralised dictionary for field
keys.  In an object oriented database system, or a distributed system, the number
of keys may become large and access to the dictionary holding the keys may
constitute a bottleneck in the system.

A further variation is found in the ObServer system [SZ86].  This is an object
oriented database with name equivalence and explicit subtyping.  That is, a type is
a subtype of another only if it is declared to be so in the database schema.
Consider the following schema:

type thing is ( age : int )
type limbedThing is thing with ( arms,legs : int )
type sightedLimbedThing is limbedThing with ( eyes : int )

In the above, the fields may be grouped as: ( age, (arms,legs), eyes ).  Thus the
address map need only contain entries for these groups. The above schema may be
used to create an object of type sightedLimbedThing by
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let Ron = sightedLimbedThing( 42,2,2,2 )

Each set of common fields may be allocated an address ‘slot’. Within the slot
( arms,legs ), the field offsets of arms and legs can be calculated statically.  This is
shown in Figure 5.3.8.

slot(0) slot(1) slot(2)

42
age

2
legs

2
arms

2
eyesRon

key (age ) key(arms,legs) key(eyes)

1 2 4

1

2

4

Figure 5.3.8 Fixed Slots for Subtypes

There are two advantages to this scheme. First, slots may be placed on different
volumes, or distributed, an important consideration for large databases.  Second,
the addresses within the subtypes may be calculated statically.  The disadvantage is
that it works only for name equivalence with explicit subtyping, and may run into
severe reorganisational overheads if the schema is edited to alter the subtype
hierarchy.

5.3.5 Partly tagged field addressing
An implementation technique will now be described which uses an integer
mapping for record addressing.

An implementation for languages with bounded universal quantification is first
described.  This technique uses the same features as the encapsulation technique
described for parametric polymorphism.  Bounded universal quantification restricts
where subtype values are compatible, in such a way that it is possible to tell
statically the precise type of an object except where it is explicitly abstracted over.
Encapsulation may be used at these points to contain the relevant field addresses.

This technique is not however sufficient to implement inclusion polymorphism in
general.  This is because it may not always be statically determined whether a
value's type is abstracted or not.  The description goes on to extend the
implementation by encapsulation to allow for the more general case.

5.3.5.1 Bounded universal quantification

For the examples in this section, the type hierarchy described in Figure 5.3.9 will
be used.  This describes an implicit subtype relation between things, animals,
things with legs, and animals with legs.
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type thing is structure( age : int )
type animal is structure( age : int, food : string )
type leggedThing is structure( age : int, noOfLegs : int  )
type leggedAnimal is structure( age : int, food : string, noOfLegs : int )

Figure 5.3.9 An implicit subtype relation

In such a system, there is an implicit function noOfLegs with which we may wish
to find the number of legs belonging to either a table or a dog, or indeed any object
which is a subtype of leggedThing.  Figure 5.3.10 shows a procedure which tests
whether an object with legs is stable, and two calls of this procedure.

let fallsOver = proc[ t ≤ leggedThing ]( x : t → bool )
x( noOfLegs ) ≤ 2

let unsafe = fallsOver[ leggedThing]( myDesk )
let dogmeat = fallsOver[ leggedAnimal ]( myHorse )

Figure 5.3.10 A procedure with bounded quantification

To determine the correct address fields, it is possible to use information that is
statically available at the call of such a procedure.  In the above examples, at each
procedure call the type of the operand is known statically, and the field offsets can
be calculated.  Calculating this information statically saves most of the cost of the
associative lookup required with the lookup table solution.

Since the type of the procedure being called is known statically, it is possible to tell
which fields of the operand object may be required during the execution of the
procedure.  For example, the procedure fallsOver is restricted to an operand of
type leggedThing, and so only the noOfLegs and age fields may be required, no
matter how many other fields the operand may contain.

The information may be encapsulated without altering the run-time support for the
language being implemented, so long as this includes support for higher-order
functions [AM85, BCC88, CBC89].  When the quantified procedure is compiled,
it is compiled as two nested procedures, with the field offsets being parameters to
the outer procedure and appearing as free variables within the inner procedure.
The inner procedure, corresponding to the quantified one, is returned as the result
of the outer.  This scheme is exactly parallel to the one proposed earlier for
unbounded universal quantification.

let fallsOver = proc[ t ≤ leggedThing ]( x : t → bool )
x( noOfLegs ) ≤ 2

=>

let fallsOver_wrapper =
proc( age_offset,noOfLegs_offset : int → proc( α →  bool ) )

proc( x : α  → bool )
x( noOfLegs_offset ) ≤ 2

Figure 5.3.11 Compiling an encapsulation with specific format
information

Figure 5.3.11 shows how such an example is treated by the compiler.  Notice that,
whatever the type of the parameter, only the fields age and noOfLegs may be
accessed.  This is therefore all the information about the specific format that needs
to be passed.

At the point in the program where the procedure is called, the compiler can plant
the integer values required as parameters to the wrapper procedure as literal values
in the code stream, and no dynamic lookup is required. This is possible as the
compiler may statically determine which offsets are required and the precise type of
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the operand.  Thus the matching program transformations in Figure 5.3.12 make
the scheme work correctly.  When the noOfLegs field is accessed in the procedure,
the second field of myDesk and the third field of myHorse will be looked up as
required.

fallsOver[ leggedThing]( myDesk )
fallsOver[ leggedAnimal ]( myHorse )

=>

( fallsOver_wrapper( 1,2 ) ) ( myDesk )
( fallsOver_wrapper( 1,3 ) ) ( myHorse )

Figure 5.3.12 Compiling calls to the encapsulated procedure

The type of the operand is not always known statically, but because of the
generality of the solution no extra work is required for these cases.  For example,
Figure 5.3.13 shows a procedure with a nested call to another quantified
procedure.

let atConference = proc[ t ≤ leggedAnimal ]( x : t → bool )
x( food ) = "curry" and fallsOver( x )

Figure 5.3.13 A nested quantified call

In this example, the type of the x, supplied to the fallsOver procedure as a
parameter, is not known statically as it has already been abstracted over.  It is
clear, however, that x is a subtype of leggedThing and as such may be used as the
operand of fallsOver.  The compiler does not know statically the offsets it requires
to pass to the fallsOver wrapper procedure, but it does know where they can be
found, as they must be a subset of the offsets provided by the atConference
wrapper procedure.  The procedure then compiles as shown in Figure 5.3.14.  It
may be seen that the correct values are introduced for the required offsets.

let atConference_wrapper =
proc( age_offset, food_offset, noOfLegs_offset : int → proc( α → bool )  )

proc( x : α → bool )
x( food_offset ) = "curry" and
( fallsOver_wrapper( age_offset,noOfLegs_offset ) ) ( x )

Figure 5.3.14 Compiling a nested call

As before, the technique of compiling higher-order functions has even greater
advantage if the field lookups are performed many times with operands of the same
type.  When this happens the wrapper procedure is called only once, and once the
free variables are in place no more work is needed to provide the correct offsets for
use within the procedure.  For example, the procedure in Figure 5.3.15 incurs a
slightly greater fixed cost, but has no penalty in proportion to the size of the array,
when compared to the same procedure declared for only one of the allowed types.

let allFallOver = proc[ t ≤ leggedThing ]( a : array[ t ] → bool )
begin

let res := true
for i = 1 to max do

if ( a( i )( moOfLegs ) > 2 do res := false
res

end

Figure 5.3.15 Many calls during a procedure execution

If a procedure is going to be used many times with the same type of operand, the
same efficiency can be achieved by only calling the wrapper procedure once and
using the returned value for all other instances of the call.
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5.3.5.2 Inclusion polymorphism

The above scheme relies upon the fact that the compiler knows the precise type of
the object supplied as a parameter at the point of type abstraction.  In the general
case of inclusion polymorphism, this is no longer the case.  We now extend the
above solution to allow for this.

Unlike bounded universal quantification, inclusion polymorphism allows a
location of a particular type to contain a value of any of its subtypes.  For example,
if a location is initialised with a value of type thing, then it may be updated with a
value of type animal, as animal is a subtype of thing.  The location continues to be
viewed as type thing: the operation not only updates but also throws away type
information, as the object may no longer be used as an animal but only as a thing
from its new reference.  For example, the last statement in the program in Figure
5.3.16 is incorrect.

let a := thing( 129 )
let b := animal( 23,"petrol" )
a := b
let d = a( age )

let e = a( food ) !** this line is not statically correct

Figure 5.3.16 Losing static type information

This is because the food field of the animal object can not be accessed through the
location a, as this location is of type thing.  Notice that it may still be accessed
from the location b, as may the age field.  The two locations have a different type
view of the same object.

It is now no longer possible for the compiler to determine statically where to find
the named fields of an object stored in a particular location, as this location may be
updated with an object whose real type the compiler may not even know about at
the time of compilation.  The addressing information must be accessed
dynamically.

However, the solution already given may be extended to allow this.  The semantics
of assignment are similar to the replacement of the formal parameter of a quantified
function by the actual parameter, with the corresponding type widening that
occurs.  This technique works by allocating space with the formal parameter
location where the addressing information required may be accessed; similar space
may be allocated instead with each record type location.

A straightforward way to achieve this is to implement a record type location with a
double pointer, instead of a single one.  Thus, we have one pointer which
references the original record object, and another which points to an address map
for the fields.  This may appear superficially similar to a more conventional
address map solution, but the following points should be noted:

• The address map is not a conceptual part of the object, but its
associated semantically object may be viewed through a number
of different address maps. ( Figure 5.3.17 )

• The map contains only the addresses within the object which
may be accessed through that location, and has no information
about any other fields which may be in the object. ( Figure
5.3.17 )

• The same map may be shared by many different locations, not
necessarily restricted to locations of the same type. ( For
example, Figure 5.3.20 )

Use of the address map is as follows.  The compiler statically calculates the field
offset as if it were dealing with an object of the known supertype.  If it knows that
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the object is of precisely this type, then this value is used to index the object
directly.  Otherwise, the offset is used instead to index into the local address map
for the object, which will contain the correct address of the required field.  The
penalty for a dereference is thus at most a single indirection.

29 "curry" 2
age food noOfLegs

location of reference
to an object of
type animal

location of reference
to an object of
type leggedThing

1 2

1 3

leggedThing address map

animal address map

Figure 5.3.17 Location Address Maps

When records are assigned, it is normally necessary only to perform a
straightforward assignment of both the pointer to the record and the pointer to the
current address map.  This is not expected to incur any penalty on most machine
architectures, which already support double word assignment.

More work is required only when an assignment involves the loss of type
information.  Where this occurs in a program is statically detectable.  When it does
happen, a new address map is constructed.  This must map the indexes calculated
for the supertype into the values contained in the appropriate positions in the
subtype's address map, and may be constructed by performing the first level
indirection for each field accessible by the supertype.  The code to construct this
mapping may then be generated statically.

Consider the example in Figure 5.3.18.  Here the location lThing of type
leggedThing has had an object of type leggedAnimal assigned to it; this is legal as
far as the type rules are concerned, since leggedAnimal is a subtype of
leggedThing.  After the assignment, the location lThing must have an address map
which correctly maps the fields age and noOfLegs to the appropriate addresses in
the new object.  Notice that in general the object referenced by lAnimal may have
other fields which are not accessable from the location lAnimal, since it could itself
be any subtype of leggedAnimal.

let a = proc( lThing : leggedThing ; lAnimal : leggedAnimal )
begin

.

.
lThing := lAnimal
.
.

end

Figure 5.3.18 Assignment of statically unknown subtypes
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Where no optimisation is possible, as in this case, the new address map for lThing
must be created dynamically.  The size of the map is known, as it only need
contain addresses for the fields which may be accessed from the new location, in
this case age and noOfLegs.  The address map objects however must be created
dynamically, as a new one is required every time the piece of code is executed.

Code is planted by the compiler to first construct a new address map object of the
required size.  Then, for each field in the type being assigned to, in this case age
and noOfLegs, two offsets are calculated by the compiler: let us call them X, the
calculated offset into an object of the type being assigned to, and Y, the calculated
offset into an object of the type being assigned.  Code is then planted to copy the
contents of the Yth location in the old address map into the Xth location in the new
one.  When this has been done for all the addressable fields, the new address map
is complete.  An example of this is shown in Figure 5.3.19.

1 5

190
age

lAnimal

1 3 5

true
tail

"male"
sex

"beans"
food

2
noOfLegs

Newly created address map

lThing

location of age offset ( Y( age ) )
location of noOfLegs offset
      ( Y( noOfLegs ) )

X( age ) X( noOfLegs )

Values copied to
new address map

Figure 5.3.19 The Mechanics of Assignment

If the precise type of the assigned value is known statically, then this process may
be factored out and the address map may be constructed by the compiler rather than
during execution.  Notice that as these maps are immutable, they are required at
most once per static assignment, rather than dynamically, and also that they may be
shared between objects of different types.

The mechanisms described above for creating and calling bounded universally
quantified procedures remain the same.  As values within these procedures may
still be assigned to supertypes, all addressing must be done using the same
indirection techniques.  The same technique of compiling ‘wrapping’ procedures is
still required to act as temporary storage from which to build new address maps for
the quantified parameters: as type widening is occurring, they cannot be simply
assigned.

An optimisation of this technique may be obtained by realising that when a record
is originally created, the address map required is normally a simple isomorphism:
that is the ith address will contain the value i.  There need therefore be only one of
these maps for the entire system, so long as it is at least the length of the largest
record.  On initialisation, every object location shares this single isomorphic map.
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Assignment and construction of new address maps may then take place in the
manner described above.

29 "curry" 2
age food noOfLegs

location of reference
to an object of
type animal

location of reference
to an object of
type leggedAnimal

1 2 3 4 5 ..

9 "marmalade"
age food

Figure 5.3.20 A Single Shared Address Map for Object Creation

This optimisation is most important to the efficient working of the scheme, as it
means that an object creation never involves the creation of a new address map.
Notice also that this is not a constraint for a distributed system: although only one
of these maps is necessary, any number may be used to suit the implementation of
the system.

In fact, this optimisation is most efficiently implemented by reserving a system
pointer value to signify this "nil" address map.  The dereference operation will
check for this value, and if it is present then the object may be accessed directly
with the statically calculated offset.  Values therefore need have no address map
associated with them unless their type is partially abstracted.  This is the reason
that this solution is classified as partially tagged and not fully tagged.  In a program
where no partial abstraction occurs, no values will ever be tagged.

Another important optimisation can be made when, on assignment, the fields of the
supertype object are identical to those at the start of the subtype object.  If this is
the case, the original address map may be assigned, as it will still work correctly.
This will always be true in languages with explicit single inheritance schemes.

5.3.6 Comparisons
In this section the various merits of the schemes discussed will be considered.  As
shown, the uniform implementations are intrinsically inefficient except for some
special cases of language.  Such implementations are not considered further in
terms of efficiency.  The emphasis here is on comparing the tagged implementation
of string symbol table address maps with the new partly-tagged addressing
mechanism.  The different costs in four areas will be compared between the two
general schemes: space overhead, assignment, object creation, and indexing.

In both schemes the space needed to store a reference to the address map is the
same – namely the space required by one pointer.  However, using the string
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address map scheme the pointer is associated with the object instances.  In the
partly tagged scheme the pointer to the addressing information is associated with
the locations at which object references are stored.  In most cases the number of
object instances and the number of locations storing object references will be of the
same order of magnitude.

However, the string address map scheme requires the names of the fields to be
stored in the address map.  This may involve the construction of a simple table
with low space overhead or an elaborate hash table.  Using the new scheme the
names are no longer necessary with consequent space savings.

A very much smaller number of address maps is required in a system using the
new scheme.  In particular, objects which are not assigned to a location occupied
by a supertype never need have additional address maps created for them.
Therefore space is saved due to a more compact address mapping and the ability to
limit the manufacture of address maps.  There may be some space lost due to extra
pointers associated with objects.

The traditional object address map scheme has no additional cost associated with
assignment.  The time cost of the new scheme described in this section depends on
the kind of assignment being performed.  In those cases of assignment where a
value of some type is assigned to a location of exactly the same type, the only
additional cost is of an extra word assignment.  The assignment of two contiguous
words is not expected to be significantly more costly than the assignment of a
single word.  When a subtype is assigned to a location of a supertype, the
operation depends on whether the type of the object to be assigned is known
statically or not.  If it is, then the new address map required may be created
statically and the extra dynamic cost is a single pointer update.  If it is not, then the
map must be built dynamically, and the cost is one dereference and integer
assignment for each field in the supertype.

In both schemes discussed the additional cost associated with object creation is
low.  Using the traditional technique the address map would normally be created at
the time of establishment of the type or class of the object.  In the new scheme the
address map objects are not required upon creation, as a single system-wide map
may be used until such time as a subtype assignment occurs.

The new addressing mechanism described in this section has been optimised for
indexing performance.  Indexing encompasses indexing objects to retrieve values,
assigning values to locations within objects, and method selection in object-
oriented languages.  In the worst case there is a single level of indirection for an
index, and in the best case a statically planted offset is possible.

The traditional address mapping mechanism uses a hash table to look up names in
the address map.  Even using a very efficient hashing mechanism such as that used
by the Eiffel language implementation [Mey88], the speed of an indirect address
can never be equalled.  Even if a very high hash hit rate is achieved there is still an
associated cost with performing the hashing function in addition to the index.  The
technique described also allows for non-uniform field sizes and for the dynamic
reorganisation of field order.

All of the examples given here describe first order inclusion polymorphism, and
the records shown contain only simple objects.  It should be noted that this was for
ease of description only, and that the technique is sufficiently general to work for
any order of multiple inheritance with implicit subtyping.

5.3.7 Generalisation of implementation techniques
Although the discussion has been restricted to record field addressing, the
techniques involved may be extended to any type constructor which has a well-
defined subtype rule.  The general features of each technique will be isolated as far
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as possible.  As an example, these general techniques will be shown in outline to
support different methods of implementing subtyping among variant types.

5.3.7.1 Variants and subtyping

Variants are a type constructor which allow modelling with finite unions.  They are
usually constructed with a set of labels each of which refer to a type, and the
variant represents the labelled disjoint sum of these types.  A variant type
constructor may be defined as

"For mutually unique identifiers i1..in, and types t1..tn, variant( i1 :
t1;...;in : tn ) is the type of a variant with label ii associated with type ti
for i = 1..n."

Figure 5.3.21 shows two types constructed using this rule.  It is assumed that
CarType, VanType, and BusType are types which represent respectively the
entities of the three types of vehicles.  Nothing further need be known about these
types for the purposes of this example.

type commercial is variant( van : VanType ; bus : BusType )
type vehicle is variant( car : CarType ; van : VanType ; bus : BusType )

Figure 5.3.21 Two variant types

In the subtype relation defined by Cardelli for such types [Car84], commercial is a
subtype of vehicle.  The intuition for this is that any procedure which will work
given a value of type vehicle will also work given a value of type commercial.
Further details of this subtype relation are not important here.

A static assertion may be made about which branch of the variant the value is in.
This is required to preserve strong typing if the value is to be used as this type.
Such an assertion requires a dynamic check.  In a language without subtyping, this
check may be made efficient by a simple encoding of the labels.  This encoding
may take advantage of the finite and usually small number of labels declared in a
particular type.

An example of this is given in Figure 5.3.22, where a procedure isVan is declared.
This procedure tests the parameter, specified as type vehicle, to determine whether
or not it is a van.  This procedure may be legally applied to values of type vehicle,
and also values of type commercial.

let isVan = proc( v : vehicle → bool )
v is van

let a = isVan( myVehicle )
let b = isVan( myCommercial )

Figure 5.3.22 A variant projection

When a value of a variant type is created, the appropriate label must be known
statically, and its encoding may be stored with the value.  When a projection to a
label is specified, the code will contain an equality test of the encoded label stored
with the value against the encoding of the specified label, which may be planted in
the projection code.  The specific type information for values of a variant type thus
may include the method by which its labels are encoded.

In a system with subtyping, however, this information may not be known
statically.  For example, values of type commercial and vehicle may both be
projected onto the label van, and the encoding of van may be different in the two
types.  An implementation of variants under inclusion polymorphism must
therefore either be able to dispense with or calculate dynamically the details of this
encoding.
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5.3.7.2 Uniform implementation

In a uniform implementation, the specific format of a value must be independent of
the specific type of a value.  This is so that instructions may be specified in the
architecture which perform logical operations on any value of the general type.
For some type constructors this may mean that a uniform representation is
inherently inefficient, as no specific type information may be used to optimise such
implicit operations.

Such a representation may be achieved for variant types by representing variant
values as a pair.  The first element of the pair could be a string representation of the
label, and the second the value.  Thus the implementation of the logical operation
for label testing is a string comparison of the expected label with the string
contained in the pair.

Figure 5.3.23 shows how any value with a label van of type VanType would be
represented in such a scheme.

"van"

value of type VanType

Figure 5.3.23 Implementation of any variant containing a van

The difference in efficiency between this representation and the encoded version
described above is that the labels are represented in an unbounded value space.
This makes the equality test more expensive, and the space occupied by the
representation larger.  In the example of vehicle there are only three different
labels, which could therefore be encoded in two bits.  The three character string,
although not seemingly a great overhead, requires more space and is harder to
organise.

5.3.7.3 Tagged implementation

In a tagged implementation, the specific format of a value is one which would be
suitable in a system with no type abstraction, but with an extra pointer to a
representation of the specific format information.  To perform an operation on a
value whose specific type is not known statically, the compiler produces code
which accesses this information dynamically.  The cost of an operation in this
scheme is approximately the cost of the same operation in a static system plus the
extra cost of this dynamic lookup.  The information looked up is specific to the
type with which the value is created, and as such may be shared by any number of
values created with this type.

For variant types the specific type information may be stored by placing the label
encodings in a string lookup table.  The encoded form of the label will be stored
with the type.  To test a variant value for a particular label this table must be used
to obtain the specific encoding of the string label.  This encoding is then checked
against the encoding held with the variant value.
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value of type VanType

1

"bus"

"van" 1

2

Figure 5.3.24 Implementation of commercial containing a van

This method of implementation for variants seems over-elaborate and generally
inefficient, but is included for completeness.  As always, the best implementation
technique depends largely upon the way in which a system is used, and so it is not
necessarily surprising that the technique most widely adopted for record
addressing is not well suited for variant label testing.

5.3.7.4 Partly tagged implementation

The general strategy for partly tagged implementation is also to have a specific
format which is suitable for a language with no type abstraction.  Information
specific to a particular type view, however, is kept in association with the type
view itself, rather than with the value.  This allows values to remain untagged
except in contexts where their type is partially abstracted.

To perform an operation on a value whose type is partially abstracted, the compiler
again produces code which dynamically accesses information specific to a type.
As this information is associated with the particular type view, however, some of
the computation required may be partially evaluated during compilation.

In the case of variant implementation, the compiler may statically evaluate the
encoded label information that would be produced for the local type view.  At
execution time, if no tag exists for a particular context then this encoding is known
to be correct and may be applied directly to the variant value.  If tag information
does exist, then the encoding calculated statically may be used to index a table in
which the appropriate encoding for the particular value is stored.  If there is no
related encoding, then the value is known not to be of this label as the label did not
exist in the context of the value's creation.  These tables must be maintained
whenever loss of type information occurs.

Figure 5.2.25 shows how a variant created as type commercial is represented from
two type views, one of type commercial and one of type vehicle.
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value of type VanType

1

location of type
commercial

location of type
vehicle

nil tag

2

3

1

2

1

Figure 5.3.25 Partly tagged implementation of a commercial

This implementation of variants will be efficient for some systems, notably those
where subtyping is only used occasionally.  Once again, however, the importance
of the example is in the generalisation of the different techniques, and whichever
implementation is best for a particular type constructor and system will depend
upon many factors.

5.3.8 Conclusions
In implementation terms, inclusion polymorphism in a programming system means
that some type-specific operations are allowed upon values whose type may be
partially abstracted over.  The associated problems arise because many language
implementations gain efficiency in the implementation of type specific operations
by formatting values according to their specific type.  This information must then
be made dynamically available when an operation is performed upon a value
whose full type is not known statically.

The three strategies for the implementation of inclusion polymorphism discussed
were uniform, tagged, and partly tagged.  Textual implementations of inclusion
polymorphism may be most efficient, but are not suitable for systems with separate
compilation or first-class procedure values.  No textual solutions were discussed
as no such implementations are known.

Uniform implementations do not rely upon specific type information for type
specific operations, but may lose efficiency because of this.  Tagged
implementations allow a more efficient format, but must look up the relevant
information dynamically.  Partly tagged implementations also look up information
dynamically, but some of this information may be partly evaluated statically, and
values whose type is not abstracted do not require tagging.

Which of the techniques is most suitable depends upon both the type constructor,
and the way in which a particular system is used.  However, the given
classification may be useful to a system implementor in deciding upon a suitable
technique.
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5.4 Other forms of polymorphism
Polymorphism may be defined as the ability of a single value to be viewed as more
than one type.  Thus with parametric polymorphism a universally quantified
procedure may also be viewed as any of its specialised types, and with inclusion
polymorphism any type may also be viewed as any of its supertypes.

There are some other programming language constructs which allow more than
one type view, which may also be classified as polymorphism for this reason.
These include overloading, often referred to as ad hoc polymorphism, and
existential data types.  Implementations of these forms of polymorphism may be
categorised in the same framework as solutions of parametric and inclusion
polymorphism.

5.4.1 Ad hoc polymorphism
According to Strachey [Str67], in ad hoc polymorphism there is no single
systematic way in which to determine the type of the result of a function from the
type of its arguments.  Burstall and Lampson [BL84] give an operational
definition, stating that in ad hoc polymorphism the code executed depends on the
type of the arguments.  As an example, a print procedure executes different code
when evaluating

print 42

and

print "42"

This procedure is polymorphic since it is defined over more than one type, but the
code executed may be different in each case.  Most ad hoc polymorphic procedures
are "built in", that is supplied by the system, but both Keas [Kea88] and Wadler
and Blott [WB89] have shown how user defined ad hoc polymorphism also may
be defined.

Most programming languages contain some predefined ad hoc polymorphic
procedures, such as overloaded arithmetic operators.  However, very few
languages allow abstraction over the type of the operands of such procedures.
Notable exceptions to this are Napier88, where the equality operator may be used
over any two values whose type is known to be the same, and Haskell [Hud89]
where the user has the power to define ad hoc polymorphic functions.  Standard
ML also defines ad hoc equality over restricted types.  These are the only known
examples of a system where the types of parameters to ad hoc polymorphic
procedures may be abstracted over.

All other languages with overloading are able to compile different code for
different instances of an overloaded operator, and as such may be classified as
textual implementations.

It is interesting to note that architectures capable of supporting such type
abstraction were available long before a type system which could model it.  The
Burrough's B6500 machine [HD68] supports ad hoc polymorphism for arithmetic
operations.  The architecture supports some polymorphic operations such as plus,
minus, times, equal and not equal which operate according to a value's data tag.
For example, both integers and reals have a times operation defined over them.  On
execution the machine instruction inspects the tag and performs either integer or
real multiplication.  Indeed, the real numbers themselves may be single or double
precision, constituting a further variation.

Once again, the general classification of polymorphic architectures may be used to
highlight the differences in the implementation techniques used for the three
languages listed above.  ML uses a tagged architecture, and Napier88 a partly
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tagged architecture.  Haskell has a solution which does not fit neatly into any of the
categories.  However, it is stated in [WB88] that "the new system could be added
to an existing language ... simply by writing a pre-processor", and so for now it
will be described as textual.

One point that is immediately clear is that a uniform implementation is not feasible
for ad hoc polymorphism, by definition.  This would require an architecture to
perform the same instructions for any application of a polymorphic operator; this is
incompatible with the definition of ad hoc polymorphism, which stated that a
different semantic operation occurred according to the type of the operands.

5.4.1.1 Fully tagged ad hoc implementation

The language ML did not originally allow any abstraction over the types of
parameters of ad hoc polymorphic functions.  The language did contain ad hoc
polymorphism, for arithmetic operators and equality, but the type inference system
could not infer types for functions which contained such operations in their bodies.
In Standard ML, it is allowable to write

3 + 4 ;

and

3.1 + 4.2 ;

but an attempt to abstract over such expressions in a function such as

fun plus ( a , b ) = a + b ;

fails.  This is because the type of the overloaded operator "+" is statically
unresolvable.

Equality in ML is defined over all data types except for functions.  However, the
same treatment of the equality operator was considered over restrictive.  This
would make it impossible, for example, to write a polymorphic function which
determined whether a certain item was contained in a list of the same type.  Such a
function would be undefined for a list of functions, but useful for a list of any
other type.

The problem was resolved by the introduction of "eqtypes", which allowed static
type safety to be maintained.  However, the discussion here is of implementation
rather than static type checking, and so the problem addressed is how a test of
equality over values whose type is not known may be implemented within the
uniform architecture of the Functional Abstract Machine.

The semantics of equality in ML require that values are tagged so that the equality
operation may determine the correct treatment of the machine representations.  As
equality is "deep", it must be possible for the operator to distinguish between
pointers and non-pointers.  Furthermore, pointers which represent updatable
locations are treated differently from pointers to data values, and so these must also
be distinguished.  This however presents no serious problems in the
implementation of ML.  As already shown, pointers must in any case be
distinguishable by the architecture so that garbage collection may be performed.
Apart from updatable locations, whose values may be restricted for identification,
this is all the information that the equality operator needs to access.

5.4.1.2 Partly tagged ad hoc implementation

Napier88 has no static type mechanism which allows any general abstraction over
ad hoc polymorphic operators.  However, the operator "=" is defined in Napier88
over all types, and so its use is statically allowable within a universally quantified
procedure.  Napier88 has store semantics, and equality is defined as identity on all
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types but scalars.  This allows the definition of equality over procedure types, as
such values have an identity.

It is therefore allowable in Napier88 to write a procedure which abstracts over the
type of the operands of an equality operation, for example

let equal = proc[ t ]( x, y : t → bool ) ; x = y

and the implementors must address this problem.

In the Napier88 implementation, as in ML, the solution is already largely provided
by the mechanisms which implement parametric polymorphism.  In ML, a
mechanism already existed to allow the distinction between pointers and non-
pointers.  Slightly more information than this is available in the Napier88
implementation, as any type which is abstracted over is represented by a tag in a
known location within the procedure closure.  Therefore the special case of
equality may be implemented by building in a machine instruction which is able to
dynamically determine all the necessary information about its operands.

5.4.1.3 Textual ad hoc implementation

Both the ML and Napier88 solutions for ad hoc implementation were for a single
operator.  Haskell has a type system which allows a user to define ad hoc
polymorphic functions, and so a more general solution than either of these is
required.

Haskell introduces type classes, which extend the Hindley/Milner type system
used in Standard ML.  The essence of the mechanism is to allow the definition of
type classes over which overloaded operators may be introduced.  For example,
the class Num may be introduced over which the arithmetic operators for both
integers and reals may be declared.  This allows the declaration in Haskell of the
plus function disallowed in Standard ML, as shown in Figure 5.4.1.

plus :: Num a => a → a
plus a b = a + b

Figure 5.4.1 Using a type class in Haskell

The run-time implementation used by Haskell may be described as textual, in that
all polymorphism is factored out by the language compiler in the translation of the
concrete syntax to lambda-expression.

It has been stated that a textual implementation is not suitable for a polymorphic
system with first-class procedure values, whereas Haskell is a functional language
with first class functions.  In fact this classification is not entirely accurate, as the
only reason that textual polymorphism is possible is that the implementation of
parametric polymorphism in Haskell is uniform.  Thus the compiler may treat any
value of the abstracted type in the same way, and only the different code for the
overloaded operators needs to be accessed according to the type.  In fact, this is an
implicit assumption in the claim that the technique may be used for any language.

Functions whose type is inferred as over a type class are compiled with an extra
formal hidden parameter.  This stands for a dictionary of all overloaded operators
defined over the type class.  A call to such a function must also pass the relevant
dictionary, according to the type of the call.  Where a function passes into a
different type view, the function must be partially applied to the appropriate
dictionary.  As Haskell has no update, this partial application causes no problems.

The implementation of Haskell may also be likened to the implementation of
parametric polymorphism in Napier88, with the difference that the partial
application of a type parameter passes a dictionary of operators instead of a type
tag.  This dictionary acts as a high-level tag of the specific type information.  Thus
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the implementation of ad hoc polymorphism in Haskell is really a mixture of all the
different categories.

5.4.2 Existential quantification
Although not normally described as such, existentially quantified data types as
proposed by Mitchell and Plotkin [MP88] are a form of polymorphism.  They give
the ability for a type to be abstracted over and so a value may be viewed from a
number of different type contexts.

The details of implementation of such types will not be exposed in any detail for
two reasons.  The first is that the only known implementation of existentially
quantified types is in the language Napier88, and so no contrasting
implementations may be described.  The second reason is that the form of type
abstraction available with existential types is the same as that with parametric
polymorphism.  Thus a value's type may be abstracted over in an all-or-nothing
manner, and as such any implementation of parametric polymorphism may be
extended to existential types.

This is the case in Napier88, where a value of a free existential quantifier type is
treated in exactly the same manner as a value of a free universal quantifier type.  As
abstraction occurs within a structured value, instead of within a procedure
invocation, the appropriate type tag may be attached to the value instead of being
passed as a parameter.  Thus the compiler is still able to calculate a static address at
which the tag may be found.  Apart from this difference,  the implementations
match precisely [MDC90].

5.5 Conclusions
Polymorphism is the ability within a system of a value to be viewed as more than
one type.  In all cases, this implies the ability to abstract over types.  Most systems
use different formats for values of different types, and rely upon type information
for the generation of appropriate code.  In a system with any kind of
polymorphism, the necessary type information may be abstracted over and
therefore not available statically.

There are two main categories of implementation techniques which may support
polymorphic systems.  The first of these is tagged systems, where the type
information which is not available statically is somehow accessed dynamically by
some dynamic indicator of type.  This tag information may be associated either
with a value or with the context of its abstraction.  Tagged systems have been
further divided into those where all values are tagged, and those where tagging
occurs only with the occurrence of type abstraction.

The second category of implementation techniques is untagged.  In such systems,
the type information which is not available dynamically is somehow dispensed
with.  These again fall into two main subcategories.  Uniform implementations are
those where no type information is required for an operation to be executed upon a
value; this means that all values are represented with a single uniform format and
the level of description of the architecture must be at the semantic level of the
language.  The other subcategory, textual implementations, are those in which the
different type formats are somehow factored out during the compilation, so that
different code may be specified for the same operation in different static contexts.
The diagram from the introduction of this Chapter is reproduced as Figure 5.5.1.



150
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Figure 5.5.1 A classification of polymorphic implementation

Four categories of polymorphism within programming languages have been
examined.  Of these, the implementation techniques used in different languages for
parametric and inclusion polymorphism have been discussed in detail.  New
techniques have been described for the implementation of all four categories of
polymorphism; every one uses an implementation where data values are tagged by
their context only when their types are abstracted.  This has the major benefit that
programs which do not use polymorphism pay little or no cost for its inclusion in a
programming system.

The diagram in Figure 5.5.1 gives only a few examples of the implementations of
polymorphic programming languages.  The implementation of most of these
languages has been discussed.  It is interesting to consider the categories where
there are no known implementations.

The reason for no textual implementation of inclusion polymorphism has already
been proposed as a historical accident: the only languages implemented with
inclusion polymorphism have other features which make a textual implementation
unsuitable.  No uniform implementation of ad hoc polymorphism has also been
stated as a consequence of the definition of ad hoc polymorphism, which makes a
uniform implementation impossible.  For existential polymorphism, only a single
implementation is known.  The last gap, no fully tagged implementation of
parametric polymorphism, is also not surprising.  Such an implementation would
be feasible, but the manipulation of values of unknown format implies that no
static information would be available to a compiler for addressing information.

The classification is not intended to be absolute, and as stated is a simplification.
A demonstration of this is the implementation of ad hoc polymorphism in Haskell,
which may be partly placed in three different categories.  In fact, all of the
languages described are known to be implemented on untagged Von Neumann
machines with different formats for integers and floating point numbers, and may
therefore be classified as textual at some level of abstraction!  However, the
categories are believed to be useful for descriptive purposes.
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6 Conclusions
The motivation for the research described in this thesis is the development of
technology to help with the construction of large and long-lived applications
building systems.  The intrinsic problems of building applications which deal with
large bodies of long lived data have been identified, and these have been contrasted
with unnecessary problems introduced by the failure of current technology.  The
lack of integration within the various support systems used in a traditional
applications building environment leads to avoidable complexity for the
applications builder.

Persistent programming systems have been identified as one way of avoiding this
complexity.  Persistent programming languages originated to solve the problems of
a programmer having to maintain more than a single conceptual map between real
world data and its representation in a computer system, and have evolved to a
model which may support all desired computation.

For a persistent system to be able to specify all programming activity on large
bodies of data, it requires a flexible binding mechanism and a rich type system.  To
preserve the integrity of a persistent store, the type system must be strongly
enforced.  This is best achieved by making the type system constraints as static as
possible, although at least some dynamic type checking is considered necessary to
allow programs which change the type of the persistent store.  The use of mostly
static typing may cause a loss of flexibility, but the effects of this may be limited
by the use of polymorphism.

The issues of persistence and binding have been investigated before in detail.  The
ideas introduced in this thesis concentrate on the issues concerned with adding a
rich type system to a persistent system with a flexible binding mechanism.

Two major themes have been discussed.  Chapters 2 and 3 concentrate upon the
methodologies which may be used for building applications systems from a richly
typed persistent system.  Chapters 4 and 5 concentrate upon implementation
techniques for the building of such persistent systems.

First, a short synopsis of the research upon which the thesis is based, and some
more which may derive from the topics in it, will be given.

6.1 Related work

6.1.1 Past
The persistence of data was first identified as being orthogonal to its other
attributes by Atkinson in [Atk78].  After some attempts to provide persistence in
other languages, S-algol [Mor82] was identified as a suitable candidate and the
first implementation of PS-algol, the first persistent language, was completed in
1980 [ACC81].  Napier, a language based on PS-algol but with a much richer type
system, was first described in general terms in [AM85a], and the Napier88 system
[MBC89] was released in 1988.  A plethora of other persistent languages has also
appeared since 1985 [MS89, Eve85, RC89, ACO85, Mat85, DM90, Car85,
GMD85, HS89].

The need for flexible, incremental binding mechanisms in a persistent system was
identified in [ABC83], and the relationship between binding and typechecking in
[ABM88].  Binding mechanisms in Napier were first discussed in [AM85a], and
refined to the form of Napier88 environments [Dea89].  The description in Chapter
2 uses the Napier88 environment mechanism as an example in a more general
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discussion of software system construction paradigms.  The particular example of
a construction method given is due to [CD90].

Structural typechecking algorithms of the kind described for the Napier88 system
in Chapter 4 appeared in the implementation of S-algol, and later PS-algol.  Both
of these systems build graph representations of types during compilation, and a
similar recursive algorithm traverses the graphs to test equality.  Both languages
use a string type representation to check types dynamically.  However, the
languages have relatively simple type systems, which do not include for example
recursive, parameterised or quantified types.  The description in this thesis mainly
shows how the technique may be used for a more descriptive type system and
algebra.

The discussion of implementation techniques for polymorphic programming
languages draws from the descriptions of some of the many successfully
implemented languages [Mil83, Lis81, DD79, Mat85, BMS80, Fai82, Tur87,
ACO85, SZ86, GR83, Hud90], as well as a number of claims, counter-claims,
admissions and denials during conversations with implementors and their friends.

6.1.2 Future
In the FIDE (Esprit II Basic Research Action 3070) project, a number of partners
are working on the problems of type systems for programming in the large.  Work
at the University of Pisa on objects and modules [AGO90] relates to Chapters 2
and 4.  Collaborators at INRIA [ALR90] are working on a general polymorphic
model of bulk data types, which may relate strongly to ideas in Chapters 4 and 5.

Binding is still an important issue in persistent systems, particularly in the context
of system evolution.  The discussion in Chapters 2 and 3 shows how existential
types may be used both as an abstraction over implementation, and as a protection
mechanism.  The combination of these concepts may lead to a further model of
binding in persistent systems which could allow an "organic" system, where meta-
data may evolve incrementally and outdated schema information could gradually
disappear from the system.

Some of the results shown in Chapter 4 suggest that the limit of expressiveness of
current type systems is being reached.  One way of writing strongly-typed
programs which may exceed the expressiveness of a given type system is by the
use of reflection [DB88, SFS90].  The disadvantage of this technique is that it
appears to be intrinsically difficult for a programmer to understand.  A worthy area
of investigation is in the interaction between the expressiveness of a type system
and its use in a reflexive system.

It is shown in Chapter 5 how the least general form of polymorphic
implementation, that of source code manipulation, is also the most efficient.
Efficiency in all the other implementation techniques shown is a major problem,
and programmers are known not to use constructs that they know to be inefficient.
There is no reason why a mixed implementation strategy should not be used,
perhaps with commonly used polymorphic constructs being optimised
incrementally.  This topic of incremental optimisation of persistent code is still in
its infancy.
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6.2 Applications building systems

6.2.1 Software reuse

6.2.1.1 Dynamic L-value binding

The use of units of dynamic and L-value binding, along with first-class persistent
procedure values, may be used to solve some of the problems associated with the
incremental construction of large programming systems.  In particular, software
componentry may be shared, rather than copied, whilst maintaining the benefits of
a strongly typed programming language.  Apart from orthogonal persistence, two
other language facilities are required to allow this.

A flexible, incremental binding mechanism should be able to model a number of
different methodologies for the binding of program components.  In particular,
such a mechanism should allow the incremental construction and evolution of a
complex software system.  So that a system constructed incrementally may be
released, it should also be possible to bind the components together tightly at a
later stage.

Much of the description of binding and Napier88 environments is based on
research by Dearle [Dea89], and the given example of a system construction
paradigm is due to Cutts and Dearle [CD90].  However, this is the first general
description of the way that the units of binding may be composed to provide the
flexibility shown.

The examples also show a use of structural type equivalence checking over
independently prepared programs, as discussed in Chapter 4.

6.2.1.2 Quantification over dynamic bindings

Type abstraction is also necessary to maximise the sharing of software
componentry, as it allows the specification of procedures that do not depend upon
a full type description of their parameters.  Universal quantification allows
abstraction over the type of a procedure itself, and existential quantification over
the type of a parameter's implementation.  Once again, the examples show
instances where these types must be checked dynamically for structural
equivalence.

6.2.2 Protection and viewing

6.2.2.1 Using types to hide information

The integrity of persistent data is of the utmost importance, and must be protected
as far as possible.  Traditionally protection is provided by a two-level model, with
different schemes in operation for data within programs and permanent data.  In a
persistent system this difference does not exist, and a single protection mechanism
must be used for all data within the system.

As all data within a persistent system are subject to type system constraints, no
unlawful access to the data may occur except in the event of system failure.  This
gives the aspect of type safety to permanent data, which may not be achieved in a
non-persistent system.

A further effect of the type safety of all data is that any protection which is
programmed may not be revoked by a lower level of technology.  This means that
access protection and software constraints may be programmed as suitable for the
individual data.  A number of different language mechanisms may be used to
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protect permanent and shared data, including subtype inheritance, procedural
encapsulation, and abstract data types [MBC90].

6.2.2.2 Viewing with existentially quantified types

The protection of data in database systems is normally achieved by integrity
constraints and viewing mechanisms.  In a persistent system, however, such
mechanisms do not need to be specially provided as they may be programmed
within a persistent programming language.  Integrity constraints may be
programmed within procedural encapsulation, and viewing mechanisms may be
programmed with a combination of encapsulation and existentially quantified data
types.

Existential types have a number of advantages over traditional viewing
mechanisms.  They are statically type checkable, and as only the type of data and
program is abstracted over no change in efficiency need be associated with the
mechanism.  The referential integrity provided by a persistent store ensures that
views occur over the same instance of data, and the copying of data, with its
associated integrity problems, is not necessary.  Lastly, the same existentially
quantified type may abstract over more than one representation type in the same
context, which allows data representations to change incrementally.

6.3 Programming system implementation

6.3.1 Typechecking across persistent systems

6.3.1.1 Type models

If the traditional database schema is regarded as a type, there is a requirement for
the efficient manipulation of types in a persistent system.  This is to allow
provision of the facilities traditionally found in DBMS for schema editing, use and
evolution [CBC90].

Two models of type equivalence are in common use: name equivalence and
structural equivalence.  It has been shown that while name equivalence schemes
are easier to implement and are more efficient they still have to use structural
checks to provide important facilities such as schema merging.  On the other hand
structural equivalence, generally more flexible and less efficient, can often achieve
the same performance as name equivalence.

The details of schema merging still remain an outstanding problem: it is clear that
structural checking is necessary, but not sufficient.  A related topic for future
research is the sharing of type definitions between modules.  This is necessary for
name equivalence systems, and causes problems with the resolution of the
meaning of a type name.

6.3.1.2 Structural checking across store

One important topic of research is how to improve the performance of structural
equivalence checking.  How such checking may be performed has been fully
investigated.  The balance between constructing efficient representations of types
in terms of store and the speed of the equivalence algorithm in comparing two
representations is described.

The combination of parameterisation and recursion allows much expressive power
in a type algebra.  The algorithms described for the equivalence testing of such
types are believed to be fully decidable for a greater class of types than those
described elsewhere.  Some useful types are still disallowed, and it is not even
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known whether a decidable algorithm exists for such types.  It is clear that a
greater class of types could be decidably checked for equivalence, if not all types
expressible with such an algebra.

6.3.2 Implementation of polymorphism

6.3.2.1 General problems and classification of solutions

Values of different types frequently have different machine-level representations
for reasons of efficiency.  The difficulty of implementing polymorphic systems
stems from the fact that, as the type may be abstracted over, the representation of a
value is not always known statically.  This causes problems with all kinds of
polymorphism.

Solutions to the general problems of type information loss have been categorised
into a system which is useful at least for the description of such implementations.
The four categories of implementation have been described as textual, uniform,
sometimes tagged and always tagged.  Two new mechanisms, both classified as
"sometimes tagged", are proposed here for the implementation of polymorphism.

6.3.2.2 Parametric implementation

One of these implementation mechanisms solves the problems encountered when a
fixed number of operations is available on a value whose type is fully abstracted
over.  This is suitable for the implementation of parametric polymorphism, ad hoc
polymorphism, and existential data types, and works by changing values into
uniform formats only in contexts where their type is abstracted over.  This
mechanism has been successfully used in the implementation of Napier88.

6.3.2.3 Inclusion implementation

The other proposal is for a mechanism which allows type-specific operations to be
performed on a value whose type is partially abstracted over, and may therefore be
used to implement inclusion polymorphism.  This mechanism may also be useful
in object-oriented languages as a solution to object addressing with multiple
inheritance.  An implementation of this mechanism has not yet been built, mainly
because the writing of this thesis became more important.  An implementation of
inclusion polymorphism within the Napier system is proposed for the near future.

6.4 Some final words
The motivation for the research contained in this thesis is the development of
technology to help with the construction of better applications building systems.
Applications, however, are built by programmers, who write them using systems
provided by computer manufacturers.  This leaves the outstanding question of
whether computer manufacturers will ever invest in persistent systems.

Even if they do not, the work will not have been in vain.  Some of it is applicable
in the general context of large applications systems, and some of it is applicable to
systems which are not large.  Most importantly, it has provided, and will continue
to provide, interesting problems to wake up to each day [Mor90].

But will computer manufacturers invest in persistent technology?  Large
manufacturers seem unlikely to, as they must follow and not lead market demand,
and therefore continue to produce outdated technology such as Fortran compilers
and qwerty keyboards.
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However, recent developments have shown that, in the computer market, a small
forward-thinking computer company which backs a winning concept from the
research community may become a large company in a very short time.  Examples
of such winning concepts may be seen in graphical user interfaces and networked
workstations.

So meanwhile we will continue to work on our interesting problems, in the hope
that, one day, all computer systems will be made this way...
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Appendix I

Napier88 Context Free Syntax

Session:
<session> ::= <sequence>?

<sequence> ::= <declaration>[;<sequence>] | <clause>[;<sequence>]

<declaration> ::= <type_decl> | <object_decl>

Type declarations:
<type_decl> ::= type<type_init> |

rec type<type_init>[&<type_init>]*

<type_init> ::= <identifier>[<type_parameter_list>]is<type_id>

<type_parameter_list>::= <lsb><identifier_list><rsb>

Type descriptors:
<type_id> ::= int | real | bool | string | pixel | pic |

null | any | env | image | file |
<identifier>[<parameterisation>] |
<type_constructor>

<parameterisation> ::= <lsb><type_identifier_list><rsb>

<type_identifier_list> ::= <type_id>[,<type_identifier_list>]

<type_constructor> ::= <star><type_id> | <structure_type> |
<variant_type> | <proc_type> | <abstype>

<structure_ type > ::= structure([<named_param_list>])

<named_param_list> ::= [constant]<identifier_list>:<type_id>
[;<named_param_list>]

<variant_type> ::= variant([<variant_fields>])

<variant_fields> ::= <identifier_list>:<type_id>[;<variant_fields>]

<proc_type> ::= proc[<type_parameter_list>]([<parameter_list>]
[<arrow><type_id>])

<parameter_list> ::= <type_id>[,<parameter_list>]

<abstype> ::= abstype<type_parameter_list>
(<named_param_list>)
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Object declarations:
<object_decl> ::= let<object_init> |

rec let<rec_object_init>[&<rec_object_init>]*

<object_init> ::= <identifier><init_op><clause>

<rec_object_init> ::= <identifier><init_op><literal>

<init_op> ::= = | :=

Clauses:
<clause> ::= <env_decl> |

if<clause>do<clause> |
if<clause>then<clause>else<clause> |
repeat<clause>while<clause>[do<clause>] |
while<clause>do<clause> |
for<identifier>=<clause>to<clause>

[by<clause>]do<clause>|
use<clause>with<signature>in<clause> |
use<clause>as<identifier>[<witness_decls>]

in<clause> |
case<clause>of<case_list>default :<clause> |
<raster> |
drop<identifier>from<clause> |
project<clause>as<identifier>

onto<project_list>default:<clause> |
<name>:=<clause> |
<expression>

<signature> ::= <named_param_list>

<witness_decls> ::= <type_parameter_list>

<case_list> ::= <clause_list>:<clause>;[<case_list>]

<raster> ::= <raster_op><clause>onto<clause>

<raster_op> ::= ror | rand | xor | copy | nand | nor | not | xnor

<project_list> ::= <any_project_list> | <variant_project_list>

<any_project_list> ::= <type_id>:<clause>;[<any_project_list>]

<variant_project_list ::= <identifier>:<clause>;[<variant_project_list>]

<env_decl> ::= in<clause>let<object_init> |
in<clause>rec let<rec_object_init>

[&<rec_object_init>]*

Expressions:
<expression> ::= <exp1>[or<exp1>]*

<exp1> ::= <exp2>[and<exp2>]*

<exp2> ::= [~]<exp3>[<rel_op><exp3>]

<exp3> ::= <exp4>[<add_op><exp4>]*

<exp4> ::= <exp5>[<mult_op><exp5>]*

<exp5> ::= [<add_op>]<exp6>
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<exp6> ::= <literal> | <value_constructor> |(<clause>) |
begin<sequence>end | {<sequence>} |
<expression>(<clause><bar><clause>) |
<expression>(<dereference>) |
<expression>'<identifier> |
<expression><lsb><specialisation><rsb> |
<expression>([<application>]) |
<structure_creation> | <variant_creation> |
<clause> contains [constant]

<identifier>[:<type_id>] |
any (<clause>) |
<name>

<dereference> ::= <clause>[,<dereference>]

<specialisation> ::= <type_identifier_list>

<application> ::= <clause_list>

<structure_creation> ::= <identifier>[<lsb><specialisation><rsb>]
([<clause_list>])

<variant_creation> ::= <identifier>[<lsb><specialisation><rsb>]
(<identifier>:<expression>)

<name> ::= <identifier> |
<expression>(<clause_list>)[(<clause_list>)]*

<clause_list> ::= <clause>[,<clause_list>]

Value constructors:
<value_constructor> ::= <vector_constr> | <structure_constr> |

<image_constr> | <subimage_constr> |
<picture_constr> | <picture_op>

<vector_constr> ::= [constant] vector<vector_element_init>

<vector_element_init>::= <range>of<clause> | <range>using<clause> |
@<clause>of<lsb><clause>[,<clause>]*<rsb>

<range> ::= <clause>to<clause>

<image_constr> ::= [constant] image<clause>by<clause><image_init>

<image_init> ::= of<clause> | using<clause>

<subimage_constr> ::= limit<clause>[to<clause>by<clause>]
[at<clause>,<clause>]

<structure_constr> ::= struct([<struct_init_list>])

<struct_init_list> ::= <identifier><init_op><clause>[;<struct_init_list>]

<picture_constr> ::= <lsb><clause>,<clause><rsb>

<picture_op> ::= shift<clause>by<clause>,<clause> |
scale<clause>by<clause>,<clause> |
rotate<clause>by<clause> |
colour<clause>in<clause> |
text<clause>from<clause>,

<clause>to<clause>,<clause>
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Literals:
<literal> ::= <int_literal> | <real_literal> | <bool_literal> |

<string_literal> | <pixel_literal> | <picture_literal> |
<null_literal> | <proc_literal>  | <image_literal> |
<file_literal>

<int_literal> ::= [<add_op>]<digit>[<digit>]*

<real_literal> ::= <int_literal>.[<digit>]*[e<int_literal>]

<bool_literal> ::= true | false

<string_literal> ::= <double_quote>[<char>]*<double_quote>

<char> ::= any ASCII character except " | <special_character>

<special_character> ::= <single_quote><special_follow>

<special_follow> ::= n | p | o | t | b | <single_quote> | <double_quote>

<pixel_literal> ::= on | off

<null_literal> ::= nil

<proc_literal> ::= proc[<type_parameter_list>]([<named_param_list>]
[<arrow><type_id>]);<clause>

<picture_literal> ::= nilpic

<image_literal> ::= nilimage

<file_literal> ::= nilfile

Miscellaneous and microsyntax:
<lsb> ::= [

<rsb> ::= ]

<star> ::= *

<bar> ::= |

<add_op> ::= + | -

<mult_op> ::= <int_mult_op> | <real_mult_op> |
<string_mult_op> | <pic_mult_op> |
<pixel_mult_op>

<int_mult_op> ::= <star> | div | rem

<real_mult_op> ::= <star> | /

<string_mult_op> ::= ++

<pic_mult_op> ::= ^ | ++

<pixel_mult_op> ::= ++

<rel_op> ::= <eq_op> | <co_op> | <type_op>

<eq_op> ::= = | ~=

<co_op> ::= < | <= | > | >=

<type_op> ::= is | isnt

<arrow> ::= ->

<single_quote> ::= '

<double_quote> ::= "
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<identifier_list> ::= <identifier>[,<identifier_list>]

<identifier> ::= <letter>[<id_follow>]

<id_follow> ::= <letter>[<id_follow>] | <digit>[<id_follow>] |
[<id_follow>]

<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
n | o | p | q | r | s | t | u | v | w | x | y | z |
A | B | C | D | E | F | G | H | I | J | K | L | M |
N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Appendix II

Napier88 Type Rules

Meta-rules
type arith is int | real

type ordered is arith | string

type literal is ordered | bool | pixel | pic |
null | proc | file

type nonvoid is literal | image | structure |
variant | env | any | abstype|
parameterised | poly | *nonvoid

type type is nonvoid | void

Session :
<sequence> : void ? => void

t : type, <declaration> : void ; <sequence> : t  =>  t

t : type, <clause> : void ; <sequence> : t =>  t

t : type, <clause> : t =>  t

Object Declarations :
<declaration> => void

where <object_decl> ::= [in<clause> : env]let<object_init> |
[in<clause> : env]rec let<rec_object_init>

[&<rec_object_init>]*
where <object_init> ::= <identifier><init_op><clause> : nonvoid
where <rec_object_init> ::= <identifier><init_op><literal> : nonvoid
where <init_op> ::= = | :=

Clauses :
<clause> : env contains [constant]<identifier>[:<type_id>] => bool

if <clause> : bool do <clause> : void => void

t : type,  if <clause> : bool then <clause> : t  else <clause> : t => t

repeat <clause> : void while <clause> : bool  [do <clause> : void] => void

while <clause> : bool  do <clause> : void => void

for <identifier>=<clause> : int  to <clause> : int
[by<clause> : int ]do<clause> : void => void

t : type, use<clause> : env with<signature>in<clause> : t => t
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use<clause> : abstype as<identifier>[<witness_decls>]
in<clause> : void => void

t : type ;  t1 : nonvoid, case <clause> :  t1 of <case_list>
default : <clause> : t => t

where <case_list> ::= <clause_list>:<clause> : t ; [<case_list>]
where <clause_list> ::= <clause> : t1 [,<clause_list>]

<raster_op><clause> : image onto<clause> : image => void

drop<identifier>from<clause> : env => void

t : type, project<clause> : any as<identifier>onto<any_project_list>
default : <clause> : t => t

where <any_project_list> ::= <type_id>:<clause> : t ; [<any_project_list>]

t : type, project<clause> : variant as<identifier>onto<variant_project_list>
default : <clause> : t => t

where <variant_project_list> ::=<identifier>:<clause> : t ;
<variant_project_list>]

t : nonvoid, <name> : t := <clause> : t => void

Expressions :
<expression> : bool  or  <expression> : bool => bool

<expression> : bool  and  <expression> : bool => bool

[~]<expression> : bool => bool

t : nonvoid, <expression> : t  <eq.op> <expression> : t  => bool
where <eq_op> ::= = | ≠

t : ordered, <expression> : t  <co_op> <expression> : t  => bool
where <co_op> ::= < | <= | > | >=

<expression> : variant<type_op><identifier> => bool
where <type_op> ::= is | isnt

t : nonvoid,any (<clause>) : t => any

<expression> : env contains [constant]<identifier>[:<type>] => bool

t : arith, <expression> : t <add_op><expression> :  t => t

t : arith, <add_op> <expression> :  t => t

t : int, <expression> : t <int_mult_op> <expression> : t => t
where <int_mult_op> ::= <star> | div | rem

t : real, <expression> : t <real_mult_op> <expression> : t => t
where <real_mult_op> ::= <star> | /

t : string, <expression> : t <string_mult_op> <expression> : t => t
where <string_mult_op> ::= ++

t : pic, <expression> : t <pic_mult_op> <expression> : t => t
where <pic_mult_op> ::= ^ | ++



164

t : pixel, <expression> : t <pixel_mult_op> <expression> : t => t
where <pixel_mult_op> ::= ++

t : literal, <literal>  : t => t

t : nonvoid, <value_constructor>  : t => t

t : type, ( <clause> : t ) => t

t : type, begin <sequence> : t end => t

t : type, { <sequence> : t } => t

<expression> : string ( <clause> : int <bar> <clause> : int ) => string

<expression> : image ( <clause> : int <bar> <clause> : int ) => image

<expression> : pixel ( <clause> : int <bar> <clause> : int ) => pixel

t : nonvoid, <expression> : *t (<clause> : int) => t

Value constructors:
t : nonvoid, vector<range>of<clause> : t => *t

t : nonvoid, vector<range>using<clause> : proc(int -> t ) => *t

t : nonvoid, vector@<clause> : int of<lsb><clause> : t
[,<clause> : t]* <rsb> => *t

where <range> ::= <clause> : int to <clause> : int

image <clause> : int by<clause> : int of <clause> : pixel =>image

image <clause> : int by<clause> : int using <clause> : image =>image

limit<clause> : image [to<clause> : int by<clause> : int]

[at<clause> : int ,<clause> : int] => image

struct(<struct_init_list>) => structure
where <struct_init_list> ::= <identifier><init_op><clause> : nonvoid

[,<struct_init_list>]

<lsb><clause> : real ,<clause> : real <rsb> => pic

shift<clause> : pic by<clause> : real ,<clause> : real => pic

scale<clause> : pic by<clause> : real ,<clause> : real => pic

rotate<clause> : pic by<clause> : real => pic

colour<clause> : pic in<clause> : pixel => pic

text<clause> : string from<clause> : real ,<clause> : real
to<clause> : real ,<clause> : real => pic
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Literals :
[<add_op>]<digit>[<digit>]* => int

<int_literal>.[<digit>]*[e<int_literal>] => real

true | false => bool

<double_quote>[<char>]*<double_quote> => string

on | off => pixel

nil => null

t : type, proc[<type_parameter_list>]([<named_param_list>]

[<arrow><type_identifier> : t ]);<clause> : t

nilpic => pic

nilimage => image

nilfile  => file
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Appendix III

The Napier88 Typechecker Interface

rec type list[ t ] is variant( cons : structure( hd : t ; tl : list[ t ] ) ; tip  : null )

type NapierTypes is abstype[ TYPE,TypeName ]
(

Vector,Structure,Variant,Proc,
Parameterised,Parameter,
Quantified,Quantifier,
Abstract,Witness,
Recursive : TypeName ;

BaseType : proc( string -> TYPE ) ;
MkVector : proc( TYPE -> TYPE ) ;
NewStructure : proc( -> TYPE ) ;
AddField : proc( TYPE,string,TYPE -> TYPE ) ;
NewVariant : proc( -> TYPE ) ;
AddBranch : proc( TYPE,string,TYPE -> TYPE ) ;
MkProc : proc( list[ TYPE ],TYPE -> TYPE ) ;
MkParameterised,
MkQuantified,
MkAbstract : proc( TYPE,list[ TYPE ] -> TYPE ) ;
MkParameter,
MkQuantifier,
MkWitness : proc( int -> TYPE ) ;
MkRecursive : proc( string -> TYPE ) ;

Elms : proc( TYPE -> TYPE ) ;
Args : proc( TYPE -> list[ TYPE ] ) ;
Result : proc( TYPE -> TYPE ) ;
ScanStructure : proc( TYPE -> proc( -> string ) ) ;
FieldType : proc( TYPE,string -> TYPE ) ;
AbsFieldType : proc( TYPE,string -> TYPE ) ;
BranchType : proc( TYPE,string -> TYPE ) ;
BranchNumber : proc( TYPE,string -> TYPE ) ;
NoOfSubstitutions : proc( TYPE -> int ) ;

Subsitute : proc( TYPE,*TYPE -> TYPE ) ;
BindAbs : proc( TYPE,*TYPE -> TYPE ) ;
ReplaceRecursions : proc( list[ TYPE ],proc( string -> TYPE ) ) ;
Commute : proc( TYPE -> TYPE ) ;

IsType : proc( TypeName,TYPE -> bool ) ;
EqualType : proc( TYPE,TYPE -> bool ) ;

Display : proc( TYPE -> string )
)
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